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Abstract 

 

Parkinson’s disease (PD) is the most common movement disorder and the second most common 

neurodegenerative disorder, with a prevalence of 1 to 2 individuals per 1000 at any age, 

increasing to 1% of the population above 60 years. The pathological hallmarks of PD are neuronal 

proteinaceous inclusions called Lewy bodies and neurites – rich in alpha-synuclein (αS) – and 

death of dopaminergic neurons in the pars compacta of the substantia nigra, which can only be 

detected in patients’ brains post mortem. Diagnosis is mainly based on the observation of the 

typical motor symptoms (tremor, rigidity, bradykinesia) caused by these molecular alterations. 

Although PD is considered a movement disorder, patients also suffer from a variety of non motor 

alterations, some of which (e.g. constipation) can occur even decades before the onset of the 

motor ones. Moreover, Lewy pathology has been found in patients not only in the central (CNS), 

but also in the peripheral and enteric nervous systems (ENS), suggesting a correlation between αS 

inclusions in these sites and non motor symptoms, and a possible spreading of the pathology from 

the periphery to the brain. This study is focused on gastrointestinal (GI) dysfunctions and 

specifically constipation, for which the relationship with PD development is still poorly 

understood.  

For this research we used a transgenic (Tg) mouse model over-expressing human A53T αS under 

the control of the murine PrP promoter (line G2-3), one of the first genetic model developed to 

study α-synucleinopathies (which include PD). These mice develop neurological abnormalities 

after 9 months of age that manifest with motor symptoms which become progressively more 

severe culminating into a fatal paralysis within 14-21 days. Diseased mice show an accumulation 

of intracellular, phosphorylated and ubiquitinated αS inclusions, neuroinflammation and neuronal 

degeneration in the CNS. For the purpose of this study, sick αS Tg mice at 12-14 months, 

presymptomatic mice at 1, 2, 3, 6, 9 and 12 (if still healthy) months, and age-matched nTg 

littermate controls were used. Presymptomatic αS Tg mice displayed a drastic delay in GI transit 

time of almost 2 hours from 3 months old that increased with age, reaching more than 3 hours 

delay at 6 months. Such delay was associated with abnormal formation of stools for αS Tgs, that 

resulted in less abundant but longer pellet excreted, although normal for dry and wet weight. After 

that we recorded the contractile activity from longitudinal and circular muscle preparations of 

colon and ileum, to verify the intestinal function. In line with our previous observations, 

electrically evoked contractions of the colon, but not of the ileum, showed a reduced response in 

both muscle layers in αS Tg mice already at 3 months of age, mainly due to an impaired 

cholinergic transmission of the ENS. Furthermore, molecular analyses were carried out to check 

on αS enteric distribution. Interestingly, insoluble and aggregated αS was found in enteric neurons 

in both myenteric and submucosal plexi only in the colon and not in the small intestine of 3 
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months old Tg mice, and exacerbated with age, mimicking the increase in transit delay and 

contraction deficits showed in behavioral and electrical recording experiments. 

Following this GI characterization of PrP A53T αS Tg mice, we designed a disease modifying 

therapy to be carried out with an antisense oligonucleotide (ASO) against αS, in presymptomatic 

animals. After an in vitro evaluation, the selected ASO was administred to 10 weeks old Tg mice 

for 7 days, through osmotic pumps or rectal administration. Very surprisingly, Tg mice which 

received the ASO displayed a significant reduction in their GI transit time compared to the values 

before starting the treatment and to the PBS control group, for both administration routes. 

Together with the improvement in constipation, ASO treatment induced a reduction, although not 

significant, of the total level of αS in the distal colon for both delivery methods. 

This research demonstrates for the first time that the PrP human A53T αS Tg mice line G2-3 is a 

unique model to investigate GI dysfunction in prodromal PD, thanks to the net spatio-temporal 

separation of αS-driven pathologies in the ENS and in the CNS. Moreover, the promising results 

obtained in this model by using an ASO peripherally support the correlation between GI behavior 

and αS levels and the hypothesis that lowering the total level of αS can be a successful disease 

modifying therapy against PD. 
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Abbreviations

 

Alpha-synuclein (αS)  

Alpha-synuclein human gene (SNCA) 

Antisense oligonucleotide (ASO) 

Blood brain barrier (BBB) 
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Central nervous system (CNS) 
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Peripheral nervous system (PNS) 
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Phosphate-buffered saline (PBS) 

Prion protein (PrP) 

Room temperature (RT) 

Standard error mean (SEM) 

Substantia nigra (SN) 

Substantia nigra pars compacta (SNpc) 

Substantia nigra pars reticulata (SNpr) 

Small ubiquitin-related modifier (SUMO) 

Tris-buffered saline (TBS) 

Transgenic (Tg) 

Whole gut transit time (WGTT) 
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Introduction 

Parkinson’s disease 

 

Parkinson’s disease (PD) is the most common movement disorder and the second most common 

neurodegenerative disorder, after Alzheimer’s disease. The prevalence of PD increases with 

aging: it counts 1 to 2 affected individuals per 1000 at any age (Von Campenhausen et al., 2005), 

1% of the population above 60 years (de Lau and Breteler, 2006) and 4% above 85 years (de Rijk 

et al., 1995). The age of onset is usually between 65 to 70 years, and only for a rare recessive 

form it occurs before the age of 40, in less than 5% of the cases (Tysnes and Storstein, 2017). PD 

is an irreversible and slowly progressive neurodegenerative movement disorder that impairs 

movement control. Together with multiple system atrophy, dementia with Lewy bodies (Peelaerts 

et al., 2018) and pure autonomic failure (Kaufmann et al., 2017), PD belongs to a group of 

diseases named α-synucleinopathies, because of the abnormal accumulation of intracellular 

proteinaceous inclusions mostly made of aggregated alpha-synuclein (αS). Specifically, the 

pathological hallmarks of PD are the loss of dopaminergic neurons in the substantia nigra pars 

compacta (SNpc) and the presence of αS positive intraneuronal inclusions called Lewy bodies 

(LBs) or Lewy neurites (LNs), depending on whether they are located in the soma or in the 

neurites, respectively (Goedert et al., 2013). LBs and LNs were discovered by Freiderich Lewy in 

1912, but only after almost a century it has been described that they are mainly composed by 

fibrillar aggregates of post-translationally modified αS and ubiquitin (Spillantini et al., 1997), 

together with a large number of other constituents, such as tau, parkin and neurofilaments (Arima, 

1999; Schlossmacher et al., 2002; Shults, 2006). 

 

 

Fig.1.1 The pathological hallmarks of clinical PD. A) 

Transverse hemisection of the midbrain of a control and a 

patient with clinical PD, showing the marked reduction in the 

black pigment within the substantia nigra region. B, C) 

Haematoxylin and eosin stained sections showing at higher 

magnification the pigmented neurons of the substantia nigra in 

a control (B) and a PD patient (C). D, E) Intracytoplasmic LBs 

in remaining pigmented neuron of the substantia nigra of a 

subject with clinical PD, showing the eosinophilic core and 

paler halo in haematoxylin and eosin staining (D) and the dark 

aggregation of αS using immunoperoxidase with cresyl violet 

counterstaining (E) (Obeso et al., 2017). 



10 
 

Etiology of PD 

 

As for many neurodegenerative diseases, the etiology of PD is still unknown for most identified 

cases. PD is a multifactorial disorder, for which several factors (genetics, aging, environment) are 

thought to play a role in causing the pathology. Concerning the environmental aspect, it has been 

shown that exposure to certain pesticides (e.g. rotenone, paraquat, maneb), heavy metals (e.g. Fe, 

Mn, Cu), toxins such as 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) can lead to PD 

(Polito et al., 2016). Tobacco, alcohol and coffee consumption are examples of environmental 

factors negatively correlated with the risk of developing PD (Kalia and Lang, 2015). 

As for the genetics, two main forms of PD can be distinguished, the hereditary or familial form, 

which accounts for about 5-10% of total cases, and the idiopathic or sporadic form for all the 

others (Lill, 2016). Several gene loci have been linked to the familial form of PD, and first degree 

family members of affected patients have a 2- to 3-fold increased risk to develop the disease 

compared to control subjects in the general population (Sveinbjornsdottir et al., 2000; Savica et 

al., 2016). To date, the mutations present in the αS gene (SNCA) and the LRRK2 gene account 

for the majority of genetic PD pedigree identified and are responsible for the autosomal-dominant 

transmission of the disease. In most of these cases, the symptomatology and pathogenesis do not 

differ from the sporadic form of PD. Autosomal-recessive forms of PD have also been described. 

The most frequent is associated with mutations in the Parkin gene. The transmission of this form 

is more rare and differs from the other cases (both genetic or sporadic), including an early onset 

(before 30-40 years of age). It is interesting to notice that, even in cases of sporadic PD, several 

PARK-designated polymorphisms (SNCA, UCHL1, LRRK2, PARK 16, GAK) and a few others 

(MAPT, GBA, NAT2, INOS2A, GAK, HLA-DRA, APOE) have been linked to a higher risk of 

developing the disease, because of a genetic predisposition. Specifically, the polymorphic length 

and single-nucleotide polymorphism (SNP) variations in the SNCA gene are known to be the 

most significant risk factors, followed by the occurrence of the G2385R and R1628P missense 

SNPs in the LRRK2 gene. In addition to SNCA and LRRK2, which can be both associated to the 

monogenic disease and a major risk factor, heterozygous β-glucocerebrosidase mutations and tau 

variants are examples of PD-associated risk factor (Klein and and Westernberger, 2012; Rana et 

al., 2013; Kalia and Lang, 2015). 
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PARK locus Gene State Inheritance Function 

PARK1/4 SNCA Confirmed AD 
Protein aggregation; prion-like transmission; 

synaptic function 

PARK2 PARKIN Confirmed AR 
Mitochondrial maintenance; mitophagy; 

ubiquitin-proteasome 

PARK3 Unknown Putative AD Unknown 

PARK5 UCH-L1 Putative AD Ubiquitin hydrolase 

PARK6 PINK1 Confirmed AR Mitochondrial function; mitophagy 

PARK7 DJ-1 Confirmed AR Mitochondrial function; cell stress response 

PARK8 LRRK2 Confirmed AD 

Protein and membrane trafficking; neurite 

structure; lysosomal autophagy; synaptic 

function 

PARK9 ATP13A2 Confirmed AR 
Lysosomal autophagy; mitochondrial 

function 

PARK10 Unknown Confirmed Risk factor Unknown 

PARK11 GIGYF2 Putative AD 
Tyrosine kinase receptor signalling; insulin-

like growth factor pathway 

PARK12 Unknown Confirmed Risk factor Unknown 

PARK13 HTRA2 Putative AD Mitochondrial function 

PARK14 PLA2G6 Confirmed AR Mitochondrial function 

PARK15 FBX07 Confirmed AR 
Mitochondrial maintenance; mitophagy; 

ubiquitin-proteasome 

PARK16 RAB7L1 Confirmed Risk factor 
Protein and membrane trafficking; 

lysosomal autophagy 

PARK17 VPS35 Confirmed AD Lysosomal autophagy; endocytosis 

PARK18 EIF4G1 Putative AD Protein translation 

PARK19 DNAJC6 Confirmed AR Synaptic function; endocytosis 

PARK20 SYNJ1 Confirmed AR Synaptic function; endocytosis 

                                               
Tab.1.2 PARK loci and identified genes linked to familial PD. The five genes underlined in bold account 

for the monogenic form of the disease. The most characterized point mutations in the SNCA gene are 

A53T, A30P and E46K. Heterozygous mutations in the LRRK2 gene are responsible for autosomal-

dominant PD (Zimprich et al., 2004). Heterozygous loss-of-function mutations in the PARK2 gene are 

responsible for the autosomal-recessive form, also referred to as juvenile PD because of its early onset 

(Valente et al., 2004). 
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Motor circuits in PD 

 

The loss of SNpc neurons in PD patients gradually leads to a severe striatal dopamine (DA) 

deficiency, which is responsible for the major motor symptoms. For this reason, the main 

treatment still in use is L-DOPA, a DA precursor which replaces the striatal DA and thus 

improves motor dysfunction. In healthy subjects, motor cortical areas are involved in the planning 

and execution of movements. In order to perform smooth and fine motor tasks, motor cortical 

areas have to communicate with deep brain circuits, among which a pivotal role is played by a 

group of nuclei called basal ganglia (Mink, 1996). The basal ganglia count several interconnected 

subcortical nuclei: the striatum (caudate and putamen), the globus pallidus externus, the globus 

pallidus internus, the substantia nigra (SN), and the subthalamic nucleus. This network 

differentially connects with motor cortical areas (Obeso et al., 2000). In particular, there are two 

loops, the direct and indirect pathways, which originate from two different populations of striatal 

projecting neurons and project to different nuclei. These pathways have opposite effects on 

movement, meaning that the direct pathway promotes it, whilst the indirect one inhibits it (Kravitz 

et al., 2013). The crucial role of the nigrostriatal circuit is to exert the dual effect of exciting the 

direct pathway and inhibiting the indirect one. The SN is made of two distinct structures, the 

SNpc and the SN pars reticulata (SNpr). The neurons of the SNpc contain neuromelanin and use 

DA as neurotransmitter. The main recipients of nigral projections are the striatum, the 

subthalamic nucleus and the globus pallidus. In PD patients, the loss of DA neurons in the SNpc 

affects only the nigrostriatal circuit and leads to a severe DA denervation of the striatum (Blandini 

et al., 2000). The loss of nigrostriatal DA neurons leads to bradykinesia or akinesia in PD patiens, 

since the indirect pathway inhibition of motor cortex overtakes the direct pathway excitation of 

motor cortex, finally causing a general inhibition of motor cortical regions.  
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Fig.1.3 Schematic diagram illustrating the changes occurring in the basal ganglia functional 

organization in PD, compared to normal condition. Relative thickness of arrows indicate the degrees 

of activation of the transmitter pathways. Medial globus pallidus, MGP; lateral globus pallidus, LGP; 

substantia nigra pars compacta, SNc; substantia pars reticulate, SNr; subthalamic nucleus, STN 

(Blandini et al., 2000). 

 

Besides voluntary movements, DA can control higher brain functions such as motivated behaviors 

and emotional states. While changes in these latter circuits could partially explain certain non 

motor symptoms in PD, it has been shown recently how neuronal loss is not limited to DA 

neurons in the SNpc, but it also affects other neuronal populations such as serotoninergic neurons 

in the raphe and cholinergic neurons in the basal forebrain (Braak et al., 2003a; Bohnen and 

Albin, 2011). In fact, loss of cholinergic neurons in specific areas has been related to non motor 

symptoms such as memory loss and cognitive dysfunction, serotoninergic to depression and mood 

disturbances, and adrenergic to attention dysfunction (Pillon et al., 1989). 

 

Motor and non motor symptoms 

 

PD diagnosis is currently made upon the presence of typical motor symptoms (bradykinesia, 

rigidity and tremor) caused by death of DA neurons in SNpc. Bradykinesia is the slowness of 

initiation of voluntary movements with a progressive reduction of speed and amplitude, rigidity is 

defined as stiffness and increased tone of muscles, and PD tremor is specifically a 4- to 6-Hz rest 

tremor. All these features usually manifest unilaterally or at least asymmetrically. Recently, 

postural instability has been removed from initial diagnostic criteria, since it usually appears in 

patients during the late phases of the disease (Berardelli et al., 2013). As previously mentioned, 

the symptomatic therapy used for PD patients to date (L-DOPA) focuses on DA replacement 

strategies. Unfortunately, the progression of the disease and increased doses of L-DOPA lead to 

the appereance of motor complications, characterized by fluctuations between “on” and “off” 

periods (respectively presence and absence of motor symptoms control effect) and dyskinesias, 

defined as involuntary choreiform or dystonic movements. These complications are often worse 

for patients compared to the original symptoms, and can be accompanied by non motor 

complications such as psychosis. It is important to underline that already from the first 

observations by James Parkinson (1755 –1824) more than two centuries ago and by Jean-Martin 

Charcot (1825-1893) right after him, clinical features of PD patients have always revealed a very 

complex setting, with a plethora of non motor symptoms which unfortunately did not get the 

deserving attention in the following decades.  
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Fig.1.4 Drawing by Jean-Martin Charcot (1887) 

depicting the typical flexion posture of a PD patient. 

The French neurologist gave a great contribution to the 

clinical studies on PD, expanding and refining the early 

descriptions made by James Parkinson, about half a 

century before. (Goldman and Goetz, 2007). 

 

 

The first contemporary account on non motor symptoms occured in fact after the introduction of 

L-DOPA in the 1960s, when clinicians and scientists started to report that the drug could improve 

several non motor dysfunctions such as sialorrhea, mood disturbances, constipation and dysuria 

(Barbeau, 1969; Yahr et al., 1969). Non motor symptoms were finally taken into account, but it 

took till the 21
st
 century to really appreciate and measure their impact on PD (Martinez-Martin et 

al., 2011; Erro et al., 2013; Špica et al., 2013; Kalia and Lang, 2015). Overall, the variety of 

symptoms experienced by PD patients which affects both the central nervous system (CNS) and 

the peripheral nervous system (PNS) has obviously a deep impact on their quality of life, but 

probably the most important aspect of non motor dysfunctions is that not only they occur across 

all motor stages of PD, but some of them are present very early during its prodromal phase. In 

particular, GI and olfactory dysfunctions (partial or total loss of smell, named hyposmia or 

anosmia respectively) can arise even decades before the onset of motor abnormalities (Fasano et 

al., 2015; Schapira et al., 2017), and this is why their analysis can be potentially useful for early 

diagnosis and therapeutic intervention. 

