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tiano Ricci, José Danuso Rocha de Oliveira, Daniele Semola, Anastasia Shepelevt-
seva, Giorgio Stefani, Matteo Verzobio, Gevorg Yeghikyan. Posso inoltre contare in
questi anni un gran numero di conversazioni scientifiche che hanno indirizzato il mio
lavoro, e per queste ringrazio i Professori Sergio Albeverio, Benjamin Gess, Massi-
miliano Gubinelli, i Dottori Luigi Amedeo Bianchi, Michele Coghi, Mario Maurelli,
Dario Trevisan, Giovanni Zanco, Margherita Zanella, ed infine Clara Antonucci.

Ringraziamenti speciali vanno ovviamente ai miei familiari per il loro supporto,
mio fratello Giovanni, mio padre, mio nonno, quest’ultimo nel ricordo a un anno
dalla scomparsa. Su tutti ringrazio mia madre, per l’attenzione, l’amore e il lavoro
infaticabili che mi ha dedicato.





Contents

Ringraziamenti vii

Chapter 1. Introduction 1
1.1. PDE Models in Incompressible Fluid Dynamics 1
1.2. The 2-dimensional Euler Equations 3
1.3. Euler Point Vortices 4
1.4. Gaussian Invariant Measures 7
1.5. Invariant Measures and Scaling Limits 11
1.6. Stationary Solutions of Barotropic Quasi-Geostrophic Equations 13
1.7. 2-Dimensional Primitive Equations:

a More Singular Geophysical Model 15
1.8. A General Overview and some Notation 17

Chapter 2. Gaussian Solutions by Fokker-Planck Equation 19
2.1. Galerkin Approximation and L logL Initial Data 20
2.2. Lp-initial data 25
2.3. Existence of Weak solutions 28
2.4. Gibbsian Energy-Enstrophy Measures 33

Chapter 3. Liouville Operator of the Point Vortices System 37
3.1. The Liouville Operator for Point Vortices Systems 37
3.2. Generalisations 46

Chapter 4. A Central Limit Theorem for Gibbs Ensembles of Vortices 51
4.1. The Periodic Case 51
4.2. The Case of the 2-dimensional Sphere 61
4.3. The Case of a Bounded Domain 63
4.4. A Comparison with Mean Field Theory 69

Chapter 5. Decay of Correlations in the Mean Field Limit 71
5.1. Mean Field Theory and Previous Results 71
5.2. The Coulomb Gas and Sine-Gordon Field Theory 72
5.3. Decay of Correlations 76

Chapter 6. Stationary Solutions by Point Vortices Approximations 81
6.1. Preliminaries and Main Result 81
6.2. Solutions with finitely many vortices 86
6.3. Proof of the Main Result 91

Chapter 7. Gaussian Invariant Measures of Barotropic Quasi-Geostrophic
Equations 101

7.1. Definitions and Preliminary Results 101
7.2. Weak Solutions for Low-Regularity Marginals 104
7.3. A Galerkin Approximation Scheme 109

ix



x CONTENTS

Chapter 8. Gaussian Invariant Measures of 2-dimensional Stochastic Primitive
Equations 115

8.1. Vorticity Formulation and Conservation Laws 115
8.2. Regularisation by Noise in Hyperviscous Regimes 119
8.3. Proof of Main Result 122

Bibliography 127



CHAPTER 1

Introduction

Invariant measures and their associated stationary flows play a very important
and distinguished role in the study of incompressible fluid dynamics. Although
such relevance is due by a large extent to a particular goal of the theory, that is to
obtain a statistical mechanics description of phenomena associated to turbulence,
many mathematical aspects of the topic have also proved to be of independent
interest.

What follows is a collection of original contributions by the author and his
collaborators to the study of stationary flows in 2-dimensional, incompressible fluid
dynamics models. Regularity regimes prescribed by physically motivated invariant
measures turn out to be quite singular for the models under consideration because of
their nonlinear structure. The unifying scope of our treatment is the application of
ideas and techniques belonging to Probability Theory, or rather Stochastic Analysis,
and Statistical Mechanics, to mathematical problems arising in such context.

1.1. PDE Models in Incompressible Fluid Dynamics

The three chief open research directions in deterministic incompressible fluid
mechanics deal with: (a) well-posedness results, (b) inviscid limits, (c) turbulence.
We refer to [9, 69, 115, 117] for general surveys. Probability has obvious relations
with turbulence, while it is less clear how much it can be related to the former
two. Inviscid limits have been essentially left untouched by stochastic methods. As
for problem (a), a huge effort has been devoted to the attempt at extending and
improving the deterministic theory by means of probability and stochastic models,
and most of what follows fits into this framework.

The most important open problems in class (a) concern basic deterministic
equations, the outstanding example being the 3-dimensional Navier-Stokes equa-
tions (3dNS), [66]. Striking well-posedness results for SDEs with very irregular
drift and additive noise such as [162, 114] lead to the general belief that suitably
non-degenerate additive noise may regularize several classes of differential equa-
tions, providing for instance uniqueness results in cases where the deterministic
equation may not have a unique solution. Relevant infinite-dimensional examples
of such phenomena are described for instance in [52, 53, 55], in which, however,
the drift terms is still far from the irregularity and unboundedness of the inertial
term of 3dNS, and requirements on the noise restrict applications to parabolic 1-
dimensional equations. The strategy of those works consisted in directly solve the
infinite dimensional Kolmogorov equation associated to the SPDE. In the case of
3dNS the corresponding Kolmogorov equation has been solved in [57], but regular-
ity of solutions is not sufficient to deduce uniqueness results of weak solutions to
the stochastic 3dNS. However, [78] established existence of global in time Markov
selections satisfying strong Feller property — a striking continuous dependence on
initial conditions — which has no deterministic counterpart in the theory of 3dNS.

In the inviscid case, the main open problems concern the 3-dimensional Euler
equations: only local results are known, except for special notions of solutions,
see [127, 128, 60]. Such equations represent a too difficult task for a first stage
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2 1. INTRODUCTION

understanding of regularization by noise. We will instead focus on the 2-dimensional
Euler equations (2dE), expressed in vorticity formulation, on the torus T2 = R2/Z2

by

(1.1.1)


∂tω + u · ∇ω = 0,

div u = 0,

ω = ∇⊥u,

where ∇⊥ = (−∂2, ∂1). When the initial condition ω|t=0 is bounded measurable,
a celebrated result of Judovič [105] establishes the existence of a unique solution.
The result has been extended to stochastic versions forced by regular additive noise
in [21], and by multiplicative transport noise in [35].

When the regularity of the initial condition ω|t=0 is decreased, say to Lp(T2),
p ∈ (1,∞), global existence can still be proved with arguments based on the formal
conservation of the Lp-norm of ω. Uniqueness, however, is an open problem: see
[127] for a discussion. It is therefore natural to explore stochastic approaches to
restore uniqueness below the class L∞: unfortunately we still do not know whether
there exists a noise, either additive or multiplicative, producing such an effect.

This and other closely related open problems originated a considerable amount
of research: several attempts have been made to prove that suitable multipica-
tive transport type noises — a natural choice in inviscid problems due to its
conservation properties — regularize first order, transport type PDEs. The case
of linear transport equations has been understood quite well, see for instance
[16, 67, 69, 77, 137].

The nonlinear case is much harder to treat, and only fragmentary results are
available: point vortex solutions to 2dE, which we will extensively discuss, are reg-
ularized [68]. For dyadic models and their generalizations on trees [15] uniqueness
holds thanks to multiplicative noise [13, 23], and a variant of the same technique
applied also to a 3D Leray α-model [14]. Hamilton-Jacobi equations [84] and scalar
conservation laws [85] are also regularized by suitable multiplicative noise, although
not of transport type.

Well-posedness problem (a) has another relevant aspect, that is to extend exis-
tence theory to distributional classes of vorticity fields ω in 2dE. The motivation is
twofold: to understand the limits of PDE theory in terms of roughness of solutions,
and to establish a rigorous setup for investigation of explicit Gibbsian invariant
measures. Indeed, the latter is one of the main topics we will discuss in the follow-
ing, and it is of potential interest also for turbulence theory. Early results in this
direction are reviewed in [9], including the basic existence result of [8] for station-
ary solutions of (1.1.1) in negative order Sobolev spaces, with fixed time marginal
being the 2-dimensional space white noise, also known as Enstrophy measure in
this context, or the Energy-Enstrophy Gibbs measure. This theory was recently
revised by means of an alternative approach based on point vortex approximation,
introduced in [71]. These works, devoted to the deterministic equation (1.1.1) with
random initial conditions, have been also generalized to stochastic cases. Multipica-
tive transport noise was covered by [73, 74, 75], whereas the additive space-time
white noise forcing was considered in [94, 72]. In the additive case, friction is
needed to allow stationary solutions, while multiplicative noise is conservative.

The 2dE with additive noise, possibly including friction, their corresponding
stationary solutions and invariant measures had already been considered before.
However, in earlier studies the space regularity of noise was such that solutions were
function-valued, and invariant measures were supported on spaces of functions: we
refer for instance to [21, 36, 18, 22, 49, 90, 19, 88, 20], and also to other related
results in [116, 117, 69]. Many of those models and results are inspired by the
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open problem of turbulence (c): in connection with this question and the previous
references we also mention [24, 76, 98].

1.2. The 2-dimensional Euler Equations

We now proceed to introduce in detail the content of the forthcoming Chap-
ters, the obvious starting point being Euler equations (1.1.1), which are commonly
written in terms of the velocity vector field u as{

∂tu+ (u · ∇)u+∇p = 0,

div u = 0.

Here p is the scalar pressure field, which vanishes when passing to vorticity form.
We conveniently refer to the monographies [126, 128, 135] for the deterministic
theory of these equations.

The stationary solutions we are interested in are not deterministic, constant
in time solutions of Euler equations, but random velocity (equivalently, vorticity)
fields whose distribution is preserved by Euler dynamics, that is invariant measures.
All candidate invariant measures obtained by formal arguments are too singular to
give meaning to the PDE, unless it is considered in a suitable, non trivial, weak
formulation. This situation is quite commmon in the theory of dispersive PDEs
and more generally of Hamiltonian PDEs: we refer to the recent survey [161] and
references therein regarding the dispersive setting. The next two paragraphs will
detail the two main examples of invariant measures we will deal with in our fluid-
dynamics setting.

Before that, let us introduce an essential tool that allows to solve the problem
of defining the nonlinear term for irregular vorticity fields, in fact highlighting the
peculiarities of fluid-dynamics PDEs we consider.

To fix ideas, let us consider here the torus T2 = (R/Z)2 as space domain:
generalisations of topics below to bounded domains or other compact surfaces will
often be possible, and they will be detailed separately in their respective Chapters.

We denote d(x, y) the distance between two points x, y ∈ T2. Since vorticity
is the curl of velocity, ω = ∇⊥u, it has zero space average: in what follows we
will thus consider only functions (or distributions) having zero average on T2, and

denote by L̇p(T2), Ḣα(T2) Lebesgue and Sobolev spaces of zero averaged functions.
It will often be convenient to work with Fourier series: let ek(x) = e2π i k·x, for

k ∈ Z2
0 = Z2 \ {0}, x ∈ T2, be the orthonormal basis of L̇2(T2) diagonalising the

Laplace operator, and recall that Sobolev spaces (of zero average distributions) are
characterised as follows:

∀α ∈ R, Ḣα(T2) =

u ∈ C∞(T2)′ : ‖u‖2Ḣα =
∑
k∈Z2

0

|k|−2α|ûk|2 <∞

 ,

where ûk = 〈u, ek〉, the brackets denoting (complex) L2-based duality couplings
from now on. We will also denote by M(T2) the linear space of finite signed
measures on T2, which is continuously embedded in Hα(T2) for any α < −1, since
Fourier coefficients of measures are uniformly bounded by 1.

The Green function of the Laplace operator with zero average, G = (−∆)−1,
is the unique solution of

∀x, y ∈ T2 −∆xG(x, y) = δy(x)− 1,

∫
T2

G(x, y)dx = 0;
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we recall that G is a symmetric function, and moreover it is translation invariant.
It has the explicit representation in Fourier series

G(x, y) = G(x− y) =
∑
k∈Z2

0

ek(x− y)

4π2|k|2
,

and moreover it can be expressed as the sum of Green’s function on the whole plane
and a bounded function,

(1.2.1) G(x, y) = − 1

2π
log d(x, y) + g(x, y),

with g(x, y) ∈ C0
sym(T2×2). The latter representation holds more generally on any

compact Riemannian surface without boundary (see [11]), and it can be recovered
comparing the G(x, y) to the solution of −∆xu(x) = δy(x) on a small ball centred
in y with Dirichlet boundary conditions.

As already mentioned, we will focus on solutions to (1.1.1) of low space reg-
ularity: in order to give meaning to the PDE the starting point is thus the weak
formulation against a smooth test φ ∈ C∞(T2),

〈φ, ωt〉 − 〈φ, ω0〉 =

∫ t

0

∫
T2×2

K(x− y)ωs(y)ωs(x)∇φ(x)dxdyds

=

∫ t

0

〈(K ∗ ωs)ωs,∇φ〉 ds,

where we introduced the notation K = ∇⊥G. The convolution kernel K is in fact
the Biot-Savart kernel in dimension 2, since it allows to express the velocity field
in terms of vorticity:

ω = ∇⊥ · u ⇒ u = K ∗ ω.

Of course, K is a singular kernel, and this makes the weak formulation above unsuit-
able to treat even measure-valued solutions. Here comes into play the fundamental
symmetrisation introduced in the works of Delort and Schochet [62, 154, 155].

For smooth solutions of Euler equations, by symmetrising the variables x, y in
the integral expressing the right-hand side of weak formulation, and using the fact
that K(x− y) is skew-symmetric (since G(x− y) is symmetric), one obtains

〈φ, ωt〉 − 〈φ, ω0〉 =

∫ t

0

∫
T2×2

Hφ(x, y)ωs(x)ωs(y)dxdyds(1.2.2)

=

∫ t

0

〈Hφ, ωs ⊗ ωs〉 ds,

Hφ(x, y) =
1

2
(∇φ(x)−∇φ(y)) ·K(x− y), x, y ∈ T2,(1.2.3)

where Hφ(x, y) is a bounded symmetric function with zero average in both variables
and smooth outside the diagonal set 42 =

{
(x, x) : x ∈ T2

}
, where it has a jump

discontinuity. Because of this, by interpreting brackets 〈·, ·〉 as suitable duality
couplings, one can give meaning to Euler equations when vorticity ω has low space
regularity.

1.3. Euler Point Vortices

We now introduce a dynamics of point measures on T2 satisfying (1.1.1) in
weak sense, providing in a natural way a class of invariant random point measures.
We consider a set of N point vortices described by their positions x1, . . . xN ∈ T2
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and intensities ξ1, . . . ξN ∈ R, whose dynamics is given by

(1.3.1) ẋi(t) =

N∑
j 6=i

ξjK(xi(t), xj(t)),

with K as defined above. The system is Hamiltonian with respect to conjugate
coordinates (xi,1, ξixi,2), and Hamiltonian function

H(x) =

N∑
i<j

ξiξjG(xi, xj)

(the interaction energy of vortices). The product area on phase space T2×N is
preserved, at least formally, thanks to Liouville’s theorem. The point vortices
system is a classical model. We refer to [10, 135] for a general introduction and
most of the notions we are going to rely on, and to [127] for an overview of the
statistical mechanics point of view.

The first natural observation is that the vector field of this (system of) ODE is
singular when two positions coincide, that is when two vortices collide. More gen-
erally speaking, in classical, finite-dimensional Hamiltonian systems whose Hamil-
tonian function involves singular interaction, there may exist singular trajectories
in which, at finite time, the driving vector field diverges. When this happens only
for a negligible set of initial conditions with respect to an invariant measure, thus
a physically relevant measure on phase space, the motion is said to be almost com-
plete. A relevant example is the so called improbability of collisions in N -body
systems, a problem that has received attention both in classical [2, 151, 150] and
more recent [79] works.

The point vortices system perfectly fits the setting we just outlined, and its
almost completeness is a classical result.

Theorem 1.3.1 (Dürr-Pulvirenti). Let ξ1, . . . ξN ∈ R be fixed. There exists a
full-measure set M ⊂ T2×N and a one-parameter group of maps Tt : M →M such
that x(t) = Tt(x) ∈ T2×N is the unique, smooth solution of (1.3.1) with initial
positions (x1(0), . . . , xN (0) = x ∈ M . For all t ∈ R, Tt defines a measurable,
measure preserving, dxN -almost everywhere invertible transformation of (T2)N .

Define moreover, for t > 0 and x ∈ (T2)N ,

dt(x) = inf
s∈[0,t]

min
i 6=j
|(Tsx)i − (Tsx)j |.

Then there exists a constant C > 0 independent of c ∈ (0, 1) such that

(1.3.2) |{dt(x) < c}| ≤ C(t+ 1)

− log c
.

Another natural question is whether the Liouville operator, that is the time
evolution generator for the dynamics of observables, is essentially self-adjoint on
a class of observables smooth in a dense set obtained by removing singular points
from the phase space, [149, Section X.14]. To be specific, let us consider the one-
parameter group of Koopman unitaries Ut associated to such flow,

Utf = f ◦ Tt, f ∈ L2(T2×N ).

By Stone’s theorem, Ut = ei tA is generated by a self-adjoint operator A, the latter
being defined on a dense subset of L2(T2×N ). An explicit expression of L can
be given only on certain sets of observables, and in [95] the following result was
established.

Theorem 1.3.2. Consider the linear space X of functions f ∈ L∞(T2×N ) such
that:
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• there exists a version of f and a full-measure open set M ⊂ T2×N on
which f |M ∈ C∞(M), and moreover ∇f |M ∈ L∞(M);

• there is a neighbourhood of 4N = {xi = xj for some i 6= j}, the the colli-
sion set, on which f vanishes.

It is dense in L2(T2×N ), and for any ξ ∈ RN , f ∈ X the following expression is

well defined as a function in L∞(T2×N ):

(1.3.3) Lf(x) = − i

N∑
i=1

∑
j 6=i

∇if(x) · ξjK(xi − xj).

Moreover, (L,X) is a symmetric operator and if A is the generator of Ut, then X
is a subset of the domain of A, and L = A|X .

The latter Theorem (to be discussed in Chapter 3), was inspired by [3], in
which the Liouville operator was defined on a set of cylinder functions of Fourier
modes, and the question of essential self-adjointness was raised on such domain.
We shall discuss the setting of [3] in comparison to ours in subsection 3.2.4.

Let us now go back to the link with Euler equations. As detailed in [155], the

empirical measure ω =
∑N
i=1 ξiδxi with xi evolving as in (1.3.1) satisfies (1.2.2)

if we assume that Hφ(x, x) = 0, thas is if we neglect self-interactions of vortices.
More precisely, brackets 〈Hφ, ·〉 are to be interpreted as duality couplings between
continuous functions and measures on T2×2 \ 42.

This should not be surprising: the vector field acting on vortex xi is in fact
given by the convolution of K = ∇⊥G with the empirical measure of the other
vortices xj 6= xi. Indeed, it is possible to obtain the point vortices system as a limit
of solutions to Euler equations made of vorticity patches, thus providing a rigorous
motivation for the model: such approximation arguments are the object of a rich
literature, among which we mention [132, 133, 134, 42, 38]. We also mention the
recent [39] on similar arguments in dimension 3.

Thanks to the Hamiltonian structure, point vortices also preserve the canonical
Gibbs ensemble at inverse temperature β ≥ 0,

νβ,N (dx1, . . . , dxn) =
1

Zβ,N
exp (−βH(x1, . . . , xn)) dx1, . . . , dxn.

This measure was first introduced by Onsager in this context, [143]. Equilibrium
ensembles at high kinetic energy, which exhibit the tendency to cluster vortices of
same sign intensities expected in a turbulent regime, were proposed by Onsager
allowing negative values of β. Unfortunately, we will not be able to treat the case
β < 0 in our arguments.

For a fixed choice of intensities, considering point vortices whose positions are
distributed as the Gibbs ensemble, we obtain a stationary solution of Euler equa-
tions in the sense above. A classical scaling limit of these solutions is the Mean
Field limit, in which intensities are rescaled as ξi 7→ 1

N , inverse temperature as
β 7→ Nβ and the number of vortices is sent to infinity, N → ∞: in this limit,
one obtains deterministic stationary solutions of Euler’s equation, the correlations
of vortices vanishing in the limit. Indeed the precise rate of such decay has been
obtained in [99], see Chapter 5 and in particular Theorem 5.1.2 below.

Looking at Mean Field Limit as a Law of Large Numbers, we will then consider
a different scaling corresponding to Central Limit Theorem, the latter producing
relevant Gaussian invariant measures. We will provide a comparison between the
two settings, together with adequate references to classical Mean Field theory, in
Chapter 4 and Chapter 5.
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1.4. Gaussian Invariant Measures

Smooth solutions of Euler equations on a 2-dimensional domain D preserve the
quadratic first integrals energy and enstrophy,

(1.4.1) E =

∫
D

|u|2dx, S =

∫
D

ω2dx.

Let us stick to D = T2 for the sake of exposition, and leave other choices to
subsequent Chapters. The Gaussian field associated to the quadratic form βE+γS
on T2, known as energy-enstrophy measure, formally defined as

(1.4.2) dµβ,γ(ω) =
1

Zβ,γ
e−βE(ω)−γS(ω)dω,

is thus a natural candidate as an invariant measure of the flow. However, the field
is only supported on spaces of quite rough distributions –not even measures– so
that making sense of Euler equations in this setting is not trivial: this problem has
been effectively tackled by means of Fourier analysis in [7, 8].

Energy-Enstrophy measure is rigorously defined as follows: for γ > 0 and β ≥ 0,
let ωβ,γ be the centred, zero averaged, Gaussian random field on T2 with covariance

∀f, g ∈ L̇2(T2), E [〈ωβ,γ , f〉 〈ωβ,γ , g〉] = 〈f,Qβ,γg〉 , Qβ,γ = (γ − β∆)−1.

Equivalently, ωβ,γ is a centred Gaussian stochastic process indexed by L̇2(T2) with

the specified covariance. Since the embedding of Q
1/2
β,γ L̇

2(T2) into Ḣs(T2) is Hilbert-
Schmidt for all s < −1, ωβ,γ can be identified with a random distribution taking
values in the latter spaces (see [59]). We will denote by µβ,γ the law of ωβ,γ
on Ḣs(T2), any s < −1: a rigorous interpretation of (1.4.2) will be provided in
Section 4.1 below.

Let us notice that the special case of the enstrophy measure µ0,1 = µ is the
white noise on T2, the unique invariant measure of (infinite dimensional) Ornstein-
Uhlenbeck equation

(1.4.3) dZ = −αZ dt+
√

2αdW, α > 0,

with W a cylindrical Wiener process on L2(T2). The triple

(1.4.4) (E = H−1−δ(T2), L2(T2), µ), δ > 0,

is an abstract Wiener space with identity covariance operator.
The definition of the nonlinear term in (1.1.1) when the law of ωt is µ, (or more

generally when it is absolutely continuous with respect to µ) is not immediate, and
it has been thoroughly discussed in [71] and related works, [58, 94]. We will rely
upon the arguments of Subsection 2.5 of [71], which we now review.

