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Abstract

Entanglements are the ultimate source of toughness in glassy polymers, in fact at

molecular weights lower than the critical molecular weight for entanglements they

become quite brittle. Similarly, the strength of an interface between two immiscible

glassy polymers is determined by the density of entangled strands that cross it,

usually denoted by Σeff . This is a microscopic quantity that cannot be measured or

controlled directly, except in very special cases, and therefore it is important to relate

it to some significative macroscopic parameter characterizing the interface. In recent

years many experimental works proved that there is a clear correlation between the

toughness of an interface between glassy polymers and its width, so that models

of entanglements at interfaces have become necessary to interpret the data. Some

theoretical approaches have been proposed in the last few years, but their agreement

with experimental data cannot be considered completely satisfactory.

In this thesis we propose a new model to describe entanglements at interfaces,

that relates the fracture energy of an interface between immiscible polymers to its

width [1]. The role of other important parameters, first of all the molecular weight

of the polymers, is also investigated.

The starting point is a study of the interfaces between immiscible polymers at

thermodynamical equilibrium. To this end we use a Self Consistent Field approach,

which is suitable for the strong and intermediate segregation regime, to numerically

derive concentration profiles and mean fields.

The central part of this work is devoted to the calculation of Σeff , with a method,

based on a mean field approximation, that it is a generalization of the stochastic
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approach successfully applied by Mikos and Peppas [2] to symmetric interfaces. Nu-

merical results are obtained using the Self Consistent mean fields and the dependence

of Σeff on the interface width and polymers molecular weights is shown. Following

previous literature descriptions, possible fracture mechanisms, depending on the

values of Σeff , are then discussed and a new fracture regime is introduced, called

“partial crazing”, to account for the intermediate situation in which a craze starts

in one of the two materials but it cannot fully develop. Numerical results for the

fracture energy as a function of interface width and polymers molecular weights are

compared with literature experimental data, showing good agreement. In the case

of PMMA/P(S-r-MMA) interfaces, the dependence of the fracture energy on the

interfacial width could be reproduced very well over the whole range of investigated

widths, more satisfactory than in previous literature works.

The last chapter of this work is focused on the calculation of the molecular weight

of entanglements Me, which influences greatly the value of Σeff . This quantity has

been measured in bulk polymers, but, to our knowledge, never at a polymer-polymer

interface. Moreover, theories that clarify the nature of entanglements and allow

speculations on the value of Me in inhomogeneous systems, have been proposed

only recently. In this work the packing model for entanglements is adopted to

estimate the value of Me at polymer-polymer interfaces and in thin polymer films.

Our numerical results show that the molecular weight of entanglement of chains near

an interface is larger than in the bulk, leading to appreciable corrections in the Σeff

and fracture energy calculations. We also compute the average molecular weight of

entanglements in thin films, and predict that it should increase as the thickness of

the film decreases below the entanglement length.
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Chapter 1

Introduction

The adhesion of polymers is relevant in many scientific and technological areas and

has become in recent years a very important field of study [3]-[7]. Its main applica-

tion is bonding by adhesives, but adhesion is also involved whenever two polymers

are brought into contact, as in coatings, paints, polymer blends, filled polymers or

composite materials. Even the toughness of a bulk polymer, for example, can be

viewed as a problem of adhesion between two pieces of the same material. In general

the final performance of these materials depends significantly on the quality of the

interfaces formed inside them; it is therefore understandable that a better knowledge

of adhesion is very important for many practical applications. Yet only 50 years ago

adhesion became a scientific subject in its own right. The reason is probably that

the understanding of adhesion requires a knowledge in many different fields, ranging

from macromolecular science and physical chemistry of surfaces and interfaces to

materials science, mechanics and rheology. It is well known for example that adhe-

sive properties of polymeric materials rely not only on the strength of interfaces they

can form, that have to sustain the stress, but most of all on their ability to dissipate

energy in the bulk. A full comprehension of both aspects of the problem involves

then many different research fields, as we will see for glassy polymers systems.

The first subtle question that needs to be answered when studying this subject

is probably how toughness is measured. In fact it is not obvious what is the best

physical quantity to characterize the strength of an interface. One could say that it



2 Introduction

is the maximum stress that the interface can sustain, called “fracture strength”, but

this is not the best choice. In real systems there are always flaws and cracks leading

to values of the local stress much higher than the average applied stress. The result

is that interfaces usually fail much earlier than expected. A more useful approach is

to invoke an energy criterion: an interface fails if a pre-existing crack can grow. This

happens when the strain energy released by the failure of the interface is greater

than the energy needed to create two new surfaces. The strength of an interface

in practical cases is therefore related to the latter quantity, that is called “fracture

energy” and is indicated with Gc.

The problem that we face now is how to estimate Gc for glassy polymers. If we

could separate two surfaces A and B in a thermodynamically reversible way, then

the fracture energy would be equal to the work of adhesion WAB = σA + σB − σAB,

where σA and σB are the surface tensions and σAB is the interfacial tension. For an

interface between two identical material the above formula gives a work of cohesion

of twice the surface tension. With such an approach we would obtain for glassy

polymers a fracture energy of about 0.1 J/m2 [8], while measured fracture energies of

many glassy polymers reach values four order of magnitude higher and are strongly

dependent on the polymer molecular weight [9]-[12]. In particular a transition is

observed at molecular weights close to the critical molecular weight for entanglement

Mc, after which the fracture energy increases abruptly and then reaches a plateau

at infinite molecular weight, as shown in Figure 1.1. High fracture energies are

also known to be associated with the intermediate formation of a craze, that is a

plastic deformation, localized around the crack zone, capable of dissipating a great

amount of energy [13]-[15]. These experimental observations make it immediately

clear that entangled chains are essential to improve cohesion and to obtain crazing

in the bulk; nevertheless a quantitative explanation of the experimental results has

not been achieved for many years.

It is easy to imagine that, when trying to propagate a crack inside a glassy

polymer, all the chains that are entangled at both sides of the crack will oppose

some resistance. Such a chain coupling across the interface can be described by

the areal density of entangled strands that cross it, indicated by Σeff , which is
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Figure 1.1: Fracture energy G1c versus molecular weight, for PS in the virgin state. The
fracture energy starts to increase very quickly at Mc ≈ 32000, and reaches a plateau at
M ≈ 8Mc. After R.P. Wool [6].

proportional to the maximum stress an interface can withstand. For symmetric

interfaces a simple model, similar to Lake and Thomas theory of elastomers [16],

predicts Σeff = ρeLe/2 , where ρe is the density of entanglements and Le is the

root mean square end to end distance between them [13]. Such an expression is

correct in the limit of infinite molecular weights, but can not explain the molecular

weight dependence of the fracture strength found experimentally. A more accurate

expression was derived by Mikos and Peppas [2], who used a stochastic approach

to count the number of coupling strands across a fracture plane in bulk polymers

and included chain end effects in their analysis. They subdivided each chain in

segments of Ne monomers and assumed that each of them formed an entanglement,

except the first and last ones. In this way they could take into account the fact that

dangling ends do not contribute to entanglements, and predicted that the infinite

molecular weight Σeff should be scaled by a factor 1−2Me/M . This agrees with the

normalized experimental data and with the observation that usually Mc ≈ 2Me. Yet
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the connection between Σeff and the fracture energy still posed problems, because

of the difficulties in describing crazing. Crazed material was believed to be made

of parallel load-bearing fibrils running perpendicularly to the interface, so that any

theory predicted a fracture energy proportional to Σeff . The problem was that, in

order to reproduce experimental results, the energy needed to break C-C bonds

should have been one order of magnitude higher than the measured values. The

solution was found by Brown [17], who first recognized the importance of the cross-

tie fibrils that connects primary fibrils and are capable of transferring load. He

modelled the craze as an elastic continuum and computed the stress amplification

at the crack tip, demonstrating that Gc ∝ Σ2
eff , as described in detail in section

3.3. This scaling law has been confirmed since then by a number of experiments

performed on interfaces reinforced by block copolymers, and could finally explain the

high fracture energies of glassy polymers. A summary of the mentioned experimental

data is presented in Figure 1.2, while experimental details are discussed further down

in this section.

In technology the use of pure materials is rare, because usually people need to

combine in a single mixture the properties of different materials. Unfortunately,

in the absence of specific interactions, most of polymers are immiscible so that in

mixing them you end up with a number of coarse domains of the pure materials.

Moreover the interfaces between such domains are very weak, with the result that the

final composite material is useless. For these reasons a knowledge of the interfacial

properties is often very important from a technological point of view.

The starting point of any study of the strength of an interface is a knowledge of

the equilibrium properties of the interphase between them, and the most interesting

quantity to know is probably the degree of interpenetration between species, or

in other words the concentration profiles. The two general theoretical approaches

for describing interfacial properties of polymer system are based on Self Consistent

Field (SCF) [18]-[29] and Density Functional methods [30]-[39]. The latter approach

consists in writing the free energy of an inhomogeneous system as a functional of

the unknown densities, that are then found by minimization of such a free energy.

The free energy functional is generally written as a functional expansion around the
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Figure 1.2: Fracture energy of interfaces reinforced with block copolymers as a function
of the effective areal density of chains crossing the interface. Triangles and squares are for
polystyrene/poly(2-vinyl pyridine) interfaces reinforced with styrene-2-vinyl pyridine block
copolymers [56]. Circles are for poly(xylenyl ether)/poly(methyl methacrylate) interfaces
reinforced with styrene-methyl methacrylate block copolymers [17],[57]. After Creton et
al. [56].

homogeneous blend expression. Due to its nature this method is appropriate only

for weakly immiscible polymer pairs and wide interfaces, when the square gradient

term alone is sufficient, but it has the great advantage that analytical results can be

often obtained. Self Consistent Field approaches require instead computer intensive

calculations, but can also be used in the intermediate and strong segregation regimes.

The SCF method is the one we adopted and will be described in detail in chapter 2;

we only recall here briefly recall how this method works. Mean fields are expressed

as functionals of the densities, that in turn can be computed from a probability

density satisfying a modified diffusion equation with a potential term given by the

above mean fields. The corresponding coupled equations for fields and densities are

then solved numerically by a self-consistent algorithm.

Both of the above described approaches are usually based on a simple incom-
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pressible Flory-Huggins expression for the homogeneous polymer blend [3], that is

sufficiently detailed for our study of the interface toughness. However it is worth

mentioning that more sophisticated expressions are available, to include the effects

of compressibility, specific interactions, block copolymers, grafted chains, etc.. [40]-

[41]. An interesting improvement in this sense is the Lattice Cluster Theory (LCT)

by Dudowicz and Freed [41]. It is a lattice based model, where monomers are allowed

to occupy more than one site and to have different structures, while compressibility

is taken into account by adding voids as non-interacting particles occupying only

one site. Corrections to the mean field approximation are then systematically added

to the free energy expression through a double power expansion in the microscopic

interaction energies and in the inverse lattice coordination number. With this ap-

proach Freed and coworkers could explain effects due to monomer structures, as the

temperature independent term in the effective interaction parameter χ, that is due

to non-combinatorial entropy of mixing, or the miscibility of polyolefin blends [42].

The theories described above have been extensively tested against experimental

results for interfacial widths and tensions, displaying a good agreement within their

range of validity [43]-[49].

The toughness of interfaces between immiscible polymers instead has started

to be investigated only recently, raising new questions about the concept of entan-

glement. The typical experiments on these systems are set up as follows. Two

immiscible glassy polymers are annealed at a temperature T above the glass tran-

sition temperatures, Tg, of the two species, for a time that is long enough to reach

thermodynamical equilibrium. Then the system is cooled down very quickly to room

temperature and the fracture energy of the glassy joint is measured. This measure-

ment is usually performed by an asymmetric double cantilever beam test, in which

two welded polymer bars of different thicknesses are driven apart by a razor blade of

known width, as illustrated in Figure 1.3. The length of the crack ahead of the blade

is then measured and the fracture energy is computed from the known geometric

and elastic properties of the beams. In such experiments the ratio of bar thicknesses

is chosen to obtain the smallest value of the fracture energy; in this situation the

crack propagates at the interface and the applied stress is purely tensile. The cor-
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responding fracture is usually referred to as mode I, and the corresponding energy

is sometimes indicated with GIc. Mode I failure gives the lowest values of fracture

energy and it is also better understood from a theoretical point of view. These ex-

periments have been performed for a range of different materials and experimental

conditions [50]-[58], so that some data are now available in the literature, allowing

theoretical models to be tested.

Figure 1.3: Asymmetric Double Cantilever Beam Test. The arrangement is asymmetric
to compensate for differences in elastic and crazing properties between the two materials,
as discussed in the text. After Creton et al. [56].

The first conclusion that can be drawn is that entanglements are essential in

strengthening the interfaces between immiscible polymers. Many experimental groups

have measured, for instance, the interfacial fracture energy between polystyrene (PS)

and poly(methyl methacrylate) (PMMA) finding values between 10 and 20 J/m2

[50]-[52], much less than bulk fracture energy of both polymers, but substantially

greater than the ideal work of adhesion. Moreover they found that, similarly to

what happens in bulk glassy polymers, at low molecular weights, Gc drops below

3 J/m2 [52]. A qualitative explanation of such results is not difficult: the extent

of entanglement is much smaller in interfaces than in the bulk. In fact the inter-

face between PS and PMMA has a width of only 3 nm, while the distance between

entanglements in polystyrene is about three times greater.

Applying the same concepts valid for bulk glassy polymers, one can describe the
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Figure 1.4: Schematic of a layer of A-B block copolymer chains segregated at a A/B
interface. After Creton et al. [56].

chain coupling across the interface by Σeff , which is also the quantity determining the

failure mechanism. Important information about this aspect can be obtained from

experiments on interfaces reinforced with block copolymers. We know that when a

diblock copolymer AB is placed at an A/B interface, each block will mix with its

homopolymer, as shown schematically in Figure 1.4. It is then possible to assume

that all the copolymer chains will cross the interface, and to compute the contribute

to Σeff due to the copolymer from its density. Moreover for strongly immiscible

pairs the homopolymer contribution can be neglected, so that for such systems

Σeff is perfectly known. Creton et al. [56] studied an interface between PS and

poly(2-vinylpiridine) (PVP) reinforced with block copolymers of PS and PVP. They

showed that different failure mechanisms occur depending on the molecular weight

of the blocks and on Σeff . Short blocks, that are not long enough to be entangled

with their homopolymers, can be easily pulled out from their surroundings and only

small increases of fracture energy can be obtained. At higher molecular weights,

i.e. when M > Mc, and low Σeff , the active failure mechanism is chain scission,

as proved by surface analysis that measured the fraction of blocks on each side of

the interface after failure. At high molecular weights and high Σeff , crazing is the
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preferred mechanism and fracture energies are very high. Similar conclusions were

confirmed also by Dai et al. [58], who investigated the same system with similar

techniques, and by Creton et al. [59] who studied interfaces between PMMA and

poly(phenylene oxide) (PPO) homopolymers reinforced with varying amounts of a

PMMA-PS block copolymer. A useful picture of the transition between different

failure modes is given in Figure 1.5, where we report experimental results from

Kramer [60], showing how the fracture mechanism changes from chain scission, in

which Gc ∝ Σeff , to crazing, in which Gc ∝ Σ2
eff , when Σeff increases.

Figure 1.5: Reinforcement of a PS/poly(vinyl pyridine) interface by a deuterated styrene
(dPS)-vinyl pyridine block copolymer. Circles (right-hand axes) show the measured frac-
ture energy, and crosses the fraction of dPS found on the PS side of the interface after
fracture, both as a function of the copolymer chain density. The discontinuity of the curves
at Σ = 0.03 nm−2 indicates a transition from chain scission to crazing. After Kramer et
al. [60].

The cited experiments allowed to determine the relation between Σeff and the
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toughness of an interface, but in non reinforced systems Σeff cannot be measured.