 

 

Fig.1.5 Time course progression of PD and related symptoms. Diagnosis of PD (at time 0) is made upon 

the onset of motor symptoms (tremor, rigidity, bradykinesia), preceded by a prodromal phase of 20 years or 
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more, characterised by specific non motor dysfunctions. Additional non motor features arise after diagnosis 

during the progression of the pathology, with a strong impact on the quality of life of patients. Axial motor 

symptoms, such as postural instability with frequent falls and freezing of gait, are no longer considered for 

diagnosis, since they tend to appear during the advanced stages. Long-term complications of L-DOPA 

therapy (fluctuations, dyskinesia, psychosis) contribute to disability of patients. EDS, excessive daytime 

sleepiness; MCI, mild cognitive impairment; RBD, REM sleep behaviour disorder (Kalia and Lang, 2015). 

 

By affecting up to 80% of PD patients, constipation represents the most frequent GI dysfunction 

in PD (Cersosimo et al., 2013) and even Parkinson in his famous essay says “the bowels, which 

had been all along torpid, now in most cases, demand stimulating medicines of very considerable 

power” referring to constipation in patients suffering of the “shaking palsy”. We now know that 

patients with a previous diagnosis of constipation have an increased risk of developing PD (Stirpe 

et al., 2016), e.g. less than one bowel movement per day is linked to a 2.7-fold increase in risk 

(Abbott et al., 2001). A more accurate definition of constipation reports infrequent bowel 

movements, impairment of propulsive colonic motility, prolonged colonic transit time, reduced 

rectal contractions and abnormalities in motor activity of the anal sphincter of the patients 

(Andrews and Storr, 2011). However, to date we still know very little about the relationship 

between bowel dysfunctions and development of PD, mostly because there is a lack of animal 

models able to recapitulate such symptoms in a manner translatable to human cases (see 

hereinafter). 

 

Alpha-synuclein 

 

αS, β-synuclein and γ-synuclein are the three proteins which compose the family of synucleins, 

discovered by Maroteaux in 1988 (Maroteaux et al., 1988). At first, αS was found to be present in 

the nucleus (the name etymologically means “with the nucleus”) and in the presynaptic terminals 

of neurons. In 1997, this protein was linked to the autosomal-dominant form of PD, after the 

missense mutation A53T (a threonine substitution to an alanine at position 53) in the SNCA gene 

was found in a family pedigree with early onset PD (Polymeropoulos, 1997). Remarkably, the 

very same year another study showed that αS is the major constituent of LBs and LNs (Spillantini 

et al., 1997). These two independent findings gave for the first time a strong proof that the SNCA 

gene, both with mutated and wild-type isoforms, is associated to genetic and sporadic PD and 

other α-synucleinopathies. 

The gene encoding for human αS contains 10 exons and is located in the long arm of chromosome 

4 at position 22.1. Besides the A53T mutation, which to date is the most recurrent and better 
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characterized (Polymeropoulos, 1997), several other missense mutations in the SNCA gene, 

associated with familial PD and dementia with LBs, have been mapped in the following years, 

e.g. A30P (Krüger et al., 1998), E46K (Zarranz et al., 2004), H50Q (Appel-Cresswell et al., 2013; 

Proukakis et al., 2013), G51D (Lesage et al., 2013a) and A53E (Pasanen et al., 2014). In addition, 

duplication or triplication of the SNCA gene have been related to genetic PD, proving that the 

pathology can also be caused by only increasing the amount of the wild-type protein (Singleton et 

al., 2003; Ibáñez et al., 2004). All missense mutations and amplifications of the SNCA gene were 

associated with a dominant inheritance and an early onset of the disease compared to the sporadic 

forms. Due to the fact that overexpressing wild-type or mutated αS leads to neurodegeneration in 

various animal models (Feany and Bender, 2000; Masliah, 2000; Lakso et al., 2003), whereas 

ablating αS has little or no effect in mice (Abeliovich et al., 2000), αS toxicity has been linked to 

a gain-of-function mechanism, in which an altered version of the protein ultimately causes 

neuronal damage. 

 

Physiology of αS 

 

αS is an acidic protein made of 140 amino acids, with a molecular weight of about 14 kDa, 

mainly expressed in neurons and possibly oligodendrocytes (in very low amount and still under 

debate) of the CNS (Asi et al., 2014), but also in the PNS, in circulating blood cells and in 

hematopoietic cells of the bone marrow, under physiological conditions (Nakai et al., 2007; 

Gardai et al., 2013). 

The structure of the protein can be divided in three regions:  

 

1. the N-terminal domain (residues 1-60) is amphipathic and interacts with 

phospholipids present in membranes and micelles, it also contains the sites for 

missense point mutations responsible for monogenic familial PD; 

2. the non amyloid β-component (NAC) (residues 61-95) is hydrophobic and plays an 

important role in self-aggregation (El-Agnaf et al., 1998); the name derives from the 

fact that this fragment of the protein was identified in senile plaques of AD patients 

although not as abuntant as the Aβ peptide;  

3. the C-terminal domain (96-140) is acidic because of a higher proportion of charged 

residues and represents the main site of post-translational modifications, truncation 

(Li et al., 2005) and interaction with modulators of the aggregation e.g. metal cations 

(Binolfi et al., 2006). 
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The whole protein accounts seven imperfect 11-residues repeats with a conserved hexameric 

sequence (KTKEGV) predicted to form an amphipathic α-helix: four in the N-terminal region and 

three in the NAC region (George et al., 1995). This domain seems to serve also as a hidden 

mitochondrial targeting sequence, potentially linking αS to mitochondrial dysfunctions (Devi et 

al., 2008). 

 

Fig.1.6 αS protein in humans. αS protein is made of 140 amino acids, in which several point mutations 

(highlighted in red) have been associated with genetic forms of PD (Polymeropoulos et al., 1997; Krüger et 

al., 1998; Lesage et al., 2013b; Appel-Cresswell et al., 2013; Zarranz et al., 2004). The protein can be 

divided into three regions: a N-terminal domain (light blue), deputed to membrane binding; the NAC 

domain (yellow), responsible for fibril formation (El-Agnaf et al., 1998) and a C-terminal domain (blue) 

relevant for the interaction with other proteins. There are seven imperfect repeats made of 11 residues each 

(depicted in purple), a highly conserved motif predicted to form an α-helix structure (George et al., 1995), 

which is located between the N-terminal region and the NAC core. It is interesting to notice that the 

missense point mutations discovered up to date are all located within the N-terminal region, suggesting that 

membrane binding may play an important role in the process of αS aggregation (Miraglia et al., 2018). 

 

αS is intrinsically disordered, with an unfolded native conformation, soluble in the cytosol under 

physiological conditions (Weinreb et al., 1996). In fact, whilst αS from mouse brain purified by 

gel-filtration elutes as a single peak with a 63 kDa molecular mass, which means close to a folded 

tetramer, mass spectrometry and circular dichroism analysis detect a monomeric conformation of 

17 kDa (slightly larger than expected, probably because of an in vivo N-terminal acetylation) 

(Burré et al., 2013). In line with these recent data, NMR studies show that acetylated αS, which is 

the main form in physiological conditions, is in fact a disordered monomer that adopts a more 

compact conformation in solution which prevents further interactions of the NAC domain within 

the cytosol (Theillet et al., 2016). The unfolded and disordered monomeric conformation of αS 

was confirmed in rat and human brain and erythrocytes isolated under denaturing and non 

denaturing conditions, and in bacteria expressing αS, whilst no oligomer species were present 

(Fauvet et al., 2012) in physiological conditions. On the opposite, another study has shown that 

αS extracted in non denaturating conditions and upon cross-linking in living cells (e.g. human 

erythrocytes, cell lines and brain tissue), is mainly a metastable homo-tetramer with a molecular 
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weight of 58 kDa. The tetramer is in a dynamic equilibrium with the unfolded monomer, which is 

more prone to aggregation (Bartels et al., 2011). Another independent study suggested a homo-

tetramer structure for αS under physiological conditions (Wang et al., 2011) and demonstrated 

that its subunits are held together by hydrophobic interactions. Following these results, it was 

suggested that αS tetramer and monomer co-exist in physiological conditions and any 

perturbation of this state due to higher levels of the monomer is linked to αS aggregation and 

pathology. Consistently with this view, some missense mutations were shown to reduce the 

tetramer : monomer ratio and to trigger neurotoxicity (Dettmer et al., 2015a, 2015b). Recently, αS 

was found to bind synaptic vesicles in vivo not as a monomer but in a folded α-helical multimer 

conformation, larger than an octamer (Burré et al., 2014). This structure has a specific orientation 

which only happens when the vesicles are docked at the cell membrane.  

αS is expressed by several neuronal populations within CNS and PNS, accounting for as much as 

1% of total proteins in soluble cytosolic brain fractions, and it has been often shown that it plays a 

role in general neuronal function. Nevertheless, its precise function still remains elusive, just like 

for many of the misfolded proteins found in other neurodegenerative diseases. Although αS does 

not possess a transmembrane domain or a lipid anchor, it interacts stably with synthetic 

phospholipidic vesicles containing negatively charged head groups, various phospholipid 

membranes, fatty acids, micelles and with biological membranes (Fortin, 2004). Interestingly, 

monomeric αS bound to membranes can efficiently prevent lipid oxidation, suggesting another 

physiological role of the protein (Zhu et al., 2006). Fractionation of healthy brain extracts 

revealed a portion of αS in association with synaptic vesicles, explained by its preference for 

membrane with high curvature (Jensen et al., 2011), although as previously said the vast majority 

of αS behaves as soluble protein (Fortin, 2004). αS is one of the last proteins to localize at 

presynaptic terminals during development since it is not essential for their formation (Withers et 

al., 1997). The protein is able to bind membrane vesicles on the cytosolic side but also to reside in 

the vesicle lumen and be secreted through exocytosis (Lee, 2005). This close association with 

vesicular structures has led to the hypothesis that αS may regulate vesicular release and/or 

turnover and other synaptic functions in the CNS. In line with this view, a research group proved 

that αS knock-out mice exhibit exaggerated levels of DA release following stimulation, 

suggesting a modulatory role for DA neurotransmission (Abeliovich et al., 2000). Another study 

showed that αS regulates catecholamines release from the synaptic vesicles and its over-

expression inhibits a vesicle priming step that occurs after secretory vesicle trafficking to docking 

sites but before calcium-dependent vesicle membrane fusion (Larsen et al., 2006). More recently, 

several studies clarified that αS is a chaperone of the SNARE complex (Burré et al., 2010; 

Nemani et al., 2010; Diao et al., 2013; Wang et al., 2014). This complex is made of vesicular 

SNARE proteins (v-SNARE) and target membrane SNARE proteins (t-SNARE), which allow 
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vesicular fusion to cell membrane after assembly. The assembly process is potentiated by αS 

through lipid and SNARE interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.7 Functional properties of αS. A, B) Wide field and magnification of cultured cortical murine 

neurons, showing dendrites (MAP2 staining in red) and αS-positive presynaptic densities (green), indicating 

that αS is located in the presynaptic terminals. C) Scheming of αS roles at the presynaptic terminal in the 

regulation of vesicle trafficking and vesicle refilling (blue), and its interaction with t-SNARE or v-SNARE 

proteins and neurotransmitter release. αS accumulation induces an impairment of neurotransmitter release, 

vesicle recycling and trafficking between synaptic buttons and influence t-SNARE complex assembly 

stability (red), whilst its depletion induces an impairment of vesicle trafficking between the reserve pool 

and the ready releasable pool and a deficiency in vesicle refilling and neurotransmitter uptake (Lashuel et 

al., 2013). 

 

Furthermore, αS has been associated to intracellular protein trafficking e.g. vesicle transport from 

the endoplasmic reticulum (ER) to Golgi (Cooper et al., 2006; Gitler et al., 2008; Thayanidhi et 

al., 2010; Oaks et al., 2013) and from Golgi to endosomes/lysosomes (Chung et al., 2013; 

Volpicelli-Daley et al., 2014; Breda et al., 2015; Mazzulli et al., 2016). In line with this, αS was 

also identified as an inhibitor of phospholipase D2, an enzyme implicated in membrane 

trafficking and specifically exocytosis (Bendor et al., 2014). Finally, it has been recently reported 

that αS acts as a molecular dynamase and directly binds to microtubules, thus promoting their 

assembly and stability, which makes it an active player also for axonal transport (Cartelli et al., 

2016).  
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Pathology of αS 

 

Apart from the debate on αS physiological state, the necessary step for the formation of LBs and 

LNs or in general insoluble αS inclusions is the transition of the protein to an aggregated β-sheet 

conformation. In their amyloid state, αS monomers form an antiparallel in-register β-sandwich 

fold, which in turn stacks into a parallel arrangement forming the so called protofilaments (Vilar 

et al., 2008; Tuttle et al., 2016). Protofilaments further assemble into mature fibrils. The process 

of aggregation is nucleation-dependent and occurs in a sequential series of steps, inside of which 

detours can still happen. Based on in vitro experiments we are now able to define a precise time 

course for this fibrillation process: at first there is a lag phase, in which the monomers convert 

into an oligomer-type of conformation (nucleation), then there is a growth phase and finally a 

steady state which terminates with the accumulation of -sheet amyloid fibrils (Cremades et al., 

2012). Oligomers are low molecular weight aggregates, which can be soluble or insoluble, and do 

not have a fibrillary organization. After the formation of the seeds, αS fibrils grow by the addition 

of monomers more likely than oligomers (Buell et al., 2014). To date, two different aggregate 

polymorphs, called fibrils and ribbons, have been described in vitro after using different 

aggregation protocols. Fibrils and ribbons differ biochemically and for seeding properties, and 

there may be more of these polymorphs still to discover (Bousset et al., 2013; Guo et al., 2013).  

The role of αS oligomers and aggregates in PD has been largely studied and is still under debate. 

The fact that fibrillar αS is found in LBs strongly suggests an involvement of the aggregation 

process in the pathogenesis of α-synucleinopathies, nevertheless it has also been suggested that αS 

aggregation might merely represent a by-product of metabolism or even act as a neuroprotective 

player. In support of this hypothesis is the observation that LBs formation does not always 

correlate with neurological symptoms (Braak et al., 2003a), or that in some forms of genetic PD 

αS aggregation is not present (Schneider and Alcalay, 2017). On the other hand, a recent study 

demonstrated that all the αS types of aggregates (fibrils and ribbons) generated in vitro are 

potentially toxic and can trigger different histopathological phenotypes, supporting the concept of 

heterogeneity among α-synucleinopathies (Peelaerts et al., 2015). For what concerns αS 

oligomers, several forms have been described in vitro, with different sizes and morphologies, 

including spherical, annular and tubular structures (Lashuel et al., 2002). Another difference is 

that some are amorphous and non fibrillar assemblies, while others are described as on-

fibrillization pathway. The aggregation process can be affected by many factors, e.g. protein 

concentration, specific physico-chemical conditions, the presence of certain ligands (including 

DA) and cross-linking (Buell et al., 2014). Therefore it is still unclear whether the heterogeneity 

among oligomers has a real physiological relevance or it is due to the protocol used for 

aggregation and working conditions. Recent studies helped unravel some of these issues, by 

directly following the oligomerization reaction using single molecule fluorescence techniques. 
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What they independently demonstrated is that the oligomers pool mainly consists of two different 

species, type A and type B, which assemble in the early stages of aggregation (Chen et al., 2015; 

Cremades et al., 2012). These two types of oligomers showed different chemical, structural and 

toxic properties. Type B oligomers are more resistant to protease K digestion than type A and 

need a longer lag time for formation, arising the hypothesis that they could derive from the 

conversion and rearrangement of type A oligomers. Moreover, type B oligomers present a higher 

amount of β-sheets that are instead negligible in type A (Fusco et al., 2017). In vivo experiments 

showed that type A oligomers could enter the cell and trigger aggregation in it, indirectly causing 

cell death type, whereas type B oligomers induced death of neuronal cells through the disruption 

of cellular ion homeostasis and production of reactive oxygen species, which separately caused 

mitochondrial dysfunction (Danzer et al., 2007; Fusco et al., 2017). Interestingly, Fusco and 

colleagues explained that both A and B oligomers can bind to biological membranes, but only B 

oligomers with their rigid β-sheet core are able to get through the lipid bilayer and therefore to 

directly disrupt the membrane (Fusco et al., 2017). According to this model, type A oligomers 

convert into more compact protofibrils and fibrils, thus being responsible for seeding formation of 

new aggregates and αS pathology propagation; type B oligomers are strongly detrimental for 

directly disrupting biological membranes but are off the pathway of self-propagation. In line with 

this view, our research group recently demonstrated that αS species associated to microsomes (a 

membrane fraction including ER, Golgi and synaptic vesicles) had different effects, in terms of 

seeding properties on intracellular aggregates, when they were isolated from sick αS transgenic 

mice with respect to adult but presymptomatic littermates, suggesting the presence of at least two 

different types of αS high molecular weight (HMW) species in vivo, corresponding to different 

stages of αS pathology (Colla et al., 2018). For instance, αS toxic species isolated from diseased 

mice (likely together with αS aggregates) were able to seed for intracellular inclusions and induce 

cell death of primary neurons, whilst αS toxic species isolated from presymptomatic mice caused 

cell death without stimulating endogenous aggregation.  
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Fig.1.8 αS aggregation process. (Miraglia et al., 2018) In physiological conditions, αS is found as a highly 

disordered monomeric protein in a dynamic equilibrium with a multimeric conformation when bound to 

synaptic vesicles, SV (Weinreb et al., 1996; Fauvet et al., 2012; Burré et al., 2010; Burré et al., 2014; 

Theillet et al., 2016). Other studies proposed that αS in native state is a homo-tetramer and the disruption of 

this conformation causes the increase of the monomeric form (Bartels et al., 2011; Wang et al., 2011; 

Dettmer et al., 2015a, 2015b). αS aggregation is a nucleation process in which soluble monomeric αS is 

converted into insoluble β-sheet rich structures, tightly stacked in a parallel configuration (Lashuel et al., 

2002; Vilar et al., 2008; Tuttle et al., 2016). Based on in vitro studies, we know that these structures account 

a heterogeneous pool of intermediate states named oligomers (Cremades et al., 2012; Chen et al., 2015), 

which generate protofibrils and ultimately aggregates, with a ribbon or a fibril conformation (Bousset et al., 

2013; Guo et al., 2013). Both oligomers and aggregates have been described to be toxic, through different 

mechanisms (Danzer et al., 2007; Peelaerts et al., 2015; Fusco et al., 2017). 