We consider the weak vorticity formulation of Euler equations, so that the
problem is to make sense of the coupling 〈Hφ, ω ⊗ ω〉 with φ some smooth function
of T2 and ω ∼ µ a realization of white noise. A lengthy but elementary computation
in Fourier series reveals that the Sobolev regularity of Hφ is at best H2−(T2×T2),
thus the above symmetrized formulation, allows us to give a proper meaning to
(1.2.2) in the case when ωt ∈ H−1+(T2), which is not the case if ωt ∼ µ. Here
comes into play the essential role of Probability: the following statement is proved
in [71, Section 2.5], and it will be discussed again in the forthcoming Chapters.

Proposition 1.4.1. Let φ ∈ C∞(T2) and ω be a random distribution on T2

with law ρ dµ, ρ ∈ Lp(E,µ) for some p > 1. For any sequence (Hn
φ )n∈N ⊂ C∞(T2×
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T2) of symmetric functions such that

L2(T2 × T2)− lim
n→∞

Hn
φ = Hφ,(1.4.5)

lim
n→∞

∫
T2

Hn
φ (x, x)dx = 0,(1.4.6)

the limit

(1.4.7) 〈ω � ω,Hφ〉 := lim
n→∞

〈
ω ⊗ ω,Hn

φ

〉
exists in L1(µ) and it does not depend on the approximating sequence Hn

φ among
the ones satisfying the above properties. Moreover,

(1.4.8) E
[∣∣〈ω � ω,Hn

φ −Hφ

〉∣∣] ≤ Cp ∥∥Hn
φ −Hφ

∥∥1/p′

L2(T2×T2)
+

∣∣∣∣∫
T2

Hn
φ (x, x)dx

∣∣∣∣ ,
with 1

p + 1
p′ = 1, and for any q ∈ [1,∞) it holds

(1.4.9) E [| 〈ω � ω,Hφ〉 |q] ≤ Cq ‖ρ‖Lp(E,µ) ‖φ‖
q
C2(T2) ,

with Cq a constant depending only on q.
If ρt ∈ L∞ ([0, T ], Lp(E,µ)) and ωt is a process with trajectories in C ([0, T ], E)

and marginals ωt ∼ ρt dµ (in particular we are assuming
∫
E
ρt dµ = 1 for all t),

the sequence of real processes
〈
ωt ⊗ ωt, Hn

φ

〉
converges in L1

(
E,µ;L1([0, T ])

)
to a

process 〈ωt ⊗ ωt, Hφ〉 which does not depend on the approximations Hn
φ as above.

It is worth noticing that the approximations Hn
φ as in (1.4.5) can always be

obtained by regularizing the kernel K in the definition of Hφ. We also remark that
if ω ∼ µ, the limit (1.4.7) coincides with the double Wiener-Itô integral of the kernel
Hφ on the Gaussian Hilbert space (E,µ) (see [94] and Chapter 6 for a discussion).

We are now able to give meaning to Euler equations with marginals (absolutely
continuous with respect to) µ; let us do so for the following stochastic generalisation
of (1.1.1),

(1.4.10)

{
dω + u · ∇ωdt = −αωdt+

√
2αdW,

∇⊥u = ω.

with α ≥ 0 and W the cylindrical Wiener process on L2(T2). Equation (1.4.10) will
be the the object of Chapter 2 and Chapter 6, the latter providing in a sense a phys-
ical motivation, see Section 1.5 below. It has been widely investigated especially as
inviscid limit of driven and damped Navier-Stokes equation, see for instance [19],
[48] and references therein. Aside from the fact that we are dealing directly with
the inviscid case, the substantial difference with respect to those works is of course
the space regularity of solutions. Let us conclude this Section with an overview of
the results of [72] and Chapter 2, providing definitions of solutions to (1.4.10) and
its associated (infinite dimensional) Fokker-Planck equation.

Consider the orthonormal Fourier basis ek(x) = ei k·x of L2(T2, dx), and denote
as usual ω̂k = 〈ω, ek〉. In fact, we will only deal with real-valued objects: Fourier
coefficients of opposite modes will henceforth be complex conjugated. Let FCb be
the linear space of cylinder functions of the form

ϕ(ω) = f(ω̂k1 , . . . , ω̂kn), k1, . . . , kn ∈ Z2
0,

with n ≥ 1 and f ∈ C∞b (Rn). The infinitesimal generator of the linear part of
(1.4.10) is αL, with L the generator of the Ornstein-Uhlenbeck semigroup acting
on cylinder functions as

Lϕ(ω) =

n∑
i=1

∂iif(ω̂k1 , . . . , ω̂kn)−
n∑
i=1

∂if(ω̂k1 , . . . , ω̂kn)ω̂ki .
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The generator associated to (1.4.10) can be written formally as

(1.4.11) Aϕ(ω) = Bϕ(ω) + αLϕ(ω), Bϕ(ω) = −〈(K ∗ ω) · ∇ω,Dϕ(ω)〉 ,

whose action on cylinder functions ϕ ∈ FCb is given in terms of L and

Dϕ(ω) =

n∑
i=1

∂if(ω̂k1 , . . . , ω̂kn)eki .

To give a rigorous definition of B, we make use of Proposition 1.4.1 (see also the
discussion in [58]). First, we combine the latter two expressions with (1.2.2) to
obtain, say first for smooth ω,

Bϕ(ω) = −
n∑
i=1

∂if(ω̂k1 , . . . , ω̂kn) 〈(K ∗ ω) · ∇ω, eki〉 ,

=

n∑
i=1

∂if(ω̂k1 , . . . , ω̂kn)
〈
ω ⊗ ω,Heki

〉
.

By Proposition 1.4.1, we can define the real random variable

Bϕ(η) =

n∑
i=1

∂if(ω̂k1 , . . . , ω̂kn)
〈
ω � ω,Heki

〉
∈ L1(µ),

for all cylinder functions ϕ ∈ FCb. As already observed above, 〈η � η,Hφ〉 is in fact
an element of the second Wiener chaos of the Gaussian process η, since it coincides
with the double Itô-Wiener integral. As a consequence, B is exponentially integrable
when acting on cylinder functions:

(1.4.12) E [exp (ε|Bϕ(η)|)] <∞ for all small ε > 0

(see [58, Theorem 8] for an explicit computation).
The singularity of the nonlinear term is such that the operator B, regarded as a

vector field acting as a derivation on the Gaussian space (1.4.4), does not take values
in the Cameron-Martin space L2(T2), or even in H−δ(T2), see [8]. Nonetheless,
it formally holds divµ B = 0, in agreement with the fact that the SPDE under
consideration formally preserves µ.

Let us consider the Fokker-Planck equation associated to (1.4.10):

(1.4.13)

{
∂tρ = A∗ρ = −Bρ+ αLρ,
ρ|t=0 = ρ0.

Definition 1.4.2. Given ρ0 ∈ L1(µ), we say that ρ ∈ L1
loc

(
R+, L

1(E,µ)
)
, for

α ≥ 0, is a weak solution of the Fokker-Planck equation (1.4.13) if

(a) for any ϕ ∈ FCb and T > 0,∫ T

0

∫
E

|ρtAϕ|dµdt <∞;

(b) for any f ∈ C1
c (R+) and ϕ ∈ FCb it holds

(1.4.14) f(0)

∫
E

ρ0ϕdµ+

∫ ∞
0

∫
E

f ′(t)ρtϕdµdt+

∫ ∞
0

∫
E

f(t)ρtAϕdµdt = 0.

Identity (1.4.14) implies that, in the distributional sense,

d

dt

∫
E

ρtϕdµ =

∫
E

ρtAϕdµ for a.e. t ∈ (0,∞).

Since the right-hand side is locally integrable in t ∈ (0,∞), the map [0,∞) 3 t 7→∫
E
ρtϕdµ is absolutely continuous, thus ρt is weakly continuous in time. This also



10 1. INTRODUCTION

gives meaning to the initial condition specification ρ|t=0 = ρ0. Moreover, taking
ϕ ≡ 1 yields

∫
E
ρt dµ =

∫
E
ρ0 dµ for all t > 0.

Let us state the existence results for (1.4.10) and its Fokker-Planck equations
we will prove in Chapter 2 by means of Galerkin approximations.

Theorem 1.4.3. Let ρ0 ∈ L logL(E,µ;R+) and α ≥ 0. Then,

(i) there exists a weak solution (ρt)t∈R+
of the Fokker-Planck equation (1.4.13)

in the sense of Definition 1.4.2;
(ii) for almost every t > 0 it holds∫

E

ρt log ρt dµ ≤ e−2αt

∫
E

ρ0 log ρ0 dµ+
(
1− e−2αt

)
‖ρ0‖L1 log ‖ρ0‖L1 .

In particular, if ρ0 is a probability density and α > 0, then the relative entropy of the
weak solution ρt decreases exponentially fast, which in turn implies the convergence
to equilibrium of ρt: for almost every t > 0 it holds

‖ρt − 1‖L1 ≤ e−αt
√

2

∫
E

ρ0 log ρ0dµ.

The last assertion is an immediate consequence of the exponential decay of
entropy and Kullback’s inequality, see [118, (11)]. We will also deduce an existence
result for Lp (p > 1) initial densities: let us state it explicitly since it will play an
important role in building solutions to the stochastic equation (1.4.10).

Theorem 1.4.4. Let ρ0 ∈ Lp(E,µ) with p > 1 and α ≥ 0. Then,

(i) there exists a weak solution ρ ∈ L∞
(
R+, L

p(E,µ)
)

to Fokker-Planck equa-
tion (1.4.13) in the sense of Definition 1.4.2;

(ii) if p = 2, then, denoting by ρ̄0 =
∫
E
ρ0 dµ, we have, for a.e. t > 0,

‖ρt − ρ̄0‖L2 ≤ e−αt ‖ρ0 − ρ̄0‖L2 .

Finally, we have existence of weak (both in probabilistic and analytical sense)
solutions to the Euler equation (2.0.1) in the setting of Theorem 1.4.4.

Theorem 1.4.5. Let p > 1, α ≥ 0, T > 0. Assume that ρ0 ∈ Lp(E,µ;R+) is
a probability density, and let ρ ∈ L∞

(
0, T ;Lp(E,µ)

)
be a weak solution obtained

in Theorem 1.4.4 to Fokker-Planck equation (1.4.13) with initial datum ρ0. There
exist a filtered probability space on which a cylindrical Wiener process W on L2(T2)
and an adapted process ωt are defined such that

(i) ω ∈ C([0, T ], E) with probability one;
(ii) for almost every t ∈ [0, T ], ωt has law ρt dµ;
(iii) for any φ ∈ C∞(T2) and t ∈ [0, T ],

〈ωt, φ〉 = 〈ω0, φ〉+

∫ t

0

〈ωs � ωs, Hφ〉 ds− α
∫ t

0

〈ωs, φ〉 ds+
√

2α 〈Wt, φ〉 ,

the nonlinear term being defined as in Proposition 1.4.1.

For all α ≥ 0, if the initial datum has white noise distribution µ, the solution
to (1.4.10) we build is stationary. Indeed, this is true for all Energy-Enstrophy
measures µβ,γ , β ≥ 0, γ > 0 for α = 0, that is Euler equations, but when α >
0 the result above on Fokker-Planck equation implies that the solution we build
converges to white noise for large times. We shall discuss it further in Section 2.4.
It is important to remark that uniqueness of (1.4.10), including deterministic Euler
equations as a particular case, in the stationary regime with white noise marginals,
remains an important open problem.

Let us conclude this Section by mentioning that (1.4.5) actually generalises the
results of [8]: their notion of solution was given in terms of Fourier series, but a
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close inspection reveals that the above definition of the nonlinear term (as a limit
of certain approximations) actually include theirs (as limit of Fourier truncated
objects).

1.5. Invariant Measures and Scaling Limits

The close resemblance between Onsager’s point vortices ensembles and Energy-
Enstrophy Gaussian invariant measures for the two dimensional Euler flow is known
since the works of Kraichnan on two-dimensional turbulence, [113], and it will be
thoroughly discussed in Chapter 4. The main result of the latter is to obtain the
Gaussian Energy-Enstrophy measure as a limit of Gibbsian point vortices ensem-
bles, in a sort of Central Limit Theorem.

We will consider increasingly many vortices sending N →∞, while decreasing
their intensities ξi = σi√

γN
, with γ > 0 and σi = ±1, as in the familiar central limit

scaling. We will prove that, if positions of vortices x1, . . . , xN have joint distribution
νβ,N on T2N with intensities scaling as above, the random measure µNβ,γ , which is

the law of the M(T2)-valued random variable

ωNβ,γ =
N∑
i=1

ξi(δxi − 1)
N→∞−−−−→ µβ,γ

converges in law to the energy-enstrophy measure. On T2, the result does not
depend on the choice of signs σi: to each Dirac delta representing a vortex we are
subtracting its space average, so that the global average vanishes and we are thus
looking at fluctuations around a null profile. In fact, the result can be regarded as
an investigation of Gaussian fluctuations around the well-known mean-field limit,
in the case where the latter vanishes, see Section 4.4 below. This is the reason why
we will need to impose (asymptotic) neutrality of the global intensity on bounded
domains D, that is, to ensure that the limit in the law of large numbers scaling is
naught, since in that case it is not possible to renormalise Dirac deltas because of
the boundary condition.

Let us provide some further insight on the analogy between those random
measures, first pointed out by Kraichnan ([113]). The Hamiltonian function H
can be seen as a renormalised energy to the extent that it includes all mutual
interactions save the ones of vortices with themselves. To make this intuition more
precise, let us first recall that in the Gaussian case ω ∼ µ0,1 (white noise), the
double Itō-Wiener integral of a smooth function h ∈ C∞(T2×2) is given by

(1.5.1) 〈h, ω � ω〉 = 〈h, ω ⊗ ω〉 −
∫
T2

h(x, x)dx,

where: on the left-hand side we used the notation introduced in Proposition 1.4.1,
coupling against ω ⊗ ω on the right-hand side is understood as the (almost surely
defined) integral against the tensor product of the random distribution ω with
itself. One can directly verify the above formula by the definitions: we refer to
[104, Chapter 7], which includes a discussion on how Wick ordering in double
stochastic integrals can be seen as removing singular self-interactions, cf. Remark
7.27. As observed in Section 2.4, the renormalised energy can be expressed as

(1.5.2) 2 :E: (ω) = 〈G,ω � ω〉 = lim
n→∞

∫
T2×2

Gn(x, y)dω(x)dω(y),

where Gn ∈ C∞(T2×2) are symmetric and vanish on the diagonal, Gn converge to
G in L2(T2×2), and the limit holds in L2(µγ).

In the case of a point vortices cluster ωN ∼ µN0,γ , one can define renormalised
double integrals in an analogous way. Considering centred distributions (as it is
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µ0,1) is essential in the forthcoming Lemma, and in the case of point vortices on T2

the condition is ensured if we consider the zero average setting.

Lemma 1.5.1. Let ωN ∼ µN0,γ . On continuous functions h ∈ C(T2×2) with zero
average in both variables and vanishing on the diagonal, i.e. h(x, x) = 0 for all x,
define the map

h 7→
∫
T2×2

h(x, y)dωN (x)dωN (y) =
∑
i6=j

ξiξjh(xi, xj).

Since it holds

E


∑
i 6=j

ξiξjh(xi, xj)

2
 ≤ Cγ ‖h‖2L2(T2×2)

with Cγ a constant independent of N , the map takes values in L2(µN0,1), and it
extends by density to a bounded linear map which we will denote

L̇2(T2×2) 3 f 7→
∫
T2×2

f(x, y) :dωN (x)dωN (y):∈ L2(µN0,1).

Proof. For any function h as above it holds

E


2

N∑
i<j

ξiξjh(xi, xj)

2
 = 4

N∑
i<j

N∑
`<k

ξiξjξ`ξkE [h(xi, xj)h(x`, xk)]

=
4

γ2N2

N∑
i<j

∫
T2×2

h(x, y)2dxdy = 2
N − 1

γ2N

∫
T2×2

h(x, y)2dxdy,

where the middle passage makes essential use of the zero average condition: all
summands except the ones with i = `, j = k vanish. �

This construction is analogous to the one of double stochastic integrals with
respect to Gaussian measures (Itō-Wiener integrals) and Poisson point process; the
above computation is also an important tool in [71]. Define, in analogy with (1.5.2),
the renormalised energy in the vortices ensemble µNγ case as the renormalised double

integral of the potential G with respect to µNγ , that is as a random variable in

L2(µNγ ): by Lemma 1.5.1, considering approximations Gn of G as above, we actually
recover the Hamiltonian:

2 :E: (ωN ) =
∑
i 6=j

ξiξjG(xi, xj) = 2H(x1, . . . xn).

The convergence of Hamiltonian functions of point vortices to the renormalised
Gaussian energy in the case β = 0 is an important part in the proof of the forth-
coming main result of Chapter 4.

Theorem 1.5.2. Let β/γ ≥ 0. It holds:

(1) limN→∞ Zβ,γ,N = Zβ,γ , where Zβ,γ,N is the partition function of νβ,γ,N
with intensities ξi = σi√

γN
and

Zβ,γ =

∫
e−β:E:(ω)dµ0,γ(ω).

(2) the sequence of M-valued random variables ωN ∼ µNβ,γ converges in law

on Ḣs(T2), any s < −1, to a random distribution ω ∼ µβ,γ , as N →∞;
(3) the sequence of real random variables H(ωN ) converges in law to :E: (ω)

as N →∞, with ωN , ω as in point (2).
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The core argument is a uniform bound for partition functions of canonical
Gibbs measures, the strategy being the following:

• we split the interaction potential, the Laplacian Green function G, into
a regular, long range part and a singular, short range part, the latter
being the Green function of the operator m2 −∆ (2-dimensional Yukawa
potential);

• the contribution of the regular part can be interpreted as an exponential
integral of a regular Gaussian field: since the covariance kernel corresponds
to a fourth order operator, no normal ordering is required;

• on the other hand, the contribution of the (pointwise vanishing) singular
part is controlled by estimating the partition function of vortices interact-
ing by Yukawa potential with diverging mass m→∞.

Besides the Central Limit Theorem for correlated, Gibbs distributed vortices,
we will consider in Chapter 6 a somewhat simpler case. We will consider a system
of vortices, whose positions are distributed uniformly and independently on T2, in
which at random times new vortices are created, and the intensities are overall ex-
ponentially damped. These two effect compensate to produce a stationary regime.
In the Central Limit scaling for vortices of above, and increasing the rate of gener-
ation of new vortices, the system will be shown to converge to a stationary solution
of (1.4.10), the cylindrical noise W emerging as the limit of the generation process.

Equation (1.4.10) can be regarded as an inviscid version of the one considered
in [27], which aimed to describe the energy cascades phenomena in stationary,
energy-dissipated, 2-dimensional turbulence. Even if our point vortices model is
not able to capture turbulence phenomena such as the celebrated energy spectrum
decay law of inverse cascade predicted by Kolmogorov, the mechanism of creation
and damping of point vortices we describe might contribute to provide a description
of experimental behaviours of models such as the ones in [27].

1.6. Stationary Solutions of Barotropic Quasi-Geostrophic Equations

Barotropic quasi-geostrophic equations in channel domains constitute a physi-
cally relevant partial differential equation in oceanography and atmospheric mod-
eling, with applications including for instance the Antarctic circumpolar current.
Significance of the model is discussed for instance in [92, 45, 130, 64] and refer-
ences therein, to which we refer.

The presence of conserved quantities and their associated equilibrium statis-
tical mechanics constitute an important feature of the model; although numerical
reasons naturally lead to consider Fourier truncated or other approximations of
the stationary flow, as for instance in [129, Section 6], the full infinite-dimensional
setting is of great interest because of its geophysical relevance and mathematical
difficulty, as discussed in [130]. The latter monography thoroughly discusses in its
Chapter 8 equations for fluctuations around the mean state for the truncated model,
and then considers a continuum limit by scaling parameters of invariant measures
so to neglect fluctuations, obtaining a mean state description for the PDE model.

The contribution of [96], to be reviewed in Chapter 7, in a sense furthers their
study: we will show how fluctuations can be included in the continuum limit by
defining a suitably weak notion of solution mimicking the one discussed above for
Euler equations, so to include the distributional regimes dictated by the full infinite-
dimensional invariant measure, under which fluctuations of comparable order are
observed at all scales.

The model under consideration, for the derivation of whom we refer to [130,
Chapter 1], is the following. We consider the rectangle R = [−π, π] × [0, π] as a
space domain, and denote z = (x, y) ∈ R its points; we also fix a finite interval for
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time t ∈ [0, T ]. The governing dynamics is the inviscid quasi-geostrophic equation
for the scalar potential vorticity q(t, z),

(1.6.1) ∂tq +∇⊥ψ · ∇q = 0,

where∇⊥ = (−∂y, ∂x), and ψ(t, z) is the stream function determining the divergence-
less velocity field ∇⊥ψ. The channel geometry prescribes that velocity ∇⊥ψ be
tangent to the top and bottom boundaries of R, and we further assume the flow to
be periodic in the x coordinate. Such boundary conditions are encoded in terms of
ψ as follows:

∂xψ(t, x, π) = ∂xψ(t, x, 0) = 0,(1.6.2)

∇⊥ψ(t, x+ 2π, y) = ∇⊥ψ(t, x, y).(1.6.3)

As a consequence, at fixed t the stream function ψ is constant on the impermeable
boundaries y = 0, π. Using the fact that ψ is defined up to an additive constant,
possibly depending on time, we will set ψ(t, x, 0) ≡ 0, from which it is easily seen
that ψ takes the form

ψ = −V y + ψ′,

with V (t) a function of time only describing a large-scale mean flow, and ψ′(t, z)
the scalar small-scale stream function, periodic in x and null at y = 0, π at all times.
Potential vorticity is then linked to ψ′ by

(1.6.4) q = ∆ψ′ + h+ βy,

where h(z) is a smooth scalar function modelling the effect of the underlying to-
pography on the fluid, and βy, β ∈ R, is the beta-plane approximation of Coriolis’
force.

Dynamics of V (t) is derived by imposing conservation of total energy,

(1.6.5) E =
1

2
−
∫
R

|∇⊥ψ|2dxdy =
1

2
V 2 +

1

2
−
∫
R

|∇⊥ψ′|2dxdy,

from which one obtains an equation for time evolution of the mean flow,

dV

dt
= −−

∫
R

∂xh(z)ψ′(z)dz,

the right-hand side being usually referred to as topographic stress. This last relation
completes our set of equations,

(BQG)


∂tq +∇⊥ψ · ∇q = 0,

q = ∆ψ′ + h+ βy,

ψ = −V y + ψ′,
dV
dt = −−

∫
R
∂xh(z)ψ′(z)dz.

Since both ψ and ψ′ can be recovered from V and q, taking into account the
boundary conditions (1.6.2), (1.6.3) in solving Poisson’s equation (1.6.4), we will
consider (V, q) as the state variables of the system. This particular choice has the
advantage of retaining the active scalar form for the dynamics (1.6.1) of q.

Besides the total energy E, (BQG) preserve the large-scale enstrophy

(1.6.6) Q(V, q) = βV +
1

2
−
∫
R

(q − βy)2.

