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Chapter 1

Introduction

This thesis aims at developing a theoretical framework, based on a multiscale QM/MM

description, to describe the energy and response properties of complex molecular sys-

tems. Complexity in theoretical chemistry can arise from several aspects. First, com-

plexity can be related to the complexity of the property under investigation, meaning

the difficulty in defining effective algorithms to calculate it. Second, complexity can

arise from the large number of atoms/molecules that need to be considered in order

to have a reliable representation of the physico-chemical phenomenon. This is for in-

stance the case of molecular systems in the condensed phase or embedded in a biological

matrix, in which an interplay between the description of the solvent/embedding envi-

ronment and an adequate sampling of all possible configurations is mandatory. Finally,

complexity can arise from the strong interaction between light and environment, as in

the case of nanoparticles/nanoaggregates. The peculiarity of such environments stands

in the fact that they can enhance by orders of magnitude the resonant electric field

near the surface. Even more complexity arises when the above mentioned phenomena

are combined together, as for instance in the case of high order molecular properties of

molecular systems embedded in a complex environment. Therefore, in order to obtain

an appropriate physico-chemical description of the target phenomena, an effective the-

oretical model able to accurately treat all players is needed. This is exactly the aim of

the present work.

The problem of describing the interaction between a molecule and its embedding en-

vironment is one of the pillars of Quantum Chemistry. The interplay between the

molecule and the environment can in fact dramatically alter both the structure and

the molecular response to external electromagnetic fields.

An effective theoretical modeling of molecular phenomena in external environments

needs to resort to Quantum-Mechanical (QM) descriptions. If all the atoms/molecules

were treated at the QM level, several issues would arise, due to the large number of

degrees of freedom that need to be considered. For these reasons, to describe the

energy and spectroscopic/response properties of molecules in the condensed phase at

the same level of accuracy as isolated systems is a particularly challenging task. Due

to the huge size of the whole system, any attempt to use the same QM approaches

adopted for isolated system would be unrealistic. Even if the QM calculation on the
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1. Introduction

whole system were computationally affordable, the huge number of degrees of freedom

of the environment would give rise to several configurations which would need to be

taken into consideration to achieve a reliable sampling of the phase space. However,

since the molecular properties are local properties of the molecule, which are modified

but not determined by the presence of the environment, “brute force” approaches are

usually unwarranted, because most of the computational effort would be devoted to the

simulation of the properties of the environment itself, which are not those determining

the system’s signals.

The most successful answer to this problem has been found within the realm of multi-

scale approaches and focused models:1–6 there, the focus is always the molecule and the

key is to accurately capture the molecule/environment interactions and their effects on

the molecular structure and properties, while neglecting to simulate the intrinsic prop-

erties of the environment. Such an approach is based on the assumption that molecular

properties are local properties of the molecule, which are modified but not determined

by the presence of the environment. The most renowned focused models belong to

the family of QM/Classical approaches, in which the classical portion ranges from an

an atomistic description (giving rise to QM/MM models1,2,7–63 to a blurred contin-

uum description.3–6,64–82 These models have had great success in modern chemical

research, because they can be effectively coupled with most QM descriptions, ranging

from semi-empirical methods to Density Functional Theory (DFT) or Wavefunction

Theory, without increasing the computational costs with respect the corresponding

QM calculation of the isolated molecule. This is due to the fact that such models

limit the number of degrees of freedom to be treated in the QM calculation to those

of the the QM portion, without a substantial increase in the dimension of the QM

problem. Also, by introducing the environment-related terms in the molecular Hamil-

tonian, the machinery of Quantum Chemistry can be exploited to obtain the desired

spectral signals in the same way as they are calculated for isolated systems, with the

addition of extra terms to be introduced in the formulation of energy derivatives and

response equations.56,64,67,83 The difference among the various types of focused models

mainly lies in the specific structure of the environment-related extra terms. Most such

models focus on reproducing the electrostatic component of the system-environment

interactions, which is in many cases the most important term.

The Polarizable Continuum Model (PCM),3–6 which belongs to the family of QM/-

Continuum approches, has been particularly successful. In such an approach, the

QM described target molecule is accommodated into a molecular cavity, whose shape

depends on the molecular geometry.69 The environment is instead described as an ho-

mogeneous, continuum dielectric with given dielectric properties, which characterize

the environment. The QM electron density and the dielectric mutually polarize. In

such a framework, the molecule-environment interaction is restrained to the electro-

static interaction, which is of course an approximation, although it is the main force in

several systems. Methods to include non-electrostatic terms, such as repulsion and dis-

persion, both empirical and QM based approaches have been proposed.84–88 QM/PCM

model has been particularly successful because it has been extended to almost all the

computational spectroscopies,28,64,71,72,74,82,83,89–132 and it has been coupled to var-

ious QM descriptions.119,133–141 Remarkably, in QM/PCM all possible environment
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configurations are implicitly taken into consideration, and thus no statistical average is

needed. This has a practical consequence: a QM/PCM study requires the same num-

ber of calculations as for the corresponding isolated system. On the other hand, since

all the information about the structure of the environment is neglected, the specific

molecule-environment interactions (e.g. Hydrogen Bonding), cannot be described.

In order to recover the atomistic description of the environment, QM/Molecular Me-

chanics is exploited,1,2,7–62,142–145 where the target molecule is described at the QM

level, whereas the environment is described by resorting to MM force fields. The fully

atomistic description of QM/MM approaches is not gained for free: in fact, whereas

QM/PCM implicitly includes the statistical average of the possible configurations of the

environment, QM/MM approaches need an explicit sampling of the phase space. Such a

sampling is usually carried out by firstly performing a Molecular Dynamics simulation,

and then extracting some uncorrelated snapshots, whose number can vary depending

on the property under consideration, until convergence is reached.54,58,146–155

In the past years, several hierarchical ways to couple the QM and MM portions have

been proposed:

1. Mechanical embedding : the QM/MM coupling term is treated at the MM level

only, therefore it is independent of the QM electronic density. Such a coupling

is expressed in terms of dispersion-repulsion potentials (usually, the Lennard-

Jones potential) and classical electrostatics. The contribution of the surrounding

environment to the energy and properties of the QM portion is thus only indirect.

2. Electrostatic embedding : the MM atoms are endowed with fixed atomic charges,

that produce an electric potential which polarizes the QM electronic density.

From the point of view of the QM solute, the electrostatic embedding introduces a

new term in the molecular Hamiltonian, i.e. the interaction between the potential

generated by the MM fixed charges and the electron density:

Hint =

Nq∑
j=1

qiVQM (ri)

where the sum runs over the Nq MM charges qi. VQM (ri) is the QM poten-

tial calculated at charge positions ri. Dispersion - repulsion contributions are

usually considered by resorting to classical potentials. The actual quality of the

final results crucially depends on a proper choice of values of the fixed charges

representing the MM portion.

3. Polarizable embedding (PE): the mutual polarization between MM and QM por-

tions is explicitly taken into account. In fact, the MM force field contains a

response term, which modifies the electrostatics as a result of the presence of the

QM density. A polarization term is included in the QM Hamiltonian to repre-

sent the interaction of the electronic density with the MM portion. Dispersion -

repulsion contributions are usually considered by means of classical potentials.

Several QM/PE schemes have been proposed in the literature. In the Fluctuating

Charge (FQ) force field,156–159 each MM atom is endowed with an atomic charge,

5



1. Introduction

which can vary according to the Electronegativity Equalization Principle (EEP),

which states that at the equilibrium each atom must have the same electroneg-

ativity.160 In the resulting QM/FQ approach,54–56,146–153,161–163 (see Ref.56 for

a recent review) the atomic charges on each MM atom vary according to the

differences in electronegativity and to the differences in the values of the QM

potential calculated at charge positions. Thus, the QM Hamiltonian is modified

as:

Hint =

Nq∑
j=1

qiVQM (ri)

where, differently from electrostatic embedding, charge values are obtained by

solving a linear equation, in which the right hand side depends on the QM density:

Dq = C(ρ)

where D is the response matrix.

In the induced point dipole model (ID, or Thole method)10,35,37,39,155,164–169

mutual polarization effects are introduced in terms of induced point dipoles placed

in the MM region. In this case the electric field produced by the QM density

enters the equations that determine the induced dipoles. The latter, together

with a set of fixed charges define the interaction term in the QM Hamiltonian.

Hint =

Nq∑
j=1

qiVQM (ri)−
Nµ∑
k=1

µk ·EQM (rk)

where, Nµ is the number of induced dipoles µ in the MM region. EQM (ri) is the

QM electric field calculated at dipole positions rk. The induced dipoles µ are

obtained by solving a linear equation, in which the right hand side contains the

electric field produced by the QM density:

Tµ = K(ρ)

where T is the dipole response matrix, and K(ρ) is the QM density-dependent

right hand side.

An alternative approach is represented by the Drude Oscillator (DO) model,59,170–176

which represents the induced electric dipole at each polarizable MM site in terms

of a couple of charges, of the same magnitude and opposite sign, linked by a

harmonic spring. The first charge is located at the nucleus of the MM atom,

while the second one is mobile, so that polarization arises from the competition

between the forces acting on the charges, which are due to the harmonic poten-

tial, and the electrostatic interactions with the remaining environment. In this

model the molecular Hamiltonian is modified as:

6



Hint =

Nq∑
j=1

qiVQM (ri) +

NZ∑
k

ZkVQM (rk)−
NZ∑
l

ZlVQM (rl)

where Zk and Zl are the two fixed opposite charges connected by the harmonic

spring. In such an equation, the positions of the negative mobile charges (Zl, rl)

are found by imposing the total force acting on them to be set to zero:

Ftot = Fspring + Felec + F(ρQM ) = 0

where Fspring are the forces due to the springs, Felec are electrostatic forces arising

from other MM charges, and F(ρQM) is the force due to the QM density. Differ-

ently from FQ and ID, QM/DO equations are by definition non-linear.59,175–177

Remarkably, DO can be mapped onto ID, thus resulting in the same electrostatic

description.178

Building upon the aforementioned models, the AMOEBA force field58,154,179–184

is based on the inclusion of both permanent and induced multipolar terms in the

electrostatic term. Molecular polarization is achieved via a Thole-style damped

interactive induction model based upon distributed atomic polarizabilities. In

particular, charges q, induced dipoles µ and quadrupoles Θ are considered, so

that the QM Hamiltonian is modified as:

Hint =

Nq∑
j=1

qiVQM (ri)−
Nµ∑
k=1

µk ·EQM (rk)−
Nquad∑
l=1

Θl · ∇EQM (rl)

where ∇EQM (rl) is the electric field gradient calculated at quadrupole positions

rl. Again, polarization is described by letting atomic dipoles µ vary as a response

of the electric field generated by the QM density:

Tµ = K(ρ)

where T is the dipole response matrix, and K(ρ) is the QM density-dependent

right hand side.

4. QM-based embedding : the MM force field is constructed on the basis of explicit

QM calculations on the environment. In such approaches, all the interactions,

i.e. electrostatics, induction, repulsion and dispersion, can be included in the QM

Hamiltonian.

The most used approach is the QM/Effective Fragment Potential (EFP) model,185–190

which constructs the MM force field employing QM quantities calculated by using

localized molecular orbitals of the MM portion. Such a model is usually used to

calculate the energy of the system, however it has also been extended to gradients

and UV-VIS spectroscopy.188,190
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1. Introduction

A similar QM-based approach, namely the Polarizable Density Embedding (PDE),

has been recently proposed to calculate UV-VIS spectra.60–62 Differently from

QM/EFP, this model does not include QM/MM dispersion contributions.

Expanding the QM/FQ approach

Most of the aforementioned Polarizable Embedding (PE) approaches are designed and

employed for reproducing structural properties and only few of them are able to treat

electronic excitations, or magnetic perturbations.10,43,58,165,167–169,191 The only cur-

rently QM/PE approach specifically designed for response properties and computa-

tional spectroscopy is the QM/Fluctuating Charge (FQ) approach, which has been

developed and extended to the calculation of several spectroscopic and response prop-

erties in our group.54–56,146–153,161–163 Such an extension follows from its variational

formalism.54 In this thesis QM/FQ is further developed and tested to the calculation

of Vibrational Optical Activity (VOA) spectra of (L)-Methyl Lactate and (S)-Glycidol

in aqueous solution (Chapter 2).151 In Chapter 3, the performances of QM/PCM,

the QM/FQ and hybrid approaches are analyzed with respect to the description of

UV-VIS vertical excitation energies of selected chromophores in aqueous solution.153

In Chapter 4, QM/FQ model is extended to the calculation of the first electric hy-

perpolarizability (β) and Second Harmonic Generation (SHG) and tested for a set of

organic acids in aqueous solution.152

QM/FQ is based on the assumption that electrostatic energy terms dominate the

QM/MM interaction. Although such an assumption can be in principle reasonable

for aqueous solutions, it may fail for other environments. In addition, in FQ the MM

portion is represented only in terms of a set of charges. This poses conceptual issues,

because in this way only monopoles, i.e. the zeroth order of the electrostatic Taylor ex-

pansion, are considered. In the present thesis, these two approximations are overtaken.

In Chapters 5 and 6 a model to include repulsion/dispersion contributions in the cal-

culation of QM/MM energies and Electron Paramagnetic Resonance (EPR) parameters

is proposed. Chapter 7 focuses on the development and testing of an alternative fully

polarizable QM/MM model, in which polarization effects are modelled both in terms

of fluctuating charges and fluctuating dipoles (FQFµ). Both the two novel approaches

are based on the strong points of QM/FQ. In fact, they are both formulated in terms

of the QM density, so that they can be further extended to properties/spectroscopies.

Also, the variational formalism of QM/FQ is maintained in QM/FQFµ, thus foreseeing

its extension to properties and spectroscopies.

QM/MM Non-electrostatic contributions Non-bonding intermolecular interac-

tions find their physical origin in the forces between the charge densities of the molecules

involved, resulting in inductive forces, and dispersion and repulsion interactions, the

latter essentially due to the quantum nature of the electrons.192,193 In particular, re-

pulsion forces between molecules arise from the Pauli Exclusion principle, whereas

dispersion forces are related to the long-range correlation between the electrons’ mo-

tions of two molecules. Because of their quantum nature, both these forces are not

well reproduced by simple approximations based on classical models. If the whole sys-
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tem is described at the QM level the repulsion terms are automatically included in

the calculations, while, in order to have a good account for dispersion interactions,

it is compulsory to consider electron correlation, i.e. to resort to Post-Hartree-Fock

or suitably parametrized DFT methods.194 In QM/Classical approaches, electrostatic

forces can be fully included in the model provided the environment be polarizable, but

to account for dispersion and repulsion interactions requires to go beyond the basic

models. The simplest way, which is actually the common strategy in Mechanical Em-

bedding, Electrostatic Embedding and Polarizable Embedding, is by calculating the

Lennard-Jones potential, which is parametrized on equilibrium distances and disso-

ciation energies.195,196 However, contrary to the electrostatic term which acts as an

external potential in the Hamiltonian, the Lennard-Jones energy is only added to the

total energy of the system, because it does not depend on the QM density but only

on atom positions. Thus, it gives only indirect contributions to molecular proper-

ties, because it does not directly affect the Hamiltonian, its derivatives and response

equations.

In Chapter 5, a theoretical approach,197 which formulates repulsion as a function of

an auxiliary density on the MM portion and extends the Tkatchenko-Scheffler (TS)

approach to DFT198–202 to treat QM/MM dispersion terms is presented. Such an

approach can easily be coupled to any kind of QM/MM approach, because repulsion

and dispersion are formulated in a way which is totally independent of the choice

of the FF to model the electrostatics (i.e. fixed-charges or polarizable embedding).

Remarkably, in our model repulsion and dispersion contributions are indeed dependent

on the QM density. Thus, an explicit contribution to the QM Fock operator can

be defined and the resulting calculated QM properties/spectra are modified by such

interactions.

In Chapter 5,197 the approach is tested against the reproduction of QM calculated

non-electrostatic interactions. Then, it is challenged to the calculation of EPR hy-

perfine coupling constants (hcc) of two stable organic nitroxyl radicals (TEMPO and

PROXYL) in aqueous solution in Chapter 6.203

Refining QM/FQ electrostatic coupling FQ does not explicitly take into ac-

count the intrinsic anisotropy of specific molecule-environment interactions, such as

HB, because it only works in terms of charges. To overcome this problem, the elec-

trostatic description of the FQ force field is refined in Chapter 7, where an additional

source of polarization, i.e. fluctuating dipoles is included. A novel polarizable force

field, the Fluctuating Charge Fluctuating Dipoles (FQFµ) is proposed, in which both

monopoles (charges) and dipoles can vary as a response to the external Maxwell sources,

i.e. electric potential/field. In Chapter 7, FQFµ is coupled to a QM SCF description,

following the general structure of QM/MM approaches. Remarkably, the variational

formalism of QM/FQ is maintained, so that the novel QM/FQFµ can be extended to

molecular response/spectral properties by using the machinery of quantum chemistry.

FQ for the spectroscopy on plasmonic materials In the past years, FQ has

only been applied to molecular systems in solution. However, recently much interest

has been devoted to nanoplasmonic materials under the effects of external fields, which

9
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have been reported to give huge (up to 1010 ∼ 1012) enhancement of the spectral

response of a molecule adsorbed on them, up to the point of allowing single molecule

detection.204–216 Such enhancement is primary due to the enhancement of the electric

field in correspondence of the surface of the plasmonic material.217This has stimulated

the growth of theoretical approaches to model such phenomena, giving rise to diverse

methods, employing both Quantum Mechanical (QM) and classical descriptions. In

this context, classical approaches are very promising because of their low computational

cost, which allows the investigation of nanoparticles of size by far larger than what can

be treated at the QM level.107,113,218–234

The last chapter of this thesis (Chapter 8) is dedicated to the formulation of a novel

classical approach based on the FQ force field to describe the plasmonic response of

metal nanoparticles/nanoaggregates to an external electric field. In the novel ωFQ

approach, each atom of the nanoparticle is endowed with an electric charge, which

can vary as a response to the external electric field. In particular, when nanoparticle

dimers are considered, and a sub-nanometer gap emerges, purely QM effects become

crucial and cannot be neglected.225,230,235–242 Such effects are essentially related to

electron tunneling, thus the description of the resulting Charge Transfer (CT) is cru-

cial.225,233,234,241 Due to the CT nature of plasmonic excitation, classical models based

on the electronegativity equalization principle appear to be very promising, because,

differently from other polarizable force fields, they are in principle able to describe

charge transfer between the atoms constituting the system (although with some issues

related to unphysical charge transfer at long distances243–245).

10



Chapter 2

Effective computational route

towards vibrational optical

activity spectra of chiral

molecules in aqueous solution

Abstract We present a computational methodology, based on a polarizable Quantum Me-

chanical (QM)/Molecular Mechanics (MM) approach to accurately compute Vibrational Op-

tical Activity (VOA) spectra of chiral systems. The approach is applied to the calculation

of Infrared (IR), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activ-

ity (ROA) spectra of aqueous solutions of (L)-Methyl Lactate and (S)-Glycidol. Remarkable

agreement between calculations and experiments is reported, showing the reliability and accu-

racy of the methodology, especially with respect to standard continuum solvation approaches.
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2. Effective computational route towards vibrational optical activity spectra of chiral molecules in

aqueous solution

2.1 Introduction

Chiroptical spectroscopic methods are nowadays the most useful tools to study chiral

systems and assign their molecular absolute configuration. Chiroptical spectral signals

arise from the differential response of the chiral system to polarized light, either in

absorption/emission or scattering of the right and left components of the circularly

polarized light. Basically, two different families of chiroptical molecular responses have

been developed, focusing on the electronic or vibrational molecular degrees of freedom.

The former, such as the Optical Rotation Dispersion (ORD) and the Electronic Circular

Dichroism (ECD), provide relatively little molecular information in comparison with

vibrational chiroptical spectroscopies, i.e. Vibrational Circular Dichroism (VCD) and

Raman Optical Activity (ROA), because there are many more bands sensitive to the

details of the molecular structure in the vibrational domain than for the different

electronic states accessible to experimental investigations.246–248 VCD and ROA, which

are collectively named as Vibrational Optical Activity (VOA), have demonstrated high

reliability and a wide range of applicability, as it has been amply documented by recent

papers.247,249–258

VOA has been so far mostly employed to study biomolecules or natural biopolymers in

solution,246–248,259 however their horizons are broadening, as they have also applied to

the study of structural patterns in synthetic chiral polymers,260 fibrillar patterns,261

ionic liquids262 and the transfer of chirality from a chiral analyte to an achiral molecule

in the vicinity of a plasmon resonance of an achiral metallic nanostructure.263 The wide

applicability of VOA is due to its sensitivity to the local environment experienced by the

chiral system. However, if such a feature is beneficial for the experimental investigation,

it is a severe issue to deal with in the development of reliable modeling strategies.

In fact, the unambiguous assignment of VOA spectra to enantiomers and structural

patterns is only possible by a subtle interplay of experiment and theory, which requires

the availability of reliable and algorithms for predicting the spectroscopic signals in a

computationally viable manner.150,264 Such algorithms, cannot neglect the presence of

the environment, because that can cause a totally wrong reproduction of the molecular

chiroptical signal, up to impede a correct assignment of the absolute configuration.56,94

For this reason, in the last years significant advances have been made in the coupling of

reliable approaches to treat environmental effects and ab initio Quantum Mechanical

(QM) methods to predict these signals.91,94,97,111,112,120,122,246–248,256,264–277

The most successful approaches in this field belong to the family of the so-called focused

models, where the system is divided in two portions: a target molecule (e.g. the solute

in case of solvated systems), which is responsible for the spectral signal and is treated

accurately with ab initio QM methods, and the environment (e.g. the solvent), which

is treated at a lower level, usually by resorting to classical physics. By resorting to

such approaches, the molecule/environment interactions and their effects on the molec-

ular structure and properties are accurately captured.56,94 The most renowned focused

models belong to the family of QM/Classical approaches, in which the classical por-

tion can keep an atomistic description (giving rise to QM/Molecular Mechanics(MM)

models)1,2,12,13,278 or even be blurred to a continuum.4–6,279

Continuum solvation approaches, and the Polarizable Continuum Model (PCM) in par-
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ticular, have been extended to VOA several years ago.91,115 Nowadays, they represent

the most used strategy to include the effects of the environment on calculated VOA

spectra, due to their low computational cost. However, whenever the target system and

the environment strongly interact, the mean-field continuum approach may fail and the

use of discrete approaches, able to account for specific and directional interactions, is

compulsory. This is for instance the case of a solute-solvent couple interacting thorugh

hydrogen bonding.10,148

In such cases, the limitations of continuum strategies can be effectively overcome by

using explicit QM/MM approaches,1,273 and in particular those accounting for the

mutual polarization between the QM and MM moieties of the system, i.e. the so-called

polarizable QM/MM methods.10,56,58,59,155,164,185,186,280,281

Although several papers have addressed the prediction of electronic response proper-

ties in the polarizable QM/MM approach,10,37,155,167 much less work has been done

to extend such approaches to vibrational spectroscopies (IR, Raman) and especially

VOA. To the best of our knowledge, the only polarizable QM/MM currently able

to calculate such spectra is the QM/Flucuating Charges (FQ) model, based on the

Polarizable Fluctuating Charges (FQ) Force Field,156,157,282 which has recently been

extended to several molecular properties and spectroscopies by some of the present

authors.54–56,146,148–150,161,162

To illustrate our approach, and report simultaneously for the first time on the IR,

Raman, VCD and ROA spectra calculated with our method, two chiral systems are

here considered, i.e. aqueous solutions of (L)-Methyl Lactate (ML) and (S)-Glycidol

(GL) (Figure 2.1). For both systems, experimental IR, Raman, VCR and ROA spectra

have been reported in the literature, as they have been employed as test systems to

get a deep understanding of their intermolecular interaction with water.249,252,283–285

In fact, their vibrational spectra have been reported to be strongly modified by the

presence of the surrounding aqueous solution, giving rise to several specific features

due to hydrogen bonding interactions between the chiral systems and the nearby water

molecules.249–252,284,285

Figure 2.1. (L)-Methyl Lactate and (S)-Glycidol molecular structures

The paper is organized in the following way. In the next section the computational

protocol for the calculation of vibrational spectra with the fully polarizable QM/FQ

approach is recalled. Then, its application to IR, Raman, VCD and ROA spectra of

(L)-Methyl Lactate and (S)-Glycidol is reported, with particular emphasis on the com-

parison between calculations and experiments. A section focusing on the conclusions

of this work and its future perspectives end the manuscript.
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aqueous solution

2.2 Methodology

The aim of this section is to introduce the reader with the computational protocol for

the evaluation of vibrational (IR, VCD, Raman and ROA) spectra within the fully

polarizable QM/FQ approach. The theoretical fundamentals of the method are briefly

recalled in the next section, as well as the definition of the computational protocol

allowing the calculation of the spectra for a given chemical system.

2.2.1 QM/FQ Approach to Vibrational Spectra

The QM/FQ model is a multiscale approach defined in the framework of focused mod-

els. When it is applied to molecular systems in solution, this means treating the solute

at QM level of theory, whereas the solvent is described by means of the polarizable

Fluctuating Charge force field. In Figure 2.2, a schematic picture of the partitioning

is shown.

Figure 2.2. Schematic picture of the partition in the QM/FQ model.

The van der Waals spheres represent the QM portion, whereas the water

molecules the FQ one.

The FQ force field56,159 represents each atom of the MM portion with a set of fluctuat-

ing charges. The polarization arises from the difference of electronegativities between

each atom in the electronegativity equalization principle (EEP)286,287 framework. The

EEP states that, at equilibrium, the instantaneous electronegativity χ of each atom

have the same value,160,286 which give a minimization principle in a variational meaning

of the term.

The FQs (q) can be defined as those minimizing the following functional159

F (q, λ) =
∑
α,i

qαiχαi +
1

2

∑
α,i

∑
β,j

qαiJαi,βjqβj +
∑
α

λα(
∑
i

qαi −Qα)

=q†χ +
1

2
q†Jq + λ†q 2.1

where the Greek indices α run over molecules and the Latin ones i over the atoms of

each molecule. λ is a set of Lagrangian multipliers used to impose charge conservation
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constraints. J is the charge interaction kernel: there are several ways to treat this

term287–290 and in our implementation the Ohno kernel291 is exploited.

By following the general philosophy of the so-called ”focused” models, in the QM/FQ

model, a classical electrostatic interaction between the FQs and the QM density is

considered:54

EQM/FQ =

Nq∑
i=1

VQM[ρ](ri)qi 2.2

where VQM[ρ](ri) is the electrostatic potential due to the QM density of charge at

the i -th FQ qi placed at ri. Notice that some of the authors recently extended the

present model to the inclusion of non-electrostatic interactions, although they are not

considered in the present work.197 If a Self Consistent Field (SCF) description of the

QM portion is adopted, the global QM/MM energy functional reads:54,55,192

E [P,q,λ] = trhP +
1

2
trPG(P) + q†χ +

1

2
q†Jq + λ†q + q†V(P) 2.3

where h and G are the one and two electron contributions to the energy and Fock

operator, and P is the density matrix. The FQs consistent with the QM density are

obtained by solving the following equation

Dqλ = −CQ −V(P) 2.4

which includes the coupling term V(P) between the QM and MM moieties.

Once the basic QM/FQ approach is set up, the extension to spectroscopic and transi-

tion properties is obtained through the definition of analytical energy derivatives and

response equations to electric and magnetic perturbations.192 We refer the reader to

refs.54–56,161 for major details on the implementation and to ref.149 for major details

on VCD spectra. Extension of the QM/FQ model to the analytical evaluation of Ra-

man and Raman Optical Activity has recently been presented by some of the present

authors.150

The resorting to the physical framework of the so-called ”focused models” implies that

external perturbations (i.e., electric/magnetic fields and/or a nuclear displacement)

only act on the QM portion of the system, whereas the environment is only indirectly

affected through the perturbation on the QM density. In vibrational spectroscopy, the

focusing on the QM portion of the system means that the geometric displacements of

the MM molecules are not taken into account; this framework is well-defined within the

Partial Hessian Vibrational Approach (PHVA).89,292,293 The calculation of vibrational

frequencies in the harmonic regime requires the evaluation of energy second deriva-

tives. They can be obtained by differentiating twice Equation 2.1 with respect to x, y

perturbations:55
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Exy =
∑
µν

[
hxyµν +

1

2
G(xy)
µν (P) + q†Vxy

µν

]
Pµν − tr WSxy − tr WySx

+
∑
µν

[
hxµν +G(x)

µν (P) + q†Vx
µν

]
P yµν +

∑
µν

qy†Vx
µνPµν 2.5

where µ, ν are atomic basis functions, W is the energy-weighted density matrix, and

S is the overlap matrix. Notice that Equation 2.5 requires the computation of the

perturbed density matrix, which is accessible through a Coupled Perturbed Hartree-

Fock or Kohn-Sham (CPHF/KS) procedure by solving a modified set of equations

including FQ terms.54,55 In the construction of the CPHF equations the Fock matrix

derivative is used:

F̃x =hx + G(x)(P) + q†Vx + G(Px) + V†qx

=F(x) + q†Vx + G(Px) + V†qx 2.6

which is included in the Q̃X and Q̃Y terms of the Casida Equation:

(
Ã B̃

B̃∗ Ã∗

)(
X

Y

)
=

(
Q̃X

Q̃Y

)
2.7

The solution of this set of equations yields the density matrix derivatives, P xjb = Xjb

and P xbj = Yjb. Eq.2.5 also allows the calculation of IR intensities, if x, y are specified

as nuclear coordinate and electric field component. In case of magnetic perturbations,

other terms need to be considered to assure gauge invariance in the computed results.

We refer the interested reader to ref.161 for further details. VCD intensities are pro-

portional to Rotational Strengths (RS), i.e. the imaginary part of the product between

the electric and the magnetic dipole moments. RS can be expressed in terms of two

tensors, namely the Atomic Polar Tensor (APT) and the Atomic Axial Tensor (AAT),

which are defined as:248,268–271

(APT)
λ
αβ = Eλαβ +Nλ

αβ =

= 2

〈(
∂ΨG

∂Xλα

)
R0

∣∣∣∣∣ (µeel)β
∣∣∣∣∣Ψ0

G

〉
+ Zλeδαβ 2.8

(AAT)
λ
αβ = Iλαβ + Jλαβ =

=

〈(
∂ΨG

∂Xλα

)
R0

∣∣∣∣∣
(
∂ΨG

∂Bβ

)
Bβ=0

〉
+

i

4hc

∑
εαβγR

0
λγ(Zλe) 2.9
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where µeel is the electronic part of µel while Zλe and R0
λ are the charge and posi-

tion of nucleus λ at the equilibrium geometry R0. ΨG is the wave function of the

ground electronic state while (∂ΨG/∂Xλα) and (∂ΨG/∂Bβ) are the derivatives of the

wave function with respect to nuclear displacement and magnetic field, respectively.

The former enters into a vibrational transition moment; the latter is appropriate to

a magnetic dipole transition moment. FQ contributions affect the wavefunction and

its derivatives. In particular, by solving the CPHF/CPKS equations (modified accord-

ing to the Gauge Including Atomic Orbital–GIAO approach) taking into account FQ

contributions, the APT and AAT in the QM/FQ framework are obtained.

By exploiting the Placzek approach within the double harmonic approximation, Raman

and ROA intensities are obtained in terms of the geometric derivatives of the electric

dipole-electric dipole polarizability αx, electric dipole-electric quadrupole polarizabil-

ity Ax and electric dipole-magnetic dipole polarizability G′x. In particular, Raman

intensities depend only on αx, whereas ROA intensities depend on αx, Ax and G′x. In

the following equations the QM/FQ contributions to these quantities are reported. We

refer the interested reader to Ref.150 for further details.

αxQM/FQ =
∑
µν

[
q†(Pe′(ω′))Vx

µνP
e
µν(ω)

]
+
∑
µν

[
q†(Pe(ω))Vx

µνP
e′

µν(ω′)
]

2.10

Ax(ω)QM/FQ =
∑
µν

[
q†(Pe(ω))Vx

µνP
q
µν

]
+
∑
µν

[
q†(Pq)Vx

µνP
e
µν(ω)

]
2.11

G′xQM/FQ =
∑
µν

[
q†(Pm)Vx

µνP
e
µν(ω)

]
+
∑
µν

[
q†(Pe(ω))Vx

µνP
m
µν

]
+

+
∑
µν

[
q†(Vm(Pe(ω)))P xµνVµν

]
+

+
∑
µν

[
q†Vm,x

µν P eµν(ω) + qx†Vm
µνP

e
µν(ω)

]
2.12

2.2.2 QM/FQ Computational Protocol

Besides the development of the theoretical methodology to actually calculate vibra-

tional spectral signals within the QM/FQ approach, another crucial point of the method

is the definition of the QM/FQ model system being investigated. This first implies a

sensible choice of the part of the system which is modelled at the QM level. Such a

choice can be tricky in case of covalently-bound systems (e.g. in case of a receptor

in a protein), however in case of solutions, the most natural choice is to reserve the

QM treatment to the solute, and resort to classical physics for the solvent. This basic
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choice may be possibly refined, so to include a (small) number of solvent molecules in

the QM moiety, that based on the analysis of the solute-solvent interaction patterns

(e.g. by analyzing the hydrogen-bonding patterns).

The definition of the QM/FQ partition is not the only issue in this kind of modelling.

As a matter of fact, the measured spectrum of a given molecular system embedded

in a surrounding environment arises from the spectral signals of all the possible con-

figurations spanned by the system. Therefore, in order to get a reliable theoretical

description, it is mandatory to reliably take into account both the flexibility of the

target QM molecule and the spatial arrangement of the surrounding classical environ-

ment, which can evolve in time. The best strategy to do that is to resort to Molecular

Dynamics (MD) simulations based on high level force fields (FF), which permit a dy-

namical description of both the solute flexibility and the solvation phenomenon at the

same time.294,295

Based on the aforementioned considerations, the QM/FQ computational protocol for

the calculation of spectral properties of solvated systems, involves a number of steps:

1. Definition of the system: the model systems is composed by the target surrounded

by a sufficiently large number of solvent molecules, chosen so that both the dy-

namics and the subsequent QM/FQ calculations can capture all the relevant

solute-solvent interactions.

2. Classical MD simulations and sampling: this step is required to sample the phase

space of the system. Simulations are run long enough to sample a sufficiently large

portion of the phase-space and such that the simulation parameters correctly

reproduce all possible system configurations and their relative energy (and thus

population). From the MD simulations a number of uncorrelated snapshots are

extracted to be used later in the QM/FQ calculations.

3. Definition of the different regions of the two-layer scheme and their boundaries:

for each snapshot extracted from the dynamics, a sphere centered on the solute

is cut, retaining all solvent molecules within the sphere.

4. Running the QM/FQ calculations on the snapshots: for each of the spherical

snapshots (droplets), IR/Raman/VCD/ROA spectra are calculated, after the

geometry of the QM solute is optimized in each snapshot, by keeping fixed the

positions/geometries of all the solvent molecules.

5. Extraction of the average spectra and analysis of the results: the spectra obtained

for each snapshot are extracted and the final IR/Raman/VCD/ROA spectra

for the system are obtained as the arithmetic mean of the spectra for all the

snapshots.

2.3 Computational details

Geometry optimization of (L)-Methyl Lactate and (S)-Glycidol was performed at the

B3LYP/aug-cc-pVDZ level of theory, by using the conductor-like variant of PCM (C-
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PCM) to reproduce water bulk solvent effects.74,296 An analysis of the C-PCM Potential

Energy Surfaces(PES) was performed in order to search for the different conformers.

Starting from the most populated C-PCM conformer for both systems, MD simu-

lation was performed to sample the configurational space. Because both molecular

systems are flexible, the intramolecular FF was reparametrized. Stiff bonded FF terms

(i.e., stretching, bending, rigid dihedral force constants and equilibrium values) were

transferred from the OPLS FF.297 OPLS Lennard-Jones parameters and CM5 point

charges298 computed on the global minimum were used for the FF nonbonded part.

CM5 were chosen because of their tiny dependence on molecular conformations and

on the level of theory adopted in the fitting procedure.298,298 Flexible dihedrals were

further re-parametrized by using the Joyce algorithm,294 by fitting the FF energies of

different twisted conformations to their QM counterparts calculated at the B3LYP/aug-

cc-pVDZ level. Such conformations were obtained as a results of a relaxed energy scan

around the torsion angles of interest, which were varied from 0 to 360 degrees in steps

of 30 degrees.

The two molecules, in their lowest C-PCM free energy conformation, were placed in the

centre of a cubic box with an edge of 50 Å containing roughly 5000 TIP3P299 water

molecules. Such systems were minimized using the conjugate gradient algorithm until

an energy threshold of 0.5 kJ mol−1 was reached. Preliminary equilibration steps of

200 ps were performed in the NPT ensemble, using a time step of 0.2 fs. The systems

were slowly heated from 150 to 300 K. Berendsen thermostat and barostat were used,

with time constants of 0.1 and 1.0 ps, respectively. Periodic boundary conditions were

applied in all directions. VdW forces were computed using a cutoff distance of 10 Å.

Long-range electrostatic interactions were treated with the particle mesh Ewald (PME)

method, using a real-space cutoff radius of 10 Å. Production runs were performed in the

NVT ensemble at 300 K. The simulation time was set to 50 ns, and the time step was

increased to 2 fs. The LINCS algorithm was used in order to freeze all chemical bonds.

Systems coordinates were stored every ps of simulation. All molecular simulations were

carried out with the Gromacs 4.6.5 package.300

200 uncorrelated snapshots were extracted from the last 40 ns of the MD simulation

(one snapshot every 200 ps). For each snapshot a sphere centered at the solute’s

geometric center was cut, of radius equal to 13 Å. The partial optimization of the QM

solute in each snapshot was performed by keeping fixed all water molecules. Finally,

IR, VCD, Raman and ROA spectra were calculated with the QM/FQ model, at the

B3LYP/aug-cc-pVDZ level for the solute and the SPC FQ parameters for the FQ

portion.156 All reported spectra were obtained by convoluting peak intensities with a

Lorentzian function, with Full Width at Half Maximum (FWHM) of 4 cm−1. Data

were finally averaged to obtain the final spectra. All DFT and QM/FQ calculations

were performed by using a development version of the Gaussian16 package.301

2.4 Results and Discussion

In this section, the potentialities of the methodology outlined in the previous sections

are illustrated by taking as example the calculation of IR, VCD, Raman and ROA
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spectra of aqueous solutions of (L)-Methyl Lactate (ML) and the (S)-Glycidol (GL).

The spectra of the two systems are discussed and compared with experiments, taken

from the recent literature.249,252,284,285,302

ML and GL are floppy molecules, showing several populated conformers in aqueous

solution, possibly separated by low energy barriers.249,303–308 Therefore, the first step

of the simulation protocol is a reliable sampling of such conformations, which will be

achieved by resorting to MD runs based on an high level, customized FF.

The subsections reporting on the two systems are structured in the following way:

first, conformational analyses and hydration patterns are discussed. Then, vibrational

spectra are presented and compared to experiments.

2.4.1 (L)-Methyl Lactate

Conformational Analysis

Conformers were first located by exploiting the implicit PCM model, at the B3LYP/aug-

cc-pVDZ level of theory. Minima geometries were optimized and validated by means

of frequency calculations. As expected on the basis of the previous literature,249,306

three stable conformers were located. Their structures are depicted in Figure 2.3.

Figure 2.3. B3LYP/aug-cc-pVDZ/PCM most stable conformers of ML in

aqueous solution. ML-I presents also the labeling used in the following.

All PCM minima energy structures are stabilized via intramolecular H-bonding inter-

action between the hydroxyl group and the oxygen of the carbonyl group (ML-I) or of

the ester group (ML-II and ML-III). Calculated PCM Boltzmann populations at 298

K are summarized in Table 2.1, where also the corresponding values obtained in vacuo

by Borho et al. at the MP2/aug-cc-pVDZ level of theory are reported.306

Conformer Vacuum306 Water (PCM)

ML-I 91.8 82.8

ML-II 4.6 9.7

ML-III 3.6 7.5

Table 2.1. Calculated Boltzmann populations with ZPE corrections

included in vacuum (B3LYP/6-311++G(d,p)) and water (B3LYP/aug-cc-

pVDZ)

In order to describe the dynamical fluctuations of the solvent molecules and improve

the description of the intermolecular solute-solvent interactions, MD simulations were
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also performed by starting from the PCM conformers. To properly account for the

flexibility of the molecule, a new FF for ML was generated by fitting the potential

energy associated to flexible torsion angles with their QM counterpart. In the case of

ML, two dihedral angles were considered: i) θ1, which involves the α hydroxy ester

group, and ii) θ2, which is related to the methyl ester (see Figure 2.4).

Figure 3: dihedral distribution on 50 ns of MD simulation, obtained using the Joyce and OPLS FF.

Methyl Lactate FF generation and MD simulation

The Joyce merit function was minimized, obtaining a total standard deviation of 0.337 kJ

mol�1. In the case of methyl lactate, two main dihedral have to be considered: i) the one

related to the ↵ hydroxy ester group, and ii) the one related to the methyl ester (✓1 and ✓2,

hereafter).

Figure 4: comparision between QM (red circle) and FF (black continuous line) potential energy curves along

the two main dihedral of methyl lactate.

5

Figure 2.4. QM (red circles) and MM (black continuous line) potential

energy curves along the two dihedral angles θ1 and θ2 of ML.

The results of the fitting procedure are reported in Figure 2.4. The energy profiles

associated to θ1 and θ2 are very similar and in both cases, the global minimum is

located at 0◦, while a partial minimum is found at 180◦. The minimum found at

0◦ along θ1 is not surprising, because the hydroxil group interacts with the carbonyl

oxygen via intramolecular H-bonding. Focusing on the θ2 angle, the two minima are

separated by a high energy barrier of more than 50 kJ·mol−1, whereas the barrier is

lower for θ1 (about 10 kJ·mol−1). Overall, a very good matching between the classical

and QM descriptions is noticed, thus supporting the use of the developed FF in the

forthcoming MD simulations. The whole FF parameter set is given in Section S1 of

the electronic supplementary information (ESI).

Figure 2.5 shows the θ1 and θ2 distributions obtained in a 50 ns MD simulation per-

formed with the refined FF. Clearly, the global minima are well populated with respect

to the other possible conformations. Also, a small, but not negligible number of con-

figurations, are generated from the partial minima at 180 degrees.

Hydration Patterns

ML hydration patterns were analyzed by calculating the radial distribution function

g(r) of water hydrogen and oxygen atoms around the three ML oxygen atoms (O12,

O14, O15). The data are reported in Figure 2.6 (see Figure 2.3 for the labeling of the

atoms).

In the left panel of Figure 2.6, the radial distribution functions of water hydrogen

atoms around ML oxygen atoms are reported. A well-defined peak at about 2 Å for

both carbonyl (O14) and hydroxyl (O12) oxygen atoms is present, thus indicating a
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Figure 2.5. Calculated θ1 and θ2 distributions for ML in aqueous solution.

The data were extracted from a 50 ns MD simulation exploiting the refined

FF (see text).

Figure 2.6. Radial distribution function (g(r)) of water hydrogen (left

panel) and oxygen (right panel) atoms around the three ML oxygen atoms:

O14 (blue line), O12 (red line) and O15 (green line).
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strong hydrogen bonding (HB) interaction between ML and the surrounding water

molecules. Coordination numbers of approximately 1.30 and 1.04 for O14 and O12

are found, respectively. Thus, a slight preferential HB interaction is reported for the

ML carbonyl oxygen atom, if compared to the hydroxyl oxygen. On the contrary, the

oxygen atom of the ML alkoxy group (O15, see Figure 2.6), does not interact with the

hydrogen atoms of the surrounding water molecules.

The radial distribution functions related to the interaction of ML with water oxygen

atoms are depicted in the right panel of Figure 2.6; an opposite behaviour with respect

to what has been commented above is noticed. In fact, the hydroxyl oxygen atom

(O12) can act both as HB donor and HB acceptor: therefore, the water oxygen atoms

are placed, on average, preferentially around O12 than around the carbonyl site, O14.

We note that our calculated intensities of the g(r)) peaks are lower if compared with

the data reported in a previous paper,309 however their relative positions are in good

agreement. Such findings show that the here employed electrostatic description of the

water solvent (especially the use of the CM5 charges) results in a weaker, albeit well

defined, HB interaction of ML with the surrounding solvent.

Figure 2.7. Left panel: H13-O14 distance distribution, sampled in the last

2 ns of simulation time. Right panel: θ1 distribution, sampled in the last 2

ns of simulation time (right panel).

To end this section, let’s focus on the intramolecular HB interaction, which can oc-

cur between the ML hydroxyl group and the carbonyl oxygen. Such an interaction

is highly favored when the solvent is treated as a continuum dielectric medium (see

Table2.1), in fact the PCM global minimum exhibits an intramolecular HO-O distance

of 2.052 Å (see Table 2.1 and Figure 2.3). In order to check whether this preferential

interaction is maintained by the explicit solvent description, the HO-O distance during

the last 2ns of MD simulation was monitored: the results are plotted in the left panel

of Figure 2.7. Only a small population of conformers exhibit the intramolecular HB

interaction. In fact, most conformers show an HO-O distance of about 3.5 Å thus

showing that ML-water intermolecular interactions are highly favoured wiht respect

to the intramolecular HB by adopting the explicit solvation modeling. As a result,

the conformational distribution predicted by exploiting the PCM is expected not to

be preserved in the explicit modeling. We also note that our analysis is not biased

towards the selection of irrelevant configurations: the θ1 distribution (see the right
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panel of Figure 2.7), which could directly affect the occurrence of intramolecular HB

interactions, is in excellent agreement with the corresponding data reported in Figure

2.5.

IR Spectrum

To calculate the QM/FQ IR spectrum 200 uncorrelated snapshots were extracted from

the MD simulation; such a number is enough to yield a converged spectrum, as al-

ready pointed out by some of the present authors.149 The raw data extracted from the

single QM/FQ calculations are reported as stick spectrum in Figure S1, given as ESI.

Clearly, the overall shape of the final, averaged spectrum is already visible from the

data reported in Figure S1 already depicts the shape of the spectrum, also giving in-

sight into the spreading of the vibrational bands, both in wavenumbers and intensities.

This is due to the fact that in the different snapshots the spatial distribution of water

molecules around ML varies, as well as the conformation of ML.

In order to obtain the final, averaged spectrum, each transition in Figure S1 was

convoluted with a Lorentzian function and averaged. The final results are given in

(Figure 2.8), which also shows the experimental spectrum.249 We first notice that the

inhomogeneous band broadening is naturally obtained as a result of the averaging

procedure on the stick spectrum. The computed spectrum is characterized by three

main bands: 1150 cm−1 (bending of the O-CH3 group), 1200-1300 cm−1 (composite

bending modes, see Figure S2 in the ESI) and 1750 cm−1 (CO stretching mode). All

the normal modes corresponding to bands in the region 400-1800 cm−1 are depicted in

Figure S2 in the ESI for a randomly chosen snapshot.
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Figure 2.8. Convoluted QM/FQ IR spectrum of ML in aqueous solution

(top). Experimental spectrum taken from Ref.249 (bottom).