It would be therefore desirable to link it to measurable parameters of the interface.

We can start from the observation we made on PS/PMMA systems: if the width

is much lower than the distance between entanglements then they are not very

effective in reinforcing the interface. This simple prediction has been investigated

in some recent experiments. Schnell et al. [53] measured the fracture energy of

bilayers of PS and poly(para-methyl styrene) (PpMS), for a wide range of interfacial

widths, obtained by changing the annealing temperature of the samples. In this way,

they were able to demonstrate that there is a clear correlation between the width,

measured by neutron reflectivity, and the fracture energy of the interface. The

results were confirmed in another work of the same authors on interfaces between

PS and the statistical copolymer of poly(bromostyrene-styrene)(PBrxS) [54]. The

same correlation has been found by Brown [55], who measured the toughness of the

interface between a random copolymer P(S-r-PMMA) and pure PMMA, for different

fractions of PS in the copolymer. In order to show how Gc depends on the interfacial

width, we reproduce in Figure 1.6 a plot in which several experimental results are

reported together.

It would be of great importance to establish a quantitative relation between

width and toughness, because it would allow easier predictions of the strength of

interfaces and would clarify the concept of entanglement. For weakly immiscible

polymer pairs, De Gennes [61] proposed a scaling law for the dependence of Σeff on

the interface width through the Flory-Huggins interaction parameter χ. However,

his result is based on energetic considerations, and it does not take into account

properly the effect of inhomogeneous polymer densities at the interface. In recent

years a new approach has been proposed by Brown [55], in which Σeff depends

only on the concentration profile of the polymer. He assumed that the probability

that a strand starting from x might end in x′ is proportional to the ratio of the

polymer volume fractions at the two points, but we will see in chapter 3 that this

is not correct. As a result, his model predicts a variation of the density of effective

entangled chains that is too slow with respect to the changes in the interface width.

Both models are discussed in detail in section 3.2.
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Figure 1.6: Fracture energy Gc plotted as a function of the interfacial width aI for
different samples: PS-PBrxS (open squares) [54], PS-PMMA (filled squares) [44][50], PS-
PpMS (filled circles) [53], and PS-PS (open circles) [53]. After Schnell et al. [54].

More generally, we believe that the main limitation of all available descriptions

of the strength of interfaces is the scarce knowledge of entanglements. A great

step forward in this direction has been done in the last fifteen years, when some

new models have been proposed to link the molecular weight of entanglements to

conformational characteristics of the polymer chains [62]-[69]. Recent experiments

[67],[70] seem to confirm the validity of a particular the so called “packing models”

for bulk glassy polymers, and some authors have already attempted to apply the

same concepts to entanglements at interfaces and surfaces [71]-[73]. Unfortunately it

is not clear how to determine experimentally the molecular weight of entanglement

in interfaces, so that for these systems the predictions of different models cannot be

tested. A possible way of measuring Me in thin films has been instead proposed by

Brown and Russell [71], and experiments are currently being performed.

In this thesis we present a new model for entanglements at interfaces, that can



12 Introduction

account for the experimentally found dependence of the toughness on the interfacial

width. The work is organized as follows. In chapter 2 we study the thermodynamics

of polymer blends, describing in detail the Self Consistent Field (SCF) approach and

the numerical calculations we performed to obtain concentration profiles and mean

fields at polymer-polymer interfaces. In chapter 3 a new model is presented that

allows to compute the density of entangled strands across the interface. Our model,

supplemented with an appropriate description of the fracture mechanisms and the

introduction of a new fracture regime, describes very well the available experimental

data. In particular it reproduces very well the dependence of the toughness on the

interface width over the whole range of experimental widths. In the final part of

this work, chapter 4, we adopt a packing model for entanglements and apply it

to inhomogeneous systems in order to estimate Me. Numerical results show that

the molecular weight of entanglement of chains near an interface is larger than in

the bulk, and the corrections to the fracture energy calculations due to this effect

are discussed. We compute also the average molecular weight of entanglements in

thin films, showing how it increases as the thickness of the film decreases below the

entanglement length. Conclusions and ideas for future developments are the subject

of chapter 5.



Chapter 2

Self Consistent Field method for
polymer interfaces

The main goal of this work is to predict the strength of a joint as a function of its

interfacial properties, and it is therefore natural to start from the thermodynamics of

polymer mixtures. In particular we are interested in the equilibrium concentration

profiles of the two joined polymers and in the mean fields that chains experience

at the interface. As we will see in chapter 3 our model of entanglements is in fact

based on a mean field approximation.

As already pointed out in the introduction two methods are commonly used

to study inhomogeneous systems, that have different ranges of validity. Density

Functional methods [30]-[39] can give some accurate analytic predictions for wide

interfaces, but they are not very useful in the case of the strongly immiscible systems

we want to study. A Self Consistent Field approach [18]-[29] is more suitable for

strong and intermediate segregation and, even if it requires computer intensive cal-

culations, it allows to compute at the same time the densities and the corresponding

mean fields. For these reasons we will adopt a SCF method to obtain the needed

equilibrium properties of interfaces.

The origins of the SCF approach can be dated back to the mid-1960s, when Ed-

wards pointed out the analogy between the classical problem of interacting electrons

and the “new” problem of interacting polymers [74]. Many methods were available

at the time to deal with many body systems and they proved immediately success-
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ful when first applied to polymers by Helfand and Tagami [18]. The problem was

initially presented from a mean field point of view and only later a more comprehen-

sive theory, based on a functional integral approach, showed the connection between

that intuition and fundamental statistical mechanics [20]. In his works Helfand

studied in detail the interface between two immiscible polymers that he assumed

incompressible, and soon recognized the importance of avoiding fluctuations of the

overall density. He therefore added to the free energy an “ad hoc” term proportional

to the square of the deviation from the average density and to the inverse of bulk

compressibility, to restrict such fluctuations. Some years later Hong and Noolandi

[24] developed instead a truly compressible theory, that was derived from an earlier

work on incompressible multi component polymer systems [23], by simply assuming

one of the small molecule components to be vacancies.

We performed SCF calculations on interfaces with both methods and checked

that, in the incompressible limit, they give the same results within the numerical

errors. For convenience however we adopted the approach by Helfand [20], and

followed the work by Shull et al. [25]-[28] to perform numerical calculations.

In this section we first derive correct SCF equations for inhomogeneous polymer

systems following the work by Hong and Noolandi [23], and then describe in detail

how we solved them in the case of interfaces, paying particular emphasis on the

approximations of Helfand’s approach. We hope in this way to give a clear picture

of the physics involved.

2.1 SCF equations for inhomogeneous polymer sys-

tems

The index p = 1, 2, ..., n labels the polymeric species, while we will indicate with

the subscript 0 the voids. Summations involving also the vacancies will be denoted

with the index k = 0, 1, ..., n. In this section, for consistency with the work of Hong

and Noolandi [23], the number of chains of type p is denoted by Ñp = Np/Zp, where

Np is the number of monomer units and Zp is the degree of polymerization. Of

course Z0 = 1, so that we will use either N0 or Ñ0. Moreover we will assume that
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each vacancy occupies the same volume, that we will call υ and that can be in fact

regarded as the lattice cell volume.

Our derivation starts from the grand partition function for a system with fixed

number of particles, but a variable number of vacancies

Z =


∏

k

ZÑk
k

Ñk!




∫ 


N0∏

i=1

δr0i(·)




∏

p

Ñp∏

i=1

δrpi(·)P [rpi(·)]

 exp(−βV ), (2.1)

where Zk is the partition function due to the kinetic energy and V is the inter-

molecular potential. It is clear that a vacancy cannot have a kinetic energy, so

that Z0 is to be interpreted as a normalization constant that will be determined

later. We also assume that vacancies don’t interact, and therefore they do not enter

the intermolecular potential V . Connectivity of polymer chains is accounted for by

writing

P [rpi(·)] ∝ exp

[
− 3

2b2
p

∫ Zp

0
dtṙ2

pi(t)

]
. (2.2)

In this chapter we will use kBT as the unit of energy and prefer to define a nondi-

mensional potential Ŵ = V/kBT , that can be expressed in terms of the microscopic

particle densities

ρ̂p(r) = ρ̂p(r; {rpi(·)}) =
Ñp∑

i=1

∫ Zp

0
dtδ [r− rpi(t)] , (2.3)

as

Ŵ =
1

2

∑

pp′

∫
dr

∫
dr′ρ̂p(r)Wpp′ (r− r′) ρ̂p′(r

′). (2.4)

Now we use a δ functional identity to introduce the real density fields ρk(r) and

write

exp
(
−Ŵ

)
=

∫ [∏
p

δρp(·)
] ∏

p

δ [ρp(·)− ρ̂p(·)] exp(−W ), (2.5)

where

W = W ({ρp(·)}) =
1

2

∑

pp′

∫
dr

∫
dr′ρp(r)Wpp′ (r− r′) ρp′(r

′). (2.6)
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Another set of fields, ωk, can be introduced by using the exponential representation

δ [ρk(·)− ρ̂k(·)] = N ′
∫ i∞

−i∞
δωk(·) exp

{∫
drωk(r) [ρk(r)− ρ̂k(r)]

}
, (2.7)

where N ′ is a normalization constant and the limits of integration are −i∞ and i∞.

The partition function is finally obtained as

Z =


∏

k

ZÑk
k

Ñk!


N

∫ [∏

k

δωk(·)δρk(·)
] ∏

k

QÑk
k exp

{∑

k

∫
drωk(r)ρk(r)−W

}
,

(2.8)

where N is another normalization constant and

Qk =
∫

δr(·)P [r(·)] exp

{
−

∫ Zk

0
dtωk[r(t)]

}
=

∫
drdr0Qk(r0, r; Zk). (2.9)

For the vacancies it is easy to verify that

Q0 =
∫

dre−ω0(r). (2.10)

In summary, the above procedure allowed to eliminate particle-particle interac-

tions and replace them with the interactions between individual particles and the

fluctuating fields ωk.

Before proceeding further we note that, for a polymer, the function Qp(r0, r; Zp)

is nothing but its Green function, and, at thermodynamic equilibrium, it represents

the statistical weight of chains starting at r0 and ending at r′ in Zp steps, normalized

with respect to the value it assumes in absence of external fields. Moreover it can

be shown to satisfy the Modified Diffusion Equation (MDE)

[
∂

∂t
− b2

p

6
∇2 + ωp

]
Qp (r0, r; t) = 0, (2.11)

with boundary condition

Qp (r0, r; 0) = δ (r− r0) . (2.12)
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It is also useful to define the quantities

qp(r, t) =
∫

dr0Qp (r0, r; t) , (2.13)

representing the probability of finding the end of a chain of length t at r. It is easy

to verify that they satisfy the relations

qp(r, 0) = 1, (2.14)

and

Qp =
∫

drqp(r, Zp). (2.15)

We will make extensive use of the Green function and of probabilities q in chapter

3, where the former quantity will be denoted with G instead of Q.

If we use Stirling’s approximation for large Ñk (ln Ñk! ≈ Ñk(ln Ñk − 1)) in equa-

tion (2.8) we obtain

Z = N
∫ [∏

k

δωk(·)δρk(·)
]

exp [−F({ρk(·)}, {ωk(·)})] , (2.16)

where the free energy functional is given by

F({ρk(·)}, {ωk(·)}) = (2.17)

= W ({ρk(·)})−
∑

k

∫
drωk(r)ρk(r) +

∑

k

∫
dr

ρk(r)

Zk

[
ln

(
Nk

ZkZkQk

)
− 1

]
.

We now know the free energy F as a functional of the densities ρk and of the

external fields ωk, that can be obtained by the saddle function method. It consists

in minimizing the functional F with respect to both densities and external fields,

obtaining a set of coupled equations. This procedure corresponds to a mean field

approximation, so that the self consistent ωk are exactly the mean fields we will need

in chapter 3 to compute Σeff . The minimization is performed under two constraints,

that are added in order to model physical properties of the polymers. The first

derives from the fact that there is an excluded volume effect due to hard-core re-

pulsion, and it states that there is no volume change upon mixing. Mathematically

this is modelled by imposing
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∑

k

ρk(r)/ρ
∗
k = 1, (2.18)

where ρ∗0 = 1/υ, and ρ∗p are the densities of the pure polymers in monomer segments

per unit volume. The above condition can also be interpreted by thinking that

chains are placed on a lattice, where each cell has to be occupied by monomers

or voids. In this picture ρ∗0/ρ
∗
p gives the number of lattice cells occupied by one

monomer of polymer p. The second constraint is that the number of monomers of

each polymeric component is fixed

∫
drρp(r) = Np. (2.19)

Denoting the Lagrangian multipliers corresponding to constraints (2.18) and

(2.19) respectively by η(r) and µk, we write the variational equations as

ρk(r) +
Ñk

Qk

δQk

δωk(r)
= 0, (2.20)

δW

δρ0(r)
− ω0(r) +

[
ln

(
N0

Z0Q0

)
− 1

]
+

η(r)

ρ∗0
= 0, (2.21)

δW

δρp(r)
− ωp(r) +

1

Zp

[
ln

(
Np

ZpZpQp

)
− 1

]
+

η(r)

ρ∗p
− µp = 0. (2.22)

Equation (2.20) leads immediately to

ρ0(r) =
N0

Q0

e−ω0(r) (2.23)

for the vacancies, and to

ρp(r) =
Np

ZpQp

∫ Zp

0
dtqp(r, t)qp(r, Zp − t), (2.24)

for polymers. We are then left with equations (2.21)-(2.24) in which Lagrangian

multipliers have still to be determined. Since all the fields ωk are defined up to a
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constant, we decide to choose those constants in such a way that

Qp = Np/ρ
∗
p. (2.25)

For the vacancies Z0 can be determined by

ZN0
0

N0!
=

1

V N0
0

, (2.26)

which gives, using Stirling’s formula,

Z0e = N0/V0 = ρ∗0, (2.27)

where V0 is the total volume available to the vacancies.

In order to write the final equations in a more usual notation, it is better to

express the potential W , with the help of eq.(2.18), in the form

W = W ({ρk(·)}) =
1

2

∑
p

ρ∗pNpεpp +
1

2

∑

kk′

∫
dr

∫
dr′ρk(r)Ukk′ (r− r′) ρk′(r

′), (2.28)

where

Ukk′(r) = Wkk′(r)− 1

2ρ∗kρ
∗
k′

(
ρ∗2k Wkk(r) + ρ∗2k′Wk′k′(r)

)
, (2.29)

and

εpp′ =
∫

drWpp′(r). (2.30)

In practice Wkk′ represents the van der Waals interaction between monomers and

vanishes when k = 0 or k′ = 0, while Ukk′ is an exchange energy and vanishes when

k = k′.

It is finally possible to find the Lagrangian multiplier η(r) from equation (2.21)

as

η(r)

ρ∗0
= − δW

δρ0(r)
− ln

ρ0(r)

ρ∗0
, (2.31)

and rewrite all the relevant SCF equations in the more explicit form
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δW

δρp(r)
− ρ∗0

ρ∗p

δW

δρ0(r)
− ωp(r) +

1

Zp

[
ln

(
ρ∗p

ZpZp

)
− 1

]
− ρ∗0

ρ∗p
ln

ρ0(r)

ρ∗0
= µp (2.32)

ρ0(r) = ρ∗0e
−ω0(r), (2.33)

ρp(r) =
ρ∗p
Zp

∫ Zp

0
dtqp(r, t)qp(r, Zp − t). (2.34)

The physical meaning of the above equations is now clear. The last two merely

give the densities as functionals of the fields, while equations (2.32) express the

constance of the chemical potentials. In fact the Lagrangian multipliers µp are

nothing but the chemical potentials for species p.

Equations (2.32)-(2.34) are the core of the Self Consistent method, and allow to

explicitly find the fields ωp and the densities ρp.