 

Post-translational modifications 

 

αS has been shown to undergo a variety of post-translational modifications, which affect its 

conversion into oligomers and aggregates in different ways. 

 Phosphorylation 

Phosphorylation is the most frequent post-translational modification occurring in proteins at 

serine (S) or tyrosine (Y) residues, in both cases at the level of the hydroxyl group. For what 

concerns αS S129 is the major phosphorylation site, while three others were identified in the last 

years at S87, Y125, Y133 and Y136 (Fujiwara et al., 2002; Anderson et al., 2006; Chen et al., 

2009; Paleologou et al., 2010). Immunohistochemical and biochemical studies have reported that 

~90% of αS found in LBs and LNs is phosphorylated at S129 and the amount of phosphorylated 
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αS in healthy brains is only 4% of total αS, suggesting that the accumulation of pS129-αS is 

involved in the formation of LBs and LNs and the neurodegeneration occurring in PD patients 

(Fujiwara et al., 2002; Zhou et al., 2011). Several kinases were identified for αS. Casein kinases 

(CK1, CK2), G protein-coupled receptor kinases (GRK1, GRK2, GRK5 and GRK6), calmodulin-

dependent kinase (CDK2) and polo-like kinases (PLK2, PLK3) are all possible candidates for 

phosphorylation at S129. The effects of this specific modification on αS propensity to aggregate 

are controversial depending on the specific kinase used for the study. E.g. the phosphorylation at 

S129 by CK2 and GRK6 causes increased oligomerization, fibrillation and neurodegeneration 

(Fujiwara et al., 2002; Sato et al., 2011), whilst phosphorylation at S129 by CK1 inhibits αS 

fibrillation (Paleologou et al., 2008). Specifically, S129 undergoes phosphorylation by CK1 in the 

fibrillary state, which means that this modification occurs after αS fibrillation and/or during the 

development and maturation of LBs and LNs (Paleologou et al., 2008).  

 Ubiquitination 

Ubiquitination is a fundamental biochemical process which regulates a variety of aspects for 

protein function, e.g. degradation, protein-protein interaction and subcellular localization. αS 

contains 15 lysine (K) residues and 9 of them were shown to undergo ubiquitination: K6, K10, 

K12, K21, K23, K32, K34, K45 and K96 (Sampathu et al., 2003; Tofaris et al., 2003; Nonaka et 

al., 2005; Rott et al., 2014). Ubiquitination of αS leads to changes in its activity, affecting its 

localization and degradation processes. Ubiquitination of aggregated or filamentous proteins has 

been implicated in the pathogenesis of many neurodegenerative disorders. Specifically, ubiquitin-

positivity was shown for nuclear inclusion bodies made of expanded polyglutamine repeats in 

many polyglutamine diseases, for neurofibrillary tangles composed of hyperphosphorylated tau in 

Alzheimer’s disease, for LBs and LNs containing hyperphosphorylated αS in α-synucleinopathies 

(Nonaka et al., 2005). Moreover, genetic studies have proved that dysfunctional proteins 

belonging to the ubiquitin-proteasome pathway are responsible for neurodegeneration. The 

ubiquitination modulated by SIAH-2, an E3 ubiquitin-ligase which mono and di-ubiquitinate αS 

in vivo, is similar to the endogenous ubiquitination pattern observed in biochemically purified 

LBs and involves K12, K21 and K23 residues. Under conditions of proteasomal impairment, 

SIAH-1, another E3 ubiquitin-ligase, promotes αS aggregation and apoptotic cell death (Rott et 

al., 2008; Beyer and Ariza, 2013). 

 Nitration and oxidation 

Cellular oxidative damage occurs when the production of reactive oxygen species overcomes the 

compensatory antioxidant capacity of the cell itself. A common consequence of increased 

oxidative stress is the nitration of tyrosine residues caused by peroxynitrite, a reaction product 

generated after combining oxygen and nitric oxide. αS contains four tyrosines (Y39, Y125, Y133 
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and Y136) which can all undergo nitration (Duda et al., 2000; Giasson et al., 2000; Burai et al., 

2015) and four methionines (M1, M5, M116 and M127) which can all be subjected to oxidation 

under conditions of oxidative stress (Beyer and Ariza, 2013; Barrett and Timothy Greenamyre, 

2015). It has been claimed that the abnormal levels of oxidative stress occurring in DA neurons 

are a major cause for PD progression. LBs are found enriched of nitrated αS and when this is 

administrated to the SNpc of rats, it leads to a strong reduction in DA neurons number (Yu et al., 

2010). It has been suggested that the susceptibility of this neuronal type to αS pathology may be 

due to the fact that αS oxidation causes the accumulation of DA-αS toxic adducts. Furthemore, 

when nitrated αS is administred to cultured cells, it causes apoptosis in a dose-dependent manner 

through the formation of nitrated αS oligomers (Liu et al., 2011). 

 Truncation 

Different studies have reported a variety of specific sites for αS truncation (E110, D115, D119, 

P120, E130, Y133 and D135), all of which are found in the C-terminal region of the protein (Li et 

al., 2005; Liu et al., 2005; Lewis et al., 2010), although N-terminal truncation can also happen. 

The three main truncated fragments identified in vivo are referred to as Syn12, Syn10, Syn8. 

Syn12 and 10 are generated after truncation at P120 and E110 residues respectively, whilst Syn8 

is the result of a double truncation at N- and C-terminal and is a fragment of about 80 aminoacids. 

Syn12 and 10 are present in both detergent soluble and insoluble fractions from mouse and human 

brains, whereas Syn8 is only present in the insoluble fraction and is specific for diseased brains. 

Furthermore, it has been shown that the accumulation of Syn12 and 10 occurs independently from 

of αS aggregation, while Syn8 needs the aggregation of αS in order to accumulate. αS truncation 

can be mediated by more than one proteolytic system, including 20S proteasome, Calpain I, 

Cathepsin D, Neurosin and Matrix Metalloprotease 3 (Li et al., 2005; Beyer and Ariza, 2013). The 

truncated forms Syn12 and 10 are known to be generated also under physiological conditions, 

nevertheless the amount of truncated αS strongly increases in case of genetic PD. Moreover, these 

truncated species preferentially accumulate in αS aggregates, especially the ones not associated 

with membranes (Colla et al., 2018), and have the ability to enhance fibril formation from full 

length αS (Li et al., 2005).  

 Other modifications 

Other post-translational modifications have been negatively correlated to αS pathology, meaning 

that they inhibit its propensity to aggregate. For this reason, studying these modifications can be 

useful for finding protective pathways for α-synucleinopathies and also for better understanding 

the modulators of αS physiological role. Lysine acetylation is a post-translational modification 

involved in several physiological functions. For what concerns αS, four residues have been shown 

to undergo acetylation (K6, K34, K45 and K97) (Lundby et al., 2012). N-terminal acetylation is a 
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very common modification of mammalian αS which stabilizes its native structure, thus inhibiting 

aggregation (Bartels et al., 2014). 

Another modification which has been associated to PD and affects αS conformation is the 

transglutaminase-induced cross-linking. Transglutaminases are enzymes which catalyze the 

formation of an isodipeptide by linking one glutamine to one lysine. When these residues are on 

the same protein, like for αS, the effect is an intramolecular cross-linking, which leads to the 

formation of a more compact monomer. The consequence of this compact conformation is the 

inhibition of oligomerization, fibrillization and membrane binding of αS in vitro. Specifically, 

Schmid and colleagues have shown that the major transglutaminases substrates in αS sequence are 

the glutamine residues Q79 and Q109 which can cross-link to various lysine residues in the N-

terminal region, and up to three intramolecular cross-links can occur on a single monomer 

(Schmid et al., 2009). 

Sumoylation is a post-translational modification which consists in the attachment of small 

ubiquitin-related modifier (SUMO) and can affect a variety of cellular mechanisms. Sumoylation 

was recently suggested to be a solubility promoter of aggregation-prone proteins. αS has been 

reported to be sumoylated at two sites (K96 and K102) upon overexpression and whilst 

unmodified αS can form fibrils, sumoylated αS remains soluble. Moreover, the presence of as 

little as 10% sumoylated protein was shown to be enough to delay the aggregation process in vitro 

(Krumova et al., 2011). Another study demonstrated that SUMO binding regulates sorting of 

proteins (including αS) in extracellular vesicles, revealing another putative function of 

sumoylation as a ubiquitin-independent sorting signal (Kunadt et al., 2015). 

 

 

Fig.1.9 Post-translational modifications of αS. The complete 140 aminoacids sequence of αS is depicted 

and the sites where the modifications occur are highlighted. P in yellow for phosphorylation, Ub in blue for 

ubiquitination, NO2 in purple for nitration, Ox in white for oxidation, the scissors in grey for truncation, Ac 

in red for acetylation, TG in orange for transglutaminase cross-linking, SUMO in green for sumoylation. 

Specifically, the group of post-translational modifications represented in circles are known to promote αS 

aggregation, whilst the ones in rectangles have been described to inhibit αS aggregation. 
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αS mechanisms of toxicity 

 

As mentioned before, ubiquitination is a modification involved in many regulatory functions 

fundamental for cellular survival, among which protein degradation. Specifically, protein 

degradation mechanisms within the cell mainly consists in the ubiquitin-proteasome system and 

the autophagic-lysosomal pathway. For what concerns αS, the former is responsible for the 

degradation of oligomers, the latter for the degradation of aggregates (Tetzlaff et al., 2008). When 

the aggregation process driven by αS overexpression occurs, both systems can become 

dysfunctional. In fact, different in vitro studies showed the inhibition of proteasomal function 

(Petrucelli et al., 2002), impairment of chaperone-mediated autophagy (Yang et al., 2009; Song et 

al., 2014) and macroautophagy (Winslow et al., 2010) caused by αS overexpression. 

As previously explained, αS binds to lipid membranes in both physiological and pathological 

conditions. While cytosolic and membrane bound states are both physiologically relevant, it is 

unclear how their localization affects αS pathology and where aggregation initiates. A variety of 

studies has shown that membrane binding and lipid interaction can stimulate but also inhibit αS 

fibrillation (Narayanan and Scarlata, 2001; Lee et al., 2002a; Jo et al., 2004; Burré et al., 2015; 

Galvagnion et al., 2016). In line with this controversy it has been observed that SNCA point 

mutations associated with familial PD are located in the N-terminal lipid binding domain, 

suggesting that lipid binding may be related to αS acquired toxicity. This happens for some point 

mutations such as A30P, in which membrane binding is reduced and aggregation is increased, but 

not for others. For instance, A53T, E46K and H50Q mutations cause a higher fibril formation 

without affecting lipid binding (Bussell and Eliezer, 2004; Fredenburg et al., 2007; Khalaf et al., 

2014); others such as G51D inhibit both membrane binding and aggregation (Fares et al., 2014). 

Thus, lipid binding and αS aggregation not always correlate directly, but other factors can 

influence the propensity of the protein toward fibrillation and compensate for aminoacid 

substitutions, such as intramolecular interaction between the N- and C-terminal or protein binding 

to the C-terminal (Ulrih et al., 2008; Burré et al., 2010). Moreover, the aforementioned αS post-

translational modifications induced by oxidative stress have been shown to increase 

oligomerization and possibly to influence αS ability to bind vesicle membranes as a monomer or 

in an oligomer conformation (Binolfi et al., 2006; Xiang et al., 2013; Follmer et al., 2015; 

Plotegher et al., 2017). In this complex situation, it is clear that interaction with biological 

membranes leads to modifications not only for αS conformation, but also for the physical 

properties of the membranes. For instance, it induces changes in melting temperature (Galvagnion 

et al., 2016) and membrane remodelling (Jiang et al., 2013) such as lateral expansion of 

membrane lipids and lipid packing modifications (Ouberai et al., 2013). Membranes of specific 

organelles such as ER, mitochondria, Golgi and synaptic vesicles have been shown to be 

associated at different extent with αS. After focusing on the physiological aspects, we will now 
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consider the pathological mechanisms of αS deriving from these subcellular associations. 

 ER and Golgi 

αS has been found associated with ER and Golgi in mice and human cell cultures. Specifically, 

microsomes-associated αS was proved to be partially protected from protease K digestion and 

thus connected with the lumenal side of the microsomes (Colla et al., 2012a). Although no lipid 

binding involvement has been described yet, αS was found to bind, in αS Tg mice and human cell 

lines overexpressing αS, to gpr78/BIP, a chaperone bound to the luminal side of the ER, 

transiently associated with the ER translocon import pore and directly implicated as a sensor of 

protein misfolding and initiator of the unfolded protein response (Bellucci et al., 2011; Colla et 

al., 2012b). Additionally, the overexpression of αS impaired the ER-Golgi vesicular trafficking in 

yeast and other organisms (Cooper et al., 2006), leading to the accumulation of ER proteins with 

induction of ER stress, Golgi fragmentation and depletion of lysosomal enzymes (Oaks et al., 

2013; Mazzulli et al., 2016). Interestingly, this detrimental effect was rescued by overexpressing 

proteins implicated in vesicle transit from the ER to the cell membrane such as Rab1 (ER-Golgi), 

Rab8 (Golgi) and Rab3A (post-Golgi) (Gitler et al., 2008) but also from endolysosomal pathway 

such as Rab-11A (endosomal recycling) (Breda et al., 2015). Another study showed that αS 

oligomers in vitro decrease axonal transport and influence microtubule stability (Prots et al., 

2013). These observations have strong implications for a major role of αS in vesicle trafficking 

and recycling, outside the synapses. 

 Mitochondria 

Other studies showed that αS can bind the outer and inner membrane of mitochondria (Devi et al., 

2008; Nakamura et al., 2008). Since these data were obtained from in vivo observations, it is not 

clear whether the binding depended on lipids, in line with αS preference for cardiolipin, abundant 

in the mitochondrial membranes, or it was mediated by specific proteins. Interestingly, a 

translocase of the mitochondrial outer membrane has been described as responsible for the import 

of αS into the mitochondria and one of its subunits, TOM20, has been shown to bind αS in vivo 

(Di Maio et al., 2016). Additionally, the overexpression of αS was found to promote 

mitochondrial dysfunction in αS Tg mice (Martin et al., 2006, 2014) and mitochondrial 

fragmentation in primary neurons. This latter effect was related to the direct interaction of αS with 

mitochondria, since disruption of αS N-terminal membrane binding domain restored the 

morphology of the organelles (Nakamura et al., 2011). Particularly toxic to mitochondria are αS 

oligomers, associated to the inhibition of complex I with subsequent increase of reactive oxygen 

species and oxidative stress (Cremades et al., 2012; Devi et al., 2008), to the alteration of 

membrane potential and Ca
2+

 homeostasis, to mitochondrial fragmentation (Nakamura et al., 

2011), to mitochondrial protein import impairment (Di Maio et al., 2016), to the externalization of 
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cardiolipin toward the outer mitochondrial membrane resulting in mitophagy for cellular stress 

(Ryan et al., 2018). 

 Synaptic vesicles 

As explained before, αS binds vesicles at the synapse and acts as a molecular chaperone to 

promote SNARE complex assembly (Burré et al., 2010), which is necessary to regulate docking 

and neurotransmitter release and reuptake. Following αS overexpression, the SNARE assembly is 

blocked and the whole process is impaired (Majd et al., 2015). 

Other studies based on exogenous administration of large oligomers of recombinant αS at the 

synapse, showed that αS bound to synaptic vesicles through synaptobrevin-2, leading to inhibition 

of vesicle docking to the membrane (Choi et al., 2013) and to lower synapsins abundance (Larson 

et al., 2017). Although direct measurement of ER-Golgi traffic was not assessed in these 

conditions, it is plausible that accumulation of toxic species of αS might affect the whole protein 

transport system from the ER to the membrane. Moreover, electrophysiology studies showed that 

αS oligomers impaired long-term potentiation (Diogenes et al., 2012; Martin et al., 2012) and 

reduced neuronal excitability (Kaufmann et al., 2016). 