Overall, the calculated spectrum is in very good agreement with the experiment (Figure

2.8). In fact, almost all peaks relative intensities are correctly reproduced, as well as

the band broadening. This is particularly evident for the composite band between
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1200-1300 cm−1, of which the structure is almost perfectly reproduced. Notice that,

as it can be seen from the inspection of the normal models in Figure S2 in the ESI,

the vibrational modes causing in this band involve the OH group, which experiences a

strong hydrogen bonding interaction with the surrounding water molecules (see the g(r)

depicted in Figure 2.6). The relevance of a correct description of the HB interaction

for a correct reproduction of this part of the spectrum is even more emphasized if the

results obtained by exploiting a continuum PCM solvent description are considered (See

Figure S3 in the ESI). In fact, the PCM completely fails at describing the intensity

pattern of this band, due to the lack of the explicit HB interaction in this mean-

field approach. Coming back to the the comparison between the QM/FQ and the

experimental spectra (see Figure 2.8), some small discrepancies are indeed present.

First, there are small deviations in peak’s wavenumbers (especially in the higher energy

region), which are due both to the QM level exploited in the calculation, and to the

lack of anharmonicity in our calculations. Second, the broad band between 1600-1700

cm−1 is not reproduced by our model. As already reported by some of the present

authors149 and in Refs.,250–252 this band is attributed to the OH bending mode of

water molecules. Our modelling, which focuses on the QM portion of the system only,

cannot reproduce such spectral features.

VCD Spectrum

The VCD spectrum of ML was calculated by following the same procedure adopted for

the IR spectrum. The computed VCD stick spectrum is plotted in Figure S4, given

as ESI. Clearly, the same vibrational normal mode can result in peaks intensities of

opposite sign depending on the selected snapshot, i.e. on the particular spatial ar-

rangement of the solvent around the QM molecule and on the specific conformation

of the latter. This applies to almost all transitions in the studied region (1000-1800

cm−1). These findings, which have already been pointed out by some of us in previous

papers146,149,150 are particularly remarkable, because in VCD, such as in other chirop-

tical spectroscopies, it is of crucial importance to correctly reproduce the sign of the

single transitions. The data reported in Figure S4 in the ESI confirm the importance of

coupling an explicit and dynamic description of the solvation phenomenon (reproduced

through MD) with an accurate description of the aqueous solution.

The final sign of the bands is obtained as a result of the averaging procedure, of

which the results are depicted in Figure 2.9, where also the experimental spectrum is

reported.249

The calculated spectrum is characterized by a very intense pattern (+,-,-,-,+) in the

region between 1200 and 1500 cm−1. The normal modes involved in these transitions

have been discussed before for the IR spectrum. However, it is important to remark

that the high negative peak at about 1280 cm−1 and the band at 1380 cm−1 are due

to the bending mode involving the OH group, which, as stated before, interacts with

the solvent via hydrogen bonding interactions. Furthermore, the small negative peak

between 1700-1800 cm−1 is due to the carbonyl stretching.

Figure 2.9 also reports the experimental spectrum reproduced from Ref.249 All the

signs of the bands and most of the bands relative intensities in the region between
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Figure 2.9. Convoluted QM/FQ VCD spectrum of (L)-Methyl Lactate in

aqueous solution (top). Experimental spectrum taken from249 (bottom).

1200-1500 cm−1 are correctly reproduced in the calculated spectrum. Also, the inho-

mogeneous band broadening is accurately calculated; this is especially evident for the

most intense peak of the spectrum (1220 cm−1), and the negative bands between 1300

and 1400 cm−1. The only region where calculated and experimental data are not in a

perfect agreement with the experiment is that below 1200 cm−1; in fact, the computed

intensities are too low. The normal modes involved in the regions do not involve any

potential site for hydrogen bonding (See Figure S2 in ESI). Therefore, the not perfect

reproduction of the experimental spectrum is probably due to the huge alternation

of the sign of the bands for the single snapshots in this region, as depicted in Figure

S4. Nevertheless, the band sign is correctly reproduced also in this region, as well as

the band inhomogeneous broadening. The relevance of exploiting a dynamic explicit

solvation modeling for the description of the VCD spectrum of ML is manifest if the

results commented above are commented with what can be obtained by resorting to a

purely continuum, static QM/PCM approach. In fact, (see Figure S5 given as ESI),

the spectral features in the region 1200-1400 cm−1 are badly described by the contin-

uum approach: as already discussed, such a range is dominated by vibrational modes

directly involving the OH group, which strongly interacts with the surrounding water

molecules as a result of HB (see Figure 2.6).

To end the discussion on the QM/FQ VCD spectrum of ML, it is worth pointing out

that our approach, which focuses on the QM portion only of the multilevel system,

cannot reproduce the intense band structure in the 1600-1700 cm−1 region; this is not

surprising, because such spectral features have been atributed to the so-called ”chirality

transfer” from water molecules to ML, i.e. they are actually due to water molecules

vibrational motions, of which the chiral signal is activated as a result of the interaciton

with the chiral ML solute.250–252
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Raman Scattering Spectrum

The QM/FQ Raman Scattering Spectrum of ML was calculated on the same 200 snap-

shots extracted from the MD simulation. Figure S6, given as ESI, reports the raw data

in the region 400-1800 cm−1. Generally, the same considerations already reported for

IR and VCD spectra (Figures S1 and S4) also apply to Raman.

Figure 2.10 reports the convoluted QM/FQ Raman spectrum and the experimental

spectrum.284 The computed spectrum is characterized by two intense bands at about

830 cm−1 and 1500 cm−1, the latter being associated to the bending mode of the O-

CH3 moiety. Notice that this normal vibrations has almost zero intensity in the VCD

spectrum (see Figure 2.9), and very low intensity in the IR spectrum (see Figure 2.8),

thus confirming the complementarity of these vibrational spectroscopies in structural

studies. The predicted Raman intensities in the region between 1200-1300 cm−1, which

correspond to normal modes of groups involved in intermolecular hydrogen bonding

interactions, are very low. The same also applies to the most intense peak in the IR

spectrum at 1130 cm−1, which exhibits a very low intensity in the Raman spectrum.
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Figure 2.10. QM/FQ Raman spectrum of ML in aqueous solution (top)

and experimental spectrum taken from Ref.284 (neat liquid, bottom). The

external excitation wavelenght is 488 nm.

Figure 2.10 also reports the experimental spectrum,284 for the sake of comparison. No-

tice that the experimental spectrum of ML in aqueous solution has not been reported

in the literature. However, the differences between the neat liquid spectrum (plotted in

Figure 2.10) and the acqueous solution spectra have been discussed,284 and the major

differences have been ascribed to peaks’ wavenumbers more than intensities. The com-

parison of the spectra in Figure 2.10 shows a very good agreement between calculated

and experimental data. In particular, the inhomogeneous band broadening is ade-

quately reproduced for all the bands and relative intensities are also well reproduced,

except for the peak at 980 cm−1. This is probably due to the fact that the Raman

intensities are not much affected by the presence of the environment, as it is confirmed
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by the QM/PCM spectrum (see Figure S7 in the ESI), where only small differences

between the calculated and the experimental spectra can be appreciated. We finally

notice that the reported spectrum is very similar to what was already reported from

some of us for the same molecule studied by exploiting a three-layer QM/FQ/PCM ap-

proach:150 clearly, the presence of the third PCM layer is not crucial for the description

of the Raman spectral features, and the strong similarity is also a further proof of the

little dependence of the calculated spectra on the presence of the external environment.

ROA
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Figure 2.11. QM/FQ ROA spectrum of ML in aqueous solution (top)

and experimental spectrum taken from Ref.310 (neat liquid, bottom). The

external excitation wavelength is 532 nm.

Similar to the previous spectra, also the QM/FQ ROA spectrum of ML was calculated

on the same 200 snapshots extracted from the MD simulation. Figure S8, given as

ESI, reports the raw data in the region 400-1800 cm−1; similar to VCD, the same

vibrational normal mode can result in ROA peaks intensities of opposite sign depending

on the particular spatial arrangement of the solvent around the QM molecule and on

its conformation, as sampled by the MD. This especially applies to the regions below

400 cm−1 and between 1100 and 1450 cm−1.

The QM/FQ averaged convoluted spectrum is shown in Figure 2.11, as well as the

experimental spectrum taken from Ref.310 and measured for the neat liquid. Notice

that, as already commented for Raman in the previous section the presence of a third

PCM layer150 is not crucial for the description of the Raman spectral features.

Remarkably, the signs of all peaks are correctly reproduced, as well as their relative

intensities and the band broadening, with an accuracy similar to what has already been

pointed out for VCD in a previous section. This is not the case of the application of

the purely continuum PCM approach (see Figure S9 given in the ESI), which fails at

correctly reproducing not ony the band broadening but remarkably the sign of some
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bands.150 Therefore, our dynamic computational protocol based on the polarizable

QM/FQ approach confirms its remarkable potentialities and reliability for the study

of vibrational optical activity spectra.

2.4.2 (S)-Glycidol

Conformational Analysis

The same protocol as used for ML was exploited to perform (S)-Glycidol (GL) con-

formational analysis. Thus, it was first performed by describing the aqueous solution

by means of the continuum PCM approach, at B3LYP/aug-cc-pVDZ level of theory.

GL geometry was optimized, followed by frequency calculations in order to validate

the minima structures. As previously reported in the literature252,307 eight stable

conformers were located; their structures are depicted in Figure 2.12.

Figure 2.12. (S)-Glycidol most stable conformers in aqueous solution. In

the right panel, the labeling used in the following is reported.

Calculated QM/PCM Boltzmann populations are summarized in Table 2.2, where also

the data calculated in vacuum are reported for the sake of comparison.

We first note that, similarly to ML, the most stable conformers both in vacuo and in

solution (G−1 and G+1) are stabilized via intramolecular H-bonding interaction. Also,

solvent effects significantly change the relative populations of the conformers.

Remarkably, the population of G+1 decreases and simultaneously the populations of

G−2 and G−3 increase. These two conformers are potentially characterized by an

intermolecular hydrogen bonding with the solvent molecules (see Figure 2.3), although

this is not explicitly described by the continuum PCM model. In order to improve the

conformational analysis by explicitly considering the solvent molecules in their spatial

coordinates, MD simulations were performed. To this end, a customized FF for GL

was generated by re-parametrizing the flexible torsional coordinate, i.e. the dihedral
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Conformer Vacuum Water (PCM)

G−1 40.2 31.0

G−2 3.0 16.0

G−3 1.8 15.3

T1 4.7 7.7

T2 3.8 4.2

T3 2.8 4.9

G+1 43.2 17.2

G+2 0.5 0.7

Table 2.2. Calculated B3LYP/aug-cc-pVDZ Boltzmann populations (%)

in vacuo and aqueous solution (PCM). ZPE corrections are included.

angle defined by the hydroxyl group and the oxirane moiety. The results of the FF

fitting procedure are reported in Figure 2.13.

Figure 2.13. Calculated energy profile along GL flexible dihedral angle.

QM (red circles) and fitted FF (black continuous line).

Figure 2.13 clearly shows that the description offered by the refined FF reproduces

pretty well the energy profile computed at the B3LYP/aug-cc-pVDZ level. The global

minimum is found at approximately -78 degrees, and the other two minima are located

at 50 and 150 degrees and separated by an energy barrier of about 10 kJ/mol. The

developed FF was further validated by monitoring the dihedral distributions during

the 50 ns of MD production run in aqueous solution. As reported in Figure 2.14, the

three different minima along the main dihedral coordinate are selectively populated

during the MD simulation. Furthermore, the conformation at -78 degrees is confirmed

to be the most populated due to its stability, as also suggested by the previous QM

calculations. The whole GL FF parameter set is given in Section S2.1 of the ESI.
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Figure 2.14. Dihedral distributions of GL in the 50 ns of the MD simula-

tion.

Figure 2.15. Radial distribution function (g(r)) of water hydrogen (left

panel) and oxygen (right panel) atoms around the two GL oxygen atoms:

O6 (blue line) and O10 (red line).
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Hydration Patterns

HB patterns were computed for the two GL oxygen atoms O6 and O10 (see Figure 2.12

for the labeling); their relative g(r) profiles are reported in Figure 2.15, in which the g(r)

distribution of water hydrogen (left) or oxygen (right) atoms around GL oxygen atoms

are reported. Considering the left panel, in the case of O6 the Hw-Ogly distribution

shows a peak at 1.8 Å, which is more intense then that of the hydroxyl O10, which

is located at 1.9 Å. The coordination numbers are 1.3 and 1.08, respectively, thus a

clear HB pattern is established between the solute and the solvent molecules. On the

contrary, by looking to the right panel of Figure 2.15, the radial distribution related to

of Ow-OGL shows a first peak which is higher in the case of the hydroxyl oxygen O10,

that due to this atoms is both HB donor and HB acceptor. The second peak in the

Ow-O6GL can be assigned to the water molecules which interact with O10, when O6

and O10 are close to each other. Notice that the results here reported are similar to

previuous findings of Xu and coworkers,252 especially as concerns the position of the

peaks. However, the intensity of the Ow-O10GL g(r) is remarkably underestimated.

This can be once again attributed to the use of CM5 charges, whose absolute values

are significantly lower if compared to QM-electrostatic potential derived charges.311 To

confirm such findings, a 50 ns MD with the RESP312 charge scheme was performed:

in this case, the computed O10w-OGL g(r) profile closely reproduces the available

literature data (see Figure S10 given as ESI).252

IR Spectrum
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Figure 2.16. Convoluted QM/FQ IR spectrum of (S)-Glycidol in aqueous

solution (top). Experimental spectrum taken from252 (bottom).

Similar tyo ML, the QM/FQ IR spectrum of GL in aqueous solution was calculated on

200 snapshots extracted from the MD simulation.149 The raw data extracted form the

snapshots are reported in Figure S11 in the ESI. The case of GL is more complicated

than ML, because several conformers are present in aqueous solution, as predicted by

the MD (see Figure 2.14). Together with the dynamical description of the solvent

molecules and the atomistic description of the QM/FQ model, this conformational
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flexibility results in a large variability of the peaks of the single snapshots both in

intensities and wavenumbers.

Each peak of Figure S11 was convoluted with a Lorentzian function and then averaged

in order to obtain the average spectrum in Figure 2.16, where also the experimental

spectrum252 is reported. The calculated IR spectrum shows an intense peak at about

1050 cm−1, which can be assigned to a diffuse stretching/bending normal mode, involv-

ing the hydroxyl group. The composite band between 1200 and 1300 cm−1 is mainly

constituted by two peaks, the first (1230 cm−1) due to the C-OH bending, the second

(1270 cm−1) due to the C-CH bending modes. The computed spectrum also presents a

broad band between 1400 and 1500 cm−1, due to C-OH bending (1395 cm−1), a diffuse

C-CH bending (1440 cm−1) and a CH2 bending (1465 cm−1). The normal modes for

a randomly chosen snapshot of the MD in the region 700-1800 cm−1 are depicted in

Figure S12 in the ESI. It is also worth noticing that the variability in the wavenumbers

in the stick spectrum (Figure S11) results in the inhomogeneous broadening of the

bands in the convoluted spectrum.

The calculated and the experimental spectra are in very good agreement. In fact, most

of the relative intensities and the band broadening are correctly reproduced. This

is particularly evident for the structured peak between 1200 and 1300 cm−1. Some

discrepancies are instead present in the region 1400-1500 cm−1 which is characterized

in the experimental spectrum by a very broad band. In the QM/FQ spectrum the

broadening is not perfectly reproduced due to a not perfect description of the peaks

relative intensities, however the three-band structure is correctly described. As for

ML, a minor deviation in the vibrational energies due to the DFT level of theory and

to the lack of anharmonicity is reported. Overall, the continuum PCM approach, is

inadequate to correctly reproduce the experimental spectrum (see Figure S13 in the

ESI), thus remarking once again the huge potentialities of our approach to model

vibrational spectra of solutes strongly interacting with the aqueous environment.

To end the discussion on the IR spectrum, we notice that the same broad band between

1600-1700 cm−1 already observed for ML is reported also for GL in the experimental

spectrum. Obviously, also in this case the focused model cannot reproduce this band.

VCD Spectrum

The QM/FQ VCD spectrum was calculated on the same 200 snapshots extracted from

the MD. In Figure S14 the raw VCD data for the different snapshots are depicted. It is

worth noticing that almost all spectral regions are characterized by a huge variability

in peaks intensities and sign. This behaviour, which has already been discussed for

ML, is in this case even more complicated. This is due to the dynamical description

of the solvent around GL, but especially to the larger conformational flexibility of GL;

the alternation of sign is caused both by the fluctuations of the solvent molecules in

time and by the the interconversion between the several GL conformers.

The convoluted average QM/FQ spectrum is reported together with the experiment252

in Figure 2.17. The calculated VCD spectrum is characterized by a (-,+,-,+) sign

pattern in the region between 1100 and 1330 cm−1, followed by two negative bands

between 1400 and 1550 cm−1. All signs result from the averaging of the sticks in
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Figure 2.17. Convoluted QM/FQ (top) and experimental spectrum252

(bottom) VCD spectrum of GL in aqueous solution.

Figure S14 and is it remarkable that such a sing alternation particularly affects the

region 1100-1300 cm−1.

Moving to the comparison with experimental data (Figure 2.17) it is worth noticing

that most of the experimental signs are correctly reproduced by the QM/FQ model.

However, some differences between the computed and the experimental spectra are

present and deserve discussion. In fact, the experimentally most intense peak is located

at about 1160 cm−1, while the calculated rotational strength in this region is very low.

The associated normal mode involves a diffuse mode dominated by the bending of the

hydroxyl group, which is hugely affected by the atomistic description of the surrounding

water molecules. Moving to the negative peak at about 1220 cm−1, as a matter of fact,

the VCD spectrum of GL in CCl4 solution shows at this frequency a high and positive

peak, which becomes negative and with low intensity in aqueous solution.252 This is

the main difference between the spectra measured in CCl4 and the H2O spectrum, thus

meaning the this band in the whole VCD spectrum is the most modified by the nature

of the surrounding environment. The correct sign reproduction of this peak is one of

the most remarkable results achievable by resorting to our discrete model, in which the

correct sign results from the averaging of negative and positive sticks in Figure S13. It

is also to be noticed that the use of a continuum PCM solvent description (see Figure

S15 in the ESI) totally fails to correctly reproduce the sign of this band.

Still on Figure 2.17, the calculated spectrum in the region between 1400 and 1500

cm−1 is in good agreement with the experiment, both sign and intensity. The first

intense negative band in this region is experimentally composed by two distinct peaks,

while our calculated spectrum reports only a broad band. Probably, the second peak

is hidden by the first one (see Figure S14), thus resulting in a broad band instead of

two separate peaks.

To end the discussion on the VCD spectrum, we note that the band between 1600-1700

cm−1 is again due to chiral imprinting in the solvent molecules, and cannot therefore

reproduced with our focused model.
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Raman Scattering Spectrum
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Figure 2.18. Convoluted QM/FQ (top) and experimental285 (bottom)

Raman spectrum of GL in aqueous solution. Excitation wavelength: 1064

nm

The Raman spectrum was calculated through analytical evaluation of energy third

derivatives.150 Notice that the same sampling as exploited for the other properties

(i.e. 200 snapshots) was exploited, based on previous convergence studies.150 Raw

data calculated at 1064 nm are depicted in Figure S16. Similarly to IR and VCD, also

Raman intensities vary as a function of the snapshot. Again, it is worth remarking that

this results from the complexity of this molecule, which presents several conformers in

aqueous solution and to the atomistic description of the solvent molecules obtained by

exploiting the QM/FQ model.

The convoluted calculated spectrum together with experiment285 is reported in Figure

2.18. The computed spectrum is characterized by 3 principal bands that can be associ-

ated to diffuse normal modes involving O6 and the OH group, and to a diffuse vibration

involving all the atoms in the molecule. Furthermore, two broad bands are predicted

in the region 1000-1200 cm−1. Inhomogeneous broadening, particularly evident in the

latter bands, occurs from the spreading of the single peaks depicted in Figure S10.

Figure 2.18 also reports the experimental spectrum, which was measured at 1064 nm.285

Some differences between the computed and the experimental relative intensities are

present. This is particularly evident for the bands at 750, 850 and 900 cm−1, probably

due to a not perfect description of the statistical distribution of the several conforma-

tions of GL in aqueous solution. However, bands inhomogeneous broadening is almost

perfectly reproduced, especially for the small bands at about 800-820 cm−1 and above

950 cm−1, which are in almost perfect agreement with the experiment. We note that

also for Raman the continuum PCM solvent description (see Figure S17 in the ESI) is

not able to correctly reproduce the spectral patterns.
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Figure 2.19. Convoluted QM/FQ (top) and experimental302 (bottom, neat

liquid) ROA spectrum of GL in aqueous solution. Excitation wavelength: 514

nm

ROA

ROA raw data calculated at 514 nm are depicted in Figure S18 in the ESI. Similarly

to VCD, a great variability in peaks intensities and sign is reported.

The convoluted calculated spectrum is reported in Figure 2.19, together with the ex-

perimental spectrum measured for the neat liquid.302 The computed spectrum is char-

acterized by an intense (-,+,+) pattern that can be associated to diffuse normal modes

involving O6 and the OH group.

Moving to the comparison between calculations and experimental spectra , we note that

the relative intensities of the bands between 950 and 1200 cm−1 are not perfectly re-

produced by our model, however the inhomogeneous band broadening is well described.

Such differences are again due to a not perfect description of the statistical distribution

of the several conformations of GL in aqueous solution. In addition, the experimental

spectrum refers to GL as neat liquid, in which the intermolecular interactions between

the GL-GL molecules are largely different from those modelled in our computational

sample. Also in this case, the limitations of the continuum PCM approach are evident

from the inspection of the spectra reported in Figure S19 in the ESI.

2.5 Conclusions and Future Perspectives

In this paper, the potentialities of a multi-scale focused approach based on the combina-

tion of classical MD simulations and a fully polarizable atomistic QM/FQ Hamiltonian

are shown through its application to the calculation of VOA spectra of two chiral sys-

tems, able to strongly interact, via hydrogen bonding, with the surrounding aqueous

solution. The fully atomistic character of the approach permits a reliable modeling of

specific solute-solvent interactions, and the fully account of electrostatic solute-solvent

mutual polarization effects yields a reliable description of the solvation phenomenon.

Also, the coupling with classical MD simulations permits to account for the solva-
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tion dynamics. Remarkably, the application of the method to the calculation of IR,

VCD, Raman and ROA spectra of (L)-Methyl Lactate and (S)-Glycidol in aqueous

solution shows an excellent agreement between computed and experimental spectra,

and of higher quality if compared to standard continuum solvation approaches. Such

discrepancies are not only due to the inaccurate description of HB interactions in the

continuum approach, but also to a different sampling of the PES resulting from the

static PCM or dynamic QM/FQ+MD approaches. Obviously, there is a price to pay

for the greatest accuracy. As far as the single QM/FQ calculation on a single snap-

shot is concerned, the required computational cost is comparable to the corresponding

PCM calculation. However, the single calculation needs to be repeated for the number

of snapshots required to reach a good modeling of the configurational space, i.e. the

final cost of the calculation strongly depends on the number of snapshots which have

to be considered to reach the convergence of the desired property. Such a number

cannot be defined a priori, and especially can wildly vary as a function of the proper-

ty/spectroscopy to model, from hundreds56,148–150,162 to thousands146 of representative

snapshots.

A limitation of our approach comes from a closer inspection of the IR/VCD spectra

of the two systems in the region 1600-1700 cm−1, which was assigned249,250,250,252

to the bending mode of water molecules bound to the chiral solutes as a result of

HB interactions. Interestingly, such bands are also active in the VCD spectra, giving

rise to the so-called ”chirality transfer” phenomenon, i.e. the chiral supramolecular

arrangement of the achiral solvent molecules around a chiral solute. Such a phenomenon

cannot be modelled by our approach, which focuses on the vibrational transitions of the

solutes, and their modifications as a result of the interaction with the surroundings. A

possible way to extend the model to such phenomena would be to extend the definition

of ”solute”, i.e. including not only the chiral system but a few water molecules in

the QM portion, similar to what is done for continuum solvation studies.28,313,314 An

alternative approach, which appears to be more adequate to our general framework,

would be to resort to ab-initio MD315 techniques coupled to the FQ approach.

As last conclusion, we note that only purely electrostatic solute-solvent interactions

have been considered in the current approach. QM/FQ non-electrostatic interactions

may play a role and should be included, similar to what has recently been proposed

by some of the present authors but to date only limited to the evaluation of energetic

properties.197

Electronic Supplementary Information

Electronic supplementary information (ESI) available online.

See DOI: 10.1039/C8CP00487K
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Chapter 3

Simulating Vertical Excitation

Energies of Solvated Dyes:

from Continuum to

Polarizable Discrete Modeling

Abstract We present a computational study on the spectroscopic properties of UV-Vis ab-

sorbing dyes in water solution. We model the solvation environment by using both continuum

and discrete models, with and without polarization, in order to establish how the physical and

chemical properties of the solute-solvent interaction may affect the spectroscopic response of

aqueous systems. Seven different compounds were chosen, representing different classes of or-

ganic molecules. The classical atomistic description of the solvent molecules was enriched with

polarization effects treated by means of the Fluctuating Charges (FQ) model, propagated to

the first-order response function of the quantum-mechanical (QM) solute to include its effects

withing the modeling of the electronic excitations of the systems. Results obtained with the

QM/FQ model were compared with those from continuum solvation models as well as non-

polarizable atomistic models, and then confronted with the experimental values in order to

determine the accuracy that can be expected with each level of theory. Moreover, a thorough

structural analysis using Molecular Dynamics simulations is provided for each system.
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3.1 Introduction

One-photon absorption spectroscopy within the UV-Visible range is often the most

direct and inexpensive analytical tool that can be used to study the electronic properties

of a system. Most commonly, such measurements are carried out on solvated samples,

with water being a ubiquitous choice.

With the gradual increase in the complexity of the systems under investigation, the

correct interpretation of experimental data is increasingly reliant upon their calculated

ab-initio counterparts. Many theoretical models based on quantum mechanics (QM),

accompanied by their computational implementations, have been presented over the

years offering different levels of compromise between the computational cost and the

accuracy of the results.316–318 At present, methods based on density functional theory

(DFT) and its time-dependent counterpart (TD-DFT) have become the most popu-

lar choice for the simulation of absorption spectra of medium-large organic molecular

systems thanks to their versatility stemming from the freedom of choice of density

functional and basis set, as well as the favorable scaling with system size which allows

their application to increasingly large systems.316,319–321

Many benchmarks studies have been presented elaborating upon the merits and limi-

tations of TD-DFT for the simulation of UV-Vis spectroscopy, as well as on the most

appropriate choice of functional and basis set combination for different types of sys-

tem.321–331 And though many computational studies are carried out on isolated sys-

tems, solvent effects should not be neglected for the presence of the solvation envi-

ronment can significantly alter the electronic absorption properties of a system, both

qualitatively and quantitatively.102–105,332–343 For this reason, theoretical models have

been developed to tackle this problem and then combined with DFT and TD-DFT to

include solvent effects within the theoretical model.

The standard protocol for such cases requires the usage of Polarizable Continuum

Model (PCM) to describe solvation.6,70,104,105 This approach falls into the category

of implicit solvent models where the environment is represented in a continuous way,

while the solute molecule sits within a cavity and the surrounding continuum possesses

dielectric properties that mimic the given solvent. Implicit methods prove to simulate

correctly the properties of non-aqueous solutions lacking specific interactions between

the solute and solvent molecules. Meanwhile, in water as well as in numerous other

media the directional interactions, such as hydrogen bonds (HB), can play a crucial

role. Hydrogen bonding can be introduced within continuum models by including ex-

plicit solvent molecules treated quantum mechanically in the system. This quantum

treatment assures that both the directional nature of hydrogen and its covalent con-

tribution are treated, however this still relies upon a static description of the system,

whereas in reality the solvent moves about around the solute and a physically cor-

rect picture should not neglect the fact that the system is but an ensemble of many

different configurations that may have varying spectroscopic properties. In fact, even

though the positions of the explicit solvent molecules may be optimized to obtain a

minimum-energy-structure, many such structures may be obtained in principle because

of the high flexibility of the supramolecular system, but none of them taken singularly

may be representative of the whole. In pure PCM, the converged quantum mechanical

40



Theoretical Model 3.2

density is considered an implicit average over the configurational space of the solvent,

as the latter is viewed as smeared out, which justifies the continuum picture. A super-

molecule approach which re-introduces some solvent molecules as explicit static entities

therefore helps to include some crucial interaction into the picture343 but carries its

own problems.

In order to overcome the limitations of implicit solvent models, explicit solvation mod-

els have been developed in the past years. The widest used explicit approach is based

on the Quantum Mechanics/Molecular Mechanics (QM/MM) multi-scale scheme. The

system is divided into the portion directly responsible for a given property (e.g. a chro-

mophore interacting with light) that is described at the QM level and the surrounding

molecules described at the MM (classical) level through ad-hoc constructed Force Field

(FF). In the most commonly used QM/MM approaches, only the electrostatic interac-

tion between the two portion is considered. In particular, each atom is endowed with

a fixed pre-parametrized charges, giving rise to the so called non-polarizable QM/MM

models. Hovewer, to recover a better and more physical description of the electrostatic

interaction between the QM and MM portions, several polarizable QM/MM models, in

which the MM atoms can be polarized by the QM density, have been developed. Such

models can be based on distributed multipoles,58,185,186,281 induced dipoles,10,155,164,166

Drude oscillators59 or Fluctuating Charges (FQ).56

The FQ model was firstly developed into a 3-layer fully polarizable approach with non-

periodic boundary conditions (QM/FQ/PCM). The method has subsequently been

extended to allow calculations of numerous molecular properties by including features

like analytical first and second derivatives,55 response equations,54 magnetic pertur-

bations with Gauge Including Atomic Orbitals (GIAOs),161 excitation energies (at the

TD-DFT and equation-of-motion coupled cluster model with single and double substi-

tutions levels of theory),148,344 Vibrational Optical Activity,149,150 excitation energy

gradients.162

In the present work several approaches to include solvation effects, varying from the

implicit QM/PCM to QM/MM approaches both including or not mutual polarization

are challenged to reproduce the absorption spectra of a series of organic dyes by resort-

ing to TD-DFT. The results are compared with experimental data in order to assess

the accuracy of the different employed approaches.

The article is organized as follows: in the next section we briefly recall the fundamen-

tals of the QM/FQ model, by also focusing on its extension to calculate TD-DFT/FQ

excitation energies. After a section dedicated to the details of the computations, the

results for selected organic dyes in aqueous solution, previously studied with different

approaches,102,345 are discussed. In particular, the discussion focuses on Molecular

Dynamics (MD) and TD-DFT results. Eventually, we come to conclusions and consid-

erations for further perspectives.

3.2 Theoretical Model

The FQ model provides a computationally efficient and chemically consistent way of in-

troducing polarization effects within both classical dynamics simulations and QM/MM
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calculations.56,346 In the FQ model, each atom is endowed with a charge that is allowed

to fluctuate. Such fluctuation is ruled by the difference in atomic electronegativities.

Thus, two set of parameters are needed to describe the FQ energy, namely atomic hard-

nesses and electronegativities. It is worth noticing that such terms can be rigorously

defined in the ”conceptual DFT” framework.286,289 Through them, the atomic charges

can be calculated by solving a linear system.156–158 More in detail, the value of the fluc-

tuating charge on each MM atom is related to the electronegativity156–158 according to

the Electronegativity Equalization Principle (EEP),160,286 which states that, at equi-

librium, the instantaneous electronegativity χ of each atom has the same value.160,286

The FQs (q) can be defined as those minimizing the following functional:159

F (q, λ) =
∑
α,i

qαiχαi +
1

2

∑
α,i

∑
β,j

qαiJαi,βjqβj +
∑
α

λα(
∑
i

qαi −Qα)

=q†χ +
1

2
q†Jq + λ†q 3.1

where q is a vector containing the FQs, the Greek indices α run over molecules and

the Latin ones i over the atoms of each molecule. λ is a set of Lagrangian multipliers

used to impose charge conservation constraints on each molecule. In this work, the

charge interaction kernel J is the Ohno kernel.291 Atomic units are used throughout

the manuscript. The stationarity conditions of the functional in eq.3.1 are defined

through the following equation:159

Dqλ = −CQ 3.2

where CQ collects atomic electronegativities and total charge constraints, whereas

charges and Lagrangian multipliers are collected in qλ, and D includes the J matrix

and the Lagrangian blocks.

The FQ force field (FF) can be effectively coupled to QM methods. The resulting

QM/FQ approach56 has been shown to be especially suited to the modeling of response

and spectral properties because, as it is shown below, its energy expression can be easily

differentiated up to high orders. The QM/FQ describes also polarization effects: in

this contest, the charges equilibrate to both the electrostatic potential generated by

the QM moiety and their electronegativies, while the QM core feels the presence of the

FQs through specific additional terms in the QM Hamiltonian, in a mutual polarization

fashion.

The QM/FQ model system is usually partitioned in a QM core region placed at the

center of a spherical region defining the environment (see Figure 3.1), which is described

classically by exploiting the FQ FF. The size of this region is chosen to guarantee the

convergence of the desired property/spectrum. Notice that the position of QM and MM

atoms is obtained by a previous performed classical Molecular Dynamics (MD) allowing

the exploration of the configuration space. This gives rise to a dynamic approach to

the solvation phenomenon, which is instead neglected in purely continuum approaches.
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Figure 3.1. Representation of the QM/FQ scheme. The QM portion is in

blue.

The coupling between the QM and the MM portions is defined as the classical electro-

static interaction:54

EQM/FQ =

Nq∑
i=1

VQM[ρ](ri)qi 3.3

where VQM[ρ](ri) is the electrostatic potential due to the QM density of charge at the i -

th FQ qi placed at ri. Notice that non-electrostatic interaction terms, which have been

recently proposed by some of us,197 will not be considered in this work. By exploiting a

Self Consistent Field (SCF) description of the QM moiety, the global QM/MM energy

functional reads:54,55,192

E [P,q,λ] = trhP +
1

2
trPG(P) + q†χ +

1

2
q†Jq + λ†q + q†V(P) 3.4

where h and G are the one and two electron contributions to the energy and Fock

operator, respectively, and P is the density matrix. Finally, the FQs are obtained by

solving the following equation

Dqλ = −CQ −V(P) 3.5

which includes the coupling term V(P) between the QM and MM moieties.

In case of the calculation of response/spectroscopic properties, such terms propagate

to the solute’s response equations, so that polarization effects are fully considered also

in the computed final spectral data.54,55,147,149,150,161

3.2.1 Linear Response Theory in QM/FQ

In order to calculate excitation UV-VIS spectra, we briefly recall how linear response

equations have to be changed to account for the presence of the FQ portion. For a more

detailed discussion on this topic, we refer the reader to ref.54 The following matrices,
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depending on the FQ charges, are defined:

Ãai,bj = (εa − εi)δabδij + 〈aj||ib〉 −
Nq∑
kl

V †iaD
−1Vjb 3.6

B̃ai,bj = 〈ab||ij〉 −
Nq∑
kl

V †iaD
−1Vbj 3.7

where i, j are occupied orbitals whereas a, b are virtual orbitals. ε are orbital energies.

The sum runs over the molecules in the classical portion and V is the electrostatic

potential. D is the FQ matrix introduced in the previous section (see Eq. 3.5). Then,

excitation energies and transition amplitudes are obtained by solving the so-called

Casida’s equations for the QM/FQ linear response theory:54

(
Ã B̃

Ã∗ B̃∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
3.8

3.3 Computational Details

For this work we have selected seven molecules, depicted in Figure 3.2. These sys-

tems are all organic molecules for which experimental measurements of their UV-Vis

absorption properties in aqueous solution exist. Furthermore, several of these system

are capable of forming intermolecular hydrogen bonds, and their absorption spectra

exhibit bright excitations with varying degree of charge-transfer character, and can

therefore be affected by the presence of the highly polar solvation environment to a dif-

ferent extent. All QM calculations were performed using the Gaussian16 program,301

and employed CAM-B3LYP density functional347 and 6-311++G(d,p) basis set. Con-

tinuum solvation effects were included using the polarizable continuum model (PCM).

The ground-state geometry for each molecule was optimized at the QM/PCM taking

into account the possible presence of multiple conformers, then the first five excited

states for each were converged at the TD-DFT/PCM level. Non-equilibrium solvation

effects6,105,106,121 were modeled by resorting to the Linear Response (LR) formalism.

In order to estimate the effect of the covalent and directional components of hydrogen

bond, both the geometry optimizations and spectra calculations were repeated after

saturating every hydrogen bonding site with a water molecule (QM/QMw/PCM re-

sults). The QM/MM calculations of excitation energies and intensities were performed

by resorting to the following computational steps:

1. Definition of the systems and calculation of atomic charges. The solute molecules

were surrounded by a number of water molecules large enough to represent all

the solute-solvent interactions. The atomic charges of the solute were computed

by using the Charge Model 5 (CM5).298
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2. Classical MD simulations in aqueous solution. The MD simulations were per-

formed in a cubic box reproduced periodically in every direction, satisfying the

Periodic Boundary Conditions (PBC). A minimization step ensures that the sev-

eral simulations were started from a minimum of the classical PES. From the MD

runs, a set of snapshots was extracted to be used in the QM/MM and QM/FQ

calculations.

3. Definition of the different regions of the two-layer scheme and their boundaries.

Each snapshot extracted from the MD runs was cut into a sphere centered on

the solute. The radius of the sphere was chosen in order to include all specific

water-solute interactions.

4. QM/MM or QM/FQ calculations and comparison with experimental data. QM/MM

or QM/FQ excitation energies calculations were performed on the set of struc-

tures obtained for the seven molecules in the previous step of the protocol. The

results obtained for each spherical snapshot were extracted and averaged to pro-

duce the final value.

Figure 3.2. Representation of the studied molecules: I (bodipy); II (7-

methoxycoumarin); III (bimane); IV (5-aminophtalimide) ; V (pyridinium

dye); VI (5-methylcytidine); VII (doxorubucin).

The systems studied in this manuscript are depicted in Figure 3.2 and their simplified

name are reported in Table 3.1. Notice that IUPAC names are reported in Table S1,

given as Supporting Information (SI).

In step 1, the systems were optimized and CM5 charges were calculated at the B3LYP/6-

31+G* level of theory including solvent effects by means of the PCM.6,70 For sake of

completeness, the vertical energies were also computed using the PCM model at the

CAM-B3LYP/6-311++G** level of theory. Depending on the case of study, explicit

solvent molecules were included (QM/QMw/PCM).

The MD simulations were performed by using GROMACS,348 with the GROMOS,349

GAFF350 and Amber11351 force fields to describe intra-/inter-molecular interactions.
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The force field used depend on the considered solute I-VII and are summarized in Table

3.1. CM5 charges were used to account for electrostatic interactions. The TIP3P-FB

FF was used to describe the water molecules.352 A single molecule was dissolved in a

cubic box containing at least 3000 water molecules. The number of water molecules

varies depending on the dimension of the considered molecules I-VII (see Table 3.1 for

the exact number for each structure). For molecule V, a chloride ion has been included

in the box to neutralize the system. The molecular systems were initially brought

to 0 K with the steepest descent minimization procedure and then heated to 298.15

K in an NVT ensemble using the velocity-rescaling353 method with an integration

time step of 0.2 fs and a coupling constant of 0.1 ps for 200 ps. The time step and

temperature coupling constant were then increased to 2.0 fs and 0.2 ps, respectively,

and an NPT simulation (using the Parrinello-Rahman barostat and a coupling constant

of 1.0 ps) for 1 ns was performed to obtain a uniform distribution of molecules in the

box. 100 ns production runs in the NVT ensemble were then carried out, fixing the

fastest internal degrees of freedom by means of the LINCS algorithm (δt=2.0 fs).354

Electrostatic interactions are treated by using particle-mesh Ewald (PME)355 method

with a grid spacing of 1.2 Å and a spline interpolation of order 4. The cross interactions

for Lennard-Jones terms are calculated using the Lorentz-Berthelot356,357 mixing rules

and we have excluded intramolecular interactions between atom pairs separated up

to three bonds. A snapshot every 500 ps was extracted in order to obtain a total of

200 uncorrelated snapshots for each system. For each snapshot a solute-centered sphere

with radius of at least 17 Å of explicit waters was cut. The radii used for each molecule

I-VII are summarized in Table 3.1. Notice however that for molecule V, the chloride

ion was not present in any of the extracted spherical snapshots. For each snapshot, the

excitation energies were then calculated with two QM/MM models, treating the QM

portion at the CAM-B3LYP/6-311++G** level. The water molecules were modeled by

means of the non-polarizable TIP3P FF,358 and the FQ SPC parametrization proposed

by Rick et al.156 Further calculations were performed by adding the closest water

molecules in the QM portion, in a QM/QMw/FQ framework. The water molecules to

be included in the QM/QMw/FQ calculations were chosen case by case by looking to

the maximum/a in the Radial Distribution Function (RDF or g(r)) calculated from

the MDs. The average number of water molecules included in the QM portion are

reported in Table 3.1. All the QM(/QMw)/MM(FQ) calculations were performed by

using a locally modified version of Gaussian 16 package.301

3.4 Results

In the first part of this section, the results from the MD simulations are presented.

In particular, we focus on the sampling of the conformational space of each molecule

observed in the dynamics, as well as the emergence of hydrogen bonding patterns.

Following the analysis of the results of the classical dynamics, the excitation energy

and absorption spectra obtained with the QM/PCM, QM/QMw/PCM, non-polarizable

QM/MM, polarizable QM/FQ and QM/QMw/FQ methods are presented. An analysis

of how the different levels of theory employed in the modeling of the solute-solvent
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Chromophore Simplified Name NH2O FF Sphere radius (Å) NQMw

I bodipy 3000 GROMOS 17 2

II 7-methoxycoumarin 3000 GAFF 17 2

III bimane 3000 GAFF 17 3

IV 5-aminophtalimide 3000 GAFF 17 6

V pyridinium dye 5000 GAFF 20 2

VI 5-methylcytidine 3500 Amber11 17 6

VII doxorubicin 5000 GAFF 20 10

Table 3.1. Assigned number and simplified names for the studied molecules.

Number of water molecules (NH2O) and Force Field used for molecules I-VII

for MD simulations. The sphere radius for the QM/MM calculations and the

average number of water molecules included in QM/QMw/FQ calculations

(NQMw
) are also reported.

interaction can affect the predicted spectroscopic signature is provided for each system.

3.4.1 MD Analysis

The MD trajectories of molecules I-VII were analyzed to provide information about

how the solvation environment affects the conformational space explored by the systems

and about the intermolecular interaction through Hydrogen Bond (HB) with water

molecules. This analysis was performed by using TRAVIS package.359

Conformational analysis based on MD simulations

Among the seven considered molecules, only VI and VII are flexible and present

different minima in the potential energy landscape that can be optimized using QM

techniques. In Figure 3.3 the molecular structures of these molecules are reported

highlighting the dihedral angles that define the different conformations.

(3.3.1). VI. DO(purple) (3.3.2). VII. D1 (purple) and

D2 (cyan)

(3.3.3). VII. D3 (green)

Figure 3.3. (a) VI (5-methylcytidine, syn conformer),(b) and (c) VII

(doxorubicin) structures. The dihedral angles studied in the conformation

analysis are colored. Relevant atoms are also labeled.
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In molecule VI, the flexibility is due to the rotation around the D0 dihedral angle (see

Figure 3.3.1), which defines the relative orientation of the sugar and the pyrimidine

ring. Two main conformers can be present, namely syn and anti (see section S2 in

the Supporting Information). Notice that in Figure 3.3.1, only the syn conformer is

depicted. Figure 3.4 reports the time evolution of the D0 dihedral angle highlighted in

Figure 3.3.1 as the classical dynamics unfolds, together with its resulting distribution.

The syn conformer (D0 ≈ -70 degrees) results to be by far the most abundant, however

the anti conformer (D0 ≈ 130 degrees) is also present, albeit with a much lower and

less sharp population.

The plot in figure 3.4 also points out to one of the problems that may be encountered

when resorting to a continuum solvation model, as a QM/PCM geometry optimization

yields one structure which may not be representative of the whole conformational space

spanned by the solute around the relative minimum which is, in this case, quite wide.

Figure 3.4. Time development and dihedral distribution of the dihedral

angle D0 of molecule VI.

Concerning molecule VII, the main free rotation is given by the amino-sugar moiety

with respect to the rest of the molecule. Three different dihedrals can be identified,

namely D1, D2, D3 (see Figures 3.3.2 and 3.3.3). The distributions of such dihedrals

during the MD are depicted in Figure 3.5. The D1 maximum value is placed at about

-135 degree indicating that no intramolecular interaction between O3 and the hydrogen

bounded to O1 can occur. In figure 3.5, the D2 distribution shows a three peaks profile

(81, 110, 157 degrees), whereas two peaks are identified in the D3 profile (-34, 44

degrees). It is worth noticing that D2 and D3 profiles show a correlation. In fact, such

dihedrals are responsible of intramolecular interaction O5· · ·H1, which occurs when

D2 and D3 are at about 44 and 110/157 degrees, respectively, which is not a highly

populated area of the conformational landscape. This is confirmed also by the Radial

Distribution Function (RDF, or g(r)) reported in the inset of Figure 3.5. It shows that

the least intense peak at about 2.5 Å is associated with the intramolecular interaction

just discussed.

Hydration Patterns

Molecule I, whose solvation properties were previously investigated, albeit with a lack

of polarization effects in the classical portion,360 is characterized by two fluorine atoms

that can be involved in Hydrogen Bonds (HB) with water hydrogen atoms. In Figure
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Figure 3.5. Population analysis of D1, D2 and D3 depicted in Figure 3.3.2

for molecule VII. In the inset, the radial distribution function between O5

and H1 is also reported (see Figure 3.3.2 for atom labeling).

3.6(a), the g(r) between F(I) and H(water) atoms is reported. The first peak at about

1.95-2.00 Å is intense and broad and it clearly represents an HB pattern.

Concerning molecule II, the three chromophore oxygen atoms are potentially respon-

sible for HB interactions with water molecules. The g(r) of molecule II is depicted

in Figure 3.6(b). The carbonyl oxygen atom is the only one that presents values of

O(II)· · ·H(water) distances characteristic of hydrogen bond. To further analyze this

interaction, the Combined Distribution Function (CDF), i.e. g(r) as function of the

O(II)· · ·H(water) distance and the angle O(chromophore)· · ·HO(water), was calcu-

lated. The plot is depicted in Figure S3 given as SI. This analysis confirms that the

carbonyl oxygen atom is involved in an HB with the surrounding water molecules.

Molecule III is characterized by two carbonyl oxygen atoms which are potentially

bonded to water molecules through an HB interaction. The g(r) is plotted in Figure

3.6(c). The O(III)-H(Water) rdfs are equal due to the molecular symmetry and they

present a peak at about 1.8 Å which is an indicator of HB interaction. Notice that the

integral value of the g(r) shows that molecule III interacts on average with two water

molecules at the same time.

Molecule IV presents two carbonyl oxygen atoms which may act as HB acceptors as

well as an amine and an imide group which instead can act as HB donors. Molecule

IV g(r) is depicted in Figure 3.6(d). The HB donor character is the predominant one

and the imide hydrogen atom is the most involved in the HB interaction. This is also

confirmed by the Spatial Distribution Function (SDF) reported in Figure S4, given as

SI.

Molecule V is characterized by the presence of two nitrogen atoms (aminic and pyri-

dinic) whose ibridization character does not allow for the formation of hydrogen bonds

with the solvent. The g(r) presented in Figure 3.6(e) confirms this, with distances

around 4.5-5.0 Å.