We can check the above results by applying them to a homogeneous system. The

interaction potential per unit volume is given by

W h

V
=

1

2

∑
p

εppρ
∗
pρp +

1

2

∑

kk′
Ukk′ρkρk′ , (2.35)

where

Ukk′ =
∫

Ukk′(r)dr. (2.36)

The probabilities q and the fields ωp are constant and given respectively by

qh
p (t) = e−ωh

p t (2.37)

and

ωh
k = − 1

Zk

ln
ρk

ρ∗k
. (2.38)

The specific free energy in the homogeneous case is then found in the standard

Flory-Huggins form

fh = ρ0 ln
ρ0

ρ∗0
+

∑

kk′

1

2
Ukk′ρkρk′ +

∑
p

ρp

Zp

ln
ρp

ρ∗p
+

∑
p

ρpµ0p, (2.39)
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where we have included all the linear terms in the definition of the chemical potential

of the pure polymer µ0p

µ0p =
1

2
εppρ

∗
0 +

1

Zp

[
ln

(
ρ∗p

ZpZp

)
− 1

]
. (2.40)

The chemical potentials appearing in the SCF equations can be determined from

the polymer densities {ρI
p, ρ

II
p } in the two uniform bulk phases, denoted as I and

II, by applying the results for the homogeneous system. The equations to find the

densities are obtained from the equality of the chemical potentials in the two bulk

regions

µI
p = µII

p , (2.41)

and by fixing the pressure,

P (r) =
∑
p

ρp(r)µp − f(r), (2.42)

in the two bulk phases.

Before ending the section we recall that a very useful approximation is possible if

the interaction energy is supposed to be short ranged. In that case we can perform

the expansion

W =
1

2

∑
p

ρ∗pNpεpp +
1

2

∑

k,k′

∫ ∫
drdr′Ukk′(r− r′)ρk(r)ρk′(r

′) ≈ (2.43)

1

2

∑
p

ρ∗pNpεpp +
1

2

∑

kk′
Ukk′

∫
drρk(r)ρk′(r)− 1

12

∑

kk′
Vkk′

∫
dr∇ρk(r) · ∇ρk′(r),

with

Vkk′ =
∫

drr2Ukk′(r). (2.44)

Retaining only the first two terms of the expansion represents the random mixing

approximation.
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2.2 Numerical solution of SCF equations at inter-

faces

At an interface between two immiscible polymers the fields vary only in one direction,

that we will denote with x, and k = 0, 1, 2, where 0 denotes the vacancies as above.

We will work with the volume fractions

φk(x) =
ρk(x)

ρ∗k
, (2.45)

that are equal to the reduced densities if there is no volume change upon mixing,

and satisfy

φ0(x) = 1− φ1(x)− φ2(x). (2.46)

Using relations (2.32) the compressible mean fields for a binary blend are given in

the random mixing approximation by

ω1(x) =
ρ∗0
ρ∗1

[χ12φ2(x) + χ01(φ0(x)− φ1(x))− χ02φ2(x)− ln φ0(x)]+µ01−µ1, (2.47)

ω2(x) =
ρ∗0
ρ∗2

[χ12φ1(x) + χ02(φ0(x)− φ2(x))− χ01φ1(x)− ln φ0(x)]+µ02−µ2, (2.48)

where

χ0p = U0pρ
∗
p (2.49)

and

χ12 = U12
ρ∗1ρ

∗
2

ρ∗0
(2.50)

are the usual Flory-Huggins interaction parameters. Please note that, as in the

whole chapter, kBT is the unit of energy and that in the mean fields the kinetic

terms, i.e. terms inversely proportional to Zp, cancel exactly.

Our goal is to find the self consistent inhomogeneous concentration profiles φp(x)

and mean fields ωp(x), and we present in this section our method of solution and

the approximations we adopted. The first and most important regards the com-

pressibility of the system. We have seen that the SCF method can account properly

for a finite compressibility, but the real polymers we study in this work, i.e. PS,

PMMA and PpMS, are quite stiff. Moreover in a compressible system three different



2.2. Numerical solution of SCF equations at interfaces 23

interaction energies, χ01, χ02 and χ12, need to be determined, and it is difficult to

extract meaningful values from the experiments. This is why we preferred to con-

sider the incompressible limit, that in Hong and Noolandi formulation is equivalent

to fixing a very high pressure P → ∞. In this limit φ0 → 0, and the term ln φ0

increases indefinitely but tends to be constant across the interface. From all these

considerations it follows also that there is only one interaction energy entering the

incompressible equations.

An alternative approach is the one by Helfand [20], that is not rigorous but gives

the correct incompressible limit. Helfand derived the mean fields from a “special,

but realistic, free energy”, which, expressed in kBT units, reads

∆f ∗ =
∫

dr


ρ∗0χ

ρ1(r)

ρ∗1

ρ2(r)

ρ∗2
+

1

2κ

(
ρ1(r)

ρ∗1
+

ρ2(r)

ρ∗2
− 1

)2

 , (2.51)

where κ is an average compressibility. Mean fields are obtained from equations

ωp(r) =
δ∆f ∗

δρp(r)
, (2.52)

which in the case of an interface give

ωp(x) =
ρ∗0
ρ∗p

[
χφp′(x) +

1

ρ∗0κ
(φ1(x) + φ2(x)− 1)

]
. (2.53)

This expressions should be compared with equations (2.47) and (2.48). Apart from

the fact that there is only one interaction energy χ, as expected from the incompress-

ible theory, the most serious difference is in the treatment of the density fluctuations.

In the correct fields (2.47) and (2.48) the overall density is maintained constant by

the logarithmic term related to the pressure of the system that arises naturally from

the entropy of vacancies. In Helfand formulation an extra term is added to the free

energy for purely practical reasons. This term can be seen as a quadratic expan-

sion of the correct logarithm term about the incompressible system where φ0 = 0,

containing an indeterminate coefficient. In fact the incompressible limit is achieved

by letting the compressibility κ tend to 0, thus imposing a constant overall density

through the interface.
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In our numerical calculations we use the Helfand expression (2.53) for the mean

fields with ρ∗p = ρ∗0 and proceed as follows. We start by fixing a small compressibility

κ ¿ χ−1, and then compute the equilibrium volume fractions {φ1(±∞), φ2(±∞)}
from equations (2.41), using the Flory-Huggins expression for the chemical poten-

tials. As the first step of the iterative procedure we need an initial guess for the

concentration profiles φ0
1(x) and φ0

2(x), that interpolates between the two homoge-

neous phases. The corresponding fields ω1(x) and ω2(x) are then computed using

the relations (2.53).

From the initial fields we compute the new densities in two steps. First we solve

the differential equation for q(x, t), that can be derived from the MDE (2.11) and

reads

[
∂

∂t
− b2

p

6

∂2

∂x2
+ ωp(x)

]
qp (x, t) = 0, (2.54)

with initial conditions

qp(x, 0) = 1. (2.55)

Then we use the relation

φp(x) =
1

Zp

∫ Zp

0
dtqp(x, t)qp(x, Zp − t), (2.56)

which is obtained from equation (2.34).

The spatial boundary conditions of equations (2.54) can be found by noting that

at x = ±∞, if there is no actual external field, the system is homogeneous, so that

we obtain from equations (2.37) and (2.38)

qp(±∞, t) = exp [−ωp(±∞)t] = exp

[
t

Zp

ln φp(±∞)

]
. (2.57)

The new densities are then used to obtain image fields ω(1)
p (x) from equations (2.53).

In order to achieve convergence we don’t use the image fields as the next guess in

the iterative procedure, but we prefer to use the expression

ωnew
p (x) = ωp(x) + λ

[
ω(1)

p (x)− ωp(x)
]
, (2.58)
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where λ is some relaxation parameter. With the new fields, a new iteration is started

by computing new volume fractions and so on, until the self consistency condition

max
x

∣∣∣ωp(x)− ω(1)
p (x)

∣∣∣ < ε (2.59)

is achieved for both polymers. In our calculations we usually set ε ≈ 10−4 and

λ ≈ 1/Zp. In order to improve convergence we sometimes considered separately the

two terms of the fields (2.53) and used two different relaxation parameters λ1 and

λ2.

The differential equations are numerically solved by means of a standard discrete

approximation [25]-[28] that we briefly report. The two variables x and t are treated

as discrete, through the relations

x = (i−N)∆x ; i = 0, ..., 2N (2.60)

and

t = j∆t ; j = 0, ..., M, (2.61)

with ∆t = Zp/M and ∆x depending on the width of the interface. The discrete

MDE for qp(i, j), derived from equation (2.54), is solved by the recursion relation

qp(i, j) = (2.62)

=

[
1− λ0

2
qp(i− 1, j − 1) + λ0qp(i, j − 1) +

1− λ0

2
qp(i + 1, j − 1)

]
exp [−ωp(i)] ,

with discrete boundary conditions

qp(i, 0) = 1, (2.63)

qp(0, j) = exp
[

j

M
ln φp(−∞)

]
, (2.64)

and

qp(2N, j) = exp
[

j

M
ln φp(+∞)

]
. (2.65)

The parameter λ0 is the probability that a monomer is found in the same layer j

as the preceding one along the chain, and depends on the lattice type. In the limit

∆x → 0 and ωp → 0, it can be proved that qp(i, j) satisfies
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[
∂

∂t
− (1− λ0)∆x2

2

∂2

∂x2
+ ωp(x)

]
qp (x, t) = 0, (2.66)

which is the same equation as in (2.54), provided that ∆x = bp/
√

3(1− λ0). We

therefore proceed as follows. We first choose a cubic lattice, for which λ0 = 2/3,

and fix a ∆x sufficiently small with respect to the investigated interface. Then we

consider equivalent chains with b∗1 = b∗2 = ∆x and, accordingly,

Z∗
p = Zp

b2
p

∆x2
(2.67)

ω∗p = ωp
Zp

Z∗
p

. (2.68)

As a matter of fact it can be verified that, using the new parameters, we obtain

the correct φp(x). Moreover if ∆x is chosen smaller than bp, as we always did, then

also the corresponding mean fields ω∗p decrease with respect to the original ones and

the continuous limit is approached. Another advantage of using equivalent chains

with the same Kuhn segment length is that it can be assumed that vacancies and

monomers of both species occupy the same volume ∆x3, thus simplifying all the

equations. The scaled mean fields that we obtain can then be used in the MDE

(2.11), together with the other scaled parameters to obtain numerically the Green

functions of real chains.

We performed self consistent calculations on all the samples studied in chapter

3, but, in order to show the essential features of our results, we first apply the

SCF method to a simple illustrative system, simulating an interface between two

materials with bulk parameters equal to those of PS. In particular we used b = 6.7

Å as the Kuhn segment length, and the same molecular weight of 300k for both

polymers. The interfacial width is changed by choosing an appropriate interaction

parameter χ. This symmetric system will be used through the whole thesis to test

our model and to show its most important predictions. In Figure 2.1 we plot the

volume fractions calculated numerically with the above described SCF method for

χ = 0.013 (squares and circles). Applying the theory of Helfand and Tagami [18] in

the long chain limit, we would predict hyperbolic tangent profiles with an interfacial

width of aI = 2b/
√

6χ = 5 nm. In order to compare the two results we also plotted
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Figure 2.1: Computed volume fractions for the illustrative system described in the text
in the incompressible limit (symbols). Solid and dashed lines represent hyperbolic tangent
profiles with aI = 5 nm.

in the same figure (solid and dashed lines) the profiles predicted by this theory, that

seem to agree very well with our numerical results.

The corresponding mean fields are reported in Figure 2.2. Two wells can be

distinguished close to the interface, that are consistent with the condition of a con-

stant total density across the interface. Since the system is strongly immiscible

we have φ1(−∞) = φ2(+∞) ≈ 1 and φ1(∞) = φ2(−∞) ≈ 0, from which follows

ω1(−∞) = ω2(+∞) ≈ 0 and ω1(∞) = ω2(−∞) ≈ χ.

We also show in Figure 2.3 a contour plot of the Green function Q(x, x′; n),

relative to polymer 1, whose bulk phase is at x = −∞. In the calculations we used

n = 128, that corresponds to the mean spacing between entanglements in PS, so that

the scale length over which the function changes is b
√

n ≈ 7.6 nm. The presence

of the interface is responsible for the well pronounced asymmetry in space, that

corresponds to higher probabilities for the chains of being at x < 0. The function is

instead symmetric with respect to the exchange of x with x′, as expected.
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Figure 2.2: Mean fields computed by the SCF method for the same system as in figure
2.1.
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Figure 2.3: Contour plot of the Green function Q(x, x′; n = 128), computed from the
mean field given in figure 2.2 as the solid line.



Chapter 3

Chain entanglements and fracture
energy

In this chapter a new method is proposed to compute the fracture energy of an

interface between immiscible glassy polymers. It is based on a microscopic model

of entanglements that is very simple, but capable of capturing the essential fea-

tures of the problem, as described in section 1. In section 2 we find an explicit

expression for Σeff , and evaluate it numerically by using the SCF method of the pre-

vious chapter. The dependence of Σeff from the interfacial width and the molecular

weight is discussed and a comparison with other approaches is also presented. A

useful approximation, valid in the case of long chains is given, that allows a simple

and fast calculation of Σeff , and an alternative description of our method using a

stochastic language is presented. Fracture energy is explicitly found as a function

of Σeff in section 3, where all the relevant fracture regimes are taken into account.

Numerical results are finally obtained for real systems and compared with available

experimental data in section 4.

3.1 Model of entanglements

We assume that the two polymers are in thermodynamic equilibrium at an annealing

temperature above their Tg, and we will use, in our derivation, a mean field approx-

imation, that is suitable for melts [4]. Each polymer chain is therefore viewed as an
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ideal Gaussian chain, submitted to the mean external field created by all the other

chains. Consider a polymer chain of molecular weight M , made of N repeating units

of molecular weight M0. In order to account for chain stiffness, in our derivation

we will take into consideration the equivalent Gaussian chain of the actual macro-

molecule. Statistical units of the equivalent chain have molecular weight M0 and

length b, given by

b = l
√

C∞j, (3.1)

where j is the number of backbone bonds of the original repeating unit, C∞ is the

chain stiffness and l the bond length, which is 1.54 Å for C-C bonds.

Each chain will form entanglements, and we can imagine them as more or less

localized where two chains crosses. To carry on the calculations we need to assume

something about their positions along the chain. In principle they can be described

as an independent stochastic process, but at present not much is known about such

a process. What is known is the average molecular weight between entanglements

along the chain, Me, for bulk polymers. As a zero order approximation we can as-

sume that each segment of molecular weight Me, containing Ne = Me/M0 monomers,

forms exactly one entanglement. Chain end effects can be taken into account by as-

suming that entanglements are localized at the end of each segment excluding the

final one, as already done by Mikos and Peppas [2]. A chain with molecular weight

M therefore has on average n = M/Me segments and n− 1 entanglements. Due to

the mean field approximation, in our derivation we will solve a single chain problem,

and, to perform the calculations, it is necessary to assume that the exact number

and position of the entanglements along the chain is known. What we can do is

consider a real chain that has two dangling ends and forms an integer number of

entanglements, given by ne = [n]− 1, where [x] denotes the integer part of x. Since

the two ends of a chain are completely equivalent, it can be safely assumed that, on

the average, entanglements are symmetrically distributed with respect to the chain

center. Entanglements are therefore located at positions ik = kNe + ∆ along the

chain, where ∆ = (N −Ne[n])/2 and k = 1, . . . , ne, as shown in Figure 3.1a.

Rigorously, the mean value of every physical quantity depending on the entangle-

ment positions should be an appropriate average over all the possible configurations
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Figure 3.1: (a) Position of the ne entanglements along the chain. Continuous bars
represent entangled chains crossings while dashed ones are just an aid to the eye. Distances
are expressed in number of monomer units. (b,c) Schematic representation of an effective
(b) and a not effective (c) entanglement; the planar interface is defined by x=0.