Due to the Hamiltonian nature of the fluid dynamics, it is thus expected that the
Gibbsian ensembles

(1.6.7) dνα,µ(V, q) =
1

Zα,µ
e−α(µE(V,q)+Q(V,q))dV dq, α, µ > 0,
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are invariant measures for (BQG). Since Boltzmann’s exponents are quadratic
functionals of the state variables (V, q), these are Gaussian measures. Just as
Energy-Enstrophy measures described above, they are only supported on spaces
of distributions –they give null mass to any space of functions– so some effort
is required to give meaning to the dynamics (BQG) in the low-regularity regime
dictated by να,µ.

We will describe in Chapter 7 a notion of solution to (BQG) completely analo-
gous to the Delort-Schochet formulation described above for Euler equations, robust
enough to admit samples of να,µ as fixed-time distributions, and then produce by
means of a Galerkin approximation scheme such a solution.

Theorem 1.6.1. Let β 6= 0 and h as above. For any α, µ > 0 there exists
a stationary stochastic process (Vt, qt)t∈[0,T ] with fixed-time marginals να,µ, whose
trajectories solve (BQG) in the weak vorticity formulation of Definition 7.2.8.

As in the case of 2-dimensional Euler’s equations in the Energy-Enstrophy
stationary regime, or more generally when fixed time marginals are absolutely con-
tinuous with respect to space white noise, uniqueness remains an important open
problem. We will not discuss uniqueness of solutions of (BQG) in the above sta-
tionary regime; thus, in particular, we are not able to state that the solutions we
produce form a flow, i.e. a one-parameter group of transformations of phase space
indexed by time.

1.7. 2-Dimensional Primitive Equations:
a More Singular Geophysical Model

Primitive Equations constitute a fundamental model in geophysical fluid dy-
namics. The work [97], to be reviewed in Chapter 8, is devoted to the study of
Gaussian invariant measures in the stochastically forced 2-dimensional case: the
model under analysis is thus a stochastic PDE of the form:

(1.7.1)


∂tv + v∂xv + w∂zv + ∂xp = D(∆)v + η,

∂zp = 0,

∂xv + ∂zw = 0,

where (x, z) are coordinates of the bounded domain D = [0, 2π]2 on which suitable
boundary conditions are imposed, (v, w) are the components of the velocity vector
field, p is the pressure, the term D(∆) describes a dissipation mechanism and η is
a Gaussian stochastic process.

It is in fact the case with D(∆) = ν∆ and η = 0 to be usually referred to
as 2-dimensional Primitive Equations (2dPE), together with its variants including
effects such as density and temperature variations, and other geophysical effects.
When those physical phenomena are neglected, equations (1.7.1) have many aspects
in common with the 2-dimensional Navier-Stokes equations:{

∂tu+ (u · ∇)u+∇p = ν∆u,

div u = 0.

This familiarity naturally leads to look for applications of concepts and techniques
developed in the extensive theory of Navier-Stokes equations, especially in the 2-
dimensional setting. However, the nonlinearity of 2-dimensional Primitive Equa-
tions is in fact harder to treat.
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When considering the stochastically forced case, it is well-known that stochastic
Navier-Stokes equations (SNS) in dimension 2, in their vorticity form{

∂tω + (u · ∇)ω = ν∆ω +
√

2νξ,

div u = 0, ω = curlu,

ω being the scalar vorticity field, preserve the enstrophy measure µ = µ0,γ intro-
duced above, when driven by space-time white noise ξ. Indeed, enstrophy is a first
integral of motion in the case ν = 0, the 2-dimensional Euler equations, and en-
strophy measure is the unique, ergodic invariant measure of the linear part of the
dynamics when ν > 0. Notwithstanding the low space regularity under enstrophy
measure, existence and pathwise uniqueness of stationary solutions for SNS in this
setting are by now classical results due to [56, 5].

We have mentioned another quadratic invariant for Euler equations: the energy
‖u‖2L2 . When SNS is driven by space-time white noise at the level of velocity, the
energy measure, a white noise at the level of u, is formally preserved. The cursive
is here in order, because the energy measure regime is so singular that no solution
theory is yet available in this case. Nonetheless, the existing stochastic analysis
techniques allow to deal with such regime in hyperviscous cases, that is replacing the
viscous term ∆u with −(−∆)θu, θ > 1. Indeed, a procedure known as Itō trick in
the literature related to regularisation by noise is employed in [100] to give meaning
and solve SNS under energy measure with sufficiently strong hyperviscosity. We also
mention the recent development [101], in which Kolmogorov equations are solved
by means of Gaussian analysis tools, broadening the result to solutions absolutely
continuous with respect to energy measure.

The analogue of vorticity field for 2-dimensional Primitive Equations is ω =
∂zv, as the quadratic observable ‖∂zv‖2L2 is a first integral of the 2-dimensional
hydrostatic Euler equations:

(1.7.2)


∂tv + v∂xv + w∂zv + ∂xp = 0,

∂zp = 0,

∂xv + ∂zw = 0.

Prescribing the correct additive Gaussian noise η, the linear part of (1.7.1) with

D(∆) = ∆ preserves the Gibbsian measure associated to ‖∂zv‖2L2 = ‖ω‖2L2 , formally
defined by

dµ(ω) =
1

Z
e−

1
2‖ω‖

2
L2dω,

that is, white noise distribution for ω. However, as we will detail below, the sta-
tionary regime with µ-distributed marginals for (1.7.1) is not comparable to the
enstrophy measure stationary regime of SNS, because of the more singular nonlin-
earity. Indeed, unlike in [56, 5], the nonlinear terms of (1.7.1) can not be defined
as distributions when ∂zv has law µ. Still, as in the case of energy measure SNS,
hyperviscosity allows to apply the techniques of [100].

In [97] it was presented a solution theory of 2-dimensional Primitive Equations
in the hyperviscous setting D(∆) = −(−∆)θ, for large enough θ and a suitable
stochastic forcing. The regularising effect of hyperviscosity for Navier-Stokes and
Primitive Equations is well-understood in the deterministic setting, and it is often
used in numerical simulations [120]; we refer to [119, 123, 124] and, more recently,
[103] for a thorough discussion. The main contribution of [97] is thus to introduce
a Gaussian invariant measure in the context of 2-dimensional Primitive Equations,
and then to exploit the techniques of [100] to provide a first well-posedness result
for this singular SPDE in a hyperviscous setting.
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Although stochastic versions of Primitive Equations both in two and three
dimensions have already been considered, to the best of our knowledge the existing
literature is limited to more regular regimes. To mention a few relevant previous
works, in [89, 87, 159], 2-dimensional Primitive Equations are considered with
a multiplicative noise taking values in function spaces, the same is done in the
3-dimensional case in [61, 83], and in [86] the authors prove the existence of
an invariant measure in this setting. In the 2-dimensional cases, large deviation
principles are studied in [82, 158]. Let us also mention the works [146, 32] on
deterministic 2-dimensional Primitive Equations, whose study began with [124,
125, 122], and [136] on their inviscid version, by which the vorticity formulation
we present below for our model is inspired.





CHAPTER 2

Gaussian Solutions by Fokker-Planck Equation

This Chapter covers the results of [72]. It is devoted to existence of station-
ary solutions of the 2-dimensional stochastic Euler equation on the torus T2 =
R2/(2πZ)2, including a friction term and space-time additive white noise forcing,

(2.0.1)

{
dω + u · ∇ωdt = −αω dt+

√
2αdW,

∇⊥u = ω.

As discussed above, we assume that ω has zero space average on T2: all function
spaces on T2 are tacitly assumed to have zero averaged elements. This Chapter
follows the introductory discussion of Section 1.4, and in particular we make use of
the notation introduced there: on T2 = R2/(2πZ)2 we consider the normalized Haar
measure dx such that

∫
T2 dx = 1, and the orthonormal Fourier basis ek(x) = ei k·x of

L2(T2, dx). We only deal with real-valued objects: Fourier coefficients of opposite
modes will henceforth be complex conjugated. In order to lighten notation, we fix
δ > 0 and denote E = H−1−δ(T2). Moreover, we denote η the space white noise
on T2, µ is its law.

As a preliminary, we prove an existence result for the associated Fokker-Planck
equation: this becomes necessary since solutions to (2.0.1) under cylindrical white
noise forcing exist only in distributional spaces where classical energy or enstrophy
estimates are not available. Such estimates are thus replaced by probabilistic esti-
mates, taking averages with respect to the solution of the Fokker-Planck equation.

Using the method of Galerkin approximation, we shall prove existence of so-
lutions ρt to the Fokker-Planck equation with initial data ρ0 which are L logL-
integrable with respect to white noise measure µ, that is

∫
ρ0 log+ ρ0dµ < ∞. In

the case α > 0, the relative entropy of these solutions decrease exponentially fast
as t grows to ∞; this together with an inequality of Kullback [118] implies the
convergence to equilibrium of the solutions we constructed. In the case ρ0 ∈ L2(µ),
we also have exponential convergence of ρt in L2-norm.

These results put forward a difficult question that we will not treat here, namely
the search for a notion of uniqueness and ergodicity of the invariant measure µ, and
convergence to equilibrium of the non-stationary solutions.

Before moving on, we briefly recall some recent works on the Fokker–Planck
equations in infinite dimensional settings, mainly due to Bogachev, Da Prato, Röck-
ner and their coauthors. The work [28] considered Fokker–Planck equations asso-
ciated to the stochastic evolution equations in a Hilbert space: under suitable
conditions on the nonlinear term, they established existence and uniqueness of
measure valued solution to the Fokker–Planck equation with Dirac initial condi-
tion, the solution satisfying Chapman–Kolmogorov equation. This method was
further developed in [29] under weaker conditions on the coefficients. Existence of
solutions of Fokker–Planck equations on Hilbert spaces with non-trace class second
order coefficients was established in [54], with applications to stochastic 2D and
3D Navier–Stokes equations with non-trace class additive noise. In the more recent
paper [30], the authors considered cases with non-constant coefficients in the sec-
ond order part, and also degenerate cases where these coefficients can even vanish.

19
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Assuming that the infinite-dimensional drifts admit certain finite-dimensional ap-
proximations, they proved a new uniqueness result for solutions to Fokker–Planck–
Kolmogorov (FPK) equations for probability measures, and presented some ap-
plications for FPK equations associated to SPDEs. We refer to the last chapter
of the monograph [31] for some general discussions on infinite dimensional FPK
equations.

2.1. Galerkin Approximation and L logL Initial Data

Let us define the finite-dimensional projection of H = L2(T2, dx) onto the finite
set of modes ΛN =

{
k ∈ Z2

0 : |k|∞ ≤ N
}

,

(2.1.1) ΠN : H 3 f 7→ ΠNf =
∑
k∈ΛN

〈f, ek〉H ek ∈ HN ,

where we can identify the finite dimensional codomain with

(2.1.2) HN =
{
ξ ∈ CΛN : ξ̄k = ξ−k

}
(whose dimension is |ΛN |). OnHN we consider the Euclidean inner product induced

by CΛN , and the Gaussian measure µN having Fourier coefficients µ̂N (k) = µ̂N (−k)
with the law of independent standard complex Gaussian distributions.

We consider the following Galerkin approximation of (2.0.1):

(2.1.3) dΠNω + ΠN ((K ∗ΠNω) · ∇ΠNω)dt = −αΠNωdt+
√

2αdΠNW.

This equation is in fact an SDE in ωN ∈ HN , and it can be rewritten as

(2.1.4) dωN + bN
(
ωN
)
dt = −αωNdt+

√
2αdWN , WN =

∑
k∈ΛN

W kek,

where the W k’s are independent standard complex Brownian motions such that

W k = W−k, and the drift is given by

bN (ξ) = −
∑
n∈ΛN

en
∑
k∈ΛN

k⊥ · n
|k|2

ξkξn−k, ξ ∈ HN ,

as one can prove by a straightforward computation in Fourier series using that

K(x) =
∑
k∈Z2

0

i k⊥

|k|2 ek(x). By means of the above expression, it is easy to check

that, for all ξ ∈ HN ,

(2.1.5) 〈bN (ξ), ξ〉HN = 0, divµN bN (ξ) = div bN (ξ)− 〈bN (ξ), ξ〉HN = 0.

The SDE (2.1.4) has smooth coefficients, so there exists a unique strong local
solution ωNt given an initial datum ωN0 ∈ HN ; the forthcoming estimate shows that
it is also global in time.

Lemma 2.1.1. If ωNt is a solution of (2.1.4), then, for any t ≥ 0,

E
[∣∣ωNt ∣∣2HN ] ≤ ∣∣ωN0 ∣∣2HN e−2αt + |ΛN | (1− e−2αt).

Proof. By the Itô formula and (2.1.5), and omitting all subscripts HN ,

d
∣∣ωNt ∣∣2 = −2

〈
ωNt , bN

(
ωNt
)

+ αωNt
〉
dt+ 2

√
2α
〈
ωNt , dW

N
t

〉
+ 2α

〈
dWN

t , dW
N
t

〉
= −2α

∣∣ωNt ∣∣2 dt+ 2
√

2α
〈
ωNt , dW

N
t

〉
+ 2α |ΛN | dt,

and therefore

d
(
e2αt

∣∣ωNt ∣∣2) = 2
√

2α e2αt
〈
ωNt , dW

N
t

〉
+ 2αe2αt |ΛN | dt.

If we define, for R > 0, the stopping time

τR = inf
{
t > 0 :

∣∣ωNt ∣∣ ≥ R} ,
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then we have

E
[
e2α(t∧τR)

∣∣ωNt ∣∣2] =
∣∣ωN0 ∣∣2 + 2

√
2αE

[∫ t∧τR

0

e2αs
〈
ωNs , dW

N
s

〉]
+ |ΛN |E

[
e2α(t∧τR) − 1

]
≤
∣∣ωN0 ∣∣2 + |ΛN | (e2αt − 1),

which concludes the proof if we let R ↑ ∞ by Fatou’s lemma. �

2.1.1. Finite dimensional Fokker-Planck equation. Let LN be the Ornstein-
Uhlenbeck operator on HN ; then αLN is the infinitesimal generator of the linear
part of (2.1.4). We can introduce the Galerkin approximation AN of A, acting on
smooth functions F ∈ C2

b (HN ) as

(2.1.6) ANF (ξ) = −〈bN (ξ),∇F (ξ)〉HN + αLNF (ξ).

We can thus write the Fokker-Planck equation corresponding to (2.1.4): if the law
of ωN0 has a smooth probability density ρN0 (with respect to µN ), so does ωNt for
any later time, and the density ρNt satisfies

(2.1.7)

{
∂tρ

N
t = A∗NρNt ,

ρN |t=0 = ρN0 .

Remark 2.1.2. Simple heuristic arguments immediately give rise to an a priori
estimate on the entropy of ρNt . Indeed, if ρNt is a smooth solution of (2.1.7), for
any t ≥ 0,

∂t
(
ρNt log ρNt

)
=
(
1 + log ρNt

)
∂tρ

N
t

=
(
1 + log ρNt

) 〈
bN ,∇ρNt

〉
HN

+ α
(
1 + log ρNt

)
LNρNt .

Integrating on HN with respect to µN and using (2.1.5) we get∫
HN

ρNt log ρNt dµN + α

∫ t

0

∫
HN

∣∣∇ρNs ∣∣2
ρNs

dµNds =

∫
HN

ρN0 log ρN0 dµN .

However, the above computation is somewhat formal, since the drift bN has qua-
dratic growth. In the following we give a more rigorous proof of the a priori estimate,
and at the same time give a meaning to the equation (2.1.7).

In the remainder of this subsection, we fix N ∈ N and assume that the initial
condition of (2.1.7) belongs to

(2.1.8) ρN0 ∈ L∞(HN ,R+).

One can extend the result below to more general initial data, but since the study
of (2.1.7) is only an intermediate step, we do not pursue such generality here.
Consider cut-off functions χn(ξ) = χ(ξ/n), n ≥ 1, where χ ∈ C∞c (HN , [0, 1]) is
a radial function (i.e., χ(ξ) = χ(|ξ|HN ) by a slight abuse of notation) such that
χ|BN (1) ≡ 1 and χ|BN (2)c ≡ 0, BN (r) being the ball in HN centered at the origin
with radius r > 0. Define

b
(n)
N (ξ) = χn(ξ)bN (ξ), ξ ∈ HN , n ∈ N;

then b
(n)
N is a smooth vector field on HN with compact support for any n ∈ N.

Notice that bnN is still divergence-free since by (2.1.5) and ∇χn(ξ) = χ′
( |ξ|
n

)
ξ
n|ξ| one

has

(2.1.9) divµN
(
b
(n)
N

)
= divµN

(
χnbN

)
= χn divµN (bN )− 〈bN ,∇χn〉HN = 0.
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Now we consider the approximating operators

A(n)
N F (ξ) = −

〈
b
(n)
N (ξ),∇F (ξ)

〉
HN

+ αLNF (ξ)

and the corresponding Fokker-Planck equations

(2.1.10)

{
∂tρ

(n)
t =

(
A(n)
N

)∗
ρ

(n)
t ,

ρ(n)|t=0 = ρ
(n)
0 = PN1/nρ

N
0 ,

where the initial datum is regularized by means of the Ornstein-Uhlenbeck semi-
group PNt = etLN on HN : for t ≥ 0 the latter is explicitly given by

(2.1.11) PNt ρ
N
0 (ξ) =

∫
HN

ρN0 (η)
[
2π
(
1− e−2t

)]−|ΛN |/2
exp

(
− |η − e

−tξ|2

2(1− e−2t)

)
dη.

Lemma 2.1.3. For any n ≥ 1, ρ
(n)
0 ∈ C∞b (HN ,R+) and

(2.1.12)

∫
HN

ρ
(n)
0 log ρ

(n)
0 dµN ≤

∫
HN

ρN0 log ρN0 dµN .

Moreover, the solutions ρ
(n)
t of the equations (2.1.10) satisfy

sup
t≥0

∥∥∥ρ(n)
t

∥∥∥
∞
≤
∥∥ρN0 ∥∥∞ ,(2.1.13)

∫
HN

ρ
(n)
t log ρ

(n)
t dµN ≤ e−2αt

∫
HN

ρN0 log ρN0 dµN

(2.1.14)

+
(
1− e−2αt

)∥∥ρN0 ∥∥L1(µN )
log
∥∥ρN0 ∥∥L1(µN )

∀ t ≥ 0.

Proof. The first assertion follows from (2.1.8) and (2.1.11); the estimate
(2.1.12) is a consequence of Jensen’s inequality and the invariance of µN for the
semigroup

(
PNt
)
t≥0

.

Inequality (2.1.13) follows from (2.1.8) and the representation

ρ
(n)
t (ξ) = E

[
ρ

(n)
0

(
X

(n)
t

)]
,

where X
(n)
t is the solution to the SDE

dX
(n)
t = b

(n)
N

(
X

(n)
t

)
dt− αX(n)

t dt+
√

2αdWN
t , X

(n)
0 = ξ.

Thanks to (2.1.9), the arguments in Remark 2.1.2 are now rigorous and we have

(2.1.15)
d

dt

∫
HN

ρ
(n)
t log ρ

(n)
t dµN = −α

∫
HN

∣∣∇ρ(n)
t

∣∣2
ρ

(n)
t

dµN .

Recall the log-Sobolev inequality on the finite-dimensional Gaussian space (HN , µN ):∫
HN

ϕ2 log
ϕ2

‖ϕ‖2L2(µN )

dµN ≤ 2

∫
HN

|∇ϕ|2dµN , ∀ϕ ∈W 1,2(HN , µN ).

Taking ϕ =
(
ρ

(n)
t

)1/2
yields∫

HN

ρ
(n)
t log

ρ
(n)
t∥∥ρ(n)

t

∥∥
L1(µN )

dµN ≤
1

2

∫
HN

∣∣∇ρ(n)
t

∣∣2
ρ

(n)
t

dµN .

Combining the latter inequality with (2.1.15) we obtain

d

dt

∫
HN

ρ
(n)
t log ρ

(n)
t dµN ≤ −2α

∫
HN

ρ
(n)
t log ρ

(n)
t dµN

+ 2α
∥∥ρN0 ∥∥L1(µN )

log
∥∥ρN0 ∥∥L1(µN )

,
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where we have used the fact that∥∥ρ(n)
t

∥∥
L1(µN )

=
∥∥ρ(n)

0

∥∥
L1(µN )

=
∥∥ρN0 ∥∥L1(µN )

∀ t > 0.

Integrating in time, we conclude that∫
HN

ρ
(n)
t log ρ

(n)
t dµN ≤ e−2αt

∫
HN

ρ
(n)
0 log ρ

(n)
0 dµN

+
(
1− e−2αt

)∥∥ρN0 ∥∥L1(µN )
log
∥∥ρN0 ∥∥L1(µN )

,

which, together with (2.1.12), leads to the final result. �

Corollary 2.1.4. Let ρN0 ∈ L∞(HN ,R+). There exists a nonnegative func-
tion ρN ∈ L∞

(
R+, L

∞(HN , µN )
)

satisfying

sup
t∈[0,∞)

∥∥ρNt ∥∥L∞(µN )
≤
∥∥ρN0 ∥∥L∞(µN )

,(2.1.16) ∫
HN

ρNt log ρNt dµN ≤ e−2αt

∫
HN

ρN0 log ρN0 dµN(2.1.17)

+
(
1− e−2αt

)∥∥ρN0 ∥∥L1(µN )
log
∥∥ρN0 ∥∥L1(µN )

for almost every t > 0; moreover, for any f ∈ C1
c (R+) and ψ ∈ C∞b (HN ),

0 = f(0)

∫
HN

ψρN0 dµN(2.1.18)

+

∫ ∞
0

∫
HN

ρNt

[
f ′(t)ψ + f(t) 〈bN ,∇ψ〉HN + αf(t)LNψ

]
dµNdt.

In particular, the above equation shows that ρN satisfies (2.1.7) in a weak sense.

Remark 2.1.5. It might be possible to give a strong (i.e. pointwise) meaning to
(2.1.7), but the weak formulation, combined with the estimate (2.1.17), is enough to
prove existence of solutions to Fokker-Planck equations in the infinite dimensional
case.

Proof. Thanks to (2.1.13), we can find a subsequence
{
ρ(ni)

}
i∈N weakly-∗

converging in L∞
(
R+, L

∞(HN , µN )
)

to some ρN satisfying (2.1.16).

Now we fix any T > 0. We know that ρ(ni) also converges weakly in L1
(
[0, T ]×

HN

)
to ρN . The sequence

{
ρ(ni)

}
i∈N is contained in the set

S =

{
u ∈ L1

(
[0, T ]×HN

)
: ut ≥ 0,

∫
HN

ut log ut dµN ≤ Λ(t) for all t ∈ [0, T ]

}
,

where we write Λ(t) for the right hand side of (2.1.17). The convexity of the
function s 7→ s log s implies that S is a convex subset of L1

(
[0, T ]×HN

)
. Since the

weak closure of S coincides with the strong one, there exists a sequence of functions
u(n) ∈ S which converge strongly to ρN in L1

(
[0, T ]×HN

)
. Up to a subsequence,

u(n) converge to ρN almost everywhere, thus Fatou’s lemma and (2.1.14) implies
that (2.1.17) holds for a.e. t ∈ (0, T ). The arbitrariness of T > 0 implies that it
holds for a.e. t ∈ (0,∞).