Molecule VI is characterized by several potential HB sites. The carbonyl and ether

oxygen atoms, together with the iminic atom are potentially HB acceptors, whereas
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Figure 3.6. Radial distribution function between selected sites of all the

analyzed chromophores and water molecules: (a) I, (b) II, (c) III, (d) IV,

(e) V, (f) VI, (g) VII. Sites are highlighted in Figure 3.2.
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the oxygen and nitrogen atoms which are bound to an hydrogen atoms are potential

HB donors. The g(r) is depicted in Figure 3.6(f). The most intense peak of the several

g(r) is shown by the carbonyl oxygen atom, which means that molecule VI behaves

mostly as HB acceptor. It is worth noticing that g(r) of the hydrogen atoms (H3 and

H4 in Figure 3.3.1) of the amine group are not equivalent. In fact, at about 3.6 Å, the

g(r)(H4· · ·OH2O) presents a broad peak which is instead absent in case of H3. This

result suggests that the rotation around the C-N bond is blocked, and also that this

bond has a partially double character. This can be chemically explained through the

resonance of the lone electron pair on nitrogen with the π electrons of the aromatic

ring. This conclusion is also supported by the CDF between the intermolecular distance

of the pyridinic nitrogen and the water hydrogen atoms and the g(r) of the amine

H4· · ·OH2O (see Figure S5 given as SI). The CDF shows that when a water molecule

interacts with the pyridinic nitrogen atom the relative distance H4···O(water) is exactly

around 3.6 Å explaining the second broad peak in the g(r)H4· · ·O(water).

Molecule VII hydration pattern has already been studied extensively in a previous pa-

per by some of the present authors and we direct an interested reader to this publication

for more details. In this manuscript, the main intermolecular interactions between the

chromophore and the water molecules are reported (see Figure 3.6(g) ). Such interac-

tions involve the oxygen atoms O1, O2 and O3 (see Figure 3.3.2, for atom labeling)

and the hydrogen atoms of water. The three g(r) are characterized by a peak placed

at about 1.8 Å , and the most intense ones are related to the hydroxyl oxygen O1 and

O3.

3.4.2 Excitation Energies

We now move on to present the results obtained by exploiting the continuum and

explicit (with or without polarization effects) approach to the calculation of the ab-

sorption spectra of each of the seven molecules. In general, five models of increas-

ing complexity will be considered: (1) a purely continuum QM/PCM model, (2) a

QM/QMw/PCM model where explicit solvent molecules are included in the QM part

to saturate hydrogen bond sites, (3) a non-polarizable QM/TIP3P hybrid quantum-

classical model where the solvent is non-polarizable but rather treated using fixed

charges, (4) the polarizable QM/FQ model to expose the role of solvent polarization

in generating the spectroscopic response, and finally (5) a QM/QMw/FQ model which

treats some water molecules close to the solute hydrogen bonding site(s) at the DFT

level to model any covalent effects that might be of importance. As aforementioned,

to calculate the QM/FQ spectra 200 uncorrelated snapshots were extracted from the

MD simulations; such a number is enough to yield a converged spectrum as already

pointed out by some of the present authors.149–152 The QM/FQ convoluted and aver-

aged spectra for molecules I-VII are reported in Figure 3.7. Therein the QM/PCM,

QM/QMw/PCM, QM/TIP3P, QM/QMw/FQ and experimental data are also plotted.

For QM/QMw/PCM (i.e. with some water molecules explicitly introduced in the QM

portion) further details are given in Figure S6 and in Table S2, given as SI. Notice

that for molecule V and VII no explicit water are included in QM/PCM calcula-

tions: for molecule V this is due to the fact that no specific interactions are present
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in aqueous solution, as confirmed by Figure 3.6. Molecule VII presents three distinct

conformers and several hydrogen bonding sites. Because of this, converging the ge-

ometries for all structures proved difficult, therefore we omitted this molecule from the

analysis, though the inclusion of explicit QM solvent molecules was still done for the

QM/QMw/FQ model, which showed no significant change compared to the QM/FQ

results (vide infra). For all molecules we considered the first bright excitation. Before

comparing the different solvation models, the character of each excitation was inves-

tigated by looking at the molecular orbitals (MO) involved in the transition , which

are depicted in Figure S7, given as SI. The MOs show that most of the excitations

can be classified as charge-transfer states, however the exact degree to which the elec-

tron density is displaced during the excitations should be evaluated in order to provide

more quantitative results. To this end we employ a simple and intuitive numerical in-

dex recently developed361 which considers the baricenters of the positive and negative

difference density. To analyze the Charge Transfer (CT) nature of the first electronic

transition, the extension of the length of the electron transfer, we used a simple and

intuitive index, denoted as DCT , that was recently developed.361 The barycenters of

the positive and negative density distributions are calculated by the difference of the

Ground State (GS) and Excited State (ES) densities. The CT length (DCT ) is defined

as the distance between the two barycenters. In table 3.3, the DCT for molecule I-VII

are reported. Notice that also another quantitative index (∆r) proposed by Guido

et al. based on MOs was employed in the analysis of the CT nature.101 The values

obtained by exploiting this alternative index are reported in Table S3, given as SI.

We start the discussion on excitation energies by focusing on molecule I. The exper-

imental spectrum in Figure 3.7.1 is characterized by a band at about 500 nm. To

guarantee a direct comparison with the experimental spectrum, for this molecule all

the data have been convoluted with a Gaussian function with a Full Width Half Maxi-

mum (FWHM) of 0.13 eV. The calculated DCT reported in Table 3.3 clearly show that

the first excitation has no CT character. This is also confirmed by the MO involved

in the transition depicted in Figure S7, given as SI. From Figure 3.7.1 and Table 3.2,

it is clear that the several solvation models used in this work result in very similar

excitation energies which differ from the experiment of about 20%, except for the non

polarizable QM/TIP3P which is the worst method employed. Because the inclusion of

polarization effects into the solvation model, while moving the results in right direction

does not lead to a quantitative agreement, and considering the rigidity of the molecular

structure, the observed difference between theory and experiment is most likely due

to poor description afforded by chosen DFT functional. In fact, it has been shown

that bodipy dyes do require higher level QM theory models that adequately describe

differential electron correlation to produce accurate results.362,363 On the other hand,

all the polarizable models predict the same energy, meaning that polarization effects

play indeed a role in capturing solvation effects for this molecule. Also, the inclusion of

some water molecules in the QM portion, both in the case of QM/PCM and QM/FQ,

does not give a relevant improvement in the comparison with experimental data.

Concerning molecule II, the experimental spectrum depicted in Figure 3.7.2 presents

one main broad band with a maximum placed at about 325 nm. The calculated DCT

reported in Table 3.3 show that the first excitation has a low CT character, which is
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enhanced by the explicit solvation models. This is also confirmed by the MO involved

in the transition depicted in Figure S7, given as SI. The general trend discussed for

molecule I is valid also in this case. In fact, QM/PCM and QM/QMw/PCM give very

similar results, with a discrepancy of about 0.5 eV from the experimental value. The

QM/TIP3P model is again the most inaccurate one, resulting in a shift of 0.05 eV with

respect all the other methods. Notice however that the inclusion of water molecule in

the QM portion in QM/QMw/FQ calculations results in a shift of the excitation energy

towards the experiment. This can be rationalized by considering that the a strong and

directional HB interaction is present in the MD (see previous section). Also in this case,

it is worth noticing that the several methods employed give similar excitation energies,

with an error that is almost constant (12% on average). Thus, such a discrepancy is

again probably due to the computational level of theory.

The experimental spectrum of molecule III presents a double peak profile in the region

350-400 nm, which is probably due to vibronic effects (see Figure 3.7.3). The calculated

DCT data reported in Table 3.3 and the associated MO depicted in Figure S7 in the

SI show that the first excitation has no CT character. The most intense is the peak

at about 400 nm. The QM/PCM approach predicts an excitation energy which is 0.62

eV blue shifted with respect to the experimental value. The inclusion of three explicit

water molecules redshift the energy of about 0.2 eV, however resulting in a discrepancy

with respect the experiment of about 0.4 eV. The explicit solvation models coupled with

the dynamic approach of the MD results are in fair agreement with the experimental

data, also at the QM/TIP3P level of theory. This is particularly interesting and it can

be due to the fact the in this case polarization effects are not crucial in the description

of the excitation energy.

Molecule IV experimental UV-VIS spectrum has a maximum at about 375 nm (see

Figure 3.7.4). In this case, MO (see Figure S7, given as SI) and DCT values show for the

first transition a CT character, although it is generally small. Similarly to the previous

cases, QM/PCM predicts an excitation energy lower of about 0.4 eV with respect the

experiment. The inclusion of explicit water molecules, however, gives an almost perfect

agreement with only a 1% error. The errors obtained by using the explicit solvation

models are lower with respect the QM/PCM model, with an error of 2% in the case

of QM/QMw/FQ approach. Notice that in this case the purely QM/FQ model gives

a discrepancy of about 0.25 eV with respect the experimental value. Considering that

the inclusion of explicit water molecules both in QM/QMw/PCM and QM/QMW /FQ

models, are crucial in the reproduction of the excitation energies, some non-electrostatic

effects can play a relevant role in this case.

Concerning molecule V, the experimental spectrum is characterized by a broad band

placed at about 450 nm (see Figure 3.7.5). As resulting from the DCT calculations

(see Table 3.3 and from the MO involved (see Figure S7 in the SI), the first transition

has a CT character. As pointed out before, in this case no explicit water molecules

were included in the QM/PCM calculations, thus no results for the QM/QMw/PCM

are discussed. This was due to the fact that no specific solute-solvent interactions were

identified from the RDF depicted in Figure 3.6, panel (e). This explains also why

the results obtained by using an implicit or an explicit model are very similar and in

general in fair agreement. Notice that the QM/TIP3P error is the highest, and again
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this can be explained by the fact that polarization effects in the solvation model may

be crucial in this case.

The experimental excitation spectrum of molecule VI presents a main band at about

280 nm (see Figure 3.7.6). The calculated DCT reported in Table 3.3 clearly show that

the first excitation has not a CT character. This is also confirmed by the MO involved

in the transition depicted in Figure S7, given as SI. QM/PCM and QM/QMw/PCM

were calculated by weighting the spectra of the two conformers by their Boltzmann

population (see Section S2 and Figure S6 given as SI). The excitation energies predicted

by exploiting such methods differ of an average 14% with respect the experimental

value. In particular, the discrepancy is of 0.6 eV on average. A shifting towards the

experiment is recovered by using the explicit solvation models: the QM/FQ gives the

best agreement (0.4 eV, 8%), however no great differences between the three exploited

models is reported.

The last molecule (VII)’s experimental spectrum presents a huge vibronic band with

a maximum at about 500 nm (see Figure 3.7.7). Similarly to molecule V, also in this

case no explicit water molecules were added to the QM region in QM/QMw/PCM cal-

culations. Again, also in this case, the first excitation has no CT character (see Table

3.3 and Figure S7 in the SI). The four solvation approaches give very similar results,

with the maximum shifting giving passing through the QM/PCM to the QM/QMw/FQ

model (0.11 eV). However, as pointed out before for molecule I, the similarity in the

results may be due to the computational level adopted in this work. Probably, vibronic

contributions influence the position and the shape of the absorption band, thus result-

ing in a shifting and a better agreement with the experiment.

To conclude the discussion on calculated excitation energies, in Table 3.2 the Mean

Relative Deviation (MRD), Root Mean Square Deviation (RMSD) and Maximum Ab-

solute Deviation (MAD) obtained for all the considered models are reported. As it

was expected the less MRD is shown by the QM/QMw/FQ, however the inclusion of

explicit water molecules is not crucial to reproduce the excitation energy of the variety

of studied molecules. In fact, QM/FQ model results in a MRD of about 10%. RMSD

confirms this trend. In fact, QM(/QMw)/PCM reports an RMSD 0.13 eV greater than

the QM/FQ model. The same conclusions can be also extracted by the MAD values,

which are reported for molecule I in every adopted model.

To end the discussion, we show how the spectra are obtained in the case of the QM/MM

methods from raw data. The data extracted from the single QM/FQ calculations on

each snapshot for molecule VI in aqueous solution are reported as a stick spectrum in

Figure 3.8. The same spectra for all of the investigated molecules I-VII are reported

in Figure S8, given as SI.

Clearly, the overall shape of the final, averaged spectrum is already visible from the

data reported in Figure 3.8, which also gives insight into the spreading of the transition

bands, both in wavelengths and intensities. This is due to the fact that in the different

snapshots the spatial distribution of water molecules around the molecule varies and

also the conformational freedom of the molecule is sampled. The same also applies to

the other investigated systems (see SI). In order to obtain the final, averaged spectrum,

each transition in Fig. 3.8 was convoluted with a Gaussian function and averaged. It
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Figure 3.7. QM/PCM, QM/QMw/PCM, QM/TIP3P, QM/QMw/FQ and

experimental UV-VIS spectra for molecules I-VII. The key is shown in panel

h.
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Chromophore QM/PCM QM/QMw/PCM QM/TIP3P QM/FQ QM/QMw/FQ Exp

I 2.99 (21%) 2.98 (20%) 3.04 (23%) 2.97 (20%) 2.97 (20%) 2.48364

II 4.28 (12%) 4.28 (12%) 4.32 (13%) 4.28 (12%) 4.23 (11%) 3.81102

III 3.82 (20%) 3.63 (14%) 3.11 ( 3%) 3.14 ( 2%) 3.04 ( 5%) 3.20365

IV 3.72 (11%) 3.32 ( 1%) 3.52 ( 5%) 3.60 ( 7%) 3.42 ( 2%) 3.36366

V 2.96 ( 6%) - 3.04 ( 9%) 2.91 ( 5%) 2.94 ( 6%) 2.78102

VI 5.05 (13%) 5.09 (14%) 4.87 ( 9%) 4.83 ( 8%) 4.88 ( 9%) 4.46345

VII 2.99 (16%) - 2.94 (14%) 2.93 (13%) 2.88 (12%) 2.58367

MRD 14% 12% 11% 10% 9%

RMSD 0.47 0.46 0.37 0.34 0.32

MAD 0.63 0.63 0.56 0.49 0.49

Table 3.2. QM/PCM, QM/QMw/PCM, QM/TIP3P, QM/QMw/FQ ex-

citation energies. Experimental data taken from the indicated references

are reported in the last column. Relative deviations with respect the ex-

periments are given in parentheses. Mean Relative Deviation (MRD), Root

Mean Square Deviation (RMSD) and Maximum Absolute Deviation (MAD)

are also reported. All data are in eV.

Chromophore QM/PCM QM/QMw/PCM QM/TIP3P QM/FQ QM/QMw/FQ

I 0.55 0.56 0.59 0.59 0.59

II 1.95 1.96 2.16 2.07 2.19

III 0.46 0.50 0.73 0.69 0.73

IV 2.62 2.64 2.87 2.82 2.88

V 4.55 - 5.89 5.90 5.86

VI 1.00 0.88 1.13 1.21 1.05

VII 1.85 - 1.80 1.87 1.75

Table 3.3. QM/PCM, QM/QMw/PCM, QM/TIP3P, QM/QMw/FQ cal-

culated DCT (Å) index for the first excitation.
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should be clear that the final spectrum emerges as an ensemble average of many differ-

ent snapshots which may have widely varying spectroscopic response properties. This

is in stark contrast with results obtained using methods like standard QM/PCM which

most commonly only takes minimum-energy-structures as representative of the whole,

and whose results are then usually convoluted with wide empirical lineshape functions

meant to represent the spread of conformational and solvation degrees of freedom,

and whose true distribution may be far from being represented by a simple Gaus-

sian or Lorentzian lineshape function. Notice however that other more sophisticated

approaches have been proposed in the literature to overcome this problem.343
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Figure 3.8. Molecule VI QM/FQ calculated data reported as stick spec-

trum and convoluted with a Gaussian band shape (FWHM=0.5 eV)

3.5 Summary and Conclusions

We have presented a computational study examining the merits and shortcomings of

five different solvation models in the reproduction of UV-Vis absorption spectra of

organic molecules in aqueous solution. The picture that has emerged shows that the

performance of each model is highly dependent on the specific properties of each system,

particularly the extent of the charge transfer character of the excitations. However, a

general conclusion that can be drawn is that the inclusion of solute-solvent polarization

effects, whether using continuum or discrete models, can often be crucial and lead to

a significant improvement in the results. The inclusions of such effects through the

fluctuating charge model (FQ) does not lead to any significant increase in the compu-

tational effort because the cost of solving the QM/FQ equations is negligible compared

to the cost of optimizing the QM wavefunction or solving the linear response equa-

tions from which excited state properties are extracted, and can therefore be safely

applied in all cases. The use of polarizable QM/MM methods, in addition, offer the

advantage of being able to sample the solute-solvent conformational space completely,

without having to rely on a minimum-energy-structure picture. This is particularly
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useful in the case of flexible systems, for which larger differences between QM/PCM

and QM/FQ results can be observed. Finally, while the PCM model is often used on

its own to model the effect of solvation, it is unable to correctly model the directional

component of hydrogen bond interactions. This has also transpired through the anal-

ysis of our results in several cases where a large difference could be observed between

QM/FQ and QM/PCM spectra. The inclusion of some explicit water molecule treated

at the QM level did improve the QM/PCM results in some cases, bringing them closer

to those obtained using the QM/FQ method. However this procedure rests on the as-

sumption that such solvent molecules rest at fixed positions with respect to the solute.

As evidenced from the classical dynamics, this is not the case as solvent molecules

move about spanning a large space of configurations which collectively serve to pro-

duce the specific interaction that is peculiar to hydrogen bonding. This interaction

is fully recovered in the QM/FQ picture which offers both the advantage of including

polarization effects as when using PCM, and building upon a dynamical solute-solvent

picture as is commonly done in hybrid non-polarizable QM/MM methods. If necessary,

some of the solvent molecules closer to the solute can still be treated quantum mechan-

ically in order to include any covalent contributions to hydrogen bonding that may

be present, however the difference between the results obtained this way compared to

the difference between the QM/PCM and the QM/QMw/PCM results is not as large

because the QM/FQ method already includes directional contributions in the picture.

For the systems studied in this work, the effect of the eventual covalent character of

the solute-solvent interaction alone was not crucial and only contributed in a minor

capacity to the final results.

These results should still be seen as preliminary as still much more work remains to

be done in benchmarking polarizable QM/MM methods for the purpose of calculating

spectra of systems in solution. UV-Vis absorption spectroscopy is but the simplest type

of observable that may be studied, and more complex spectroscopic observables might

be considered for future benchmarks, including mixed electric-magnetic properties such

as circular dichroism intensities or higher order spectroscopies such as Raman or Raman

optical activity. In this work we have only considered a set of medium-sized organic

molecules, however more complex systems, with larger CT effects, may be of interest.

Biological molecules such as peptides or nucleic acids, for which aqueous solution is the

natural environment, are often both highly flexible and able to form multiple hydrogen

bonds with the solvent, and are therefore the ideal systems for the application of the

method. The study of the spectroscopic properties of solvated inorganic systems such

as transition metal complexes through polarizable QM/MM methods is also a largely

unexplored field and may present its own peculiar challenges. Finally, this method can

be extended to non-aqueous solvents both polar and non-polar. For apolar solvents

the effect of polarization may be much less important compared to water, in that case

significant contributions to the solute-solvent interactions may instead come from non-

electrostatic forces such as dispersion and repulsion. Methods for the inclusion of such

effects in a QM/MM picture have been recently presented197 however their extension

to the computation of molecular spectra is still lacking and will be the topic of future

investigations.
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Chapter 4

A Polarizable Embedding

Approach to Second

Harmonic Generation (SHG)

of Molecular Systems in

Aqueous Solutions

Abstract We present the extension to Second Harmonic Generation (SHG) of the atomistic

fully polarizable QM/FQ method that treats the solvent atomistically and embeds each atom

in the solvent with a fluctuating charge (FQ) which responds to the solute QM electrostatic

potential in a self-consistent manner.The proposed approach is able to achieve an adequate

modeling of solvent effects both in the quantum mechanical response equations and on the

conformational properties of the system, which is sampled by resorting to MD simulations.

The application of the model to selected organic acids in aqueous solution, for which the

interaction with the surrounding environment is dominated by HB interactions, shows a good

agreement in both the modeling of solvent effects and in the reproduction of experimental

SHG data extracted from Hyper Raman Scattering experiments.
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4.1 Introduction

Non Linear Optics (NLO)368–371 has been reported to impact many different research

fields, such as material science, communications, medicine and the developoment of

electronic devices.372–374 The role of theoretical investigations have been relevant in this

field, because such studies have demonstrated to provide valuable information guiding

the design of new optical devices.375 Through the variety of NLO properties,98,99,376

the most basic one is the first hyperpolarizability, i.e. the quadratic response of a

system to an external electric field. The frequency of the resulting exiting wave is the

combination of incident frequencies of the laser beams: if the entering waves have the

same frequency ω and the frequency of the resulting wave is 2ω, then the process takes

the name of Second Harmonic Generation (SHG). SHG will be the topic of the present

paper.

Within the Born-Oppheneimer approximation, (hyper-)polarizabilities bear electronic

and a vibrational terms.123,377–381 The first derives from the rearrangement of the

electronic density in the presence of the external field, whereas the latter from the

rearrangement of nuclear motions. In case of SHG, the electronic contribution is pre-

dominant over the vibrational one, which only accounts for the 5-20% of the total

value.382–385 Notice that this is not generally true for static properties, where vibra-

tional contributions can be even larger than electronic terms.386–388

Electronic properties can be calculated by resorting to standard Quantum-Mechanical

(QM) methods. If compared to Hartree-Fock (HF), Density Functional Theory (DFT)

generally increases the agreement between calculated and experimental values.389–391

However, whenever electron correlation plays a crucial role, Coupled Cluster (CC)

approaches are best suited,392–397 although they cannot be applied to medium-large

systems. In such cases, DFT represents a good compromise between accuracy, feasi-

bility and computational cost. For these reasons, DFT is employed in this work.

A proper choice of the QM level to treat a given system is not the only key for a

good reproduction of experimental data. In fact, for condensed phase systems the

inclusion of environmental effects is mandatory to achieve a good modeling of the

system.28,100,114,398 The standard approach to include such effects is to resort to con-

tinuum solvation approaches, such as the Polarizable Continuum Model (PCM).6 This

model has been successfully applied to the modeling of several properties and spectro-

scopies, and also to SHG of solvated systems.83,114,389,399 However, it may fail when

specific solute-solvent interactions play a dominant role, and this is due to the lack

of any atomistic description of solvent molecules.149,150,155,400 In all such cases, the

best strategy has demonstrated to be to resort to the so called QM/Molecular Me-

chanics (MM) methods.1,8,12,13 Such approaches have already been employed for the

description of SHG.31,401–404

In standard MM Force-Fields (FF) no mutual solute-solvent polarization effects are

considered: this is due to the fact that the so-called electrostatic embedding approach

is exploited, i.e. the charges placed on the MM atoms, which define the solute-solvent

interaction, are fixed. The solute-solvent mutual polarization can be restored by em-

ploying polarizable force-fields, based on distributed multipoles,58,185,186,281 induced

dipoles,10,155,164 Drude oscillators59 or Fluctuating Charges (FQ).156,157 This latter
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approach is exploited in this study, because it has already been successfully applied

to the calculation of several molecular properties and spectroscopies for systems in

aqueous solution.56,149,150 In the present paper, the QM/FQ approach is applied for

the first time to the calculation of SHG of molecular systems in aqueous solution.

A purely electrostatic solute-solvent interaction will be considered, however quan-

tum non-electrostatic effects, such as Pauli Repulsion and Dispersion, may play a role

and preliminary models to account for them have been proposed in the recent litera-

ture.61,187,189,197 Notice also that polarizable embedding approaches based on induced

dipoles have been applied to the modeling of SHG with promising results.396,405

The paper is organized as follows: after a brief section recalling the fundamentals of

the QM/FQ approach, the analytical evaluation of SHG within such an approach is

discussed. Test applications to aqueous solutions of organic acids is then discussed,

for which the computed data are compared with experimental values taken from the

literature. Finally, the main outcomes of the study are summarized and some future

perspectives are discussed.

4.2 The QM/FQ model

In the FQ approach, polarization effects are considered by allowing point charges placed

on the MM moiety to fluctuate according to differences in atomic electronegativities.

The model is based on a set of parameters representing atomic hardnesses and elec-

tronegativities, whose physical origin can be rigorously defined within the so called

”conceptual DFT”.286,289 Through these parameters, atomic charges can be computed

based on the difference of electronegativities between the atoms.156–158 More in de-

tail, the FQ FF describes polarization effects by endowing each MM atom with a

fluctuating charge whose value depends on the electronegativity156–158 according to

the Electronegativity Equalization Principle (EEP)160,286 which states that, at equi-

librium, the instantaneous electronegativity χ of each atom has the same value.160,286

The FQs (q) can be defined as those minimizing the following functional159

F (q, λ) =
∑
α,i

qαiχαi +
1

2

∑
α,i

∑
β,j

qαiJαi,βjqβj +
∑
α

λα(
∑
i

qαi −Qα)

=q†χ +
1

2
q†Jq + λ†q 4.1

where q is a vector containing the FQs, the Greek indices α run over molecules and the

Latin ones i over the atoms of each molecule. λ is a set of Lagrangian multipliers used to

impose charge conservation constraints on each molecule. The charge interaction kernel

J is, in our implementation, the Ohno kernel.291 Atomic units are used throughout the

article. The stationarity conditions of the functional in eq.4.1 are defined through the

following equations159 
∑
β,j Jαi,βjqβj + λα = −χαi∑
i qαi = Qα

4.2
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Figure 4.1. Schematic representation of the QM/FQ model.

The previous system of equations can be recast in a more compact formalism by intro-

ducing the extended D matrix:

D =

(
J 1λ

1†λ 0

)

where 1λ is a rectangular matrix containing the Lagrangian multipliers. The linear

system of equation then reads:

Dqλ = −C 4.3

where CQ collects atomic electronegativities and total charge constraints, whereas

charges and Lagrange multipliers are collected in qλ.

The FQ FF can be effectively coupled to QM methods. The resulting QM/FQ ap-

proach56,159 has been shown to be especially suited to the modeling of response and

spectral properties because, as it is shown below, its energy expression can be easily

differentiated up to high orders. The QM/FQ method fully accounts for polarization

effects: in fact the FQs placed in the MM moiety adjust to both the electrostatic po-

tential generated by the QM portion and their electronegativities, while the QM core

feels the presence of the FQs through specific additional terms in the QM Hamiltonian.

In case of the calculation of response/spectroscopic properties, such terms propagate

to the solute’s response equations, so that polarization effects are fully considered also

in the computed final spectral data.54,55,147,149,150,161

We recall that the QM/FQ model system is constituted by a QM core region placed at

the center of a spherical region defining the environment (see Figure 4.1), i.e. containing

a number of solvent molecules, which are described classically and whose atoms carry

fluctuating charges that can respond to the solute’s electrostatic potential. The size of

this region is chosen so to yield converged final results, and the relative positions of the

QM and MM atoms results from a sampling performed through a classical molecular

dynamics (MD) simulation which explored the target-environment configuration space,
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as well as the target’s different conformers. The basic QM/FQ energy is defined as the

classical electrostatic interaction between the FQs and the QM density:54

EQM/FQ =

Nq∑
i=1

VQM[ρ](ri)qi 4.4

where VQM[ρ](ri) is the electrostatic potential due to the QM density of charge at the i -

th FQ qi placed at ri. Notice that non-electrostatic interaction terms, which have been

recently proposed by some of us,197 will not be considered in this work. By exploiting a

Self Consistent Field (SCF) description of the QM moiety, the global QM/MM energy

functional reads:54,55,192

E [P,q,λ] = trhP +
1

2
trPG(P) + q†χ +

1

2
q†Jq + λ†q + q†V(P) 4.5

where h and G are the one and two electron contributions to the energy and Fock

operator, and P is the density matrix. The FQs consistent with the QM density are

obtained by solving the following equation

Dqλ = −CQ −V(P) 4.6

which includes the coupling term V(P) between the QM and MM moieties.

4.2.1 First Hyperpolarizability in the QM/FQ approach

The theoretical framework sketched above can be further extended to electric response

properties. The microscopic response of a molecular system to an external electric field

E(t) can be represented by an induced dipole moment µ(t):

µ(t) = µ0 + µω cos(ωt) + µ2ω cos(2ωt) + ... 4.7

Each Fourier amplitude in Eq. 4.7, can be rewritten as a Taylor expansion with respect

to the external electric field.370 In particular, SHG, i.e. the generation of a photon at

2ω as a result of the interaction with an incident ω photon reads:

µ2ω =
1

4
β(−2ω;ω, ω) : EωEω 4.8

The most important contribution to this quantity is due to the first term, that is namely

the first hyperpolarizability β. It is a third rank tensor that can be described by a

3 x 3 x 3 matrix, whose 27 components can be reduced to 10 assuming Kleinmann’s

symmetry, i.e. βαββ = ββαβ = βββα.406

By exploiting the response theory formalism, the first-order hyperpolarizability β(−2ω;ω, ω)

can be calculated as:407,408

β(−2ω;ω, ω) = 2 trµP(2) 4.9
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where µ is the electric dipole moment integral matrix and P(2) is the second-order

density matrix. A generic second-order density matrix is obtained by solving perturbed

equations up to the second order; however, when only one dynamic perturbation is

involved, it is possible to avoid the solution of the second-order coupled perturbed

equations by using an iterative procedure to reconstruct the density matrix.407–409

Thus, in order to calculate the electrostatic QM/FQ contribution to β(−2ω;ω, ω), the

first-order perturbed density matrix P(1) is constructed by resorting to linear response

theory and by solving the first-order CPHF/CPKS equations. The right-hand side of

the CPHF equations is real: hence, QX = QY and it is possible to reduce the response

equations to a problem of half dimension solving for X + Y . By summing the CPHF

equations, we obtain:

(Ã + B̃)(X + Y) + 2Q = 0 4.10

which can be used together with (Ã + B̃)(X−Y) = 0. Notice that FQ contributions

affect the orbital rotation Hessian Ã + B̃.

If one or more oscillating electric fields are applied, the response equations need to be

generalized to the frequency dependent case. Frequency dependent CPHF equations

(FD-CPHF) need to be solved and the proper transition densities are to be used to

compute the desired properties:54

(
Q̃X

Q̃Y

)
+

(
Ã− ωI B̃

B̃ Ã + ωI

)(
X

Y

)
= 0 4.11

4.3 Computational Details

QM/FQ calculations of the SHG hyperpolarizabilities were performed by resorting to

the following multi-step protocol:

1. Definition of the system and calculation of atomic charges. The six molecules de-

picted in Figure 4.2 were surrounded with a number of water molecules sufficient

to represent all the relevant solute - solvent interactions. The atomic charges of

the solutes were computed using the RESP approach.

2. Classical MD equilibration, simulation and sampling. Minimization runs were

performed to yield the starting configurations used in the MD simulation pro-

duction runs: minimization was accomplished by resorting to the NPT ensemble.

MD production runs were carried out for each of the six molecules long enough

for obtaining a sufficient sampling of a representative portion of the phase-space,

so to correctly reproduce all possible system configurations and their relative en-

ergy. In order to refine the description of hydrogen bonding (HB) interactions,

off-site charges (the so-called Virtual Sites (VS) or dummy atoms) with a fixed

position with respect to the generating atom were added. In such a way, also

the directionality of HBs was recovered and described. Two different classical

MD simulation runs were performed for each molecule, i.e. with and without the

inclusion of VS (MDVS and MDnoVS, respectively). From the MD runs, a set of

snapshots was extracted to be used in the QM/FQ calculations.
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3. Definition of the different regions of the two-layer scheme and their boundaries.

Each snapshot extracted from the MD runs was cut into a sphere centered on

the solute, retaining only the solvent molecules within the sphere. The radius of

this region was chosen to include specific solute-solvent interactions.

4. Running SHG QM/FQ calculations. Analysis of the results, comparison with

experimental data. SHG β(−2ω;ω, ω) calculations were performed on the set of

structures obtained for the six molecules in the previous step of the protocol.

The results obtained for each spherical snapshot were extracted and averaged to

produce the final SHG value.

Figure 4.2. Structure of the molecules studied in this work. The green

spheres depicted on each Oxygen atom represent the Virtual Sites (VS).

Molecular geometries of the molecules depicted in Figure 4.2 were optimized and the

RESP atomic charges were calculated at the CAM-B3LYP/6-311++G** level of the

theory. The Polarizable Continuum Model (PCM) was used to account for the aque-

ous environment in such optimizations.6,74 MD simulations were carried out by using

GROMACS348 with Amber 99ffSB-ILDN force field to describe intramolecular and in-

termolecular potentials.410 RESP charges were used for electrostatic interactions.312,411

VS were possibly placed on the centroids of Boys orbitals.412,413 In particular a couple

of VS was assigned to each carboxylic and hydroxylic Oxygen atom (see Figure 4.2). A

single solute molecule was solvated in a cubic box with a side length of approximately

4.7 nm containing a variable number of water molecules (3385-3872) modeled using
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the TIP3P parameter set, depending on the considered molecule 1-6.414 Electrostatic

interactions were taken into account by means of the particle mesh Ewald method355

using a cutoff radius of 1.2 nm in real space. A cutoff radius of 1.2 nm was also cho-

sen for van der Waals interactions. Periodic boundary conditions were applied in all

directions.

For each molecule, two single short (1.0 ns) NPT MDnoVS and MDVS simulations were

performed at 300 K for thermalization purposes. Consequently, two 10 ns NVT MDnoVS

and MDVS simulations were carried out for each molecule. The MD simulations were

carried out using a constant temperature of 300 K and adopting the velocity-rescale

method with a coupling constant of 0.1 ps and a time step of 0.5 fs.415 The LINCS

algorithm was used in order to constrain all bonds of the solute molecules.354 The

coordinates of each system were stored every 0.5 ps of simulation.

A total of 200 uncorrelated snapshots were extracted from the 10 ns MD (one snapshot

every 50 ps). For each snapshot a 15 Å sphere centered at the solute’s geometric center

was cut. This radius assures the convergence of the computed data (see Figure S1 given

as Electronic Supplementary Material (ESM)). All hyperpolarizabilities (β(−2ω;ω, ω))

were calculated within the QM/MM framework at the CAM-B3LYP/6-311++G**. For

molecule 1 a comparison between CAM-B3LYP, B3LYP and ωB97X-D functionals and

cc-pVDZ, aug-cc-pVDZ and 6-311++G** basis sets was also performed. The water

molecules were modeled both with the SPC FQ parameters156 and the parametrization

proposed by some of the present authors.162 The TIP3P358 force-field was exploited in

non-polarizable QM/MM calculations. The β(−2ω;ω, ω) convergence, as a function of

the number of snapshots, was checked for each system. All QM/FQ calculation were

performed by using a locally modified version of Gaussian 16.301 Finally, the calculated

values were compared with experimental Hyper Rayleigh Scattering (HRS) data taken

from ref.416 Experimental HRS values were divided by the Lorentz local-field factor in

order to be directly compared with our calculated data.417–419

In Ref.416 a comparison between computed and experimental data was done by referring

to the following quantity: ∣∣∣~β∣∣∣ =
√
β2
x + β2

y + β2
z 4.12

where

βi =

3∑
k=1

βikk + βkik + βkki 4.13

Therefore, our calculated data refer to Eq.4.12. We note, however, that alternative def-

initions for HRS values, giving computed results directly comparable with experimental

data, can be found in the literature.418,420–422

4.4 Numerical Results

4.4.1 MD Analysis

The analysis of MD trajectories was performed by using the TRAVIS package.359

Three different results are presented and discussed: the radial distribution function g(r)

(RDF), the spatial distribution function (SDF) and the dihedral distribution function
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(DDF). It is worth noticing that from a structural point of view, the molecules depicted

in Figure 4.2 are strictly related. In fact, molecules 1-3 are characterized by the

same electron-donor group as molecules 4-6. The only difference between the two

sets of molecules is that the first triplet is para-substituted, whereas the last is meta-

substituted.

Hydration patterns

The hydration pattern was analyzed by means of the radial distribution function g(r)

computed taking as reference all Oxygen and hydroxil Hydrogen atoms of the solutes. 2

bears the largest number of potential HB sites: for this reason, we will focus on its RDF

(Figure 4.3), whereas the data for the other molecules are given as ESM (see Figure

S2). The left and right panels of Figure 4.3 report the g(r) obtained from the two MD

runs performed with or without virtual sites (MDVS and MDnoVS, respectively).

Figure 4.3. RDF of system 2, obtained from the analysis of the MD run

without (left panel) or with (right panel) virtual sites.

Focusing on both panels of Figure 4.3, it is worth pointing out that the most intense

peaks of the g(r) are presented by the carboxylic Oxygen (O2) and the water Hydrogen

(HW) atoms, and by both the hydroxylic Hydrogen (H1 and H3) and water Oxygen

(OW) atoms. Moreover, with the exception of O1, all g(r) maxima increase if virtual

sites are considered in the MD runs (right panel). Notice also that such an effect

is accompanied by a thinning of the g(r) width. The presence of VSs in the MD

runs guarantees a better reproduction of the properties of HBs, in particular their

directionality. This results in a smaller spatial spreading of the HBs and therefore a

thinner maximum in the g(r).

Table 4.1 reports the average number of HBs per site, as obtained from the analysis of

both MDnoVS and MDVS. Such numbers were calculated by integrating the first peaks

of each g(r), which refer to the first hydration sphere. The number of HBs exhibited

by O1 and H1 is constant for most of the molecules, with the exception of O1 in 5 in

the case of MDnoVS. The same behaviour is shown by H3, but not by O3, whose HB

pattern varies a lot among the various molecules. Notice also that in case of MDVS

the number of HBs for O1 and O2 is generally lower than for MDnoVS. The opposite
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is noticed for O3, for which the presence of VSs in the MD runs causes an increase in

the number of HBs. Finally, it is worth pointing out that the smaller spatial spreading

of HBs and the thinner maximum of the corresponding g(r) already commented for

MDVS generally result in the decreasing of the average number of HBs (see column

labelled HBmean in Table 4.1).

O1···HW O2···HW O3···HW H1···OW H3···OW HBmean

MDnoVS

1 0.64 2.21 0.76 1.03 — 1.16

2 0.55 2.37 0.73 1.04 0.98 1.14

3 0.55 2.19 — 1.04 — 1.26

4 0.56 2.42 0.66 1.15 — 1.20

5 0.33 2.13 1.21 1.01 0.99 1.14

6 0.50 2.08 — 1.00 — 1.19

MDVS

1 0.63 1.96 0.97 1.00 — 1.14

2 0.51 2.02 1.06 1.00 1.01 1.12

3 0.51 2.01 — 1.00 — 1.17

4 0.49 1.91 1.00 1.01 — 1.10

5 0.55 1.86 1.34 1.00 1.02 1.15

6 0.57 1.90 — 1.01 — 1.16

Table 4.1. Number of Hydrogen Bonds for the different molecules depicted

in Figure 4.2. HBmean reports the average number of HBs reported in the

other columns.

To refine the analysis on hydration patters, SDF were calculated from the MDVS: the

results are plotted in Figure 4.4 for all the molecules depicted in Figure 4.2. SDF

calculated from MDnoVS are reported in Figure S3, as ESM. Calculated SDF isoden-

sity values are equal to 70 and 100 nm−3 for water Hydrogen and Oxygen atoms,

respectively. Figure 4.4 gives a pictorial view of HBs spatial distribution: red and

white surfaces refer to water Oxygen and Hydrogen atoms, respectively. All inves-

tigated molecules present a common feature in their acceptor portion, with a strong

O2-HW and H1-OW hydrogen bonding interaction. This is not surprising considering

the results discussed before and reported in Table 4.1. 2 and 5 present an H3-OW HB

which is symmetrically distributed. This suggests that the hydroxyl moiety (O3H3)

can rotate during the MD simulation. These findings are confirmed by the dihedral

distribution function depicted in Figure 4.5 for molecule 2. In fact, the distribution of

the C4C5O3H3 dihedral angle shows two maxima at 0 and 180 degrees, thus confirm-

ing two most probable configurations. In Figure 4.5, the distribution related to the

dihedral angle of the donor hydroxyl group (C2C1O1H1) is plotted. Notice that in this

case a single maximum occurs at 0 degrees, thus confirming the SDF sampling.
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Figure 4.4. Spatial distribution functions extracted from MDVS. Calcu-

lated SDF isodensity values are given in nm−3 and are equal to 70 and 100

nm−3 for water hydrogen and oxygen atoms, respectively.

Figure 4.5. Dihedral distribution function of molecule 2 obtained with

MDVS.
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4.4.2 β(−2ω;ω, ω) QM/MM Results

Convergence with respect to sampling extracted from the MD

Before analyzing the QM/FQ β(−2ω;ω, ω) results for the selected systems, we first

analyze the dependence of the calculated data on the sampling extracted from the

MD, i.e. on the number of selected uncorrelated snapshots. In Figure 4.6, the average

values of β(−2ω;ω, ω) as a function of the number of snapshots for the six selected

systems are plotted. Notice that panel a refers to the snapshots extracted from the

MD performed without the inclusion of VS, whereas b to the MD with the inclusion

of VS. In both cases, the convergence in the average property is almost reached with

100 snapshots and completely guaranteed if the final values are obtained by averaging

200 snapshots. For this reason, all the data which will be reported in the next sections

are obtained as a result of the averaging over 200 snapshots.
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Figure 4.6. Average values of β(−2ω;ω, ω) as a function of the number

of snapshots extracted from the MD for all the molecules depicted in Figure

4.2. a. Snapshots extracted from MDnoVS. b. Snapshots extracted from

MDVS.

Dependence on DFT Functional and Basis Set

The dependence of the β(−2ω;ω, ω) on the choice of the DFT functional and basis set

is discussed for molecule 1. The CAM-B3LYP, B3LYP and ωB97X-D DFT functionals

were combined with the cc-pVDZ, aug-cc-pVDZ and 6-311++G** basis sets. The

average β(−2ω;ω, ω) results are reported in Table 4.2.

Table 4.2 shows some general trends. First, the calculated β(−2ω;ω, ω) increases going

from the cc-pVDZ to the 6-311++G** basis sets for all functionals employed. By taking

as reference the cc-pVDZ basis set, aug-cc-pVDZ shows an increase in the values of

39% (MDnoVS) and 54% (MDVS), whereas the 6-311++G** set of 44% (MDnoVS) and

57% (MDVS). Such a behaviour can be explained by considering that β(−2ω;ω, ω)

values have already been reported to be extremely sensitive to the inclusion of diffuse

functions in the basis set.423–425 The largest values are obtained with the 6-311++G**

set, however these data are only slightly different from those calculated by using the

aug-cc-pVDZ set.
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cc-pVDZ aug-cc-pVDZ 6-311++G**

MDnoVS

B3LYP 8.65 13.31 13.59

CAM-B3LYP 7.36 11.31 11.54

ωB97x-D 7.04 10.84 11.08

MDVS

B3LYP 8.63 12.03 12.39

CAM-B3LYP 7.43 10.36 10.66

ωB97x-D 7.09 9.91 10.22

Table 4.2. Calculated QM/FQ β(−2ω;ω, ω) of molecule 1 as varying the

DFT functionals and basis set. Data refer to both the MD runs performed

without or with the inclusion of VS. All data are reported in esu.

Let us pass to consider the dependence of β(−2ω;ω, ω) values on the choice of the

DFT functional. For both MDs, the smallest value is given by ωB97x-D and the high-

est by B3LYP. With respect to ωB97x-D, CAM-B3LYP data are 4-5% greater, whereas

B3LYP values are 22-23% greater. Such results are in agreement with previous stud-

ies,114 which showed that B3LYP generally overestimates electric response properties.

On the basis of the data discussed so far, the further analyses are performed by ex-

ploiting the CAM-B3LYP/6-311++G** values.

QM/MM β(−2ω;ω, ω) results

In panels a and b of Figure 4.7 raw β(−2ω;ω, ω) QM/FQ values for molecule 1 are

plotted. Again, the values obtained with or without the inclusion of VS are depicted.

Mean values, obtained by averaging the property all over the snapshots, are also plotted

as horizontal lines. The plots in Figure 4.7 clearly show the range of variability in time

of the calculated property, i.e. the dependence of the calculated data on the spatial

arrangement of the solvent molecules around the solute, and its conformation.

Panels c and d of Figure 4.7 report the same analysis, this time focused on sol-

vent effects. The latter are calculated as the difference between QM/FQ and vacuum

β(−2ω;ω, ω) at the same level of theory (CAM-B3LYP/6-311++G**). Both MD runs

without and with VS are considered. The inspection of the plots shows positive, as

well as negative solvent effects for the single snapshot. Therefore, although the aver-

age solvent effect is positive (see the horizontal lines), the contribution to the single

snapshot can be either positive or negative. Our dynamical, atomistic approach to the

solvation phenomenon is able to give insight into such a variability, whereas mean-field

approaches (such as continuum solvation) would instead focus on the mean value. Sim-

ilar findings can also be extracted from the analysis of molecules 2-6, whose data are

given as ESM (see Figures S4-S8).

The calculated values in vacuo, the average QM/FQ and QM/TIP3P β(−2ω;ω, ω)

values (together with their standard errors) are reported in Tables 4.3. Experimen-

tal data, taken from Ref.416 are also reported. The calculated vacuum β(−2ω;ω, ω)

data only qualitatively reproduce the experimental trend; in fact, absolute values are

underestimated, with the average deviation being of the order of 50%.

Moving to QM/FQ data (Table 4.3), we note that both MD runs, with or without VS,
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Figure 4.7. QM/FQ β(−2ω;ω, ω) values for molecule 1 calculated for the

different snapshots extracted from the MD runs without (a)-(c) or with (b)-

(d) VS. Panels a and b report β(−2ω;ω, ω) raw data, panels c and d report

difference between QM/FQ and vacuum β(−2ω;ω, ω) data. All values are

given in esu.
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give similar β(−2ω;ω, ω) results, being the average difference of the order of 3% . The

major discrepancy between the two MD runs is given by molecule 1: this is probably

due to the larger number of water molecules bound to O3, via HBs. In fact, by

chemical intuition, the more water molecules are bound to O3, the less π coordination

occurs in the molecule, thus reducing the absolute value of β(−2ω;ω, ω). Notice also

that calculated β(−2ω;ω, ω) for molecule 5 are larger than the corresponding data

for molecule 4. Such a behaviour is not modelled by vacuum calculations. Therefore,

it cannot be attribuited to the level of theory chosen, but instead to solvent effects

described by coupling the MD to the atomistic description of the QM/FQ model.

Also, solvent effects (i.e.the difference between QM/FQ and vacuum values) reported

as percentages in Table 4.3, follow indeed a specific trend. In fact, solvent effects

always increase moving from molecule 1 to 3 and from 4 to 6. Thus, the observed

smaller β(−2ω;ω, ω) value for 4 is numerically due to the similarity in the vacuum

values for 4 and 5. However, the final difference in the β(−2ω;ω, ω) values for 4 and 5

is very small. To end the discussion on solvent effects on β(−2ω;ω, ω), we note that,

on average, they increase vacuum values of about of 53 % and 60 % for MDnoVS and

MDVS, respectively.

In order to evaluate the dependence of our findings upon the specific parametrization

exploited for modeling the aqueous solution by means of the FQ approach, both the

parametrization proposed by Rick et al.156 and by Carnimeo et al.162 are compared

(see columns QM/FQa and QM/FQb in Table 4.3) . The most relevant discrepancy

between the two parametrizations is the difference in electronegativities between water

and oxygen and hydrogen atoms, which in case b is greater than case a. FQ charges

are calculated by solving Eq. 4.5, therefore a greater difference in electronegativities

causes greater electrostatic interactions (i.e. larger absolute electric charges). For this

reason, it is not surprising that QM/FQb results are larger than QM/FQa, being the

difference 5% in case of MDnoVS and 3% in case of MDVS.