{ik}, but as a first approximation we treat the entanglement as fixed along the chain.

This is done in the belief that, with an appropriate choice of the fixed configuration,

a good approximation of the correct mean values can be obtained. To support this

conclusion we will also show that Σeff changes little if the positions of all entan-

glements are translated along the chain. Unfortunately the configuration we chose

has a number of entanglement ne that is different from their average number per

chain n, so that in the numerical calculation we will need to normalize the com-

puted Σeff . An alternative continuous approach that is able to directly consider the

correct average number of monomers per chain is presented in chapter 4. Another

hypothesis assumed in our derivation is that the molecular weight of entanglement

stays constant throughout the whole interface; this approximation is also discussed

in chapter 4.
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3.2 Calculation of the effective entanglement den-

sity for asymmetric interfaces

Chain coupling across the interface is described by the areal density of effectively

entangled strands, Σeff . A strand is said to be effectively entangled if it connects two

subsequent entanglements placed on different sides of the interface, and is therefore

able to transfer stress across the interface, as shown in Figures 3.1b and 3.1c.

In an asymmetric interface we assume that Σeff can be written as the sum of the

effective entanglements formed by the two polymers:

Σeff = Σ
(A)
eff + Σ

(B)
eff . (3.2)

Calculations will be carried out for polymer A, and we will always refer to this

species, unless otherwise stated. Derivations would obviously be the same for poly-

mer B.

In order to solve the problem we introduce the Green function formalism. At

thermodynamic equilibrium, the Green function G(r, r′; N), that we have already

introduced in chapter 2, represents the statistical weight of chains starting at r and

ending at r′ in N steps, normalized with respect to the value it assumes in absence

of external fields. The Green function of a Gaussian chain in the presence of an

external field Ue satisfies the following differential equation [5]

(
∂

∂N
− b2

6

∂2

∂r2
+

1

kBT
Ue(r)

)
G(r′, r; N) = δ(r− r′)δ(N), (3.3)

where the right hand side term is set so that it can satisfy the proper boundary

conditions. We remark that the above formulation is completely equivalent to the

Modified Diffusion Equation (2.11). For Ue = 0, the Green function gives the well

known Gaussian distribution function

G0(r, r
′; N) =

(
2πNb2

3

)−3/2

exp

(
−3(r− r′)2

2Nb2

)
. (3.4)

The mean values of any physical quantity depending on the position rn of the

nth monomer is given by [5]
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〈A(rn)〉 =

∫
dr0drndrNG(r0, rn; n)G(rn, rN ; N − n)A(rn)∫

dr0drNG(r0, rN ; N)
. (3.5)

If a quantity depends on the position of two monomers the corresponding expression

for its mean value is

〈A(rn, rm)〉 =

∫
dr0drndrmdrNG(r0, rn; n)G(rn, rm; m− n)G(rm, rN ; N −m)A(rn, rm)∫

dr0drNG(r0, rN ; N)
,

(3.6)

with m > n [5].

Since in the case of a plane interface the external potential depends only on one

coordinate, that we identify as x, we can integrate on the other two and work in one

dimension. The Green function G0 becomes

G0(x, x′; N) =
βN√

π
exp

[
−β2

N (x− x′)2
]

(3.7)

with

βN =

√
3/2

N1/2b
. (3.8)

To compute Σeff it is necessary to count every strand that connects two subse-

quent entanglements placed on different sides of the interface, that we assume to

be at x = 0. Working in a mean field approximation, it is sufficient to consider the

single chain problem and then multiply the result by the number of chains. The

operator that counts the total number of the coupling strands across the interface

per unit area is

Σ̂eff =
ν

A

ne−1∑

k=1

[∫

x<0
dr

∫

x>0
dr′δ(rik − r)δ(rik+1

− r′)

+
∫

x>0
dr

∫

x<0
dr′δ(rik − r)δ(rik+1

− r′)
]
, (3.9)
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where the sum over k counts entanglements along the chain, A is the system area

and ν is the total number of chains. The density of effective entanglements per unit

area can be expressed as the mean value of the above defined operator

Σeff = 〈Σ̂eff〉. (3.10)

From eq.(3.6) we then obtain

Σeff =
ν

A

1∫ ∫
dr0drNG(r0, rN ; N)

× (3.11)

ne−1∑

k=1

[∫

x<0
dr

∫

x>0
dr′

∫ ∫
dr0drNG(r0, r; ik)G(r, r′; Ne)G(r′, rN ; N − ik+1)+

∫

x<0
dr′

∫

x>0
dr

∫ ∫
dr0drNG(r0, r; ik)G(r, r′; Ne)G(r′, rN ; N − ik+1)

]
.

Integrating over y and z we obtain

Σeff =
ν

A

1∫
q(x; N)dx

× (3.12)

ne−1∑

k=1

[∫ 0

−∞
dx

∫ ∞

0
dx′q(x; ik)G(x, x′; Ne)q(x

′; N − ik+1)+

∫ 0

−∞
dx′

∫ ∞

0
dxq(x; ik)G(x, x′; Ne)q(x

′; N − ik+1)
]
.

where the notation

q(x; n) ≡
∫

G(x, x′; n)dx′, (3.13)

has been introduced.

Expression (3.12) can be simplified by noting that G(x, x′; m) = G(x′, x; m) and

that, since we assumed entanglements symmetrically distributed with respect to the

chain center, N − ik+1 = ine−k. Using these relationships it is possible to write

∫ 0

−∞
dx′

∫ ∞

0
dx

ne−1∑

k=1

q(x; ik)G(x, x′; Ne)q(x
′; N − ik+1) = (3.14)
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=
∫ 0

−∞
dx′

∫ ∞

0
dx

ne−1∑

k=1

q(x′; ik)G(x′, x; Ne)q(x; N − ik+1),

and finally

Σeff =
ν

A

2∫
L q(x; N)dx

× (3.15)

ne−1∑

k=1

[∫ 0

−∞
dx

∫ ∞

0
dx′q(x; ik)G(x, x′; Ne)q(x

′; N − ik+1)
]
,

where L is the dimension of the system in the x direction. The total number of

chains can be written as

ν =
1

N

∫

V
ρ(r)dr =

ρbA

N

∫

L
φ(x)dx, (3.16)

where ρ(r) is the total density of monomers, φ(x) = ρ(x)
ρb

is the polymer volume

fraction, ρb is the bulk monomer density and V is the system volume. Substituting

equation (3.16) into equation (3.15) one derives

Σeff =
2ρb

N

∫
L φ(x)dx∫

L q(x; N)dx
× (3.17)

ne−1∑

k=1

[∫ 0

−∞
dx

∫ ∞

0
dx′q(x; ik)G(x, x′; Ne)q(x

′; N − ik+1)
]
.

Finally observe that in the homogeneous phases φ(±∞) = q(±∞; N), as follows

from equation (2.57), so that for a system where L is much greater than the interface

width we have

lim
L→∞

∫
L φ(x)dx∫

L q(x; N)dx
= 1. (3.18)

The final expression for Σeff is therefore

Σeff =
2ρb

N

ne−1∑

k=1

[∫ 0

−∞
dx

∫ ∞

0
dx′q(x; ik)G(x, x′; Ne)q(x

′; N − ik+1)
]
. (3.19)
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This equation gives the density of effective entanglements formed by one polymer

across the interface. The total density is the sum of the contributions by both

species. Expression (3.19) is the main result of this section.

In the case of an A/A interface, Ue = 0, φ(x) ≡ 1, G(x, x′; Ne) = G0(x, x′; Ne)

and q(x; i) ≡ 1 ∀i, so that from equation (3.19) it holds

Σeff =
2ρb

N
(ne − 1)

[∫ 0

−∞
dx

1

2
[1 + Erf(βNex)]

]
. (3.20)

If the total number of entanglements is the real number ne = n − 1, then the

final result in the symmetric case reads

Σeff =
ρb(n− 2)

NβNe

√
π

=
ρeLe√
3π/2

(
1− 2Me

M

)
, (3.21)

where we used ρe = ρb/Ne and Le = b
√

Ne. Equation (3.21) is exactly the same

result that was obtained by Mikos and Peppas [2]. We also note that, except for

chain end effects, the result is very similar to the one obtained with the simple Lake

and Thomas approach, since
√

3π/2 ≈ 2.17.

3.2.1 Long chains approximation

Expression (3.19) is quite lengthy to evaluate and it may obscure the essential fea-

tures of our model. Nevertheless it is possible to derive an excellent approximation

in the case of long chains.

In a ν chains system, the density of the nth monomers along the chains is given

by

ρn(x) = ν〈δ(x− xn)〉 =
ρb

N
q(x; n)q(x; N − n). (3.22)

In general the density profiles ρn(x) are not uniform and are functions of n,

that indicates the position along the chain, through q(x; n). For infinite chains, we

can neglect the chain end effects and we can imagine that all the monomers are

infinitely distant from the chain ends, so that q(x; n) approaches a function q(x;∞)
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not depending on n. For the same reason all the monomers will have the same

density distribution
ρn(x)

ρb

≡ φ(x)

N
, (3.23)

leading to

q(x;∞) =
√

φ(x). (3.24)

Notice that the approximation (3.24) is the same used in the classical work of Helfand

and Tagami [18].

Substituting every q(x; n) with q(x;∞) in eq. (3.19) and considering a real

ne = n− 1, we finally obtain

Σeff =
2ρb

N
(n− 2)

[∫ 0

−∞
dx

∫ ∞

0
dx′

√
φ(x)G0(x, x′; Ne)

√
φ(x′)

]
, (3.25)

where in addition we used G0 as a rough approximation of the complete Green func-

tion. Expression (3.25) is surprisingly good in approximating the accurate results

for the entire range of interfacial width, as shown in Figures 3.2 and 3.3. We also

checked it for all the samples we studied, finding a comparable agreement.

We observe that in expression (3.25) the effective density Σeff , normalized with

respect to its bulk value, is a universal function of aI/Le, at least if we assume

that volume fractions follow the incompressible hyperbolic tangent profile. This is

only approximately true for the complete expression (3.19), in which the molecular

weights and other polymer parameters enter the self consistent probability distribu-

tions.

3.2.2 An alternative point of view

Expression (3.19) for 〈Σeff〉 can also be obtained in the following way. The number

of effective entanglements is given by the mean density of the kth monomers times

the probability that the following entanglement is on the other side of the interface.

This can be represented as

Σeff = 2
ne−1∑

k=1

[∫ 0

−∞
dxikρik(xik)

∫ ∞

0
dxik+1

p(xik , xik+1
; Ne)

]
, (3.26)
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where the symmetry of entanglement positions with respect to the chain center is

used, see eq.(3.14), and we denoted by p(xn, xm; m − n) the probability of finding

the mth monomer in xm given that the nth is in xn. In terms of the Green function

we have

p(xn, xm; m− n) = G(xn, xm; m− n)
q(xm; N −m)

q(xn; N − n)
, (3.27)

wherefrom expression (3.19) can be recovered.

In the approximation of very long chains we can rewrite eq.(3.25) as

Σeff =
2ρb

N
(n− 2)

∫ 0

−∞
dxφ(x)

∫ ∞

0
dx′

√√√√φ(x′)
φ(x)

G0(x, x′; Ne), (3.28)

and identify the expression in the second integral as an approximation for p(x, x′; Ne).

3.2.3 Comparison with other approaches

Before exposing our numerical results it is useful to report in more detail two pre-

vious approaches for the calculation of Σeff , due respectively to Brown [55] and de

Gennes [61].

The approach proposed by Brown is very similar in spirit to the stochastic de-

scription given above, but contains some simplifying assumptions. In particular,

Brown neglected chain end effects and assumed that the probability that a strand

starting from x might end in x′ is proportional to the ratio of the polymer vol-

ume fractions at the two points. In this way he obtained the density of effective

entanglements formed by one polymer as

Σeff = 2ρe

∫ 0

−Le

dxφ(x)
∫ Le+x

0
dx′

φ(x′)
2Leφ(x)

, (3.29)

which in the homogeneous case, φ ≡ 1, gives Σeff = ρeLe/2 as predicted by the simple

model resembling Lake and Thomas theory. In order to clarify the comparison with
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our model, and in particular with equation (3.28), we also rewrite Brown’s formula

(3.29) as

Σeff = 2ρe

∫ 0

−∞
dxφ(x)

∫ ∞

0
dx′

φ(x′)
φ(x)

θ(Le − |x′ − x|)
2Le

, (3.30)

where θ(x) is the step function

θ(x) =





1 if x > 0

0 if x < 0.
(3.31)

Recalling that

2ρb

N
(n− 2) = 2ρe

(
1− 2

Me

M

)
, (3.32)

a comparison between the two expressions is even clearer. In Brown’s approach

chain end effects are neglected, which is correct in the long chain limit, and chain

connectivity is taken into account with a step function θ(Le − |x′ − x|)/2Le that

approximates the usual Gaussian G0(x, x′; Ne). The main difference, producing the

bigger discrepancies in the numerical results, is that for long chains the probability

scales as
√

φ(x′)/φ(x) while in his model it is linear in volume fractions ratio.

De Gennes used instead the following scaling arguments to predict the depen-

dence of Σeff from the interaction parameter χ. If m monomers of polymer A are on

the B side of the interface then the free energy involved is of the order ∆F = mkBTχ.

At equilibrium ∆F ≈ kBT , so that the average number of monomers that penetrate

the interface should be m̄ = χ−1. The corresponding width of the interface is re-

lated to the degree of interpenetration, so that we can say aI = b
√

m̄ = bχ−1/2, in

agreement with the main theories of inhomogeneous systems [18]. He then assumes

that only arcs of chain of length greater than Ne are effective in carrying load. The

probability of having an arc of length m on the other side of the interface is

pm =
1

m̄
exp(−m/m̄), (3.33)
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from which follows that the fraction of arcs of length greater than Ne should be

ϕ =
∞∑

Ne

pm ≈ exp(−χNe). (3.34)

It is therefore possible to write Σeff for each polymer as

Σeff = Σ
(bulk)
eff exp (−Ne(χ− χc)) , (3.35)

where we denoted with Σ
(bulk)
eff the bulk limit and with χc the critical interaction

parameter for miscibility. The most important approximation contained in this

scaling law is that all the monomers of effective strands are considered as located on

the wrong side of the interface. This is not true in general, because effective strands

cross the interface and we expect that only a part of them is on each side. Thus de

Gennes’ model overestimates the effect of energy interactions in preventing effective

crossings and gives very low values for Σeff .

3.2.4 Numerical results

An accurate numerical evaluation of expression (3.19) has been obtained as follows.

First we performed SCF calculations, as described in detail in chapter 2, to obtain

the interface width, probability functions q(x; i) and polymers mean fields. Then

mean fields are inserted in the modified diffusion equation (3.3), which is solved

numerically to obtain the needed Green functions. Finally, expression (3.19) is

evaluated and the final result for Σeff is multiplied by (n− 2)/([n]− 2) to consider

the correct average number of entanglements, as discussed at the end of section 3.1.

In order to show the general dependence of Σeff on the interfacial width, we

applied the method to the simple illustrative system, already introduced in chapter

2, simulating an interface between two materials with bulk parameters equal to

those of PS and the same molecular weight 300k. For the interaction parameter

χ we choose here values ranging from 0 to 0.05. The calculated values of Σeff ,

obtained for this system with equation (3.19), are showed in Figure 3.2 by joined

full circles. For comparison in the same figure we show also the results obtained by
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Figure 3.2: Areal density of effective entanglements as a function of the interfacial width
aI , for the illustrative system described in the text. Joined circles are obtained from
equation (3.19), dotted line from approximate equation (3.25), dashed line from Brown’s
formula (3.29) and dash-dotted line from de Gennes’ scaling law (3.35). Σeff is scaled with
respect to its bulk value Σ(bulk)

eff = 0.150 nm−2, and aI with respect to the entanglement
length of the system Le = 7.6 nm.

applying Brown’s equation (3.29)(dashed line), de Gennes’ scaling law (3.35) (dash-

dotted line) and those obtained with our long chain approximation (3.25) (dotted

line). Noticing that the scale length over which Σeff varies is given by the distance

between entanglements Le, our model predicts a very quick saturation at relatively

low interfacial widths, if compared with other approaches.