Finally, multiplying both sides of (2.1.10) (with n replaced by ni) by f ∈
C1
c (R+) and ψ ∈ C∞b (HN ), and integrating by parts leads to

0 = f(0)

∫
HN

ψρ
(ni)
0 dµN

+

∫ ∞
0

∫
HN

ρ
(ni)
t

[
f ′(t)ψ + f(t)

〈
b
(ni)
N ,∇ψ

〉
HN

+ αf(t)LNψ
]
dµNdt.
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Recall that b
(n)
N = χnbN ; it is clear that

〈
b
(n)
N ,∇ψ

〉
HN

converges strongly to

〈bN ,∇ψ〉HN in L2(µN ). By the weak-∗ convergence of ρ(ni), letting i → ∞ yields

(2.1.18). �

2.1.2. Proof of Theorem 1.4.3. We assume that ρ0 ∈ L logL(E,µ;R+).
Define

(2.1.19) ρN0 = PN1/NE [ρ0 ∧N |ΠN ] , N ∈ N,

where E [·|ΠN ] is the conditional expectation with respect to the sub-σ-algebra
generated by coordinates in HN . Note that, for any f ∈ L1(µ) and all N ≥ 1, we
can regard E [f |ΠN ] as a function on E. By the invariance of µN for the Ornstein-
Uhlenbeck semigroup

(
PNt
)
t≥0

and Jensen’s inequality,∫
HN

ρN0 log ρN0 dµN ≤
∫
HN

E [ρ0 ∧N |ΠN ] logE [ρ0 ∧N |ΠN ] dµN

=

∫
E

E [ρ0 ∧N |ΠN ] logE [ρ0 ∧N |ΠN ] dµ.

Using again Jensen’s inequality, for all N ∈ N,

(2.1.20)

∫
HN

ρN0 log ρN0 dµN ≤
∫
E

(ρ0 ∧N) log(ρ0 ∧N)dµ ≤
∫
E

ρ0 log ρ0 dµ.

Moreover, it is easy to see that

(2.1.21)
∥∥ρN0 ∥∥L1(µN )

≤ ‖ρ0‖L1(µ).

For any N ≥ 1, taking ρN0 as the initial value, by the arguments in the last
subsection, we have a nonnegative solution ρN to the finite dimensional Fokker-
Planck equation (2.1.18) which verifies (2.1.17). We shall regard the solutions as
functions on E = H−1−δ(T2), i.e. ρNt (ω) = ρNt (ΠNω), (t, ω) ∈ R+ × E. Then,
combining (2.1.17) with (2.1.20) and (2.1.21), for a.e. t > 0,
(2.1.22)∫

E

ρNt log ρNt dµ ≤ e−2αt

∫
E

ρ0 log ρ0 dµ+
(
1− e−2αt

)
‖ρ0‖L1(µ) log ‖ρ0‖L1(µ).

From this estimate and a diagonal argument, there exist a subsequence
{
ρNi
}
i≥1

and some function ρ : R+×E → R+ such that, for any T > 0, ρNi converges weakly
in L1

(
0, T ;L1(E,µ)

)
to ρ, and for a.e. t > 0,∫

E

ρt log ρt dµ ≤ e−2αt

∫
E

ρ0 log ρ0 dµ+
(
1− e−2αt

)
‖ρ0‖L1(µ) log ‖ρ0‖L1(µ).

The proof is similar to that of Corollary 2.1.4. Moreover, by the duality of Orlicz
spaces, one has, for any T > 0,

lim
i→∞

∫ T

0

∫
E

G(t, ω)ρNit (ω)dµdt =

∫ T

0

∫
E

G(t, ω)ρt(ω)dµdt

for any G such that, for some small ε > 0,

(2.1.23) sup
t∈[0,T ]

∫
E

eε|G(t,ω)|dµdt < +∞.

Fixing any cylindrical function ψ and f ∈ C1
c (R+), for N big enough we always

have the equation (2.1.18); replacing N by Ni, it can be rewritten as

0 = f(0)

∫
E

ψρNi0 dµ+

∫ ∞
0

∫
E

ρNit

[
f ′(t)ψ + f(t) 〈bNi , Dψ〉+ αf(t)Lψ

]
dµdt.
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By the definition (2.1.19), it is not difficult to show that, for any cylindrical ψ,

lim
i→∞

∫
E

ψρNi0 dµ =

∫
E

ψρ0 dµ.

Moreover, the first and the third terms in the second integral also converge to the
corresponding limits. The only term that requires our attention is the nonlinear
part. We have∣∣∣∣ ∫ ∞

0

∫
E

ρNit f(t) 〈bNi , Dψ〉 dµdt−
∫ ∞

0

∫
E

ρtf(t) 〈B, Dψ〉 dµdt
∣∣∣∣

≤
∣∣∣∣ ∫ ∞

0

∫
E

ρNit f(t)
(
〈bNi , Dψ〉 − 〈B, Dψ〉

)
dµdt

∣∣∣∣
+

∣∣∣∣ ∫ ∞
0

∫
E

(
ρNit − ρt

)
f(t) 〈B, Dψ〉 dµdt

∣∣∣∣.
By (1.4.12), G(t, ω) := f(t) 〈B, Dψ〉 satisfies (2.1.23). Thus, the second term on
the right hand side tends to 0 as i → ∞. Next, one can prove that 〈bNi , Dψ〉
converges strongly in L1(E,µ) to 〈B, Dψ〉 as i → ∞, see for instance [58, Sec-
tion 3.3.1]. Combining the convergence with the uniform exponential integrability
of these quantities, we deduce that the sequence 〈bNi , Dψ〉 actually converges to
〈B, Dψ〉 in the Orlicz norm. Therefore, by (2.1.22), the first term also vanishes as
i→∞. Thus, we can let i→∞ in the above equality to get the equation

(2.1.24) 0 = f(0)

∫
E

ψρ0dµ+

∫ ∞
0

∫
E

ρt

[
f ′(t)ψ + f(t) 〈B, Dψ〉+ αf(t)Lψ

]
dµdt.

Therefore, ρt solves the Fokker-Planck equation (1.4.13) for L logL initial condition.
The proof of Theorem 1.4.3 is complete.

2.2. Lp-initial data

In this section we assume the initial data of the Fokker-Planck equation (1.4.13)
to be integrable of order p > 1. In this case, we can follow the arguments in the
last section to prove the existence of weak solutions to the Fokker-Planck equations
(1.4.13). Here we only prove new a priori estimates on the Galerkin approximations
and the exponential convergence in L2(µ) norm in the case p = 2.

2.2.1. A priori estimates for p > 1. Assume first ρN0 ∈ L∞(HN , µN ) and
consider as above the Fokker-Planck equation (2.1.10):{

∂tρ
(n)
t =

(
A(n)
N

)∗
ρ

(n)
t ,

ρ(n)|t=0 = ρ
(n)
0 = PN1/nρ

N
0 .

Jensen’s inequality implies

(2.2.1)

∫
HN

∣∣ρ(n)
0

∣∣pdµN ≤ ∫
HN

∣∣ρN0 ∣∣pdµN for all n ≥ 1,

and we can extend this bound for all subsequent times.

Lemma 2.2.1. For any n ∈ N, it holds that∫
HN

∣∣ρ(n)
t

∣∣pdµN ≤ ∫
HN

∣∣ρN0 ∣∣pdµN for all t > 0.

Proof. Using equation (2.1.10),

∂t

[∣∣ρ(n)
t

∣∣p] = p
[(
ρ

(n)
t

)2] p2−1

ρ
(n)
t ∂tρ

(n)
t

= b
(n)
N · ∇

[∣∣ρ(n)
t

∣∣p]+ pα
[(
ρ

(n)
t

)2] p−1
2 LNρ(n)

t .
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Integrating by parts on HN with respect to µN gives us

d

dt

∫
HN

[(
ρ

(n)
t

)p]
dµN = −pα

∫
HN

(
ρ

(n)
t

)p−2
∣∣∣∇ρ(n)

t

∣∣∣2dµN .
Next, integrating in time between 0 and t leads to∫

HN

[(
ρ

(n)
t

)p]
dµN ≤

∫
HN

[(
ρ

(n)
0

)p]
dµN ,

which, together with (2.2.1), yields the desired estimate. �

As a consequence,
{
ρ(n)

}
n≥1

is bounded in L∞
(
R+, L

p(HN , µN )
)
. Thus we

can find a subsequence which converges weakly-∗ to some limit

ρN ∈ L∞
(
R+, L

p(HN , µN )
)
,

satisfying the estimate

(2.2.2) sup
t∈R+

∫
HN

∣∣ρNt ∣∣pdµN ≤ ∫
HN

∣∣ρN0 ∣∣pdµN
and the finite dimensional Fokker-Planck equation

0 = f(0)

∫
HN

ψρN0 dµN(2.2.3)

+

∫ ∞
0

∫
HN

ρNt

[
f ′(t)ψ + f(t) 〈bN ,∇ψ〉HN + αf(t)LNψ

]
dµNdt

for any ψ ∈ C∞b (HN ) and f ∈ C1
c (R+).

Next, if ρ0 ∈ Lp(E,µ), we define, for N ∈ N,

(2.2.4) ρN0 = PN1/NE
[
(−N) ∨ (ρ0 ∧N)

∣∣ΠN

]
,

which, by Jensen’s inequality, satisfies

(2.2.5) sup
N≥1

∫
HN

∣∣ρN0 ∣∣pdµN ≤ ∫
E

|ρ0|pdµ.

Consider the finite dimensional Fokker-Planck equations (2.2.3) with initial data
ρN0 , and regard the solutions ρNt as functions on E. From estimate (2.2.2) and
inequality (2.2.5) we deduce

(2.2.6) sup
N≥1

sup
t∈R+

∫
E

∣∣ρNt ∣∣pdµ ≤ ∫
E

|ρ0|pdµ.

Hence, we can find a subsequence ρNi converging weakly-∗ in L∞
(
R+, L

p(E,µ)
)

to
some ρ, which can be shown to satisfy the Fokker-Planck equation (1.4.13), thus
completing the proof of point (i) of Theorem 1.4.4. We omit the details.

2.2.2. The case p = 2. We want to show the exponential decay of the energy,
proving point (ii) of Theorem 1.4.4. We start again from equation (2.1.10) with the

initial condition ρ
(n)
0 = PN1/nρ

N
0 , where ρN0 ∈ L∞(HN ). It is clear that for all n ≥ 1,

ρ̄
(n)
0 :=

∫
HN

ρ
(n)
0 dµN =

∫
HN

ρN0 dµN =: ρ̄N0 .

Lemma 2.2.2. It holds that∫
HN

(
ρ

(n)
t − ρ̄N0

)2
dµN ≤ e−2αt

∫
HN

(
ρN0 − ρ̄N0

)2
dµN for all t > 0.



2.2. LP -INITIAL DATA 27

Proof. According to equation (2.1.10), we have

∂t

[(
ρ

(n)
t − ρ̄N0

)2]
= 2
(
ρ

(n)
t − ρ̄N0

)
b
(n)
N · ∇ρ(n)

t + 2α
(
ρ

(n)
t − ρ̄N0

)
LNρ(n)

t .

By (2.1.9), integrating by parts with respect to µN yields

d

dt

∫ (
ρ

(n)
t − ρ̄N0

)2
dµN = −2α

∫ ∣∣∣∇ρ(n)
t

∣∣∣2dµN .
Recall that µN satisfies the Poincaré inequality on HN : for any ϕ ∈W 1,2(HN , µN ),∫

(ϕ− ϕ̄)2dµN ≤
∫
|∇ϕ|2dµN ,

where ϕ̄ =
∫
ϕdµN . Therefore,

d

dt

∫ (
ρ

(n)
t − ρ̄N0

)2
dµN ≤ −2α

∫ (
ρ

(n)
t − ρ̄N0

)2
dµN ,

where we used the fact that ρ̄
(n)
t :=

∫
ρ

(n)
t dµN = ρ̄

(n)
0 = ρ̄N0 for all t > 0. As a

result, ∫ (
ρ

(n)
t − ρ̄N0

)2
dµN ≤ e−2αt

∫ (
ρ

(n)
0 − ρ̄N0

)2
dµN for all t > 0.

Finally, we complete the proof by noting that∫ (
ρ

(n)
0 − ρ̄N0

)2
dµN =

∫ (
ρ

(n)
0

)2
dµN −

(
ρ̄N0
)2

≤
∫ (

ρN0
)2
dµN −

(
ρ̄N0
)2

=

∫ (
ρN0 − ρ̄N0

)2
dµN ,

where we have used Jensen’s inequality in the second step. �

Repeating the arguments below Lemma 2.2.1, there exists a subsequence ρ(ni)

converging weakly-∗ to some ρN ∈ L∞
(
R+, L

2(HN , µN )
)
, which is a weak solution

to the finite dimensional Fokker-Planck equations (2.2.3) with the initial datum
ρN0 . Moreover, replacing the set S in the proof of Corollary 2.1.4 by

S̃ =
{
u ∈ L2

(
[0, T ]×HN

)
:
∥∥ut− ρ̄N0 ∥∥L2(µN )

≤ e−αt
∥∥ρN0 − ρ̄N0 ∥∥L2(µN )

∀ t ∈ [0, T ]
}
,

similar discussions imply that for a.e. t ∈ (0, T ), one has∥∥ρNt − ρ̄N0 ∥∥L2(µN )
≤ e−αt

∥∥ρN0 − ρ̄N0 ∥∥L2(µN )
.

The arbitrariness of T > 0 yields that the above inequality holds for a.e. t > 0.
Next, for ρ0 ∈ L2(E,µ) and N ∈ N, we define ρN0 as in (2.2.4). We have

ρ̄N0 =

∫
HN

ρN0 dµN =

∫
HN

E
[
(−N) ∨ (ρ0 ∧N)

∣∣ΠN

]
dµN =

∫
E

(−N) ∨ (ρ0 ∧N)dµ,

therefore,

lim
N→∞

ρ̄N0 =

∫
E

ρ0 dµ = ρ̄0.

This together with (2.2.5) (taking p = 2) implies

(2.2.7) lim sup
N→∞

∫
HN

(
ρN0 − ρ̄N0

)2
dµN ≤

∫
E

(ρ0 − ρ̄0)2dµ.

For any N ≥ 1, there exists a weak solution
(
ρNt
)
t∈R+

to the equation (2.2.3) with

the initial condition ρN0 , satisfying

(2.2.8)
∥∥ρNt − ρ̄N0 ∥∥L2(µN )

≤ e−αt
∥∥ρN0 − ρ̄N0 ∥∥L2(µN )

for a.e. t ∈ (0,∞).
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As usual, we view ρNt (N ≥ 1) as functionals on E. As in Section 2.2.1, there is a
subsequence ρNi converging weakly-∗ to some ρ ∈ L∞

(
R+, L

2(E,µ)
)
. By (2.2.7)

and (2.2.8), we can show the exponential decay of the energy of ρt for a.e. t > 0.

2.3. Existence of Weak solutions

Thanks to the control on densities we have gained in the last Section, we are
now in the position to prove Theorem 1.4.5. Let us thus take ρ0 ∈ Lp(E,µ;R+) for
some p > 1, satisfying ρ̄0 =

∫
E
ρ0 dµ = 1. We define ρN0 similarly to (2.2.4):

(2.3.1) ρN0 = c−1
N PN1/NE

[
(ρ0 ∧N)

∣∣ΠN

]
,

where cN is the normalizing constant such that ρ̄N0 =
∫
HN

ρN0 dµN = 1. Clearly,

lim
N→∞

cN = 1.

Let ρNt be the solution of the finite dimensional Fokker-Planck equations (2.2.3)
with initial data ρN0 . Combining the above fact with (2.2.6), we see that

(2.3.2) sup
N≥1

sup
t∈[0,T ]

∥∥ρNt ∥∥Lp(µ)
≤ c0‖ρ0‖Lp(µ).

Consider the solution ωNt of the SDEs (2.1.4), for which the initial values ωN0 is
distributed as ρN0 µN ; then ρNt is the probability density function (with respect to
µN ) of ωNt . In this part we regard ωNt and ρNt as objects defined on E = H−1−, i.e.
ωNt (ω) = ωNt (ΠNω), ρNt (ω) = ρNt (ΠNω). We want to show that the laws QN of ωN·
on C

(
[0, T ], E

)
are tight. To this end we will use the compactness criterion proved

in [156, Corollary 9, p. 90]. The arguments here follow those of [75, Section 3].
Take δ ∈ (0, 1), κ > 5 (this choice is due to estimates below) and consider the

spaces

X = H−1−δ/2(T2), B = H−1−δ(T2), Y = H−κ(T2).

Then X ⊂ B ⊂ Y with compact embeddings and we also have, for a suitable
constant C > 0 and for

(2.3.3) θ =
δ/2

κ− 1− δ/2
,

the interpolation inequality

‖ω‖B ≤ C‖ω‖1−θX ‖ω‖θY , ω ∈ X.

These are the preliminary assumptions of [156, Corollary 9, p. 90]. We consider
here a particular case:

S = Lp0(0, T ;X) ∩W 1/3,4(0, T ;Y ),

where for 0 < α < 1 and p ≥ 1,

Wα,p(0, T ;Y ) =

{
f : f ∈ Lp(0, T ;Y ) and

∫ T

0

∫ T

0

‖f(t)− f(s)‖pY
|t− s|αp+1

dtds <∞
}
.

Lemma 2.3.1. Let δ ∈ (0, 1) and κ > 5 be given. If

p0 >
12(κ− 1− 3δ/2)

δ
,

then S is compactly embedded into C
(
[0, T ], H−1−δ(T2)

)
.

Proof. Recall that θ is defined in (2.3.3). In our case, we have s0 = 0, r0 = p0

and s1 = 1/3, r1 = 4. Hence sθ = (1− θ)s0 + θs1 = θ/3 and

1

rθ
=

1− θ
r0

+
θ

r1
=

1− θ
p0

+
θ

4
.
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It is clear that for p0 given above, it holds sθ > 1/rθ, thus the desired result follows
from the second assertion of [156, Corollary 9]. �

For N ≥ 1, let QN be the law of ωN· on X := C
(
[0, T ], H−1−(T2)

)
. We want

to prove that the family
{
QN
}
N≥1

is tight in X . The next result follows from the

definition of the topology in X .

Lemma 2.3.2. The family
{
QN
}
N≥1

is tight in X if and only if it is tight in

the space C
(
[0, T ], H−1−δ(T2)

)
for any δ > 0.

In view of the above two lemmas, it is sufficient to prove that
{
QN
}
N≥1

is

bounded in probability in W 1/3,4
(
0, T ;H−κ(T2)

)
and in each Lp0

(
0, T ;H−1−δ(T2)

)
for any p0 > 0 and δ > 0.

We show first that the family
{
QN
}
N≥1

is bounded in probability on the space

Lp0
(
0, T ;H−1−δ(T2)

)
. Let us recall that, for any q > 1 and δ > 0, there exists

Cq,δ > 0 such that ∫
‖ω‖q

H−1−δ dµ ≤ Cq,δ.

We have

(2.3.4)

E

[∫ T

0

∥∥ωNt ∥∥p0H−1−δdt

]
=

∫ T

0

E
[∥∥ωNt ∥∥p0H−1−δ

]
dt

=

∫ T

0

∫
‖ω‖p0

H−1−δρ
N
t (ω)dµdt

≤
∫ T

0

[∫
‖ω‖p0q

H−1−δdµ

]1/q [∫ (
ρNt (ω)

)p
dµ

]1/p

dt

≤ Cp0q,δT sup
t∈[0,T ]

∥∥ρNt ∥∥Lp(µ)
≤ Cp0q,δT‖ρ0‖Lp(µ),

where q is the conjugate number of p and we have used the above estimate and
(2.3.2) in the last two steps. By Chebyshev’s inequality, the family

{
QN
}
N≥1

is

bounded in probability in Lp0
(
0, T ;H−1−δ(T2)

)
.

Next, we prove boundedness in probability of
{
QN
}
N≥1

inW 1/3,4
(
0, T ;H−κ(T2)

)
where κ > 5. Again by Chebyshev’s inequality, it suffices to show that

sup
N≥1

E

[∫ T

0

∥∥ωNt ∥∥4

H−κ
dt+

∫ T

0

∫ T

0

∥∥ωNt − ωNs ∥∥4

H−κ

|t− s|7/3
dtds

]
<∞.

In view of (2.3.4), we see that it is sufficient to establish a uniform estimate on the

expectation E
[∥∥ωNt − ωNs ∥∥4

H−κ

]
. We write 〈·, ·〉 for the inner product in L2(T2).

Lemma 2.3.3. There exists C > 0 depending on α, δ and ‖ρ0‖Lp(µ) such that
for any k ∈ ΛN , we have

E
[〈
ωNt − ωNs , ek

〉4] ≤ C(t− s)2
(
|k|8 + 1

)
.

Proof. By equation (2.1.4),〈
ωNt , ek

〉
=
〈
ωN0 , ek

〉
+

∫ t

0

〈
ωNs , u

(
ωNs
)
· ∇ek

〉
ds

− α
∫ t

0

〈
ωNs , ek

〉
ds+

√
2α

∫ t

0

〈
dW (N)

s , ek

〉
=
〈
ωN0 , ek

〉
+

∫ t

0

〈
ωNs ⊗ ωNs , Hek

〉
ds− α

∫ t

0

〈
ωNs , ek

〉
ds+

√
2αW k

t .
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Therefore, for 0 ≤ s < t ≤ T ,
(2.3.5)〈
ωNt − ωNs , ek

〉
=

∫ t

s

〈
ωNr ⊗ ωNr , Hek

〉
dr − α

∫ t

s

〈
ωNr , ek

〉
dr +

√
2α(W k

t −W k
s ).

First, we control by Hölder’s inequality:

E
[(∫ t

s

〈
ωNr ⊗ ωNr , Hek

〉
dr

)4]
≤ (t− s)3 E

[ ∫ t

s

〈
ωNr ⊗ ωNr , Hek

〉4
dr

]
= (t− s)3

∫ t

s

∫
〈ω ⊗ ω,Hek〉

4
ρNr dµdr

≤ (t− s)3

∫ t

s

[ ∫
〈ω ⊗ ω,Hek〉

4q
dµ

]1/q[ ∫ (
ρNr
)p
dµ

]1/p

dr.

By (1.4.9) and the uniform density estimate (2.3.2),

(2.3.6)
E
[(∫ t

s

〈
ωNr ⊗ ωNr , Hek

〉
dr

)4]
≤ Cq‖ek‖4C2(T2)(t− s)

4 sup
t∈[0,T ]

∥∥ρNr ∥∥Lp(µ)

≤ Cq(t− s)4|k|8‖ρ0‖Lp(µ).

Similarly,

(2.3.7)

E
[(∫ t

s

〈
ωNr , ek

〉
dr

)4]
≤ (t− s)3 E

∫ t

s

〈
ωNr , ek

〉4
dr

= (t− s)3

∫ t

s

∫
〈ω, ek〉4 ρNr dµdr

≤ Cq(t− s)4‖ρ0‖Lp(µ).

Finally,

E
[
(W k

t −W k
s )4
]
≤ C(t− s)2.