Finally, calculated QM/FQ β(−2ω;ω, ω) are compared to experimental values (Table

4.3). Clearly, the inclusion of solvent effects, described by means of our protocol,

drastically reduces the error between calculations and experimental values. In fact, the

error is 22% and 23% in case of MDnoVS and MDVS respectively, with the minimal

error (20%) being reported for MDnoVS and the b parametrization.

To end the discussion on calculated QM/MM β(−2ω;ω, ω), it is worth noticing that the

non polarizable QM/TIP3P approach underestimates experimental of about 37% on

average. Thus, by taking as reference the calculations for the isolated molecules, indeed

a non-polarizable atomistic description of the environment reduces the discrepancy with

respect to experimental data. However, solvent effects are dramatically underestimated

by the non-polarizable force field.

4.5 Summary and Conclusions

We have reported on the extension of the atomistic fully polarizable QM/FQ method

to the calculation of SHG of systems in aqueous solution. The modeling which has

been proposed focuses in achieving an adequate modeling of solvent effects both in
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Vacuum QM/TIP3P QM/FQa QM/FQb Exp.416

MDnoVS

1 8.47 9.63±0.15 (14%) 11.54±0.17 (36%) 12.11±0.18 (43%) 13.06

2 7.10 8.61±0.07 (21%) 10.54±0.08 (48%) 10.96±0.09 (54%) 10.93

3 4.15 6.00±0.08 (44%) 6.98 ±0.07 (68%) 7.48 ±0.09 (80%) 10.28

4 3.71 4.44±0.06 (20%) 5.15 ±0.07 (39%) 5.45 ±0.07 (47%) 8.91

5 3.63 4.83±0.05 (33%) 5.76 ±0.05 (58%) 5.98 ±0.06 (65%) 6.78

6 2.35 3.43±0.05 (46%) 3.99 ±0.05 (70%) 4.28 ±0.06 (82%) 6.57

MDVS

1 8.65±0.15 ( 2%) 10.66±0.17 (26%) 10.92±0.18 (29%)

2 8.40±0.08 (18%) 10.61±0.09 (49%) 10.79±0.10 (52%)

3 6.08±0.07 (46%) 7.23 ±0.07 (74%) 7.53 ±0.08 (81%)

4 4.36±0.06 (17%) 5.24 ±0.06 (41%) 5.41 ±0.07 (46%)

5 4.69±0.05 (29%) 5.73 ±0.05 (59%) 5.88 ±0.06 (65%)

6 3.52±0.05 (50%) 4.23 ±0.04 (80%) 4.43 ±0.05 (88%)

Table 4.3. CAM-B3LYP/6-311++G** vacuum, QM/TIP3P and QM/FQ

β(−2ω;ω, ω) (± standard errors) for molecules 1-6. Solvent effects, defined

as the difference between the QM/FQ or QM/TIP3P and the vacuum data,

are given as percentages in brackets. All values are reported in esu.
a FQ parametrization proposed by Rick et al.156 b FQ parametrization pro-

posed by Carnimeo et al.162

the quantum mechanical response equations and on the conformational properties of

the system, which is sampled by resorting to MD simulations. The application of the

model to selected systems, for which the interaction with the surrounding environment

is dominated by HB interactions, shows a good agreement in both the modeling of

solvent effects and in the reproduction of experimental SHG data extracted from HRS

experiments. The good performance of our approach is especially due to the inclusion

of polarization effects, as it is shown by the comparison of our data with non-polarizable

QM/TIP3P results. The disagreement in the final reported absolute values may be due

to the only partial account of electron correlation effects in DFT approaches, and in

the neglecting of vibrational corrections, which may in principle play a relevant role in

the computation of the final property. Such corrections have not been included, due

to their high computational cost, especially when combined with the need of repeating

the computation for hundreds of representative snapshots. Also, non-electrostatic (re-

pulsion/dispersion) interactions have not been considered, however they can contribute

to reach a numerical agreement between calculations and experimental values.

Acknowledgment

We are thankful for the computer resources provided by the high performance computer

facilities of the SMART Laboratory (http://smart.sns.it/).

Electronic Supplementary Material

Electronic Supplementary Material avaiable online. See DOI: 10.1007/s00214-018-

2247-7

76



Chapter 5

A General Route to Include

Pauli Repulsion and Quantum

Dispersion Effects in QM/MM

Approaches

Abstract A methodology to account for non-electrostatic interactions in Quantum Mechan-

ical (QM)/Molecular Mechanics(MM) approaches is developed. Formulations for Pauli re-

pulsion and dispersion energy, explicitly depending on the QM density are derived. Such

expressions are based on the definition of an auxiliary density on the MM portion and the

Tkatchenko-Scheffler (TS) approach, respectively. The developed method is general enough

to be applied to any QM/MM method and partition, provided an accurate tuning of a small

number of parameters is obtained. The coupling of the method with both non-polarizable

and the fully polarizable QM/Fluctuating Charges(FQ) approaches is reported and applied.

A suitable parametrization for the aqueous solution, so that its most representative features

are well reproduced, is outlined. Then, the obtained parametrization and method are applied

to calculate the non-electrostatic (repulsion and dispersion) interaction energy of nicotine in

aqueous solution.
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5.1 Introduction

Multiscale computational approaches rooted in the so-called hybrid quantum mechanics

(QM) molecular mechanics (MM) methods (QM/MM)1,12,13,23,278,426–429 have nowa-

days been amply and successfully applied to a variety of chemical systems and their

physico-chemical properties.7,82,146,162,187,430–435

The idea behind those approaches is to treat accurately, by QM methods, a small

but critical part of the overall system, while resorting to much cheaper and less ac-

curate MM methods for the remaining portion of the whole system. Such a partition

is sometimes naturally applicable (such as in solvation phenomena and non-covalent

interactions), however in some cases (i.e. covalently bound systems) the QM and MM

portions are more difficult to define. In any case, a specific choice of the QM/MM

partition introduces some assumptions on the system, which in the worst cases can

negatively affect the quality of the final computed results. The quality of the results

which can be obtained with QM/MM models do not only depend on the definition

of the two moieties, but also (and crucially) on the approach exploited to model the

interaction between the two portions.12,429

Different choices are possible in this context, however the model for the QM/MM

coupling must be capable of treating both bonded and non-bonded interactions (elec-

trostatic and non-electrostatic). The way of treating the electrostatic interaction is

generally a key element of any QM/MM approach, largely affecting the quality of the

computed results.149,155,429,436,437 Two groups of methods exist, the so called mechan-

ical embedding schemes and the electrostatic embedding methods.29 The latter may

o may not include mutual polarization effects between the QM and MM portions: in

the first case, a set of atomic-centered partial point charges are used for calculating

the electrostatic interaction at the MM level, which also enters in definition of the

effective QM Hamiltonian. Polarization effects can be included by using either Fluctu-

ating Charges (FQ),156,159 distributed multipoles,185,186,281 induced dipoles,10,155,164

or Drude oscillators.59

Limiting QM/MM interactions to electrostatic-only terms may yield an unphysical

description of the systems. Non electrostatic interactions,193 also called London inter-

actions, play a crucial role in many chemical processes. For instance, most of DNA

and RNA functionalities, as well as the adsorption of a molecule on a surface are reg-

ulated by repulsion/dispersion interactions. Moreover, these interactions can also play

an important role in solvation phenomena.

Although their paramount importance, in most QM/MM approaches non-electrostatic

interactions between the QM and MM moieties are only retained at the MM level and

treated by means of Lennard-Jones or similar parametrized analytical functions.195

This approach, if computationally inexpensive, introduces a rough approximation in the

computational modeling. In fact, non-electrostatic interactions are primarily due to the

Pauli repulsion principle, which cannot be postulated in a classical framework, and to

long-range electron correlation effects, which are again not defined in the classical realm.

In purely QM approaches, such interactions are modeled by resorting to correlated

expensive QM methods, such as coupled cluster with single, double, and perturbative

triple excitations - CCSD(T) coupled to large atomic basis sets in order to reduce the
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Basis Set Superposition Error (BSSE).438,439

The formulation of QM/MM approaches able to account for QM effects affecting disper-

sion/repulsion interactions between the QM and MM portions has received so far only

little attention in the literature. To the best of our knowledge, the only approach which

has been proposed is the so-called Effective Fragment Potential (EFP) method.185–190

In this approach, empirical force-fields are not exploited, but the force-field (FF) for

the ”MM” portion is obtained from electronic structure calculations of the single frag-

ments. In this way, the FF is defined in terms of point charges, multipoles, static and

dynamic polarizabilities, localized molecular orbitals and related QM quantities.

Due to the nature of the EFP method, the inclusion of dispersion and Pauli repul-

sion terms can be formulated in terms of QM quantities calculated for the fragments.

Therefore, such an approach cannot be straightforwardly extended to generic QM/MM

methods based on empirical potentials.

The account for QM-based non-electrostatic interactions (explicitly depending on the

QM density) in QM/MM calculations will permit not only a more reliable description of

the interaction between the QM and the MM moieties, but also to include them in the

QM Hamiltonian and to propagate such terms also to molecular properties and spectra.

The common approaches, based on Lennard-Jones and similar potentials, which do not

bear any explicit dependence on QM quantities, do not give any contribution to the

QM Hamiltonian; therefore they only result in a correction to the QM/MM energy.

As it will be detailed in the following sections, the development of a model with the

aforementioned features is the goal of this paper.

Notice that we do not aim to propose a way of decomposing the intermolecular energy

terms. Such kind of calculations can be performed by exploiting other approaches, for

instance the general effective fragment potential (EFP2)187 or the Symmetry Adapted

Perturbation Theory (SAPT)440,441 approach.

The manuscript is organized as follows: first, a general formulation of Pauli repulsion

and dispersion energy in a QM/MM framework is presented. The formulation that

is reported is based on the definition of an auxiliary density on the MM portion and

the Tkatchenko-Scheffler (TS) approach198–201 for the repulsion and dispersion terms,

respectively. Next, the inclusion of such terms in the QM/MM Hamiltonian is derived,

with specific emphasis in the coupling with the polarizable QM/MM approach which is

developed in our group.54–56,146,149,159 The derived repulsion/dispersion terms depend

on some parameters. A parametrization to treat aqueous solution is then proposed,

which allows the application of the methodology to treat non-electrostatic interaction

energies of solvated systems. To this end, aqueous solutions of (L)-Methyl Lactate

(MLAT) and (R)-Methyloxirane (MOXY) are considered, as well as the more com-

plicated case of Nicotine in aqueous solution, where the focus is on the influence of

non electrostatic interactions on conformational populations and on the electric dipole.

Summary, conclusions and future perspectives end the presentation.
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5.2 Theory

The total energy of a system composed by two interacting moieties A and B can be

expressed as:192,442

EAB = EeleAB + EpolAB + EpenAB + EexAB + EdisAB 5.1

where, EeleAB arises from electrostatic interactions and EpolAB is the polarization contri-

bution. EpenAB is the so-called penetration term, EexAB is the exchange contribution and

EdisAB arises from dispersion interactions. In the context of QM/MM approaches, A can

represent the QM portion of the system, while B the MM one. EeleAB and EpolAB are the

energy terms considered within electrostatic embedding schemes and in particular in

polarizable QM/MM approaches1,10,12,59,155,159,164

5.2.1 Pauli Repulsion Energy

The Pauli Repulsion energy, ErepAB , also known as Exchange-Repulsion energy, is for-

mally the sum between the Penetration (EpenAB ) and the Exchange (EexAB) contributions

in Eq. 5.1 above. The penetration term is considered to be twice the exchange term

in the van der Waals region, thus giving rise to the following expression:86,192

ErepAB =
1

2

∫
dr1 dr2
r12

ρA(r1, r2)ρB(r2, r1) 5.2

where ρx is the density matrix of the A or B moieties, placed at distance r12.

The extension of Eq. 5.2 to QM/MM partitions, is obstructed by the the difficulty to

define the density matrix ρB of the classical region B (no electrons are present in this

region).

In the following derivation we will work out an approximate expression for Pauli repul-

sion in the framework of the so-called focused models,6 namely models in which the

main component, that essentially bearing the property, is described at a higher level

than the remainder, which plays a complementary, but not negligible role. Within such

an approach, terms related to two fragments of the MM portion are not considered.

The starting point for the derivation of the equations is the formulation of quantum

repulsion effects for the Polarizable Continuum Model.86,87,95,96 In particular, each

fictitious valence electron pair of the MM molecules is localized in bond and lone pair

(if they are present) regions and represented by an s-gaussian-type function. Due to the

different physical nature of the two (bond or lone pair) regions, the two are discerned

by using two different sets of parameters, so that the expression for ρB becomes:86

ρMM(r1, r2) =
∑
R

ξ2Re
−βR(r1−R)2 · e−βR(r2−R)2 5.3
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where, R collects the centers of the gaussian functions used to represents the fictitious

MM electrons. The β and ξ parameters are generally different for lone-pairs or bond-

pairs: their values are adjusted to the specific kind of environment (MM portion) to

be modeled (vide infra). By substituting Eq. 5.3 in Eq. 5.2, the QM/MM repulsion

energy reads:

ErepQM/MM =
1

2

∑
R

∫
dr1 dr2
r12

ρQM(r1, r2)
[
ξ2Re

−βR(r1−R)2 · e−βR(r2−R)2
]

5.4

In this formalism, the QM/MM Pauli Repulsion energy is calculated as a two-electron

integral. Interestingly, this differs from the formulation of the same quantity in the

PCM model,86 where this term is a pure one-electron term.

Eq. 5.4 holds for every kind of MM environment, independent from its nature, i.e. the

formalism not only holds for solvents, but can be extended to other substrates (proteins,

surfaces) surrounding the QM core region. The specification for the different external

environments is simply done by defining the number of different electron-pair types and

the relative β and ξ parameters in Eq. 5.3. Also, due to its simplicity, this formalism

is retained also in case of polarizable QM/MM approaches, such as our polarizable

QM/Fluctuating Charge(FQ) approach56 (vide infra), by only refining the parameters

if necessary. To end the discussion, it is worth noticing that in the present work ρMM

will only defined in terms of spherical gaussian-type functions. Extension to p/d-type

functions is possible, and mainly implies the definition of additional parameters in Eq.

5.3. Such an extension (and the related parametrization work) will be the topic of

future communications.

Practical Formulation of ErepQM/MM

As pointed out above, Eq. 5.4 requires the calculation of a two-electron integral. Such

an integral is formally similar to the exchange integral (with opposite sign), where

one of the densities in Eq. 5.2 has been replaced with an explicit function of r1 and

r2. A similar approach is sometimes used within the framework of Density Functional

Theory (DFT), in the development of Hybrid Density Functionals with a non-local

contribution to the energy. Similar to the definition of exchange term, in DFT an

exchange-repulsion energy density can be defined:443

εrep(r1) =
1

2

∫
du

ρQM(r1, r1 + u)ρMM(r1, r1 + u)

u
5.5

where u = r2 − r1 has been introduced (u is its module). In this formalism, ρMM acts

as ”semi-local density” in the DFT framework.443–445,445–447 By inserting ρMM in Eq.

5.5, we obtain:

εrep(r1) =
1

2

∫
du

ρQM(r1, r1 + u)

u

(∑
R

ξ2Re
−βR|r1−R|2e−βR|r1+u−R|2

)
5.6
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By exploiting the standard approach of expanding noninteracting reference system’s

Kohn-Sham orbitals in a finite basis set of real, nonorthogonal, Gaussian-type atomic

orbitals {χµ}, the non-local one-particle density becomes:

ρQM(r1, r1 + u) =
∑
µν

Pµνχµ(r1)χν(r1 + u) 5.7

where Pµν is the µ, ν element of the density matrix P . By substituting Eq. 5.7 into

Eq. 5.6, and symmetrizing, to recover the notation of Rung 3.5 functionals, εrep(r1)

becomes:

εrep(r1) =
1

2

∑
µν

Pµν

[
χµ(r1)Aν(r1) +Aµ(r1)χν(r1)

2

]
5.8

where, similarly to what is done in the context of the definition of the so-called ”hybrid

Rung 3.5 density functionals”447–450 the Aµ function is introduced:

Aµ(r1) =

∫
du

χµ(r1 + u)

u

(∑
R

ξ2Re
−βR|r1−R|2e−βR|r1+u−R|2

)
5.9

Eq. 5.9 has the form of an electrostatic potential integral, yielding the potential at

point r1 due to the product of a basis function centered at Rµ and the sum of the Gaus-

sian functions representing ρMM, centered at R. Such an integral can be calculated

analytically, for instance by specifying the Obara-Saika algorithm451–453 to the evalu-

ation of Eq. 5.9. The details on the formulation and implementation of this algorithm

in the context of the present work are given as Supporting Information (SI) (Section

S1). Notice however, that a straightforward adaption of the current implementations

of Rung 3.5 density functionals447–450 to the evaluation of Eq. 5.9 is impossible. In

addition, the definition of ρMM (Eq. 5.3) does not allow the use of the auxiliary basis

sets exploited in Rung 3.5 functionals, because the gaussian functions which we are us-

ing (Eq. 5.3) are centered in the MM grid. Since they are by definition non-symmetric

functions, the Müntz theorem454 can not be applied to our case.

By re-writing Eq. 5.9 as a function of r2:

Aµ(r1) =
∑
R

ξ2Re
−βR|r1−R|2

∫
dr2

χµ(r2)e−βR|r2−R|2

|r2 − r1|
5.10

the exchange-repulsion energy, ErepQM/MM, can be calculated by numerical integration

of the energy density in Eq. 5.8:

ErepQM/MM =
1

2

∑
µν

Pµν

∫
dr1

[
χµ(r1)Aν(r1) +Aµ(r1)χν(r1)

2

]
5.11

and the matrix element of the Pauli-Repulsion potential, to be added to the QM Fock

matrix, reads:
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F repµν =
∂Erep

∂Pµν
=

1

2

∫
dr1

[
χµ(r1)Aν(r1) +Aµ(r1)χν(r1)

2

]
5.12

It is worth remarking that the resorting to the DFT formalisms allows to transform the

two-electron integral in Eq. 5.4 into a one-electron integral, which can be evaluated by

integration over grid points defined in the DFT formalism.

Also, Eq. 5.11 depends explicitly both on Pµν and the atomic basis {χµ}. This in-

troduces an explicit contribution to the QM Hamiltonian, which propagates to the

calculation of molecular properties and spectra, through the definition of suitable an-

alytical procedures. Such an extension will be the topic of further investigations.

5.2.2 Quantum Dispersion Energy

The exact quantum-mechanical definition of the dispersion interaction originally pro-

posed by McWeeny, results in a computational expensive approach, depending on tran-

sition densities of the QM portion.192,455 A popular remedy to this issue, widely used in

the case of dispersion corrected density functionals,194,198,199,456–466 consists of adding

a pairwise interatomic C6R
−6 term to the DFT energy:

Edis = −1

2

∑
A,B

fdamp(RAB , R
0
A, R

0
B)C6ABR

−6
AB 5.13

where, RAB is the distance between atoms (portions) A and B, C6AB is the cor-

responding C6 coefficient, R0
A and R0

B are the van der Waals (vdW) radii. The

R−6AB singularity at small distances is eliminated by the short-range damping func-

tion fdamp(RAB , R
0
A, R

0
B).

Among the several corrections proposed in the literature, we found the approach by

Tkatchenko and Scheffler (TS) the most suitable for our purposes, due to its mathemat-

ical formulation and its performances.198 Starting from the Casimir-Polder equation

and the Padé series, the C6AB coefficients are defined by only using homonuclear pa-

rameters, i.e. C6AA, C6BB , α0
A, α0

B (the latter being static polarizabilities of the A and

B moieties):

C6AB =
2C6AAC6BB

α0
B

α0
A
C6AA +

α0
A

α0
B
C6BB

5.14

Similarly to repulsion, also for dispersion terms only the interaction between QM

(A) and MM (B) atoms will be considered. The TS model resorts to an Atom in

Molecules467 approach and adopts the Hirshfeld468 partition of the density to define

effective homonuclear coefficients Ceff6AA of the A atom in the molecule:

Ceff6AA =

(
V effA

V freeA

)2

Cfree6AA = η2AC
f
6AA 5.15
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where (V effA ) is the effective volume of the A atom in the molecule, (V freea ) is the free

volume of the same atom, and Cfree6AA are the free homonuclear coefficients Cfree6AA . ηA
can be written in terms of the electron density of the system by employing the Hirshfeld

partitioning of the density:468

ηA =

∫
dr r3wA(r)ρ(r)∫
dr r3ρfreeA (r)

5.16

wA(r) =
ρfreeA (r)∑
J ρ

free
J (r)

5.17

where, wA(r) is the Hirshfeld atomic partitioning weight for the atom A, r is the

distance from the nucleus , ρ(r) is the total electron density, ρfreeA (r) is the electron

density of the free atom A, and the summation runs over all atoms J in the system.

By following this approach, the QM/MM dispersion energy, EdisQM/MM , becomes:

EdisQM/MM = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB , R
0
A, R

0
B)

η2AC
free
AA Ceff6BB

α0
B

α0
A
η2AC

free
AA +

α0
A

α0
B
Ceff6BB

R−6AB

5.18

The Ceff6BB are the effective homonuclear coefficients of the B (MM) atoms. Due to the

difficulty to express them through Eq. 5.15, in this work their values are parametrized

in an atom-type fashion with respect to QM calculations based on the Hirshfeld parti-

tioning proposed in TS.469,470 α0
A and α0

B are parametrized with respect to high-level

QM calculations (vide infra).

fdamp(RAB , R
0
A, R

0
B) in Eq. 5.18 is a Fermi-type damping function, which is specified

by following the standard approaches exploited to define dispersion corrected density

functionals:194,198,466

fdamp(RAB , R
0
A, R

0
B) =

1

1 + exp
[
−d
(

RAB
sRR0

AB
− 1
)] 5.19

where, R0
AB = R0

A +R0
B , and d, sR are free parameters (see Section 5.5.1).

The dispersion contribution to the QM/MM Fock matrix is:

F disµν =
∂Edis
∂ρ

∂ρ

∂Pµν
= −1

2

∂ρ

∂Pµν

∑
A∈QM

∑
B∈MM

fdamp(RAB)
∂C6AB

∂ρ
R−6AB 5.20

By considering that the free atomic related quantities are independent of the density

matrix, and that the same obviously applies to MM-related quantities, the terms in

Eq. 5.20 can be written as follows:

∂Ceff6AB

∂ρ
=

2
α0
A

α0
B
C2

6BB(
α0
B

α0
A
Ceff6AA +

α0
A

α0
B
C6BB

)2 ∂Ceff6AA

∂ρ
5.21
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∂Ceff6AA

∂ρ
= Cfree6AA2ηA

∂ηA
∂ρ

5.22

∂ηA
∂ρ

= ηρA =

∫
dr r3wA(r)χµ(r)χν(r)∫

dr r3ρfreeA (r)
5.23

where the eff superscript in the C6BB term is omitted for the sake of readability of

the equations. In Eq. 5.23 the term due to the partial derivative of the density with

respect the density matrix is accounted for. By recollecting all the terms in of the

above equations, the quantum dispersion contribution to the Fock matrix becomes:

F disµν = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB)
2
α0
A

α0
B
C2

6BBC
free
6AA2ηA(

α0
B

α0
A
Ceff6AA +

α0
A

α0
B
C6BB

)2 ηρAR−6AB 5.24

Similarly to the Pauli repulsion term, Eq. 5.24 introduces an explicit contribution to

the QM Hamiltonian, which propagates to the calculation of molecular properties and

spectra, which will be considered in future communications.

5.3 Coupling dispersion/repulsion to non-polarizable

QM/MM approaches

In electrostatic embedding QM/MM models the MM atoms are endowed with fixed

atomic charges, that produce an electric field which polarizes the electron density. The

electrostatic embedding introduces a new term in the molecular Hamiltonian, that is,

the interaction between the potential generated by the MM charges and the electron

density:

Hele
QM/MM =

NMM∑
j=1

∫
R3

ρQM(r)qj
|r− rj |

dr 5.25

In Eq. 5.25 the summation runs over the j MM charges. Notice how the MM charges,

that are parameters of the employed force field, are a fundamental quantity: their

quality is crucial as they provide a representation, albeit crude, of the electron density

of the environment. Quantum Pauli repulsion and quantum dispersion act as additive
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contributions to Eq. 5.25:

HQM/MM = Hele
QM/MM +Hrep

QM/MM +Hdis
QM/MM =

=

NMM∑
j=1

∫
R3

ρQM(r)qj
|r− rj |

dr+

+
1

2

∑
R

∫
dr1 dr2
r12

ρQM(r1, r2)
[
β2
Re
−ξR(r1−R)2 · e−ξR(r2−R)2

]
+

− 1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB , R
0
A, R

0
B)

η2AC
free
AA Ceff6BB

α0
B

α0
A
η2AC

free
AA +

α0
A

α0
B
Ceff6BB

R−6AB 5.26

By expanding ρQM in a finite basis set {χµ} and taking the derivative with respect to

the density matrix Pµν , it is possible to define the contribution to the Fock matrix:

Fµν = hµν +Gµν(P) + V†µνq +
1

2

∫
dr1

[
χµ(r1)Aν(r1) +Aµ(r1)χν(r1)

2

]
+

− 1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB)
2
α0
A

α0
B
C2

6BBC
free
6AA2ηA(

α0
B

α0
A
Ceff6AA +

α0
A

α0
B
C6BB

)2 ηρAR−6AB

5.27

5.3.1 Coupling dispersion/repulsion to the polarizable QM/FQ

model

In polarizable embedding QM/MM models, the mutual polarization of the MM and

QM portions is explicitly taken into account. The MM force field contains a response

term, which modifies the electrostatics as a reaction to the presence of the QM density.

In a symmetric fashion, a polarization term is included in the core’s Hamiltonian to

represent the interaction of the electronic density with the MM electrostatics. If the po-

larizability of the MM region is introduced by means of induced point dipoles,10,164,165

the electric field produced by the QM density appears in the equations that determine

the dipoles and the dipoles appears in an interaction term in the Hamiltonian multi-

plied by a field operator. If instead a fluctuating charge (FQ) description56,156–159 is

adopted to make the force field polarizable, the electrostatic potential produced by the

QM density gives rise to a charge flow in the MM region; the MM fluctuating charges

in turn interact with the QM density. Therefore, the expression for the interaction

between the QM and MM portions is the same as Eq. 5.25, but the charges are in this

case calculated by solving the following response equation:54
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Dqλ = −CQ −V(PQM) 5.28

where D is the response matrix whose diagonal terms are the atomic electronegativities,

q is a vector containing the FQs and the Lagrangian multipliers, C is a vector containing

the atomic electronegativities and the constraints to ensure that each MM molecule

has fixed charge, and V(P) is the potential due to the QM density matrix P. The

Pauli repulsion and quantum dispersion terms developed in the previous pages can be

added to the QM/FQ Hamiltonian in the same fashion as in Eq. 5.26. The resulting

expression is the same,

however the qj charges in Eq. 5.26 and Eq. 5.27 this time are the FQs calculated

through Eq. 5.28 at each step of the SCF procedure.

5.4 Computational Details

The equations presented in the previous section were implemented in the Gaussian16

computational package.301 Notice that the current implementation of Eq. 5.9 is re-

stricted to uncontracted basis sets of s-, p- and cartesian d-type primitive gaussian

functions. In all QM/FQ and QM/non-polarizable MM calculations were performed by

treating the QM portion at the DFT level of theory, combined with selected Pople-type

basis sets. The parameters to treat the electrostatic component in FQ calculations were

taken from Rick et al.156 The TIP3P358 force-field was exploited in non-polarizable MM

calculations. All the classical Molecular Dynamics (MD) simulations were performed

by using the Gromacs package,471–474 with the same settings as previously reported

by some of the present authors.146,148 The Kitaura-Morokuma Energy Decomposi-

tion Analysis (KM-EDA)475,476 was performed by using the GAMESS package.477,478

Symmetry Adapted Perturbation Theory (SAPT)440,441 calculations were performed

by using Psi4 1.1.479

5.5 Numerical Results

In this section the methodology explained in Sections 2-3 is applied to test cases. In

particular, the model is first parametrized to treat the aqueous solution, so to reliably

reproduce some of the most relevant properties of bulk water. Then, the method

is applied to the calculation of the non-electrostatic interaction energy of molecular

systems in aqueous solution.

5.5.1 Parametrization Strategy: Aqueous Solutions

The methodology stretched in the previous sections is general enough to be applied to

different polarizable and non-polarizable QM/MM approaches and to model any kind

of external environment, pending an appropriate parametrization of the quantities

entering Eqs. 5.11, 5.12, 5.18 and 5.24. Such a parametrization is a crucial step

towards the routinely application of the method to real cases. The development of

accurate parametrizations for various kinds of environments is beyond the scope of this

87



5. A General Route to Include Pauli Repulsion and Quantum Dispersion Effects in QM/MM Approaches

paper. Here, we will present the strategy that is followed to parametrize the method

coupled with our polarizable QM/MM model based on FQs (QM/FQ), and specifically

tailored to aqueous solutions.54,146,149,150

In the specific case of water, Eq. 5.4 requires the definition and the numerical setting

of 4 parameters: the exponents of the lone pairs and bond pairs βR and the coefficients

ξR. In fact, the use of the same parameters for bond and lone pairs would not been

justified. Also, the actual positions of the gaussian-type functions (Eq. 5.3) has to be

set, and this introduces a further degree of freedom in the parametrization procedure.

In case of water, eq. 5.3 reads:

ρH2O(r1, r2) =

NH2O∑
j=1

4∑
i=1

ξ2i e
−βi(r1−R(j)

i )2 · e−βi(r2−R
(j)
i )2 5.29

where j runs over the water molecules of the MM portion, while i runs over the electron

pairs of a single water molecule. Two sets of indices βi and ξi are set, and again they

differ if a lone-pair or a bond-pair is considered. R
(j)
i collects the points where the

gaussian-type functions are centered, which are chosen in analogy with what is done in

the TIP4P force field.480 In particular, the R
(j)
i centers are set as the charge centroids

of the localized molecular orbitals, as defined according to the Boys method481 (see

Figure 5.1), which in the present case were calculated at the B3LYP/6-311++G** level

of theory (see Section S2 in SI).

Figure 5.1. Calculated B3LYP/6-311++G** Boys localized orbitals cen-

troids (purple spheres) for a single water molecule.

Notice that the way the ρMM is constructed, permits to extend this approach to sol-

vents/environments other than water. Also, in the present work ρMM is defined in

terms of spherical gaussian-type functions only.

By further substituting Eq. 5.29 in Eq. 5.2 we obtain:

ErepQM/H2O
=

1

2

NH2O∑
j=1

4∑
i=1

∫
dr1 dr2
r12

ρQM(r1, r2)
[
ξ2i e
−βi(r1−R(j)

i )2 · e−βi(r2−R
(j)
i )2

]
5.30

In order to set the parameters entering Eq. 5.30, selected water clusters, chosen by

following Refs.482,483 (see Figure 5.2), were exploited. In particular, the reference full

QM data for the Pauli repulsion energy of such clusters were calculated by performing

a full QM calculation on each structure in Figure 5.2 at the Hartree-Fock (HF) level

in combination with selected Pople-type basis sets, also including diffuse functions (6-

31G, 6-31+G*, 6-311G, 6-311+G*). Then, the repulsion contribution to the energy
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was extracted by resorting to the KM-EDA,475,476 by following what has already been

proposed in the literature.482,483

Figure 5.2. Water clusters used for the parametrization of Erep
QM/H2O

, see

text.

Then, the Pauli Repulsion on the same water clusters was calculated with our method

(Eq. 5.30). This has been done by treating only one water molecule at the QM level

(B3LYP functional combined with the same selection of basis sets) and the other one

(or two, in case of the trimer in Figure 5.2) at the FQ level. For each dimer structure,

we performed two calculations, by exchanging the QM and FQ water molecules in order

to average among hydrogen bond donor and acceptor moieties. Three calculations were

performed for the trimer, by exchanging each time the QM molecule with one of the

two FQ molecules.

Eq. 5.30 depends on 4 parameters (the exponents and the coefficients of each gaussian

function): their best values were defined by performing a least square roots fitting on

full QM data obtained with the KM-EDA approach, without setting any constraint

on the parameters. The best fitted values are reported in Section S2 in SI. Notice

that such values give repulsion energies not perfectly fitting the KM-EDA data (see

Table S1 in SI); this is probably due to the absence of the contributions due to p-

type gaussian functions in the MM moiety. Such functions can possibly be added by

extending the formalism in a straightforward way, by only making the computations

more cumbersome.

Moving to quantum dispersion (Eq. 5.18), its expression depends on several parame-

ters, which were set according to the following scheme:

• α0 are static atomic polarizabilities. They were calculated at the CCSD(T)/aug-

cc-pVTZ level of theory, or taken from the literature.484 The used values are

reported in Table S2, in SI.

• The homonuclear Cfree6 coefficients were taken from Chu and Dalgarno,485,486

and are reported in Table S3 in SI.

• The homunuclear Ceff6 coefficients of the MM atoms cannot be intuitively de-

fined, because they actually depend on the effective volume of a given atom in a

molecule. Since our target environment is water, the effective volumes of oxygen

and hydrogen atoms in a water molecule optimized at the B3LYP/6-311++G**

were calculated. From these values, the Ceff6OO and and Ceff6HH were calculated,

being 14.8 Hartree·bohr6 and 2.8 Hartree·bohr6, respectively. Notice that these

data are in agreement with those proposed by TS.198
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• The d coefficient of Eq. 5.19 was set to 20, according to the TS approach.198 An

extensive testing was however performed, showing that similar Edis values are

obtained for any choice of d between 15 and 40.

• The van der Waals radii R0 were set to the Bondi reference values.487

• As previously noticed in the literature,198 the sR coefficient in Eq. 5.19 is actually

the only empirical parameter. sR was chosen in such a way Edis of a water dimer

as a function of the intermolecular distance O-O (calculated at the B3LYP-D3

level of theory) is accurately reproduced. The sR coefficient was therefore set to

0.92, which gives an average error of about 5% in the region of hydrogen bonding

(dO−O 2.5-3.0 Å) (see below for more details). Notice that the calculated Edis at

the equilibrium distance between two neighbour water molecules (dO−O = 2.9 Å

)488 is very close to the value reported recently by Guidez and Gordon.489

5.5.2 Dependence of Erep and Edis on the water-water inter-

molecular distance

In this section, the dependence of Erep and Edis on the water-water intermolecular

distance is studied. To this end, the water dimer depicted in Figure 5.3 has been

exploited, and the distance d between the oxygen atoms has been taken as reference.

Notice that this distance has been chosen as reference because it is generally reported

in the experimental/computational evaluation of radial distribution functions.488

QM	
QM	

MM	

MM	

d	 d	

Figure 5.3. Structure of the water dimer used to study the dependence of

EQnel on the water-water intermolecular distance.

In Figure 5.4, Erep is reported as a function of d. The plot was constructed by perform-

ing 80 calculations increasing the O-O distance from 2.54 Å to 6.49 Å by a step of 0.05

Å. Erep was calculated both with the QM/FQ and non-polarizable QM/MM(TIP3P)

methods, by exploiting the B3LYP/6-31+G* level to treat the QM moiety. Also in

this case, the QM and MM moieties were interchanged, and the average values were

taken. In Figure 5.4, these data are compared with the repulsion energy obtained at

the full QM level by means of the KM-EDA approach.

An almost perfect superposition of QM/FQ and QM/MM results is observed. For

d < 3.5 Å, for which Erep is large, the QM/FQ method shows an average percentage

deviation from the full QM KM-EDA of around 10%, similarly to the non-polarizable

QM/TIP3P approach. Notice that the QM/FQ results are in very good agreement

with KM-EDA results in the region around d = 3 Å. This is not unexpected, because
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Figure 5.4. Plot of Erep as a function of the O-O intermolecular dis-

tance in the water dimer depicted in Figure 5.3. QM/FQ and non polar-

izable QM/MM(TIP3P) values (B3LYP/6-31+G* for the QM moiety) are

compared to KM-EDA (HF/6-31+G*) calculations. The inset shows Erep
calculated values with the QM/FQ approach, in case the QM water molecule

acts as H-bond donor or acceptor.

the water-water structures that were exploited to perform the parametrization of this

contribution (see Figure 5.2) were characterized by a similar intermolecular distance

(2.04 Å).

The inset in Figure 5.4 shows in more detail the difference between the calculated

QM/FQ and KM-EDA values in the region between 2.5 and 4 Å, the two curves

obtained for the QM water molecule acting as H-bond donor and acceptor are given.

We notice that Erep is larger when the QM water molecule acts as H-bond acceptor.

This is due to the fact that the Gaussian function in eq. 5.29 on the MM O-H water

bond is larger than that related to the fictitious MM oxygen atom lone pair (i.e. the

exponent of the function placed in the middle of the O-H distance is smaller than the

exponent of the function placed at the position of the fictitious O lone pair). Therefore,

the overlap between the Gaussian functions and the QM density is larger when the

MM water molecule acts as H-bond acceptor, and this corresponds to a greater value

of Erep. The inset in Figure 5.4 also shows that the KM-EDA values lie almost always

in between the two QM/FQ curves. This supports the averaging of the two values

in the parametrization procedure (see the previous section). At small intermolecular

distances the repulsion contribution is underestimated. This is probably related again

to the absence of p-type Gaussian functions on the MM moiety, which would guarantee

a greater overlap of the QM and MM densities.

Let us pass to discuss the dependence of the Edis as a function of the intermolecular

O-O distance. The data are plotted in Figure 5.5, which also reports the curve obtained

with the B3LYP-D3 functional.466

Notice that also in this case the QM and MM moieties were interchanged (see inset
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in Figure 5.5). Different from Erep, Edis is larger (in absolute value) when the QM

water molecule acts as H-bond donor. This can be explained by considering the values

obtained for the effective Ceff6 coefficients for the MM molecule (see previous section).

In fact, when the QM molecule acts as H-bond donor, the oxygen atom of the MM

water molecule is close to the QM portion:because Ceff6OO is greater than Ceff6HH (14.8

vs. 2.8 Hartree·bohr6), Edis increases.
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Figure 5.5. QM/FQ and non polarizable QM/TIP3P (B3LYP/6-31+G*

for the QM moieties) quantum dispersion energy, Edis, of the water dimer

in Figure 5.3 as a function of the O-O distance. B3LYP-D3/6-31+G* data

are also reported. The inset shows Edis calculated values with the QM/FQ

approach, in case the QM water molecule acts as H-bond donor or acceptor.

The behaviour of the total quantum non-electrostatic interaction energy EQnel, i.e. the

sum of Erep and Edis, as a function of d is plotted in Figure 5.6, which also reports

the SAPT2+3(CCD)/aug-cc-pVDZ curve. Also in this case the QM and MM moieties

were interchanged (see inset in Figure 5.6). Comparison of Figure 5.5 and Figure 5.4

shows that the repulsion term is generally larger than the dispersion contribution: this

clearly emerges from the trend reported in Figure 5.6, which closely resembles Figure

5.4. It is also worth pointing out that QM/FQ and non-polarizable QM/TIP3P give

similar EQnel values. This is a further evidence of the stability of our parametrization,

which gives similar results as changing the force field used to represent the MM portion.

To end this discussion, the total interaction energy as a function of d is plotted in

Figure 5.7 and compared with CCSD(T)/aug-cc-pVTZ data (counterpoise corrections

are included). The differences in the two curves can be attributed to the electrostatic

contributions and the lack in our model of charge transfer effects and multipole terms.

The equilibrium distance is a bit shifted in our model (3.14 Å vs. 2.99 Å), but the

interaction energy at the equilibrium distance is accurately reproduced with an error of

only 7% with respect to the CCSD(T) data and comparable with similar data reported

in the literature.346,489,490
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Figure 5.6. QM/FQ and non polarizable QM/TIP3P (B3LYP/6-31+G*

for the QM moieties) quantum non electrostatic interaction energy, EQnel,

of the water dimer in Figure 5.3 as a function of the O-O distance.

SAPT2+3(CCD)/aug-cc-pVDZ data are also reported. The inset shows

EQnel calculated values with the QM/FQ approach, in case the QM wa-

ter molecule acts as H-bond donor or acceptor.
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Figure 5.7. QM/FQ (B3LYP/6-31+G* for the QM moieties) and

CCSD(T)/aug-cc-pVDZ total interaction energy for the water dimer in Fig-

ure 5.3 as a function of the O-O distance.
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5.5.3 Testing on water dimers

In order to test the quality of the parametrization presented in the previous sections,

the methodology was applied to ten water dimer structures, taken from Kratz and

coworkers (see Figure 5.8).491

Figure 5.8. Selected water dimer structures, taken from Kratz et al.491

All the calculations were performed with both the QM/FQ and QM/MM(TIP3P)

methods, coupled with the B3LYP/6-31+G* level for the QM moiety. Again, each

time the QM and MM portions were exchanged, and the two values averaged to get

the final results (see previous section). Erep values were compared to KM-EDA data

(see Figure 5.9 and Table 5.1).

QM/FQ and QM/TIP3P values are very similar, although the parametrization has been

performed only with the QM/FQ method, thus confirming once again the stability of

our approach. The largest deviation from KM-EDA results is given by structures 4-6,

which show the smallest oxygen-oxygen distance, probably due to the absence of p-type

gaussian functions placed at lone pair positions.

The ∆ values in Table 5.1, i.e. the half-difference of the two calculations performed

by exchanging the QM and MM moieties, are larger for structures characterized by

a strong H-O intermolecular interaction. Furthermore, except for structure 7, the

QM/FQ ∆ values are greater than the corresponding QM/MM ones. This difference

is linked to the different physical description of the MM portion in the polarizable

and non-polarizable models. In fact, the polarizable QM/FQ approach emphasizes the

H-bond acceptor or donor characters of the MM molecule, thus resulting in a different

interaction with the QM densities.

The total calculated quantum non-electrostatic contribution (EQnel,i.e. the sum of the

Pauli repulsion and quantum dispersion) is reported in Table 5.2. Only QM/FQ data

are shown, due to the similarity of the calculated results by exploiting the QM/FQ

and QM/TIP3P approaches. According to what is expected for aqueous solutions,

which are dominated by electrostatic interaction, EQnel is always smaller than the
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Figure 5.9. Calculated QM/FQ and QM/TIP3P (B3LYP/6-31+G*) Erep
values for the water dimer structures in Figure 5.8. KM-EDA (HF/6-31+G*)

data are also reported for comparison.

KM-EDA QM/FQ ∆ Err.% QM/TIP3P ∆ Err.%

1 11.245 10.831 1.517 3.68 11.013 0.550 2.06

2 9.284 9.138 1.203 1.57 9.334 0.320 0.54

3 8.856 8.687 1.154 1.91 8.897 0.285 0.46

4 7.892 9.167 - 16.16 9.118 - 15.54

5 6.600 8.185 0.003 24.02 8.139 0.001 23.32

6 6.046 7.769 - 28.51 7.756 - 28.28

7 4.858 5.174 0.039 6.51 5.100 0.516 4.99

8 1.255 1.478 - 17.75 1.391 - 10.81

9 5.556 6.161 1.506 10.89 6.164 1.159 10.94

10 2.727 3.168 0.738 16.17 3.162 0.533 15.95

Average Error 12.72 11.29

Table 5.1. Calculated Erep (10−3 Hartree) for the ten water dimers. ∆

shows the deviation obtained by exchanging the QM and MM moieties. The

percentage error from the KM-EDA values is also reported.
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electrostatic term (EFQ). However, the London contribution is not negligible, being as

large as 35% of the total interaction energy.

Erep Edis EQnel EFQ Etot
1 10.831 -1.123 9.708 (34%) -18.483 (66%) -8.775

2 9.138 -1.005 8.133 (33%) -16.823 (67%) -8.690

3 8.687 -0.977 7.710 (31%) -17.014 (69%) -9.304

4 9.167 -1.005 8.162 (35%) -15.190 (65%) -7.028

5 8.185 -0.988 7.197 (33%) -14.516 (67%) -7.319

6 7.769 -0.986 6.783 (31%) -14.852 (69%) -8.069

7 5.174 -1.687 3.487 (24%) -11.068 (76%) -7.581

8 1.478 -1.046 0.432 (12%) -3.169 (88%) -2.737

9 6.161 -1.174 4.987 (29%) -12.498 (71%) -7.511

10 3.168 -1.119 2.049 (18%) -9.409 (82%) -7.360

Table 5.2. Erep, Edis, EQnel, electrostatic energies (EFQs) and total

interaction energies, Etot, for the ten water dimers. The values in parentheses

give the percentage of the corresponding contribution with respect to Etot.

All energy values are given in 10−3 Hartree.

A closer look at Table 5.2 shows that EQnel is generally dominated by the Pauli repul-

sion interaction, which is always larger than Edis. This behavior confirms the results

reported above, where the dependence of such contributions on the intermolecular dis-

tance was outlined. Furthermore, the two terms are very similar for some structures,

such as 8 and 10, thus demonstrating that the inclusion of both terms is compulsory

to get a reliable description of EQnel.

To end the discussion on these water dimers, in Table 5.3 the total Quantum non

electrostatic calculated by our approach is compared with SAPT2+3(CCD)/aug-cc-

pVDZ values.

As already pointed out, the largest deviation from SAPT values is given by structures

4-6, which show the smallest oxygen-oxygen distance. Notice that the largest error is

shown by dimer 8, for which, however, EQnel is very small and the deviation in absolute

value is even smaller than for the other structures.

To further testing the quality of our approach, the model is applied to the water

dimer in Figure 5.10, previously studied by Guidez and Gordon489 by exploiting the

EFP2(E6 + E7) model.

Figure 5.10. Structure of the water dimer optimized at the MP2/aug-cc-

pVDZ level of theory492 previously studied by Guidez and Gordon.489

In table 5.4, the three terms entering in the definition of the interaction energy are
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EQnel(QM/FQ) EQnel(SAPT)

1 9.708 (1 %) 9.814

2 8.133 (3 %) 7.882

3 7.710 (3 %) 7.451

4 8.162 (19%) 6.863

5 7.197 (35%) 5.348

6 6.783 (44%) 4.707

7 3.487 (20%) 4.381

8 0.432 (50%) 0.866

9 4.987 (6 %) 4.693

10 2.049 (2 %) 2.000

Table 5.3. EQnel for the ten water dimers calculated by using our model

and the SAPT2+3(CCD)/aug-cc-pVDZ. The values in parentheses give the

percentage of the corresponding contribution with respect to the last column.

All energy values are given in 10−3 Hartree.

reported as calculated by our model, the EFP2(E6 + E7) and the Energy Decompo-

sition Analysis performed at CCSD(T)/aug-cc-pVQZ level of theory, with the further

inclusion of counterpoise corrections.

level of theory QM/FQ EPF2(E6 + E7)489 EDA490

Electrostatica -11.01 (2 %) -9.32 (14%) -10.79

Exchange repulsion 6.57 (8 %) 5.59 (22%) 7.16

Dispersion -0.70 (47%) -0.51 (62%) -1.33

Charge Transfer N/A -0.47 N/A

Total interaction energy -5.15(4 %) -4.71 (5% ) -4.95

Table 5.4. Electrostatic, exchange-Repulsion, dispersion and total interac-

tion energy for the water dimer depicted in Figure 5.10 calculated by using

our model, EFP2(E6 + E7)489 and Energy Decomposition Analysis EDA

(CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-pVQZ).490 The values in parenthe-

ses give percentages with respect to the values in the last column. All energy

values are given in kcal/mol. a: for EFP2 and EDA the electrostatic term is

the sum of Coulomb and polarization contributions.