 

Overall it is not clear where αS detrimental effects begin, although it is plausible to hypothesize 

that the initial pathogenic transition of αS toward a toxic conformation may occur in proximity of 

the membranes of the subcellular locations described above and then spread to other sites within 

the neuron. 
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Fig.1.10 Subcellular localization of αS oligomers and aggregates in physiological and pathological 

conditions. αS capability of binding membranes has been correlated to part of its physiological roles and 

specifically several studies have shown how this protein can bind to synaptic vesicles, ER/Golgi and 

mitochondria (Devi et al., 2008; Nakamura et al., 2008; Burré et al., 2010; Colla et al., 2012a). Up to date it 

is still under debate whether αS association with membranes contrasts or promotes its aggregation, 

nevertheless it is clear that the accumulation of αS toxic species at these specific subcellular sites leads to 

precise cellular dysfunctions involving neurotransmission, protein trafficking and mitochondrial respiration 

(Miraglia et al., 2018). 

 

 

Lewy pathology in the periphery and Braak model 

 

A turning point for the debated link between PD and GI symptoms occurred in 2003. The finding 

that LBs and LNs present in the brains of patients (Spillantini et al., 1997) were also present in 

specific districts of the PNS and specifically in the ENS in PD patients as well as in healthy 

individuals (Braak et al., 2003a), led to the development of the Braak model. Braak and 

colleagues suggested that Lewy pathology in PD patients develops following a stereotypic 

temporal pattern, with a caudo-rostral progression over time. According to this model, the 

neuropathology can be divided into six stages, accounting both presymptomatic and symptomatic 

phases (Braak et al., 2003a, 2003b). At the beginning (stage 1), LBs and LNs appear in two sites: 

the ENS, linked to the dorsal motor nucleus of the vagus nerve (dmX) and the olfactory bulb, in 

the anterior olfactory nucleus. At stage 2 the pathology is diffused within the medulla (in the 

gigantocellular reticular nucleus) and the pons (in the lower raphe nuclei and the locus coeruleus). 

These three nuclei together form the gain setting system, which receives major inputs from 

components of the limbic and motor systems, such as the central subnucleus of the amygdala. 
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This system can control the incoming pain signals during stress and ensures that motor neurons 

are ready for action. The descending fibers of the gain setting system form a sensory control 

network for both somato and visceromotor efferents, enabling the body for momentary demands. 

During stage 3, Lewy pathology spreads caudo-rostrally from the brainstem to the mesencephalic 

tegmentum and basal regions of the prosencephalon. A process of neuronal cell death starts in the 

central subnucleus of the amygdala and the magnocellular cholinergic nuclei of the basal 

forebrain. In fact, the central subnucleus of the amygdala projects to the gain setting system and 

the dmX, and in turn it receives projections from the amygdalar basolateral complex, which 

receives strong inputs from the magnocellular nuclei of the basal forebrain. Only at stage 4 the 

patients begin to experience motor dysfunctions, entering the so called symptomatic phase. The 

pathology hits the SNpc and the temporal mesocortex, which projects all signals from the 

neocortex to the centers of the limbic circuit (amygdala, hippocampal formation, entohirnal 

region) and prefrontal cortex. Among the cortical sites, the temporal mesocortex is the most 

affected in PD. Ultimately (stages 5 and 6) Lewy pathology reaches the neocortex (in the high-

order sensory association and prefrontal areas) and the patients develop more severe motor 

symptoms, together with cognitive dysfunctions. The first order sensory association areas, 

premotor fields and finally the primary sensory and motor fields become affected. 

 

Fig.1.11 Staging of αS pathology in PD 

according to the Braak model. As 

summarized in the scheming, Braak and 

colleagues proposed that the pathological 

process of αS in PD starts in the PNS and 

specifically the ENS, gaining access to the 

CNS through the dmX in the lower 

brainstem. From here, the pathology spreads 

upwards through vulnerable regions of the 

medulla oblongata, pontine tegmentum, 

midbrain and forebrain, and ultimately 

reaches the cerebral cortex (Braak et al., 

2003a, 2003b; Visanji et al., 2013). 
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Along with this staging model, Braak and colleagues speculated on the origin of the pathology in 

the first place, arising the so called dual-hit theory. Based on the location of the first appearances 

of LBs and LNs, the ENS and the olfactory bulbs, they suggested that idiotpatic PD may start 

with an infiltration of a neurotropic pathogen at these two sites (hence dual-hit). More precisely, 

according to this theory, the pathogen would enter the human body through the olfactory pathway, 

in the respiratory system, and through the gut pathway, by swallowing the saliva containing nasal 

secretions. The already described olfactory and GI symptoms, which occur very early during the 

prodromal phase of PD, stand in support of this theory. As previously mentioned, the nasal route 

is used to explain the early involvement of olfactory structures, although Braak and colleagues do 

not think this is the starting point for αS pathological spreading within the CNS. In fact, Lewy 

pathology appears in the anterior olfactory nucleus and olfactory bulb at first and subsequently 

closely related olfactory areas, but the lesions do not advance further into non olfactory cortical 

areas. Rather, all patients analyzed show neocortical involvement only after the appearance of 

lesions in the anteromedial temporal mesocortex. A prerequisite for neocortical affection appears 

to be that the subcortical lesions have expanded to such an extent that they include the 

magnocellular nuclei of the basal forebrain. Therefore, the leading predilection sites of the 

pathological process are located in the lower brainstem. They suggest that the GI tract is the site 

of departure for the Lewy pathology, where the pathogen is thought to cross the mucosal and 

epithelial barriers, thus reaching the neuronal structures. The nature of this pathogen is still 

debated, it has been speculated that it could be a neurotropic virus capable of infecting specific 

vulnerable neurons, or αS itself (misfolded or fragmented) through a prion-like mechanism (Braak 

et al., 2003b). 
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Fig.1.12 Properties required for misfolded proteins to be transmissible. Efficient replication, which 

occurs thanks to the seeding-nucleation process. Resistance to biological clearance, e.g. proteasomal 

degradation, chaperone refolding, autophagy. Biovailability (ability to reach the target tissue and cellular 

location) through cellular transport and spreading, and penetration across the enteric and blood-brain 

barriers. Transmission of phenotypic changes, where for disease-associated misfolded proteins the changes 

are cellular damage, tissue dysfunction, and clinical disease; for functional transmissible proteins, the 

phenotypic change is the modulation of a biological activity or acquisition of a new function (Soto, 2012). 

 

After Braak, different studies have corroborated his hypothesis, by finding LBs and LNs in 

several districts along the ENS (Lebouvier et al., 2008; Beach et al., 2010; Gelpi et al., 2014). In 

the meantime, several research groups have implicated αS neuronal transmission and propagation 

within the nervous system as a mechanism of detrimental spreading of PD pathology, showing 
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that neuron-to-neuron transfer of pathogenic αS occurs both in vitro (Luk et al., 2009; Volpicelli-

daley et al., 2012; Colla et al., 2018) and in vivo, in human (Kordower et al., 2008a, 2008b) and 

animal studies (Kordower et al., 2012; Luk et al., 2012; Masuda-Suzukake et al., 2013; Rey et al., 

2013; Holmqvist et al., 2014; Recasens et al., 2014; Sacino et al., 2014; Peelaerts et al., 2015), 

supporting the hypothesis that the accumulation of toxic αS species may originate outside the 

CNS and later move to the brain using anatomical connections (Braak et al., 2003b; Hawkes et al., 

2009). In PD patients, pathological αS has been found in enteric neurons of both submucosal and 

myenteric plexi along the entire GI tract including the colon (Böttner et al., 2012; Gelpi et al., 

2014). Another study found a rostro-caudal gradient of accumulation of pS129-αS within the ENS 

with a higher incidence of LBs in the lower esophagus and submandibular gland and to a less 

extent in the colon and rectum (Beach et al., 2010). Although this observation has to be confirmed 

in a larger population, the involvement of the vagal nerve, which innervates directly the stomach, 

the small intestine and the ascending colon, as the main dissemination route of toxic αS along the 

gut-brain axis, has been suggested, based also on the finding of LBs presence in the dmX in 

prodromal PD (Braak et al., 2003a). However, the high incidence of aggregated αS in the all 

segments of the spinal cord suggests that other nerves might be implicated in αS propagation 

(Böttner et al., 2012). Several studies have indicated LBs presence in human colon biopsies as a 

possible diagnosis method for preclinical PD (Lebouvier et al., 2008; Pouclet et al., 2012; 

Shannon et al., 2012), although other observations are against this hypothesis (Böttner et al., 

2012; Visanji et al., 2015). Overall, detecting pathological αS in the gut as a potential biomarker 

for PD patients is still challenged by the heterogeneity of antibodies, antigen retrieval methods 

and GI sites analysed, therefore the discrepancy among these studies should be interpreted 

cautiously. This is only one example that easly explains why for a great number of human 

pathologies and in particular neurodegenerative diseases, animal studies are always needed to be 

carried out, in parallel to clinical studies. Unfortunately, whether there is a direct pathogenic 

correlation between GI dysfunction and PD or not, to date still remains an open issue, caused in 

part by the absence of appropriate animal models that recapitulate the chronic and progressive 

development of PD pathological stages. All the αS Tg mouse lines analyzed for constipation so 

far showed GI deficit only concurrent with CNS neuropathology (Wang et al., 2008; Kuo et al., 

2010; Hallet et al., 2012), while when considering the pharmacologically induced PD models only 

a small study, based on chronic injections of rotenone at low dosage in rats, showed mild GI 

abnormalities in absence of CNS αS pathology. Nevertheless, because of the low amount of 

rotenone used for this purpose, brain pathology and motor symptoms never occurred in these mice 

(Drolet et al., 2009). 

 

  



34 
 

The enteric nervous system 

 

The gut is an extremely complex system responsible for a variety of functions related primarly but 

not only to digestion, such as absorption, secretion, motility, mucosal maintenance and 

immunological defense. All these functions require a fine degree of regulation and coordination, 

provided by the ENS. The ENS is, within the PNS, one of three divisions of the autonomic 

nervous system, named sympathetic, parasympathetic and enteric (Rao and Gershon, 2016). 

 

 

Fig.1.13 Organization of the PNS and the ENS. The nervous system is divided in CNS and PNS (green). 

Afferent information from the periphery to the CNS is conveyed by neurons located in dorsal root or cranial 

nerve ganglia, which constitute the sensory division of the PNS (yellow). These inputs integrated by the 

CNS leads to outputs through the motor division of the PNS (blue). Efferent projections from the CNS 

target either skeletal muscles or the autonomic nervous system, which is further divided into sympathetic, 

parasympathetic and enteric. Unlike neurons in sympathetic or parasympathetic ganglia, the majority of 

enteric neurons do not receive direct innervation from the CNS. In fact, the ENS contains primary afferent 

neurons able to respond intrinsically to local stimuli, thus integrating information and coordinating motor 

output independently from the CNS. This gives to the ENS unique sensory and motor properties, although 

there is still a bidirectional cross-talk between gut and CNS (Rao and Gershon, 2016). 
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The ENS is responsible for the innervation of the whole digestive tube, from the esophagus to the 

rectum, and is organized into two plexi. The myenteric plexus (or Auerbach's plexus) is the main 

player for GI motility, in fact it lies between the longitudinal and circular smooth muscle layers to 

which it provides motor innervation, with both parasympathetic and sympathetic inputs. 

The submucosal plexus (or Meissner’s plexus) is located in the dense connective tissue of the 

submucosa just underneath the mucosa, it has only parasympathetic fibers and is the main 

responsible for GI secrection and absorbtion. 

 

 

Fig.1.14 The ENS architecture through the gut 

layers. Schematic view of the intestine illustrating 

the organization of the ENS and its location within 

the enteric wall. The myenteric plexus is located 

between the longitudinal and circular smooth 

muscle layers, whilst the submucosal plexus is 

located in the submucosa, underneath the mucosa. 

There are not nerve fibers entering the lumen or its 

epithelial lining. The extrinsic innervation reaches 

the gut through the mesentery together with the 

vascular system (Rao and Gershon, 2016). 

 

 

In humans, the ENS accounts more than 100 million neurons, more than the other peripheral 

ganglia altogether, and at least as many as the spinal cord. Interestingly, with this size the ENS 

dwarfs the number of efferent vagal fibers projecting to almost all the digestive tract, from the 

esophagus to the proximal colon. It is important to mention that in addition to the vagus nerve, the 

splanchnic, mesenteric and pelvic spinal nerves are deputate to the innervation of the abdominal 

viscera (Furness, 2006; Forsythe et al., 2014). Unlike the rest of the PNS, the enteric division is 

capable of integrating neuronal activity, that is combining a variety of inputs into coherent 

behavioural outputs and regulating GI functions independently from CNS inputs. In fact the ENS 

is organized in microcircuits, with interneurons and intrinsic primary afferent neurons, capable of 

initiating reflexes (Furness et al., 2014). A great neuronal phenotypic diversity is not prerogative 

of the CNS, since most of the neurotransmitters active at the central level are also present in the 

ENS, with few differences (Furness, 2000; Furness et al., 2014). For what concerns peristalsis, the 

motor activity of the bowel is mainly regulated by the cholinergic and tachykinergic systems for 

contraction, and by the nitrergic system for relaxation (Mang et al., 2002; Bornstein et al., 2004). 

Notably, DA contribution to intestinal function in the lower digestive tract is negligible and the 

presence of DA neurons at this level is highly debated (Bornstein et al., 2004). 

https://en.wikipedia.org/wiki/Submucous_plexus
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Although the ENS is capable of working regardless central inputs, normally the CNS influences 

GI behaviour, and the gut in turn sends information to the brain. More precisely, 90% of vagal 

fibers connecting the gut to the brain are afferent, suggesting that the CNS plays more the role of 

receiver rather than transmitter in this cross-talk. For example, gut-to-brain signalling carries 

sensations such as nausea, bloating and satiety, although much of this information has a 

homeostatic nature and does not reach consciousness. Actions such as mastication and 

swallowing are CNS-dependent instead, and efferent signals brain-to-gut are important for gastric 

motility control. On the other hand, the movements of the small and large intestine are under the 

control of the ENS and this is why even if all connections to the CNS are severed, essential 

motility in these regions of the bowel is not impaired (Forsythe et al., 2014; Furness et al., 2014). 
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Aim of the project 

 

The aim of this project was to characterize GI function in a mouse model of α-synucleinopathy 

originally developed to study neurodegeneration in the CNS. Because this model develops αS-

induced central dysfunction in adult age (after 9 months) our purpose was to characterize 

peripheral abnormalities before the onset of central neurodegeneration and overt motor 

dysfunction, to describe the nature of such alterations and to determine whether this dysfunction 

was ascribable to αS overexpression or pathology. Ultimately we exploited silenced αS 

expression in the colon to test whether targeted inhibition of αS could rescue GI dysfunction in 

this model. 
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Matherials and methods 

 

Mice 

For this research we used Tg mice expressing human A53T αS under the control of the mouse 

prion protein (PrP) promoter (line G2-3) (Lee et al., 2002b; Martin, 2006). This model develops 

neurological abnormalities after 9 months of age (with an average peak at ~13 months) that 

manifest initially with reduced locomotion, wobbling, lack of balance and weakness of the hind 

limbs. This diseased phenotype becomes progressively more severe culminating into a fatal 

paralysis within 14-21 days from the first symptoms appearance. Because of the high variability 

in time of onset (between 9 to 16 months), Tg mice are closely monitored after 9 months of age, 

being aware that once the first symptoms appear, the animal is committed to develop the full 

phenotype. Diseased mice show an accumulation of intracellular, phosphorylated (S129) and 

ubiquitinated αS inclusions, neuroinflammation and neuronal degeneration in the CNS (Lee et al., 

2002b). For the purpose of this study, sick Tg mice at 12-14 months, presymptomatic mice at 1, 2, 

3, 6, 9 and 12 (if still healthy) months, and age-matched nTg littermate controls were used. All 

animal studies were approved by and complied in full with the national and international laws for 

laboratory animal welfare and experimentation (EEC council directive 86/609, 12 December 1987 

and Directive 2010/63/EU, 22 September 2010). 

 

 

Fig.2.1 Images depicting a Tg mouse during presymptomatic phase, without motor disfunction (A) and a Tg 

sick mouse, with the typical motor abnormalities in the hind limbs and compromised gait (B) (Lee et al., 

2002b). 
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Behavioral tests and additional parameters 

All tests for behavioral and additional parameters were carried out on groups of 20-30 mice, 

except for gait test, food intake and glycemia where groups consisted of  ~10 mice each. Both 

male and female animals were used. Each trial was performed 1 to 3 times per animal on non 

consecutive days. 

 Gait test 

The gait test was assessed in mice after o/n starvation. Each animal’s paw was painted with blue 

washable paint and the mouse was allowed to walk onto a white paper strip, at the end of which a 

piece of chow was placed as a reward. The footprints were circled and let dry. Stance length, 

sway distance and stride length were measured for each mouse. 

 Whole gut transit time 

Whole gut transit time (WGTT) was assessed in mice after oral gavage of 0.05 mL chocolate milk 

containing 4% of brilliant blue food dye. Post-gavage, the animals were observed until the time of 

excretion of the first blue stool, which was recorded for each mouse. 