Combining this estimate with (2.3.5)–(2.3.7) yields the result. �

As a result of Lemma 2.3.3, by Cauchy’s inequality,

E
(∥∥ωNt − ωNs ∥∥4

H−κ

)
= E

[( ∑
k∈Z2

0

|k|−2κ
〈
ωNt − ωNs , ek

〉2)2
]

≤
( ∑
k∈Z2

0

|k|−2κ

) ∑
k∈Z2

0

|k|−2κ E
[ 〈
ωNt − ωNs , ek

〉4 ]
≤ C̃(t− s)2

∑
k∈Z2

0

|k|−2κ|k|8 ≤ Ĉ(t− s)2,

since 2κ− 8 > 2 due to the choice of κ. Consequently,

E
[ ∫ T

0

∫ T

0

∥∥ωNt − ωNs ∥∥4

H−κ

|t− s|7/3
dtds

]
≤ Ĉ

∫ T

0

∫ T

0

|t− s|2

|t− s|7/3
dtds <∞.

The proof of the boundedness in probability of
{
QN
}
N≥1

in W 1/3,4
(
0, T ;H−κ(T2)

)
is complete.

To summarize, we have shown that the family
{
QN
}
N≥1

of laws of
{
ωN·
}
N≥1

is

tight on X = C([0, T ], E). Since we are dealing with the SDEs (2.1.4), it is necessary

to consider the laws of ωN· together with the law W on Y = C
(
[0, T ],RZ2

0

)
of the
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family of Brownian motions W := {W k
· }k∈Z2

0
. For any N ∈ N, we denote QN ⊗W

the joint law (not the product measure) of (ωN· ,W ) on

X × Y = C([0, T ], E)× C
(

[0, T ],RZ2
0

)
.

Then, it is easy to see that the family
{
QN⊗W

}
N≥1

of joint laws is tight on X ×Y,

cf. the arguments above [75, Lemma 3.4]. Thus, by Prohorov’s theorem (see [25,
Theorem 5.1, p. 59]), we can find a subsequence

{
QNi ⊗W

}
i≥1

which converges

weakly to some Q ⊗ W, a probability measure on X × Y. Next, the Skorokhod
theorem (see [25, Theorem 6.7, p. 70] implies that there exist a probability space(
Θ̃, F̃ , ¶̃

)
, a sequence of processes

{(
ω̃Ni· , W̃Ni

)}
i∈N and a limit process

(
ω̃·, W̃

)
defined on this probability space such that, for all i ∈ N, the law of

(
ω̃Ni· , W̃Ni

)
is

QNi ⊗W, and ¶̃-a.s.,
(
ω̃Ni· , W̃Ni

)
converges in X × Y to

(
ω̃·, W̃

)
as i →∞. Note

that W̃Ni and W̃ are families of Brownian motions indexed by Z2
0.

We need one last result before proving the existence of solutions to (2.0.1).

Lemma 2.3.4. For a.e. t ∈ [0, T ], the law of ω̃t on E has a density ρt with
respect to µ, where ρt is a weak solution to the Fokker–Planck equation (1.4.13).

Proof. Fix any F ∈ Cb(E,R) and f ∈ C([0, T ]). By the ¶̃-a.s. convergence
of ω̃Ni· to ω̃· in X = C([0, T ], E), we have

E¶̃
∫ T

0

f(t)F (ω̃t)dt = lim
i→∞

E¶̃
∫ T

0

f(t)F
(
ω̃Nit

)
dt = lim

i→∞
E¶
∫ T

0

f(t)F
(
ωNit

)
dt

= lim
i→∞

∫ T

0

f(t)

∫
E

F (ω)ρNit (ω) dµ(ω)dt.

The densities ρNi· (i ∈ N) satisfy the estimates (2.3.2), thus, taking a further sub-
sequence if necessary, we can assume that ρNi· converge weakly to some limit ρ·,
which by the first half of Theorem 1.4.4, is a weak solution of the Fokker–Planck
equation (1.4.13). Next, we have∫ T

0

f(t)E¶̃F (ω̃t)dt =

∫ T

0

f(t)

∫
E

F (ω)ρt(ω)dµ(ω)dt.

The arbitrariness of f ∈ C([0, T ]) implies that, for almost every t ∈ [0, T ],

E¶̃F (ω̃t) =

∫
E

F (ω)ρt(ω)dµ(ω).

We can take a countable dense subset C ⊂ Cb(E,R) of functionals F such that, for
almost every t ∈ [0, T ], the above equality holds for all F ∈ C. Thus the law of ω̃t
is ρt. �

Up to now, we have indeed obtained the assertions (i) and (ii) of Theorem 1.4.5.
Finally, we can prove the existence of weak solutions to the stochastic Euler equation
(2.0.1).

Proof of Theorem 1.4.5, item (iii). Recall that ωNi solves the finite di-

mensional equation (2.1.4) with Ni in place of N , and
(
ω̃Ni , W̃Ni

)
has the same

law as
(
ωNi ,W

)
, where we write W for the family of Brownian motions {W k

· }k∈Z2
0
,

similarly for W̃Ni . Thus, for any φ ∈ C∞(T2),〈
ω̃Nit , φ

〉
=
〈
ω̃Ni0 , φ

〉
+

∫ t

0

〈
ω̃Nis ,

(
K ∗ ω̃Nis

)
· ∇φNi

〉
ds

− α
∫ t

0

〈
ω̃Nis , φ

〉
ds+

√
2α
〈
W̃Ni
t , φ

〉
,
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where φNi = ΠNiφ =
∑
k∈ΛNi

〈φ, ek〉 ek.

By the P̃-a.s. convergence of
(
ω̃Ni , W̃Ni

)
to
(
ω̃·, W̃

)
in X × Y as i→∞, it is

clear that all the terms but the nonlinear part converge in L1
(
Θ̃, P̃, C([0, T ],R)

)
to

the corresponding one in the limit. As for the nonlinear part,∫ t

0

〈
ω̃Nis ,

(
K ∗ ω̃Nis

)
· ∇φNi

〉
ds =

∫ t

0

〈
ω̃Nis ⊗ ω̃Nis , HφNi

〉
ds.

and we can bound

EP̃

[
1 ∧ sup

0≤t≤T

∣∣∣∣∫ t

0

〈
ω̃Nis ⊗ ω̃Nis , HφNi

〉
ds−

∫ t

0

〈ω̃s ⊗ ω̃s, Hφ〉 ds
∣∣∣∣]

≤ EP̃

[
1 ∧

∫ T

0

∣∣∣ 〈ω̃Nis ⊗ ω̃Nis , HφNi

〉
− 〈ω̃s ⊗ ω̃s, Hφ〉

∣∣∣ds]

≤ EP̃

[
1 ∧

∫ T

0

∣∣∣ 〈ω̃Nis ⊗ ω̃Nis , HφNi
−Hφ

〉 ∣∣∣ds]

+ EP̃

[
1 ∧

∫ T

0

∣∣∣ 〈ω̃Nis ⊗ ω̃Nis − ω̃s ⊗ ω̃s, Hφ

〉 ∣∣∣ds] .
We denote the two terms on the right hand side by INi1 and INi2 , respectively. By
the definition of Hφ, we have HφNi

−Hφ = HφNi−φ, and therefore, by (1.4.9),

INi1 ≤ EP̃

[∫ T

0

∣∣∣ 〈ω̃Nis ⊗ ω̃Nis , HφNi
−Hφ

〉 ∣∣∣ds]
≤ CT‖φNi − φ‖C2(T2) sup

0≤s≤T

∥∥ρNis ∥∥Lp(µ)
≤ C ′T‖ρ0‖Lp(µ)‖φNi − φ‖C2(T2),

where the last step follows from (2.3.2). Since φ ∈ C∞(T2), the Fourier series
φN = ΠNφ converge to φ in C∞(T2). Thus we deduce

(2.3.8) lim
i→∞

INi1 = 0.

Next, let Hn
φ ∈ C∞(T2×T2) be an approximating sequence of Hφ as in (1.4.5)

and (1.4.6). By the triangle inequality,

INi2 ≤ EP̃

[
1 ∧

∫ T

0

∣∣〈ω̃Nis ⊗ ω̃Nis , Hn
φ −Hφ

〉∣∣ ds](2.3.9)

+ EP̃

[
1 ∧

∫ T

0

∣∣ 〈ω̃s ⊗ ω̃s, Hn
φ −Hφ

〉 ∣∣ds]

+ EP̃

[
1 ∧

∫ T

0

∣∣∣ 〈ω̃Nis ⊗ ω̃Nis − ω̃s ⊗ ω̃s, Hn
φ

〉 ∣∣∣ds]
= JNi1,n + J2,n + JNi3,n.

Recall that, by Lemma 2.3.4, ω̃s has the density ρs for almost every s ∈ (0, T ) and
the estimate below holds:

sup
0≤s≤T

‖ρs‖Lp(µ) ≤ lim inf
i→∞

sup
0≤s≤T

∥∥ρNis ∥∥Lp(µ)
≤ c0‖ρ0‖Lp(µ).
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Therefore, by (1.4.8),

J2,n ≤ EP̃

[∫ T

0

∣∣〈ω̃s ⊗ ω̃s, Hn
φ −Hφ

〉∣∣ ds]

≤ T
[
Cp
∥∥Hn

φ −Hφ

∥∥1/p′

L2(T2×T2)
+

∣∣∣∣∫
T2

Hn
φ (x, x)dx

∣∣∣∣] ,
which tends to 0 as n → ∞. Next, thanks to the uniform estimates (2.3.2) on the
densities ρNis of ω̃Nis , the same arguments of above yield

lim
n→∞

JNi1,n = 0 uniformly in i ∈ N.

Finally, fix n ∈ N; P̃-almost surely, ω̃Ni converges in C([0, T ], E) to ω̃ as i→∞,
thus

lim
i→∞

∫ T

0

∣∣∣ 〈ω̃Nis ⊗ ω̃Nis − ω̃s ⊗ ω̃s, Hn
φ

〉 ∣∣∣ds = 0.

As a result, for any fixed n, the dominated convergence theorem implies

lim
i→∞

JNi3,n = 0,

from which, first letting i→∞ and then n→∞ in (2.3.9), we obtain

lim
i→∞

INi2 = 0.

Combining this limit with (2.3.8) we conclude the proof. �

2.4. Gibbsian Energy-Enstrophy Measures

We conclude this Chapter with a relevant example of an absolutely continuous
measure with respect to the white noise measure µ, that is the Energy-Enstrophy
measure introduced in Chapter 1. The Gaussian random distributions µβ,γ are best
understood in terms of Fourier series: we can write

ωβ,γ =
∑
k∈Z2

0

ω̂β,γ,kek, where ω̂β,γ,k = 〈ωβ,γ , ek〉 ∼ NC

(
0,

4π2|k|2

β + 4π2|k|2γ

)
are independent C-valued Gaussian variables, and the Fourier expansion thus con-
verges in L2

(
Hs(T2), µβ,γ

)
for s < −1. The measure µβ,γ is also characterised by

its Fourier transform (characteristic function) on Ḣs(T2): for any f ∈ Ḣ−s(T2),

(2.4.1)

∫
ei〈ω,f〉dµβ,γ(ω) = exp

−1

2

∑
k∈Z2

0

4π2|k|2|f̂k|2

β + 4π2|k|2γ

 .

Let us recall an equivalent definition of µβ,γ : for a smooth vorticity distribution ω,
energy is given by

2E(ω) = −
〈
ω,∆−1ω

〉
=
∑
k∈Z2

0

|ω̂k|2

4π2|k2|
,

which does not make sense as a random variable if instead ω has white noise law
µ0,γ = µγ , since in that case ω̂k’s are i.i.d. Gaussian variables, and the series
diverges almost surely. However, one can define a renormalised energy by means of
normal ordering:

(2.4.2) 2 :E:= lim
K→∞

∑
|k|≤K

:ω̂kω̂
∗
k:

4π2|k2|
= lim
K→∞

∑
|k|≤K

(
|ω̂k|2

4π2|k2|
−
∫
|ω̂k|2

4π2|k2|
dµγ(ω)

)
where the limit holds in L2(µγ) (see [7] and Theorem 1.5.2 below), and it defines
an element of the second Wiener chaos H :2:(µγ). As a consequence, :E: can be
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expressed as a double Itō-Wiener stochastic integral with respect to the white noise
µγ , the kernel being naturally Green’s function G: in the notation introduced in
Chapter 1,

2 :E: (ω) = 〈G,ω � ω〉 .

Lemma 2.4.1. The probability measure on Ḣs(T2), any s < −1, defined by
density as

(2.4.3) dµ̃β,γ =
1

Zβ,γ
e−β:E:(ω)dµγ(ω), Zβ,γ =

∫
e−β:E:(ω)dµγ(ω),

is well-posed. It coincides with the energy-enstrophy measure, µ̃β,γ = µβ,γ .

The computations we perform in the forthcoming proof find analogues in the
infinite product representations of energy-enstrophy measures given for instance in
[8, 17].

Proof. The variable :E: has exponential moments because it belongs to the
second Wiener chaos, so the partition function is finite and the measure well-defined.
If characteristic functionals E

[
ei〈f,ω〉] coincide for all f ∈ Ḣ−s(T2), the two mea-

sures coincide. Since under µ0,γ the Fourier modes ω̂k are independent centred
C-valued Gaussian variables with variance γ−1, we can compute∫

ei〈f,ω〉−β:E:(ω)dµγ =

∫
exp

∑
k∈Z2

0

i f̂kω̂
∗
k − β

|ω̂k|2 − γ−1

8π2|k|2

 dµγ

=
∏
k∈Z2

0

∫
C

γ

2π
exp

(
i f̂kz

∗ − β |z|
2 − γ−1

8π2|k|2
− γ|z|2

2

)
dz

=
∏
k∈Z2

0

4π2γ|k|2

β + 4π2γ|k2|
e

β

8π2|k2| exp

(
−|f̂k|

2

2
· 4π2|k|2

4π2γ|k2|+ β

)
,

and since the partition function Zβ,γ can be evaluated setting f ≡ 0 in the latter
formula,

Z−1
β,γ

∫
ei〈f,ω〉−β:E:(ω)dµγ =

∏
k∈Z2

0

exp

(
−|f̂k|

2

2
· 4π2|k|2

4π2γ|k2|+ β

)
,

where the right-hand side is the characteristic function of µβ,γ , (2.4.1). �

Intuition suggests that the renormalized energy is invariant for Euler’s equation,
and we can express this fact rigorously by means of the above discussion. The
idea is to exhibit a solution of the Fokker-Planck equation (1.4.13) — in the case
where friction and forcing are absent, α = 0 — such that ρt ≡ :E:. In fact, since
no uniqueness results are available, this is the best notion of invariance we can
produce, and as we see below it is a consequence of the infinitesimal invariance
already observed in the literature.

Proposition 2.4.2. For any cylinder function φ ∈ FCb and β > −1 it holds

(2.4.4) E [:E: (η)Bφ(η)] = E
[

1

Zβ
e−β:E:(η)Bφ(η)

]
= 0.

As a consequence, for α = 0, there exist constant solutions of (1.4.13) (in the
sense specified in Section 1.4) such that ρt ≡:E: or 1

Zβ
e−β:E:. Moreover, there

exists a weak solution of (2.0.1), again in the sense of Section 1.4, whose fixed time
marginals are constant in time, and coincide with 1

Zβ
e−β:E:.



2.4. GIBBSIAN ENERGY-ENSTROPHY MEASURES 35

Proof. The fact that E [:E: (η)Bφ(η)] = 0 is detailed in [46, Theorem 3.1],
and infinitesimal invariance of Gibbs density can be obtained by a completely anal-
ogous computation. By means of (2.4.4), one can straightforwardly check that the
constant densities ρt ≡ :E: or 1

Zβ
e−β:E: solve the Fokker-Planck equation (1.4.13)

for α = 0 in the sense of Definition 1.4.2. In order to apply Theorem 1.4.5 and de-
duce existence of a stationary solution to Euler equation, we are only left to verify
suitable integrability conditions.

Since :E: belongs to the second Wiener chaos of µ, it has finite moments of
all orders, as well as exponential moments: we already mentioned that e−β:E: is
integrable as soon as β > −1. This threshold can be deduced from the explicit
Gaussian expression (2.4.2) and the standard result [104, Theorem 6.1]. �

Thanks to the integrability properties of :E: and 1
Zβ
e−β:E: we just recalled,

Theorem 1.4.4 and Theorem 1.4.5 provide existence of solutions to the stochastic
Euler equation (2.0.1) and the associated Fokker-Planck equation with initial data
µβ also for α > 0.

However, :E: is not invariant for the Ornstein-Uhlenbeck generator L, as one
can verify with an elementary computation in Fourier series in the same fashion
of the above ones. The resulting flow is thus not stationary. When β > − 1

2 , by
the decay estimate in Theorem 1.4.4 for the case p = 2 we know that the solutions
we have built converge for large time to the space white noise. Since uniqueness
results are not available, we cannot rule out existence of “anomalous” solutions with
a different behavior. As already remarked in the Introduction, just like uniqueness
of weak solutions, convergence to equilibrium in this setting remains a fascinating
open problem.





CHAPTER 3

Liouville Operator of the Point Vortices System

This Chapter covers the arguments of [95]. As outlined in the Introduction, the
main result is the identification of a core for the infinitesimal generator of vortex
dynamics. We first consider a fixed number N of vortices on the torus T2 = R2/Z2

as space domain: we will discuss other geometries in Section 3.2 below.
By the aforementioned result of Dürr and Pulvirenti [65], Theorem 1.3.1, the

point vortex dynamics is well-posed for initial data in a full measure set of the
phase space, thus defining a measurable flow Tt : T2×N → T2×N and giving positive
answer to the problem of almost completeness. We will consider the one-parameter
group of Koopman unitaries Ut associated to such flow,

Utf = f ◦ Tt, f ∈ L2(T2×N ),

and a set of smooth functions on full-measure open sets, vanishing in a neigh-
bourhood of singular points of the driving vector field, on which we are able to
explicitly write the generator A of the Koopman group Ut = ei tA, and show that
such observables form a core for A.

Even if we will achieve our aim by means of an approximation noticeably dif-
fering from the one of [65, 135], much of their understanding of the point vortices
system will be crucial to our efforts. Our method also draws ideas from the work
[131], which discusses essential self-adjointness of Liouville’s operator for an infi-
nite particle system with regular interactions. Literature regarding the evolution
of infinite particles is extensive (let us only quote the recent work [37], and refer to
its references), but Liouville operators in that context are a somewhat uncommon
topic, and may thus be a source of interesting problems

Besides references on point vortices given above, it is worth mentioning that
integrable and non integrable behaviours in point vortices systems are also the
subject of a considerable literature. We refer to [157, 112] for vortices on T2,
[109] for vortices on S2 and to [10] for a survey on the topic: complete references
can be found in those works, including a large number of studies on vortices on R2.

Remark. In the present Chapter, the symbol D is used to denote domains
of operators, as it is customary in Functional Analysis. We will use instead D for
bounded domains of R2, in subsection 3.2.2. In later Chapters D will reprise its
original role.

3.1. The Liouville Operator for Point Vortices Systems

In this section, x = (x1, . . . xN ) ∈ (T2)N are the positions of point vortices on
T2, and ξ = (ξ1, . . . ξN ) ∈ RN their intensities. We denote by dxN the uniform

(Haar’s) measure on (T2)N , and by d(x, y) the distance of points x, y ∈ T2. Also,
we will denote by |B| the measure of measurable subsets B ⊂ (T2)N = T2×N .
All observables are intended as complex valued, and we will denote L2(T2×N ) =
L2(T2×N ;C). We distinguish the imaginary unit i ∈ C and the index i ∈ N (in
italics). Time t ∈ R ranges the whole real line, but for simplicity we will often
consider positive times t > 0, the other case being completely analogous.

37
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3.1.1. Classical Results on Improbability of Collisions. The point vor-
tices system (1.3.1) is an ordinary differential equation in finite dimension, whose
vector field is given by

(3.1.1) Bi(x) =

N∑
j 6=i

ξjK(xi, xj), x ∈ (T2)N ,

where K = ∇⊥G. As already remarked, the vector field is singular on the gener-
alised diagonal

4N =
{
x ∈ (T2)N : xi = xj some i 6= j

}
.

Although B is smooth outside 4N , classical well-posedness theorems can only pro-
vide existence and uniqueness of solutions only locally in time. Indeed, if some
vortices collapse, that is if a solution reaches 4N , the vector field diverges. How-
ever, by exploiting the peculiar structure of B, it is possible to prove that in fact,
for any fixed –but arbitrary– choice of intensities ξ, the system (1.3.1) has a global
(in time), smooth solution for almost every initial condition with respect to dxN .

The case in which all intensities ξi have the same sign is easier, since the mini-
mum distance between vortices along a trajectory in phase space can be controlled
by means of the Hamiltonian H. Indeed, from the definition of H and (1.2.1) (using
in particular the fact that g is uniformly bounded), we have

H(x) ≥
(

min
i
|ξi|
)2 N∑

i<j

(
− 1

2π
log d(xi, xj) + min

T2
g

)
≥ −C log min

i 6=j
d(xi, xj)− C ′,

where C,C ′ > 0 are constants depending on ξ,N , and thus

(3.1.2) min
i 6=j

d(xi, xj) ≥ e−CH(x)−C′ .

Since the right-hand side is a first integral of the motion, we can extend local-in-
time solutions of (1.3.1) starting from x ∈ T2×N \4N to global solutions which are
also smooth in time.

When vortices intensities ξ ∈ RN take both positive and negative values, there
might exist initial conditions leading to collapse, see [135, Section 4.2] and the
references above on integrable motion of vortices. Indeed, the energy H(x) gives
us no control whatsoever on the vortices distances along the trajectory of x, since
H include now both positive and negative terms which can cancel out large contri-
butions of close couples of vortices.

We already mentioned the classical result of Dürr and Pulvirenti, [65], es-
tablishing almost completeness in the general case of intensities with positive and
negative signs, Theorem 1.3.1. We also refer to [135] for the case of vortices on the
whole plane (see Section 3.2 below).

The core idea in the proof of Theorem 1.3.1 is to consider a smooth vector field
on T2×N given by

(3.1.3) Bεi (x) =

N∑
j 6=i

ξjKε(xi, xj), Kε = ∇⊥Gε,

that is the point vortices vector field (3.1.1) with a smoothed interaction obtained
by Gε ∈ C∞(T2) such that:

(3.1.4) Gε|B(0,ε)c = G|B(0,ε)c , |∇Gε(x)| ≤ |∇G(x)| ≤ C

|x|
∀x ∈ T2,
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where B(0, ε) ⊂ T2 is the ball of radius ε centred in 0 and C > 0 is a universal
constant. We denote by T εt x = T ε(t, x) the flow of the ordinary differential equation{

ẋ(t) = Bε(x(t))

x(0) = x
,

which is globally well-posed since its driving vector field is smooth. Moreover, we
define for ε > 0, t > 0 and x ∈ T2×N ,

(3.1.5) dεt (x) = inf
s∈[0,t]

min
i6=j
|(T εs x)i − (T εs x)j |.