In the QM/FQ approach, electrostatic and polarization contribution cannot be sepa-

rated, as previously reported by some of the present authors.54 Therefore a single term

is reported in Table 5.4. The largest deviation with respect to the EDA is shown by

the dispersion term. However, as pointed out by Guidez and Gordon,489 EDA overes-

timates the dispersion interaction due to the fact that it is computed as the difference

between CCSD(T) and HF interaction energies. Overall, the agreement between our

data and EDA is satisfactory, being the errors for the single terms generally small and

the total interaction energy similar to the EDA value.
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5.5.4 Dependence of Erep and Edis on the QM description

In this section, the dependence of calculated Erep and Edis values on the level used to

model the QM moiety is studied. To this end, the water dimer depicted in Figure 5.3

with d = 2.64 Å is exploited. Eight different DFT functionals were selected, by follow-

ing the recent literature,147,493 ranging from pure (B97D494,495), to different classes of

hybrid functionals (B3LYP,496 B3PW91,497 M062X,498 PBE0,499 SOGGA11-X500),

also including long-range (CAM-B3LYP347) and dispersion corrections (ωB97xD501).

Each functional was coupled to several Pople-type basis sets (see Figure 5.11 and Fig-

ure 5.12), in order to separate the contribution arising from polarization and diffuse

functions.

Figure 5.11 reports schematically the trends obtained by computing Erep with the

different DFT functionals and the different basis sets. Numerical values are given in

Table S4 in the SI. All DFT functionals predict very similar Erep values as varying

the basis set, with CAM-B3LYP always showing the highest values for a given basis

set (on average, the CAM-B3LYP values are about 2% higher than the average value

of the other functionals). This is not surprising, if the tendency of the CAM-B3LYP

of spreading out the QM density is considered. Thus, the overlap between the QM

density and the MM one is enlarged, resulting in an increase of Erep.

The reported dependence on the choice of the basis set is also not surprising. In fact,

the addition of functions on the hydrogen atoms (e.g. from 6-31G to 6-311G) increases

the QM-MM overlap, and Erep increases of about 6% on average. Such an increase

is reduced when diffuse functions are included. The effect of polarization functions

is usually negligible, however the addition of such functions generally results in the

decreasing of Erep, especially moving from single to double polarization functions. The

addition of diffuse functions causes instead an increase of Erep, due to an enlarged

overlap between the QM and MM densities.

Figure 5.11. Dependence of Erep on the basis set and DFT functional for

the water dimer depicted in Figure 5.3.

Figure 5.12 reports the same analysis applied to Edis (raw data are given in Table S5
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in the SI).

The results reported in Figure 5.12 show some general trends, that are very similar

to what already observed for Erep. Firstly, CAM-B3LYP predicts the highest Edis,

and again this is probably due to the peculiarities of this functional. The observed

trend as varying the basis set is similar to what has already been commented for

Erep. In fact, the addition of functions on hydrogen atoms increases Edis of about

8%, and this increment is reduced when diffuse functions are considered. Once again,

the effect of polarization functions is negligible, and finally results in the decreasing of

Edis, especially when double polarization functions are included. An opposite effect is

observed when diffuse functions are added: an increase of Edis is noticed, due to larger

effective volumes of QM atoms and Ceff6 coefficients (see Eq. 5.15).

Figure 5.12. Dependence of Edis on the basis set and DFT functional for

the water dimer depicted in Figure 5.3.

The global effect of the choice of the DFT functional and basis set on EQnel is reported

in Figure S3 in the SI (raw data are given in Table S6 in the SI). To end this discussion,

it is worth pointing out that the results of the model here proposed are very stable

as the functional and basis set vary. Furthermore, stable values of Erep and Edis are

obtained by adding diffuse functions, so that their inclusion appears mandatory. For

this reason, in the following section the 6-31+G* basis set, which adequately reproduces

the total EQnel, is exploited.

5.6 Molecular Systems in aqueous solution described

with the QM/FQ approach

We have shown in the previous section that our model permits a correct reproduction

of the properties of the aqueous solution. In this section we will focus on the calculation

of the non-electrostatic contribution to the energetic properties of molecular systems

in bulk aqueous solution, as modeled with the QM/FQ approach. We first notice that
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only the closest FQ solvent molecules will reasonably give a not negligible contribution

to the solute-solvent interaction energy, due to the short-range character of Erep and

Edis. This feature can help at reducing the computational cost of the calculation. In

fact, suitable thresholds can be set. For quantum dispersion (Eq. 5.18) a cut-off is

set, so that this term vanishes at intermolecular distances larger than 10 Å. Notice

however that the further consideration of larger solvent shells would not increase much

the computational demand.

On the contrary, the computational cost of the quantum repulsion term (Eq. 5.4)

strongly depends on the number of water molecules around the solute, because each

of them bears the gaussian functions used to represent ρMM; increasing the number of

gaussian functions, makes the calculation of the the two-electron integral in Eq. 5.4

more and more cumbersome. Thus, the setting of a threshold appears beneficial.

To this end, only those FQ water molecules having a geometric center closer to at least

a QM atom than a given geometric parameter R are included in the calculation of

Erep. In the practice, this requires to build up a cavity made of the union of identical

spheres centered on each QM atom: only the MM molecules lying inside this cavity are

considered in the evaluation of Erep. Notice that in the present implementation the

same radius R is used for different QM atom types: this may be possibly refined.

In order to validate this approach and to set a reasonable value of R, we took as

test cases two random snapshots taken from a MD simulation of (L)-Methyl Lactate

(MLAT) and (R)-Methyloxirane (MOXY) in aqueous solution. MOXY is a small rigid

almost spherical molecule, whereas MLAT develops in the plane of the sp2 carbon atom.

On such snapshots, Erep was calculated as a function of R by using the B3LYP/6-

31+G* level to treat the QM solute. The results of such calculations are reported in

Figure 5.13 for the resulting systems depicted in Figure 5.14 and 5.15. Notice that

such figures only show the FQ water molecules relevant for the evaluation of Erep, i.e.

those within a range of variation of R between 1.5 Å and 5 Å with a step of 0.5. The

other FQ water molecules are indeed present, but only contribute to the electrostatic

interaction. The numbers of relevant water molecules associated at each radius for the

structures depicted in Figure 5.14 and 5.15 are reported in Table 5.5.

Structure Radius Nwat Structure Radius Nwat

ML-1 2.5 2 MO-1 3.0 5

ML-2 3.0 9 MO-2 3.5 13

ML-3 3.5 16 MO-3 4.0 19

ML-4 4.0 25 MO-4 4.5 27

ML-5 4.5 32 MO-5 5.0 32

ML-6 5.0 39

Table 5.5. Radii (Å) of the spheres centered in each QM atom, and the

total number of relevant waters for the structures depicted in Figures 5.14

and 5.15.

Figure 5.13 clearly shows that the trend of Erep as a function of R strictly depends on

the studied system. Also, the structure of the resulting clusters for a given R differs for
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Figure 5.13. Erep of (L)-Methyl Lactate and (R)-Methyloxirane in aqueous

solution as a function of R. B3LYP/6-31+G* is used to treat the QM solute.

Erep calculated by exploiting the KM-EDA approach, at the HF/6-31+G*

level of theory, is also reported.

Figure 5.14. (L)-Methyl Lactate - water clusters arising from different

choices of R.
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Figure 5.15. (R)-Methyloxirane - water cluster arising from different

choices of R.

the two systems. MLAT has a greater surface area and a larger number of H-bond sites

with respect to MOXY. This implies a greater exchange repulsion energy contribution

for MLAT than for MOXY. Convergence in the repulsion energy value is reached at

different values of the atomic radius R. In particular, imposing R = 3.5 Å is sufficient

to describe the repulsion contribution for MOXY, whereas for MLAT a slightly larger

value (R = 4 Å) is required. This is connected to the relative atomic positions: in

case of MOXY, which is almost spherical, the majority of the relevant FQ molecules

are shared by more than a single QM atom. MLAT has a more extended structure:

therefore, increasing the R value causes new independent relevant FQ molecules to be

included in the calculation.

Figure 5.13 also reports Erep values obtained by using the KM-EDA approach. The

error between our values and the reference KM-EDA data is about 9 % for MOXY,

and about 20 % for MLAT. These findings confirm the applicability of our procedure

to molecular systems in aqueous solution, in fact the calculated errors are of the same

magnitude as what has been previously reported for water dimers (see Figure 5.8).

Table S7 in the SI gives a more detailed comparison between our calculated values,

KM-EDA data, and what can be obtained by exploiting the EFP2 approach.

5.6.1 Nicotine in aqueous solution

To end the section on the numerical testing of the developed procedure, the approach

reported in this paper is applied to nicotine in aqueous solution (Figure 5.16, panel

a)).

Starting from the MD performed previously by some of the present authors,148 300

snapshots were selected (more details on the MD protocol and the procedure for the

extraction of the snapshots are given in the SI, section S5.1). The QM portion of the

system was then described at the CAM-B3LYP/6-31+G* level of theory, according

to previous studies on this molecule.148,318 Figure 5.16, panel b) depicts a randomly
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selected snapshot taken from the MD of Nicotine in aqueous solution.

(a)	 (b)	

(a)	

(c)	 (b)	

Figure 5.16. (a) Nicotine structure and definition of the δ1 dihedral angl,

defining the conformers; (b) a random snapshot selected from the MD sim-

ulation of nicotine in aqueous solution; c) conformational analysis extracted

from MD.148

The analysis of the MD trajectory148 shows that nicotine exhibits 3 different conformers

in aqueous solution: the A conformer, having an average value of δ1 = 106.4 degrees,

the B conformer (δ1 = −65 degrees) and the 0 conformer, where δ1 = 0 degrees.

Figure 5.16, panel (c) shows the distribution of each conformer obtained from the MD

simulation.318 The most populated conformers belong to the B family, followed by

the 0 and A families. Also, the analysis of the MD trajectory148 shows that at least

two water molecules are bound to nicotine nitrogen atoms through hydrogen-bonding

interactions.

The distribution in panel (c) of Figure 5.16 is maintained in the 300 snapshots selected

in this study, for which Erep, Edis and consequently EQnel were calculated. The result-

ing values of such energies are reported in the Figure 5.17 as a function of the snapshot.

On the basis of the values depicted in Figure 5.13, Erep was calculated by imposing

the R= 5 Å, which in the present case implies on average 52 water molecules to be

considered in the evaluation of this term.

Figure 5.17 clearly shows that, as previously reported by some of the present authors

for other molecular properties,56,146,149 Erep, Edis and EQnel may differ as a function

of the snapshot. EQnel is always positive, showing that the attractive, negative, Edis
terms is always smaller than the repulsive, positive Erep contribution. The average
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Figure 5.17. Calculated Erep, Edis and EQnel as a function of the snapshot

for nicotine in aqueous solution. The trends in average values as a function

of the snapshot are given as inset.

value of the three terms as a function of the snapshot is depicted as inset in Figure

5.17. Clearly, convergence is reached very quickly, when only 80 snapshots are con-

sidered, that different from other investigated properties of this and other molecular

systems, requiring hundreds or thousands of snapshots to get a fully converged value

for molecular spectral properties.56,146,149

To refine the analysis, the 300 snapshots were assigned to the three different conformers,

that in order to dissect the role of the different Erep and Edis terms in each subclass

of structures. To this end, a snapshot was considered to belong to the A family of

conformers if 70 < δ1 < 180, B conformers if −180 < δ1 < −40 and 0 conformers oth-

erwise. This partitioning allows the snapshots to be divided in subclasses of structures

and the contributions for each class to be calculated. The results of this analysis are

summarized in Table 5.6, where also standard deviations are reported.

Conformer Erep Edis EQnel ∆EQnel
A 12.8 (±1.5) -2.2 ( ±0.1) 10.6( ±1.5) 0.4 (2.4 kcal/mol)

B 12.6 (±1.7) -2.2 ( ±0.2) 10.4( ±1.6) 0.2 (1.2 kcal/mol)

0 12.4 (±1.1) -2.2 ( ±0.1) 10.2( ±1.1) 0.0

Table 5.6. Calculated Erep, Edis and EQnel for nicotine in aqueous solu-

tion. ∆EQnel is the non-electrostatic energy difference between the various

conformers and the most stabilized one (0). All data are given in 10−2

Hartree unless differently stated and refer to 300 selected snapshots. Stan-

dard deviations are reported in parentheses.

Table 5.6 clearly shows that the calculated EQnel values are similar for the three con-

formers, and they do not differ statistically. In particular, the lowest EQnel is exhibited
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by conformer 0, due to the fact that this conformer shows the lowest value of Erep in

combination with a rather small absolute value of Edis. As it has been noticed by

some of us in previous works,148 the analysis of the MD shows that the 0 conformer is

characterized by a short lifetime (10 ps), and this is due to the weak hydrogen bond-

ing pattern exhibited by this conformer with respect to the other two. Therefore, the

nearest water molecules are placed farther than in the two other cases, thus giving rise

to lower Erep values.

The total non-electrostatic energy difference of the various conformers with respect to 0

is reported in the last column of Table 5.6. The values are small, but not negligible, and

in particular their magnitude is such to potentially affect the predicted conformational

weights in aqueous solutions.

µQM/TIP3P µQM/FQ µQM/FQ + Qnel

3.1 5.9 4.2

Table 5.7. Calculated dipole moment of nicotine in aqueous solution,

obtained by exploiting non polarizable (QM/TIP3P), polarizable (QM/FQ)

and polarizable+non electrostatic (QM/FQ + Qnel) approaches. All data

are given in Debye and refer to 300 selected snapshots.

In Table 5.7, the average dipole moments calculated by exploiting the three QM/TIP3P,

QM/FQ and QM/FQ + Quantum non-electrostatic interactions approaches are re-

ported. The difference between the dipole obtained by including polarization effects is

huge, as expected (an increase of about 50% is observed). The third column in Table

5.7 shows the dipole moment calculated by using the QM/FQ approach coupled with

our description of repulsive and dispersive interactions. By referring again to Table 5.6

and Figure 5.17, we note again that the repulsion term is dominant if compared to the

dispersion. This results in a confinement of the molecular density, which causes the

decrease of the molecular dipole, as expected.

5.7 Summary, Conclusions and Future Perspectives

In this paper, a general route to calculate quantum repulsion and quantum dispersion

effects in polarizable and non-polarizable QM/MM approaches has been formulated.

A remarkable peculiarity of the proposed approach is that repulsion/dispersion contri-

butions are explicitly introduced in the QM Hamiltonian. Therefore, such terms not

only enter the evaluation of the energetic properties of the systems but, remarkably,

can be propagated to the calculation of molecular properties and spectra. Due to the

specific form of the contributions, a reliable yet extensive application of the method-

ology requires a compulsory parametrization for different MM substrates, however the

number of parameters entering the definition of our method is remarkably low. In this

paper, a parametrization for the aqueous solution, which is the natural environment for

most biomolecules, is proposed. Such a parametrization is able to reproduce the most

important features of the aqueous solution, for which the reported data are in good

agreement with reference data. The application of the obtained parametrization to the
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calculation of the non-electrostatic interaction energy of aqueous nicotine shows that

the Pauli repulsion contribution is larger than the dispersion term for all the represen-

tative snapshots extracted from the MD. This feature can potentially impact QM/MM

geometry optimization of molecular systems in aqueous solution, which are currently

performed by only resorting to the electrostatic term.55 The results of this study pave

the way to similar studies, aimed at extending the parametrization to environments

other that water, in which non-electrostatic terms can compare (or even overcome)

with the generally dominating electrostatic component of the molecule-environment

interaction. Such studies, and the related parametrizations, together with the exten-

sion of our method to the calculation of molecular properties and spectroscopies, will

be the topic of future communications.
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5.10 Appendix

Energy First Derivatives

Energy first derivatives (within the chain rule):

Ex =
∂E
∂x

+
∂E
∂P

∂P

∂x
5.31

The second term is calculated by considering the idempotency condition, which gives

rise to the usual energy-weighted density matrix contribution:

−PFPSxoo = −WSxoo 5.32

The first term is composed of three contributions: one arising from the QM, one from

the electrostatic interaction between QM and MM portions, and the last one from the

non-electrostatic interactions.

The first two elements have already been published and they are:55

∂E
∂x

= tr hxP +
1

2
tr PG(x)(P) + q†V(x)(P) 5.33
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Repulsion Term

Now, let us consider first the repulsion contribution (see Eq. 5.11):

Exrep =
1

2

∑
µν

Pµν

[∫
dr1

(
χxµ(r1)Aν(r1) +Aµ(r1)χxν(r1)

2

)
+

+

∫
dr1

(
χµ(r1)Axν(r1) +Axµ(r1)χν(r1)

2

)]
5.34

where χxi are the derivatives with respect to the QM coordinates of the i-th atomic

orbital. Axi can be viewed instead as the electric field at point r1 due to the product

of a basis function centered at Rµ and the sum of the Gaussian functions representing

ρMM, centered at R. Axµ(r1) can be calculated through:

Axµ(r1) =

∫
du

χxµ(r1 + u)

u

(∑
R

ξ2Re
−βR|r1−R|2e−βR|r1+u−R|2

)
5.35

where the perturbation is only acting on the QM portion.

Dispersion Term

Let us consider the dispersion contribution to the interaction energy:

Edis = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB , R
0
A, R

0
B)

 η2AC
free
AA Ceff6BB

α0
B

α0
A
η2AC

free
AA +

α0
A

α0
B
Ceff6BB

R−6AB

= −1

2

∑
A∈QM

∑
B∈MM

f1 · f2 · f3 5.36

Thus, energy first derivative reads:

Edis = −1

2

∑
A∈QM

∑
B∈MM

fx1 · f2 · f3 + f1 · fx2 · f3 + f1 · f2 · fx3 5.37

First, let us consider fx1 , which is the derivative of the damping function fdamp. This

can be easily obtained from RA:

fx1 =
d(RA −RB)

sR ·R0
AB |RA −RB |

· exp

[
−d
(

RAB
sRR0

AB

− 1

)]
· (f1)2 5.38

The second term fx2 is:

fx2 =
∂Ceff6AB

∂RA
=

2
α0
A

α0
B
C2

6BB(
α0
B

α0
A
Ceff6AA +

α0
A

α0
B
C6BB

)2 ∂Ceff6AA

∂RA
5.39

∂Ceff6AA

∂RA
= Cfree6AA2ηA

∂ηA
∂RA

5.40
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∂ηA
∂RA

= ηxA =

∫
dr r3wA(r)

[
χxµ(r)χν(r) + χµ(r)χxν(r)

]∫
dr r3ρfreeA (r)

+

−
∫

dr 3(r−RA) |r−RA|wA(r)χµ(r)χν(r)∫
dr r3ρfreeA (r)

5.41

where the eff superscript in the C6BB term is omitted for the sake of readability of

the equations. In Eq. 5.41 the term due to the partial derivative of the density with

respect the density matrix is accounted for.

The third term is the derivative of the R−6AB :

fx3 = −6
RAB

|RAB |8
5.42
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Abstract In this paper, we have extended to the calculation of hyperfine coupling constants,

the model recently proposed by some of the present authors (J. Chem. Theory Comput., 2017,

13, 4854–4870) to include Pauli repulsion and dispersion effects in QM/MM approaches. The

peculiarity of the proposed approach stands in the fact that repulsion/dispersion contributions

are explicitly introduced in the QM Hamiltonian. Therefore, such terms not only enter the

evaluation of energetic properties but, remarkably, propagate to molecular properties and

spectra. The account of such contributions has permitted a quantitative analysis of QM/MM

interaction energies, and this has also required a novel parametrization of the Fluctuating

Charges force field, which has been then tested against the prediction of EPR parameters of

prototypical nitroxide radicals in aqueous solutions.

109



6. Effective yet Reliable Computation of EPR Spectra in Solution by a QM/MM Approach: Interplay

Between Electrostatics and Non-electrostatic Effects

6.1 Introduction

In the last decades multiscale models have been widely used for the study of molecular

properties and spectra.6,12,56,57,82,120,123,168,273,502,503 In this context, the most suc-

cessful approaches fall within the class of “focused models”, which aim at accurately

modeling both the physico-chemical properties of the target and its interactions with

the surrounding environment. The effect of the latter is seen as a perturbation on the

target molecule, and is treated at a lower computational level of theory, e.g. by resort-

ing to classical physics, whereas the target molecule is described accurately, generally

at the Quantum Mechanical (QM) level. Due to such a partitioning, the computational

cost of a QM/classical computation is comparable to that of the corresponding QM

isolated system. Such a feature has strongly contributed to the increasing popularity

of these models.

QM/Molecular Mechanics (MM) models are among the most renowned classes of QM/-

classical approaches,1,12,13,23,278,428,429,437 which have been formalized within differ-

ent physical frameworks. Beyond the basic mechanical QM/MM embedding, in the

last years much effort has been spent to define electrostatic QM/MM embedding ap-

proaches, in which a set of fixed charges is placed on the MM moiety (generally on MM

atoms) and the interaction between QM and MM portions is modeled by resorting to

the Coulomb law. Clearly, in such approaches the QM and MM moieties do not mutu-

ally polarize. Mutual polarization, i.e. the polarization of the MM portion arising from

the interaction with the QM density and viceversa, can be introduced by employing

polarizable force-fields, which can be based on distributed multipoles,58,154,185,186,281

induced dipoles,10,155,164 Drude oscillators59 or Fluctuating Charges (FQ).56,156,158

The description of the molecular properties/spectra of embedded systems which is ob-

tained by resorting to polarizable embedding is generally quite accurate.10,58,146,150,155,183

However, such models are deeply based on the assumption that electrostatic energy

terms dominate the target/environment interactions. Non-electrostatic (Pauli Repul-

sion and Dispersion) contributions between the QM and MM portions are roughly

modeled by using parametrized functions, e. g. the Lennard-Jones potential,195,196

which are however completely independent of the QM density. As a result, they are not

taken into account in the QM operators, so that the calculated spectroscopic/response

properties are not affected by such interactions. The reasons why such contributions

are generally discarded are connected to the presumption of a numerically dominat-

ing effect of electrostatic terms. However, non-electrostatic contributions are crucial

to get a physically consistent description of any embedded system, also in the case of

target/environment interactions dominated by electrostatics.504,505

A way to include non-electrostatic energy terms is to resort to the Effective Fragment

Potential (EFP).185–190 The high accuracy of this method is essentially due to the

explicit QM calculation of the molecular orbitals of the environment, drifting apart

from the concept at the basis of MM Force Field (FF). A similar QM-based approach,

namely the Polarizable Density Embedding (PDE), has been recently proposed to only

include repulsion effects.60,62

A substantially different way of including non-electrostatic interactions in QM/MM

approaches consists of exploiting a model recently developed by some of the present
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authors,197 which formulates repulsion as a function of an auxiliary density on the

MM portion and extends the Tkatchenko-Scheffler (TS) approach to DFT198–202 to

treat QM/MM dispersion terms. Notice that the formulation of repulsion contribu-

tions is terms of gaussian functions placed in the MM region has also been proposed

in the so-called Gaussian Electrostatic Model (GEM).505–508 However, in both the

aforementioned PDE and GEM models, repulsion interaction is modeled as a overlap

one-electron integral. Our approach instead defines repulsion contributions in terms

of a two-electron exchange integral, thus physically representing the Pauli repulsion.

Moreover, differently from the stand-alone approaches discussed above (EFP, PDE,

GEM), our approach can be easily coupled to any kind of QM/MM approach, because

repulsion and dispersion are formulated in a way which is totally independent of the

choice of the FF to model the electrostatics (i.e. fixed-charges or polarizable embed-

ding). Remarkably, in our model repulsion and dispersion contributions are indeed

dependent on the QM density. Thus, an explicit contribution to the QM Fock oper-

ator exists and the resulting calculated QM properties/spectra are modified by such

interactions.

Our model for non-electrostatics in QM/MM has been so far only challenged on re-

producing full QM non-electrostatic interaction energies, for which very good results

have been obtained.197 In this paper we start with the extension of of the model to

spectroscopy. To this end we report the formulation of non-electrostatic QM/MM

terms for EPR, for which environmental effects substantially contribute to the over-

all observable.509–511 Environmental (solvent) effects on EPR are usually described

by means of continuum models,512–515 and only in few cases by adopting electro-

static QM/MM embedding coupled with a classical Molecular Dynamics (MD) to

take into account the fluctuations of both the solute conformations and the solvent

molecules.11,313,314,431,516–518

Nitroxide radicals are among the most thoroughly studied radicals from both experi-

mental and computational points of view due to their remarkable stability coupled to

strong sensitivity to the polarity of the surrounding and to the piramidality of the ni-

trogen atom. Given their importance, several nitroxide radicals have been synthesized

to be either used as spin probes (when dispersed in an environment) or as spin labels

(when chemically attached to a biological molecule, e.g. a protein).519–521 High-field

EPR spectroscopy provides quite rich information consisting essentially of the nitrogen

hyperfine and gyromagnetic tensors.519 However, interpretation of these experiments in

structural terms strongly benefits from quantum mechanical calculations able to dissect

the overall observables in terms of the interplay of several subtle effects.313,314,522–528

This situation has prompted us to perform a comprehensive study of prototypical ni-

troxide radicals in aqueous solution coupling density functional and coupled cluster

quantum mechanical computations to molecular dynamics simulations and average of

properties for a sufficient number of snapshots including electrostatic, induction, repul-

sion and dispersion interactions with the surrounding evaluated by effective quantum

mechanical approximations.

To the best of our knowledge, this work presents the first formulation and application of

a QM/MM approach accounting at the same time for polarization and non-electrostatic

interactions on EPR Hyperfine Coupling Constant (hcc).
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The paper is organized as follows: firstly, the theoretical model is presented. Then, the

computational approach is applied to the calculation of hccN of two nitroxyl radicals

(PROXYL and TEMPO) in aqueous solution. Such compounds are characterized by

the presence of the N–O group, which has been most widely used as “spin probe” and

“spin label” for the study of structure and dynamics of macromolecular systems.519–521

Summary and Conclusions end the manuscript.

6.2 Theoretical Model

The total energy of a system composed by two interacting moieties, one described at

the QM level and the other at the MM level can be expressed as:192,442

EQM/MM = EeleQM/MM + EpolQM/MM + Eex−repQM/MM + EdisQM/MM 6.1

where, EeleQM/MM accounts for electrostatic interactions and EpolQM/MM is the polariza-

tion contribution. Such energy terms are those modeled in the electrostatic embed-

ding approach, and in particular in polarizable QM/MM methods.1,10,12,59,155,159,164

Eex−repQM/MM is the exchange-repulsion contribution and EdisQM/MM arises from dispersion

interactions.

In this work electrostatic and the polarization terms are modelled by exploiting the

Fluctuating Charge (FQ) force field,55,56,149–151,153,159 whereas non-electrostatic inter-

actions (i.e. the sum of Eex−repQM/MM and EdisQM/MM ) are modeled by using the model

described in Ref.197 In the next paragraphs, the mathematical formulation of the dif-

ferent energy contributions are discussed.

6.2.1 Electrostatic interactions

In order to model electrostatic and polarization terms (see Eq. 6.1), a polarizable

QM/MM embedding needs to be adopted. In such a model, the MM force field adapts

to the external field/potential originating from the QM density and electrostatic/polar-

ization terms are included in the QM Hamiltonian, so to describe the mutual interaction

between the QM density and the environment.

In this work we will resort to the FQ force field.56 In the resulting QM/FQ model, the

electrostatic potential due to the QM density together with the differences in electroneg-

ativities between different atoms in the MM region, give rise to a charge fluctuation

in the MM region, up to the point that the differences in electrochemical potential

between the MM atoms vanish. From a mathematical point of view, this results in the

following linear equation:54

Dqλ = −CQ −V(PQM) 6.2

where D is a response matrix, whose diagonal terms are atomic chemical hardnesses,

q is a vector containing the FQs and Lagrangian multipliers. C contains atomic elec-

tronegativies and those constraints which are needed to ensure each MM molecule to
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have a fixed charge. V(P) is the potential due to the QM density matrix P calculated

at MM charges positions. We refer the reader to Ref.152 for further details.

The interaction between FQ charges and the QM density obeys the Coulomb law:

EeleQM/MM + EpolQM/MM =

NFQs∑
j=1

∫
R3

ρQM(r)qj
|r− rj |

dr 6.3

By deriving Eq. 6.3 with respect to the density matrix, Pµν , the contribution to the

Fock matrix is obtained:54)

Fµν =
∂E

∂Pµν
= V†µνq 6.4

The Fock matrix defined in this way can enter a SCF procedure, so as to finally give a

QM density mutually equilibrated with the FQs.

6.2.2 Pauli Repulsion Energy

The Exchange-Repulsion energy, Eex−repQM/MM , also known as Pauli Repulsion energy, is

formally due the Pauli principle, i.e. wavefunction antisimmetry. From a mathematical

point of view, it can can be formulated as the opposite of an exchange integral:86,192

Eex−repQM/MM =
1

2

∫
dr1 dr2
r12

ρQM (r1, r2)ρMM (r2, r1) 6.5

In order to define the density matrix ρMM we localize fictitious valence electron pairs

for MM molecules in bond and lone pair regions and represent them by s-gaussian-type

functions. The expression for ρMM becomes:

ρMM(r1, r2) =
∑
R

ξ2Re
−βR(r1−R)2 · e−βR(r2−R)2 6.6

where, R collects the centers of the gaussian functions used to represent the fictitious

MM electrons. The β and ξ parameters are generally different for lone-pairs or bond-

pairs, their values being adjusted to the specific kind of environment (MM portion) to

be modeled. By substituting Eq. 6.6 in Eq. 6.5, the QM/MM repulsion energy reads:

ErepQM/MM =
1

2

∑
R

∫
dr1 dr2
r12

ρQM(r1, r2)
[
ξ2Re

−βR(r1−R)2 · e−βR(r2−R)2
]

6.7

It is worth noticing that in this formalism, QM/MM Pauli Repulsion energy is cal-

culated as a two-electron integral. Eq. 6.7 is general enough to hold for any kind of

MM environment (solvents, proteins, surfaces ecc.). The nature of the external envi-

ronments is specified by defining the number of different electron-pair types and the
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corresponding β and ξ parameters in Eq. 6.6. Also, the formalism is general, so that

it can be coupled to any kind of QM/MM approach.

By deriving Eq. 6.7 with respect to the density matrix, the corresponding contribution

to the Fock matrix is obtained:

F repµν =
∂Erep

∂Pµν
=

1

2

∫
dr1

[
χµ(r1)Aν(r1) +Aµ(r1)χν(r1)

2

]
6.8

where χµ are atomic basis functions and Aµ are calculated as detailed in Ref.197

6.2.3 Quantum Dispersion Energy

To formulate dispersion interactions we start from the Tkatchenko and Scheffler (TS)

DFT functional. In this model, the dispersion energy can be written as:

Edis = −1

2

∑
A,B

fdamp(RAB , R
0
A, R

0
B)C6ABR

−6
AB 6.9

where, RAB is the distance between atoms A and B in a given system, C6AB is the

corresponding C6 coefficient, R0
A and R0

B are their van der Waals (vdW) radii. The

R−6AB singularity at small distances is eliminated by the short-range damping function

fdamp(RAB , R
0
A, R

0
B).198

C6AB coefficients can be expressed in terms of homonuclear parameters C6AA, C6BB ,

which in turn can be obtained through an Hirshfeld468 partition of the density.198

Such an approach can be reformulated within a QM/MM formalism,197,202 yielding:

EdisQM/MM = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB , R
0
A, R

0
B)

η2AC
free
AA Ceff6BB

α0
B

α0
A
η2AC

free
AA +

α0
A

α0
B
Ceff6BB

R−6AB

6.10

where Ceff6BB are effective homonuclear coefficients of B (MM) atoms and Cfree6AA are free

homonuclear coefficients of A QM atoms. α0
A and α0

B are static dipole polarizabilities,

whereas ηA is a function converting Cfree6AA into Ceff6AA. Further details can be found in

Refs.197,198,202

fdamp(RAB , R
0
A, R

0
B) in Eq. 6.10 is a Fermi-type damping function::194,198,466

fdamp(RAB , R
0
A, R

0
B) =

1

1 + exp
[
−d
(

RAB
sRR0

AB
− 1
)] 6.11

where, R0
AB = R0

A +R0
B , and d, sR are free parameters.

Similarly to what already done for electrostatic and repulsion contributions, by deriving

Eq. 6.10 with respect to the QM density matrix the dispersion contribution to the Fock

matrix is obtained:197
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F disµν = −1

2

∑
A∈QM

∑
B∈MM

fdamp(RAB)
2
α0
A

α0
B
C2

6BBC
free
6AA2ηA(

α0
B

α0
A
Ceff6AA +

α0
A

α0
B
C6BB

)2 ηρA,µνR−6AB 6.12

The complete derivation and definition of ηρA,µν can be found in Ref.197

6.2.4 Hyperfine Coupling Constant

The spin Hamiltonian describing the interaction between the electron spin (S) of a free

radical containing a magnetic nucleus of spin I and an external magnetic field (B) can

be written as:

HS = µB ~S · g · ~B +
1

}γI
~S ·A · ~µI 6.13

where the first term is the Zeeman interaction between the electron spin and the ex-

ternal magnetic field through the Bohr magneton µB and g = ge13 + ∆gcorr. ∆gcorr
accounts for the correction to the free electron value (ge = 2.0022319) due to several

terms including the relativistic mass ( ∆gRM ), the gauge first-order corrections (∆gC)

and a term arising from the coupling of the orbital Zeeman (OZ) and the spin–orbit

coupling (SOC) operator.529,530 The second term on the rhs of Eq. 6.13 describes the

hyperfine interaction between S and the nuclear spin I through the hyperfine coupling

tensor A. The latter, which is defined for each nucleus X, can be decomposed into two

terms:

A(X) = AX13 + Adip(X) 6.14

The dipolar term Adip(X) is a zero-trace tensor, whose contribution vanishes in isotropic

media (e.g. solutions). The first term AX (Fermi-contact interaction), which is an

isotropic contribution, is also known as hyperfine coupling constant (hcc). It is related

to the spin density (ρX) at nucleus X by the following relation:

AX =
4π

3
µBµXgegX 〈SZ〉−1 ρα−βX 6.15

where ρα−βX can be obtained as:

ρα−βX =
∑
µν

Pα−βµν 〈χµ(r)|δ(r− rX)|χν(r)〉 6.16

Pα−β is the difference between α and β density matrices. Because in our approach both

electrostatic and non-electrostatic dispersion/repulsion interactions enter the definition

of the QM Fock operators (see Eqs. 6.4, 6.8 and 6.12), Pα−β is modified. Therefore,

hyperfine coupling constants with the account of electrostatic, polarization, dispersion

and repulsion QM/MM interactions are obtained.
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6.3 Computational Details

Molecular geometries of PROXYL and TEMPO radicals (Fig. 6.1) were optimized in

vacuo by combining B3LYP and PBE0 hybrid density functionals with both aug-cc-

pVDZ and 6-311++G(3df,2pd) basis sets. For all optimized structures the hyperfine

coupling constant of Nitrogen atom was calculated by exploiting both B3LYP and

PBE0 and the N07D basis set.531,532 For the sake of comparison, on the reduced

structures depicted in Figure 6.1, which are obtained by removing ring atoms for both

TEMPO and PROXYL but keeping fixed all the geometrical parameters, additional

CCSD/EPR-II calculations were performed.533

PROXYL TEMPO

PROXYL-red TEMPO-red

Cα Cα
Cα Cα

N N

O O

Figure 6.1. Top: PROXYL and TEMPO structures. Bottom: reduced

structures used for CCSD/EPR-II calculations.

Clusters made of TEMPO and PROXYL radicals with two explicit water molecules

(see Fig. 6.3) were optimized at the PBE0/6-311++G(3df,2pd) level, according to

previous studies.514 For those structures, the interaction energy between the radicals

and the two water molecules was computed by exploiting SAPT0/aug-cc-pVTZ, or

jun-ccp-pVDZ or N07D (as implemented in Psi4 1.1479) and CCSD(T)/aug-cc-pVTZ,

jun-cc-pVDZ and N07D. Counter-Poise corrections were included in CCSD(T) calcu-

lations. QM/MM energy calculations were also performed at the PBE0/aug-cc-pVTZ,

jun-cc-pVDZ and PBE0/N07D level, by including dispersion and repulsion energies

obtained by exploiting our model.197 The QM portion was restricted to the radical,

whereas the two water molecules were treated at the MM level. The MM region

was described by means of a non-polarizable force field (TIP3P358) and the polariz-

able FQ approach56,159 by exploiting two literature parametrizations,156,162 and a new

parametrization proposed in this work. The parameters used for modeling dispersion

and repulsion interactions were taken from Ref.197 On the same structures, full QM

and QM/MM nitrogen hyperfine coupling constants were calculated by exploiting the

PBE0/N07D level of theory for treating the QM portion. For the sake of comparison,

on the reduced cluster structures depicted in Figure 6.3, which are obtained by remov-
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ing ring atoms for both TEMPO and PROXYL but keeping fixed all the geometrical

parameters, additional CCSD/EPR-II hccN calculations were performed.533

Classical MD simulations were performed with the Amber software (v.12) using the

ff99SB force field.534,535 Parameters for nitroxides were obtained from a previous study

by one of the present authors.314 The nitroxides were embedded in a cubic box of

TIP3P water molecules, which extended to 30 Å from the solute surface. The starting

systems were equilibrated following a multistep protocol: o) minimization of the whole

system for 10000 steps, ii) heating of the system from 103 to 303 K in 100 ps with a

mild restraint of 0.5 kcal/mol Å2 on the solute, iii) equilibration in NPT ensemble at

a pressure of 1 bar and 303 K for 100 ps. The production phase was then initiated in

NVT ensemble and continued for 10 ns. The simulation conditions involve PBS, a 1

gs time step for numerical integration, using SHAKE for constraining bonds involving

hydrogens,536 a 10 Å cut-off for non-bonded interactions, PME for evaluating the

long-range electrostatics,355 temperature regulation with Langevin coupling using a

collision frequency of 1.0 ps−1, snapshots collection in the trajectory at 1 ps interval.

A total of 200 uncorrelated snapshots were extracted from the MDs (one snapshot

every 50 ps). For each snapshot a 13 Å sphere centered at the solute’s geometric

center was cut. All hyperfine coupling constants were calculated within the QM/FQ

or QM/TIP3P framework at the PBE0/N07D level. The FQ water molecules were

modeled both with the SPC FQ parameters,156 the parametrization proposed by some

of the present authors162 and the parameters proposed in this work. The convergence

of the hccN values as increasing the number of representative snapshots was checked

for both radicals. Dispersion and repulsion contributions to hccN were included by

exploiting what has been explained in the previous section. All QM/FQ calculations

were performed by using a locally modified version of Gaussian 16.301 Finally, the

calculated values were compared with experimental data taken from Refs.537,538

6.4 Numerical Results

In this section we will report the results issuing from the application of the developed

methodology to the calculation of the nitrogen hyperfine coupling constant (hccN ) of

PROXYL and TEMPO radicals in aqueous solution. In order to evaluate the role

of the different terms (electrostatic/polarization/dispersion/repulsion) concurring to

overall solvent effect, we will present the results obtained by exploiting a hierarchy of

different approaches, starting from a simple cluster model (isolated radical plus two

water molecules) to averaging over a set of representative structures extracted form MD

runs, with or without the inclusion of polarization/dispersion/repulsion solvent contri-

butions. In addition, to allow a direct comparison with experimental hccN , reference

values for the isolated radicals are discussed.

6.4.1 hccN of isolated radicals

PROXYL and TEMPO geometries (see Figure 6.1) were optimized in vacuo at differ-

ent levels of theory. In particular, B3LYP and PBE0 functionals in combination with

aug-cc-pVDZ (BS1) or 6-311++G(3df,2pd) (BS2) basis sets were employed . Selected

117



6. Effective yet Reliable Computation of EPR Spectra in Solution by a QM/MM Approach: Interplay

Between Electrostatics and Non-electrostatic Effects

geometrical parameters are reported in Table 6.1. In particular, the N-O distance,

the CαNCα angle and the improper dihedral angle CαNOCα were taken into consid-

eration (see Figure 6.1 for atom labeling). Additional data obtained with B3LYP-D3

and PBE0-D3 functionals194 can be found in Table 6.7 given as Supporting Informa-

tion (SI). Geometries were also optimized by exploiting the B2PLYP double hybrid

functional combined with the maug-cc-pVTZ-d(H) basis set (BS3), which has been

reported to reliably describe molecular geometries.539 The values reported in Table 6.1

clearly show that B3LYP/aug-cc-pVDZ and B2PLYP/maug-cc-pVTZ-d(H) perform in

a similar way. However, all the considered combinations of functional and basis set do

not differ much from the best calculated structure of both radicals. It is worth pointing

out that the most relevant difference between PROXYL and TEMPO stands in the

value of the improper dihedral angle CαNOCα, which is related to the Nitrogen atom

pyramidalization. In fact, the angle is almost zero fro PROXYL and about -21 degrees

for TEMPO.

PBE0 B3LYP B2PLYP

Parameter BS1 BS2 BS1 BS2 BS3

PROXYL

N–O 1.262 1.257 1.274 1.268 1.273

∠CαNCα 115.271 115.167 115.370 115.246 115.211

CαNOCα ±0.026 ±0.025 ±0.015 ±0.014 ±0.014

TEMPO

N–O 1.271 1.266 1.283 1.278 1.282

∠CαNCα 124.141 124.241 124.452 124.584 124.381

CαNOCα ±21.935 ±21.316 ±21.199 ±20.632 ±21.581

Table 6.1. Selected geometrical parameters of PROXYL and TEMPO

radicals at the different levels of theory. BS1: aug-cc-pVDZ; BS2: 6-

311++G(3dp,2pd); BS3: maug-cc-pVTZ-d(H).

For all the optimized structures obtained with PBE0 and B3LYP functionals in con-

junction with BS1 and BS2, hccN were calculated by exploiting either PBE0 or B3LYP

and the N07D basis sets purposely parametrized for both functionals (see Refs.531,532

for more details). For the sake of comparison, additional hccN calculations were per-

formed at the CCSD/EPR-II533 level on the reduced structures depicted at the bottom

of Figure 6.1. All results are reported in Table 6.2.

hccN for the two radicals differ of about 3 Gauss at all levels. Such differences are

essentially due to the different pyramidalization of the nitroxyl group. The small

discrepancies which are reported for the various optimized structures are due to small

fluctuations in the improper dihedral angle (see Table 6.1). Notice that all calculated

DFT hccN are underestimated with respect to CCSD/EPR-II values.

To further investigate on the role of nitrogen pyramidalization on hccN , PBE0/N07D

hccN values for the reduced TEMPO structure as a function of CαNOCα were calcu-

lated. The data are graphically reported in Fig. 6.2.

As it can be noticed, the value computed for PROXYL and TEMPO radicals are almost

recovered at zero and ± 20 degrees, respectively. For larger CαNOCα values, computed

hccN values increase up to the maximum value (22 Gauss) at about ± 40 degrees. Such
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Radical Optimized structure PBE0/N07D B3LYP/N07D CCSD/EPR-II

PROXYL

B3LYP/BS1 11.8 11.4 12.7

B3LYP/BS2 12.0 11.3 12.6

PBE0/BS1 11.8 11.1 12.4

PBE0/BS2 11.7 11.0 12.3

TEMPO

B3LYP/BS1 15.0 14.4 15.9

B3LYP/BS2 14.8 14.2 15.7

PBE0/BS1 14.9 14.3 15.7

PBE0/BS2 14.7 14.0 15.4

Table 6.2. Calculated hccN values (Gauss). BS1: aug-cc-pVDZ; BS2:

6-311++G(3dp,2pd).

a trend confirms what has already been reported by one of the present authors.313
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Figure 6.2. PBE0/N07D hccN values (Gauss) on the reduced TEMPO

structure as a function of the out of plane CαNOCα angle.

6.4.2 hccN of PROXYL/TEMPO+water clusters

The most basic method to describe hydrated radicals is to resort to a cluster approach.

In particular, due to the presence of the oxygen atom, a natural choice consists of

saturating oxygen doublets with two water molecules (see Figure 6.3).313,514 According

to what has already been proposed in previous studies, all structures were optimized

at the PBE0/6-311++G(3df,2pd) level.314,514

To quantify the different contributions to the radical/water interaction energy, Energy

Decomposition Analysis (EDA) as formulated in the Symmetry-Adapted Perturbation

Theory (SAPT0),440,441 was performed by exploiting the aug-cc-pVTZ basis set on the

reduced structure of PROXYL cluster (see Figure 6.3). Additional SAPT0 calculations

were performed by exploiting both the jun-cc-pVDZ or N07D basis sets (see Table 6.8
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PROXYL+2w TEMPO+2w

PROXYL+2w-red TEMPO+2w-red
Figure 6.3. PBE0/6-311++G(3df,2pd) optimized structures of clusters of

PROXYL (left) and TEMPO (right) with two water molecules.

given as SI). Such additional sets were selected because jun-cc-pVDZ has been reported

to provide good results for closed shell systems,540 whereas N07D is exploited in this

study to calculate hccN .

SAPT0/aug-cc-pVTZ results are reported in Table 6.3, together with the correspond-

ing values obtained by treating the radical at the QM level (PBE0/aug-cc-pVTZ)

and the two water molecules at MM level. QM/MM electrostatic interactions were

described by using the FQ approach with three different parametrizations (see Ta-

ble 6.9 in SI), whereas QM/MM repulsion and dispersion contributions were modeled

as reported above. Additional CCSD(T)/aug-cc-pVTZ calculations including Counter-

Poise541 corrections were also performed to quantify the accuracy of SAPT0 interaction

energies.

SAPT0 values show that electrostatic interactions (i.e. the sum of electrostatic and

induction terms) give larger contributions with respect to non-electrostatic (repul-

sion+dispersion). However, non-electrostatic interactions and in particular repulsion

cannot be neglected, as it is commonly done in standard QM/MM models.

Moving to QM/FQ, we first notice that the available parametrizations (FQa and FQb

in Table 6.3) focus on modeling electrostatic interactions, however they can indeed

be inadequate whenever non-electrostatic terms are taken into consideration. This

is confirmed by our results (Table 6.3): FQa and FQb electrostatic energies give a

qualitatively correct description of SAPT0 or CCSD(T) total interaction energies. On

the contrary, FQa and FQb total interaction energies are unsatisfactory; therefore, a
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novel FQ parametrization is required (labeled FQc in Table 6.3). Differently from FQa

and FQb, which were obtained to reproduce water bulk properties (FQa, ref.156) or

QM atomic charges (FQb, ref.162), FQc is tuned to the total interaction energy at

the CCSD(T) level (with an error of less than 1 kcal/mol). FQc yields an accurate

description of SAPT0 electrostatic interactions. Notice that similar findings are given

by both jun-cc-pVDZ and N07D basis sets (see Table 6.8 in SI). To end the discussion

on interaction energies, it is worth noticing that the analysis reported above is only

allowed when non-electrostatic interactions are included in QM/MM calculations, i.e.

is not achievable by exploiting common purely electrostatic approaches.

FQa FQb FQc SAPT0 CCSD(T)

Electrostatic -20.60 -26.80 -47.06 -31.35 –

Induction – – – -11.45 –

Repulsion 27.78 28.58 30.99 28.34 –

Dispersion -3.28 -3.28 -3.28 -9.43 –

Total 3.90 -1.50 -19.35 -23.89 -20.62

Table 6.3. PROXYL+2w EDA obtained by expoiting PBE0/FQ with dif-

ferent parametrizations and SAPT0. CCSD(T) calculations include Counter-

Poise corrections. All data are reported in mHartree and were obtained by

using the aug-cc-pVTZ basis set.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization proposed in this work

Calculated hccN of the PROXYL/TEMPO+2w clusters are reported in Table 6.4.