In Figure 3.3 variations of Σeff with the molecular weight, for the same illustrative

system, are shown, assuming χ = 0.005 and NA = NB. Moreover we used molecular

weights being an integer multiple of Me to avoid spurious effects due to our method

of approximation. Increasing the molecular weight affects Σeff in two opposite ways:

through the interface width by lowering it and through chain end effects by increasing
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Figure 3.3: Areal density of effective entanglements as a function of the molecular weight
of the two polymers, calculated for the illustrative symmetric system described in the text
using equation (3.19) (full circles) and the approximate expression (3.25) (dotted line).
Areal density is scaled with respect to Σ∗eff = 0.134 nm−2, that is the value of Σeff calculated
for M/Me = 100. For comparison we plotted in solid line the function (1− 1.5Me/M).

it. From the figure it is clear that chain end effects, that roughly contribute to Σeff

with a factor 1−2Me/M , dominate, while the changes in width produce only a small

correction. To demonstrate quantitatively that the chain end effects dominate, we

fitted the calculated data with a function of the type 1 − pMe/M , and obtained

p ≈ 1.5. The corresponding function is plotted in Figure 3.1 as the solid line.

This result is not surprising, since the dependence of the interfacial width from the

molecular weight is weak. In fact only close to miscibility can a large change in the

width be obtained by varying the molecular weight, but we have seen in Figure 3.2

that, for such large interfaces, Σeff has already reached saturation. We also plotted

in the same figure the numerical results obtained with the long chain approximation

(dotted line), that show an excellent agreement with the full calculations for all
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molecular weights.
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Figure 3.4: Probability of each segment of length Ne of forming an effective entanglement,
as a function of its position along the chain. The probability of the innermost segment
is taken as the unity. Two different chain lengths are considered: N = 100Ne (solid line)
and N = 5Ne (circles), for which there are only 4 entanglements and therefore 3 strands
in between.

Before ending this section we want to investigate also how entanglements local-

ized at different positions along the chain contribute to the total Σeff . In Figure 3.4

we plot the quantity

∫ 0

−∞
dx

∫ ∞

0
dx′q(x; ik)G(x, x′; Ne)q(x

′; N − ik+1), (3.36)

which is proportional, for every segment k, to its probability of crossing the interface

and being effective in carrying load. The probability is normalized with respect to

its value for the innermost segment and it is plotted for two different molecular

weights, M = 5Me (circles) and M = 100Me (solid line). We see that segments

closer to the chain end contribute most to Σeff , due to their greater freedom, and



44 Chain entanglements and fracture energy

                                        

                                        

                                        

                                        

                                        

                                        

-1.0 -0.5 0.0 0.5 1.0

1.000

1.002

1.004

1.006

1.008

1.010

1.012

 

 

Σ ef
f (

A
.U

.)

Entanglements shift,  ∆ / N
e

Figure 3.5: Effective density as a function of the entanglements shift along the chain ∆.
Dashed and solid lines refer respectively to chains of length N = 5Ne and N = 100Ne.

that the difference between different positions is more relevant for long chains. This

observation could cast some doubts about our simple procedure to normalize Σeff ,

in which it is implicitly assumed that all entanglements are equivalent. Nevertheless

it must be observed that for high molecular weights the effect on Σeff of adding (at

most) one entanglement is very small. On the other hand, we see from Figure 3.4

that in shorter chains all the entanglements contribute to the same extent to the

final Σeff .

In our simplified model we also assumed entanglements to be fixed in their po-

sitions and chose a symmetric distribution. We want to check what is the effect

on Σeff of a shifting of all these positions along the chain. We therefore plot in

Figure 3.5 the calculated Σeff as a function of ∆ for chains with molecular weights

M = 5Me (dashed line) and M = 100Me (solid line). Since the samples have an
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integer number of segments, ∆ can be varied between −Ne and Ne, as it can be

inferred from Figure 3.1a, and we see that the corresponding Σeff changes by about

1% for the shorter chains while it stays nearly constant for the longer ones. We can

therefore conclude that our results are not strongly dependent on the choice of ∆.

3.3 Fracture mechanisms

In this section we describe how fracture energy of entangled interfaces can be cal-

culated from Σeff . As done through the whole chapter we are only taking into con-

sideration entangled chains, that, according to our model, have a molecular weight

M > 2Me. If chains are too short to be entangled, it is easy to pull them out from

their surroundings, and such a process involves energies of the order of 1 J/m2 or

less. As discussed in the introduction for entangled chains we can distinguish two

main regimes. At low densities, Σeff < Σc, there is no plastic deformation and chains

fail by scission, originating fracture energies of the order of 1 to 10 J/m2. When

Σeff > Σc crazing takes place and fracture energies higher than 100 J/m2 are usually

measured. These two regimes have been extensively studied and we report in this

section the equations that are currently used to express fracture energy as a function

of Σeff . We also show that it is important to introduce an intermediate regime, that

we will call “partial crazing”, to describe small plastic deformations.

3.3.1 Chain scission

At low densities, Σeff < Σc, and high molecular weights, M > Mc, the main failure

mechanism is chain scission, as demonstrated by the studies on block copolymer

reinforced interfaces already discussed in the introduction [56],[58]. Also computer

simulations [75],[76] seem to confirm this prediction, showing that in highly entan-

gled melts, the force needed to disentangle a chain is higher than the breaking force

of covalent C-C bonds. The total fracture energy in this regime can be obtained

following the classical Lake and Thomas approach [16]. It is assumed that, when

pulling a strand between two subsequent entanglement, the supplied energy is shared

between all bonds and, after breaking, it is dissipated. This leads to the following
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expression for the fracture energy

G(sc)
c = Ub

(
Σ

(A)
eff N (A)

e j(A) + Σ
(B)
eff N (B)

e j(B)
)
, (3.37)

where Ub is the energy needed to break a C-C bond, that is about 5× 10−19 J, and

all other quantities have already been defined. The expression obtained for G(sc)
c is

linear in Σeff in agreement with experimental results [56],[58],[59] .

It is important to note that it cannot be excluded that some energy is also

dissipated by chain pullout, but in our calculations we will assume that chain scission

is the only process dissipating energy, and therefore it is completely responsible for

fracture energy at low densities.

3.3.2 Crazing

If the interface is strong enough to sustain crazing stress σcraze, then a plastic defor-

mation occurs, capable of dissipating a huge amount of energy before the interface

fails. The critical density for the onset of crazing is easily found as Σc = σcraze/fb,

where fb is the maximum force that a C-C bond can sustain. Crazing regime was

first described by Brown [17], and we briefly report his approach. At the micro-

scopic level a craze is made by main fibrils, running perpendicular to the craze/bulk

interface, and cross-tie fibrils, that connect main fibrils laterally, as schematically

shown in Figure 3.6. Cross tie fibrils are essential in transferring stress in the lateral

direction, with the result that there is a stress concentration at the crack tip. Brown

modelled the crazed region, having a Young modulus much lower than the bulk ma-

terial, as an elastic continuum between rigid boundaries; according to experimental

results and to Dugdale model he also assumed the stress at the bulk/craze interface

constant and equal to σcraze. The tensile stress at a given distance x from the crack

tip is then obtained as

σ(x) = kσcraze

√
h

x
, (3.38)
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Figure 3.6: Schematic diagram illustrating the geometry of a crack inside a craze un-
der external loading. Three different length scales are considered in order to show the
quantities introduced in the text.

where k depends on the elastic properties of the craze and h is its maximum width.

The stress will be maximum on the fibril closest to the crack tip, and it can be

estimated as σf = σ(d), where d is the fibril’s spacing. The fracture criterion

invoked by Brown states that a fibril breaks when σf = Σfb, where Σ is the density

of load bearing strands in the fibril. From this relation the width h of the craze is

given by

h =

(
Σfb

kσcraze

)2

d (3.39)

and the fracture energy is
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Gc = h(1− vf )σcraze =
Σ2f 2

b

k2σcraze

d(1− vf ), (3.40)

where vf is the fibrils volume fraction. The dependence of the fracture energy on Σ

is quadratic, as confirmed by many experimental results [59],[56], [17],[57], some of

which are reported in Figure 1.2. Note that the Σ appearing in the above fracture

energy criterion is not exactly the same that we computed in the previous sections.

In fact during craze formation some of the load bearing strands are broken, and only

a fraction q < 1 survives [77]. We can however identify the effectively entangled

strands that survive craze formation as the load bearing strands in the fibrils, and

obtain Σ = qΣeff .

The continuum approach adopted by Brown fails for small crazes, this is why

Sha and coworkers [78] developed a discrete version of Brown’s model that predicts

a fracture energy

G(cr)
c =

π(1− vf )σcrazed

−α log
[
1− (σcraze/qΣefffb)

2
] , (3.41)

where α is a dimensionless material constant depending on the effective Young mod-

ulus of the fibrils and on the angle between them, that is usually treated as a pa-

rameter of the model. Equation (3.41), where again we used Σ = qΣeff , is the one

we will adopt in our numerical calculations together with expression (3.19). Note

that G(cr)
c is defined only if qΣeff > Σc, that can be interpreted as a condition for

complete crazing.

3.3.3 Partial crazing

We have seen in the previous section that for Σeff > Σc a plastic deformation takes

place, but a discrete crazing model predicts that complete crazing is possible only

if Σeff > Σc/q. What happens when qΣeff < Σc < Σeff? The interface is strong

enough to sustain the crazing stress, but during craze formation some of the load

bearing strands are broken and we know that the crazing formation is not complete.

It is therefore advisable to introduce an intermediate regime, not yet taken into
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consideration in the literature, that could be called “partial crazing”. In this regime

a craze starts, but it cannot fully develop. What happens is that a small plastic

deformation takes place, but cross-tie fibrils are not yet created; this implies that

lateral stress cannot be transferred and we expect fracture energy to be linear in

Σeff , as for chain scission. In this section we propose a simple model to describe this

partial crazing regime. When a craze develops, some of the load-bearing strands

at the interface fail by chain scission. We assume that they are a constant fraction

w of the total broken strands, including also those in the craze but away from the

interface. The work per unit area needed to create a craze of width h is σcrazeh(1−vf ).

Assuming that the work is entirely spent to break entangled strands, which seems

reasonable for the small craze widths we are considering, then the number of broken

load-bearing strands per unit area is

Σbroken = w
σcrazeh(1− vf )

UbNej
. (3.42)

It is important to be careful in choosing Ne and j. For large widths h the majority of

the broken strands probably belongs to the crazed material, while for small crazes

there will be a consistent amount of strands of the other polymer. So it would

be correct to write Ne and j as functions of L, but as a first approximation it is

reasonable to take values relative to the material in which the craze grows. The

fraction of broken load-bearing strands is probably a function of h too, but for the

moment this complication will be neglected. The craze width can be calculated by

imposing that its growth stops when the interface cannot sustain the crazing stress

anymore, that is when Σ = Σeff − Σbroken = Σc. From equation (3.42) the craze

width is therefore

h = (Σeff − Σc)
UbNej

wσcraze(1− vf )
(3.43)

and consequently the fracture energy in the partial crazing regime is

G(pc)
c = G(sc)

c (Σc) + σcrazeh(1− vf ), (3.44)
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where G(sc)
c (Σc) indicates the fracture energy calculated for the scission mechanism

at the critical density. This term is added because when Σ decreases to Σc the

interface fails by chain scission. The derived expression for the fracture energy in

the regime of partial crazing is linear in Σeff , as expected, and is steeper than the

one obtained in the chain scission regime. The model also predicts that the critical

width hc, at which cross tie fibrils start to transfer load and a craze can fully develop,

is obtained for Σeff = Σc/q and is therefore given by

hc =

(
1

q
− 1

)
UbNej

wfb(1− vf )
. (3.45)

Using the values reported in Table 3.1 we obtain for PS hc = 113.6/w nm, where

w is probably not smaller than 0.5 in such incomplete crazes. This value seems

reasonable if compared with typical crazes width that are of the order of some µm.

Moreover in their work Sha et al. [78] estimate that crazes with h < 3l, where l is

the length of the main fibrils, are not fully developed, and give l = 60 nm for PS ;

it follows that hc = 180 nm, in agreement with our prediction.

Polymer ρ C∞ Me
(a) σcraze α q (c) d (c) vf

(d)

(g cm−3) (× 10−3) (MPa) (nm)

PMMA 1.15 9.1 (a) 10 100 (b) 0.015 0.63 17.7 0.25
PS 1.05 9.6 (a) 13.3 48 (e) 0.6 19.0 0.25
PpMS 1.015 17.6 13.3 ∗ 31 (e) 0.027 0.6 ∗ 19.0 ∗ 0.25 ∗

Other parameters: fb=1.115 nN, Ub=5×10−19 J.

Table 3.1: Parameters used in the calculations. (a) From ref.[67]. (b) From ref.[14]. (c)
From ref.[77]. (d) From ref.[78]. (e) From ref.[54]. (*) PS values.
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3.4 Fracture energy calculations and comparison

with experimental data

Not many experimental data are available in the literature to validate our method,

because it is difficult to devise a system in which interfacial width can be changed

over a wide range of values, while keeping all other experimental conditions constant.

The experimental possibilities are mainly three. It is possible to anneal two beams

of the same material for different times, as it has been done for PS [53], but in this

case the sample is not in thermodynamic equilibrium and it cannot be described

by our method. It is also possible to use two almost compatible materials and

anneal them at different temperatures, as in the case of PS/PpMS [53]. Finally, for

strongly immiscible polymers, a wide range of interfacial widths can be obtained

by using a random copolymer; interfaces PMMA/P(S-r-MMA) have been studied

by Brown [55], PS/PBrxS by Schnell et al. [54], and PS/PS-r-PVP by Benkoski et

al. [79]. In this section we apply our model to two of the above systems, namely

PMMA/P(S-r-MMA) and PS/PpMS.

3.4.1 PS/P(S-r-MMA) interfaces

Interfaces between PMMA and a random copolymer P(S-r-MMA) have been exper-

imentally investigated by Brown. He used thin layers of the copolymer to couple

two sheets of PMMA, and changed the interface width by varying the PS fraction

in the copolymer. The use of a thin layer ensured that the craze occurred mainly in

the PMMA for every sample, and this is very important because the variations of

fracture energy can be associated directly with a change in Σeff , without having to

include corrections due to crazing details. Moreover Brown obtained a wide range

of interfacial widths, compared with the entanglement lengths of the two materials,

and performed the neutron reflectivity measurements on the same samples he used

in the fracture tests. For all these reasons we believe that such an experiment can be

used to test our model. Furthermore PS and PMMA are widely studied and there

are many measurements available in the literature of their relevant bulk properties,

as reported in Table 3.1. The random copolymer is treated as a homopolymer with
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pre-averaged parameters and an empirical interaction parameter between PMMA

and P(S-r-MMA) is introduced. This is simply an extension of Flory-Huggins the-

ory and it is a widely used approach [80]-[83], that, even if it lacks a solid theoretical

basis, could explain in many cases the enhanced miscibility of blends involving ran-

dom copolymers [84]-[86]. Since we are working in a mean field approximation, the

same approach is suitable for our calculation of Σeff , provided that the copolymer

is “ideal”, meaning that all correlations are lost between the chemical identity of

successive monomers. When it is possible the effective parameters for the copoly-

mer are extracted from experimental results, but this is not the case and we have to

chose appropriate interpolations. In our calculations therefore we assume that the

corresponding homopolymer has the same degree of polymerization of the copoly-

mer, and is made of identical monomers with Mh
0 = xMPS

0 + (1− x)MPMMA
0 , where

x is the PS fraction in the copolymer. In a dense melt we can also assume that

the mass density is given by the linear equation ρh = xρPS + (1 − x)ρPMMA. For

the Kuhn segment length b the most widely used approach is the Gaussian inter-

polation. It is assumed that the copolymer behaves as a Gaussian chain with two

different segment lengths for the two species, so that its squared radius of gyration

is R2
g = (xb2

PS + (1− x)b2
PMMA) N/6. It follows that the correct expression for the

Kuhn segment length of the equivalent homopolymer is b2
h = xb2

PS + (1− x)b2
PMMA.