 Stool collection 

Stool collection assays were performed between 9:00 AM and 11:00 AM on each day. Each 

animal was removed from its home cage and placed in a clean plastic cage without food or water 

for 1 h. Stools were collected immediately after expulsion and placed in sealed tubes. At the end 

of the trial, stools were counted, measured in length and weighted (total weight). After o/n drying 

at 65 °C stools were weighted again to provide dry weight. Water content was calculated as 

difference between total weight and dry weight.  

 Food intake 

Each animal was removed from its home cage and single-housed for 24 h with free access to food 

and water. Food was weighted before and after the trial and food intake was calculated as 

difference between the two amounts.  

 Glycemia 

Glucose levels were assessed using reactive stripes (OneTouch Verio, LifeScan Italia, Milan, 

Italy) with a single drop sample of blood taken from the tail of each animal. Glucose level was 

analyzed after o/n food removal (fasted condition) and after the mice were allowed free access to 

chow for 1 h (fed condition). 
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Recording of contractile activity from longitudinal and circular muscle 

preparations of colon and ileum 

Contractile activity was recorded from colonic and ileal longitudinal and circular smooth muscles 

(Antonioli et al., 2014, 2017). Mice were euthanized through CO2 inhalation. After sacrifice, 

colon and ileum were removed and placed in cold Krebs solution. Longitudinal and circular 

muscle strips of the intestine were set up in organ baths containing Krebs solution at 37 °C, 

bubbled with 95% O2 + 5% CO2. The strips were connected to isometric force transducers 

(2Biological Instruments, Besozzo, Italy). Mechanical activity was recorded as a measure of 

tension using a BIOPAC MP150 system (2Biological Instruments). A pair of coaxial platinum 

electrodes was positioned at a distance of 10 mm from the longitudinal axis of each preparation to 

deliver transmural electrical stimulation (ES) by a BM-ST6 stimulator (Biomedica Mangoni, Pisa, 

Italy). ES were applied as 10-s single trains consisting of square wave pulses (0.5 ms, 30 mA). To 

measure muscle contractility of the colon or the ileum, electrically evoked motor responses were 

recorded from tissue preparations maintained in standard Krebs solution. To measure the 

neurogenic contribution to muscle contraction, electrically evoked motor responses were recorded 

after selective stimulation of the nitrergic, cholinergic or NK1-mediated tachykinergic pathway 

from colonic preparations maintained in Krebs solution containing respectively: guanethidine (10 

µM), L-732,138 (10 µM), GR159897 (1 µM), SB218795 (1 µM) and atropine (1 µM) in order to 

inhibit the noradrenergic, NK-mediated tachykinergic and cholinergic pathways, while recording 

the nitrergic signal; L-NAME (100 µM), guanethidine (10  µM), GR159897 (1 µM), SB218795 

(1 µM) and atropine (1 µM) in order to prevent the recruitment of the nitrergic, noradrenergic, 

NK2 and NK3-mediated tachykinergic and cholinergic systems, while recording the NK1-

mediated tachykinergic pathway; L-NAME, guanethidine, L-732,138, GR159897, SB218795, in 

order to record the cholinergic response while inhibiting the nitrergic, noradrenergic and 

tachykinergic signal. To evaluate myogenic contribution to the total contractile activity of the 

colon, muscle response was evoked by direct pharmacological activation of muscarinic receptors 

located on smooth muscle cells. For this purpose, colonic preparations were maintained in Krebs 

solution containing tetrodotoxin (1 µM) and stimulated with carbachol (10 µM). The tension 

developed by each preparation (g) was normalized by the wet tissue weight (g/g tissue). All the 

chemical compounds were purchased from Sigma Aldrich (St. Louis, Missouri USA).  
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Tissue collection and immunoblot analysis 

For biochemical analysis mice were euthanized through CO2 inhalation and the intestine was cut 

into six segments corresponding to duodenum (D), jejunum (J), proximal ileum (PI), distal ileum 

(DI), proximal colon (PC) and distal colon (DC), flushed of fecal contents, opened longitudinally, 

scraped for removing the epithelium and minced. Cold phosphate-buffered saline (PBS), with 

proteases and phosphatases inhibitors, was used for this procedure. All samples were frozen on 

dry ice right after collection and stored at -80°C until use. Frozen intestine segments were 

homogenized using a Potter-Elvehjem Grinder homogenizer on ice in 20% (w/v) TNE lysis buffer 

(50 mM Tris-HCl pH 7.4, 100 mM NaCl, 0.1 mM EDTA) with proteases and phosphatases 

inhibitors. Equal volume of TNE buffer containing 2% of NP-40 was added to initial 

homogenates that were then centrifuged at 10,000 x g at 4 °C in order to collect NP-40 soluble 

and insoluble fractions. Pellets were then washed one time with TNE buffer with 1% of NP-40 

and then resuspended in 10% of the original homogenization volume in TNE containing 1% NP-

40, 1% SDS, 0.1% DOC. NP-40 insoluble fractions were then sonicated and boiled for 5 min at 

95°C.  

 

Fig.2.2 Scheming for the harvesting procedure of mice intestine. Six segments corresponding to 

duodenum (D), jejunum (J), proximal ileum (PI), distal ileum (DI), proximal colon (PC) and distal colon 

(DC) were collected, homogenized and fractionated into NP-40 soluble and insoluble components, 

containing respectively soluble and aggregated forms of αS. 
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Protein amount was determined with BCA. For western blot, protein lysates together with SDS-

PAGE sample buffer were run on a 4–20% Criterion™ TGX™ Precast Midi Protein Gel (Bio-

Rad, Hercules, CA, USA) and then transferred onto nitrocellulose membrane at 200 mA, o/n at 

4°C, using carbonate transfer buffer (10 mM NaHCO3, 3 mM Na2CO3, 20% MeOH). Transfer 

efficiency was controlled by Ponceau staining. For dot blot, 2 µg of protein lysates were spotted 

directly onto nitrocellulose membrane. Thereafter, for both western blot and dot blot, unspecific 

binding sites were blocked by 30 min membranes incubation with 5% non fat dry milk (Bio-Rad) 

in 1X PBS containing 0.01% Tween-20 (PBS-T) at RT. Membranes were then incubated with the 

specific primary antibody dissolved in 2.5% non fat dry milk in PBS-T, o/n at 4°C. The following 

antibodies were used: Syn1, pS129-αS, GAPDH, α-Tubulin for western blot and Syn303 for dot 

blot. Membranes were washed with PBS-T and incubated for 1 h at RT with the appropriate 

horseradish peroxidase-conjugated secondary antibody in 2.5% non fat milk in PBS-T. Only for 

pS129-αS detection, 1X Tris-buffered saline containing 0.01% Tween-20 (TBS-T) instead of 

PBS-T was used for the entire procedure. The chemiluminescent signals were visualized using a 

CCD-based Bio-Rad Molecular Imager ChemiDoc System (Bio-Rad). Band intensities were 

analyzed using Quantity One software (Bio-Rad). 

 

Immunofluorescence analysis 

For immunofluorescence analysis, mice were perfused with 4% PFA/PBS after 1 mL 

intraperitoneal injection of 2% w/v Tribromoethanol. Brain and colon (flushed of fecal contents) 

were collected, post-fixed o/n in 4% PFA/PBS at 4°C and stored in maintenance solution (30% 

sucrose, 0.1% NaN2 in PBS) at 4°C. A segment of 2 cm of distal colon was embedded in Tissue-

Tek® OCT (Sakura, The Netherlands), cut at the cryostat in serial 12 µm sections and mounted 

on SuperFrost Plus glass slide (Thermofisher). For one experiment, the whole distal colon was cut 

longwise and mounted on a toothpick according to the “Swiss roll” technique, before 

cryosectioning. The slides were washed with PBS and let dry for ~3 h at 37°C before staining. 

Brains were cut at the microtome in serial 30 µm sections and placed in 24-well plates containing 

maintenance solution. The slices were washed with PBS before staining. For both colon and brain 

samples, the sections were incubated with blocking solution [3.5% non fat dry milk, 0.3% Triton 

X-100 (Tx-100), 6% normal goat serum in PBS] for 1 h at RT and then incubated with primary 

antibody o/n at RT in blocking buffer. The following antibodies were used: pS129-αS, LB509, β-

3-Tubulin, Syn204, Choline Acetyltranferase (ChAT), Tyrosine Hydroxylase (TH), 

Neurofilament H (NF200), Synaptic Vesicle 2 (SV2). On the next day, the sections were washed 

twice in PBS and incubated with Alexa Fluor secondary antibodies or Streptavidin 

(ThermoFisher) in PBS containing 1.5% NGS, 0.3% Tx-100 for 1 h at RT. The sections were 

counterstained with DAPI and mounted on a glass slide using Fluormount (Sigma-Aldrich). 
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Antibody Epitope Concentration Isotype Company 
Catalogue 

number 

Molecular 

analysis 

Syn1 NAC αS domain 1:5000 Mouse 
BD Biosciences 

NJ, USA 
610787 WB 

pS129-αS 
Phosphorylated 

αS at S129 

1:2000 WB 

1:5000 IF 
Rabbit Abcam MA, USA 51253 WB, IF 

GAPDH GAPDH 1:5000 Mouse 

Fitzgerald 

Industries 

International MA, 

USA 

10RG109a WB 

α-Tubulin α-Tubulin 1:5000 Mouse 
Sigma-Aldrich 

MISS, USA 
T5168 WB 

LB509 
Human αS AA 

115-122 
1:500 Mouse Abcam MA, USA 27766 IF 

β-3-

Tubulin 

Human β-3-

Tubulin C term 
1:100 Rabbit 

Cell Signaling 

Technology MA, 

USA 

5568S IF 

Syn204 Human αS 1:100 Mouse 

Cell Signaling 

Technology MA, 

USA 

2647 IF 

ChAT 
Choline 

Acetyltransferase 
1:100 Goat 

Millipore 

MA, USA 
144P IF 

TH 
Tyrosine 

Hydroxylase 
1:500 Rabbit 

Millipore 

MA, USA 
152 IF 

NF200 Neurofilament H 1:500 Mouse 
Millipore 

MA, USA 
5539 IF 

SV2 
Synaptic vesicle 

glycoprotein 2A 
1:250 Mouse 

Developmental 

Studies 

Hybridoma Bank 

IA, USA 

2315387 IF 

Syn303 Oligomers of αS 1:1000 Mouse 
Biolegend CA, 

USA 
MMS5085 DB 

Mouse αS Mouse αS 1:1000 Rabbit 

Cell Signaling 

Technology MA, 

USA 

4179 WB 

 

Tab.2.3 List of antibodies employed for western blot (WB), dot blot (DB) and immunofluorescence (IF) 

analyses, with the specifics referred to the experiments in this study. 

http://antibodyregistry.org/AB_2315387
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Antisense oligonucleotides 

The antisense oligonucleotides (ASOs) were synthesized and provided by Eurogentec (Liege, 

Belgium) and Integrated DNA Technologies (San Jose, CA, USA). Each ASO was a sequence of 

20-base pairs with a phosphorothioate backbone. Following a gapmer design, a 2’-O-

methoxyethyl (2’-MOE) modification was added on the sugar of the first and the last 5 

nucleotides, leaving the middle 10 nucleotides unmodified at the 2’-sugar position. For the 

experiment in vitro, 1 scramble ASO control and 3 ASOs against αS were used (ASO 1, 2, 3), the 

first two targeting human A53T αS, the last one targeting both human A53T and mouse αS. For 

the experiment in vivo, only the ASO 2 was used, with the addition of a Biotin-TEG at its 5’ 

position. 

 

Cell treatment 

SH-SY5Y human neuroblastoma cells were plated in 6-well culture plates and maintained using 

Dulbecco’s Modified Eagle’s Medium F12 (DMEM-F12; Sigma-Aldrich, St. Louis, USA) 

with 10% FBS, 0.1 mg/ml of streptomycin and 100 U/ml of penicillin. When cells were confluent, 

a double transfection was performed, using Opti-MEM as medium and Lipofectamine 2000 as 

transfection reagent. The first transfection was done with 4 µg of DNA (human A53T or mouse 

αS, both in vector pcDNA3.1) and 10 µL of Lipofectamine in a total volume of 500 µL of Opti-

MEM. After 24 h, cells medium was removed and a second transfection was performed with no 

material (negative control) or 2 µL of 500 nM antisense oligonucleotide (Scramble, ASO 1, ASO 

2 or ASO 3) and 10 µL of Lipofectamine in a total volume of 500 µL of Opti-MEM. 

 

Cell lysis and western blot analysis 

24 hours after the second transfection, cells were washed twice with PBS and lysed on ice in 200 

µL lysis buffer (1X PBS, 1% Tx-100, 1% SDS) with proteases and phosphatases inhibitors. Lysed 

cells were scraped onto 6-well culture plates and then collected in tubes. The total lysates 

collected were sonicated and boiled for 5 min at 95°C. Protein amount was determined with BCA. 

Western blot analysis was performed as previously described for tissues in this section. 

 

Mice treatment 

10 weeks old Tg mice received biotinylated ASO 2 (50 µg per day) or the same volume of PBS as 

control, via rectal administration or through osmotic pumps (ALZET, CA, USA). Rectal 

administration was performed on the mouse under anesthesia with oxygen and isofluorane, using 
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a small-gauge soft flexible tubing and a 0.5 mL syringe. The tubing was gently inserted through 

the anus for  ̴ 3 cm and 300 µL of solution were administred. As for the osmotic pumps, one pump 

was inserted for each mouse under anesthesia with oxygen and isofluorane, after surgically 

opening the abdomen, and positioned with its flow-moderator next to the distal colon. The mouse 

was then stiched up with surgical clips and left undisturbed in its originary cage. For a 

preliminary evaluation of the ASO distribution, Tg mice received one single 50 µg dose of ASO 

rectally and were sacrificed after 6 h, or 150 µg of ASO distributed in 3 days of continuous 

diffusion by osmotic pump, model 1003D (100 µL). For the actual experiment, rectal 

administration was repeated every day for 7 days, and the pump model 2001 (200 µL) was used 

for 7 days of continuous delivery (Fig.2.4). Before and at the end of the 7 days treatment, Tg mice 

were assessed for WGTT; at the end of both experiments, the mice were sacrificed for tissues 

collection. 

 

Fig.2.4 Experimental design for mice treatment. 10 weeks old Tg mice received as treatment ASO 2 in 

the dose of 50 µg per day, or the same volume of PBS as control. The administration was rectal or through 

osmotic pump. For the rectal group, 7 administrations were performed for 7 consecutive days (day 1 to day 

7). For the pump group, the implant was done on day 1, and the drug or vehicle diffusion was constant from 

day 1 to day 7. WGTT was assessed at day 0 and at day 7. On day 7 all mice were sacrificed for tissues 

collection. 