QM/MM calculations were performed by exploiting both the non-polarizable TIP3P358

force field and FQ (with different parametrizations) to describe electrostatic interac-

tions. Two set of QM/MM calculations were performed. The first employs TIP3P or

FQ embedding and do not include non-electrostatic interactions. The corresponding

results are reported in the first four columns of Table 6.4. In the second set of calcu-

lations, non-electrostatic interactions, as obtained with our model, are included. All

results are also compared with full QM calculations, i.e. both the radicals and the two

water molecules are described at the QM level (see column 9 in Table 6.4).

The reported data clearly show that the non-polarizable TIP3P approach gives large er-

rors with respect to full QM calculations; remarkably, the inclusion of non-electrostatic

terms does not improve the results. A different picture results from polarizable QM/FQ

values. In fact, when only the electrostatic interactions are considered, the FQb

parametrization gives values which are in fair agreement with the reference full QM

data. However, the inclusion of non-electrostatic interactions shifts hccN values in

the wrong direction, thus increasing the absolute difference with respect to reference

values. This is not surprising, because EDA analysis (see Table 6.3) already showed

underestimated electrostatic interactions. The same considerations are also valid for

FQa, whereas the novel FQc parametrization overestimates hccN values if only elec-

trostatic interactions are considered. Remarkably, the inclusion of non-electrostatic

interactions shifts FQc values in the right direction, and the agreement with full QM
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reference data is almost perfect (0.2 Gauss).

Furthermore, additional CCSD/EPR-II calculations were performed on the reduced

structures depicted in Figure 6.3 (see Table 6.4). Full QM DFT calculations under-

estimate CCSD/EPR-II hccN valus by 0.9 and 1.2 Gauss for PROXYL and TEMPO,

respectively. Notice that calculated CCSD/EPR-II hccN are still not comparable with

experimental values, especially for PROXYL. This confirms that the cluster approach

is inadequate to physically describe the solvation phenomenon, which is intrinsically a

dynamical process.

PBE0/N07D CCSD/EPR-II ∆CC/PBE0 Exp

Elect. Elect. + Dis/Rep

TIP3P FQa FQb FQc TIP3P FQa FQb FQc Full-QM Full-QM

PROXYL 13.4 13.1 13.4 14.3 13.1 12.8 13.1 13.9 13.7 14.6 0.9 16.4

TEMPO 17.9 15.3 15.7 16.7 16.9 14.8 15.1 16.1 15.9 17.1 1.2 17.3

Table 6.4. hccN of PROXYL/TEMPO+2w clusters obtained at different

level of theory. All data are reported in Gauss.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization proposed in this work

6.4.3 hccN of PROXYL/TEMPO from MD runs

An alternative and more accurate way of modeling solvation is to combine our ap-

proach with classical MD. Table 6.5 reports selected geometrical parameters (and their

standard deviation) obtained by averaging 200 representative snapshots extracted from

MD runs performed on PROXYL and TEMPO in aqueous solution. The improper di-

hedral angle CαNOCα, which as stated before plays a crucial role in determining EPR

parameters, is drastically different with respect to what has been reported for the iso-

lated radicals, especially for TEMPO. Furthermore, due to the dynamical picture given

by the MD, the geometrical parameters are accompanied by standard deviations (in

brackets), which are large in the case of this angle.

<PROXYL> <TEMPO>

N–O 1.27 (0.03) 1.27 (0.03)

∠ CαNCα 115.3 (2.5) 123.6 (2.7)

CαNOCα ± 0.4 (17.8) ±5.0 (20.1)

Table 6.5. Mean values and standard deviations (in brackets) of selected

geometrical parameters of PROXYL and TEMPO structures extracted from

MD runs.

In order to show how the variability in the improper dihedral affects calculated hccN
values, two different set of calculations were performed. First, all solvent molecules

in all snapshots were removed and hccN were calculated on the resulting structures.

Second, all solvent molecules were indeed included and treated at the FQ level, with
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the sole inclusion of electrostatic effects (c parametrization). In Figures 6.4 and 6.5 the

resulting hccN values are reported as a function of the out-of-plane CαNOCα angle.
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Figure 6.4. PBE0/N07D calculated hccN (Gauss) on the solute-only struc-

tures extracted from MD runs as a function of the out of plane CαNOCα
angle. (Left: PROXYL; Right: TEMPO).
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Figure 6.5. PBE0/N07D QM/FQ calculated hccN (Gauss) on the entire

snapshots extracted from MD runs as a function of the out of plane CαNOCα
angle. (Left: PROXYL; Right: TEMPO).

As expected, the same picture as already reported for the isolated radicals emerges.

Due to the large variability of hccN values as a function of the out of plane angle, the

convergence of average values needs to be carefully checked. In Figure 6.6 QM/FQ

hccN average values as a function of the number of snapshots are depicted for the two

radicals. Clearly, hccN is well converged by using 200 snapshots.

Let us now compare our computed data with their experimental counterparts. Table

6.6 collects hccN values computed with different approaches. QM indicates calculations

performed on the solute-only structures extracted from MD (see above). QM/FQ data

were obtained by using the purely-electrostatic polarizable FQ with the c parametriza-

tion (the results obtained by exploiting the a, b parametrizations are reported in Table

6.10 in the SI). The contribution to hccN due to repulsion interactions is denoted as

∆rep, whereas the contribution to hccN of both repulsion and dispersion interactions

is denoted as ∆dis-rep.

We first notice that, due to the different structural sampling given by the MD, QM data

in Table 6.6 differ from what was reported for the isolated radicals (see Table 6.2). The
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Figure 6.6. QM/FQ hccN mean value as a function of the number of

snapshots extracted from MD runs. (Left: PROXYL; Right: TEMPO) All

data are reported in Gauss.

dynamical sampling increases PROXYL and TEMPO hccN values by about 2.4 and 2.2

Gauss, respectively. As a result, the difference between hccN values of the two radicals

( 1.1 Gauss) is in good agreement with experimental data (0.9 Gauss).537,538 When

full solvent effects are included at the purely electrostatic FQ level (2nd column), hccN
values are increased by about 2.3 Gauss on average for both radicals. This means that

attractive interactions increase the computed property. As a result, the inclusion of

repulsive interaction terms is expected to decrease computed values, and this is indeed

confirmed by the values reported in the third column. In particular, for both radicals

hccN decreases by 0.4 and 0.5 Gauss, respectively, i.e. of about 17 % and 23 % of

the whole solvent effect. The further inclusion of dispersion terms does not affect the

difference with FQ average values.

In order to best compare the results of our approach with experimental findings, DFT

values were also corrected to account for some intrinsic deficiency. To this end, the

difference between full DFT and full CCSD data obtained for clusters (∆CC/PBE0, see

Table 6.4) was added to the calculated QM/MM value. The resulting values are labeled

“Best QM/MM” in Table 6.6. Remarkably, our best computed values are in excellent

agreement with experimental data for both radicals, thus confirming the accuracy and

reliability of our approach.

Best QM/MM Exp.

QM FQ ∆rep ∆dis-rep FQ+∆dis-rep+∆CC/PBE0

PROXYL 13.5 15.9 -0.4 -0.4 16.4 ± 0.1 16.4537

TEMPO 14.6 16.8 -0.5 -0.5 17.5 ± 0.1 17.3538

Table 6.6. PBE0/N07D hccN mean values calculated on 200 snapshots

extracted from MD runs. QM indicates the calculation performed on

solute-only structures. FQ refers to the purely electrostatic QM/FQ with

c parametrization. ∆rep and ∆dis-rep are differences between FQ and hccN
data obtained with our method. Best QM/MM data are obtained by sum-

ming FQ, ∆dis-rep and ∆CC/PBE0 (see Table 6.4). All values are reported

in Gauss.
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To get further insight into solvent effects on hccN values, differences between FQ and

QM values are reported as a function of the snapshot in Figure 6.7. As it can be noticed,

for both PROXYL (left) and TEMPO (right) the electrostatic solvent contribution to

hccN is always positive (only in one case a small negative contribution is reported

for TEMPO). Notice that this is different from what has been reported for electric

properties of higher order.152
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Figure 6.7. Calculated solvent effects (see text) on hccN as a function of

the snapshot extracted from MD runs (Left: PROXYL; Right: TEMPO).

All data are reported in Gauss.

In Figure 6.8 the difference between calculated solvent effects on hccN as obtained with

the purely electrostatic FQ approach or with the further inclusion of the repulsion

contribution is reported. Remarkably, repulsion contributions increase or decrease

hccN value depending on the selected snapshot, thus showing that cluster approaches

do not guarantee an adequate modeling of solvent effects. In fact, although repulsion

effects give on average a negative contribution to hccN , by taking a random snapshot

(cluster), a completely different picture could emerge.
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Figure 6.8. Difference between FQ and QM/FQ+repulsion solvent effects

as a function of the snapshot extracted from the MD (Left: PROXYL; Right:

TEMPO). All data are reported in Gauss.
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6.5 Summary and Conclusions

In this paper, we have extended to the calculation of hyperfine coupling constants, the

model proposed in Ref.197 to include Pauli repulsion and dispersion effects in QM/MM

approaches. The peculiarity of the proposed approach stands in the fact that repul-

sion/dispersion contributions are explicitly introduced in the QM Hamiltonian. There-

fore, such terms not only enter the evaluation of energetic properties but, remarkably,

propagate to molecular properties and spectra. The account of such contributions has

permitted a quantitative analysis of QM/MM interaction energies, and this has also

required a novel parametrization of the FQ force field, which has been then tested

against the prediction of EPR hccN of PROXYL and TEMPO in aqueous solutions.

Numerical applications to the two radicals in vacuo, solvated within the so-called clus-

ter approach or as modeled through MD, confirm the well known relevance of solvent

effects and a proper account of their dynamical aspects. The further inclusion of

dispersion and especially repulsion solute-solvent interactions gives, remarkably, an

almost perfect agreement between calculated and experimental values. Therefore, al-

though electrostatic effects have been invoked as dominating the solvation phenomenon

in aqueous solution, we found that non-electrostatic effects are indeed relevant, con-

tributing to 17 % and 23 % of the entire solvent effects on hccN for PROXYL and

TEMPO, respectively. Remarkably, dispersion interactions seem not to play a crucial

role.

To end the discussion, we remark that our model is general enough to be applied to any

kind of solvent/environment, pending a reliable parametrization of both electrostatic

and non-electrostatic interactions. Also, due to the inclusion of all terms in the molec-

ular Hamiltonian, our approach can be extended to any kind of molecular properties

and spectroscopies; this will be the topic of future communications.
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Supporting Information

Geometries in vacuo

PBE0 + D3 B3LYP + D3

Parameter BS1 BS2 BS1 BS2

PROXYL

N· · ·O 1.262 1.257 1.274 1.267

CαNOCα -0.029 -0.030 -0.028 -0.026

∠CαNCα 115.178 115.064 115.194 115.074

TEMPO

N· · ·O 1.271 1.265 1.283 1.277

CαNOCα -22.668 -22.063 -22.664 -22.139

∠CαNCα 123.926 124.018 124.003 124.118

Table 6.7. Selected geometrical parameters of PROXYL and TEMPO rad-

icals at the different levels of theory with the inclusion of Grimme empirical

dispersion D3. BS1: aug-cc-pVDZ; BS2: 6-311++G(3dp,2pd).

Energy Decomposition Analysis

jun-cc-pVDZ N07D

FQa FQb FQc SAPT0 CCSD(T) FQa FQb FQc SAPT0 CCSD(T)

Electrostatic -21.00 -26.88 -45.22 -32.71 – -20.25 -26.24 -45.77 -31.85 –

Induction – – – -11.33 – – – – -11.24 –

Repulsion 28.53 29.11 30.83 28.49 – 28.15 28.86 31.05 28.44 –

Dispersion -3.28 -3.28 -3.28 -6.36 – -3.29 -3.29 -3.29 -7.82 –

Total 4.25 -1.05 -17.67 -21.90 -17.72 4.61 -0.67 -18.01 -22.48 -18.57

Table 6.8. PROXYL+2w EDA obtained by expoiting PBE0/FQ with dif-

ferent parametrizations and SAPT0. CCSD(T) calculations include Counter-

Poise corrections. All data are reported in mHartree.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization proposed in this work
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Electrostatic FQ parametrization

FQa FQb FQc

ηO 0.584852 0.623700 0.523700

ηH 0.625010 0.637512 0.537512

χO 0.116859 0.189194 0.189194

χH 0.000000 0.012767 0.012767

∆χ 0.116859 0.176427 0.176427

Table 6.9. O and H parameters for FQ calculations. η and χ are the

chemical hardnesses and atomic electronegativities, respectively. All data

are reported in a.u.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization proposed in this work

hccN of PROXYL/TEMPO from MD runs

TIP3P FQa FQb ∆rep ∆dis-rep

PROXYL 14.9 14.7 15.0 -0.3 -0.3

TEMPO 15.9 15.7 16.0 -0.3 -0.3

Table 6.10. PBE0/N07D hccN mean values calculated on 200 snapshots

extracted from MD runs. TIP3P refers to the purely electrostatic QM/MM

embedding, where the water molecules were described by means of the non-

polarizable TIP3P force field. FQ refers to the purely electrostatic QM/FQ

with a, b parametrization. ∆rep and ∆dis-rep are differences between FQa

and hccN data obtained with our method. All values are reported in Gauss.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162
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Polarizable QM/MM
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Abstract The novel polarizable FQFµ force field is proposed and coupled to a QM SCF

Hamiltonian. The peculiarity of the resulting QM/FQFµ approach stands in the fact the

polarization effects are modeled in terms of both fluctuating charges and dipoles, which are

not fixed but can vary in response to the external electric field/potential. The capabilities

of the model to reproduce full QM reference electrostatic energies of molecular systems in

aqueous solution are tested, showing a remarkable accuracy of the new approach.
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7.1 Introduction

The problem of describing the interaction between a molecule and its embedding en-

vironment is one of the pillars of Quantum Chemistry. The interplay between the

molecule and the environment can in fact dramatically alter both the structure and

the electronic response to external electromagnetic fields. The most successful answer

to this problem has been found within the realm of multiscale approaches:1–6 there, the

focus is always the molecule and the key is to accurately capture the molecule/envi-

ronment interactions and their effects on the molecular structure and properties, while

neglecting to simulate the intrisic properties of the environment. Such an approach

is based on the assumption that molecular energetic and response properties are local

properties of the molecule, which are modified but not determined by the presence of

the environment.

In the last years, much effort has been devoted to develop multiscale QM/MM ap-

proaches, which keep an atomistic description of all the system under study and are

therefore able to model specific molecule-environment interactions, such as hydrogen

bonding (HB).12,13 Most QM/MM approaches developed so far focus on describing

the electrostatic interactions between the QM and MM portions. The most physically

consistent of such methods are those in which the mutual polarization between the

QM and MM portions of the system is recovered. This has led to the development

of the so-called polarizable QM/MM approaches, which can be based on distributed

multipoles,58,154,185,186,281 induced dipoles,10,155,164 Drude oscillators59 or Fluctuating

Charges (FQ).56,156,158 In the latter approach, the electrostatic interaction is described

by endowing each MM atom with a charge that can vary as a response to both the

differences in electronegativity between MM atoms and in electric potential generated

by the QM density.

The classical FQ force field is described only in terms of charges. This poses some

conceptual issues because only monopoles, i.e. zeroth order of the electrostatic Taylor

expansion, are taken into consideration. As a consequence, the intrinsic anisotropy of

some specific molecule-environment interactions, such as HB, is not explicitly taken into

account. To overcome this problem, the electrostatic description of the FQ force field

can be refined by including an additional source of polarization. This can be done by

adding induced point dipoles,542 Drude Oscillators (Polarizable Charge Equilibration

PQEq),543,544 or Gaussian-like induced atomic dipoles (Q+P iso [R,αiso] model,545

Discrete Interaction Model DIM,546 Capacitance Polarization Model CMM547). Dif-

ferently from the basic formulation of the FQ force field, in the last two approaches

gaussian distributions representing the charges, the Drude Oscillators or the induced

atomic dipoles are considered, so that the Coulomb law divergence at zero distance,

i.e. the so-called “polarization catastrophe”, is avoided.545,546

In this work, we present a novel polarizable force field, which we will call Fluctuating

Charge Fluctuating Dipoles (FQFµ), in which both monopoles (charges) and dipoles

can vary as a response to the external Maxwell sources, i.e. electric potential/field.

The proposed model founds its fundamental basis on Ref.545 and overcomes the limi-

tations of FQ at describing anisotripic electrostatic terms. FQFµ is then coupled to a

QM description, following the general structure of QM/MM approaches, yielding the
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novel QM/FQFµ method. Therefore, QM/FQFµ can be seen as a refinement of our

previously developed QM/FQ method.54–56,151,152,161

An important difference between QM/FQFµ (and QM/FQ) and other polarizable

QM/MM approaches, is that the latter only adjust the first order of the electrostatic

Taylor expansion (i.e. dipole terms) to the QM density, but they keep the monopole

(and higher orders) terms fixed. However, it has been proven that charges indeed give

the main contribution to the electrostatic interaction energy.548,549

The manuscript is organized as follows. In the next section, the FQFµ force field is

proposed and then coupled to a QM SCF description (QM/FQFµ). A parametrization

for aqueous solutions is proposed and applied to the the calculation of electrostatic

and total interaction energies of a water dimer as a function of the intermolecular

distance. Then, QM/FQFµ is tested against solute-solvent electrostatic interactions of

four selected systems in aqueous solution. Some conclusions and future perspectives

end the manuscript.

7.2 Theoretical Model

7.2.1 FQFµ force field

In the FQFµ force field each MM atom is endowed with both a charge q and an atomic

dipole µ, that can vary according to the external electric potential and electric field.

Both charges and dipoles are described as s-type gaussian distribution functions:

ρqi(r) =
qi

π
3
2R3

qi

exp

(
−|r− ri|2

R2
q

)

ρµi(r) =
|µi|

π
3
2R3

µi

n̂i ·∇
[

exp

(
−|r− ri|2

R2
µi

)]
7.1

where Rqi and Rµi are the width of the Gaussian distributions ρqi and ρµi , respectively.

n̂i is a unit vector pointing to the dipole direction µi.

The total energy E associated with a distribution of charges and dipoles is equal to:545

E(q,µ) =
∑
i

qiχi +
1

2

∑
i

qiηiqi +
1

2

∑
i

∑
j 6=i

qiT
qq
ij qj +

∑
i

∑
j 6=i

qiT
qµ
ij µj+

− 1

2

∑
i

∑
j 6=i

µ†iT
µµ
ij µj +

1

2

∑
i

µ†iα
−1
i µi 7.2

where χ is the atomic electronegativity, η the chemical hardness and α the atomic

polarizability. Tqqij , Tqµ
ij and Tµµ

ij are the charge-charge, charge-dipole and dipole-

dipole interaction kernels, respectively. If the gaussian distributions in Eq. 7.1 are

adopted, the functional form of the interaction kernels provided by Mayer545 can be

exploited. Tqqij term reads:
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Tqqij =
1

|rij |
erf

(
|rij |
Rqi−qj

)
7.3

where Rqi−qj is equal to
√
R2
qi +R2

qj . When ri tends to rj , the use of gaussian dis-

tributions avoids any issues which are related to the typical divergence of Coulomb

kernels (i.e. the so-called “polarization catastrophe”):545,546

lim
rij→0

Tqqij = Tqqii =
2√
π

1

Rqi−qi
7.4

In order to collect all the quadratic terms in the charges, the diagonal elements of Tqq

can be imposed to be equal to the atomic chemical hardnesses η, so that the width of

the charge distribution Rq is defined without the need of any parametrization:

Tqqii = ηi ⇒ Rqi =

√
2

π

1

ηi
7.5

where it is assumed Rqi−qi =
√

2Rqi .

The charge-dipole and dipole-dipole interaction kernels are obtained as first and second

derivatives of the charge-charge interaction kernel in Eq. 7.3:545

Tqµ
ij = −∇riT

qq
ij = − rij

|rij |3

[
erf

(
|rij |
Rqi−µj

)
− 2|rij |√

πRqi−µj
exp

(
−|rij |
Rqi−µj

)2
]

7.6

Tµµ
ij = ∇rjT

qµ
ij =

3ri,j ⊗ ri,j − |ri,j |2I
|ri,j |5

[
erf

(
|rij |

Rµi−µj

)
− 2√

π

|rij |
Rµi−µj

exp

(
− rij
Rµi−µj

)2
]

+

− 4√
πR3

µi−µj

rij ⊗ rij
|rij |2

exp

(
− |rij |
Rµi−µj

)2

7.7

where Rxi−xj =
√
R2
xi +R2

xj (x = q, µ) and I is the identity matrix. Similarly to what

was done before for Tqqij , the limits for rij → 0 in the case of Tqµ
ij and Tµµ

ij are:

lim
rij→0

Tqµ
ij = Tqµ

ii = 0 7.8

lim
rij→0

Tµµ
ij = Tµµ

ii = −
√

2

π

I

3R3
µi

7.9

From Eq.7.9, Rµi can be defined in terms of the atomic polarizability αi:

α−1i =

√
2

π

1

3

1

R3
µi

⇒ Rµi =

(√
2

π

1

3
αi

) 1
3

7.10

The definition of the gaussian width Rqi and Rµi in terms of ηi and αi limits the

number of parameters which enter the definition of FQFµ to electronegativity, chemical

hardness and polarizability for each atom type. Therefore, Eq. 7.2 can be formally

rewritten as:
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E(q,µ) =
1

2

∑
i

∑
j

qiT
qq
ij qj +

1

2

∑
i

∑
j

µ†iT
µµ
ij µj +

∑
i

∑
j

qiT
qµ
ij µ

†
j +

∑
i

qiχi =

=
1

2
q†Tqqq +

1

2
µ†Tµµµ + q†Tqµµ + χ†q

7.11

where a matrix notation has been adopted.

In Eq. 7.11, the sum of charge values is not forced by any external constrain. However,

the equilibrium condition is reached when the Electronegativity Equalization Principle

(EEP) is satisfied. Such a principle states that at equilibrium each atom has the

same electronegativity. Thus, an energy functional to be minimized can be written for

instance by adopting Lagrangian multipliers. Notice that we can in principle assume:

• The entire system is constrained to have charge Qtot, and no constraint is im-

posed on single molecules. This permits intermolecular Charge Transfer (CT) and

makes, at the equilibrium, the electronegativity of each atom to be the same.

• Each molecule is constrained to assume a fixed, total charge Qα, which sums to

Qtot). Therefore, the electronegativity of each atom in the same molecule is the

same but generally has different values among different molecules.

We report here the equations obtained by adopting the first assumption. Consistently

with what has been done for FQ by some of the present authors,54,159 similar equations

can be derived under the second assumption : they are given in Section 7.6.1 of the

Supporting Information (SI). Notice that our implementation is general and can treat

both cases. The energy functional F can be written by exploiting the Lagrangian

multiplier (λ):

F (q,µ, λ) = E (r,q,µ) + λ

[∑
i

(qi)−Qtot

]
=

=
1

2

∑
i

∑
j

qiT
qq
ij qj +

1

2

∑
i

∑
j

µ†iT
µµ
ij µj +

∑
i

∑
j

qiT
qµ
ij µ

†
j +

∑
i

qiχi

+ λ

[∑
i

(qi)−Qtot

]
=

=
1

2
q†Tqqq +

1

2
µ†Tµµµ + q†Tqµµ + χ†q + λq 7.12

where λ is meant to preserve the total charge Qtot of the MM portion. Therefore, the

conditions for the constrained minimum are found by imposing the derivatives of F

with respect to all the variables to be zero, resulting in the following linear problem:
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
∑
j Tqq

i,jqj + λ+
∑
j Tqµ

i,jµj = −χi∑
j Tµµ

i,jµj +
∑
j Tqµ

i,jqj = 0∑
i qi = Qtot

7.13

The whole system can be recast in a more compact form as:542,547

 Tqq 1λ Tqµ

1†λ 0 0

−Tqµ†
0 Tµµ


 q

λ

µ

 =

 −χ
Qtot

0

⇒ DLλ = −CQ 7.14

where 1λ is a vector which accounts for the Lagrangian. CQ is a vector containing

atomic electronegativities and total charge constraint, whereas Lλ is a vector containing

charges, dipoles and the Lagrange multiplier.

7.2.2 The QM/FQFµ model

In order to couple FQFµ to a QM wavefunction in a QM/MM framework, the first

step is to define an extended energy functional, which is composed of three terms:

E = EQM + EMM + EQM/MM 7.15

where EMM is defined in Eq. 7.12. If the QM term is a variational functional itself,

the resulting, coupled equations are derived following the same procedure as for the

uncoupled case. The QM density interacts as a classical density of charge with both

charges and dipoles:

EQM/MM =
∑
i

V [ρQM ](ri)qi − µ†iE[ρQM ](ri) 7.16

where V [ρQM ](ri) and E[ρQM ](ri) are the electric potential and electric field, respec-

tively, calculated at the i-th charge and i-th dipoles placed at ri. The QM potential

and the electric field are composed by an electronic (Ve, Ee) and a nuclear (VN , EN )

contribution:

V [ρQM ](ri) = Vi [P] = V Ni (P) + V ei (P) =
∑
ζ

Zζ
|ri −Rζ |

+

∫
R3

ρel(r)

|ri − r|
dr 7.17

7.18

E[ρQM ](ri) = Ei(P) = EN
i (P) + Ee

i (P) =
∑
ζ

Zζ(Rζ − ri)

|ri −Rζ |3
−
∫
R3

ρel(r)(ri − r)

|ri − r|3
dr

7.19
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where ρel is the electron density. ζ index runs over the QM nuclei, whose charges are

named Zζ and whose positions are Rζ . If the electronic density ρel(r) is expanded in

an atomic basis set {χµ}, the second terms in Eqs.7.18 and 7.19 become:

V ei (P) = −
∑
νµ

Pµν

∫
R3

dr
χµ(r)χν(r)

|ri − r|
=
∑
µν

PµνVµν,i 7.20

Ee
i (P) = −

∑
µν

Pµν

∫
R3

χµ(r)χν(r)(ri − r)

|ri − r|3
=
∑
µν

PµνEµν,i 7.21

where we have introduced the “uncontracted” potential Vµν and the “uncontracted”

field Eµν . Pµν are elements of the QM density matrix. Finally, the global QM/MM

energy functional for a SCF-like description of the QM portion is:

F (P,q,µ,λ) = trhP +
1

2
trPG(P) +

1

2
q†Tqqq +

1

2
µ†Tµµµ + q†Tqµµ + χ†q + λ†q+

+ q†V(P)− µ†E(P)

7.22

where

hµν = 〈ψµ| −
∇2

2
−
∑
ζ

Zζ
|r−Rζ |

|ψν〉

Gµν =
∑
στ

Pστ (〈µσ|ντ〉 − cx〈µσ|τν〉) + cl〈ψµ|vxc|ψν〉

are the usual one- and two-electron matrices. The coefficients cx and cl define whether

Hartree–Fock (cx = 1, cl = 0), pure DFT (cx = 0, cl = 1), or hybrid DFT are exploited.

For the sake of brevity, we will refer to both the HF and KS matrices as Fock matrix.

The effective Fock matrix is defined as the derivative of the energy with respect to the

density matrix:

F̃µν =
∂E
∂Pµν

= hµν +Gµν(P) + V†µνq−E†µνµ 7.23

where the interaction of the electron density with both charges and dipoles are included

through the coupling electrostatic terms. Charges and dipoles are obtained by imposing

the global functional to be stationary with respect to charges, dipoles and Lagrangian
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multiplier.

 Tqq 1λ Tqµ

1†λ 0 0

−Tqµ†
0 Tµµ


 q

λ

µ

 =

 −χ
Qtot

0

+

 −V(P)

0

E(P)

⇒ DLλ = −CQ −R(P)

7.24

Notice that, with respect to Eq. 7.14, a new source term R(P) arises. Such a term,

which represents the coupling of both charges and dipoles with the SCF density, permits

to determine them for a given density matrix. This is a non linear term, because it

contains the solution of the SCF equation, and can be computationally evaluated in

an iterative way, i.e.:

1. Construct an initial density matrix P(i)

2. Calculate the electrostatic source term S(R(i)) and solve for both charges and

dipoles:

L(i) = −D−1R(P(i)) 7.25

The D matrix only depends on the positions of the MM atoms, however it is

independent of the eletronic density, so that matrix inversion can be performed

only at the first step of the calculation.

3. Assemble the effective Fock matrix:

F̃ (i)
µν = hµν +Gµν(P(i)) + V†µνq

(i) −E†µνµ
(i)

4. Solve Roothan equations and build-up a new density matrix:

F̃(i)C(i+1) = SC(i+1)ε̃(i+1)

P(i+1) = C(i+1)C(i+1)†

5. Go back to step 2, and iterate until convergence is reached.

QM/FQFµ introduces two polarization sources: fluctuating charges and fluctuating

dipoles. From Eq. 7.24 both QM/FQ and QM/Induced Dipoles can be recovered by

considering only charge-charge or dipole-dipole blocks in the linear system. QM/FQFµ

response matrix is four times bigger than the QM/FQ one (Tqq block). As a conse-

quence, QM/FQ can treat four times bigger systems than QM/FQFµ at the same

computational cost. Similarly to QM/Induced Dipoles, QM/FQFµ introduces two

contributions in Fock matrix (see Eq. 7.23). However, in QM/FQFµ both the zeroth

order monopoles and the first order dipoles are indeed dependent on the QM density.

This only causes a small increase in the computational cost with respect to QM/In-

duced Dipoles, because the response matrix need to be enlarged so to include the Tqq

block (which is squared the number of MM atoms).
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As pointed out in the Introduction, QM/FQFµ finds its fundamentals in Ref.,545 simi-

larly to QM/DIM226 and QM/CMM.547 However, the definition of the gaussian widths,

which in both QM/DIM and QM/CMM are external parameters, is automatically ob-

tained in QM/FQFµ from chemical hardnesses and polarizabilities (see Eqs. 7.5 and

7.10). As a consequence, QM/FQFµ is defined only in terms of three parameters for

each atom type: electronegativity, chemical hardness and polarizability. A second rel-

evant difference stands in the formulation of the interaction between QM and MM

portions. In QM/DIM and QM/CMM, the electrostatic interactions is expressed in

terms of a Coulomb integral of the gaussian distributions of both charges and dipoles

with the QM density.547 In this way, Coulomb repulsion is also taken into account.

In QM/FQFµ, instead, MM charges and dipoles are seen as point charges and point

dipoles by the QM density, as it is generally assumed in most polarizable QM/MM

approaches. However, QM/FQFµ can be reformulated in a similar way to QM/DIM

and QM/CMM, for instance by following what has been proposed in other contexts.75

7.2.3 Fluctuating Dipoles vs Drude Oscillators

FQFµ describes the first order of electrostatic Taylor expansion in terms of fluctuating

dipoles. As an alternative, Drude oscillators can be employed, as it has been recently

proposed in the PQEq force field.543 PQEq combines the Charge Equilibration model

(QEq)287 with the Drude Oscillator approach.173 Each MM atom is seen as composed

of a core and a shell, on which gaussian charge distributions are placed. In particular,

both a fluctuating charge (q) and a fixed charge (+Z) are placed on the core. The fixed

charge is connected trough an isotropic harmonic spring to the shell fixed but mobile

charge (−Z), thus allowing variable charge displacements. PQEq can be coupled to a

QM description by following the same strategy adopted above for QM/FQFµ, yielding

the QM/PQEq model. In this approach fluctuating charges result from the solution of

a modified FQ system, whereas the positions of the shell mobile charges are obtained

by imposing the total electric force acting on them to be zero (see Section 7.6.2, given

as SI). QM/PQEq Fock operator reads:

F̃µν =
∂E
∂Pµν

= hµν +Gµν(P) + V†µν,cq + V†µν,cZ−V†µν,sZ 7.26

where, q and Z are the vectors containing fluctuating and fixed charges, respectively,

wheareas c and s subscripts indicate core and shell positions, where the QM potential

V is calculated. Thus, differently from QM/FQFµ, QM/PQEq is defined only in terms

of the QM electric potential. The equation which defines the equilibrium positions of

shell mobile charges (see Eq. 7.37 given as SI) introduces a non-linearity in the prob-

lem, which can be solved only by exploiting iterative techniques.59,175–177 Also, due to

its non-linearity, QM/PQEq could present some issues in the definition of the response

property of the QM portion. On the contrary, this does not apply to QM/FQFµ. Due

to its linearity and variational nature, QM/FQFµ can be extended to the calculation of

molecular properties54,55,58,149,150,162,165,169 by using the standard techniques of quan-

tum chemistry.550 PQEq can indeed be mapped into the FQFµ approach, similarly to
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what has been done in the case of basic Drude Oscillator and Induced Dipole force

fields.178

7.3 Computational Details

QM/FQFµ was implemented in a locally modified version of Gaussian16.301 All QM/FQ

and QM/FQFµ calculations were performed by treating the QM portion at the HF or

DFT levels of theory, combined with selected basis sets. Three different parametriza-

tions to treat the FQ electrostatic component in QM/FQ calculations were exploited,

taken from ref.,156 ref.162 and ref.203 Non-electrostatic contributions, i.e. repulsion and

dispersion, were modeled as reported in Ref.197 All the classical Molecular Dynamics

(MD) simulations were performed with the Gromacs package,348,471–474 by keeping

the same settings as previously reported by some of the present authors.146,152,153

Details on MD simulations are given as SI. The Kitaura-Morokuma Energy Decompo-

sition Analysis (KM-EDA)475,476 was performed by using the GAMESS package.477,478

Symmetry Adapted Perturbation Theory (SAPT)440,441 calculations were performed

by using Psi4 1.1.479

7.4 Numerical Results

In this section, the parametrization of the QM/FQFµ approach to treat aqueous so-

lutions is presented and discussed. Then, the resulting parameters are tested to re-

produce electrostatic energies of a water dimer as a function of the oxygen-oxygen

distance as computed at the KM-EDA/6-31+G* level. Then, the total interaction en-

ergy Eint, i.e. the sum of electrostatic (Eele), repulsion (Erep) and dispersion (Edis)

contributions, is compared to SAPT2+3(CCD)/aug-cc-pVTZ and CCSD(T)/aug-cc-

pVTZ with Counter-Poise corrections values for the same dimer. The dependence of

the QM/FQFµ electrostatic energy on the level of theory, i.e. the combination of

HF/DFT with several basis sets is also discussed. Finally, in order to test the trans-

ferability of our parameters to other systems, four molecules (Methyloxirane, Acrolein,

N-Methyl Acetamide and Methanol) in aqueous solution are studied. In such cases,

QM/FQFµ and QM/FQ electrostatic energies are compared to SAPT0/6-31+G* val-

ues.

7.4.1 Model Parametrization

QM/FQFµ is general enough to model any kind of external environment, pending an

appropriate parametrization of the quantities entering Eqs. 7.22 and 7.23. Such a

parametrization is a crucial step towards the routinely application of the method to

real cases. In this section we will focus on aqueous solutions, which will also allow for a

quantitative comparison with QM/FQ, thus highlighting the effect of including atomic

fluctuating dipoles in QM/MM electrostatic energies.

In order to set the parameters entering Eq. 7.22, selected water clusters taken from

Kratz et al.491 (see Figure 7.1), were studied. Reference full QM electrostatic energy
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values of such clusters were calculated by performing a KM-EDA475,476 calculation on

each structure in Figure 7.1 at the HF/6-31+G* level, according to what has already

been proposed in the literature.197,482,483

I II III

Figure 7.1. Structures of water dimers exploited in the parametrization of

QM/FQFµ.

KM-EDA values were compared to electrostatic energies obtained with the QM/FQFµ

model. In the latter, one water molecule was treated at the QM level (HF/6-31+G*),

whereas the second molecules was described by means of the FQFµ force field. For

each dimer structure two calculations were performed, by exchanging the QM and

FQFµ water molecules. Remarkably, electrostatic interaction is by definition symmet-

ric if the two water molecules are interchanged. Thus, differently to what some of the

present authors reported for the parametrization of non-electrostatic contributions,197

we imposed the two calculations (i.e. the MM water molecule acts as HB donor or

acceptor) to give the same results. In such a way the transferability of the final param-

eters should be guaranteed. Notice that in the QM/FQFµ approach, electrostatic and

polarization terms cannot be separated, because the electrostatic charge contribution

is partially due to QM polarization (see Eq. 7.24). Thus, QM/FQFµ electrostatic

energies are compared with the sum of electrostatic and polarization KM-EDA energy

contributions.

For the studied dimers, Eq. 7.22 depends on six parameters (electronegativities, chem-

ical hardnesses and polarizabilities of hydrogen and oxygen atoms, respectively): their

best values were defined by performing a least square roots fitting on full KM-EDA

data, by allowing the parameters to vary freely. Their best fitted values are reported

in Table 7.3 in the SI. Electrostatic energies of the selected water dimers are reported

in Table 7.4 in SI. The reliability of the parametrization protocol is confirmed by the

agreement between QM/FQFµ and KM-EDA data. The effects due to the introduction

of atomic dipoles can also be quantified. The zeroth order monopoles, i.e. fluctuating

charges, account for almost 70∼72 % of the total electrostatic energy, whereas the first

order dipoles for 28∼30%, i.e. they give a minor, but not negligible contribution.

7.4.2 Interaction energy of a water dimer as a function of O-O

distance

In this section, the dependence of Eele and Eint on the water-water intermolecular

distance is investigated. To this end, the water dimer depicted in Figure 7.2 (optimized

at the MP2/aug-cc-pVQZ level) was exploited, and the distance d between the oxygen

atoms was taken as reference.

In Figure 7.3, QM/FQFµ Eele is reported as a function of d. The plot was constructed

by increasing the O-O distance from 2.54 Å to 6.49 Å by a step of 0.05 Å (80 points).
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d d

QM
QMFQFμ

FQFμ

1 2
Figure 7.2. Structure of the water dimer used to study the dependence

of electrostatic and interaction energies as a function of O-O intermolecular

distance.

Eele was calculated by treating the QM moiety at the HF/6-31+G* level. Again, QM

and MM moieties were interchanged, and the average values were taken. Charge and

dipole electrostatic contributions QM/FQFµ|q and QM/FQFµ|µ, are also depicted,

showing that also in this case the charge contribution is dominating at all distances

(70 ∼ 72 %).

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

2.5 3 3.5 4 4.5 5 5.5 6 6.5

-21.0

-18.0

-15.0

-12.0

-9.0

-6.0

-3.0

0.0

El
ec

tr
os

ta
tic

en
er

gy
(a

.u
.)

Electrostatic
energy

(kcal/m
ol)

Distance O — O (Å)

Charges q
Dipoles µ

Eele

Figure 7.3. Plot of the QM/FQFµ electrostatic energy as a function of

the O-O intermolecular distance for the water dimer depicted in Figure 7.2.

Charge and dipole contributions to Eele are also plotted.

In Figure 7.4, computed QM/FQFµ electrostatic energies are compared with KM-

EDA full-QM reference electrostatic (summed with polarization) energies. An almost

perfect superposition is observed, the average computed error being of about 7% and

the computed Root Mean Squared Deviation (RMSD) being only 0.29 kcal/mol (∼
0.47 mH). The excellent reproduction of Eele is not unexpected, because the dimer

structure under study is very similar to structure I exploited in the parametrization

step (see Fig.7.1).

The inset in Figure 7.4 shows the difference between calculated QM/FQFµ Eele values

obtained by assuming the QM water molecule to act as H-bond donor or acceptor.The

two curves are almost superimposed, as expected by considering the parametrization

protocol that we have followed (see previous section).
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Figure 7.4. Plot of the electrostatic energy as a function of the O-O inter-

molecular distance for the water dimer depicted in Figure 7.2. QM/FQFµ

values (HF/6-31+G* for the QM moiety) are compared to KM-EDA (HF/6-

31+G*) calculations. In KM-EDA calculations, electrostatic and polariza-

tion contributions are summed up. In the inset QM/FQFµ Eele as a function

of the O-O distance is depicted for the two structures (1 and 2) in Figure

7.2.

To end this discussion, the total B3LYP/aug-cc-pVTZ QM/FQFµ interaction energy

as a function of d is plotted in Figure 7.5 and compared with SAPT2+3(CCD)/aug-cc-

pVTZ or CCSD(T)/aug-cc-pVTZ data (counterpoise corrections are included). To this

end, QM/FQFµ is coupled to the approach proposed by some of the present authors to

model non-electrostatic repulsion/dispersion contributions,197 which formulates repul-

sion in terms of an auxiliary density on the MM portion, whereas QM/MM dispersion

is obtained by extending the Tkatchenko-Scheffler approach to DFT.198–202

Clearly, QM/FQFµ+dis/rep is able to correctly reproduce both CCSD(T) equilibrium

distance (2.99 Å vs. 2.99 Å) and CCSD(T) interaction energy at the equilibrium

distance (-4.56 vs. -4.65 kcal/mol). The RMSD calculated over all 80 structures is 0.34

kcal/mol.

7.4.3 Dependence on the QM level of theory

In this section, the dependence of calculated QM/FQFµ Eele values on the level used

to model the QM moiety is studied. To this end, the water dimer depicted in Figure

7.2 with d = 2.94 Å is exploited. Thirteen different methods were used by following

the recent literature,147,493 ranging from HF to pure DFT functionals (LDA, PBE,551

B97D,494,495 R-TPSS552), to different classes of hybrid functionals (BLYP,553 M06,498

PBE0,499 B3LYP,496 M062X,498 SOGGA11-X,500 mPW1PW91554), also including

long-range (CAM-B3LYP347). Each functional was coupled to several Pople-type basis

sets (see Figure 7.6), in order to separate the contributions arising from polarization
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Figure 7.5. QM/FQFµ (B3LYP/aug-cc-pVTZ for the QM moiety),

SAPT2+3(CCD) and CCSD(T)/aug-cc-pVTZ total interaction energies for

the water dimer in Figure 7.2 as a function of the O-O distance.

and diffuse functions. In addition, correlation-consistent and augmented correlation-

consistent basis sets were employed, up to aug-cc-pVQZ.555

Figure 7.6 schematically reports the observed trends.

All employed QM methods predict very similar Eele values as varying the basis set,

with HF always showing the highest absolute values for a given basis set (on average,

HF values are about 5% higher than the absolute average value of the other methods).

The lowest absolute values are instead shown by PBE and BLYP functionals. However,

the difference between HF and PBE/BLYP functionals (i.e. the limit values of the

computed Eele for a given basis set) is 0.75 kcal/mol on average, being the maximum

value 1.15 kcal/mol for aug-cc-pVDZ. This clearly shows that the computed QM/FQFµ

energy values are almost unaffected by the choice of the QM description.

Let us focus on the dependence of Eele on the choice of the basis set. First, we

notice that electrostatic energy absolute values increase (of about 5% on average)

with adding diffuse functions, that probably due to the spreading of the QM density.

The addition of polarization functions has instead an opposite effect, in fact absolute

values decrease of about 17% on average. Such trends are almost constant for all QM

descriptions. Calculated Eele obtained by exploiting correlation consistent basis sets

are always smaller than Pople-calculated values. Moving from cc-pVDZ to cc-pVQZ,

the QM/FQFµ electrostatic energy increases in absolute value, and the same trend

is reported if augmented basis sets are considered. aug-cc-PVQZ gives very similar

results with respect to 6-311++G**, being the average difference of about 0.5%.

In conclusion, stable values of Eele are obtained by adding both diffuse and polarization

functions, so that their inclusion appears mandatory. For this reason, in the following

section the 6-31+G* basis set is exploited, being a good compromise between accuracy
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Figure 7.6. Dependence of Eele on the choice of basis set and QM method

for the water dimer depicted in Figure 7.2 with d = 2.94 Å.

and computational cost.

7.4.4 Molecules in aqueous solution

In order to show the applicability of QM/FQFµ to the study of molecular systems,

and to investigate on the reliability of its parametrization, in this section the method

is applied to four selected molecules in aqueous solution: (R)-Methyloxirane (MOXY),

acrolein (ACRO), N-methyl acetamide (NMA) and methanol (MeOH). In the first three

molecules solute-solvent Hydrogen Bonding (HB) can occurr, however the surrounding

water molecules can only act as HB donor. For aqueous MeOH, water molecules can

instead act as both H-donor and H-acceptor, due to the presence of the O-H group in

solute structure. Therefore, the chosen set of systems can appropriately represent the

main solute-solvent interactions which are in place in aqueous solutions.

For each of the selected molecules, we ran classical MD simulations (see Section 7.6.4

for further details) to sample the phase space. From each MD run, we extracted

10 representative structures. Spheres of 5 Å centered in the oxygen atom in case of

MOXY, ACRO, and MeOH, and in the nitrogen atom in case of NMA were cut. Sample

final structures are reported in Figure 7.7, where solute-solvent HBs are sketched. All

extracted structures are reported in Figures 7.12-7.15 in SI. The choice of the spheres’

radius is justified by the analysis of the Radial Distribution Functions g(r) (see Figure

7.11 in SI), which show that a cutting radius of 5.0 Å guarantees that all water

molecules in the first two solvation shells are included. The actual number of water
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molecules in each of the ten considered snapshots for each system is reported in Table

7.1.

a) b) c) d)

Figure 7.7. Sample structures obtained by cutting a sphere of 5.0 Å around

a) (R)-methyloxirane; b) acrolein; c) N-methyl acetamide; d) methanol.

Structure MOXY ACRO NMA MeOH

1 22 19 21 26

2 18 23 17 25

3 19 19 19 23

4 19 18 18 19

5 20 19 16 21

6 19 20 17 23

7 20 14 16 18

8 13 19 15 24

9 19 20 16 17

10 20 21 20 25

Table 7.1. Number of water molecules included in each of the ten considered

snapshots for each studied molecule in aqueous solution, obtained by using

a cutting radius of 5 Å

For each of the extracted structures, solute-solvent Eele was calculated by exploit-

ing both QM/FQ and QM/FQFµ. In case of QM/FQ calculations, three different

parametrizations, namely QM/FQa,156 QM/FQb 162 and QM/FQc 203 were considered.

QM/FQ and QM/FQFµ were compared with full-QM electrostatic energies calculated

by exploiting SAPT0/6-31+G* (see Figure 7.8, the corresponding raw data are given

in Tables 7.5-7.6 in SI). In both QM/FQ and QM/FQFµ calculations, the QM por-

tion was described at the HF/6-31+G* level, and the charge constraint in Eq. 7.22

is imposed so to fix the total charge of the solvent molecules to zero. This implies

that Charge Transfer (CT) between different water molecules is allowed. Such a choice

is justified by the fact that reference full-QM data implicitly take into account CT

between solvent molecules. Additional calculations on the same structures were per-

formed by fixing the total charge of the single MM water to zero; the corresponding

results are given in Table 7.5 in SI.

The comparison between polarizable QM/MM and SAPT0 Eele are graphically de-

picted in Figure 7.8. RMSD, Maximum Absolute Error (MAE) and Relative Error

(RE) on the ten selected structures are reported in Table 7.2. Let us focus on the
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results obtained for MOXY in aqueous solution. SAPT0 values range from -17 to -30

kcal/mol, thus showing large electrostatic interactions due to HBs, which are reported

for all the ten selected structures (see Figure 7.12 in SI). QM/FQb values are always

larger than QM/FQa: this is related to the difference between atomic electronegativi-

ties of the two parametrizations. Such a difference is larger in FQb. On the other hand,

QM/FQc predicts the greatest absolute Eele values, because polarization is promoted

by smaller values of chemical hardnesses. The largest discrepancy between QM/FQ and

SAPT0 is observed for the pristine FQ parametrization by Rick et al.,156 i.e. QM/FQa,

whereas the best agreement is given by our recent parametrization,203 i.e. QM/FQc

(see also Table 7.2). This is not surprising, because FQc was tuned to reproduce the

total interaction energy calculated at the CCSD(T) level, whereas FQa and FQb were

set to reproduce bulk water properties (FQa, ref.156) or QM atomic charges (FQb,

ref.162). As depicted in Figure 7.8, QM/FQFµ overperforms QM/FQ. This is also

confirmed by the data reported in Table 7.2, where a RMSD of only 1.67 kcal/mol and

an RE of 6.44 % are reported. QM/FQFµ Eele are dominated by charge contributions

(on average 75%), that in agreement with what has shown above for the water dimer.