In order to control the minimum distance between vortices, instead of the Hamil-
tonian one can resort to the Lyapunov function

Lε(x) =
∑
i6=j

Gε(xi, xj) =
∑
i 6=j

Gε(xi − xj),

for which the following analogue of (3.1.2) holds:

(3.1.6) dεt (x) ≥ exp

(
−C sup

s∈[0,t]

|Lε(T εs x)| − C ′
)
,

with C,C ′ > 0 only depending on N . By differentiating in time Lε(T εt x), and
exploiting the Hamiltonian structure of the vector field Bε –in particular volume
conservation on phase space– [65] established the uniform bound∫

T2×N
sup
s∈[0,t]

|Lε(T εs x)|dxN ≤ C(t+ 1),

with C > 0 independent of ε > 0. This, in combination with Markov inequality
and (3.1.6) produces the crucial estimate, for C > 0 independent of c ∈ (0, 1),

(3.1.7) |{dεt (x) < c}| ≤ C(t+ 1)

− log c
,

from which (1.3.2) follows, since {dt < c} is the almost sure limit of {dεt < c}.
In fact, on the set {dεt (x) > ε} the flow T εs (x) of Bε and Tt(x) of B coincide:

for all t, ε > 0,

(3.1.8) T εs (x) = Ts(x) ∀s ∈ [0, t], x ∈ {dt > ε} .

Sending ε→ 0 we obtain the full-measure set {dt(x) > 0} on which the flow Tt(x)
of B is well-defined, and intersecting the sets {dtn(x) > 0} over a sequence of times
tn ↑ ∞ (and one tn ↓ −∞) Theorem 1.3.1 is completed.

3.1.2. Functional Analytic Setting. This paragraph collects abstract def-
initions and results we are going to apply to point vortices systems. We assume
knowledge of basic notions in the theory of groups of unitary operators on Hilbert
spaces, for which we refer the reader to [149, Chapter VIII].

Let (X,F , µ) a standard Borel probability space, i.e. X is a Polish space and F
the associated Borel σ-algebra. The following results establishes a relation between
groups of maps on X and groups of operators on L2(µ) = L2(X,F , µ). Its first
part, the easier one, is well known as Koopman’s Lemma, whereas the second part,
a converse implication, is a relevant result in Ergodic Theory, for the proof of which
we refer to [91].

Theorem 3.1.1. Let the mapping

R×X 3 (t, x) 7→ Tt(x) ∈ X
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be such that: for µ-almost every x ∈ X, t 7→ Tt(x) is a continuous map; for all
t ∈ R, x 7→ Tt(x) is a µ-almost surely invertible, measurable and measure preserving
map and for all t, s ∈ R

Tt ◦ Ts(x) = Tt+s(x)

(that is, (Tt)t∈R is a group). Then

L2(X,F , µ) 3 f 7→ Utf = f ◦ Tt ∈ L2(X,F , µ)

defines a strongly continuous group of unitary, positive and unit-preserving opera-
tors on L2(X,F , µ) ( Koopman group).

Conversely, let (Ut)t∈R be a strongly continuous group of of unitary, positive
and unit-preserving operators on L2(X,F , µ) with generator A; then there exists
a group of µ-almost surely invertible, measurable and measure preserving maps
Tt : X → X, t ∈ R, such that Utf = f ◦ Tt for all f ∈ L2(X,F , µ); moreover,
t 7→ Tt(x) is weakly measurable for all t ∈ R.

Remark 3.1.2. It is worth mentioning that the characterisation of Koopman
groups is an important problem in Ergodic Theory. We refer to [121] for a review
on the topic, and to the works [81, 160] for a characterisation of Koopman groups
in terms of properties of their generators.

Our aim is to identify a core for the generator of vortex dynamics. This problem
is intimately linked to the one of uniquely extending densely defined symmetric
operators and essential self-adjointness. We recall the following terminology.

Proposition 3.1.3. Consider a symmetric linear operator (L,D) on L2(µ);
each of the following statements implies the next one:

• Essential self-adjointness: the closure of (L,D) is self-adjoint;
• L2(µ) uniqueness: there exists a unique one-parameter strongly continuous

group of unitaries whose generator extends (L,D).
• Markov uniqueness: there exists a unique one-parameter strongly con-

tinuous group of unitaries preserving positivity and unit whose generator
extends (L,D).

While the second implication is trivial, the first one is due to Stone’s theorem:
any one-parameter strongly continuous groups of unitaries on a Hilbert space H
is generated by a self-adjoint operator. We also recall that the first two defini-
tions coincide if (L,D) is semi-bounded; however this will not be the case in our
discussion.

The basic self-adjointness criterion is the following (see [149, Theorem VIII.1]).

Proposition 3.1.4. Let H be a complex Hilbert space, Ut = ei tA a strongly
continuous unitary group on H and A its generator. If D ⊂ D(A) is a dense linear
subset such that Ut(D) ⊆ D, then (A|D, D) is essentially self-adjoint and D is a

core for A, A|D = A.

We will in fact use a modified version of this criterion: the proof is a standard
argument, but we report it for the sake of completeness.

Proposition 3.1.5. Let H be a complex Hilbert space, Ut = ei tA a strongly
continuous unitary group on H and A its generator. If D ⊂ D(A) is a dense subset,
L = A|D and

(3.1.9) ∀t ∈ R,∀f ∈ D, Utf ∈ D
(
L
)
,

then (L,D) is essentially self-adjoint and D is a core for A, L = A.
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Proof. By [149, Theorem VIII.3], if ker(L∗ ± i) = {0}, then L is self-adjoint.
Assume by contradiction that there exists f ∈ D(L∗) such that L∗f = i f (the case
of L∗f = − i f is analogous). Then, for all g ∈ D = D(L) it holds

(3.1.10)
d

dt
〈Utg, f〉H = 〈iAUtg, f〉H =

〈
iLUtg, f

〉
H

= 〈Utg, f〉H ,

where the second passage makes use of the hypothesis Utg ∈ D(L), and the last
one of L∗ = (L)∗. The operator Ut is unitary, so the only solution to the above
differential equation for 〈Utg, f〉 in t is the constant 0, and thus, since g varies on
the dense set D, f = 0.

We are left to show that L = A: this follows easily by differentiating in time

ei tL on D and noting that the result coincides by definition with the derivative of

Ut, so that Ut = ei tL. �

Let us note that condition (3.1.9) can be rephrased as: for all t ∈ R and f ∈ D,
there exists a sequence gn ∈ D such that

(3.1.11) gn
n→∞−−−−→ Utf, Lgn

n→∞−−−−→ LUtf

in the strong topology of H.

3.1.3. The Koopman Group for Point Vortices Systems. We denote
by Tt the group of transformations of T2×N defined in Theorem 1.3.1 –that is the
point vortices flow– and Ut its associated Koopman group for the remainder of
this section. We now define a first set of observables on which we are able to write
explicitly the generator of Ut, and which will turn out to be a core for the generator
in the simple case where vortices all have positive (or negative) intensity.

Proposition 3.1.6. The linear subspace

D =
{
f ∈ C∞(T2×N ) : supp f ∩4N = ∅

}
.

is dense in L2(T2×N ).
Fix ξ ∈ RN . For any f ∈ D the following expression is well defined as a

function in L∞(T2×N ):

(3.1.12) Lf(x) = − i

N∑
i=1

∑
j 6=i

∇if(x) · ξjK(xi − xj),

where ∇if denotes the gradient in the i-th coordinate of T2×N = (T2)N .
The operator (L,D) is symmetric; moreover, if A is the generator of Ut, then

D ⊂ D(A) and L = A|D.

For the sake of clarity, we recall that supp f , the support of f , is the closure of
the set of points on which f 6= 0. Let us also introduce the useful notation

(3.1.13) 4Nε =
{
x ∈ T2×N : d(xi, xj) ≤ ε for some i 6= j

}
,

and notice that the support of any f ∈ D and 4Nε are disjoint for any small enough
ε > 0.

Proof. The density statement is straightforward: smooth functions C∞(T2×N )
are dense in L2(T2×N ), so we only need to show that we can approximate in L2-
norm the elements of C∞(T2×N ) with the ones of D. This is readily done by means
of Urysohn’s lemma —or rather its C∞ version on smooth manifolds, see [47, The-
orem 3.5.1])— which ensures existence of smooth functions gε vanishing on4Nε and
coinciding with a given g ∈ C∞(T2×N ) outside 4Nε′ for 0 < ε < ε′.
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The expression (3.1.12) is well-defined for f ∈ D since ∇f vanishes in a neigh-
bourhood of 4Nε , and moreover

‖Lf‖∞ ≤ Cξ,N ‖f‖C1(T2×N )

(
min

x∈supp f
min
i 6=j
|xi − xj |

)−1

<∞,

because K(x, y) ∼ |x− y|−1 for x→ y in T2.
As for the symmetry part: first one replaces K = ∇⊥G with the cut off kernel

Kε = ∇⊥Gε as in (3.1.3). Integration by parts and the fact that Kε is divergence
free readily show that∫

T2×N
∇if(x) ·Kε(xi − xj)g(x)dxN = −

∫
T2×N

∇ig(x) ·Kε(xi − xj)f(x)dxN ,

in which we can send ε→ 0 by bounded convergence. Summing up all contributions,
multiplying by i and taking into account complex conjugation in the scalar product
of L2(T2×N ) we conclude that (L,D) is symmetric.

It remains to show the following limit in L2(T2×N ),

lim
t→0

Utf − f
t

= Lf, ∀f ∈ D.

But thanks to Theorem 1.3.1, for almost every x ∈ T2×N we have that Utf(x) =
f(Ttx) is a smooth function of t and

(3.1.14)
d

dt
f(Ttx)

∣∣∣∣
t=0

=

N∑
i=1

∇if(x) · ẋi(0) = Lf(x),

so that we can conclude by bounded convergence. �

Uniqueness of the flow in the almost-everywhere sense of Theorem 1.3.1 already
gives us, by means of Theorem 3.1.1, the following uniqueness result.

Proposition 3.1.7. For any fixed ξ ∈ RN , (L,D) is Markov unique, and it

extends to the self-adjoint generator A of Ut = ei tA, the Koopman group of Tt.

Before we move on, in the next section, to identify a core for the generator
of the Koopman group in the general case ξ, let us analyse the simpler case of

vortices with positive (equivalently, negative) intensities, ξ ∈ (R+)N . This indeed
is a simpler case because the energy H(x) controls the minimum distance of vortices
as noted above in (3.1.2)

Theorem 3.1.8. Let ξ ∈ (R+)N . Then the operator (L,D) is essentially self-
adjoint, and its closure coincides with the generator of Ut.

Proof. We apply the classical criterion of Proposition 3.1.4 by showing that
D is left invariant by Ut, that is for any f ∈ D and t ∈ R it holds f ◦ Tt ∈ D. By
(3.1.2) and invariance of H, it holds

∀t ∈ R, min
x∈supp f

min
i6=j

d ((Ttx)i, (Ttx)j) ≥ exp

(
−C max

x∈supp f
H(x)− C ′

)
> 0,

with C,C ′ > 0 constants depending only on ξ and N , so that for any ε > 0 smaller
than the right-hand side of the latter inequality, f ◦ Tt = f ◦ T εt , with T ε being the
flow of (3.1.3) as above. This implies that f ◦Tt is still a smooth function and that
its support is disjoint from 4N , which concludes the proof. �
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3.1.4. A Core for the Liouville Operator: The General Case. As we
mentioned above, when vortices intensities ξ ∈ RN take both positive and negative
values, there might exist initial conditions leading to collapse. More generally, the
minimum distance of vortices along a globally defined trajectory of the flow might
be 0, that is the configuration might pass arbitrarily close to 4N .

As a consequence, even if for f ∈ D the support of f has a positive distance
from the diagonal 4N , trajectories starting from supp f can travel arbitrarily close
to 4N in finite time, and D is thus not invariant for Ut. Moreover, there is no clue
that Ut should preserve C∞ regularity.

Instead of Proposition 3.1.4, we rely in this case on Proposition 3.1.5, which
allows us to check a sort of “approximate invariance” of the candidate core. The
key is in choosing the correct approximation of Ut, and a natural choice might be
to consider the Koopman group of the flow T ε of the smoothed vector field Bε:
unfortunately this choice is inadequate to our purposes, see subsection 3.1.5 below.

We now define a new set of observables, which we will prove to be a core for
A, and a truncated flow that will serve us to check conditions of Proposition 3.1.5.
In fact, the result was already stated in the Introduction:

Definition 3.1.9. We denote by D̃ the linear space of functions f ∈ L∞(T2×N )
such that:

• there exists a version of f and a full-measure open set M ⊂ T2×N on
which f |M ∈ C∞(M), and moreover ∇f |M ∈ L∞(M);

• f vanishes in a neighbourhood of 4N .

Proposition 3.1.10. The linear subspace D̃ is dense in L2(T2×N ), and for any

ξ ∈ RN , f ∈ D̃ the following expression is well defined as a function in L∞(T2×N ):

(3.1.15) Lf(x) = − i

N∑
i=1

∑
j 6=i

∇if(x) · ξjK(xi − xj).

Moreover, (L, D̃) is a symmetric operator and if A is the generator of Ut, then

D̃ ⊂ D(A) and L = A|D̃.

The proof of the latter Proposition is completely analogous to the one for D
above. The following is the main result of the present paper.

Theorem 3.1.11. Let ξ ∈ RN . Then the operator (L, D̃) is essentially self-
adjoint, and its closure coincides with the generator A of Ut.

Instead of smoothing the driving vector field, we simply stop trajectories of
the flow drawing too close to 4N . Since T ε : [0, t] × T2×N → T2×N is a smooth
function on a compact set, by definition dεt : T2×N → R, defined in (3.1.5), is a
continuous function. In particular, the sets {dεt < c}, {dεt > c} are open subsets of
T2×N . Moreover, since ∣∣∣∣∣∣

⋃
c≥0

{x : dεt (x) = c}

∣∣∣∣∣∣ = 1,

the closed sets {dεt = c} are negligible for almost all c ≥ 0. Let us stress that

∀x ∈ {dεt > ε} = {dt > ε} , ∀s ∈ [0, t], T εs x = Tsx.

We define the (lower semicontinuous) function

(3.1.16) τt,ε(x) =

{
t x ∈ {dεt > ε} = {dt > ε}
0 x ∈ {dεt < ε}

,
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and the arrested flow

(3.1.17) Rεtx = Tτt,ε(x)x =

{
Ttx x ∈ {dεt > ε} = {dt > ε}
x x ∈ {dεt < ε}

.

We can assume without loss of generality that |{dεt = ε}| = 0, so that (3.1.16)
and (3.1.17) define τt,ε, R

ε
t on a full-measure open set. Indeed, if {dεt = ε} has

positive measure, we can redefine Rεt = Tt = T ε = T ε
′

on {dεt > ε′} with a slightly
larger ε′ > ε such that {dεt = ε′} is negligible, and the identity outside {dεt > ε′}:
this does not influence any of the forthcoming arguments. That being said, we see
that Rεt has the following properties: for any ε > 0, t ∈ R,

• it is a diffeomorphism on the full-measure open set {dεt 6= ε},
• it is a discontinuous but measurable transformation of the whole T2×N ,
• it is a measure preserving map.

Finally, we define the approximating Koopman operators

(3.1.18) V εt f(x) = f(Rεtx) f ∈ L2(T2×N ),

which are positivity and unit preserving maps taking values in L2(T2×N ).

Proposition 3.1.12. Fix f ∈ D̃ and t ∈ R. Then:

(i) V εt f ∈ D̃;
(ii) V εt f converges to Utf in L2(T2×N ) as ε→ 0;

(iii) AV εt f = LV εt f is well-defined since V εt f ∈ D̃, and it converges to AUtf
in L2(T2×N ) as ε→ 0.

Proof. Starting from item (i), first of all we notice that V εt f = f ◦ Rεt ∈
L∞(T2×N ) because f ∈ L∞(T2×N ). Let M be, as above, the open set on which (a
version of) f is smooth, then

(3.1.19) f ◦Rεt (x) =

{
f(Ttx) x ∈ {dεt > ε} ∩ (T εt )−1M

f(x) x ∈ {dεt < ε} ∩M
.

The sets on the right-hand side are disjoint since {dεt > ε}∩{dεt < ε} = ∅, and open
because intersection of open sets. Moreover, since T εt is measure-preserving,∣∣(T εt )−1M

∣∣ = |M | = 1 ⇒
∣∣{dεt > ε} ∩ (T εt )−1M

∣∣ = |{dεt > ε}|
and also |{dεt < ε} ∩M | = |{dεt < ε}|. This shows that f ◦ Rεt coincides with a
smooth function on a full-measure open set. As for its gradient,

∇ (f ◦Rεt ) (x) =

{
∇f(T εt x)DT εt (x) x ∈ {dεt > ε} ∩ (T εt )−1M

∇f(x) x ∈ {dεt < ε} ∩M
,

where ‖DT εt (x)‖∞ < ∞, and thus ∇ (V εt f) ∈ L∞(T2×N ) since ∇f ∈ L∞(M). By
definition, Rεt (x) = x on {dεt < ε}, which is a neighbourhood of4N , since it contains
all 4Nε′ for ε′ < ε; thus on the intersection of {dεt < ε} and the neighbourhood of
4N on which f vanishes, so must vanish also V εt f , concluding item (i).

Item (ii) follows directly from (3.1.7) and the fact that Ut is unit preserving:

‖Utf − V εt f‖
2
L2 =

∫
{dεt<ε}

|Utf(x)− f(x)| dxN

≤ 2 ‖f‖2∞ |{d
ε
t < ε}| ≤

Ct ‖f‖2∞
− log ε

.

Let us now consider how the generator A acts on V εt f . By definition,

AV εt f(x) =
d

ds

∣∣∣∣
s=0

UsV
ε
t f(x) =

d

ds

∣∣∣∣
s=0

f(RεtTsx).
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For a fixed x in the open set {dεt > ε}, Tsx is well-defined for s in a neighbour-
hood of 0, and it is a smooth function in such time interval. Thus, for small
enough s depending on the x we are fixing, Tsx ∈ {dεt > ε}, and the same is true
if x ∈ {dεt < ε} \ 4N (we are removing the closed negligible diagonal 4N ). As a
consequence, for all x ∈ {dεt > ε},
d

ds

∣∣∣∣
s=0

f(RεtTsx) =
d

ds

∣∣∣∣
s=0

f(TtTsx) =
d

ds

∣∣∣∣
s=0

f(TsTtx) = Lf(Ttx) = UtLf(x),

and analogously for x ∈ {dεt < ε} \ 4N ,

d

ds

∣∣∣∣
s=0

f(RεtTsx) =
d

ds

∣∣∣∣
s=0

f(Tsx) = Lf(x).

We thus see that, for x in a full-measure set,

LV εt f(x) = V εt Lf(x).

Since a strongly continuous unitary group always commutes with its generator on
the domain of the latter, and since Af = Lf for f ∈ D̃,

‖AUtf −AV εt f‖
2
L2 = ‖UtLf − V εt Lf‖

2
L2 =

∫
{dεt<ε}

|UtLf(x)− Lf(x)| dxN

≤ 2 ‖Lf‖2∞ |{d
ε
t < ε}| ≤

Ct ‖f‖2C1

− log ε
,

where C is a constant depending on N and ξ. This concludes the proof of (iii). �

Theorem 3.1.11 is a direct consequence of Proposition 3.1.5 and Proposition 3.1.12.
Indeed, for fixed f ∈ D̃ and t ∈ R, the we have shown that V εt f satisfies condition

(3.1.11), and thus D̃ is a core for A.

3.1.5. Considerations on unsuccessful approaches. In the proof of The-
orem 3.1.11 we use in an essential way the peculiar structure of our approximating
flow Rεt in items (i) and (iii), while (ii) still holds true if we replace Utf with
Uεt f = f ◦ T εt , the approximating flow of [65], for any smooth f ∈ D. There are
two reasons why we are not able to treat the latter setting.

Using the fact that T εt is smooth one can show with some care that Uεt preserves
D. This and estimate (3.1.7) would show that D is a core for A provided that we
can also show that AUεt f strongly converges to AUtf for fixed f ∈ D, t ∈ R (cf.
Proposition 3.1.12). Since Utf and Uεt f coincide on {dεt > ε}, we only need to
evaluate their difference on {dεt ≤ ε}. The set over which we integrate has small
measure t log

(
1
ε

)
, but if we try to bound LUεt f uniformly in x (LUtf = UtLf is

uniformly bounded since Lf is), we are led to control terms including ‖DT εt ‖∞:

since the vector field ‖Bε‖∞ ' ε−2, we get ‖DT εt ‖∞ ' eCε
−2

, which is way too
large to be compared with the measure of the integration set. Considering estimates
in L2 or Lp norms does not seem to solve the issue, either.

We have seen above how an abrupt truncation of the flow allows us to show
that D̃ is a core for A, and it is clear that allowing functions of lower regularity
was necessary to employ this kind of approximation. We further mention only one
more smooth approach. One might define the vector field

(3.1.20) Bδ(x) = Mδ(x)B(x),

with M δ ∈ C∞(T2×N ) vanishing on a δ-neighbourhood of 4N and taking value
1 far from it. The Koopman operators V δt of its associated flow would preserve
D and strongly converge to Ut; however, L and V δt would not commute unless
M δ is a first integral of the motion. As there can not be invariants of the vortex
motions controlling the minimum distance of vortices (as Mδ would do) in the case
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of coexisting positive and negative vortices, we would not be able to continue the
proof as we did for Theorem 3.1.11, and thus have to face explicit computations,
in which the difficulties of the same kind of the ones outlined above appear.

3.2. Generalisations

3.2.1. Point Vortices on the Sphere. All the arguments above still work
with almost no modifications when the torus T2 is replaced with a smooth com-
pact surface with no boundary, such as the sphere S2 =

{
x ∈ R3 : |x| = 1

}
(to be

regarded as an embedded surface). On S2, dσ is the Riemannian volume, so that∫
S2 dσ = 1, and x · y, x × y respectively denote scalar and vector products in R3.

Euler equations on S2 are given by, for x ∈ S2,{
∂tω(x, t) = x · (∇ψ(x, t)×∇ω(x, t)) ,

−∆ψ(x, t) = ω(x, t).

Here ∆ is the Laplace-Beltrami operator, and we have to supplement the Poisson
equation for the stream function ψ with the zero average condition. The Green
function of −∆ is simply given by

−∆G(x, y) = δy(x)− 1, G(x, y) = − 1

2π
log |x− y|+ c,

c ∈ R a universal constant making G zero-averaged. To satisfy in weak sense

Euler equations, the point vortices vorticity distribution ω =
∑N

1 ξiδxi must evolve
according to

(3.2.1) ẋi =
1

2π

N∑
i 6=j

ξj
xj × xi
|xi − xj |2

,

which is still a Hamiltonian system with

H(x1, . . . xN ) =

N∑
i<j

ξiξjG(xi, xj).