The molecular weight of entanglement can be related to the above quantities using

the packing model of Fetters et al. [67], that will be discussed in more detail in

chapter 4, predicting

Me ∝ ρp3, (3.46)

where p is the packing length,

p ∝ M0

b2ρ
. (3.47)

Considerable theoretical work has been done to derive an expression for the effec-

tive interaction parameter in blends involving random copolymers, but we prefer to

choose an empirical χ so that the SCMF calculations would give experimental bare

interfacial widths.

In Figure 3.7 we report the calculated Σeff as a function of the bare interfacial
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Figure 3.7: Areal density of effective entanglements as a function of the bare interfacial
width, calculated with our model (eq.3.19) for the PMMA/P(S-r-MMA) samples investi-
gated by Brown [55].

width for the PMMA/P(S-r-MMA) joints experimentally studied by Brown [55].

Bare interfacial width have been calculated by Brown using the relations suggested

by Semenov [87] and Shull et al. [88]. The reason why the curve is not smooth is that

in the experiments the molecular weight of the random copolymer was different for

each sample. The measured and bare widths, together with the molecular weights

of the polymers used in the experiment are reported in Table 3.2.

For the fracture energy calculations some of the craze parameters for PMMA,

σcrazing, vf , d, q have been found in the literature, namely those reported in Table

3.1, while others have been chosen to fit the data. In particular the value for fb

was chosen such that it would give Σc/q ≈ 0.142 nm−2, and correspondingly a

transition to complete crazing for widths around 9 nm, while α was chosen to fit the

experimental fracture energy of the largest interface. The resulting fracture energy,

calculated with our model, is compared with the experimental data by Brown [55]

in Figure 3.8.
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copolymer, % PS Mw measured aI (nm) bare aI (nm)
20 165 000 15.7 13.0
30 300 000 13.7 11.1
40 265 000 12.9 10.3
55 125 000 12.0 9.5
68 160 000 10.7 8.2
78 173 000 9.5 7.0
89 180 000 7.6 5.2
100 330 000 5.0 2.9

Table 3.2: Interfacial widths between pure PMMA with Mw = 127 Kg/mol and different
random copolymers P(S-r-MMA), as measured by Brown [55]. Bare widths have been
obtained by Brown subtracting the effect of fluctuations due capillary waves [87],[88].

The fracture mechanisms predicted by the model are chain scission for the first

pair, partial crazing for the following 3 samples and complete crazing for the others.

In the partial crazing regime we used w = 2/3, that gives a critical length of about

120 nm, at which the cross-tie fibrils start to transfer load. This last result seems

reasonable, since it is similar to the one already obtained for PS.

We notice that the agreement is good over the whole range of interfacial widths,

agreement that is even more significant considering that we used literature values

for most of the parameters.

A final comment should be made on the sigmoidal shape of the fracture energy

as a function of the width. This is not directly related to Σeff , which is nearly

linear below saturation, but is the result of a change in the fracture mechanism. For

this reason it is not strange that the normalized fracture energy is not a universal

function of the scaled width, aI/Le, as pointed out also by Benkoski et al. [89]. The

width at which the transition to complete crazing occurs is in fact also a function

of σcraze and q.

3.4.2 PS/PpMS interfaces

The second system we studied is PS/PpMS, that has been experimentally inves-

tigated by Schnell et al. [53]. PpMS is very similar in structure to PS and, as
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Figure 3.8: Fracture energy as a function of the bare interfacial width for PMMA/P(S-
r-MMA), calculated from the Σeff given in Figure 3.7 (circles). Crosses represent experi-
mental data by Brown [55].

a consequence, the two polymers are nearly miscible. In particular the width of

the interface between them can be substantially changed by changing the annealing

temperature of the sample or the molecular weight of the polymers. Schnell and

coworkers performed neutron reflectivity tests on three different samples, namely

PS(D) 105k / PpMS 131k, PS(D) 714k / PpMS 131k and PS(D) 714k / PpMS

613k, annealed at temperatures ranging from 120 to 180 ◦C and measured widths

varying from 9 to 20 nm. These results were used to predict the interfacial widths of

the samples that were used in the fracture energy tests, on which neutron reflectivity

measurements were not performed. Some difficulties arise because the pairs used

in the fracture tests have different molecular weights so that some theory must be

used. The authors inverted the relation [38]
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Figure 3.9: Areal density of effective entanglements as a function of the bare interfacial
width, calculated with our model (eq.3.19) for two series of PS/PpMS interfaces: PS
1.25M/PpMS 570k (squares) and PS 139k/PpMS 157k (circles), at annealing temperatures
ranging respectively from 120 to 210 ◦C and from 100 to 180 ◦C.

aI =
2b√
cχ

[
1− 2 ln 2

χ

(
1

NA

+
1

NB

)]−1/2

, (3.48)

to obtain χ as a function of the temperature, through the measured widths. Using

c = 7.5 for the blends with the lowest molecular weights and c = 6 for the other two,

and b = 0.8 nm they could obtain nearly the same function χ(T ) = −0.011 + 6.8/T

for all the three blends. Moreover the values of χ(T ) were in agreement with the

measurements of Jung and Fisher [90], so the authors decided to use such a χ and

the relation (3.48) to predict the widths of the samples used in the fracture tests.

We adopt here the same procedure, but the use χ(T ) in our SCF calculation leads

to slightly different widths with respect to the ones predicted by equation (3.48).

The parameters used in the SCF calculations are reported in Table 3.1, but, while
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for PS they have been measured by many different groups, for PpMS we could find

only the values of the density and of the crazing stress in the literature. Since PpMS

is very similar to PS for most of the other parameters we simply used PS values.

PpMS stiffness C∞, was chosen to obtain the proper value for the Kuhn segment

length of the blend, bPS/PpMS =
√

(b2
PS + b2

PpMS)/2 = 0.8nm, as found experimentally

by Jung and Fisher [90] and assumed by Schnell et al.[53]. Since fb was fixed by the

previous fit, the only free parameter left is α. Again we used it to fit the highest

experimental fracture energy.

The results for Σeff are displayed in Figure 3.9 for the pairs PS 1.25M/PpMS

570k and PS 139k / PpMS 157k. We note that for the investigated widths we are

already in a saturation regime and that, fixing either width or temperature, the

higher molecular weight sample shows the higher value of Σeff .
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Figure 3.10: Fracture energy of PS/PpMS interfaces, calculated from the Σeff of Figure
3.9 (joined empty symbols). Experimental data from Schnell et al. [53] are also shown
(full symbols). Two different pairs of molecular weights have been considered as in Figure
3.9: PS 1.25M/PpMS 570k (squares) and PS 139k/PpMS 157k (circles).
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In Figure 3.10 we show the corresponding calculated fracture energies, compared

with the experimental data by Schnell et al. [53]. As already discussed we derived the

widths by using the measured temperature and the fitted χ in the SCF calculations;

this is the reason why the experimental data in Figure 3.10 look a bit different

from those in the original paper by Schnell and coworkers [53]. Notice that even if

the ratio of the predicted saturation values for the two molecular weights seems to

be correct, the experimental data show a rapid increase of the fracture energy for

the two samples respectively around 9 nm and 11 nm, that is not reproduced by

our model. As already discussed, the scale length over which saturation of Σeff is

reached, is given in our model by the entanglements distance, that for this system

is around 8 nm; in the experiments, instead, fracture energy saturates much more

quickly. Such a behavior of Gc could be explained if the onset of crazing would arise

for widths above 8.5 nm, but using the set of parameters discussed above we predict

a much smaller value for the critical width. In fact for these samples crazing is the

only predicted failure mechanism at all investigated temperatures. A more accurate

estimate of PpMS parameters, would be needed to clarify this point.

In our calculations we neglected fluctuations due to capillary waves, that ac-

cording to the work of Semenov [87] and Shull et al. [88], should correct all the

measured widths of about 2 nm. This represent a correction of about 20 %, but,

being the same for all the samples its inclusion cannot improve the comparison with

experimental data. What we found, in fact, is that, including fluctuations, the plot

of Gc as a function of the bare interfacial width is very similar to Figure 3.10, except

that all the widths are about 2 nm smaller. Also Schnell and coworkers discussed

the influence of capillary waves, but the agreement between the calculated χ and

the measured one was so good, that they concluded fluctuations didn’t play an

important role and neglected it.



Chapter 4

Entanglements at polymer
surfaces and interfaces

We have already stressed in the introduction how important is the concept of en-

tanglement, and we showed in chapter 3 how Me influences the fracture energy of

a glassy polymer. In our numerical calculations we used values of Me that have

been measured for bulk polymers, but there are authors suggesting that Me could

be rather different at interfaces and surfaces [71]. A quantitative estimate of Me

in interfaces has been given by Ganesan and Pryamitsyn [72] and by Oslanec and

Brown [73], who adopted a packing model of entanglements to predict Me in inter-

faces. The two groups used different methods, but both found that Me near a sharp

interface can be as big as twice the bulk value.

In this chapter we describe the packing model of entanglements for bulk poly-

mers, and propose a new method that extends this approach to inhomogeneous

systems. The Me is then computed numerically for interfaces and thin films; cor-

rections to the fracture energy calculations of chapter 3 are presented.

4.1 Packing models of entanglements

The basic assumption of all packing models is that there is a relation between the

size of the polymer coils and the degree to which they are entangled with each other.

More precisely these models assumes that if a chain pervades a greater volume then
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there is a greater probability that it forms an entanglement. This seems reasonable,

since a chain that encounters many other chains is more likely to entangle than a

closely coiled one, nevertheless there are authors having an opposite point of view.

We mention here for example the models by Wu [62] and Wool [63] who predicted

respectively Ne ∝ C2
∞ and Ne ∝ C∞, meaning that closely coiled chains should

be more entangled than straighter chains. Recent data, collected by Fetters et al.

[67] on a large number of polymers having very different chain stiffness, strongly

support the packing model predictions, as we will show further down in this section.

Therefore we shall base our analysis on the same premises.

In this section we present the quantitative descriptions of entanglements pro-

posed by Fetters et al. [67] and Kavassalis and Noolandi [64], that are based on a

static mean field description of dense chains and are appropriate for bulk polymers.

We focus our attention on a chain, that we will call “test chain”, and consider Ne

consecutive monomers, which we will call “test segment”. The test segment is as-

sumed to form exactly one entanglement, and we will show how an entanglement

criterion can be derived to determine Ne. First of all, the volume pervaded by the

test segment, called hereafter Vp or “test volume”, needs to be defined and esti-

mated. The pervaded volume is usually defined as the volume of the smallest sphere

containing entirely the segment and, one can assume that in the bulk this volume

is proportional to the cube of the segment radius of gyration, i.e.

Vp = AR3
g = A

(
b
√

Ne/6
)3

, (4.1)

where A is a generic constant. The definition of Vp is somehow arbitrary and the

choice of the radius of gyration is an approximation, but the scaling properties of

Vp are correct, since we know that for Gaussian chains all the relevant lengths scale

with b
√

N in the bulk. We will see that this is not the case at interfaces and surfaces,

for which it is not obvious how the above definition should be adapted.

The number of segments made of Ne monomers that would fill completely the

pervaded volume is

N∗ = Vp/V0, (4.2)
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where

V0 = Nea
3 (4.3)

is the packed volume of the test segment and a3 = M0/ρNA is the volume occupied by

one monomer. We can also interpret N∗−1 as the number of segments of length Ne

encountered by the test segment. Packing models assume that N∗ is some universal

number connected with the topological nature of entanglements, thus obtaining

from equation (4.2) an entanglement criterion allowing to find scaling laws for Ne.

In order to have a more physical picture, Witten et al. have defined a packing length

p, that gives the number of individual chains in a given small volume of the melt,

and that can be regarded as the fundamental quantity controlling Me. For a chain

with degree of polymerization N the packing length is defined as

p =
M

R2
0ρNA

=
Na3

6R2
g

, (4.4)

from which it can be seen that in the bulk p is independent of the chain length.

From the above definition and the entanglement criterion (4.2) it follows that

Ne =
63N∗2

A2
p3/a3, (4.5)

a prediction that can be tested experimentally. Indeed the molecular weight of

entanglement in the bulk is usually obtained from measurements of the plateau

modulus G0
N , which is related to Me by

G0
N =

4

5

ρkBTNA

Me

=
4

5

kBT

a3Ne

. (4.6)

From the last equality one can predict that at constant temperature

G0
N ∝ p−3. (4.7)

Such a scaling law has been tested by Fetters et al. [67] on a large number of

polymers with very different properties. Their results are reported in Figure 4.1,

where G0
N , plotted against p−3, exhibits a linear dependence. This behavior strongly

supports to the validity of the packing model.
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Figure 4.1: Linear plot of plateau modulus against the inverse cube of the packing length
at 413 K for different polymers. After Fetters et al. [67].

A refined version of the packing model has been proposed by Kavassalis and

Noolandi [64], who included chain end effects in their description. The fracture

criterion (4.2) implies that on average N∗−1 segments of length Ne should share the

test volume with the test segment in order to form an entanglement. Kavassalis and

Noolandi considered that the volume pervaded by the test chain can be occupied by

segments of different lengths belonging to different chains. Moreover, they separated

the contributions of tail segments, starting or ending inside the test volume, and

non-tail segments, passing through it, in the belief that tail segments are not effective

in forming entanglements. This observation is condensed in the following equation

Vp = a3

[
Ne +

N∑

m=1

(Ntails(m) + Nnontails(m))m

]
, (4.8)

where Ntails(m) (Nnontails(m)) is the average number of tail (nontail) segments of

length m contained in the test volume, excluding the test segment.

The entanglement criterion is finally written as
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Vp = a3

(
Ne + ÑNe +

N∑

m=1

Ntails(m)m

)
, (4.9)

where the coordination number Ñ , defined by

Ñ = N−1
e

N∑

m=1

Nnontails(m)m, (4.10)

has been introduced. Ñ can also be interpreted as the number of nontail segments

of length Ne that a test segment must encounter to form an entanglement. The

coordination number is therefore a measure of the topological constraints imposed

on the test segment by other chains and it is analogous to N∗ − 1, except that it

excludes dangling ends. In this model Ñ is assumed to have a universal value, thus

Ne can be computed from equation (4.10). This approach involves the calculation

of the distribution of segments lengths, and it quite cumbersome; an alternative

approximate method is the following. The average number of tails in the test volume

is 2Ve/a
3N and their average length is Ne/2, leading to the relation

N∑

m=1

Ntails(m)m ≈ VeNe

a3N
. (4.11)

The entanglement criterion is then rewritten in the approximate form

Vp

Nea3

(
1− Ne

N

)
= (Ñ + 1), (4.12)

from which Ne can be computed for Ñ known. Since the degree of polymerization

N enters the above criterion, it follows that Me depends on the molecular weight of

chains; a typical dependence of Ne on N is shown in Figure 4.2.

We note that in the long chain limit the two criterions expressed by equations

(4.2) and (4.12) are the same, provided that Ñ is identified with N∗ − 1. In order

to test their model, Kavassalis and Noolandi computed Ñ + 1 from the molecular

weights of entanglement measured experimentally for 13 different polymers with

very high molecular weights. They found an average value of 9.1 with a standard

deviation of 8% [65], thus confirming the validity of the packing model.
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Figure 4.2: Mean spacing between entanglements versus degree of polymerization for
several values of the coordination number and a typical chain stiffness. The curves termi-
nate abruptly at N = Nc and approach, in the long chain limit, a constant value given by
equation (4.5) with N∗ = Ñ + 1. After Kavassalis and Noolandi [64].