Raw data of charge/dipoles contributions to QM/FQFµ Eele are reported in Table 7.6

in SI. To further confirm the quality of QM/FQFµ, the same analysis was applied to a

snapshots of MOXY in aqueous solution constructed by using a cutting radius of 7 Å.

Such an analysis is discussed in Section 7.6.4 in SI.

The same behavior highlighted for MOXY also applies to the other selected molecules

(ACRO, MeOH, NMA). In fact, QM/FQFµ always overperforms QM/FQ. This is

particularly evident in case of MeOH, where SAPT0 values range from -40 to -15

kcal/mol, thus moving from weak solute-solvent interactions to strong HBs. This is

due to the fact the MeOH is the only chosen molecule in which solvent water molecules

can act both as H-donor and H-acceptor. Figure 7.8 clearly shows that at small Eele
values all four approaches predict similar energy values, whereas as energy increases,

the differences between the methods increases. Notice also that, among all tested FQ

parametrizations, FQc does not give the best results for MeOH, as the MAE is 38

kcal/mol. On the other hand, QM/FQFµ correctly reproduces SAPT0 values in the

whole range of energies (i.e. for both weak and strong HBs configurations), as can be

seen both from Table 7.2 and Figure 7.8, where QM/FQFµ values lie almost perfectly

on the diagonal. This can be particularly appreciated from the data shown in the

last column of Table 7.2, which reports a statistical analysis over the whole set of 40

structures. It is also remarkable that QM/FQFµ, as well as all the three QM/FQ

parametrizations, give errors with respect to full QM calculation by far lower than

what has been recently reported for QM/AMOEBA calculations on different aqueous

systems.184

To end the discussion, QM/FQFµ charge and dipole contributions for two represen-

tative structures of MOXY and MeOH in aqueous solution (structures MOXY1 and

MeOH-2 in Figures 7.12 and 7.15, given as SI) are analyzed. In Figures 7.9 and 7.10,

each water molecule is colored as a function of the contribution to Eele. Such an anal-

ysis is done according to what has been recently proposed for Functional group-SAPT

(FSAPT).556,557 MOXY1 is characterized by one HB, where a single water molecule

acts as H-donor, whereas MeOH-2 is involved in two HBs, in which one water molecules
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Figure 7.8. Comparison between calculated QM/FQa, QM/FQb,

QM/FQc, QM/FQFµ Eele (HF/6-31+G* level for the QM portion) and

SAPT0/6-31+G* data. In case of SAPT0 calculations electrostatic and in-

duction energy contributions are summed up. Raw data are given in Table

7.5 in SI. All data are reported in kcal/mol.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization taken from Ref.203
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MOXY ACRO NMA MeOH TOT

QM/FQa

RMSD 10.12 7.83 11.93 11.59 10.49

MAE 13.89 11.32 17.32 16.40 17.32

RE 42.51% 40.66% 41.28% 37.28% 40.43%

QM/FQb

RMSD 7.40 5.75 9.16 9.19 8.00

MAE 10.31 8.55 14.10 14.09 14.10

RE 31.00% 29.41% 31.10% 29.04% 30.14%

QM/FQc

RMSD 5.75 2.08 2.96 14.04 7.80

MAE 13.41 4.22 6.63 38.65 38.65

RE 18.90% 12.75% 8.99% 33.03% 18.42%

QM/FQFµ

RMSD 1.67 1.29 1.07 1.25 1.34

MAE 2.81 3.20 1.58 2.23 3.20

RE 6.44% 4.67% 3.61% 4.41% 4.78%

Table 7.2. Root Mean Squared Deviation (RMSD), Maximum Absolut Er-

ror (MAE) and Relative Error (RE) of ten selected structures of MOXY,

ACRO, MeOH and NMA in aqueous solution extracted from aqueous solu-

tion. SAPT0/6-31+G* Eele values are taken as reference. TOT indicates

statistical parameters calculated on all 40 structures extracted from MD

runs. RMSD and MAE are given in kcal/mol.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization taken from Ref.203

acts as H-donor and a second one as H-acceptor. Figures 7.9 and 7.10 clearly show

that in both cases HB water molecules give the largest contributions to Eele. However,

other water molecules, which are not directly involved in HB with the QM portion,

give non-negligible contributions to the total electrostatic energy. This has a practical

consequence: in fact, cluster approaches, in which only few, geometrically close, water

molecules are included in the QM portion, can inappropriately model solvent effects,

because such relevant contributions will be most probably neglected.
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Figure 7.9. QM/FQFµ electrostatic energy contributions (kcal/mol) for

MOXY1. Echarges and Edipoles indicate charge and dipole contributions to

the total Eele. All atoms in each water molecule are colored according to

their contribution. The color maps saturate at ±4 kcal/mol.
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Figure 7.10. QM/FQFµ electrostatic energy contributions (kcal/mol) for

MeOH-2. Echarges and Edipoles indicate charge and dipole contributions to

the total Eele. All atoms in each water molecule are colored according to

their contribution. The color maps saturate at ±4 kcal/mol.
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7.5 Summary and Conclusions

In this paper, a new polarizable force field, FQFµ, has been proposed and coupled to a

QM SCF Hamiltonian. The peculiarity of QM/FQFµ stands in the fact the polarization

of the MM portion is modelled in terms of both charges and dipoles that can vary

as a response to the external electric potential/field. From the theoretical point of

view, QM/FQFµ approach is an extension of the QM/FQ which we have developed in

recent years,54–56,149–151,161 in which only fluctuating charges are used to describe the

polarization of the environment. Differences and analogies with previously developed

methods and a comparison between Drude Oscillators and Fluctuating dipoles has been

discussed, pointing out the novelty and the computational features of our approach.

QM/FQFµ has been parametrized in order to reproduce electrostatic energies of aque-

ous solutions. Then, such an approach has been tested against the reproduction of

electrostatic energy of a water dimer as a function of the O-O distance, as well as its

total interaction energy. QM/FQFµ has also been coupled with a model that we have

recently proposed to account for non-electrostatic energy terms , and it has been shown

to appropriately reproduce CCSD(T) equilibrium geometry and the corresponding in-

teraction energy for the same water dimer.

Finally, QM/FQFµ has been applied to the calculation of electrostatic energies of

four molecules in aqueous solution. Such molecules were chosen by considering the

specific interactions that they can form with the surrounding water molecules (i.e. H-

acceptor or H-donor). QM/FQFµ overcomes the limits of QM/FQ, giving a better

agreement with reference full QM SAPT0 data. However, all the tested methods are

in better agreement with full QM data than what has been shown for QM/AMOEBA

on different aqueous systems.184 The large errors reported for QM/AMOEBA Eele
values,184 have been ascribed to the permanent electrostatic contribution (fixed charges

and quadrupoles). Our results seem to show that charge polarization is indeed crucial

to lower the errors with respect to full QM values, whereas the inclusion of dipole

contributions refines the quality of the results.

To end this discussion we point out that, thanks to its variational formulation, QM/FQFµ

can be extended to molecular properties/spectroscopies by following the same strategy

which has been proposed by some of us for QM/FQ.54,55,149,150,161 Such an extension,

as well as model parametrization for non-aquous environments, will be the topic of

future studies.

7.6 Supporting Information

Equations for FQFµ force field without charge transfer between MM molecules. QM/PQEq

model. Details on the parametrization of aqueous solution. Raw data for the depen-

dence on the level of theory of the water dimer. Details on MD runs of MOXY, ACRO,

NMA and MeOH in aqueous solution. Structures of solute-solvent clusters. Raw data of

electrostatic interaction energies for solute-solvent clusters. Analysis of MOXY-water

cluster obtained by exploiting a cutting radius of 7 Å.
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7.6.1 FQFµ model without charge transfer between MM molecules

If each molecule is constrained to assume a fixed, total charge Qα, the energy functional

F (eq. 14) can be written by exploiting some Lagrangian multipliers (λα), whose

number is equal to the total number of molecules in the MM portion.

F (q,µ, λα) = E (r,q,µ) +
∑
α

[
λα
∑
i

(qαi)−Qα

]
=

=
1

2

∑
iα

∑
jβ

qiαTqqiα,jβqjβ +
1

2

∑
i

∑
j

µ†iαTµµ
iα,jβµjβ +

∑
i

∑
j

qiαTqµ
iα,jβµ

†
jβ+

+
∑
iα

qiαχiα +
∑
α

λα

[∑
i

qαi −Qα

]
=

=
1

2
q†Tqqq +

1

2
µ†Tµµµ + q†Tqµµ + χ†q + λ†q 7.27

where α and β runs over the molecules and the constraints λα are meant to preserve

the total charge Qα of every molecule. Therefore, the conditions for the constrined

minimum are found by imposing the derivatives of F with respect all the variables to

be zero, resulting in the following linear problem:
∑
jβ Tqq

iα,jβqjβ + λα +
∑
jβ Tqµ

iα,jβµjβ = −χiα∑
jβ Tµµ

iα,jβµjβ +
∑
jβ Tqµ

iα,jβqjβ = 0∑
iα qαi = Qα

7.28

The whole system can be recast in a more compact form as:542,547 Tqq 1λ Tqµ

1†λ 0 0

−Tqµ†
0 Tµµ


 q

λ

µ

 =

 −χQ
0

 ⇒ DQλ = −CQ 7.29

where 1λ is a rectangular matrix which accounts for the Lagrangians. CQ is a vector

containing atomic electronegativities and total charge constraints, whereas Qλ is a

vector containing charges, dipoles and Lagrange muiltipliers.

7.6.2 QM/PQEq approach

PQEq force field consists of a combination of the Charge Equilibration model (QEq)287

and the Drude Oscillator one.173 Each atom is considered to be composed of core and

shell, on which Gaussian charge distributions are placed. In particular, the core is

constituited by a fluctuating charge (q) and a fixed one (+Z), which is connected

trough an isotropic harmonic spring to the shell fixed charge (−Z), thus providing the

possibility of having variable displacements of the electron charge distribution. The

formal equations defining such a force field can be found in Ref.543 In this section, we

will strictly follow their notation.
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The coupling of the PQEq force field with a QM density can be expressed through

Coulomb interaction:

EQM/PQEq =
∑
i

φ[ρQM](ric)qi +
∑
i

φ[ρQM](ric)Zi −
∑
i

φ[ρQM](ris)Zi 7.30

where φ[ρQM](ri) is the electrostatic potential due to the QM charge density, calculated

in the positions of the PQEq charges. ric and ris indicate core and shell positions. The

QM potential can be devided into the nuclear contribution and the electronic one as

expressed in Eq. 18.

Thus, Eq. 7.30 can be rewritten as:

EQM/PQEq =
∑
i

qiV (P)ic +
∑
i

Zi (V (P)ic − V (P)is)

where V (P)ik is the potential calculated in rik (where k = c or k = s).

The energy of the whole QM/PQEq system is the sum of three terms, E = EQM +

EPQEq + EQM/PQEq. Thus, the complete energy functional F reads:

F(P,q, λ, ris) = trhP +
1

2
trPG(P) + q†χ +

1

2

∑
i

[
ηiiq

2
i +Ks |ric − ris|2

]
+

+ λq +
∑
i>j

[C(ric,jc)qicqjc − C(ric,js)qicZj − C(ris,jc)qjcZi + C(ris,js)ZiZj ] +

+
∑
i

qiV (P)ic +
∑
i

Zi (V (P)ic − V (P)is)

7.31

Where the expression for the MM portion has been taken from ref.543 C(rik,jk), k = c, s

represents the interaction between core and shell charges. The lagrangian multiplier λ is

imposed so that the charge of the whole MM portion is fixed to Qtot. The contributions

to the Fock matrix are obtained by differentiating Eq. 7.31 with respect to the density

matrix elements:

F̃µν =
∂E
∂Pµν

= hµν +Gµν(P) + V†µν,cq + V†µν,cZ−V†µν,sZ 7.32

where, q and Z are the vectors containing fluctuating and fixed charges, respectively,

wheareas c and s pedix indicates core and shell positions where the QM potential is

calculated.

The derivative with respect to the fluctuating charges qi results in linear equation,

similar to what has been reported for QM/FQ approach:54(
H 1

1† 0

)(
q

λ

)
=

(
−A

Q

)
+

(
−V

0

)
=

(
−B

Q

)
7.33

that is:

Dqλ = K 7.34
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where, H and A are defined as:

Hij = ηiiδij + (1− δij)C(ric,jc) 7.35

Ai = χi +
∑
i>j

[C(ric,jc)− C(ric,js)]Zj 7.36

Notice that the equations are equal to the ones proposed in QM/FQ approach, with

the only difference in A. In QM/FQ approach, in fact,only electronegativity χ enter

in such a definition, whereas in QM/PQEq approach an additional polarization term

arises from the other MM charges. By inverting D, both the fluctuating charges and

the Lagrangian multiplier are calculated.

The derivative with respect to the shell positions is a further condition which needs to

be satisfied to minimise the energy functional F . This results in an equation in which

the forces acting on each shell mobile charge must be equal to zero. The forces acting

on each shell charges can be devided in three main contributions: Fintra, the spring

force, Finter, the electrostatic forces due to all the other MM charges, and FQM, the

QM force, i.e. the QM electric field.

Fintra(ris) + Finter(ris) + FQM(ris) = 0 7.37

where

FQM = −∇ris

∑
i

V (P)is

To obtain the electric field produced by the QM density acting on the PQEq charges,

the derivative of the QM potential energy can be performed:

V
(ξ)
i (P) =

Nn∑
ζ=1

Zζ(ri −Rζ)

|ri −Rζ |3
+
∑
µν

Pµν 〈χµχν |
r− r′

|r− r′|3
|δ(r′ − ri)〉 = Ei(P) 7.38
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7.6.3 Parametrization

Atom χ η α

O 0.321226 0.718474 1.645295

H 0.166401 0.921014 0.424619

Table 7.3. QM/FQFµ electronegativities (χ), chemical hardnesses (η) and

polarizabilities (α) for Oxygen and Hydrogen atoms in water molecule.

Structure EeleQM/FQFµ|q EeleQM/FQFµ|µ EeleQM/FQFµ EKM−EDA Error %

Dimer 1HDon -0.011826 (70%) -0.004980 (30%) -0.016806 -0.017678 4.93

Dimer 1HAcc -0.013376 (72%) -0.005139 (28%) -0.018515 -0.017678 4.73

Dimer 2HDon -0.009051 (72%) -0.003443 (28%) -0.012494 -0.012329 1.34

Dimer 2HAcc -0.009052 (72%) -0.003445 (28%) -0.012496 -0.012329 1.36

Dimer 3HDon -0.007275 (71%) -0.002986 (29%) -0.010260 -0.010862 5.54

Dimer 3HAcc -0.007626 (70%) -0.003218 (30%) -0.010844 -0.010862 0.17

Table 7.4. Comparison of calculated QM/FQFµ and reference KM-EDA/6-

31+G* electrostatic+polarization energies in a.u. HF/6-31+G* was used in

QM/FQFµ calculations. ele
QM/FQFµ

|q and Eele
QM/FQFµ

|µ indicate charge and

dipole contributions to Eele, respectively.
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7.6.4 Molecules in aqueous solution

Classical MD simulations

The geometry of (R)-methyloxirane (MOXY), Acrolein (ACRO), N-Methylacetamide

(NMA) and Methanol (MeOH) was optimized at the B3LYP/ aug-cc-pVDZ level and

the C-PCM70 to represent the aqueous environment (ε = 78.3553). Following what

has already been reported by some of the present authors,146 in order to obtain a

representative conformational sampling of solvated solutes, 10 ns MD simulations were

performed in a pre-equilibrated box of 2865 SPC (Single Point Charge) water molecules

in the NPT (isothermal-isobaric) ensemble using GROMACS.348,471–474All bonds were

kept rigid using the Settle algorithm558 for water; the geometry of the solute was kept

rigid during the simulation. Electrostatic interactions were considered through the

the Particle Mesh Ewald summation method.559 The pressure was stabilized at 1 bar

using the weak-coupling scheme with a coupling constant of 10 ps and an isotherm

compressibility of 5 · 10−5bar−1. Each component of the system (both methyloxyrane

and water) was coupled separately to a temperature bath at 300 K using the Berendsen

thermostat560 with a coupling constant of 0.5 ps. The all-atoms OPLS-AA (Optimized

Potentials for Liquid Simulations - All Atoms) force field297 was used for the solute
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Figure 7.11. MOXY, ACRO, NMA, MeOH radial distribution functions

between solulte nitrogen/oxygen atoms and water hydrogen.
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Structures of solute-waters clusters

MOXY1 MOXY2 MOXY3

MOXY4 MOXY5 MOXY6

MOXY7 MOXY8 MOXY9

MOXY10
Figure 7.12. MOXY-water structures
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ACRO1 ACRO2 ACRO3

ACRO4 ACRO5 ACRO6

ACRO7 ACRO8 ACRO9

ACRO10
Figure 7.13. ACRO-water structures
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NMA1 NMA2 NMA3

NMA4 NMA5 NMA6

NMA7 NMA8 NMA9

NMA10
Figure 7.14. NMA-water structures
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MeOH1 MeOH2 MeOH3

MeOH4 MeOH5 MeOH6

MeOH7 MeOH8 MeOH9

MeOH10
Figure 7.15. MeOH-water structures
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Electrostatic energy with CT between solvent molecules

Structure QM/FQFµ|q QM/FQFµ|µ QM/FQFµ|tot SAPT0

MOXY1 -21.98 (80%) -5.66 (20%) -27.64 -27.45

MOXY2 -19.04 (75%) -6.37 (25%) -25.41 -24.33

MOXY3 -21.55 (77%) -6.43 (23%) -27.97 -30.69

MOXY4 -17.98 (74%) -6.27 (26%) -24.25 -25.73

MOXY5 -22.76 (77%) -6.65 (23%) -29.41 -29.02

MOXY6 -19.82 (76%) -6.41 (24%) -26.23 -26.35

MOXY7 -15.75 (76%) -5.00 (24%) -20.75 -19.93

MOXY8 -11.91 (75%) -3.89 (25%) -15.80 -17.95

MOXY9 -14.38 (78%) -4.13 (22%) -18.52 -20.43

MOXY10 -9.70 (72%) 3.69 (28%) -13.39 -16.20

ACRO1 -16.82 (74%) -5.84 (26%) -22.66 -23.84

ACRO2 -15.01 (76%) -4.67 (24%) -19.69 -18.95

ACRO3 -5.64 (81%) 1.34 (19%) -6.99 -7.02

ACRO4 -12.13 (75%) -4.03 (25%) -16.16 -19.36

ACRO5 -15.12 (72%) -5.80 (28%) -20.92 -19.04

ACRO6 -14.84 (75%) -5.04 (25%) -19.89 -19.85

ACRO7 -13.60 (74%) -4.85 (26%) -18.45 -18.75

ACRO8 -11.18 (75%) -3.77 (25%) -14.95 -15.12

ACRO9 -10.24 (73%) -3.87 (27%) -14.11 -14.56

ACRO10 -8.29 (74%) 2.86 (26%) -11.14 -11.73

MeOH1 -26.61 (76%) -8.44 (24%) -35.05 -37.27

MeOH2 -28.82 (75%) -9.74 (25%) -38.57 -38.86

MeOH3 -22.91 (75%) -7.45 (25%) -30.36 -29.62

MeOH4 -10.89 (76%) -3.42 (24%) -14.31 -13.60

MeOH5 -11.92 (76%) -3.71 (24%) -15.63 -16.40

MeOH6 -23.89 (75%) -7.79 (25%) -31.68 -32.70

MeOH7 -11.05 (75%) -3.64 (25%) -14.68 -15.80

MeOH8 -30.17 (76%) -9.50 (24%) -39.66 -40.23

MeOH9 -22.45 (75%) -7.58 (25%) -30.03 -31.68

MeOH10 -19.59 (78%) -5.64 (22%) -25.23 -23.32

NMA1 -20.76 (75%) -6.89 (25%) -27.66 -27.61

NMA2 -22.61 (75%) -7.48 (25%) -30.09 -28.77

NMA3 -26.03 (76%) -8.17 (24%) -34.20 -32.62

NMA4 -23.77 (75%) -8.04 (25%) -31.81 -33.03

NMA5 -13.50 (76%) -4.36 (24%) -17.86 -16.86

NMA6 -26.43 (76%) -8.32 (24%) -34.75 -33.19

NMA7 -19.79 (77%) -5.90 (23%) -25.70 -26.12

NMA8 -15.43 (78%) -4.40 (22%) -19.83 -18.58

NMA9 -18.40 (77%) -5.49 (23%) -23.89 -23.13

NMA10 -24.30 (77%) -7.14 (23%) -31.44 -31.61

Table 7.5. Calculated electrostatic energies by exploiting QM/6-

31+G*/FQFµ and SAPT0/6-31+G*. QM/GQµ|q represents the electro-

static contribution arising from the charges, whereas QM/GQµ|µ that arising

from the dipoles.
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QM/FQa QM/FQb QM/FQc QM/FQFµ SAPT0

MOXY1 -20.27 -23.36 -40.86 -27.64 -27.45

MOXY2 -13.35 -16.49 -28.70 -25.41 -24.33

MOXY3 -16.80 -20.38 -33.60 -27.97 -30.69

MOXY4 -13.37 -16.39 -27.56 -24.25 -25.73

MOXY5 -19.58 -22.83 -36.36 -29.41 -29.02

MOXY6 -15.32 -18.37 -29.65 -26.23 -26.35

MOXY7 -12.81 -15.84 -25.39 -20.75 -19.93

MOXY8 -8.87 -11.07 -17.66 -15.80 -17.95

MOXY9 -11.70 -14.10 -22.60 -18.52 -20.43

MOXY10 -6.95 -7.85 -11.66 -13.39 -16.20

ACRO1 -12.53 -15.29 -24.18 -22.66 -23.84

ACRO2 -11.79 -14.18 -23.16 -19.69 -18.95

ACRO3 -6.62 -7.26 -10.89 -6.99 -7.02

ACRO4 -9.36 -11.44 -18.66 -16.16 -19.36

ACRO5 -10.53 -12.88 -20.21 -20.92 -19.04

ACRO6 -11.58 -14.03 -21.38 -19.89 -19.85

ACRO7 -9.47 -11.91 -18.02 -18.45 -18.75

ACRO8 -9.09 -10.97 -17.04 -14.95 -15.12

ACRO9 -7.61 -9.59 -15.44 -14.11 -14.56

ACRO10 -6.97 -8.33 -12.72 -11.14 -11.73

MeOH1 -21.21 -25.40 -40.26 -35.05 -37.27

MeOH2 -22.47 -27.54 -44.33 -38.57 -38.86

MeOH3 -25.68 -30.52 -48.37 -30.36 -29.62

MeOH4 -9.14 -11.19 -17.42 -14.31 -13.60

MeOH5 -10.05 -11.99 -18.20 -15.63 -16.40

MeOH6 -19.28 -23.17 -37.17 -31.68 -32.70

MeOH7 -9.02 -10.97 -17.09 -14.68 -15.80

MeOH8 -25.05 -29.78 -47.03 -39.66 -40.23

MeOH9 -16.75 -20.40 -31.24 -30.03 -31.68

MeOH10 -31.21 -37.40 -61.96 -25.23 -23.32

NMA1 -14.84 -17.67 -26.98 -27.66 -27.61

NMA2 -15.74 -18.62 -27.03 -30.09 -28.77

NMA3 -20.87 -24.01 -35.71 -34.20 -32.62

NMA4 -15.71 -18.93 -28.25 -31.81 -33.03

NMA5 -9.61 -11.09 -15.89 -17.86 -16.86

NMA6 -18.29 -22.09 -33.42 -34.75 -33.19

NMA7 -15.17 -17.53 -25.55 -25.70 -26.12

NMA8 -14.03 -16.32 -25.20 -19.83 -18.58

NMA9 -14.12 -16.47 -24.76 -23.89 -23.13

NMA10 -19.10 -22.40 -33.57 -31.44 -31.61

Table 7.6. Comparison between calculated QM/FQa, QM/FQb, QM/FQc,

QM/FQFµ Eele (HF/6-31+G* level for the QM portion) and SAPT0/6-

31+G* data. In case of SAPT0 calculations electrostatic and induction en-

ergy contribution are summed up. All data are given in kcal/mol.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization taken from Ref.203
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Electrostatic energies without CT between solvent molecules

QM/FQa QM/FQb QM/FQc QM/FQFµ SAPT0

MOXY1 -10.73 -13.10 -23.74 -18.46 -27.45

MOXY2 -12.27 -16.62 -32.73 -22.86 -24.33

MOXY3 -13.65 -17.58 -32.29 -24.28 -30.69

MOXY4 -12.53 -16.72 -30.78 -22.73 -25.73

MOXY5 -13.45 -16.61 -28.71 -22.93 -29.02

MOXY6 -13.01 -16.90 -30.69 -22.53 -26.35

MOXY7 -9.33 -12.06 -20.40 -16.78 -19.93

MOXY8 -8.11 -10.97 -19.31 -14.32 -17.95

MOXY9 -6.85 -8.40 -13.66 -13.13 -20.43

MOXY10 -6.43 -8.53 -15.98 -12.33 -16.20

ACRO1 -11.64 -15.54 -28.13 -21.13 -23.84

ACRO2 -9.29 -12.16 -22.94 -16.05 -18.95

ACRO3 -0.79 -0.55 -0.99 -2.15 -7.02

ACRO4 -9.30 -12.44 -22.52 -15.65 -19.36

ACRO5 -9.30 -12.33 -21.86 -18.06 -19.04

ACRO6 -8.52 -11.26 -19.41 -15.76 -19.85

ACRO7 -10.69 -14.46 -24.49 -18.98 -18.75

ACRO8 -6.24 -7.72 -12.48 -11.64 -15.12

ACRO9 -7.56 -10.28 -18.37 -13.61 -14.56

ACRO10 -4.94 -6.51 -11.85 -8.79 -11.73

MeOH1 -17.44 -22.26 -38.12 -30.56 -37.27

MeOH2 -18.79 -24.48 -41.83 -34.18 -38.86

MeOH3 -19.97 -25.04 -41.79 -35.97 -29.62

MeOH4 -6.81 -8.82 -14.35 -11.86 -13.60

MeOH5 -7.25 -9.27 -14.98 -12.90 -16.40

MeOH6 -16.94 -21.67 -36.80 -28.89 -32.70

MeOH7 -8.04 -10.45 -17.87 -13.56 -15.80

MeOH8 -19.10 -24.09 -40.46 -33.69 -40.23

MeOH9 -17.85 -23.61 -40.98 -30.20 -31.68

MeOH10 -25.66 -32.80 -57.66 -44.25 -23.32

NMA1 -10.83 -14.59 -25.86 -22.18 -27.61

NMA2 -13.21 -17.70 -30.34 -25.02 -28.77

NMA3 -12.14 -15.73 -26.72 -23.71 -32.62

NMA4 -13.82 -19.27 -33.98 -27.63 -33.03

NMA5 -7.77 -10.64 -18.94 -15.08 -16.86

NMA6 -16.74 -22.49 -39.25 -30.98 -33.19

NMA7 -12.22 -15.98 -27.98 -21.38 -26.12

NMA8 -5.56 -7.35 -13.01 -11.89 -18.58

NMA9 -9.17 -12.25 -21.52 -17.75 -23.13

NMA10 -12.38 -15.89 -26.58 -22.66 -31.61

Table 7.7. Comparison between calculated QM/FQa, QM/FQb, QM/FQc,

QM/FQFµ Eele (HF/6-31+G* level for the QM portion) and SAPT0/6-

31+G* data. In case of SAPT0 calculations electrostatic and induction en-

ergy contribution are summed up. All data are given in kcal/mol.
a FQ parametrization taken from Ref.156

b FQ parametrization taken from Ref.162

c FQ parametrization taken from Ref.203
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MOXY1 with a cutting radius of 7 Å

Figure 7.16. MOXY1-cluster structure obtained by using a cutting radius

of 7.0 Å. The number of water molecules included in the cluster is 53.

Structure QM/FQFµ|q QM/FQFµ|µ QM/FQFµ|tot SAPT0

MOXY1 -22.56 -5.74 -28.31 -27.74

Table 7.8. Calculated electrostatic energies for MOXY1 obtained with a

cutting radius of 7 Ådepicted in Figure 7.16 by exploiting QM/6-31G*/FQFµ

and SAPT0/6-31G*. QM/GQµ|q represents the electrostatic contribution

arising from the charges, whereas QM/GQµ|µ that arising from the dipoles.
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Appendix

In this appendix, QM/FQFµ energy derivatives, together with linear response and

electric/magnetic perturbations are formulated.

The resorting to the physical framework of the so-called ”focused models” implies that

external perturbations (i.e., electric/magnetic fields and/or a nuclear displacement)

only act on the QM portion of the system, whereas the environment is only indirectly

affected through the perturbation on the QM density. In geometrical derivatives, the
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focusing on the QM portion of the system means that the geometric displacements of

the MM molecules are not taken into account; this framework is well-defined within

the Partial Hessian Vibrational Approach (PHVA).89,292,293

Linear Response

Here, we follow a linear response theory for SCF methods, without a complete deriva-

tion of QM/MM LR equations, which can be found elsewhere.54 In this section, elec-

tronic transition energies ωK and densities Xk,Yk are obtained by solving the modified

Casida’s equations (
Ã B̃

B̃∗ Ã∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
7.39

where, Ã and B̃ matrices are defined as:

Ãai,bj = (εa − εi)δabδij + 〈aj‖ib〉 −
Nq∑
kl

R†iaD
−1Rjb 7.40

B̃ai,bj = 〈ab‖ij〉 −
Nq∑
kl

RiaD
−1Rbj 7.41

where, D is defined in Eq. 7.14, whereas R in Eq. 7.24. In particular, the modified

response equations will include two contributions arising from the perturbed FQFµ

charges (V†aiq
(1)) and FQFµ dipoles (E†aiµ

(1)), where, again, the interaction potential/-

field will be calculated at the cores positions. For the perturbed FQFµ charges/dipoles,

a perturbed FQFµ equation is obtained:

 Tqq 1λ Tqµ

1†λ 0 0

−Tqµ†
0 Tµµ


 q(1)

λ

µ(1)

 =

 −V(1)(P)

0

E(1)(P)

⇒ DL
(1)
λ = −R(1)(P) 7.42

where the perturbed potential/electric field are defined as in Refs.54 and.10

Notice finally that, if we take the zero frequency limit of the response equations, the

static coupled-perturbed Hartree–Fock (CPHF) equations are obtained.

Energy first derivatives

The energy first derivative of Eq. 7.22 can be expressed by means of the chain rule:561

Ex(P,q,µ,λ) =
∂E
∂x

+
∂E
∂P

∂P

∂x
+
∂E
∂q

∂q

∂x
+
∂E
∂µ

∂µ

∂x
+
∂E
∂λ

∂λ

∂x

The last two terms vanish because of the stationarity conditions. The first term, which

is the partial derivative of the energy with respect to the position of a QM nucleus, is:

∂E
∂x

= tr hxP +
1

2
tr G(x)(P)P + q†V(x)(P)− µ†E(x)(P) 7.43
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where

V
(x)
i (P) =

∑
µν

PµνV
x
µν,i + nuclear contribution 7.44

=
Zζ

|Rζ − ri|2
−
∑
µν

〈∂(χµχν)

∂Rζ
| 1

|r− r′|
|δ(r′ − ri)〉Pµν 7.45

E
(x)
i (P) = ∇riV

(x)
i (P) 7.46

The term involving the derivatives of the density matrix can be computed starting

from the idempotency condition, which gives rise to the usual energy-weighted density

matrix contribution:

−PF̃PSxoo = −W̃Sxoo

where the subscript oo denotes the occupied–occupied block of the matrix in the MO

basis. Finally:

Ex(P,q,λ) = tr hxP +
1

2
tr G(x)(P)P + q†V(x)(P)− µ†E(x)(P)− trWSxoo 7.47

Energy second derivatives

The energy second derivative with respect to a perturbation acting on the QM portion

of the system can be obtained by differentiating eq. 7.47. By exploiting once again the

chain rule and writing explicitly all contributions:

Exy =
∑
µν

[
hxyµν +

1

2
G(xy)
µν (P) + q†Vxy

µν − µ†Exy
µν

]
Pµν − tr WSxy − tr WySx

+
∑
µν

[
hxµν +G(x)

µν (P) + q†Vx
µν − µ†Ex

µν

]
P yµν +

∑
µν

Ly†Rx
µνPµν 7.48

It is hence necessary to compute the derivatives of the off-diagonal blocks of the density

matrix and charges/dipoles, which can be done by means of the so-called Coupled

Perturbed Hartree–Fock (CPHF) procedure. The FQFµ charge and dipole derivatives

can be obtained by differentiating eq. 7.24

DLx = −R(x)(P)−R(Px) 7.49

The Fock matrix derivative is defined as:

F̃ xµν = F̃ (x)
µν +Gµν(Px)−R†µνD

−1R(Px) 7.50

where, coherently with the usual notation, the term:

F̃ (x)
µν = hxµν +G(x)

µν (P) + L†Rx
µν + R†µνL

(x)

collects all the explicit derivatives of the Fock matrix.

By rearrangement of the terms, the CPHF equations are obtained: In MO basis, CPHF

equations reads:

εiP
x
ia − εaP xia = −Q̃ia +

∑
jb

[
〈aj||ib〉 −R†iaD

−1Rjb

]
P xjb

+
∑
jb

[
〈ab||ij〉 −R†iaD

−1Rbj

]
P xbj 7.51
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Taking the adjunct equation and introducing the following matrices (we assume the

orbitals to be real):

Ãia,jb = (εa − εi)δijδab + 〈aj||ib〉 −R†iaD
−1Rjb 7.52

B̃ia,jb = 〈ab||ij〉 −R†iaD
−1Rbj 7.53

one obtains (
Ã B̃

B̃∗ Ã∗

)(
X

Y

)
=

(
Q

Q∗

)
7.54

where

Ãia,jb = (εa − εi)δijδab + 〈aj||ib〉 −R†iaD
−1Rjb 7.55

B̃ia,jb = 〈ab||ij〉 −R†iaD
−1Rbj 7.56

Q̃ia = F̃
(x)
ia −Gia(Sxoo)− F̃Sxia + R†iaD

−1R(Sxoo) 7.57

The solution of Eqs. 7.54 and 7.49 yields the derivatives of both the density matrix

and the FQFµ charges/dipoles with respect to QM nuclear positions, thus allowing

the calculation of energy second derivatives. This result is, of course, coherent to the

zero-frequency limit of what was obtained above in case of linear response.

To summarize, the FQFµ contributions to analytical second derivatives can be grouped

into three categories:

1. explicit contributions:

q†V(xy) − µ†E(xy) + L(x)†R(y)

2. contributions to the explicit Fock matrix derivatives:

L†Rx
µν + L(x)†Rµν

3. contribution to the CPHF matrix:

−R†iaD
−1Rjb

The equations simplify when only electric perturbations are considered: only the CPHF

contributions are to be added. However, if an oscillating electric field is considered,

the static response picture is not formally justified.

Electric and Magnetic Perturbations

Electric Perturbations

In the presence of an external electric field E and assuming that the FQFµ charges

and dipoles are affected by the field only through the response of the QM molecule, a

perturbation term must be added to the energy functional:
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V ele = −µ ·E = −(µn −
∑
µν

PµνMµν) ·E

where Mµν = 〈χµ|r|χν〉 are dipole integrals. An electric perturbation gives hence rise

to a contribution to the mono-electronic part of the Fock operator of the system:

heleµν = Mµν ·E

The second derivatives of the energy with respect to the electric field, that correspond

to the static polarizability, reduce to:

Exy = αxy =
∑
µν

Mx,µνP
y
µν 7.58

From eq. 7.58 it is immediately clear that no explicit FQFµ contributions to the polar-

izability are involved. In the general case of an oscillating electric field, the derivative

of the density matrix is obtained by exploiting the Frequency Dependent CPHF (FD-

CPHF): (
Q̃X

Q̃Y

)
+

(
Ã− ωI B̃

B̃ Ã + ωI

)(
X

Y

)
= 0 7.59

Magnetic perturbations

In the presence of a static magnetic field, which we will assume be given by the sum of

a homogeneous magnetic field B and of a field produced by the magnetic moment mX

of the nucleus X at position RX , the magnetic CPHF equations need to be modified.

In case of working with London Orbitals, the CPHF Right Hand Side becomes (see

Ref.,161 for further details):

Q̃eleia = h
(x)
ia +G

(x)
ia (P) + L†Rx

ia −Gia(Sxoo)− FSxia 7.60

where

Rxj,ia = (V xj,ia, 0, E
x
j,ia) = (〈φxi |V̂j |φa〉+ 〈φi|V̂j |φxa〉, 0, 〈φxi |Êj |φa〉+ 〈φi|V̂j |φxa〉

FQFµ contributes only indirectly to the magnetic response.

The magnetic susceptibility is the second derivative of the energy with respect to the

magnetic field:

χxy =
∂2E

∂Bx∂By
=
∑
µν

[
hxyµν +

1

2
G(xy)
µν (P) + q†Vxy

µν − µ†Exy
µν

]
Pµν+

− tr WSxy − tr WySx+

+
∑
µν

[
hxµν +G(x)

µν (P) + q†Vx
µν − µ†Ex

µν

]
P yµν 7.61

There is an explicit FQFµ contribution, namely:

q†Vxy(P)− µ†Exy(P)
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It is also possible to calculate the NMR shielding tensor, which is defined as the second

derivative of the energy with respect to the magnetic field and the nuclear magnetic

moment:

σXxy =
∂E

∂Bx∂my
= tr(PhBxmy + PBxhmy ) 7.62

Here, there is no explicit FQFµ contribution as no FQFµ-related quantities depend on

the nuclear magnetic moment.

Energy third derivatives

By exploiting the Placzek approach within the double harmonic approximation, Raman

and ROA intensities are obtained in terms of the geometric derivatives of the electric

dipole-electric dipole polarizability αx, electric dipole-electric quadrupole polarizability

Ax and electric dipole-magnetic dipole polarizability G′x. In particular, Raman inten-

sities depend only on αx, whereas ROA intensities depend on αx, Ax and G′x. In the

following equations the QM/FQFµ contributions to these quantities are reported. We

refer the interested reader to Ref.150 for further details on QM and QM/FQ analytical

third derivatives.

αxQM/FQFµ =
∑
µν

[
L†(Pe′(ω′))Rx

µνP
e
µν(ω)

]
+
∑
µν

[
L†(Pe(ω))Rx

µνP
e′

µν(ω′)
]

7.63

Ax(ω)QM/FQFµ =
∑
µν

[
L†(Pe(ω))Rx

µνP
q
µν

]
+
∑
µν

[
L†(Pq)Rx

µνP
e
µν(ω)

]
7.64

G′xQM/FQFµ =
∑
µν

[
L†(Pm)Rx

µνP
e
µν(ω)

]
+
∑
µν

[
L†(Pe(ω))Rx

µνP
m
µν

]
+

+
∑
µν

[
L†(Rm(Pe(ω)))P xµνVµν

]
+

+
∑
µν

[
L†Rm,x

µν P eµν(ω) + Lx†Rm
µνP

e
µν(ω)

]
7.65
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Abstract The description of optical properties of subnanometer junctions is particularly chal-

lenging. Purely classical approaches fail, because the quantum nature of electrons needs to be

considered. Here we report on a novel classical fully atomistic approach, ωFQ, based on Drude

model for conduction in metals, classical electrostatics and quantum tunneling. We show that

ωFQ is able to reproduce the plasmonic behavior of complex metal subnanometer junctions

with quantitative fidelity to full ab-initio calculations. Besides the practical potentialities of

our approach for large scale nanoplasmonic simulations, we show that a classical approach, in

which the atomistic discretization of matter is properly accounted for, can accurately describe

nanoplasmonics phenomena dominated by quantum effects.
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A cornestone of nanoscience is that systems at the nanoscale have properties neither of

the molecular nor of the macroscopic length scales.217,562 Nanoplasmonics is a beau-

tiful example of this: localized surface plasmons supported by metal nanostructures

disappear in clusters with few atoms, and acquire different properties (surface plasmons

polaritons) in extended surfaces.217,562,563 The enormous progress of nanoscience has

permitted a targeted control of the morphology of nanostructures at the nanometer

and even subnanometer scales, thus allowing several applications in plasmonics and

nanooptics.564–568 Most properties of plasmonic nanostructures follow from the tun-

ability of their optical response as a function of the their shape and dimensions; in case

interparticle gaps are formed, the so-called “hot-spot” regions occur, in which localized

surface plasmons can interact with molecules placed in the junctions, up to allow single

molecule detection.212,569–573

The optical properties of nanostructures are generally treated, independent of the sys-

tem’s size/shape, by resorting to classical approaches.209,226–230,546,574–580 However,

when the size of the particles or junctions is only few nanometers or smaller, the quan-

tum nature of electrons emerges, up to activate quantum tunneling effects across sub-

nanometer interparticle gaps.209,225,235,241,242,577,581,582,582–590 Tunnelling effects are

not considered in classical models, so that quantum corrected approaches need to be

applied.241,588

The theoretical study of the atomic-scale features in nanojunctions is still an almost un-

explored field, because most phenomenological classical models do not address quantum

effects. In fact, as reported by Urbieta et al.,591 a proper description of atomic-scale

effects would require a full quantum framework, accounting for the atomistic struc-

ture of the nanoparticles and the wave nature of electrons building up the plasmonic

excitations.

By starting from the above considerations, in this paper we report on a fully atomistic

classical model based on three very basic ingredients, i.e. Drude model for conduction

in metal, classical electrostatics and quantum tunneling, which is able to reproduce

with quantitative fidelity the optical properties of subnanometer junctions. In our

approach, which we will call ωFQ (frequency dependent Fluctuating Charges), each

atom of the nanostructure is endowed with an electric charge, which in not fixed but

can vary as a response of the externally applied oscillating electric field.

Remarkably, here we go a step further with respect to other classical approaches. In

fact, we are not using any experimental frequency dependent dielectric constant (pos-

sibly corrected for non-locality and electron scattering at the surface), but we let the

dielectric response of the nanosystem to arise from atom-atom conductivity. Quantum

tunnelling effects originate from a geometrical damping imposed on the atom-atom

conductivity regime. The model is challenged to accurately reproduce complex ab-

initio simulations on a stretched Na nanorod234 and two approaching and retracting

Na nanoparticles,233 in which a single atom junction occurs, so that an atomistic de-

scription appears to be mandatory. ωFQ is the first ever classical approach succeeding

at correctly modeling the optical properties of such systems, which up to now have been

successfully treated only at the full DFT level. Remarkably, the results that we will

show have relevant practical consequences, because we indeed provide a computation-

ally viable model to investigate subnanometer junctions and complex nanostructures
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of size well beyond what can be currently treated by ab-initio approaches.

8.1 Methods

The model we are introducing here, ωFQ, has its fundamentals on the Fluctuat-

ing Charges (FQ) force field, which is usually adopted for describing molecular sys-

tems.56,146,150–152 FQ places on each atom of a molecular system a charge, which is

not fixed but allowed to vary as a result of differences in atomic electronegativities.

Charges are regulated by the atomic chemical hardnesses, that play the role of an

atomic capacitance. From the mathematical point of view, FQ charges are obtained

by minimizing the functional defining the energy of the system. ωFQ extends the basic

formulation of the FQ model to take into account the interaction of the system with an

external oscillating electric field E(ω). In particular, each atom is assigned a charge,

which is allowed to vary as a response of the polarization sources, which also include

the external field E(ω). Thus, being the electric field a complex quantity, calculated

ωFQ charges become complex, being their imaginary value in quadrature with the

field (if the field is real) and related to the absorption phenomenon. To build up the

ωFQ approach, the time response of charges has to be related to external polariza-

tion sources. To this end, two alternative response regimes are set: (i) a conductive

regime, in which the exchange of electrons between contiguous atoms is governed by

the dynamics of the delocalized conduction electrons, giving rise to a damping; (ii) an

alternative conductive regime, in which the exchange of electrons is also mediated by

quantum tunneling effects. In this section we briefly discuss the main physical aspects

of ωFQ: more details on the derivation of the equations and their implementation are

given as SI.

The first regime is described by reformulating the Drude model of conductance592 to

treat charge redistribution between atoms. The key equation representing the Drude

model reads:592
dp

dt
= E(t)− p

τ
8.1

where p is the momentum of the electron and τ a friction-like constant due to scattering

events. The total charge derivative on the atom i can be written as:

dqi
dt

=
∑
j

Aij(nj < p > ·l̂ji − ni < p > ·l̂ij) 8.2

where Aij is an effective area dividing atom i by atom j, ni is the electron density

on atom i, < p > is the momentum of an electron averaged over the trajectories

connecting i and j and l̂ji = −l̂ij is the unit vector of the line connecting j to i. By

assuming the total charge on each atom to be only marginally changed by the external

perturbation, we can assume ni = nj = n0. Therefore:

dqi
dt

= 2n0
∑
j

Aij < p > ·l̂ji 8.3
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< p > ·l̂ji needs to be estimated. To this end, it is convenient to consider a monochro-

matic applied electric field, so that eq.(8.3) translates to:

−iωqi = 2n0
∑
j

Aij
< E(ω) > ·l̂ji

1/τ − iω
8.4

To proceed further, < E(ω) > ·l̂ji (the total electric field averaged over the line connect-

ing j to i) needs to be connected to atomic properties. This can be done by assuming

< E(ω) > ·l̂ji ≈ (µelj − µeli )/lij , where µeli is the electrochemical potential of atom i

and lij the distance between atoms i and j. Therefore, Eq. 8.4 becomes:

−iωqi =
2n0

1/τ − iω
∑
j

Aij
lij

(µelj − µeli )

=
∑
j

Kdru
ij (µelj − µeli ) 8.5

Eq. 8.5 can be rewritten collecting Kdru
ij in a Kdru matrix, of which the definition is

clearly evident from Eq. 8.5 itself. In order to make the model physically consistent,

i.e. not to allow electron transfer between atoms that are too far apart, the pairs of

atoms considered in Eq.8.5 have to be selected by exploiting a geometrical criterion,

based on lij , i.e. to limit the interactions to nearest neighbors only.

To avoid any issue related to the specific definition of nearest neighbor atoms, a Fermi-

like f(lij) damping function is introduced to weight the Drude conductive mechanism:

−iωqi =
∑
j

(1− f(lij)) ·Kdru
ij (µelj − µeli )

=
∑
j

Ktot
ij (µelj − µeli ) 8.6

where:

f(lij) =
1

1 + exp
[
−d
(
lij
s·l0ij
− 1
)] 8.7

In Eq.8.7 l0ij is the equilibrium distance between two nearest neighbors in the bulk,

whereas d and s are parameters determining the position of the inflection point and

the steepness of the curve.

Eq.8.6 finally defines the ωFQ model. Whenever f(lij) = 0, the purely Drude conduc-

tive regime is recovered. For f(lij) > 0, Drude mechanisms exponentially turn off as

lij increases, making electron transfer to enter in a second alternative regime. In this

regime, the electric current exponentially decreases upon increasing the inter-atomic

distance. Therefore, the typical functional form of tunneling exchange is recovered.241
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Once ωFQ frequency-dependent charges are obtained by solving Eq. 8.6, the complex

polarizability α is easily calculated. From such a quantity, the absorption cross section

is recovered:

σabs =
4π

3c
ω tr

(
α∗
)

8.8

where c is the speed of light, ω is the external frequency and α∗ is the imaginary part

of the complex polarizability α.