 

Statistical analysis 

All values are expressed as the mean ± SEM. Differences between means were evaluated by two-

way ANOVA, followed by Fisher’s LSD post-hoc test, or by one-way ANOVA in case the 

comparison was between two groups only (Prism, Graph Pad Software, San Diego, CA). 
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Results 

Constipation in PrP A53T αS Tg mice is already present at 3 months of age in 

absence of overt motor dysfunction and accumulation of αS CNS inclusions 

To determine whether PrP A53T αS Tg mice can be used as a suitable model to study constipation 

as it occurs in the prodromal phase of PD, we first analyzed motor deficit and correlated 

accumulation of αS-positive inclusions in the CNS, two typical features of this model, in young 

and adult presymptomatic mice, to exclude that subtle changes in the αS-driven phenotype were 

already present at young age before the appearance of full-blown motor dysfunctions. In the 

presymptomatic stage these mice did not show any gross motor abnormalities, maintained normal 

gait (Fig.3.1a, b, c, d) and balance (Lee et al., 2002b), while presence of phosphorylated (S129) 

αS inclusions in medulla (Fig.3.1g, h, i, j) and spinal cord (Colla et al., 2018) of sick Tg animals 

but not 9 months old presymptomatic (Fig.3.1e, f) was found, confirming that the appearance of 

αS-driven pathology in the CNS is closely linked and concomitant with onset of motor 

dysfunction and neurodegeneration. Additionally, presymptomatic mice up to 9 months of age do 

not show signs of neuronal dysfunction in the CNS including the appearance of ER stress 

markers, ER stress-induced cell death and accumulation of microsomes-associated and 

ubiquitinated αS species (Colla et al., 2012a). 
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Fig.3.1 αS Tg presymptomatic mice do 

not display motor deficits nor αS 

pathology in the CNS. αS Tg mice were 

evaluated for αS-driven pathology and 

motor abnormalities. During the gait test 

presymptomatic 3 and 6 months old 

mice were allowed to walk on a white 

paper strip with painted paws and stance 

length, sway distance and stride length 

were measured. The walking pattern in 3 

and 6 months old Tg and nTg mice 

remained unchanged. a) Representative 

walking patterns of a presymptomatic 6 

months Tg and its nTg littermate do not 

show differences in stride and stance 

length and sway distance. b, c, d) Graphs 

of gait parameters analyzed in 3 and 6 

months old mice. Values on graphs are 

expressed as raw data and are given as 

the mean ± SEM (n=5/10 per group), 

two-way ANOVA followed by Fischer’s 

LSD test. e, f, g, h, i, j) 

Immunofluorescence analysis of medulla 

in 9 months presymptomatic (e, f) or 

sick (g, h, i, j) αS Tg mice stained with 

pS129-αS antibody (f, h, i, j) or DAPI (e, 

g). Phosphorylated pathological αS was 

found only in sick Tg mice after the 

onset of neurodegeneration, indicating 

the lack of αS-driven pathology in the CNS of adult presymptomatic animals. i, j) Magnifications of image 

h for lateral reticular nucleus, magnocellular part (i) and nucleus of the solitary tract (j). Images were 

acquired with Nikon epifluorescence microscope, objective 4x, scale bar = 100 μm (e, f, g, h) or objective 

40x, scale bar = 30 μm (i, j). 
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Once confirmed that αS Tg mice are free of αS pathology in the CNS at least until 9 months of 

age, we started to analyze GI functionality by evaluating the WGTT, that is the time it takes for an 

edible dye to travel through the GI tract and to be excreted. At 3 months of age, the average 

transit time was 5.919 ± 0.2768 h for αS Tg mice and 4.117 ± 0.2751 h for nTg littermates, 

indicating that αS Tg mice had a transit delay of almost 2 h when compared to controls 

(p<0.0001). This difference increased over time, reaching a plateau at 6 months of age (the 

average transit time was 7.680 ± 0.242 h for αS Tg mice and 4.555 ± 0.174 h for nTg mice, 

p<0.0001), with a delay of more than 3 h compared to nTg littermates that was maintained later 

with aging (Fig. 3.2a). To see whether constipation was present before 3 months of age or it could 

be based on gender differences, we assessed this parameter also in 1 and 2 months old mice and 

we analyzed males and females data separately. In both gender groups, no significant differences 

between Tgs and nTgs were observed for WGTT until 3 months of age. Tg females displayed a 

slower average transit compared to Tg males, of about 45 min at 2 months and of about 1 h from 

6 months (Fig.3.2b, c). Overall, despite these differences, WGTT trends resulted comparable in 

the two Tg groups. Since such a slowed transit time can affect the amount of pellets expelled, we 

measured the stool total weight and water content in young and adult mice. To our surprise, stool 

weight recorded in 1 h period (Fig.3.3a) and related water content (Fig.3.3c) remained unchanged 

between Tgs and nTgs at all time points considered. Likewise, mice growth measured through 

body weight and food intake was comparable between the two groups up to 9 months of age. No 

food malabsorption, episodes of vomit or diarrhea, nor hyperglycemia were observed (Fig.3.3d, e, 

f), suggesting that the marked delay in transit time was more likely to be related to GI dysmotility 

rather than digestive abnormality. In agreement with this, when stool output frequency for each 

single animal was measured in 1 h trial, αS Tgs at 3 months of age showed already a 40% 

reduction in stool number (2.243 ± 0.221 for αS Tgs versus 3.670 ± 0.346 for nTgs, p 

value=0.00048) and a correlated 1.4-fold increase in stool length (7.864 ± 0.477 for αS Tgs versus 

5.599 ± 0.242 for nTgs, (p<0.0001) (Fig. 3.2d, e, f). This difference was maintained in 

presymptomatic 6 months old mice but not at 9 months, suggesting that at 9 months other 

pathological processes might have affected directly or indirectly GI functionality in Tg animals 

and some mice might have been already committed to develop shortly αS-driven neuronal 

pathology in the brain. In line with this hypothesis, from 9 months of age αS Tgs showed a slight 

reduction in body weight and food intake consistent with changes in feeding behavior typical of 

motor symptoms onset (Fig.3.3d, e). Thus, young Tg mice showed signs of constipation and GI 

abnormalities in presymptomatic conditions that largely anticipate the appearance of αS pathology 

in the CNS. In addition, the drastic increase in WGTT in young αS Tg mice did not translate into 

a decrease of total amount of stools but rather affected the number and length of single pellets 

excreted, suggesting a defect in propulsive and contractile bowel movements from an early age. 
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Fig.3.2 GI dysfunction in presymptomatic αS Tg mice is present starting from 3 months of age. GI 

functionality was evaluated through behavioral tests in presymptomatic 1, 2, 3, 6, 9 and 12 (if healthy) 

months old αS Tg mice and nTg littermates. Each trial was performed 1 to 3 times per animal on non 

consecutive days. Groups comprised 20-30 mice with similar presence of females and males. GI behavioral 

analysis showed significant constipation in young and adult Tg animals and nTg age-matched littermates. a, 

b, c) WGTT was recorded as the time for a non absorbable dye to travel through the GI tract. a) The transit 

time is increased in presymptomatic αS Tg mice versus controls starting from 3 months and exacerbates 

with age, reaching an average 3 h 12 min delay in Tg animals by 6 months of age. b, c) A comparable result 

was obtained when considering males and females separately. Notably, Tg females have a slower transit 

time compared to males, starting from 2 months of age. d, e, f) Presymptomatic αS Tg mice excreted a 

reduced number of stools but with an increased length compared to controls already at 3 months. d) 

Representative image of stools collected in 1 h trial from a 6 month old αS Tg mouse and littermate. 

Notably, pellets from young Tg mice are longer but less abundant. e, f) Pellets from each mouse were 

collected in 1 h trail. Stools from Tg mice were consistently longer and less abundant compared to controls. 

Values on graphs are expressed as raw data and are given as the mean ± SEM (n=20-30 per group). * 

p<0.05; ** p<0.01; *** p<0.001, **** p<0.0001, two-way ANOVA followed by Fischer’s LSD test. 
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Fig.3.3 GI dysfunction in presymptomatic Tg mice. Stool weight, feeding behavior, body growth and 

glycemic levels are not affected in presymptomatic αS Tg mice. Additional parameters related to GI 

functionality were evaluated through behavioral tests in presymptomatic αS Tg mice and nTg littermates. 

Each trial was performed 1 to 3 times per animal on non consecutive days. Groups comprised 20-30 mice 

for stool tests and body weight, or 10 mice for glycemic tests, with similar presence of males and females. 

a, b, c) Pellets from each mouse were weighted for total stool weight, then let dry o/n at 65 °C and weighted 

again to measure dry stool weight and water content. No difference in total (a), dry stool weight (b) nor 

water content (c) of pellets was found between Tgs and controls at any time point. d) Food intake was 

measured in a 24 h trial. No significant difference was found between the two groups in the amount of chow 

ingested until 9 months of age, indicating that GI dysfunction was not due to erratic food consumption. e) 

Body weight of the animals remained comparable between the two groups until 12 months of age, a time in 

which surviving Tg mice may have been already committed to develop shortly the full motor phenotype. 

Maybe for a compensation at this time point close to central pathology, 12 months old Tgs appear to 

increase their food intake compared to controls (d). f) Glycemic levels were measured under fasted and fed 

conditions. No variations were noticed between the two groups, nor diabetes-like signs were present at any 

time. Values on graphs are expressed as raw data and are given as the mean ± SEM. * p<0.05, two-way 

ANOVA followed by Fischer’s LSD test. 

 

  



52 
 

Presymptomatic αS Tg mice show a reduced electrically evoked motor response of 

the colonic muscle layers from 3 months of age 

Since constipation is correlated with a deficit in bowel motility, we recorded colonic and ileal 

contractility of longitudinal and circular muscles in young and adult αS Tg mice. Electrical 

stimulation of the colon from αS Tg mice showed a clear reduction in the magnitude of motor 

response of both muscle layers compared to controls, that was already present in 3 months old 

Tgs. In particular, the circular muscle seemed more affected since its response to stimulation was 

increasingly reduced with aging in αS Tg mice (Fig.3.4a). By contrast, in control animals, 

electrically evoked contractions showed consistently similar patterns of magnitude at all ages 

analyzed. To establish whether the reduced motor response in the colon of αS Tg animals was due 

to an impairment of a specific system within the ENS, we recorded the contractile response after 

selective stimulation of the nitrergic, cholinergic or tachykinergic system, pharmacologically 

isolated by using specific inhibitors (Fig.3.4b, c, d). Remarkably, only the excitatory cholinergic 

component was consistently impaired in Tgs compared to age-matched littermates at all ages 

analyzed, as shown by the decrease of the electrically evoked motor response, whilst the other 

systems appeared not affected. This deficit in cholinergic transmission indicates that the increase 

in WGTT with concomitant alteration in stool formation is mainly due to a decrease in colon 

muscle contraction, rather than a dysfunction in muscle relaxation, which is mainly modulated in 

mice by the nitrergic system (Mang et al., 2002). Furthermore, in order to understand whether this 

deficit was myogenic or neurogenic, we evoked colonic contractions by direct pharmacological 

activation of muscarinic receptors located on smooth muscle cells, by using tetrodotoxin and 

carbachol (Fig.3.4e). Interestingly, in this case the motor response was comparable between Tgs 

and controls at all ages analyzed, indicating that the observed colonic dysmotility of Tg animals 

was mainly related to a deficit in the neural component. In addition, since WGTT is a measure of 

the transit time for the whole GI tract, electrical stimulation of ileal preparations from 

presymptomatic mice at 3 and 12 months was performed (Fig.3.4f). To our surprise, motor 

response in the ileum was comparable between Tg and nTg animals for both time points, 

indicating that the deficit in contraction seen in young Tg mice was specific for the colon. Thus, 

the reduced contractility of the colon in presymptomatic mice, due to an altered cholinergic 

transmission, contributes to their abnormal formation of stools and delayed GI transit time.  

 

 

 

 



53 
 

 

Fig.3.4 Colonic contractile activity is impaired in presymptomatic αS Tg mice from 3 months of age. 

Electrical stimulation (ES) of intestinal tissues shows a reduced response of longitudinal (L) and circular 

(C) smooth muscles in Tg mice already at 3 months, in the colon but not the ileum. The reduced contraction 

was mainly due to a decreased cholinergic transmission and exacerbated with age. Recordings were 

performed in αS Tg mice and nTg littermate controls in colon (a, b, c, d, e) and ileum (f). a, f) Effect of ES 

(↑=ES, 10 Hz) on the contractile activity of colonic (a) or ileal (f) preparations maintained in standard 
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Krebs solution in order to register the overall response. b) Effect of selective ES (↑=ES, 10 Hz) of the 

inhibitory nitrergic pathway on the activity of colonic muscles in order to record nitrergic-induced response. 

Colonic preparations were maintained in Krebs solution containing guanethidine, L-732,138, GR159897, 

SB218795  and atropine. c) Effect of selective ES (↑=ES, 10 Hz) of the excitatory cholinergic system on the 

activity of colonic muscles in order to record cholinergic-induced contractions. Colonic sections were 

maintained in Krebs solution containing L-NAME, guanethidine, L-732,138, GR159897, and SB218795. d) 

Effect of selective ES (↑=ES, 10 Hz) of the excitatory tachykinergic pathway on the activity of colonic 

muscles to record NK1-mediated tachykinergic contractions. Colonic preparations were maintained in 

Krebs solution containing L-NAME, guanethidine, GR159897, SB218795, atropine. e) Effects of carbachol 

(↑=Cch; 10 µM) stimulation on the activity of colonic preparations in order to record the myogenic 

response in absence of neurogenic stimulation. Colonic preparations were maintained in Krebs solution 

containing tetrodotoxin. Tracings in the inset on the top of each panel display the contractile responses to 

ES, as raw data. Values on graphs are expressed as % relative to controls and are given as the mean ± SEM 

(n=8 per group). * p<0.05; **** p<0.0001, two-way ANOVA followed by Fischer’s LSD test. 

 

Accumulation of αS soluble and insoluble HMW species in the colon increases over 

time in presymptomatic αS Tg mice 

In order to investigate whether the expression of αS could be related to the GI deficits that we 

observed, we performed immunoblot analysis on the intestine of young and diseased animals to 

check for peripheral distribution of αS. The whole length of the intestine was examined from the 

pylorus to the rectum, divided into six segments corresponding to duodenum, jejunum, proximal 

and distal ileum, proximal colon and distal colon. Western blot assays showed that αS monomer 

was present at low level in all fractions analyzed, with the exception of the colon where αS 

transgene expression reached a ~60-fold increase, compared to the small intestine, in 

presymptomatic 3 months old Tg animals (Fig.3.5). Very interestingly, when NP-40 insoluble 

fraction was run, 3 months old presymptomatic αS Tg mice already showed accumulation in the 

colon (mainly in the distal segment) of aggregated HMW species of αS. In diseased mice, after 

CNS neuronal degeneration onset, αS distribution was similar to that found in 3 months old mice, 

although the level of HMW αS was higher, suggesting a possible increase in αS inclusions 

formation with age. 
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Fig.3.5 Intestinal αS distribution in presymptomatic and diseased αS Tg mice. Distribution of αS 

transgene expression was assessed in young presymptomatic (3 months old) and diseased Tg mice. Fresh 

mouse intestinal tract was divided into six segments corresponding to anatomical distinct areas: duodenum 

(D), jejunum (J), proximal ileum (PI), distal ileum (DI), proximal colon (PC), distal colon (DC). NP-40 

soluble (N-SOL) and insoluble (N-PEL) fractions were loaded on a SDS-PAGE and blotted for Syn1 and α-

Tubulin or GAPDH antibodies. αS expression was more abundant in the colon of both 3 months old 

presymptomatic (a) and sick αS Tg (d) mice, compared to the small intestine (p<0.0001) or nTg age-

matched littermates lysates, although it was present at minimal level in all fractions examined in Tg mice. 

Notably, insoluble and more surprisingly soluble fraction contained HMW αS species. FL αS, full length 

αS, ΔC αS, truncated αS. b, c, e, f) Relative density of αS monomer in soluble (b, e) or insoluble (c, f) 

fractions. Values on graphs are expressed as % relative to nTg and are given as the mean ± SEM (n=3-4 per 

group). * p<0.05; **** p<0.0001, two-way ANOVA followed by Fischer’s LSD test. 
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In fact, when the proximal and distal colon from different ages were specifically analyzed for αS 

aggregates, we found an increased accumulation of insoluble and aggregated species of αS over 

time for both segments, although the distal colon appeared more affected, that peaked at 6 months 

and remained stable at later time points (Fig.3.5d, e, f) whereas αS monomer level did not change 

(Fig.3.6). 

 

Fig.3.6 Distribution of αS monomer in the colon of 

presymptomatic Tg mice. Relative density of αS 

monomer in the proximal (P) and distal (D) colon of 

Tg mice and age-matched controls at various age 

shows that αS monomer level does not change with 

age. Quantitative analysis of immunoblots of soluble 

(a) and insoluble (b) fractions presented in Fig.3.7. FL 

αS, full length αS. Values on graphs are expressed as 

% relative to nTg and are given as the mean ± SEM 

(n=3/4 per group). **** p<0.0001; two-way ANOVA 

followed by Fischer’s LSD test. 

 

Notably, also the soluble fraction of the proximal and distal colon contained soluble HMW 

oligomers of αS, the amount of which increased with aging and paralleled the trend seen for αS 

insoluble aggregates (Fig.3.5a, b, c). In addition, phosphorylated αS at S129 was also detected in 

both insoluble and, more surprisingly, soluble fractions of the colon (Fig.3.5c, f), a unique 

condition of the ENS, since phospho-αS species accumulate in the CNS of this line only after 

neurodegeneration onset and mainly in non ionic detergent-insoluble pellet (Fig.3.1) (Colla et al., 

2012a, 2012b, 2018). Thus, accumulation of phosphorylated αS inclusions in the colon of αS Tg 

mice largely precedes brain neuropathology, mimicking behavior and physiology data. Moreover, 

soluble αS is already phosphorylated at 3 months of age and forms stable, but still soluble, HMW 

oligomers, suggesting that the pathobiology of αS may differ between the CNS and the ENS. 

It is also interesting to notice that truncated αS is present at all ages in proximal and distal colon. 

Although we have not focused on this specific aspect yet, it may be possible that two different 

truncated forms are present in proximal and distal colon respectively, as it appears from the blots 

at least at 3 and 9 months of age for Tg presymptomatic mice. It would be interesting to further 

characterize this issue and be able to compare the truncation pattern in the ENS of Tg mice with 

the CNS data published from our group (Li et al., 2005; Colla et al., 2018). Based on our 

observations, we demonstrated that the accumulation of specific αS truncated species in the CNS 

varies bewtween presymptomatic and diseased Tg mice, when analyzing different subcellular 

districts of neurons. 
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Fig.3.7 αS soluble and insoluble HMW species in the colon increase with age in presymptomatic mice. 

Time course analysis of soluble and insoluble fractions obtained from the proximal (P) and distal (D) colon 

of presymptomatic Tg mice at different age shows an increase in the accumulation of αS HMW species. 