4.2 Molecular weight of entanglement in inhomo-

geneous systems

The packing model has been proved to work for bulk polymers, it is then natural

to apply it to inhomogeneous systems. We will work in a mean field approximation

and for simplicity we will assume through the whole section that the inhomogeneity

is only along one direction, denoted by x.

The first problem that we have to address in extending the packing model is the

definition of the pervaded volume. We said that its exact definition is not essential

in the bulk, since the final scaling law Vp ∝ √
N , is always obtained. On the

contrary a precise definition of the pervaded volume is very important in interfaces

or surfaces where, for example, the radius of gyration and the mean squared end-to-

end distance vary differently with the dimensions of the inhomogeneity. Moreover,

in a mean field description, the definition of the pervaded volume that we gave in the
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previous section has no real meaning, since a chain can be entirely contained in the

test volume only with a certain probability. Nevertheless we believe that the chain

extension in one direction can still be considered proportional to the corresponding

component of the radius of gyration, and we will adopt this assumption in our

derivation.

In an interface or near a surface the components of the radius of gyration along

the three directions are not the same, so that the shape that is more suitable to

contain the test segment is not a sphere. It turns out that it is more appropriate the

use of an ellipsoid, a parallelepiped or a cylinder, and we write the volume pervaded

by the test segment as

Vp = A′Rg,xRg,yRg,z, (4.13)

where A’ is a constant and Rg,α is the component of the radius of gyration of the

test segment along the α = {x, y, z} axis. Obviously, the squared radius of gyration

is given by

R2
g = R2

g,x + R2
g,y + R2

g,z, (4.14)

and the packed volume of the test segment is the same as in the bulk, V0 = Nea
3.

We now want to apply the entanglement criterion (4.2), which is suitable for high

molecular weight chains, to find how Ne changes with respect to its bulk value. Since

the external field varies only in the x direction, we can write

Rg,y = Rg,z =
b√
18

√
Ne. (4.15)

The x component of the radius of gyration instead will depend not only on the

length, but also on the position of the segment. We write this latter dependence

in terms of the starting point of the segment, x0, and neglect for the moment the

possible dependence on the position of the segment along the test chain. We then

set Rg,x ≡ Rg,x(x0) and obtain

Vp

V0

=
A′b2

18a3
Rg,x(x0). (4.16)
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In the bulk Ne = N b
e , Rg,x = Rb

g,x = b
√

N b
e/18 and the criterion (4.2) leads to

A′b2

18a3
= N∗

√
18

b
√

N b
e

. (4.17)

In an inhomogeneous system the same entanglement criterion can therefore be

written as

Rg,x(x0) =
b√
18

√
N b

e . (4.18)

This is an implicit equation for Ne through Rg,x(x0), and it is the one we will

use in the following sections to determine the molecular weight of entanglement.

In general it cannot be solved analytically, so that we will present only numerical

evaluations of Ne for interfaces and thin films, but its main consequences can be

already discussed from a qualitative point of view.

Near an interface or a surface, chains are known to be compressed in the per-

pendicular direction, thus their Rg,x is smaller than in the bulk. In order to satisfy

equation (4.18), the test segment should have the same Rg,x as in the bulk, and

this can be achieved only if Ne is larger than N b
e . An analytical relation between

the radius of gyration and Ne can be obtained if we assume that, even in an inho-

mogeneous system, each component of the radius of gyration is proportional to the

square root of the chain length, that is if we can write

Rg,x(x0) = c(x0)
b√
18

√
Ne, (4.19)

where

c(x0) =
Rg,x

Rb
g,x

. (4.20)

In this approximation c(x0) is independent of Ne and from equation (4.18) we get

Ne

N b
e

= c(x0)
−2, (4.21)

that in general can be treated as an approximate relation to estimate Ne.
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4.3 Radius of gyration

We found in the previous section that in an inhomogeneous system Ne can be ob-

tained by inverting equation (4.18). We need then a method to compute the com-

ponent of the radius of gyration along the x direction, Rg,x, as a function of Ne and

x0. Here we describe very quickly how this calculation can be performed in a mean

field approximation.

The radius of gyration of a chain of length N is defined as

R2
g =

1

N

N∑

i=1

〈(ri − rG)2〉, (4.22)

where ri is the position of the ith monomer along the chain and rG is the chain

center of mass

rG =
1

N

N∑

i=1

ri. (4.23)

For practical reasons it is better to introduce the equivalent definition

R2
g =

1

N2

N−1∑

i=1

N∑

j=i+1

〈(ri − rj)
2〉, (4.24)

which is easier to evaluate numerically. Adopting a continuous notation for the

monomer positions along the chain, the above definition becomes

R2
g =

1

N2

∫ N

0
dn

∫ N

n
dm〈(rm − rn)2〉. (4.25)

It is well known that for a Gaussian chain in the bulk, where no external fields are

present,

Rb
g

2
=

1

6
Nb2. (4.26)

In an inhomogeneous system the mean value of any physical quantity depending

on the position of two monomers, while a chain end is held fixed at r0, is given by

〈A(rn, rm)〉0 =
∫

drm

∫
drnp(r0, rn; n)p(rn, rm; m− n)A(rn, rm), (4.27)
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where m > n and p(rn, rm; m− n) is the normalized probability of finding the mth

monomer in rm given that the nth is in rn. This quantity has already been found,

in chapter 3, in terms of the Green function as

p(rn, rm; m− n) = G(rn, rm; m− n)
q(rm; N −m)

q(rn; N − n)
. (4.28)

Substituting A(rn, rm) = (rm − rn)2, we obtain

〈(rm − rn)2〉0 =
∫

drm

∫
drnp(r0, rn; n)p(rn, rm; m− n) (rm − rn)2 , (4.29)

where again m > n, and the radius of gyration is finally given by

R2
g(r0) =

1

N2

∫ N

0
dn

∫ N

n
dm〈(rm − rn)2〉0. (4.30)

From the very definition it is evident how the radius of gyration can be decom-

posed into its three components along the principal axes. In our system the external

field varies only in the x direction, so that we can write

R2
g,x(x0) =

1

N2

∫ N

0
dn

∫ N

n
dm〈(xm − xn)2〉0, (4.31)

R2
g,y = R2

g,z =
1

18
Nb2. (4.32)

For the same reason q(r; n) will depend only on x, and

G(rn, rm; m− n) = G0(yn, ym; m− n)G0(zn, zm; m− n)G(xn, xm; m− n), (4.33)

where

G0(x, x′; N) =

√
3/2π

b
√

N
exp

[
−3 (x− x′)2

2Nb2

]
, (4.34)

and G(xn, xm; m− n) depends on the field. Using the above relations we find
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〈(xm − xn)2〉0 =
∫

dxm

∫
dxnG(x0, xn; n)G(xn, xm; m−n)

q(xm; N −m)

q(x0; N)
(xm − xn)2 .

(4.35)

The radius of gyration of a Gaussian chain in an external field can be computed

finally from equations (4.31), (4.32) and (4.35).

As a matter of fact we are more interested in the radius of gyration of a segment

of length Ne, belonging to a chain with degree of polymerization N , in which the

first monomer, that we assume to be the ∆th along the chain, is fixed at position

r0. The relevant equations have then to be modified as follows

R2
g,x(x0) =

1

N2
e

∫ Ne

0
dn

∫ Ne

n
dm〈(xm − xn)2〉0, (4.36)

〈(xm − xn)2〉0 = (4.37)

=
∫

dxm

∫
dxnG(x0, xn; n)G(xn, xm; m− n)

q(xm; N −m−∆)

q(x0; N −∆)
(xm − xn)2 ,

R2
g,y = R2

g,z =
1

18
Neb

2. (4.38)

4.4 Me at interfaces

In this section we explicitly compute the molecular weight of entanglement at in-

terfaces between immiscible polymers using the criterion (4.18) and the radius of

gyration given by equations (4.36)-(4.37). The needed Green functions and proba-

bility distributions q are obtained from the SCF calculation, as already described

in chapter 2. In this section we present the results obtained for a simple symmetric

system, in order to show the main predictions of the model.

Similarly to the previous chapters we study the interface between two materials

with bulk parameters equal to those of PS and the same molecular weight M = 300k.

In particular for bulk PS N b
e ≈ 128 and the root mean square end-to-end distance
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between entanglements is Le ≈ 7.6 nm, a value that can be taken as an estimate of

the length of test segments. Arbitrary interfacial widths are obtained as usual by

varying the interaction parameters χ at will. In such interfaces both polymers have

symmetric concentration profiles and identical properties. It is therefore sufficient

to consider only one of them, which we will call polymer A, whose bulk phase is

located on the negative part of the x axis.
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Figure 4.3: Scaled x component of the radius of gyration, Rg,x/Rb
g,x, calculated for

a segment of length N b
e as a function of the position x0 of its first monomer, for the

illustrative system described in the text. The interface is located at x = 0 and different
interfacial widths are considered: aI = 2.5 nm (squares), 3.75 nm (circles), 5 nm (upper
triangles), 10 nm (lower triangles) and 27 nm (diamonds).

We computed Rg,x for a test segment of length N b
e as a function of the position

x0 of its first monomer, and show in Figure 4.3 the results obtained for different

interfacial widths. In the numerical calculations we used ∆ = N/2, in order to

avoid chain end effects and obtain meaningful results; the consequences of choosing
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Figure 4.4: Scaled mean spacing between entanglements as a function of the starting
position of the strand. Symbols and parameters are as in Figure 4.3.

a different ∆ will be discussed further down. We note that an appreciable change

in the radius of gyration is predicted only for widths aI < Le, because in wider

interfaces the external field experienced by a segment is nearly constant. As the

test segment position changes we distinguish three main regions. Segments starting

at x0 < −2Le seem to be unaffected by the interface for any width. Indeed, for

widths aI < Le, the segments are too short to reach the interfacial region, while

for aI > Le we have already noticed that their radius of gyration changes very

little. When −2Le < x0 < 0 the segments experience the highest gradient of the

external field and are more coiled. We can imagine that a sharp interface acts like

a surface or an impenetrable wall, reflecting the segments of polymer A starting on

the A-rich side of the interface. We also notice that the radius of gyration reaches

its minimum value when x0 is very close to the interface, but not exactly at x0 = 0.

When x0 > 0, segments start on the “wrong” B-rich side of the interface, and there

is a high probability that they cross the interface. The larger x0 the more they are

stretched, until the radius of gyration equals its bulk value and eventually starts to
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increase indefinitely. The critical distance x0 = xc, at which Ne/N
b
e = 1, depends

on the interface width, and is larger for smaller widths. Figure 4.3 shows that a

maximum value of xc ≈ 4 nm is found for aI = 2.5 nm. We finally note that it is

irrelevant to consider x0 >> aI , since in those regions the density of polymer A is

practically 0.

The number of monomers between entanglements Ne has been numerically com-

puted for different interfacial widths by inverting equation (4.18). In practice we

first fix x0 and then change Ne, until the corresponding Rg,x satisfies the entangle-

ment criterion. The resulting Ne are reported in Figure 4.4 as functions of x0 for

the same interfaces as in Figure 4.3. We see that, as expected, Ne is greater than in

the bulk, at least in the regions where there is an appreciable density of A segments.

The maximum correction to the bulk value is obtained for the narrowest interface,

although it is only of about 25%. The three regions we described above are still

present and all the comments we made remain valid.
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Figure 4.5: Maximum value of the mean spacing between entanglements as a function of
the interface width. All parameters as in Figures 4.4 and 4.3.

An idea of how Ne depends on the interfacial width is given by the plot in Figure
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4.5, where the maximum value of Ne/N
b
e is plotted against aI in full circles. Our

results show that, as a consequence of the packing model assumptions, an interface

affects the entanglements only if its width is comparable with Le.

We focus now our attention on the sample with the narrowest interface (aI = 2.5

nm), and discuss the simplified formula (4.21) proposed in section 2. In Figure 4.6

we plot the Ne obtained from numerical inversion of equation (4.18) (solid line) and

compare it with the values obtained from approximate equation (4.21) (dashed line).

The two curves are similar, but not equal, meaning that the radius of gyration in

an interface is not exactly proportional to
√

N .
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Figure 4.6: Scaled mean spacing between entanglements calculated from equation (4.18)
for the sample with aI = 2.5 nm as a function of the position of the first monomer of the
strand x0 (solid line). The dashed line is obtained from the radius of gyration plotted in
Figure 4.3 with filled squares, using the approximate equation (4.21).

Finally we discuss the dependence of Ne on the position of the test segment along

the chain. We changed ∆ from 0 to N − Ne for the sample with aI = 50 nm and

computed Ne as a function of x0, obtaining the results displayed in Figure 4.7. A

very different behavior is predicted for segments near the free chain end, that have a
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Figure 4.7: Scaled mean spacing between entanglements calculated from eq.(4.18) for
the sample with aI = 5 nm as a function of the position of the first monomer of the strand
x0. Different position of the strand along the chain are considered when computing the
radius of gyration from eq. (4.36) and (4.37): ∆ = 0 (solid line), N/2 (dashed line), 4/5N
(dash-dotted line) and N −Ne (dotted line).

greater freedom. We remark that if we had considered a standing alone segment, we

would have obtained the same curve plotted here for ∆ = N−Ne, and consequently a

shift of the maximum toward the interface. From a practical point of view the choice

of ∆ has little importance, as long as the segment is chosen far from chain ends.

Indeed we note that, except for the case ∆ = N − Ne, the curves are very similar.

Moreover, in the model presented in section 3.1, we assumed that entanglements

cannot be formed too close to chain ends, thus imposing Ne < ∆ < N − 2Ne.

To our knowledge no experiments have been proposed or performed to mea-

sure the molecular weight of entanglement in interfaces, and very few authors have

considered the theoretical problem [71]-[73].

Oslanec and Brown [73] used an approach similar to the one we described and

obtained comparable results. The only difference is that they implicitly assumed
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that the test segment could not form effective entanglements with other segments

of the test chain; consequently they find values of Ne which are slightly higher than

the ones we showed.

We also mention the work of Ganesan and Pryamitsyn [72], who used a Monte

Carlo technique to estimate Ne in the framework of the Kavassalis and Noolandi

approach [64]. More precisely they were able to compute an average coordination

number Ñ applying equation (4.10) to a segment of length N b
e , as a function of the

segment position and of the interface width. Unfortunately they could not invert

the relation Ñ(Ne) and could only predict that Ne/N
b
e < (Ñ/Ñ b)−1 thus giving an

upper limit to the correction. They investigated three different widths ranging from

aI ≈ 1.5Le to aI ≈ 2.6Le, and found that even for the narrower interface Ne/N
b
e < 2,

in agreement with our results.

4.5 Corrections to fracture energy calculations

We want now to show how the results of the previous section affect the fracture

energy calculations presented in chapter 3, but we need first to refine the entangle-

ment model proposed in that chapter. In section 3.1 we assumed to know the exact

position of the entanglements and showed that such approximation is good enough

to compute Σeff . However, in such a simplified model, it is difficult to take into

account the fact that Me depends on the absolute position in space. For this reason

a slightly different treatment of entanglements is required.

We consider a continuous chain and use the monomer number along the chain

n as a curvilinear coordinate. To avoid confusion with the definition of n given in

chapter 3, in this section we will always write explicitly N/Ne. We also define a

density of entanglements along the chain ρe(n), with the property that ρe(n)dn is

the number of entanglement between n and n + dn. As a first approximation we

can imagine that all the positions are equivalent and that ρe(n) ≡ 1/Ne, except for

monomers near the chain ends. For consistency with the discrete model of Mikos

and Peppas [2], that we adopted in the calculation of Σeff , we assume that monomers

within a distance of Ne/2 from the chain end cannot be entangled. We then write
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ρe(n) =
θ(n−Ne/2)− θ(n− (N −Ne/2))

Ne

, (4.39)

where θ(n) is the step function (3.31). It follows that the total number of entangle-

ments is

∫ N

0
dnρe(n) =

N

Ne

− 1, (4.40)

which is in agreement with our previous model. For the sake of clarity ρe(n) is also

plotted in Figure 4.8.
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Figure 4.8: Density of entanglement along the chain used in the calculation of Σeff .