In fact, setting K(x, y) = 1
2π

x×y
|x−y|2 , (3.2.1) takes the same form of (1.3.1), and

K is still a skew-symmetric, divergence free function on S2 (divergence being the
adjoint of the gradient operator on functions of S2). We refer to [147] for a more
complete discussion of this setting. It is easy to see that all the features we relied
on in Section 3.1 are still present:

(i) the flow is locally well posed when positions of vortices do not coincide,
and it is measure-preserving because of the Hamiltonian nature of the
equations;

(ii) the crucial cancellation leading to integrability of the Lyapunov function
L(x1, . . . xN ) =

∑
i 6=j G(xi, xj) and thus required for the proof of Theo-

rem 1.3.1 to work still takes place, in this case because (x× y) ⊥ (x− y)
for any x, y ∈ S2;

(iii) as a consequence, the almost-surely well defined point vortices flow Tt
coincide with a smooth one on open sets of large measures, so that we can
implement again the strategy of subsection 3.1.4.

3.2.2. Point Vortices on Bounded Domains. Let D ⊂ R2 be a bounded
domain with smooth boundary and Lebesgue measure |D| = 1, G(x, y) the Green
function of −∆ on D with Dirichlet boundary conditions, which can be represented
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as the sum of its free version GR2(x, y) = − 1
2π log |x−y| and the harmonic extension

in D of the values of GR2 on ∂D,

(3.2.2) G(x, y) = − 1

2π
log |x− y|+ g(x, y),

{
∆g(x, y) = 0 x ∈ D
g(x, y) = 1

2π log |x− y| x ∈ ∂D

for all y ∈ D. Both G and g are symmetric, and maximum principle implies that

(3.2.3) − 1

2π
log(d(x) ∨ d(y)) ≤ g(x, y) ≤ 1

2π
log diam(D),

with d(x) the distance of x ∈ D from the boundary ∂D.
The motion of a system of N vortices with intensities ξ1, . . . , ξN ∈ R and

positions x1, . . . , xN ∈ D is governed by the Hamiltonian function

H(x1, . . . , xn) =

N∑
i<j

ξiξjG(xi, xj) +

N∑
i=1

ξ2
i g(xi, xi),

leading to the system of equations

ẋi(t) =

N∑
j 6=i

ξj∇⊥G(xi(t), xj(t)) + ξ2
i∇⊥g(xi, xi).

The additional (with respect to the cases with no boundary) self-interaction terms
involving g are due to the presence of an impermeable boundary: it is thanks to
these terms that the system satisfies (in weak sense) Euler’s equations. We refer to
[135, Section 4.1] for a thorough motivation of this fact.

In this setting, the relevant features (i)–(iii) we individuated in the last para-
graph are still present, but the boundary enters as an additional singular set of the
vector field, and thus our arguments must take it into account. Without going into
details, we just mention the relevant required modifications:

• the smoothed vector field Bε and its associated flow T ε of subsection 3.1.1
must be defined by smoothing both log |·| and g in (3.2.2): Bε will coincide
with the original vortices vector fieldB whenever vortices are at least ε > 0
apart from each other and from the boundary;

• functions of D must now satisfy supp f ⊂ DN \ 4N , where 4N is the
diagonal set of DN (the definition being the same as in the torus case),

whereas function of D̃ must vanish not only around 4N , but also in a

neighbourhood of
{
x ∈ DN : ∃i : xi ∈ ∂D

}
.

3.2.3. Gibbsian Ensembles and Vortices on the Whole Plane. We now
return to point vortices on T2. We have already mentioned that besides the uniform
measure dxN on T2×N , the point vortices flow Tt also preserves all (Canonical)
Gibbs measures

(3.2.4) dµβ,N (x) =
1

Zβ,N
e−βH(x)dxN , Zβ,N =

∫
T2×N

e−βH(x)dxN .

When β > 0, µβ,N gives more weight to configurations where vortices of the same
sign are far from each other, but positive and negative vortices are close. Vice-versa,
if β < 0, vortices of the same sign tend to cluster. Invariance of µβ,N is an easy
consequence of the one of H(x) and dxN , and it can be achieved by considering the
smoothed vortices interaction Bε with Hamiltonian Hε and sending ε→ 0.

Whatever β is, since µβ,N is absolutely continuous with respect to dxN , the flow
Tt is still globally well-defined on a full-measure set. However, the density of µβ,N
is singular in 4N (save for trivial cases), so uniform integrability of the Lyapunov
functions Lε in Theorem 1.3.1 is spoiled. As a consequence, the arguments in
subsection 3.1.4 also fail.



48 3. LIOUVILLE OPERATOR OF THE POINT VORTICES SYSTEM

Let us now spend a few words on point vortices on R2. The system is given
by (1.3.1) with G(x) = − 1

2π log |x|, and it is well-posed for almost all initial condi-
tions with respect to the product Lebesgue measure provided that no subset of the
intensities {ξ1, . . . ξN} sums to zero, see [135]. The latter condition ensures that
vortices can not travel to infinity in finite time.

The product Lebesgue measure on R2×N is not a probability measure, so we
are led to look for an integrable density on R2 left invariant by the dynamics. To
the best of our knowledge, this is only achieved by the Gaussian measure

dµα,η,N (x) =
1

Zα,η,N
e−η·M(x)−αI(x)dxN , η ∈ R2, α ∈ R+,

M(x) =

N∑
i=1

ξixi, I(x) =

N∑
i=1

ξi|xi|2,

when all vortices are positive, I and M being first integrals of vortices motion, the
moment of inertia and centre of vorticity (see [127, Section 5.3]). The interaction
energy H can be also added to the Gibbs exponential, but this is not a substantial
modification. As we have seen above, the case of positive vortices can be dealt
with by exploiting conservation of energy, so we shall not discuss it further. Un-
fortunately, the more interesting case of arbitrary signs seems to be impossible to
include in our discussion.

3.2.4. The Configuration Space and Non-Uniqueness. In the point vor-
tices time evolution, the number and intensities of vortices are constant — at least
when no vortices collide, as we will see. As a consequence, everything we said still
applies if instead of fixing N, ξ we choose them at random, provided that all ob-
jects are well defined. In order to discuss an arbitrary number of vortices, one can
consider the phase space ⋃

N≥0

(T2 × R)N ,

on which, conditioned to the random choice of N , to be made for instance with a
sample of a Poisson distribution, we consider the product measures dxN ⊗ ν⊗N ,
with ν the probability law of a single intensity ξi ∈ R.

An equivalent (up to symmetrisation of products) point of view is the config-
uration space setting, in which one looks at the law of the vorticity distribution

ω =
∑N
i=1 ξiδxi (the empirical measure of vortices) under the law of the aforemen-

tioned ensemble of vortices. This is the approach of [3]. Let us define

Γ =
⋃
N≥0

ΓN , ΓN =

{
γ =

N∑
i=1

ξiδxi : ξi ∈ R, xi ∈ T2, xi 6= xj if i 6= j

}
,

to be regarded as a subset of finite signed measures M(T2). There is a one-to-one
correspondence between elements of ΓN and classes of equivalence of (T2×R)N up
to permutations. Let ν be a probability measure on R with finite second moment
and λ > 0; we define the measure µN on ΓN as the image of dxN⊗ν⊗N on (T2×R)N

under the aforementioned correspondence, and then we define µ on Γ as

µ = e−λ
∑
N≥0

λN

N !
µN .

Equivalently, µ can be realised by considering a Poisson point process on T2×R with
intensity measure λdx ⊗ dν, the samples of which are vectors (x1, ξ1, . . . xN , ξN ),

and setting µ to be the image law under the map γ =
∑N
i=1 ξiδxi . We refer to [6]

for a complete discussion of Poisson processes and the configuration space.
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By Theorem 1.3.1, for µ-almost every γ ∈
∑N
i=1 ξiδxiΓ the point vortices flow

with initial positions xi and intensities ξi is globally well-defined. Moreover, the
flow defines a group of invertible measurable maps Tt : Γ → Γ, the cursive to
distinguish it from the flow Tt on L2(T2×N ) in Section 3.1. The map Tt preserves µ
since it leaves each ΓN invariant, and for fixed N the point vortices evolution does
not change intensities and preserves the product measure on the torus.

The main contribution of [3] is an explicit expression of the generator of the
Koopman group Ut on L2(Γ, µ) associated to Tt, on the set of cylinder functions
of Fourier modes. In order to comment the problem of essential self-adjointness in
this setting we now repeat their result: we do so perhaps in a more concise way, by
means of the aforementioned Delort-Schochet symmetrisation. Let us thus consider
Euler equations in the weak vorticity form

〈φ, ωt〉 − 〈φ, ω0〉 =

∫ t

0

∫
T2×2

Hφ(x, y)ωs(x)ωs(y)dxdyds

=

∫ t

0

〈Hφ, ωs ⊗ ωs〉 ds,

Hφ(x, y) =
1

2
(∇φ(x)−∇φ(y)) ·K(x− y), x, y ∈ T2,

where Hφ(x, y) is a symmetric function with zero average in both variables and
smooth outside the diagonal set 42, where it has a jump discontinuity. We already

noticed that the empirical measure ω =
∑N
i=1 ξiδxi satisfies such equations when

xi are positions of point vortices.
We define local observables on Γ as the family F of functions of the form

(3.2.5) F (γ) = f(〈φ1, γ〉 , . . . 〈φn, γ〉),
where f ∈ C∞c (Cn,C) and φ1, . . . φn ∈ C∞(T2,C), the brackets 〈·, ·〉 denoting cou-
pling of continuous functions and measures. In [3] the functions φk were chosen in
the Fourier orthonormal basis, but this would not change anything in our discussion.

Proposition 3.2.1. Let Ut be the Koopman group on L2(µ) associated with Tt,
and A be its generator. For any F ∈ F of the form (3.2.5), the following expression
defines an observable in L2(µ),

(3.2.6) LF (γ) = − i

n∑
k=1

∂kf(〈φ1, γ〉 , . . . 〈φn, γ〉) 〈Hφk , γ ⊗ γ〉 .

The operator (L,F) is symmetric, F ⊆ D(A), and A|F = L. Moreover, (L,F) is
Markov unique, that is A is the unique self-adjoint extension generating a strongly
continuous, positivity and unit preserving group of unitaries, which is U = ei tA.

Proof. To show that LF ∈ L2(µ), since ∂kf is uniformly bounded, we just
need to compute for φ ∈ C∞(T2,C),∫

〈Hφ, γ ⊗ γ〉2 dµN (γ) =

∫
T2×N

∫
RN

∑
i 6=j

ξiξjHφ(xi, xj)

2

dxNdνN (ξ)

=

∫
T2×N

∫
RN

∑
i 6=j,` 6=k

ξiξjξ`ξkHφ(xi, xj)Hφ(x`, xk)dxNdνN (ξ)

= 2
∑
i 6=j

∫
R2

ξ2
i ξ

2
j dν(ξi)dν(ξj)

∫
T2×2

Hφ(x, y)2dxdy ≤ Cφ,νN2,

where we made essential use of the fact that Hφ is zero-averaged in both variables,
so the only non vanishing terms in the double sum are the ones with i = `, j = k
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(or vice-versa). We also recall that the ξi’s are independent with finite second
moments. From here,∫

〈Hφ, γ ⊗ γ〉2 dµ(γ) ≤ e−λ
∑
N≥0

λN

N !
Cφ,νN

2 <∞,

from which we easily conclude LF ∈ L2(µ).
We are left to prove that Ut is differentiable on F and that its derivative at

time t = 0 is given by L. However, this is equivalent to show that ωt = Ttγ solves
(1.2.2), which we already know. �

Local observables F are not invariant for Ut: this is due to the nonlinearity of
the dynamics, not to singularity of the interaction. Our techniques thus does not
seem to be suited to this setting.

We conclude by mentioning an idea of [155], from which we quote: “Consid-
ering point vortices to be solutions of the weak vorticity formulation allows us to
extend their dynamics beyond collisions simply by merging vortices that collide into
a single vortex whose strength is the algebraic sum of the colliding vortices. Clearly
this defines a solution for times less than and for times greater than the collision
time, and the resulting vorticity is continuous in time in the weak-* topology of mea-
sures, so that there is no contribution [...] from the “jump” at the collision time. Of
course, this extended notion of point-vortex dynamics is horribly nonunique since
the time-reversibility of the Euler equations implies that a single vortex can split
equally well into several vortices at any time.” Non uniqueness for the weak formu-
lation of Euler equation in the point vortices case might be a clue that (L,F) is not
essentially self-adjoint or even L2(µ) unique. However, producing counterexamples
with collisions or splitting of vortices is a difficult problem: explicit examples of
collisions rely on integrability properties of the Hamiltonian dynamics. Whether
(L,F) is essentially self-adjoint thus remains an interesting open question.



CHAPTER 4

A Central Limit Theorem for Gibbs Ensembles of
Vortices

This Chapter follows [98], and it is devoted to the proof of Theorem 1.5.2 and
its generalisations on other space domains: we have given a general introduction
to the result in Section 1.5 above. The result in a sense completes the one of
[17], in which the same scaling limit of point vortices was performed, but with a
smoothed interaction potential. We also mention that a Central Limit Theorem
for fluctuations of point vortices in the case where D is a disk was derived at the
end of [26]: that result is unfortunately incomplete, since it proves convergence
of integrals of the fluctuation field against a restricted set of test functions. Both
[17, 26] emphasise the relevance of a good control of partition functions, which in
fact is crucial in the present work. Most of the underlying physical understanding
of the topic goes back to classical works: we mainly refer to the ones of Kraichnan
and Onsager, see respectively [113, 143] and references therein.

In Section 4.1 we discuss in detail the result in the case where D = T2 is the
2-dimensional torus: the main result is Theorem 1.5.2, which we presented above
in Chapter 1. In principle, the result could be extended to compact Riemannian
surfaces D: we do not pursue such generality, and we only consider two other
physically relevant geometries, namely the 2-dimensional sphere S2 and bounded
domains of R2. The former, being a compact surface without boundary, is com-
pletely analogous to the case on T2, and it is briefly discussed in Section 4.2. In
Section 4.3 we show how to adapt the previous arguments to the case of a bounded
domain, the main issue being the self-interaction terms in the Hamiltonian due to
the presence of a boundary. Finally in Section 4.4, as concluding remarks, we out-
line how our result compares to the well established literature on mean field limits
for point vortices.

4.1. The Periodic Case

Let N ∈ N (the number of vortices), γ > 0, β ≥ 0 (the inverse tempera-
ture), ξ1, . . . , ξN ∈ R (the intensities of vortices), x1, . . . , xN ∈ T2 (the positions of
vortices) and the Hamiltonian

H(x1, . . . , xN ) =

N∑
i<j

ξiξjG(xi, xj)

on the phase space T2×N . In what follows, intensities will always be given as
ξi = σi√

γN
, with signs σi = ±1, according to the central limit scaling. The arguments

of the present Section work for any choice of the sequence of signs σN1 , . . . σ
N
N = ±1

for N ≥ 1: we assume that such a choice is performed once and for all, and drop
the apex N to ease notation. The main result of this section is convergence of
Gibbs ensemble of vortices µNβ,γ defined above to the energy-enstrophy measure
µβ,γ , which we introduced in Chapter 1 and rigorously discussed in Section 2.4.

51
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4.1.1. On Gibbs Measures for Point Vortices. Let us consider the mea-
sure on T2×N defined by

(4.1.1) νβ,γ,N (dx1, . . . , dxN ) =
1

Zβ,γ,N
exp (−βH(x1, . . . , xN )) dx1, . . . , dxN ,

with Zβ,γ,N , the partition function, being the constant such that νβ,γ,N is a prob-
ability measure. Notice that, even if it is not made explicit, the partition function
depends also on the choice of signs σi. The measure νβ,γ,N is usually referred to
as the canonical Gibbs’ measure. Since the potential G has a logarithmic singu-
larity, the existence of such measure, or equivalently the finiteness of Zβ,γ,N , is
not completely trivial. The issue is addressed in [127] on bounded domains of R2

for vortices with equal intensities. The technique we apply was first introduced
in [63] in the similar case of a log-gas: a more refined computation deriving the
asymptotics in N in the latter setting can be found in [102].

Proposition 4.1.1. For any choice of γ > 0, β ≥ 0, and signs σi = ±1 as
above, if N > β

πγ then Zβ,γ,N <∞, and the measure νβ,γ,N is thus well-defined.

Proof. By (1.2.1) and Hölder’s inequality,

Zβ,γ,N ≤

∫
T2N

∏
i<j

d(xi, xj)
βξiξj
π

1/2∫
T2N

∏
i<j

e−2βξiξjg(xi,xj)

1/2

,

where the second factor on the right-hand side is bounded (by a constant depending
on all parameters including N) since g is. Let us now turn to the first term. We
relabel the variables as follows: y1, . . . yk are the ones with positive intensities, and
z1, . . . zn−k the negative ones; moreover, yi and zi are couples of closest positive-
negative neighbours, so that

(4.1.2) d(yi, zi) ≤ d(yi, zj) ∧ d(yj , zi) ∀j ≥ i.

We accordingly split

∏
i<j

d(xi, xj)
βσiσj
πγN =

(∏
i<j d(yi, yj)

∏
i<j d(zi, zj)∏

i,j d(yi, zj)

) β
πγN

,

the indices running over all admissible values. By definition and the triangular
inequality,

d(yi, yj) ≤ d(yi, zi) + d(yj , zi) ≤ 2d(yj , zi),

d(zi, zj) ≤ d(yi, zi) + d(yi, zj) ≤ 2d(yj , zi),

so that we can use the terms in the numerator to cancel all terms in the denominator
save for the ones corresponding to closest neighbours (if k 6= N/2 some terms in
the numerator are left over, and we bound them with constants):

∏
i<j

d(xi, xj)
βσiσj
πγN ≤ C

 ∏
1≤i≤k∧n−k

d(yi, zi)

−
β

πγN

,

where C is again a constant depending on all parameters. As soon as N > β
2πγ ,

factors of the latter product are integrable, thus concluding the proof. �

In dealing with limits as N goes to infinity, Gibbs measure will always be
(ultimately) defined, so we will ignore the issue henceforth in this section. Finally,

let us note that ωNβ,γ can be regarded as random variables in Ḣs(T2) for all s < −1,
since signed measures have uniformly bounded Fourier coefficients.
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4.1.2. Potential Splitting and the Sine-Gordon transformation. In
this paragraph we introduce the key tools in the proof of Theorem 1.5.2. The
main issue is the logarithmic singularity of the Green function G. To deal with it
we will decompose G in two parts, a smooth approximation of G and a remainder
retaining logarithmic singularity: for m > 0,

(4.1.3) G = −∆−1 =
(
−∆−1 − (m2 −∆)−1

)
+ (m2 −∆)−1 := Vm +Wm.

Physically, the smooth part Vm corresponds to the long-range part of the potential,
and the singular part Wm to short-range interactions. We will also denote

H = HVm +HWm =

N∑
i<j

ξiξjVm(xi, xj) +

N∑
i<j

ξiξjWm(xi, xj),

the relative splitting of the Hamiltonian. In terms of Fourier series,

Wm(x, y) =
∑
k∈Z2

0

ek(x− y)

m2 + 4π2|k|2
, Vm(x, y) =

∑
k∈Z2

0

m2ek(x− y)

4π2|k|2(m2 + 4π2|k|2)
.

The Green function Wm is called the 2-dimensional Yukawa potential or screened
Coulomb potential with mass m (as opposed to the Coulomb potential G).

We will regard the regular part of the Hamiltonian corresponding to Vm as
the covariance of a Gaussian field. The idea, dating back to [152], originated as a
connection between the classical Coulomb gas theory and sine-Gordon field theory
(hence the name): it will allow us to analyse the convergences in Theorem 1.5.2
by standard Gaussian computations, up to a remainder term involving the Yukawa
potential Wm (whose associated partition function we bound in subsection 4.1.3).
We thus define Fm as the centred Gaussian field on T2 with covariance kernel Vm,
that is

(4.1.4) ∀f, g ∈ L̇2(T2), E [〈Fm, f〉 〈Fm, g〉] =
〈
f,
(
−∆−1 − (m2 −∆)−1

)
g
〉
.

The remainder of this paragraph deals with properties of Fm. The reproducing
kernel Hilbert space is√

−∆−1 − (m2 −∆)−1L̇2(T2) ⊆ Ḣ2(T2),

so that Fm has a Ḣs(T2)-valued version for all s < 1, into which Ḣ2(T2) has
Hilbert-Schmidt embedding. As a consequence, by Sobolev embedding, Fm has a
version taking values in L̇p(T2) for all p ≥ 1.

The field Fm can also be evaluated at points x ∈ T2: the coupling Fm(x) :=
〈δx, Fm〉 is defined as the series, converging in L2(Fm) uniformly in x ∈ T2,

〈δx, Fm〉 =
∑
k∈Z2

0

e2π i x·kF̂m,k, F̂m,k = 〈ek, Fm〉 ∼ NC

(
0,

m2

4π2|k|2 (m2 + 4π2|k|2)

)
.

In other terms, x 7→ Fm(x) is a measurable random field, and Fm(x) are centred
Gaussian variables of variance Vm(x, x) = Vm(0, 0). A straightforward application
of Kolmogorov continuity theorem shows that there exists a version of Fm(x) which
is α-Hölder for all α < 1/2.

Lemma 4.1.2. For any α > 0, p ≥ 1 and m→∞,

E
[
‖Fm‖pp

]
'p (logm)p/2(4.1.5)

E
[
exp

(
−α ‖Fm‖22

)]
' m− α

2π .(4.1.6)
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Proof. Let us begin with moments: by Fubini-Tonelli theorem,

E
[
‖Fm‖pp

]
=

∫
T2

E [|Fm(x)|p] dx = cp

∫
T2

Vm(x, x)p/2dx = cpVm(0, 0)p/2,

where Vm(0, 0) = 1
2π logm + o(logm) can be checked by explicit computation in

Fourier series. As for exponential moments, a standard Gaussian computation (see
[59, Proposizion 2.17]) gives

E
[
exp

(
−α ‖Fm‖22

)]
= exp

{
−1

2
Tr
(
log
(
1 + 2α

(
−∆−1 − (m2 −∆)−1

)))}

= exp

−1

2

∑
k∈Z2

0

log

(
1 +

2αm2

4π2|k|2(m2 + 4π2|k|2)

)
> exp

−∑
k∈Z2

0

αm2

4π2|k|2(m2 + 4π2|k|2)


= exp (−αVm(0, 0)) ' m− α

2π ,

the other inequality descending from analogous computations using log(1 + x) >

x− x2

2 , x > 0, instead of the inequality log(1 + x) < x we just applied. �

Since it holds, for s, t ∈ R,

E
[
ei sFm(x)ei tFm(y)

]
= e−

s2+t2

2 Vm(0,0)e−stVm(x,y),

(and analogous expressions for n-fold products) we can transform the partition
function relative to the regular part of the Hamiltonian HVm :∫

T2N

e−βHVmdx1 · · · dxn(4.1.7)

=

∫
T2N

exp

−β N∑
i 6=j

σiσj
2γN

Vm(xi, xj)

 dx1 · · · dxn

= e
β
2γ Vm(0,0)E

[∫
T2N

exp

(
− i

√
β

γN

N∑
i=1

σiFm(xi)

)
dx1 · · · dxn

]
.

Rewriting the partition function in these terms is the first step in the analysis of
Zβ,γ,N , the next one being a control of the singular part of the potential, which we
could not transform. We deal with Wm in the next paragraph: let us conclude the
present one with the estimate we will use on complex exponentials of Fm. It relies
essentially on:

Lemma 4.1.3. If f ∈ L̇4(T2), then∣∣∣∣∫
T2

ei f(x)dx− e− 1
2‖f‖

2
2

∣∣∣∣ ≤ ‖f‖336
+
‖f‖42

8
.