NP-40 soluble (a) and insoluble (d) lysates of proximal and distal colon were isolated from presymptomatic 

Tg mice and nTg littermates at different age, run on a SDS-PAGE and blotted with Syn1, pS129-αS and 

GAPDH antibodies. Soluble and insoluble phospho-αS HMW species were already abundantly present in 

Tg mice at 3 months of age and their level exacerbated with age, reaching a plateau at 6 months. The distal 

colon appears to be the intestinal region with the highest presence of αS HMW species. b, c, e, f) Graphs 

showing relative density of HMW αS (b, e) or phospho-αS (c, f) in all fractions analyzed. Values on graphs 

are expressed as % relative to nTg and are given as the mean ± SEM (n=3-4 per group). * p<0.05; ** 

p<0.01; *** p<0.001; **** p<0.0001, # p<0.05; ## p<0.01; ### p<0.001; #### p<0.0001, where * refers to 

comparisons between Tgs and their nTg age-matched controls, while # refers to comparisons between distal 

and proximal colon of Tgs; two-way ANOVA followed by Fischer’s LSD test. 
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By using a specific antibody that can detect oxidated and aggregated αS forms in dot blot but not 

western blot assays (due to the necessity of not denaturate such aggregates), we were able to 

further characterize the nature of the HMW species found in the insoluble fraction of colon 

lysates. With a similar trend of the previous time course data, the dot blot performed on proximal 

and distal colon of Tg and control mice at all time points, confirmed an accumulation of 

aggregated species in Tgs in both segments of the colon already at 3 months of age, with higher 

levels in the distal part and a peak at 6 months (Fig.3.8) 

 

 

Fig.3.8 Time course of αS insoluble 

oligomers in the colon of 

presymptomatic and diseased Tg 

mice. a) NP-40 insoluble fractions from 

proximal (PC) and distal (DC) segments 

of the colon of presymptomatic and sick 

αS Tg mice and controls were blotted 

with an antibody specific for oxidated 

and aggregated αS, Syn303. b) Dot blot 

values in the graph are expressed as % 

of age-matched nTg mice and given as 

the mean ± SEM (n=3 per group). * 

p<0.05, one-way ANOVA. 
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Pathological αS in presymptomatic and diseased αS Tg mice is found in ChAT-

positive and TH-positive enteric neurons of the colon 

In order to further investigate the distribution of pathological αS in the colon of Tg mice, we 

performed immunofluorescence analysis on frozen sections of the distal colon in 3 months old 

presymptomatic and sick Tg mice. Colocalization with β-3-Tubulin, a pan-neuronal marker, 

showed that αS aggregates were present only in neurons, mainly in the soma, of both myenteric 

and submucosal plexi of the ENS of Tg animals (Fig.3.9a, b, c). A further double immunostaining 

was carried out with specific neuronal type markers to assess whether αS was associated with 

specific neuronal populations. αS was found in ChAT-positive neurons (Fig.3.9e, f) and in TH-

positive neurons (Fig.3.9h, i) of both enteric plexi. Interestingly, not all ChAT-positive and TH-

positive neurons stained for αS, which was concomitantly seen in other neuronal populations. 

This suggests a dynamic progression in the spreading and/or accumulation of toxic αS in the ENS. 

Thus, accumulation of αS aggregates in colonic enteric neurons in both plexi is associated with 

the onset of constipation and GI transit abnormalities that manifest in αS Tg mice in 

presymptomatic conditions without overt neurodegeneration in the CNS.  

 

 

Fig.3.9 Accumulation of pathological αS in enteric neurons of presymptomatic and sick αS Tg mice. 

Immunocolocalization with neuronal markers shows accumulation of αS toxic species only in enteric 

neurons, including ChAT-positive and TH-positive types, in both the submucosal and myenteric plexi in Tg 

mice but not in controls. Distal colon frozen sections from 3 months old presymptomatic (b, e, h) and sick 

αS Tgs (c, f, i) and nTg littermates (a, d, g) were stained with LB509 and β-3-Tubulin (a, b, c); ChAT and 

pS129-αS (d, e, f); Syn204 and TH  (g, h, i). Sections were counterstained with DAPI. Notably, within the 

same section and concurrently with double labeled neurons (full arrow heads), we found healthy neurons 

without accumulation of toxic αS (empty arrow heads) or neurons with accumulation of toxic αS that 

belonged to other neuronal populations beyond the ChAT-positive or TH-positive (*), suggesting that 

different enteric neurons may be distinctively susceptible to αS spreading. Images were acquired with Leica 

microscope SP2 system, objective 63x. Scale bars = 40μm. 
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Antisense oligonucleotide treatment 

 

After a detailed characterization of PrP A53T αS Tg mice line G2-3 from an enteric point of view 

and with a peculiar focus on the prodromal phase, we proceeded our research toward a disease 

modifying direction, through therapeutic intervention. Our strategy was to use an ASO directed to 

the periphery, in presymptomatic 10 weeks old Tg mice. 

ASOs are small, single-stranded sequences of nucleic acids, between 8 to 50 nucleotides in 

length, able to bind to a complementary target mRNA through standard Watson-Crick base 

pairing. This specific matching results in the alteration of the original function of the target RNA, 

through different mechanisms, which largely depend on the chemical structure of the ASO itself. 

One frequent mechanism is the recruitment of RNase H, an endogenous enzyme that recognizes 

RNA/DNA heteroduplexes and degrades the target RNA after its binding with the ASO. The 

destruction of the mRNA prevents its translation into protein, yielding a decrease of the intended 

target. This approach is useful for pathologies characterized by the accumulation of specific 

proteins, such as αS in PD, and many other neurodegenerative disorders (DeVos and Miller, 

2013). In order to be able to recruit RNAse H, the ASO needs to have a phosphorothioate (PS) 

backbone, a very common modification which consists in replacing the oxygen atom in the 

phosphodiester linkage with a sulfur atom. Besides allowing the RNAse H mechanism, the PS 

backbone improves the ASO pharmacokinetics, by increasing its resistance against nucleases 

degradation and its binding to plasma proteins, which ultimately lead to a higher concentration 

and a more efficient cellular uptake (Schoch and Miller, 2017). Another largely used modification 

involves the sugar moiety at the position 2’ and consists in the addition of a 2’-O-methoxyethyl 

(MOE) group. This leads to a higher binding affinity of the ASO to the target RNA and it helps 

overcoming some disadvantageous immunostimolatory properties of the PS backbone, thus 

reducing the ASO toxicity (Evers et al., 2015). However, ASOs made of fully modified 2’-sugar 

moieties lose the ability of recruiting RNAse H, and this is why in order to exploit the advantages 

of both modifications it is necessary to further manipulate the sequence with a gapmer design. A 

gapmer ASO has a central region with unmodified sugars, flanked by two shorter regions with 

modified sugars. It is important to point out that a gapmer 2’-MOE PS ASO was the first to be 

used in a clinical trial for a neurodegenerative disease, with a positive outcome in terms of safety 

and tolerability (Miller et al., 2013). 

 



62 
 

 

 

Fig.3.10 Schematic representation of structure and mechanism of action of a gapmer 2’MOE PS 

ASO. a) Panel depicting the two most common modifications for ASOs at the backbone and 2’sugar ring, 

which are the phosphorothioate (PS) modification (in yellow) and the 2’-O-Methoxyethyl (MOE) 

modification (in blue) respectively. b) Example of a 20-mer PS ASO (PS group in red) with a gapmer 

design, consisting in a central region of 10 nucleotides with unmodified sugars, flanked by two regions of 5 

nucleotides each, with modified sugars (MOD, in blue). The gapmer design allows a PS 2’-MOE modified 

ASO to maintain its ability of RNAse H recruitment, otherwise lost with a full 2’-MOE modification for its 

entire length. This RNAse H mechanism of action (c) is possible thanks to the specific matching of the 

ASO to a target mRNA and results in the mRNA degradation. This approach is particularly useful for 

neurodegenerative diseases, in which reducing the levels of a specific toxic protein would contrast the 

development of the pathology (DeVos and Miller, 2013). 

 

ASO treatment reduces selectively human A53T αS expression in SH-SY5Y cells 

In line with this strategy, we designed three gapmer 2’-MOE PS ASOs directed against αS and 

one scramble ASO with a random non matching sequence to be used as negative control. ASO 1 

and ASO 2 matched with the human A53T αS, whilst ASO 3 matched with both human A53T and 

murine αS. In a first experiment we tested the efficiency of all three ASOs against human A53T 

αS. Cells were transfected first with human A53T αS and then with the ASO to be evaluated. 

Immunoblots of cell lysates showed comparable levels of inhibition in αS expression (Fig.3.11). 

Because of this, we chose ASO 2 for further characterization. In order to confirm that ASO 2 does 

not inhibit murine αS expression, a critical issue to be evaluated in view of a treatment in mice, 

we repeated the experiment transfecting SH-SY5Y cells with human A53T or mouse αS. As 

expected, this ASO reduced significantly human A53T αS but not mouse αS levels (Fig.3.12). 

Thus, ASO 2 was chosen to be suitable for the in vivo experiment. 
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Fig.3.11 ASOs against αS tested in SH-

SY5Y cells expressing A53T αS. a) 

Expression of αS measured in SH-SY5Y 

cell line lisates after a first transfection with 

A53T human Tg αS and second transfection 

with no material (negative control) or ASO 

scramble (S, control), ASO 1, 2, 3. b) 

Quantification of αS/GAPDH levels for 

each ASO, relative to the negative control.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.12 ASO 2 tested in SH-SY5Y cells expressing human Tg A53T or mouse αS. a) Expression of αS 

measured in SH-SY5Y cell line lisates after a first transfection with A53T human Tg or mouse αS, and 

second transfection with no material (-, negative control), antisense oligonucleotides scramble (S, control) 

or ASO 2, in triplicates. b) Quantification of αS/GAPDH levels for A53T and mouse αS. Values on graphs 

are expressed as % relative to negative control and are given as the mean ± SEM (n=3 per group). *** 

p<0.001, one-way ANOVA. 
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ASO is uptaken at the colon following rectal or osmotic pump delivery in mice 

Before testing ASO 2 inhibitory effect in vivo, we performed a preliminary experiment to verify 

how its distribution takes place in the colon of mice. In order to make the ASO detectable in 

tissues an additional 3’ biotin TEG was added to the original ASO 2 sequence. Since we 

demonstrated that αS pathology in this mouse model affects both submucosal and myenteric 

neurons of the colon, we decided to use two different delivery routes, rectal or osmotic pumps, in 

order to reach both plexi. Rectal administration is less expensive, but probably more stressful for 

the animal, as it requires to be repeated several times by the operator, and maybe for this reason it 

was also related to a higher mortality. Osmotic pumps implant requires one single surgical 

intervention, which is more invasive but less problematic for the mouse in a long-term 

perspective. None of the implanted mice died following the procedure, but did so for the rectal 

route during the second experiment. Although rectal administration might seem easier in terms of 

expertise, both techniques require a good command of surgical skills and animal handling. To 

check the ASO distribution, Tg mice received ASO 2 or PBS for 3 days in the case of osmotic 

pump implant or in one single dose in the case of the rectal route. Mice were sacrificed after 3 

days of diffusion (pumps) or 6 h after administration (rectal) and serial frozen sections of the 

colon were stained using a Streptavidin antibody that recognizes the 3’ biotin TEG cap in the 

ASO 2 sequence. Despite detecting the ASO in tissues was not simple, as some of the amount was 

probably degraded or reached undesired areas, ASO specific immunofluorescent signal was 

detected in samples from both administration routes in proximity of neuronal and non neuronal 

cell types (Fig.3.13). 

 

 

Fig.3.13 ASO distribution after colonic administration in presymptomatic αS Tg mice. 

Immunocolocalization with neuronal markers shows the presence of biotinylated ASO in the colon of 

ASO treated mice but not in PBS treated controls. Frozen sections of distal colon mounted according to 

the “Swiss roll” procedure from presymptomatic 3 months old Tgs were stained with Streptavidin for 

detecting biotinylated ASO, and SV2 together with NF200 for peripheral neurons. Sections were 

counterstained with DAPI. The mice received the treatment rectally (a, b, e) or through osmotic pumps (c, 

d, f), containing ASO (b, d, e, f) or PBS as control (a, c). The tissues were collected 6 h after one rectal 

administration (a, b, e) or 3 days after pumps implant (c, d, f). The images below (e, f) represent a 

magnification of b, d merges respectively, from the selected area. As expected, no Streptavidin-positive 

signal was detected in PBS treated mice (a, c), whilst it was found in ASO treated mice (b, d, e, f). In both 

rectal (b, e) and pump (d, f) routes group, the ASO signal was detected in proximity of neurons (full arrow 

heads) and in proximity of other enteric cell types (empty arrow heads). Images were acquired with ZEISS 

Apotome.2 semiconfocal microscope, objective 20x. Scale bars = 50μm. 
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ASO treatment targeting the colon rescues the impaired transit time in young αS Tg 

mice 

Once confirmed the uptake of ASO at the level of the desired target, we performed a treatment of 

young Tg mice for 7 days, with a dose of 50 µg per animal per day, distributed in 7 

administrations for the rectal group every day at the same time, or through a continuous diffusion 

following the implant for the osmotic pump group. The ideal time to start the ASO treatment in 

our model would be before the onset of constipation, that means well before before 3 months of 

age. Because of the limitation in the use of osmotic pumps in young animals, which depends on 

body size, we chose to initiate the treatment at 10 weeks and to use an all-male group of mice for 

osmotic pumps, due to their larger size compared to females. Additionally, during the practice for 

rectal administration, females resulted easier to manipulate compared to males. Thus, we used an 

all-female group for this route. Tg mice were analyzed for WGTT before (Day 0) and after 

receiving the ASO for 7 days (Day 7). All mice were then sacrificed and the expression of total 

αS in the colon was assessed. At the end of a 7 days treatment, Tg mice which received the ASO 

displayed a significant reduction in their WGTT compared to controls which received PBS only 

and compared to the time point before starting the treatment, for both routes of administration. 

Specifically, within the rectal group the average transit time of Tg mice was 6.267 ± 0.081 h at 

Day 0 and 4.267 ± 0.185 h at Day 7 (p<0.0001), meaning 2 h of decrease, whereas for the pumps 

group it was 4.933 ± 0.376 h at time point 0 and 3.528 ± 0.2037 h after 7 days of ASO treatment 

(p=0.0004), which is about 1.5 h of decrease. The difference in the baseline of WGTT at Day 0 

between females and males was known before starting the analysis as we have previously 

discussed and showed in Fig.3.2.  

Moreover, compared to the respective PBS group at Day 7, ASO treatment resulted in a 

significant decrease in transit time for both routes of administration, with a WGTT of 4.266 ± 

0.185 h vs 5.083 ± 0.417 h for the rectal group (p=0.0362) and 3.527 ± 0.204 h vs 4.418 ± 0.108 h 

for the pumps group (p=0.0495), which is about 50 min of decrease for both cases. To notice, for 

rectal administration, we observed a reduction in WGTT at Day 7 also for PBS treated Tg mice, 

although less pronounced with respect to the ASO treated group. We believe this was the result of 

repeated rectal administrations, consisting every time in 300 µL of liquid entering the distal colon, 

thus stimulating bowel movements for evacuation. For future experiments, one way to avoid this 

unwanted effect might be reducing the amount of solution given for each administration 

(Fig.3.14). 
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Fig.3.14 WGTT in young Tg mice ameliorated after 7 days of ASO treatment. WGTT was measured 

before starting the treatment (Day 0) and after 7 days of ASO treatment (Day 7), which was administred 

rectally (a) or through osmotic pumps (b). In both cases, 10 weeks old Tg mice received 50 µg of ASO per 

day or PBS for the control groups. Values on graphs are expressed as raw data and are given as the mean ± 

SEM (n=3-6 per group) . * p<0.05; *** p<0.001; # p<0.05, where * refers to comparisons between the 

same group at Day 7 versus Day 0, while # refers to comparisons between PBS and ASO group at Day 7; 

two-way ANOVA followed by Fischer’s LSD test. 

 

After WGTT measurement, mice were sacrificed and tissues were collected for further analysis. 

In order to investigate whether the ASO treatment reduced αS protein expression in the colon of 

Tg mice, in correlation with the changes observed for transit time, we performed immunoblot 

analysis on proximal and distal colon and checked for αS levels. Western blot assay showed that 

total αS level was reduced, although not significantly, of about 35% and 50% in rectally and 

pumps ASO treated mice compared to PBS controls only in the distal colon, but remained 

unchanged in the proximal colon (Fig.3.15). 