Moreover, in chapter 3 we assumed that two consecutive entanglements are al-

ways separated by Ne monomers, and we want to maintain this assumption. It

follows that, as a consequence of equation (4.39), an effectively entangled strand

can start only at positions Ne/2 < n < N − 3/2Ne. We then replace formula (3.19)

with

Σeff =
2ρb

N

∫ N−3/2Ne

Ne/2
dnρe(n)

[∫ 0

−∞
dx

∫ ∞

0
dx′q(x; n)G(x, x′; Ne)q(x

′; N − n−Ne)
]
,

(4.41)
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Figure 4.9: Typical density of the ends of effectively entangled strands. The total number
of ends is, of course, the same on each side of the interface and equals Σeff .

where ρe(n) ≡ N−1
e within the limits of integration.

This formula has the advantage that it automatically gives the correct (real)

number of entanglements along the chain and averages over all their possible posi-

tions. We note that the two expressions (3.19) and (4.41) are equivalent for the bulk

case, where we used a real number of entanglements, while in general the first one

is obtained from the second one by using a simple discrete approximation for the

integral in dn, the only slight difference being in the treatment of chain end effects.

For completeness we checked that, for the samples we studied, the Σeff computed

with the two methods differ by less than 2 %, as it will be shown in Figures 4.11

and 4.12.

It is now easier to consider in the calculation of Σeff the appropriate value of

Ne at the interface. We proved that Ne is significantly different from the bulk

value only if the strand is within a distance 2Le of the interface. Since all the

effectively entangled strands cross the interface, they are likely to start very close
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to the interface, as shown in Figure 4.9, where we plot a typical density of the ends

of the effectively entangled strands on both sides of the interface. More precisely,

we can estimate that more than 95 % of all the strands contributing to Σeff starts

within a distance of Le from the interface. Strands starting farther have a negligible

probability of being effective. The correct Ne to be used in equation (4.41), that

we will call N̄e, is therefore different from N b
e and depends on the interface width.

In principle N̄e should be a function of the position of the strand in space, but as

a first approximation we use a constant value. The simplest choice is to obtain N̄e

by weighting Ne(x0) with the volume fraction of the polymer over a small region

around the interface, i.e.

N̄e =
∫ Le

−Le

Ne(x0)φ(x0)dx0

/∫ Le

−Le

φ(x0)dx0 . (4.42)

We believe that the above expression is an appropriate value to estimate the order

of magnitude of the corrections to Σeff , even if it contains many simplifications. The

most important is probably the choice of using a single average value, but this is

the most difficult to relax. In order to take into account that strands starting at

different points in space have different lengths, a much more sophisticated treatment

of entanglements would be required, but this is still a challenging problem for all the

scientific community. Some comments must be made on our particular choice of N̄e.

We have already explained why we are restricting ourselves to a particular region of

space close to the interface, and we stress again that we are interested in the local

density of entanglements. It follows that the N̄e we use is not the correct average

value for a whole chain, many monomers of which will be far from the interface,

but it is correct for all the portions of chains that we are considering. Another

simplification of equation (4.42) is that it ignores completely the position of the

strand along the chain. In practice we compute Ne for the central segment of a

chain, that is considering ∆ = N/2, and then weight it with the overall density of

monomers. A more rigorous treatment would be take the average over all possible

positions along the chain, but, recalling the discussions in the previous section, we

believe that our simplified treatment is accurate enough and, even more, it is correct
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Figure 4.10: Mean value of the spacing between entanglements in the region of the
interface, calculated from eq.(4.42), as a function of the interfacial width for the same
illustrative systems system as in Figures 4.3, 4.4 and 4.5.

for long chains. We add here that a more sophisticated approach is probably useless,

given the strong approximations made so far.

Before investigating the real systems, we perform numerical calculations on the

same illustrative system for which Σeff and Ne have already been obtained respec-

tively in chapter 3 and in the previous section. The N̄e for this system has been

computed by formula (4.42) and it is reported in Figure 4.10 as a function of the

interfacial width.

In Figure 4.11 we plot the effective density Σeff obtained from equation (4.41),

using N̄e (solid line) and N b
e (dashed line). Circles represent the curve obtained

in chapter 3 from equation (3.19), that is plotted in order to show the agreement

between the discrete and continuous descriptions of entanglements. We see that

corrections to previous calculations are more significant for narrow interfaces, but

they are present also in wider ones. Having in mind equation (4.41), we now discuss

in detail how the final Σeff is affected by the use of N̄e instead of N b
e . The space
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Figure 4.11: Density of effectively entangled strands as a function of the interfacial
width, for the same illustrative system of the previous figure. Σeff has been computed
from equation (4.41) using Ne = N̄e (solid line) and Ne = N b

e (dashed line). In dotted line
we plot the curve obtained for Ne = N b

e multiplied by a factor N b
e/N̄e. Circles are taken

from Figure 3.2.

integrals involving the Green function grows with the molecular weight of entangle-

ment, but, even for narrow interfaces, we found that this effect produces corrections

of less than 1% in the final density Σeff . The substitution of Ne in the integration

limits has a comparable impact on the computed Σeff , but in the opposite direction,

since a greater Ne tends to exclude the more mobile monomers from the integral.

We therefore conclude that the greatest change in Σeff is due to a decreased aver-

age number of entanglements per chain. This is taken into account by ρe(n), that

corrects the bulk Σeff by a factor N b
e/N̄e. This conclusion is confirmed by Figure

4.11 in which we plotted, as the dotted line, the Σeff obtained using N b
e in equation

(4.41) and multiplying the result by the factor N b
e/N̄e. The curve seems to agree

with the one obtained by the full calculations (solid line).

In real systems we found the same effects. In Figure 4.12 we report the Σeff cal-
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Figure 4.12: Areal density of effectively entangled chains Σeff for PS/P(S-r-MMA) in-
terfaces. Circles represent the values calculated in chapter 3, pluses and triangles are
obtained from equation (4.41) respectively for Ne = N b

e and Ne = N̄e.

culated in chapter 3 for PS-P(S-r-MMA) (circles) together with the curves obtained

by equation (4.41) using N b
e (pluses) and N̄e (triangles). We see that the continuous

and discrete approaches give nearly identical results, and that the corrections are

significant for all samples.

The corresponding corrections to the fracture energy are shown in Figure 4.13

and, at first sight, are quite surprising: narrow interfaces seem to be unaffected,

while for wider ones a significantly smaller fracture energy is predicted. From Fig-

ure 4.12 we can check that the corrections to Σeff are bigger for narrow interfaces, as

expected, but this is not the case for the fracture energy. The explanation is simple

if we recall that different failure mechanisms occur depending on the value of Σeff .

The PS/PMMA interface, that is the narrowest sample, is predicted to fail by chain

scission, implying that Gc ∝ NeΣeff . Since we showed that the density is approxi-

mately corrected by a factor inversely proportional to Ne, it is easy to conclude that

the final fracture energy in the chain scission regime is practically unchanged. A
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Figure 4.13: Fracture energy calculated for PS/P(S-r-MMA) interfaces from the Σeff

showed in Figure 4.12 with the same symbols.

small effect can be seen in the samples that fail by partial crazing, but even in those

cases the fracture energy is changed by less than 1 J/m2, because the interfaces are

larger and because the ultimate fracture mechanism is, again, the chain scission. In

the case of failure by crazing the fracture energy is obtained from equation (3.41),

and significant corrections are obtained even for small changes in Σeff . We also note

that the biggest correction is observed at a width of about 9 nm and it is due to the

fact that the corresponding sample is no longer predicted to fail by crazing, but by

partial crazing.

We can conclude that considering an appropriate Ne for the interface does not

change drastically the results obtained with N b
e . The main corrections to this latter

calculations are a lowering of the crazing fracture energies and a shift of the critical

width at which transition to complete crazing occurs.

For these reasons in the case of PS/PpMS interfaces all the fracture energies are

expected to be slightly lower than the ones obtained in chapter 3, without displaying
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any other interesting effect.

4.6 Me in thin films

Thin polymeric films are widely studied and their properties are expected to be

greatly influenced by chain packing effects [71],[91],[92]. They are also interesting

from a technological point of view, being commonly used as lubricants, or as di-

electric layers in microelectronic devices. Moreover, Brown and Russell suggested

that Me could be measured by deformation tests on ultrathin films [71] and such

experiments are currently being performed. We believe that their results will allow

to test the main features of the approach proposed in this chapter. For these reasons

we decided to apply the packing model of entanglements to thin films and to present

in this section a quantitative estimate of Me.

The problem of a solid-homopolymer melt interface has been treated by many

authors [93]-[104], and it can be said that the conformation of surface chains is pretty

well known. Many theoretical approaches are available to describe chain packing at

surfaces [93]-[100] and computer simulations allow to test them with great accuracy

[101]-[104]. We will adopt the simple approach proposed by Silberberg [99], which

predicts the correct large scale features of chain conformations and is therefore

suitable for our purposes. In Silberberg’s model a solid surface is treated as a

reflective barrier [105]-[108], and, from a mathematical point of view, this implies

that the diffusion equation for the Green function satisfies a reflecting boundary

condition at the interface [109]. In one dimension and in the absence of truly external

fields, i.e. for Ue ≡ 0, it is easy to verify that the solution of equation (3.3) with

additional reflective boundary conditions at x = 0, is

G(x′, x; N) =
βN√

π
exp

[
−β2

N (x′ − x)
2 − β2

N (x′ + x)
2
]
, (4.43)

which satisfies

G(x′, x; N) = G(x′,−x; N). (4.44)
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Considering only the half space x > 0, we note that the above Green function is

properly normalized to 1, implying that q(x; n) ≡ 1 and that the polymer density

is constant everywhere. More sophisticated approaches have shown that, near the

surface, the density is indeed different from the bulk value, but only in a small region,

whose dimensions are comparable with the Kuhn statistical segment length. The

magnitude and sign of this deviation from bulk density depend on the interaction

energy between the polymer and the surface; constant density is obtained only when

a specific small attractive energy is considered, compensating for the repulsion due

to loss of entropy [100]. Nevertheless computer simulations [102] have demonstrated

that conformational properties of chains longer than 5-6 statistical segments, are

predicted with great accuracy by the simple treatment of Silberberg. Moreover they

showed how, on the length scale of statistical segments, interfacial properties are

independent of surface-segment energetics, compressibility and chain length.

Since we are mainly interested in conformational properties on the length scale

of entanglements, that are usually made of about 100 monomers, it is reasonable to

adopt a reflective surface statistics and to apply it to thin films. In this framework

we describe a film of thickness L as a region of space included between two reflecting

barriers placed at x = 0 and x = L. Considering multiple reflections, the appropriate

one dimensional Green function for 0 < x < L can be obtained as

G(x, x′; N) =
βN√

π

∞∑

i=−∞
exp

[
−β2

N (x− x′ + 2iL)
2 − β2

N (x + x′ + 2iL)
2
]
, (4.45)

and again produces a constant polymer density in the whole film. The radius of

gyration of the test segment can be numerically computed for films of different

thicknesses and for all the possible starting points using equations (4.31), (4.32) and

(4.35). It is important to point out that, due to the use of Gaussian Green functions,

the radius of gyration of the test segment is independent of its position along the

chain.

Results for 4 different film widths are shown in Figure 4.14. The scaled radius

of gyration is plotted as a function of the distance of the strand’s starting point

from one of the film surfaces. We note that strands are more packed only if they
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made of N b

e monomers as a function of its distance from the surface of a thin film. Four
different film thicknesses are considered: L=7.2 (squares), 4.8 (circles), 2.4 (triangles) and
1.2 (pluses) Le.

start within a distance of about Le from the surface and that curves obtained for

the three largest widths can be exactly superimposed. Consequently, in wide films

the relative radius of gyration is significantly different from 1 only near the inter-

face, while in very narrow films it tends to be constant and much smaller than 1.

Two limiting cases can be studied analytically to check the numerical calculations.

For an infinitely thick film, that is to say for a melt near an impenetrable wall,

chains starting exactly on the surface satisfy Rg,x/R
b
g,x =

√
2(1− 2/π) ≈ 0.85, as

confirmed by the numerical results. When L → 0 the Green function is a constant,

G(x, x′; N) ≡ 1/L, so that the radius of gyration in the x direction becomes in-

dependent of the position of the chain and satisfies Rg,x = L/
√

12. Since all the

strand’s monomers are involved in the calculation of the radius of gyration, this

limit is properly reached only when the film thickness is comparable with the Kuhn

segment length.

The mean entanglement spacing is found from the radius of gyration by numer-

ical inversion of the criterion (4.18). The results are shown in Figure 4.15 for two
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Figure 4.15: Scaled mean spacing between entanglements as a function of its distance
from the surface of a thin film, calculated by inversion of equation (4.18) (solid lines).
Dashed lines represent the same quantity, as obtained from approximate equation (4.21).
Two different film thicknesses are considered: L=7.2 and 1.2 Le.

representative film thicknesses L = 7.2Le and L = 1.2Le. We note that for the

former sample, the computed Ne has the same behavior and order of magnitude as

the one previously obtained for narrow interfaces, confirming our expectations. In

this situation equation (4.21) gives very similar results, from which we conclude that

for chains starting exactly at the interface or very far from it the radius of gyration

is still proportional to the square root of the chain length. Much higher values of

Ne are found for a film thickness of L = 1.2Le, in which case equations (4.21) and

(4.18) give completely different results.

The behavior of very thin films is also shown in Figure 4.16, where we report

the average value of Ne through the whole film. It can be observed that significant

corrections to the bulk Ne are predicted when L < 2Le. For films narrower than a

certain critical width Lc ≈ Le it is impossible to invert the entanglement criterion

(4.18) because the radius of gyration is no longer a function of Ne, but only of the
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Figure 4.16: Average value of the mean entanglement spacing vs film thickness.

film thickness. For such small thicknesses it is then predicted that the chains cannot

entangle.
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Chapter 5

Conclusions

The theoretical investigation of the toughness of interfaces between glassy polymer

undertaken in this thesis work lead to the formulation of a new model to calculate

the dependence of the fracture energy on the interfacial width and on the molecu-

lar weight of polymer. Simulations produced with this model display a very good

agreement with literature experimental data. Its main, and most original features

with respect to previous literature models, are summarized below.

The model contains a new method to calculate the effective density of entangled

strands across asymmetric interfaces, based on a main field description of chains.

A failure mechanism never taken into consideration before is properly taken into

account. It consists in a “partial crazing”, meaning an intermediate regime where

craze formation starts but it cannot fully develop, resulting only in a small plastic

deformation.

Properties of entanglements at interfaces and surfaces, scarcely known and gen-

erally assumed to be the same as in the bulk, were also studied. In particular the

molecular weight between entanglements in inhomogeneous systems was studied, for

which a new entanglement criterion derived from bulk packing models was proposed.

This criterion was then adopted to compute Me in interfaces and thin films, leading

to some of the first estimates of this kind in the literature.

An alternative description of entanglements was developed, introducing an en-

tanglement density distribution; in this way it was possible to take into account in
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the calculations the appropriate value of Me at interfaces, finding significant corre-

lations to the fracture energies computed with the bulk value of Me.

Future lines of work for the approach proposed in this thesis should include a

refined description of entanglements treated as stochastic processes, thus relaxing

some of the main approximation assumed in this thesis. In this context it would be

extremely important to devise appropriate experiments to test these new entangle-

ment theories.
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