The ωFQ approach has been implemented in a stand alone Fortran 77 package. Eq. 8.6

is solved for a set of frequencies given as input. All computed spectra reported in the

manuscript were obtained by explicitly solving linear response equations for steps of

0.01 eV. For all the studied Na nanosystems, the parameters given in Eqs. 8.5-8.6 were

extracted from physical quantities recovered from the literature or numerically tested

on single Na nanoparticles (see SI for more details). The parameters finally exploited

are the following: τ = 3.2 · 10−14 s,593 σ0 = 2.4 · 107 S/m,594 Aij = 3.38 Å2, l0ij = 3.66

Å,594 d = 12.00, s = 1.10.

8.2 Results and Discussion

In order to test our newly developed ωFQ method, based on Drude model for conduc-

tivity in metals, classical electrodynamics and quantum tunneling, we shall compute

the optical response of Na aggregates which are characterized by sub-nanometer gaps.

We shall compare the results obtained by exploiting our model with those calculated

at ab-initio level.

In particular, the optical absorption spectra of a metal nanorod pulled beyond the

breaking point234 and those of two small metal nanoparticles brought into contact233

are studied because they are paradigmatic of a class of nanoplasmonic problems where

ab-initio simulations seem mandatory. ωFQ is described with details in the Methods

section and in the Supplementary Information (SI).

8.2.1 Stretched Sodium Nanorod

In this section the ωFQ approach (see Methods) is applied to a challenging system,

i.e. a mechanically stretched sodium nanorod, which has been recently studied at the

ab-initio level.234 For such a system absorption cross sections as a function of the

elongation distances at full ab-initio level have been reported,234 and such data are

taken in this paper as reference values to evaluate the quality of our fully atomistic, but

classical ωFQ approach. It is worth noticing that as increasing the elongation distance,

a sub-nanometer junction region occurs, in which quantum tunneling effects play a

crucial role at determining the spectral features.582,588,590 Therefore, the application

of our model to such a challenging system will highlight its potentialities and limitations

at describing such effects.

The nanorod structures, eight of which are depicted in Fig.8.1, were kindly provided

to us by the authors of Ref.234 They were obtained from an initially perfect Na261
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nanorod, which was adiabatically stretched, by allowing atomic positions of the central

region to relax (see Ref.234 for more details).

ci
aorelax

frozen

frozen

A
B C D E F G H

Figure 8.1. Selected structures obtained by Rossi et al.234 by stretching

a Na261 nanorod. The elongation distance d of the depicted structures are

(from A to H): 0, 6, 10, 14, 20, 22, 26, and 28 Å.

For all 60 structures, absorption cross sections were calculated by exploiting the ωFQ

model; Figure 8.2 reports the absorption spectra of selected 30 structures as a function

of the elongation distance.

As depicted in Figure 8.1, the sodium nanorod is elongated and the atoms in the

nanojunction region are relaxed until the structure breaks for distances longer than 26

Å, where the limit of mono atomic junction is reached.

These structural features are reflected by the calculated spectra (see Fig. 8.2 (a)); in

fact, a clear discontinuity is evident at d = 26 Å (structure G). Let us focus on elon-

gation distances d < 26 Å. The pristine nanorod structure (structure A) presents one

intense excitation at 1.5 eV (dubbed Local Plasmon LP) and a less intense peak at 2.8

eV (LP2). Our atomistic model allows to identify the nature of such LPs, for instance

by graphically plotting the imaginary part of atomic charges for each transition. Maps

of the molecular electrostatic potential (MEP) obtained from such charges are reported

in panel (a) of Figure 8.3 for structures A-H. The comparison of data in panels (a) of

Figs. 8.2 and 8.3 clearly shows a first charge-transfer excitation and a second transi-

tion with a dipolar character. Therefore, by exploiting the same nomenclature used for

metal dimers, LP will be renamed as Charge Transfer Plasmon (CTP), whereas LP2 as

Boundary Dipolar Plasmon (BDP).595–597 As the elongation distance increases, both

CTP and BDP significantly redshift, and this feature is particularly evident for CTP.

In addition, they behave in a complete different way: CTP intensity slowly decreases,

whereas BDP becomes more and more predominant. Such a behavior is commonly

identified in most nanoplasmonic dimers.233,234,591,598,599

When the elongation distance reaches 26 Å (structure G) a monoatomic junction is
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Figure 8.2. Evolution of the plasmonic response of a Na261 nanorod under

stretching. Structures A-H in Fig. 8.1 are highlighted.(a) ωFQ absorption

Cross Section as a function of the energy. (b) Reproduced from Ref.234
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obtained, which is the limiting structure occurring just before the structure breaks.

Such features are reflected by the absorption cross section. CTP occurs at about

0.5 eV and shows a very low intensity, because electrons can only transfer through a

single atom. The BDP excitation becomes the most intense and shifts at 2.2 eV. The

inspection of panel (b), structure G in Figure 8.3 shows that such an excitation has

now a quadrupolar character. At such an elongation distance, a third excitation, which

is actually already visible at 25 Å, arises at about 1.4 eV. The analysis of the MEP

map suggests this transition to be due to an additional dipolar plasmon, BDP2.

We move now to comment spectra for d > 26 Å. CTP disappears, as expected, because

the gap between the two nano-moieties is too large to allow electron tunneling between

them. Thus, only BDP and BDP2 excitations are present. In particular, BDP2, which

has a clear dipolar character as evidenced by the pictures reported in panel (b) of Fig.

8.3 for structure H (d = 28 Å), increases in intensity, although BDP still dominates

the spectrum.
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Figure 8.3. (a) ωFQ pictorial representation of the local plasmonic re-

sponse for the 8 A-H selected structures. Blue color indicates a negative

charge, whereas red color indicates a positive charge. (b) DFT results re-

produced from Ref.234

To better show the capabilities of our atomistic classical model, our results can be

directly compared with theoretical ab-initio calculations reported in Ref.234 The re-

sulting spectra are reproduced in panel (b) of Fig. 8.2. Our calculated absorption cross

sections (panel (a) in Fig. 8.2) compare extremely well with ab-initio data, and only
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minor discrepancies are present. Ab-initio spectra for structures with 13< d <26 Å

show a really low peak at about 0.5 eV, associated to a CTP2. Such a peak, which

however can hardly be identified in the ab-initio density maps (see panel (b) of Fig.

8.3), is not reproduced by ωFQ. In addition, the ab-initio BDP transition results in

a narrower band. Such a difference can be justified by the atomistic nature of our

model, which results in some kind of inhomogeneous broadening due to transitions

with different nodal structure at the atomic scale, but corresponding to plasmons of

similar nature. Despite such minor discrepancies, the agreement between ωFQ and

DFT spectra is impressive. In fact not only excitation energies but also relative in-

tensities are correctly reproduced in all the elongation range, but also red shifts for

both CTP and BDP. Furthermore, ωFQ reproduces the ab-initio calculated redshift in

the spectrum of structure with d =7 Å. Such a behavior can be due to the structural

rearrangement of the nanorod as a result of the ab-initio geometry relaxation. The

peculiar atomistic nature of ωFQ makes it capable to also catch such effects, resulting

from tiny deformations of the nanostructure.

0

50

100

150

200

250

0 4 8 12 16 20 24 28

Nanorod
LP

Nanorod
LP2

BDP2

BDP

CTP

In
te

gr
at

ed
 In

te
ns

ity
 (N

)

Elongation (Å)

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24 28

Nanorod
LP

Nanorod
LP2

BDP2

BDP

CTP

En
er

gy
 (e

V)

(a) (b)

Elongation (Å)

Figure 8.4. Detailed analysis of the plasmon modes during the nanorod

stretching. (a) Peak energy and (b) integrated intensity (the area under the

peak) of the plasmon modes as a function of the nanorod elongation d. The

intensities are normalized so that the full spectrum integrates to the number

of valence electrons (261).

To further analyze our results, in Figure 8.4 excitation energies and integrated inten-

sities calculated by exploiting our model are shown for the three plasmons. Many

discontinuity points are noticed for both CTP and BDP as a results of the stretching

of the nanostructure. In particular, at about 7.5 Å the energies of CTP and BDP

decrease of 0.1 eV. Integrated intensities also present a discontinuity point at such a

distance. Such shifts and discontinuities, which as stated before are due to structural

rearrangements, are also reported by DFT calculations.234

Our results, which also in this case are quantitatively comparable with DFT, show once

again that our classical atomistic approach gives a correct description of the underlying

physical phenomena.
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8.2.2 Sodium NP dimer: approaching and retracting processes

As a second test to analyze the performances of ωFQ, the latter is challenged with the

description of the optical properties of two Na380 icosahedral nanoparticles which are

approached and retracted (see Fig. 8.5). This systems has been recently studied at

full ab-initio level by Marchesin et al.,233 who kindly provided us with the full set of

model structures.

Two alternative processes will be considered: first, the two Na380 nanoparticles are

placed at a distance of 16 Å (such a distance guarantees that they do not interact) and

then they are drawn closer until they fuse (see Fig. 8.5, panel a). Then the two fused

Na380 nanoparticles are retracted until the structure separates (see Fig.8.5, panel b),

giving rise to a process which is similar to the case presented in the previous section.

Two alternative situations of approaching and retracting were both considered, because

as it has been already reported in Ref.233 the two processes are physically different.

Let us start the discussion by considering the approaching process (Fig. 8.5, panel a).

The imaginary part of the longitudinal polarizability, i.e. the component parallel to

the dimer axis, has been computed as a function of the inter-nanoparticle distance; its

values are reported in panel (a) of Figure 8.6.
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Figure 8.5. a) Selected structures resulting from the approaching of two

Na380 nanoparticles. A: d = 16 Å; B: d = 6.2 Å; C: d = 6.1 Å; A: d = 0 Å.

b) Selected structures resulting from the retracting of two Na380 nanopar-

ticles. The nominal gap distances d are (from A to H): 3.7, 9.7, 14.7, 22.7,

25.9, 32.1, 32.3, 34.1 Å. Data taken from Ref.233
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Arb.U. nm3(a) (b)

Figure 8.6. (a) ωFQ calculated 2D plots of the longitudinal imaginary

polarizability (arbitrary units) as a function of the excitation energy and

nominal gap size for the two approaching Na380 nanoparticles. (b) ab-initio

values reproduced from Ref.233

The calculated 2D plots present a clear discontinuity between nominal gap sizes of 6.1

Å and 6.2 Å, i.e. between structures B and C in Figure 8.5 panel a, which correspond

to a jump-to-contact instability. At higher inter-nanoparticles distances, plots are

dominated by a single peak, which is placed at 3.19 eV at d = 16 Å , i.e. when the two

nanoparticles are far apart. This band can be attributed to BDP. Induced charges and

the corresponding MEP maps are depicted for the four selected significant structures

in Fig.8.7. We clearly see that for structure A BDP is a dipolar plasmon. As expected,

as the distance between the two nanoparticles decreases, the BDP redshifts due to the

increasing of electrostatic interactions. When the two nanoparticles fuse (structure

C) a clear discontinuity appears and for d ≤ 6.1 Å , the 2D plot is characterized by

two main peaks, namely CTP (1.66 eV) and CTP’ (3.15 eV), corresponding to the

plasmon excitations represented for structures C and D in Fig. 8.7. As the distance

further reduces, CTP blueshifts whereas CTP’ remains almost unchanged.

Figure 8.7. ωFQ MEP maps for plasmon excitations (eV) of selected struc-

tures. A: d = 16 Å; B: d = 6.2 Å; C: d = 6.1 Å; A: d = 0 Å. Blue color

indicates a negative charge, whereas red color indicates a positive charge.

The inspection of the MEP maps in Fig. 8.7 shows that the higher order CTP’ shows

a dipolar character, similarly to BDP, which occurs for structures with d > 6.1 Å. The

jump-to-contact structural instability is confirmed by the appearance of CTP, which

is characterized by a net flux of charge between the two (fused) nanoparticles. Such
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a flux gives rise to a conductive regime, resulting in an electric current. Notice that,

as previously reported by Marchesin et al.,233 the sudden occurrence of the junction

bypasses the distance regime where quantum tunneling effects are relevant.

Moving back to Fig. 8.6, we remark the very good agreement between the results

obtained by exploiting ωFQ approach and the ab-initio counterparts. Qualitatively,

DFT results are perfectly reproduced, in fact all the three CTP, CTP’ and BDP bands

are described, their behavior as a function of the distance is correctly reproduced and

bands relative intensities are qualitatively well described. Some minor discrepancies

are present from the quantitative point of view. In fact, the behavior of BDP as a

function of the distance is not perfectly described, e.g. ωFQ intensities remain almost

constant along the approaching process. Also, CTP intensities are overestimated and

the CTP’ band seems broader. Such findings are in line with what has been found in

the previous section and can be due to the atomistic nature of our approach, which

does not smooth out inhomogeneities on the atomic scale.

We pass now to study the two fused Na380 nanoparticles which are retracted until the

structure breaks (see Fig.8.5 panel b for representative structures). As it is evident the

breaking process is gradually occurring. In fact, a monoatomic junction arises (struc-

ture F), which breaks as the distance increases further. Therefore, tunneling effects

are expected to be relevant, thus resulting in a different behavior of the calculated

spectrum with respect to what we have reported in the previous paragraphs. for the

approaching process, and also found at the ab-initio level.233

Indeed, this is confirmed by ωFQ calculated values of the imaginary part of the lon-

gitudinal polarizability, i.e. the component parallel to the dimer axis; such data are

reported in panel (a) of Figure 8.8 as a function of the elongation distance.

By starting from the fused A structure, we notice that, as expected, the spectrum

consists of two bands, which can be related to CTP and CTP’ excitations. Their nature

can be understood by referring to Fig.8.9; CTP occurs at 1.84 eV and corresponds

to a charge flux between the two nano-moieties. CTP’ (3.18 eV) shows instead the

anticipated dipolar character.

As the elongation distance increases, both CTP and CTP’ redshift, and this is partic-

ularly evident especially for CTP. In addition the CTP band shrinks and its intensity

decreases, whereas CTP’ shows an opposite behavior, i.e. its intensity increases and

the band broadens. Small discontinuities, characterized by sudden red- or blue-shift

of the excitations, are visible. This behavior is similar to what we have found in the

previous section for the stretched Na261 nanorod (see Fig.8.4, panel (a)), and can be

reasonably due to the structural relaxation and the resulting thinning of the conductive

channels as the structure stretches. As the limiting structure F is reached (d = 32.1 Å),

a monoatomic junction arises (see Fig.8.9), resulting in the CTP band to occur at 0.25

eV and the CTP’ at 2.89 eV. The inspection of the corresponding MEP maps shows

that the nature of the associated plasmons is unchanged with respect to the initial A

structure. Suddenly, the structure breaks (structure G, d = 32.3 Å), thus resulting

in the disappearance of CTP and the convergence of CTP’ towards BDP. The MEP

associated, depicted in Fig.8.9, shows a dipolar character.

Moving back to Fig. 8.8, also for the elongation process a very good agreement be-

tween the results obtained by exploiting our classical atomistic ωFQ approach and the
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reference ab-initio data233 is noted. Qualitatively, DFT results are perfectly repro-

duced, in fact all the three CTP, CTP’ and BDP bands are described, their behavior

as a function of the distance is correctly reproduced and bands relative intensities are

qualitatively well described. ωFQ intensities for the CTP band are slightly overesti-

mated, and remain higher also as the nominal gap size increases. Furthermore, ωFQ

well reproduces the discontinuities in the spectra, and specifically those marked as α,

β and γ in Fig.8.8 panel (b). As already pointed out in the previous section, such a

behavior can be due to the structural rearrangement of the nanostructure as a result of

the ab-initio geometry relaxation. The classical but atomistic nature of our approach

makes it able to correctly describe such effects.

The ωFQ imaginary charges for structures before and after the spectral jumps α, β

and γ are depicted in Fig. 8.14, given as SI. The structural change associate to each

spectral jump is reflected by differences in the corresponding plasmons, i.e. by changes

on the charges of the junction atoms. Remarkably, our data are in agreement with

DFT density distributions around the junction reported in Ref.,233 thus showing once

again the reliability of our classical atomistic model.

Arb.U. nm3(a) (b)

γγα β

Figure 8.8. (a) ωFQ calculated 2D plots of the longitudinal imaginary

polarizability (arbitrary units) as a function of the excitation energy and

nominal gap size for the two approaching Na380 nanoparticles. (b) ab-initio

values reproduced from Ref.233

To end the discussion and to further analyze the performance of the model, we report

in Fig.8.10 the calculated ωFQ absolute values of the electric current through the

plasmonic nanojunctions as a function of the elongation distance. Both the approaching

and retracting processes are considered. The reported values were obtained at the

excitation energies of each plasmon.

As expected, for the approaching process when the two nanoparticles do not interact,

i.e. when spectra are dominated by BDP, no current flux is evidenced. As the jump-

to-contact instability is reached, a discontinuity in the current arises, i.e. a net current

flux is established. The current further increases as the inter-nanoparticle distance

decreases.

For the retracting process, the CTP plasmon clearly dominates the charge flux. As

the system is stretched, the current intensity slowly decreases, until it vanishes when

the system breaks (structures F and G). Several discontinuities in the CTP current
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A

1.84 eV 3.18 eV

0.25 eV

F
2.89 eV 2.23 eV 2.83 eV

G

Figure 8.9. ωFQ MEP maps for plasmon excitations (eV) of selected struc-

tures. A: d = 3.7 Å; F: d = 32.1 Å; G: d = 32.3 Å. Blue color indicates a

negative charge, whereas red color indicates a positive charge.

are present, similarly to what was already commented for the stretched nanorod in the

previous section. Remarkably, the α β and γ spectral jumps can easily be identified in

the current plot.
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Figure 8.10. ωFQ absolute value of the electric current through the plas-

monic nanojunction as a function of the elongation distance. Colored arrows

indicate the direction of the process (approaching, in red, and retracting, in

blue and orange). The current is computed by following Ref.233 (see also

SI). Black arrows indicate the position of the α β and γ spectral jumps. All

values are given in arbitrary units.
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8.3 Summary and Conclusions

In the present work, a novel atomistic model, ωFQ, based on textbook concepts (Drude

theory, electrostatics, quantum tunneling) has been proposed. In such a model, the

atoms of complex nanostructures are endowed only with an electric charge, which

can vary according to the external electric field. The electric conductivity between

the nearest atoms is modeled by adopting the simplest possible assumption, i.e. the

Drude model which has been reformulated in terms of electric charges. Thus, only

few physical parameters define our equations. Furthermore, the dielectric response of

the system arises naturally from atom-atom conductivity. Remarkably, such a feature

permits to avoid the use of any experimental frequency-dependent dielectric constant,

which is adopted in the quantum corrected models.241 Moreover, ωFQ takes also into

consideration quantum tunneling effects by switching off exponentially conductivity

between neighbor atoms.

ωFQ model was challenged to reproduced the optical response of complex Na nanoclus-

ters which have been investigated previously at ab-initio level233,234 and for which a

QM description has been considered mandatory. The capability of our approach to re-

produce the results of complex simulations has a relevant pratical consequence; in fact,

due to its classical formulation, ωFQ can be applied to model nanoplasmonic systems

of size well beyond what can be currently treated at the ab-initio level. Moreover,

the good agreement between the ab-initio simulations and ωFQ results shows that the

physics it encompasses (Drude model, electrostatics and a quantum tunneling correc-

tion) properly ported at the atomistic level, is dominating nanoplasmonic phenomena

also in this small scale regime.

In this work, only Na clusters have been considered. However, ωFQ, properly extended

to account for the atomic core polarizability that characterizes d-metals, has the poten-

tial to treat a great variety of plasmonic materials. Also, the formulation of the model

in terms of electric charges and its manifest reliability shows that ωFQ has the poten-

tialities to be coupled to fully QM molecular simulations within a QM/MM framework

so to allow the modeling of spectral enhancement of molecules adsorbed on plasmonic

nanostructures. This aspects will be treated in future communications.

Supplementary Information

Detailed derivation of the ωFQ model. Details on the calculation of the electric current.

Model parametrization on single Na nanoparticles. Dependence of ωFQ absorption

cross sections on model parameters. ωFQ MEP maps for plasmon excitations of selected

structures. DFT values of the electric current as a function of the elongation distance.

Linear Response Equations

Static Response

In order to calculate static response properties, the FQ basic equations (see for instance

Eq.2.1 has to be modified. In particular, in the case of one-metal nanoparticles, all the
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atoms are of the same type, and thus no polarization occurs due to differences in atomic

electronegativies, which in the pristine FQ model define the polarization ”source” in

the Maxwell’s meaning of the term. However, the system polarizes under the effect of a

static external electric field. Static response equations are derived by simply adding to

the whole energy a term accounting for the interaction with the external electric field.

It is worth noticing that this can be in principle achieved either by defining the external

perturbation in terms of an electric field, or an associated electric potential. Since FQ

is defined in terms of charges, the use of the potential V ext is more convenient.

Thus, Eq. 2.1 becomes:

F (q, λ) = q†χ +
1

2
q†Jq + λ†q + q†Vext 8.9

By minimizing F (q, λ), the static response equations are obtained:

Dqλ = −CQ −Vext 8.10

Once FQ charges are calculated by solving Eq. 8.10, the static polarizability can be

calculated by evaluating the induced dipole moment.

Notice also that standard FQ equations can be reformulated by introducing the elec-

trochemical potential µeli :

F =
∑
i

(qiχi +
1

2
qiηiqi + Viqi) 8.11

Vi = V exti +
∑
k 6=i

Jikqk 8.12

µeli =
∂F

∂qi
= χi + qiηi + Vi 8.13

where Jik is the proper electrostatic non-diagonal matrix element.

Frequency dependent Response

When nanoparticles of finite dimension are irradiated by an external oscillating electric

field, local plasmons arise.

Because in the FQ approach a charge is placed on each atom, the frequency-dependent

response of the system is defined once the variation of the charges in time is obtained.

In our newly developed ωFQ model, we assume electron transfer to occur under two

alternative regimes:

• Conductive regime: the exchange of electrons between contiguous atoms is gov-

erned by the dynamics of the delocalized conduction electrons, giving rise to a

damping.

• Tunneling regime: the conductive exchange of electrons between the atoms is

mediated by a quantum tunneling mechanism.
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Conductive Regime

The dynamics of the electron exchange between contiguous atoms can be typically de-

scribed by the Drude model.592 This model is generally formulated in terms of induced

dipole moments, therefore we need to adapt it to the atomistic description given by

the FQ approach.

The key equation representing the Drude model reads:592

dp

dt
= E(t)− p

τ
8.14

where p is the momentum of the electron and τ a friction-like constant due to scattering

events. The total charge derivative on atom i can be written as:

dqi
dt

=
∑
j

Aij(nj < p > ·l̂ji − ni < p > ·l̂ij) 8.15

where Aij is an effective area dividing atom i by atom j, ni is the electron density

on atom i, < p > is the momentum of an electron averaged over the trajectories

connecting i and j and l̂ji = −l̂ij is the unit vector of the line connecting j to i. By

assuming the total charge on each atom to be only marginally changed by the external

perturbation, we can assume ni = nj = n0. Therefore:

dqi
dt

= 2n0
∑
j

Aij < p > ·l̂ji 8.16

< p > ·l̂ji needs to be estimated. To this end, it is convenient to consider a monochro-

matic applied electric field, so that eq.(8.16) translates to:

−iωqi = 2n0
∑
j

Aij
< E(ω) > ·l̂ji

1/τ − iω
8.17

To proceed further, < E(ω) > ·l̂ji (the total electric field averaged over the line connect-

ing j to i) needs to be connected to atomic properties. This can be done by assuming

< E(ω) > ·l̂ji ≈ (µelj − µeli )/lij , where µeli is the electrochemical potential of atom i

and lij the distance between atoms i and j. Therefore, Eq. 8.17 becomes:

−iωqi =
2n0

1/τ − iω
∑
j

Aij
lij

(µelj − µeli )

=
2σ0/τ

1/τ − iω
∑
j

Aij
lij

(µelj − µeli )

=
∑
j

Kdru
ij (µelj − µeli ) 8.18

where n0 = σ0/τ is follows from the relationship between the electron density n0 and

the static conductance σ0. In Eq. 8.18 a Drude matrix Kdru is defined.
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Conductive vs. Tunneling Regime

Eq. 8.18 can be rewritten by introducing a Kdru matrix, of which the definition is

clearly evident from Eq. 8.18 itself. In order to make the model physically consistent,

i.e. not to overestimate electron transfer effects, the number of atom pairs considered

in Eq.8.18 has to be limited. The simplest way to achieve that is to exploit a purely

geometrical criterion, based on lij , i.e. to limit the interactions to first neighbors only.

To avoid any issue related to the specific definition of first neighbor atoms, a Fermi-like

f(lij) damping function can be introduced to mediate the Drude conductive mecha-

nism:

−iωqi =
∑
j

(1− f(lij)) ·Kdru
ij (µelj − µeli )

=
∑
j

Ktot
ij (µelj − µeli ) 8.19

where:

f(lij) =
1

1 + exp
[
−d
(
lij
s·l0ij
− 1
)] 8.20

In Eq.8.20 l0ij is the equilibrium distance between two first neighbors, whereas d and

s are parameters determining the position of the inflection point and the thickness of

the curve.

Eq.8.19 finally defines the ωFQ model. Whenever f(lij) = 0, the purely Drude conduc-

tive regime is recovered. For f(lij) > 0, Drude mechanisms exponentially turn off as

lij increases, making electron transfer to enter in a second alternative regime. The use

of the f(lij) damping function guarantees electron exchange to only occur by adopting

a conductive scheme, of which the intensity exponentially decreases as increasing the

inter-atomic distance. Therefore, the typical functional form of tunneling exchange is

recovered at the atomistic level.

Notice that from a computational point of view, Eq. 8.19 can be rewritten as:

∑
j

(
−
∑
k

Ktot
ik Dij +

∑
k

Ktot
ik Dkj + iωδij

)
qj =

∑
j

(V exti − V extj )Ktot
ij 8.21

Once ωFQ frequency-dependent charges are obtained by solving Eq. 8.19, the com-

plex polarizability α is easily calculated. In particular, starting from the charges, the

complex electric dipole µ is calculated:

µ =
∑
i

qi · ri 8.22

where ri is the distance between the atom i-th and the origin. From the complex dipole

moment, the complex polarizability α is calculated by solving:

α =
∂µ

∂E
8.23
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From such a quantity, the absorption cross section is recovered:

σabs =
4π

3c
ω tr

(
α∗
)

8.24

where c is the speed of light, ω is the external frequency and α∗ is the imaginary part

of the complex polarizability α.

Calculation of the electric current

Since we are dealing with a finite object we can use the continuity equation to define the

current that flows across a plane perpendicular to the dimer axis and passing through

the center of the junction (see Fig.8.11). ωFQ calculations yield complex response

charges to an external monochromatic field in the frequency domain.

Figure 8.11. Pictorial view of a dimer junction. Charges on the blue atoms

are those considered in the definition of the electric current (Eq.8.25).

The continuity equation gives a relation between the total induced charge and the

current flowing across the junction I(t) at time t. By referring for instance to the

dimer junction in Fig.8.11, the most intuitive way of calculating the current is to only

consider charges belonging to one of the two regions of the dimer, for instance those

assigned to the blue atoms. In the frequency domain, the current can be obtained as:

I(ω) = −iω
∑
i

qi(ω) 8.25

Therefore, the modulus of the current (maximum current) flowing across the junction

in response to a given external electric field E = E0 cos(ωt) reads:

|Imax(ω)| = ω

√∑
i

(
Re(q2i (ω)) + Im(q2i (ω))

)
8.26

In this paper, the current is calculated for any of the plasmon resonances for each

geometry of the two systems under investigation.

Computational Details

ωFQ has been implemented in a stand-alone program, named nanoFQ written in For-

tran77. The final equation 8.21 is directly solved by an LU decomposition, however the
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computational time can be further reduced by iterative methods for solving complex

linear equations involving a sparse matrix. This will be considered in future works.

Model Parametrization

ωFQ was tested against sodium nanoparticles (see below), which have been chosen

because of their simple electronic structure (only one valence electron is present on

each atom). Eq. 8.19 depends on several parameters, which were recovered from the

literature whenever possible or were fitted to reproduce reference ab-initio data. Such

parameters are summarized in Table 8.1.

Parameter Eq. Value Ref

η 8.10 0.292 t.w.

τ 8.18 1323 593

σ0 8.18 5.21 594

Aij 8.18 12.08 t.w.

d 8.20 12.0 t.w.

s 8.20 1.1 t.w.

l0ij 8.20 6.92 594

Table 8.1. ωFQ parameters for sodium nanoparticles used in this paper.

t.w.: this work. All data are given in atomic units.

Single Sodium Nanoparticles

ωFQ was first tested against selected sodium clusters (see the following Table) in order

to assign the parameters entering ωFQ equations. Such parameters were defined as the

best set to reproduce reference ab-initio plasmon resonances (ωref). The differences

between ωFQ and reference values can be inferred by data reported in the following

table and also depicted in the following Figure:

NaN ωref (eV) ω (eV)

59a 2.2 2.28

169602 3.01 3.09

331599 2.98 3.06

331602 3.06 3.06

331599 3.17 3.06

832603 3.25 3.21

1000598 3.3 3.21

aplan-wave DFT calculations performed

with Quantum Espresso, LDA xc functional,

ultrasoft pseudopotential, plane wave cut-off

of 35 Ry (140 Ry on the density), TDDFT cal-

culations with the Lanczos Liouville approach

TurboTDDFT600,601
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As it comes out evident, our choice of the model parameters makes ωFQ able to re-

produce the plasmon resonance almost perfectly for most of the selected nanoparticles.
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Almost perfect linearity with respect to the reference ab-initio data is also reported

(the slope is of the dotted line is 0.99). It is also worth stressing that such results show

that the free parameters of ωFQ, i.e. those which cannot recovered from the litera-

ture, can easily be determined once the optical properties of small nanoparticles are

known. This means that the extension of the model to nanomaterials based on other

kind of metal atoms, would simply required the knowledge of the associated plasmon

resonances.

Dependence of ωFQ absorption cross sections on the choice of

the model parameters

Among the several parameters defining our ωFQ model, n0 is the one determining the

absorption resonance (see Eq. 8.18). Thus, because n0 is defined as the ratio between

the static conductance σ0 and the damping τ , such a ratio needs to remain constant

in order to guarantee the plasmon resonance to stay the same. The results obtained

by varying both σ0 and τ , but keeping their ratio fixed are shown in the left panel of

Figure 8.12. The different curves were obtained by multiplying σ0 and τ by the factor

f shown in the key. As expected, the curves become thinner and the limit of the stick

spectrum is recovered as the ratio doubles or triplicates. On the other hand, if the

ratio decreases by a factor 3 or 10, the curve broadens, thus recovering the artificial

broadening usually employed to plot ab-initio calculations.
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Figure 8.12. (left): calculated ωFQ absorption cross sections as a function

of n0; (right): Gaussian or Lorentzian convolution of ωFQ stick compared

with ωFQ spectrum obtained with f=0.1

To further investigate the behavior of our model, ωFQ stick values were convoluted with

a Lorentzian or a Gaussian-type function, with Full Width at Half Maximum (FWHM)

of 0.1 and 0.2 eV, respectively. It is evident from the inspection of the right panel of

Fig.8.12 that the Lorentzian function best fits ωFQ values obtained with f=0.1. This

is not surprising, if Eq. 8.18 is inspected. On the basis of the data shown above, all

the spectra reported in the paper were obtained by keeping σ0 and τ to the literature

values and to convolute each stick spectrum with a Lorentzian function. In this way,

ωFQ spectra are coherent with the corresponding ab-initio values.
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A

1.84 eV 3.18 eV

0.25 eV

F
2.89 eV

2.23 eV 2.83 eV

G

D

0.84 eV 2.78 eV

B

1.51 eV 3.14 eV

C

1.24 eV 3.09 eV

0.59 eV

E

2.69 eV

2.72 eV 3.21 eV
H

Figure 8.13. ωFQ MEP maps for plasmon excitations (eV) of selected

structures A-H. The nominal gap distances d are (from A to H): 3.7, 9.7,

14.7, 22.7, 25.9, 32.1, 32.3, 34.1 Å. Blue color indicates a negative charge,

whereas red color indicates a positive charge.
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α β γ

Figure 8.14. ωFQ imaginary charges on the junction atoms before (top)

and after (bottom) the α, β and γ spectral jumps. Blue color indicates a

negative charge, whereas red color indicates a positive charge.

Figure 8.15. DFT absolute value of the electric current through the plas-

monic nanojunction as a function of the elongation distance. Colored arrows

indicate the direction of the process (approaching, in red, and retracting,

in blue and orange). Black arrows indicate the position of the α β and γ

spectral jumps. Data reproduced from Ref.233
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Daniel Sanchez-Portal (Centro de Fisica de Materiales CSIC-UPV/EHU Donostia-

San Sebastian) for providing us the molecular structures of their studies. Financial

191



8. A Classical Picture of Subnanometer Junctions: an Atomistic Drude Approach to Nanoplasmonics

support from SNS ”Progetti Interni Coordinati 2016” is acknowledged. C. C. grate-

fully acknowledges the support of H2020-MSCA-ITN-2017 European Training Network

“Computational Spectroscopy In Natural sciences and Engineering” (COSINE), grant

number 765739. S. C. acknowledges funding from ERC under the grant ERC-CoG-

681285 TAME-Plasmons. We are thankful for the computer resources provided by the

high performance computer facilities of the SMART Laboratory (http://smart.sns.it/).

192



Chapter 9

Summary, Conclusions and

Future Perspectives

Whenever a theory appears to you as the only possible one,

take this as a sign that you have neither understood the theory

nor the problem which it was intended to solve

(Karl Popper)

In this thesis work, a theoretical framework and the related computational tools to

describe the energy and response properties of complex molecular systems has been

developed, implemented and tested. The work has been divided into three main steps:

first, QM/Fluctuating Charge(FQ) developed in our group has been applied and ex-

tended to the calculation of different properties/spectroscopies of molecular systems in

aqueous solution. Then, the purely electrostatic description given by commonly used

QM/MM approaches has been extended so to include repulsion and dispersion energy

terms into the QM Hamiltonian, thus allowing a future extension to molecular prop-

erties/spectroscopies. QM/FQ has also been extended so that an additional source of

polarization, described in terms of fluctuating dipoles, is included in the MM portion.

Finally, a novel FQ-based approach able to accurately describe the optical properties

of a metal nanomaterial under the effect of an external electric oscillating field has

been proposed. All the theoretical methods proposed in this thesis are expressed in

a common framework in terms of the QM density. Due to this particular feature,

all the proposed approaches can be further extended to molecular properties/spectro-

scopies by following what has already been done for QM/FQ.56 In particular, once

energy is formulated, molecular properties/spectroscopies can be obtained by appro-

priate (quasi)energy derivatives/response functions.

In Chapter 1, QM/FQ has been applied to the calculation of IR, Vibrational Circular

Dichroism (VCD), Raman and Raman Optical Activity (ROA) spectra of (L)-Methyl

Lactate and (S)-Glycidol in aqueous solution. Although the two molecules are rather

small (15 and 12 atoms, respectively) they are characterized by several conformers in

aqueous solution. Therefore, in order to obtain computed spectra which are in good

agreement with their experimental counterparts, a good level of interplay between con-
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formational and solvent effects is mandatory. QM/FQ shows an excellent agreement

between computed and experimental spectra, and of higher quality if compared to stan-

dard continuum solvation approaches. Such discrepancies are not only due to the inac-

curate description of HB interactions in the continuum approach, but also to a different

sampling of the PES resulting from the static Polarizable Continuum Model (PCM) or

dynamic QM/FQ+Molecular Dynamics (MD) approach. In Chapter 2, we have pre-

sented a computational study examining the merits and shortcomings of five different

solvation models (QM/PCM, QM/QMw/PCM, non polarizable QM/MM, QM/FQ,

QM/QMw/PCM) in modeling UV-Vis absorption spectra of organic chromophores in

aqueous solution. The picture that has emerged shows that the performance of each

model is highly dependent on the specific properties of each system, in particular on

the extent of charge transfer character of the different excitations. However, a general

conclusion that can be drawn is that the inclusion of solute-solvent polarization effects,

whether using continuum or discrete models, can often be crucial and lead to a signif-

icant improvement in the results. In Chapter 3, the extension of QM/FQ approach to

the calculation of SHG of selected organic acids in aqueous solution is reported. In the

selected systems, the interaction with the surrounding environment is dominated by

HB interactions. QM/FQ hows a good agreement in both the modeling of solvent ef-

fects and in the reproduction of experimental SHG data extracted from Hyper Rayleigh

Scattering (HRS) experiments. In particular, also in case of SHG, polarization effects

as reproduced by QM/FQ, are mandatory to get good agreement with experimental

data.

On the other hand, QM/FQ is based on the assumption that electrostatic energy terms

dominate QM/MM interactions. Although this can be a reasonable assumption in case

of electrostatic-dominated systems, as aqueous solutions, this cannot be considered

valid in case of other environments. In addition, in FQ only charges are placed in the

MM portion. This poses some conceptual issues because only monopoles, i.e. zeroth

order of the electrostatic Taylor expansion, are taken into consideration. These two

conceptual limitations of QM/FQ have been overcome in Chapters 4-7, in which a

model to include repulsion/dispersion contributions and a model which considers both

fluctuating charges and fluctuating dipoles (FQFµ) have been proposed. Both novel

approaches are based on the strong points of QM/FQ. In fact, they are both formulated

in terms of the QM density, and the variational formalism of QM/FQ is kept.

The inclusion of repulsion/dispersion contributions into the molecular Hamiltonian,

and the further extension of the electrostatic description in QM/FQFµ pave the way

to the definition of a general QM/MM approach with ab-initio accuracy. As reported

for EPR hyperfine coupling constants (see Chapter 6), an adequate inclusion of all the

different contributions (i.e. electrostatics, repulsion and dispersion) can lead to results

directly comparable with experimental findings. Furthermore, a reliable inclusion of

all the different contributions to describe solute/solvent interaction can also permit

an analysis of the influence of the different terms on molecular properties and spec-

troscopies. This is worth being investigated: in fact, several approach to decompose

interaction energies have been proposed in the past, but to the best of our knowledge,

a similar analysis focused on properties and spectroscopies has never been performed.

In this thesis, both the theoretical model to include Pauli Repulsion and dispersion and

194



the novel QM/FQFµ approach have only been applied to aqueous solutions. However,

their formulation is general enough to be applied to any kind of environment, pending

a suitable parametrization. Such a parametrization can be effectively performed by

following the strategy outlined in Sections 5.5.1 and 7.4.1. In this sense, molecule/en-

vironment couples dominated by non electrostatics can be treated. This is for instance

the case of benzene solutions: our model, suitably extended to treat such an environ-

ment, can be used to verify and deeply understand the necessity of resorting to cluster

approaches for an accurate descriptioin of molecular properties, such as the Optical

Rotation of (R)-Methyloxirane in benzene solution.604

The last chapter of the thesis is dedicated to the novel ωFQ approach to describe

the optical properties of nanoparticles and nanoaggregates, in particular the so-called

sub-nanometer nanojunctions. ωFQ model is based on classical electrodynamics, ef-

fectively corrected to consider purely quantum effects such as electron tunneling. This

is achieved trough a damping Fermi-like function which exponentially decreases the

interaction between the charges.

The main future perspective of ωFQ is to describe optical properties and spectroscopies

of molecules adsorbed on plasmonic nanomaterials. When such a system is irradiated

by an external oscillating electric field, the properties and the spectroscopic signals of

the molecule are enhanced, giving rise to signals which can be detected for instance by

resorting to Surface Enhanced Raman Scattering (SERS).210 The main reasons of such

an enhancement are attributed to the enhancement of the electric field which acts on

the molecule as a response of the optical absorption of the nanomaterial. Therefore,

in order to appropriately reproduce SERS, an effective model to describe the nanoma-

terial and its spectroscopic absorption is a fundamental prerequisite. ωFQ is a good

candidate to describe such features and the its application to SERS would be worth

being investigated. In addition, ωFQ has been also applied to the challenging problem

of nanojunctions, i.e. sub-nanometer gaps between two interacting nanoparticles, re-

sulting in a nice agreement with ab-initio data. Nanojunctions are usually exploited

in Surface Enhanced spectroscopy to obtain single molecule detection, due to the gar-

gantuan enhancement of the electric field in the gap. To conclude this discussion, ωFQ

has also the potentiality of being applied to 2D materials, such as graphene sheets.

This can be done by including the features of such substrates in the theoretical formu-

lation of the model, such as Fermi Level Energy, graphene 2D-density and its effective

mass. In such a way, also newly experimental techniques, such as Graphene Enhanced

Raman Scattering (GERS),605 which have never been theoretically studied, could be

investigated for the first time.
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[303] Borba, A.; Gómez-Zavaglia, A.; Lapinski, L.; Fausto, R. Vib. Spectrosc. 2004, 36, 79–88.

[304] Freedman, T. B.; Lee, E.; Nafie, L. A. J. Phys. Chem. A 2000, 104, 3944–3951.

[305] Aparicio, S. J. Phys. Chem. A 2007, 111, 4671–4683.

[306] Borho, N.; Xu, Y. Phys. Chem. Chem. Phys. 2007, 9, 1324–1328.

[307] Sun, W.; Wu, J.; Zheng, B.; Zhu, Y.; Liu, C. J. Mol. Struct.: THEOCHEM 2007, 809,

161–169.

[308] Conrad, A.; Teumelsan, N.; Wang, P.; Tubergen, M. J. Phys. Chem. A 2009, 114,

336–342.

[309] Aparicio, S. J. Phys. Chem. A 2007, 111, 4671–4683, PMID: 17489567.

[310] Qiu, S.; Li, G.; Wang, P.; Jia, G.; Feng, Z.; Li, C. J. Raman Spectrosc. 2012, 43,

503–513.

[311] Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Le-

long, D.; Rosanski, W.; Cieplak, P. Phys. Chem. Chem. Phys. 2010, 12, 7821–7839.

[312] Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269–

10280.

[313] Barone, V.; Cimino, P.; Pedone, A. Magn. Reson. Chem. 2010, 48, S11–S22.

[314] Stendardo, E.; Pedone, A.; Cimino, P.; Menziani, M. C.; Crescenzi, O.; Barone, V. Phys.

Chem. Chem. Phys. 2010, 12, 11697–11709.

[315] Scherrer, A.; Vuilleumier, R.; Sebastiani, D. J. Chem. Theory Comput. 2013, 9, 5305–

5312.

[316] Barone, V.; Baiardi, A.; Biczysko, M.; Bloino, J.; Cappelli, C.; Lipparini, F. Phys.

Chem. Chem. Phys. 2012, 14, 12404–12422.

[317] Hättig, C.; Weigend, F. J. Chem. Phys. 2000, 113, 5154–5161.

[318] Egidi, F.; Segado, M.; Koch, H.; Cappelli, C.; Barone, V. J. Chem. Phys. 2014, 141,

224114.

[319] Improta, R.; Barone, V. J. Am. Chem. Soc. 2004, 126, 14320–14321.

[320] Barone, V. Computational strategies for spectroscopy: from small molecules to nano

systems; John Wiley & Sons, 2011.

210



BIBLIOGRAPHY

[321] Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. J. Chem. Theory Comput.

2009, 5, 2420–2435.

[322] Jacquemin, D.; Perpete, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory

Comput. 2008, 4, 123–135.

[323] Laurent, A. D.; Jacquemin, D. Int. J. Quantum Chem. 2013, 113, 2019–2039.

[324] Goerigk, L.; Grimme, S. J. Chem. Phys. 2010, 132, 184103.

[325] Li, J.; Cramer, C. J.; Truhlar, D. G. Int. J. Quantum Chem. 2000, 77, 264–280.

[326] Silva-Junior, M. R.; Schreiber, M.; Sauer, S. P.; Thiel, W. J. Chem. Phys. 2008, 129,

104103.

[327] Caricato, M.; Trucks, G. W.; Frisch, M. J.; Wiberg, K. B. J. Chem. Theory Comput.

2010, 6, 370–383.

[328] Isegawa, M.; Peverati, R.; Truhlar, D. G. J. Chem. Phys. 2012, 137, 244104.

[329] Isegawa, M.; Truhlar, D. G. J. Chem. Phys. 2013, 138, 134111.

[330] Alipour, M. Theor. Chem. Acc. 2016, 135, 67.

[331] Maier, T. M.; Bahmann, H.; Arbuznikov, A. V.; Kaupp, M. J. Chem. Phys. 2016, 144,

074106.

[332] Reichardt, C. Chem. Soc. Rev. 1992, 21, 147–153.

[333] Buncel, E.; Rajagopal, S. Acc. Chem. Res. 1990, 23, 226–231.

[334] Reichardt, C. Chem. Rev. 1994, 94, 2319–2358.

[335] Cannelli, O.; Giovannini, T.; Baiardi, A.; Carlotti, B.; Elisei, F.; Cappelli, C. Phys.

Chem. Chem. Phys. 2017, 19, 32544–32555.

[336] Prampolini, G.; Bellina, F.; Biczysko, M.; Cappelli, C.; Carta, L.; Lessi, M.; Pucci, A.;

Ruggeri, G.; Barone, V. Chemistry Eur. J. 2013, 19, 1996–2004.

[337] Tosi, I.; Segado Centellas, M.; Campioli, E.; Iagatti, A.; Lapini, A.; Sissa, C.; Baldini, L.;

Cappelli, C.; Di Donato, M.; Sansone, F.; Santoro, F.; Terenziani, F. ChemPhysChem

2016, 17, 1686–1706.

[338] Carlotti, B.; Cesaretti, A.; Cannelli, O.; Giovannini, T.; Cappelli, C.; Bonaccorso, C.;

Fortuna, C. G.; Elisei, F.; Spalletti, A. J. Phys. Chem. C 2018, 122, 2285–2296.

[339] Lapini, A.; Fabbrizzi, P.; Piccardo, M.; di Donato, M.; Lascialfari, L.; Foggi, P.; Cic-

chi, S.; Biczysko, M.; Carnimeo, I.; Santoro, F.; Cappelli, C.; Righini, R. Phys. Chem.

Chem. Phys. 2014, 16, 10059–10074.

[340] Budzák, S.; Laurent, A. D.; Laurence, C.; Medved’, M.; Jacquemin, D. J. Chem. Theory

Comput. 2016, 12, 1919–1929.

[341] Labat, F.; Le Bahers, T.; Ciofini, I.; Adamo, C. Acc. Chem. Res. 2012, 45, 1268–1277.

[342] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2013, 9,

3649–3659.

211



BIBLIOGRAPHY

[343] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2014, 119, 958–967.

[344] Caricato, M.; Lipparini, F.; Scalmani, G.; Cappelli, C.; Barone, V. J. Chem. Theory

Comput. 2013, 9, 3035–3042.

[345] Mart́ınez-Fernández, L.; Pepino, A. J.; Segarra-Mart́ı, J.; Banyasz, A.; Garavelli, M.;

Improta, R. J. Chem. Theory Comput. 2016, 12, 4430–4439.

[346] Mancini, G.; Brancato, G.; Barone, V. J. Chem. Theory Comput. 2014, 10, 1150–1163.

[347] Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57.

[348] Abrahama, M. J.; Murtola, T.; Schulz, R.; Pálla, S.; Smith, J. C.; Hess, B.; Lindahl, E.
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