Thus, this reduction in αS protein level in the colon after ASO treatment was sufficient to improve 

constipation in young Tg mice. We believe that repeating the experiment with a more congruous 

number of animals, increasing the ASO dosage and/or prolonging the treatment to 2 weeks or 

more may result in a significant inhibition of αS expression and possibly a better improvement in 

constipation. 
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Fig.3.15 αS levels in the colon of young Tg mice after 7 days of ASO treatment. a, b) Immunoblot for 

αS in NP-40 soluble lisates from proximal colon (PC) and distal colon (DC) of Tg mice treated with PBS or 

ASO, rectally (a) or through osmotic pumps (b), for 7 days. c, d) Quantification of FL αS/GAPDH levels 

for rectal (c) or pumps (d) group. Although not significant, there is a reduction of αS monomer in both 

rectal (a, c) and pumps (b, d) treated mice in the distal colon and no change in the proximal colon. Values 

on graphs are expressed as % relative to PBS control and are given as the mean ± SEM (n=2/3 per group). 

one-way ANOVA. 
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Discussion 

 

This research demonstrates that the PrP A53T αS Tg mice line G2-3 can be an extremely valuable 

model and to the best of our knowledge the only one at present, for studying constipation as it 

occurs in the prodromal phase of PD, meaning in absence of overt motor abnormalities and CNS 

neurodegeneration (Rota et al., 2019). This mouse model developed in 2002 (Lee et al., 2002b) is 

defined as a model of α-synucleinopathy, since it shows a non significant decrease of DA in the 

SN and no signs of dopaminergic neurodegeneration in the SN, two pathophysiological elements 

relevant for PD definition, probably because the central pathology develops so fast that the animal 

dies before the expected neurodegenerative process takes place. Concomitant with typical motor 

dysfunctions upon which diagnosis is still mainly made, PD patients experience a plethora of non 

motor symptoms affecting both the CNS and the PNS (Schapira et al., 2017). Among these, GI 

symptoms and specifically constipation represent an important feature of the prodromal phase of 

the pathology, since GI abnormalities can appear even decades before the onset of motor signs 

(Cersosimo et al., 2013). The relevance of studying constipation is also attributable to the fact that 

it affects 80% of PD patients, and after being diagnosed with constipation there is almost a 3-fold 

increased risk of developing PD (Abbott et al., 2001). Nevertheless, whether there is a direct 

pathogenic correlation between GI dysfunction and PD, still remains an open issue, in part 

because of the absence of appropriate animal models able to recapitulate the chronic and 

progressive evolution of PD pathological stages. In the G2-3 line constipation and GI deficits 

precede motor dysfunction and neurodegeneration in the CNS by at least 6 months. In fact from 

an early age (3 months), when the CNS is free of αS-driven neuropathology, these mice exhibit 

significant GI dysfunction, as here documented by a strong delay in GI transit time and concurrent 

abnormalities in stool formation, which result in the production of longer but less frequent fecal 

pellets. Because of the similarities in feces consistency, food intake ration, body size and stool 

weight between Tgs and age-matched nTg littermates, which allow us to exclude issues related to 

chow malabsorption, the transit delay observed in young Tg mice could underlie dysfunctional 

bowel movements which in turn could affect the processes of formation, propagation and 

expulsion of stools. 

Consistently with this hypothesis, we found a reduced ability in contraction of longitudinal and 

circular muscle layers of the colon in young Tg mice, mainly dictated by a decreased neuronal 

transmission. In fact, while the colon muscles in Tg animals still contract normally when 

stimulated directly, the neuronal pathway supplying for such muscles was found to be deficient. 

Moreover, at 6 months of age this abnormal behavior progressively worsens, reaching a delay in 

GI transit time of more than 3 hours that was parallel to a further decrease in colon contractility, 

still in absence of any sign of CNS neurodegeneration. 
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As previously explained, the motor activity of the bowel in mice is mainly regulated by the 

cholinergic and tachykinergic systems for contraction, while the nitrergic system is the main 

regulator of gut muscle relaxation (Mang et al., 2002; Bornstein et al., 2004). When considering 

only the recruitment of postganglionic cholinergic motor neurons, electrically evoked contractions 

resulted decreased in αS Tg compared to nTg mice in both muscle layers (Fig. 3.4b). On the other 

hand, when stimulating specifically the nitrergic or the tachykinergic system, the muscle response 

was unchanged between the two groups, at all ages, confirming that GI delay in transit was 

mainly ascribable to a deficit in cholinergic-evoked muscle contractions and not to an excess of 

the relaxant response. 

In line with this view, a more accurate immunofluorescence analysis revealed toxic αS 

accumulated in enteric neurons, including ChAT-positive and TH-positive types, of both 

myenteric and submucosal plexi in presymptomatic and diseased animals. Notably, in the same 

section, not all the neurons stained for αS aggregates, suggesting that accumulation of toxic αS is 

a progressive process in which not all neuronal populations present the same degree of 

susceptibility to αS insults, especially in the gut where neuronal biodiversity is remarkable 

(Furness, 2000). Besides the renowned central DA dysfunction linked to the classical 

parkinsonian motor features (Blesa and Przedborski, 2014), other neuronal systems are affected in 

PD and have been related to both motor and non motor dysfunctions, within and outside the CNS. 

In particular, the cholinergic system has been implicated in PD progression in relation to the 

occurrence of typical motor symptoms such as postural instability and gait disturbances (Karachi 

et al., 2010), but also to non motor symptoms such as dementia and cognitive deficits (Hilker et 

al., 2005; Bohnen et al., 2006), or REM sleep behavior disorder (Kotagal et al., 2012), hyposmia 

(Versace et al., 2017) and possibly dysphagia (Lee et al., 2015), which can all arise during 

preclinical PD. Interestingly, selective accumulation of LBs in cholinergic neurons within the 

nucleus basalis of Meynert, located in the basal forebrain, has been described  to occur 

concomitantly with DA neuronal loss in the SN (Braak et al., 2003a). Also, treatment with 

cholinesterase inhibitors in PD patients appears to improve constipation and GI motility, 

supporting the importance of the cholinergic system in PD (Lepkowsky, 2018). In addition, DA 

exerts a negligible control of intestinal motility at the level of the lower digestive tract in humans 

(Bornstein et al., 2004), strongly suggesting the implication of other neurotransmitters for the 

development of GI dysfunction in PD. Hence, our observation of αS accumulating in TH-positive 

neurons has to be interpreted cautiously before considering these as DA neurons, since DA at this 

level could be a precursor for the other monoamines biosynthesis and its presence does not 

necessarly mean that the neuron in question uses DA as main neurotransmitter. 

Furthermore, in the present study we demonstrate that the bowel dysfunctions shown by 

behavioral data and electrical recordings in Tg mice are supported by a robust biochemical basis 

since immunoblot analysis of the whole intestine revealed that young presymptomatic Tg mice 
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predominantly express αS transgene only in the colon with consequent selective accumulation in 

this tract of insoluble and phosphorylated HMW aggregates already at 3 months of age. 

Remarkably, while the distribution of αS transgene expression did not change with age, including 

after the onset of central pathology, the amount of insoluble aggregates increased over time, 

reaching a peak at 6 months of age, temporally matching the increased delay in GI transit and 

reduction of gut motility, and at the same time providing a strong molecular basis for the 

behavioral and functional GI abnormalities observed. This strong correlation between αS Tg 

expression and LB-like αS aggregates in the colon with bowel dysfunction is also confirmed by 

the absence of GI dysmotility in the ileum of Tg mice, where αS expression is minimal. Therefore 

αS inclusions, neuronal deficit and dysmotility at the level of the colon in this mouse model are 

tightly connected to αS overexpression in this site and represent an early sign of αS-driven 

dysfunction, without CNS involvement. 

In PD patients, αS and LBs have been found in enteric neurons of both submucosal and myenteric 

plexi along the whole GI tract, including the colon (Böttner et al., 2012; Gelpi et al., 2014). An 

investigation led by Beach and coworkers found a rostro-caudal gradient for the accumulation of 

pS129-αS within the ENS with a higher incidence of LBs in the lower esophagus and 

submandibular gland, and lower in the colon and rectum (Beach et al., 2010). As previously 

mentioned, the involvement of the vagus nerve has been suggested as dissemination route of toxic 

αS along the gut-brain axis (Braak et al., 2003a). Nevertheless, the high incidence of aggregated 

αS in all the segments of the spinal cord suggests that other nerves may be implicated in αS 

propagation (Böttner et al., 2012; Pan-Montojo et al., 2012). In addition, several studies have 

indicated LBs presence in human colon biopsies as a possible diagnosis method for preclinical PD 

(Lebouvier et al., 2008; Pouclet et al., 2012; Shannon et al., 2012). Thus, whilst the expression of 

Tg αS at the gastric level still remains to be investigated in our mouse model, the early 

accumulation of toxic αS in the large intestine is sufficient in these mice to recapitulate distinctive 

features of GI dysfunction of human PD, making the G2-3 line an optimal paradigm to study 

constipation in premotor PD.  
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Fig.4.1 Putative spreading routes of α-

synucleinopathy from the ENS to the 

brain in PD. Following a variety of 

possible exogenous and/or endogenous 

causes, αS accumulates in enteric neurons. 

This occurs in concomitance to the 

alteration of gut activity, which is 

observable by abnormal intestinal motility 

and constipation. Aggregated αS might be 

progressively released by damaged 

neurons, generating a cell-to-cell 

transmission responsible for the 

progression of the pathology, from the 

ENS toward the brain, along nuclei in 

vagus nerve and the spinal cord (Tomé et 

al., 2013). 

 

 

In addition, and surprisingly, detergent-stable soluble oligomers of αS were also found in 

presymptomatic young 3 months old Tg mice and their accumulation increased over time. This 

represents a striking difference compared to the CNS, where αS soluble oligomers are only found 

at low level in adult (after 9 months) or diseased mice and are mainly associated with the 

microsomal vesicles fraction (Colla et al., 2012b, 2018). Furthermore, level of pS129-αS in the 

soluble fraction was also abundant, suggesting that αS pathobiology might differ between brain 

and gut, where modified HMW αS remains soluble for a longer period of time, instead of being 

promptly confined in insoluble inclusions. 

Notably, truncated αS was present at all ages in the colon of Tg mice and it may be possible that 

two different truncated forms are present in the proximal and distal colon. Based on other recent 

data we published for the CNS, the accumulation of specific αS truncated species varies 

bewtween presymptomatic and diseased Tg mice (Colla et al., 2018). While the toxicity remains 

to be investigated, increased solubility of αS toxic species, either phosphorylated or truncated, 

may facilitate their spreading and tissue propagation. It would be interesting to compare the 

phosphorylation and truncation patterns in the ENS with the CNS of these mice. 
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Following this accurate characterization of PrP A53T αS Tg mice from a GI perspective and with 

a specific focus at the prodromal phase, our research moved toward a disease modifying 

approach. The therapeutic intervention was designed to be applied during the favorable time 

window we had identified, when Tg mice start showing an altered but not yet consistent transit 

time and in absence of any other sign at the central level. We used an ASO, administred to Tg 

mice at 10 weeks of age, for a continuous period of 7 days. As previously explained, ASOs are 

small, single-stranded sequences of nucleic acids able to bind to a complementary target mRNA, 

this binding causes the recruitment of RNase H enzyme (in our specific case) that in turn degrades 

the target RNA, thus preventing its translation into protein. This approach has been proven 

successful in preclinical trials for a variety of neurodegenerative diseases, characterized by the 

accumulation of specific proteins, such as αS in PD (DeVos and Miller, 2013). Several empiric 

data revealed a widespread distribution through brain and spinal cord following intraventricular or 

intrathecal administration followed by positive phenotypic effects, in mice (Devos et al., 2013; 

Lagier-tourenne et al., 2013), rats (Smith et al., 2006) and non human primates (Kordasiewicz et 

al., 2012; Rigo et al., 2014). Thanks to these results, ASOs made it to clinical trials in which 

intrathecal delivery led to positive outcomes in terms of safety and tolerability for patients 

affected by amyotrophic lateral sclerosis (Miller et al., 2013) and spinal muscular atrophy 

(Chiriboga et al., 2016). Very recently two ASOs finally received FDA approval, Nusinersen for 

spinal muscular atrophy (Aartsma-Rus, 2017) and Eteplirsen for Duchenne muscolar distorphy 

(Lim et al., 2017), representing the first cases of disease modifying therapy for neurodegenerative 

diseases. Other clinical trials are ongoing for Huntington’s disease and spinocerebellar ataxias 

(Scoles and Pulst, 2018). It is important to underline that the therapeutic use of ASOs, especially 

for neurodegenerative diseases, is often based on the target of the whole protein level and not 

exclusively its toxic form. The overload of certain proteins plays a pivotal role for these 

pathologies both in their native and toxic forms (strictly interdependent), thus reducing the total 

amount of a protein can re-establish its altered homeostasis in a broader manner. 

Although CNS-directed administration routes have been well tolerated so far, they remain quite 

invasive and for this reason researchers are pointing toward novel peripheral delivery methods for 

ASOs still utimately aimed at the nervous system, such as subcutaneous, oral and intranasal routes 

(Schoch and Miller, 2017). A number of studies carried out in mice showed that the peripheral 

administration (intraperitoneal or tail vein injection) of ASOs resulted in a positive effect at the 

neuronal level, in the PNS (Bogdanik et al., 2015) and in the CNS (Erickson et al., 2012; Farr et 

al., 2014), meaning that the ASOs were able to cross both the blood nerve barrier (BNB) and the 

blood brain barrier (BBB). Another study was able to individuate a saturable system (termed 

oligonucleotide transport system-1) which facilitates the transport of ASOs across the BBB in 

mice, following intravenous administration (Banks et al., 2001). The BNB, despite some 

differences in composition compared to the BBB, plays a similar role and can be equally effective 
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in excluding specific molecules from the neural parenchyma in vivo (Choi and Kim, 2008; Kanda, 

2013), thus it is possible that they share also similar transport systems. Additionally, it is 

important to take into account that neurodegenerative diseases are often characterized by 

neuroinflammation and disruption of the vascular barriers (Tomkins et al., 2007; Winkler et al., 

2014; Sweeney et al., 2018), including PD (Kortekaas et al., 2005; Shi et al., 2014). Such 

alterations might further facilitate the ASO crossing of neural barriers, in animal models and in 

human subjects. In order to extert its effects on the target mRNA an ASO has to overcome 

membrane barriers outside and inside the cell. Although the details of these mechanisms may 

differ across cell types and still require further investigations, it has been recently explained how 

the process of ASOs entering into cells requires the inclusion in lysosomal or endosomal 

compartments and the trafficking inside the cell (Geary et al., 2015). 

 

 

 

Fig.4.2 Schematic representation of BNB and BBB in radial section. Although the BNB (left) differs 

from the BBB (right) in some components, they both exert a similar function in controlling the passage of 

molecules aimed to protect the nerves and the brain, respectively. In both cases, endothelial cells (orange) 

are connected by tight junctions (red rectangles) and embedded in a single basement membrane (pink) with 

surrounding pericytes (blue). Only in the BBB, a second glial membrane (light green) wraps the just 

mentioned structures, still leaving a so called perivascular space, and an astrocytic endfoot layer (dark 

green) surrounds the outer surface (Kanda, 2013). 
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All this considered, we decided to perform rectal and intraperitoneal administration, the latter 

exploiting a continous drug diffusion through osmotic pumps, in order to target the colonic ENS 

with an ASO against αS, chosen among others following an in vitro evaluation. Since αS 

pathology in these mice is found in both submucosal and myenteric plexi, we speculated that we 

might have the chance to reach both by means of two routes. As expected, with both delivery 

methods the ASO reached neuronal and non neuronal cell types at the level of the colon, 6 h after 

rectal administration or 3 days after osmotic pump implant, indicating that it was absorbed by the 

tissue already at early time points. After this confirmation, we performed a 1 week ASO treatment 

in 10 weeks old Tgs, to evaluate whether local inhibition of αS protein expression could improve 

the deficit in GI transit. Very surprisingly, after only 7 days of treatment, Tg mice which received 

the ASO displayed a significant reduction in their WGTT compared to the values before starting 

the treatment and to the PBS control group, for both administration routes. Concomitant with the 

improvement in constipation, ASO treatment induced a reduction, although not significant, in the 

total level of αS in the distal colon but not in the proximal colon, for both delivery methods. The 

lack of inhibitory effect in the initial tract of the large intestine was not surprising, since the 

osmotic pump was positioned close to the distal colon and the rectal administration was not such 

invasive to reach consistently the upper tract of the colon. Nevertheless, since the distal colon in 

this mouse model is more affected in terms of αS deposition compared to the proximal segment, 

targeting this area appeared to be sufficient to obtain, directly or indirectly, an improvement of 

WGTT. The results obtained highlight the necessity to repeat the experiment on a larger sized 

group of mice. Nonetheless, our data positively support the correlation between GI behavior and 

αS levels in this PD mouse model. Although we cannot rule out the possibility of a CNS 

involvement since we have not measured the ASO levels in blood or cerebrospinal fluid, these 

data still indicate that reducing the total level of αS locally is associated with an improvement of 

GI transit time. 

Thus, our study supports the hypothesis that lowering the total level of aggregation-prone proteins 

can be a successful disease modifying therapy against neurodegenerative diseases. We strongly 

believe that ASO therapy will make a difference for such disorders and that a peripheral approach 

not only is possible but also necessary, if we want to fully comprehend PD and analogous 

pathologies. 
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Conclusions and future directions 

 

The overexpression of αS in the ENS of the PrP human A53T αS Tg mouse model line G2-3 

causes constipation and colon contractile deficits. This enteric dysfunction represents an early 

symptom of α-synucleinopathy that occurs at least 6 months before motor symptoms and 

neurodegeneration in the CNS. From a biochemical point of view, such pathology is evident in 

the colon of these mice, where αS accumulates abnormally in different neuronal types of the ENS, 

in a time dependent manner. Thanks to the net spatio-temporal separation of the two αS-driven 

pathologies first in the colon and then in the CNS, this mouse line is a unique model to investigate 

the gut-brain connection in PD progression and to study GI dysfunction in prodromal PD. 

Promising results arised from targeting the colon through a brief ASO treatment, in terms of GI 

phenotype recovery and disease modifying therapy. Additional experiments are required in order 

to verify whether the putative positive effects of a longer ASO treatment may slow or halt the 

enteric α-synucleinopathy from reaching the brain. In parallel, ongoing research is investigating 

the state of inflammation and permeability of the colon in A53T αS Tg presymptomatic mice, in 

order to evaluate the possible impact of a peripheral proinflammatory condition on αS behavior in 

the ENS. 
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