Proof. Thanks to the zero average condition, we can expand∫
T2

ei f(x)dx− e− 1
2‖f‖

2
2

=

∫
T2

(
eif(x) − 1− i f(x) +

f(x)2

2

)
dx−

(
e−

1
2‖f‖

2
2 − 1 +

‖f‖22
2

)
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and then apply Taylor expansions∣∣∣∣eit − 1− it+
t2

2

∣∣∣∣ ≤ t3

6
,
∣∣e−t − 1 + t

∣∣ ≤ t2

2
.

�

Proposition 4.1.4. For any β, γ > 0 and integer p ≥ 1, if m = m(N) grows
at most polynomially in N , then it holds∫

T2N

e−βHVmdx1 · · · dxn ≤ Cβ,γ,p

(
1 +

m
β

4πγ (logm)
2p

Np/2

)
uniformly in N .

To ease notation, in the following argument we will denote

Ej =

∫
T2

ei ξj
√
βFm(xj) dxj , E = e−

β
2Nγ ‖Fm‖

2
L2 ,

(notice that both depend on N,m) and thus write (4.1.7) as∫
T2N

e−βHVmdx1 · · · dxn = e
β
2γ Vm(0,0)E

 N∏
j=1

Ej


In sight of Lemma 4.1.3, we expect the 0-th order term (in 1/N) to be e

β
2γ Vm(0,0)E

[
EN
]
,

which is O(1) as shown above in Lemma 4.1.2. The forthcoming proof applies the
Taylor expansion of Lemma 4.1.3 to further and further orders.

Proof. For p = 1, we expand the product
∏N
j=1Ej by means of the algebraic

identity

(4.1.8)

N∏
j=1

Ej = EN +

N∑
k=1

(Ek − E)EN−k
k−1∏
j=1

Ej

 ,

from which we can estimate

E

 N∏
j=1

Ej

 = E
[
EN
]

+

N∑
k=1

E

k−1∏
j=1

Ej

 (Ek − E)EN−k


≤ E
[
EN
]

+

N∑
k=1

E [|Ek − E|]

≤ E
[
EN
]

+N · E

[
1

6

(
β

γN

)3/2

‖Fm‖33 +
1

8

(
β

γN

)2

‖Fm‖42

]

≤ Cβ,γ
(
m−

β
4πγ +

(logm)2

√
N

)
.

The higher order terms (in 1/N) have been dealt with in the following way: ex-
ponential factors have been bounded with |Ej |, |E| ≤ 1, only leaving differences
Ek − E from which smallness is obtained. The third step is the crucial application
of Lemma 4.1.3, and the last one is Lemma 4.1.2 and Hölder inequality. The thesis
now follows recalling once again that Vm(0, 0) ' 1

2π logm.
For p = 2, by iterating (4.1.8) we get the identity

N∏
j=1

Ej = EN + EN−1
N∑
k=1

(Ek − E) +

N∑
k=2

k−1∑
`=1

(E` − E)(Ek − E)EN−`−1
`−1∏
j=1

Ej .
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Taking expectations and controlling separately the summands,

E

 N∏
j=1

Ej

 ≤ E
[
EN
]

+

N∑
k=1

E
[
|Ek − E|EN−k

]
+

N∑
k=2

k−1∑
`=1

E [|E` − E| |Ek − E|]

≤ E
[
EN
]

+NE
[
E2(N−k)

]1/2
E
[
|E1 − E|2

]1/2
+

1

2
N(N − 1)E

[
|E1 − E|2

]
. m−

β
4πγ +m−

β(N−k)
4πγN N−1/2(logm)3/2 +N−1(logm)3.

In the latter computation, the second step is Cauchy-Schwarz inequality, while the
third combines Hölder inequality and Lemma 4.1.2 to control

E
[
|Ek − E|2

]
. E

[(
N−3/2 ‖Fm‖33 +N−2 ‖Fm‖42

)2
]
. N−3(logm)3.

The thesis for p = 2 is obtained, since we have shown that∫
T2N

e−βHVmdx1 · · · dxn . 1 +N−1/2(logm)3/2 +m
β

4πγN−1(logm)3,

where the middle term is always o(1) because we are assuming that m(N) grows
at most polynomially.

Further iterations of (4.1.8) to expand products of Ej produce in a completely
analogous manner the required estimate for arbitrary p ≥ 1. Let us only report, as
an example, the third order iteration of (4.1.8):

N∏
j=1

Ej = EN + EN−1
N∑
k=1

(Ek − E) + EN−2
N∑
k=2

k−1∑
`=1

(E` − E)(Ek − E)

+

N∑
k=3

k−1∑
`=2

`−1∑
m=1

(Ek − E)(E` − E)(Em − E)EN−m−2
(m−1∏
j=1

Ej

)
. �

4.1.3. Controlling Partition Functions. We want to analyse separately
the contributions of regular and singular parts of the potential to the partition
function

Zβ,γ,N =

∫
T2N

e−βHVm e−βHWmdxN .

The core idea is that if we send m(N)→∞ along N →∞ with a suitable rate, the
contribution of the Yukawa part of the potential, Wm, becomes irrelevant, and we
can bound Zβ,γ,N uniformly in N . With a uniform bound at hand, identifying the
limit becomes quite simple: we will do so in the next Section, reducing ourselves to
the case β = 0.

Let us thus focus on Wm. Its free version Wm,R2 , that is the Green function
of m2 − ∆ on the whole plane, can be expressed in term of the modified Bessel
function of the second kind K0 as

(4.1.9) Wm,R2(x, y) = Wm,R2(|x− y|) =
1

2π
K0(m|x− y|), x, y ∈ R2,

where K0 is the positive solution of

r2K ′′0 (r) + rK ′0(r)− r2K0(r) = 0, r ≥ 0,
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with logarithmic divergence in r = 0 and exponential decay for large r,

K0(r) = − log(r) +O(1), r → 0,(4.1.10)

K0(r) ≤
√
πe−r√

2r
, ∀r > 0(4.1.11)

(see [1]). Unlike GR2(x) = − 1
2π log |x|, Wm,R2 ∈ L1(R2), hence by Poisson summa-

tion formula it holds, for any distinct x, y ∈ T2,

(4.1.12) Wm(x, y) =
∑
k∈Z2

Wm,R2(|x+ k − y|)−
∫
R2

Wm,R2(|x|)dx,

the integral on right-hand side taking care of the space average. Notice that, since
K0 is positive, so is the first summand in (4.1.12). This representation allows for
a quite precise control of Wm, which we now use to control the rate at which the
partition function relative to Yukawa potential goes to 1 as m→∞.

Proposition 4.1.5. Let N ≥ 1, β/γ > −8π and m > 0. There exists a
constant Cβ,γ > 0 such that∫

T2N

e−βHWmdx1 · · · dxn ≤
(

1 + Cβ,γ
(logm)2

m2

)N
(uniformly with respect to the choice of signs σi).

Proof. As a first step we produce an estimate on Wm(x) = Wm(x, 0) which
separates the short-range, relevant part and a long range remainder. We do so
by means of the representation (4.1.12), so first we have to take a closer look at

Wm,R2 . We choose a small radius 1
m � rm = 2 logm

m � 1, below which we control

Wm,R2 with logarithm: by (4.1.11), and since K0 is decreasing, Wm,R2(x) ≤ C
m2

when |x| ≥ rm (C will denote possibly different positive constants throughout this
proof). Inside the ball B(0, rm), by comparison principle,

(4.1.13) ∀x ∈ B̄(0, rm) Wm,R2(x) ≤ − 1

2π
log

(
|x|
rm

)
+

C

m2

since the right-hand side is the solution to the problem{
−∆u = δ0 in B(0, rm)

u = C
m2 in ∂B(0, rm)

.

Applying (4.1.11) we can bound∑
k∈Z2

0

Wm,R2(|x+ k|) ≤ C
∑
k∈Z2

0

e−m|k| ≤ C

m2
,

so going back to (4.1.12), we control separately the summand k = 0 with (4.1.13)
and the others as above, to get

(4.1.14) 0 <
∑
k∈Z2

Wm,R2(|x+ k|) =≤ − 1

2π
log

(
d(x, 0)

rm

)
χB(0,rm)(x) +

C

m2

(compare with the expansion (1.2.1)). Change of variables and (4.1.9) show that
also

(4.1.15) 0 <

∫
R2

Wm,R2(|x|)dx ≤ C

m2
.
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We now apply Hölder’s inequality to obtain the thesis in the regime |β/γ| < 8π.
Keeping in mind that Wm is translation invariant,∫

T2N

e−βHWmdx1 · · · dxn =

∫
T2N

N∏
i=1

N∏
j 6=i,j=1

exp

(
−βσiσj

2γN
Wm(xi, xj)

)
dx1 · · · dxn

≤
N∏
i=1

 N∏
j 6=i,j=1

∫
T2

exp

(
−βσiσj

2γ
Wm(xj , 0)

)
dxj

1/N

,

so we can restrict ourselves to the case of two particles. Since we are already
neglecting possible cancellations due to signs (and allowing for negative inverse
temperatures β), they are irrelevant: let us say they are opposite to fix ideas.
Applying the above pointwise estimates then leads to∫

T2

exp

(
β

2γ
Wm(x)

)
dx ≤

(
1 +

∫
d(x,0)≤rm

(
d(x, 0)

rm

) β
4πγ

dx

)
eC/m

2

(4.1.16)

≤
(
1 + Cr2

m

)
eC/m

2

= 1 +O

(
(logm)2

m2

)
as soon as β

γ < 8π for integrability, from which the thesis follows.

To cover all positive temperatures β/γ ≥ 0, we resort instead to the technique
employed in Proposition 4.1.1. Assume first that positive and negative vortices
are in equal number, and relabel them by minimal distance dipoles as in Proposi-
tion 4.1.1 (see (4.1.2), whose notation we employ in the following). Then we can
group the summands of the Hamiltonian function as

HWm
=

1

γN

∑
i<j

(Wm(yi − yj)−Wm(zi, yj))(4.1.17)

+
1

γN

∑
i<j

(Wm(zi − zj)−Wm(yi, zj))−
1

2γN

∑
i

Wm(yi, zi).

The first and second term in the formula above are similar, so we only look at the
first one. There are two possible cases to consider. For i < j,

• if d(zi, yj) >
rm
2 , by (4.1.14) and (4.1.15) it holds

W (zi, yj)−Wm(yi, yj) ≤ −
1

2π
log

(
d(zi, yj)

rm

)
+

C

m2
.

1

m2
;

• if d(zi, yj) ≤ rm
2 , then it must be d(yi, zi) ≤ rm

2 , and thus

d(yi, yj) ≤ d(yi, zi) + d(zi, yj) ≤ 2d(zi, yj) ≤ rm,

so that we can bound, again by (4.1.14) and (4.1.15),

W (zi, yj)−Wm(yi, yj) ≤ −
1

2π
log

(
d(zi, yj)

rm

)
+

1

2π
log

(
d(yi, yj)

rm

)
+

C

m2

≤ 1

2π
log

(
d(yi, yj)

d(zi, yj)

)
+

C

m2
≤ C.

We conclude that, in either case,

W (zi, yj)−Wm(yi, yj) ≤ C
(
χd(yi,zi)≤rm/2 +

1

m2

)
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Applying these estimates to the first and second sums in (4.1.17), we can control
the Gibbsian exponential density by

e−βHWm ≤
N∏
i=1

e
β

2γNWm(yi,zi)eCβ,γ(χd(yi,zi)≤rm/2+ 1
m2 ),

so that, integrating over all variables,∫
T2N

e−βHWmdxN ≤
(∫

T4

e
β

2γNWm(y,z)eC(χd(y,z)≤rm/2+ 1
m2 )dydz

)N
.

We are now able to control the two exponentials separately by Cauchy-Schwarz
inequality and (4.1.14), (4.1.15). If 0 < δ < 4πγ

β , the same computation of (4.1.16)

leads to∫
T4

e
β
γNWm(y,z) dy dz ≤

(∫
T4

e
δβ
γ Wm(y,z) dy dz

) 1
δN

≤
(
1 + Cr2

m

) 1
δN e

C
Nm2 ,

while the second factor to control is∫
T2N

eC(χd(y,z)≤rm/2+ 1
m2 )dydz ≤ (1 + Cr2

m)e
C
m2 .

The thesis now follows collecting all estimates. The case in which there are more
positive than negative vortices, or vice-versa, is readily settled as follows. Let PN
and QN be the numbers of positive and negative vortices, say QN < PN . Then
(4.1.17) becomes

HWm =
1

γN

QN∑
i=1

PN∑
j=i+1

(Wm(yi − yj)−Wm(zi, yj))(4.1.18)

+
1

γN

QN∑
i=1

QN∑
j=i+1

(Wm(zi − zj)−Wm(yi, zj))−
1

2γN

QN∑
i=1

Wm(yi, zi)

+
1

γN

PN∑
i=QN+1

PN∑
j=i+1

Wm(yi − yj).

Since it is always Wm & − 1
m2 , the new term appearing in (4.1.18) –the fourth one

in the right-hand side– contributes at most with a factor exp
(
Cβ,γN/m

2
)

to the
exponential integral, so the proof carries on as before. �

Corollary 4.1.6. If N ≥ 1, β/γ ≥ 0, Zβ,γ,N is uniformly bounded in N by a
constant depending only on β, γ.

Proof. Let a > 0, m(N) = Na and p ≥ 1 an integer, then by Proposition 4.1.4
and Proposition 4.1.5 we have

Zβ,γ,N =

∫
T2N

e−βHVm e−βHWmdxN

≤
(∫

T2N

e−2βHVmdxN
)1/2(∫

T2N

e−2βHWmdxN
)1/2

≤ Cβ,γ,p
(

1 +N
aβ
4πγ−

p
2 a2p

)(
1 + Cβ,γ

a2

N2a

)N
.

The partition function Zβ,γ,N is then uniformly bounded in N as soon as

β

4πγ
a <

p

2
, 1− 2a < 0.
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Since, for any given β/γ > 0, we can choose p ≥ 1 in Proposition 4.1.4 large enough
for the interval 1

2 < a < 2πγ
β p not to be empty, the thesis follows. �

Remark 4.1.7. The separation of long-range relevant interaction and singular
short range ones in G = Vm +Wm may in fact be obtained in a variety of ways: a
notable mention is the decomposition G = Vε +Wε, with

Vε = e−ε∆ ∗G =

∫ ∞
ε

e−t∆dt, Wε = G− Vε =

∫ ε

0

e−t∆dt

(in fact, Vε is the smoothed potential considered in [17]). The singular part Wε

admits the representation (4.1.12), with Bessel’s function K0 replaced by the expo-
nential integral function E1. The latter behaves very similarly to K0: it diverges
logarithmically in the origin and decays exponentially for large arguments. Indeed,
this decomposition is completely equivalent to the one we chose for our purposes.

Remark 4.1.8. Bounds on partition functions of point vortices -or the closely
related 2-dimensional Coulomb gas ensembles- are a central part in many works on
the topic. We refer for instance to the ones obtained in [63, 102, 26]. However, the
uniform bound we obtain with our particular scaling of intensities does not seem
to be obtainable from their estimates.

4.1.4. Proof of Central Limit Theorem. We are now able to conclude the
proof of Theorem 1.5.2. The first step is the case β = 0, which in fact does not rely
on the above arguments, and is essentially due to [71].

Proof of Theorem 1.5.2, β = 0. The statement on partition functions is
trivial in this case. Convergence in law of ωN ∼ µNγ to ω ∼ µγ on Ḣs(T2), any
s < −1, is ensured by a straightforward application of the Central Limit Theorem
for sums of independent variables on Hilbert spaces. As for the convergence of the
Hamiltonian: let Gn converge to G in L2(T2×2), with Gn vanishing on the diagonal,
and split∫

G(x, y) :dωN (x)dωN (y): −
∫
G(x, y) :dω(x)dω(y):

=

∫
G(x, y) :dωN (x)dωN (y): −

∫
Gn(x, y)dωN (x)dωN (y)

+

∫
Gn(x, y)dωN (x)dωN (y)−

∫
Gn(x, y)dω(x)dω(y)

+

∫
Gn(x, y)dω(x)dω(y)−

∫
G(x, y) :dω(x)dω(y): .

The L2(Ω,P)-norms of the differences on the right-hand side vanish in the limit.
Indeed, thanks to Lemma 1.5.1, the first one is controlled uniformly in N by

E

[∣∣∣∣∫ G(x, y) :dωN (x)dωN (y): −
∫
Gn(x, y)dωN (x)dωN (y)

∣∣∣∣2
]
.γ ‖G−Gn‖2L̇2(T2×2) ,

and the very same estimate holds for the third summand by Gaussian Itō isometry,
cf. (1.5.2). The second moment of the middle term vanishes as N → ∞ since
we have already proved that ωN converges in law on Hs(T2) for s < −1, so that
ωN ⊗ ωN converges in law on H2s(T2×2) (uniform integrability descends again by
the above estimate and Itō isometry). �

Proof of Theorem 1.5.2, β > 0. Consider variables ωNγ ∼ µNγ converging

to ωγ ∼ µγ as above. We have just seen that if β = 0 the Hamiltonian H(ωNγ )

converges to :E: (ωγ) in L2(Ω,P). Since x 7→ e−βx is a continuous function on R,

this implies that e−βH(ωNγ ) converges in probability to e−β:E:(ωγ) for all β ∈ R. If
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e−βH(ωNγ ) is uniformly integrable in N , then its expected value Zβ,γ,N converges to

Zβ,γ = E
[
e−β:E:(ωγ)

]
. By Corollary 4.1.6,

E
[(
e−βH(ωNγ )

)p]
= Zpβ,γ,N

is uniformly bounded in N for all pβ/γ ≥ 0. As a consequence, e−βH(ωNγ ) is
uniformly integrable if β/γ ≥ 0, thus proving point (1).

Since (e−βH(ωNγ ), ωNγ ) converges in law to (e−β:E:(ωγ), ωγ) on the Polish space

R× Ḣs(T2), any s < −1, we deduce the convergence on Ḣs(T2) of the probability
distributions

dµNβ,γ(ω) = e−βH(ω)dµNγ (ω)→ e−β:E:(ω)dµγ(ω) = dµβ,γ(ω)

for all β ≥ 0. We are only left to prove convergence of the Hamiltonian H(ωNβ,γ)

for ωNβ,γ ∼ µNβ,γ . Since its Laplace transform is given by

E
[
eαH(ωNβ,γ)

]
=

∫
eαH(ω) e

−βH(ω)

Zβ,γ,N
dµNγ =

Zβ−α,γ,N
Zβ,γ,N

,

convergence of partition functions and Lemma 2.4.1 show that

E
[
eαH(ωNβ,γ)

]
N→∞−−−−→ Eµβ,γ

[
eα:E:(ω)

]
with ωβ,γ ∼ µβ,γ , for any α in a neighbourhood of 0 (β/γ as above), and we can
conclude by Lévy continuity theorem (see [106, Theorem 4.3]). �

4.2. The Case of the 2-dimensional Sphere

Consider the 2-dimensional sphere S2 =
{
x ∈ R3 : |x| = 1

}
as an embedded

surface in R3, its tangent spaces as subsets of R3 and gradients of scalar functions
as vectors of R3. On S2 we consider the uniform measure dσ such that

∫
S2 dσ = 1.

The expressions x · y, x× y respectively denote in this section the scalar and vector
products in R3.

Euler equations on S2 are given by, for x ∈ S2,{
∂tω(x, t) = x · (∇ψ(x, t)×∇ω(x, t)) ,

−∆ψ(x, t) = ω(x, t).

Here ∆ denotes the Laplace-Beltrami operator, and we have to supplement the
Poisson equation for the stream function ψ with the zero average condition (just as
we did on T2). The Green function of −∆,

−∆G(x, y) = δy(x)− 1

has the simple form

G(x, y) = − 1

2π
log |x− y|+ c,

with | · | the Euclidean distance of R3 between x, y ∈ S2 and c a constant. Just
like in the case of flat geometries, smooth solutions preserve energy and enstrophy
(1.4.1). The definition of point vortices dynamics is also completely analogous to

the case on T2: the vorticity distribution ω =
∑N

1 ξiδxi evolves according to the
Hamiltonian dynamics (Helmholtz law)

ẋi =
1

2π

N∑
i<j

ξj
xj × xi
|xi − xj |2

,
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with Hamiltonian function corresponding to the (renormalised) energy of the con-
figuration,

H(x1, . . . xN ) =

N∑
i<j

ξiξjG(xi, xj).

We refer to [147] for a more complete discussion of this setting.
The similarity with the periodic case is such that almost the whole Section 4.1

applies to S2: the very same statement of Theorem 1.5.2 holds on S2, with all the
involved objects defined as in that case. The proof proceeds analogously, splitting
G = Vm +Wm as in (4.1.3). The content of subsections 4.1.2 and 4.1.4 only needs
the replacement of Fourier basis ek (which we used in Gaussian computations) with
spherical harmonics. In fact, the only argument in the proof of Theorem 1.5.2 which
needs to be adapted to the case on S2 is the control on Yukawa partition function
of subsection 4.1.3. A careful analysis of the proof of Proposition 4.1.5 reveals that
it is sufficient to prove the following bound on Wm = (m2 −∆)−1.

Remark 4.2.1. The distance between x, y ∈ S2 on the surface is given by the
angle θ ∈ [0, π] formed by the vectors x, y ∈ R3; therefore, by rotation invariance,
G(x, y) = G(θ) and Wm(x, y) = Wm(θ).

Proposition 4.2.2. Let rm = c logm
m with c ≥ 0 large enough. It holds, as

m→∞, uniformly in θ ∈ [0, π],

Wm(θ) =

(
− 1

2π
log

θ

rm
+O(1)

)
χθ≤rm +O(m−2).

On T2, we relied on an explicit representation of Wm. Here, we seize the oppor-
tunity to present a more robust argument, based on the well-known representation

(4.2.1) Wm(x, y) =

∫ ∞
0

e−m
2tp(t, x, y)dt.

in terms of the heat kernel p(t, x, y). Indeed, the following arguments work more
generally on compact Riemannian surfaces without boundary. We nevertheless
prefer to keep using the terminology of S2, for the sake of simplicity. We will make
use of the following properties of the heat kernel p(t, x, y) = p(t, θ), for which we
refer to [139, 142].

Lemma 4.2.3. It holds, for any θ ∈ [0, 2π],

p(t, θ) ≤ C, t ≥ 1,(4.2.2)

p(t, θ) ≤ C

t
√
π − θ + t

e−
θ2

4t , t ≤ 1,(4.2.3)

with C > 0 independent from t. Moreover, for small t, uniformly on θ on compact
sets of [0, π),

(4.2.4) p(t, θ) = qt(θ)H(θ) +O(1), qt(θ) =
1

4πt
e−

θ2

4t , H(θ) =
θ

sin θ
.

Proof of Proposition 4.2.2. It is not difficult to see, using the estimates
(4.2.2) and (4.2.3), that∫ ∞

r2m

e−m
2tp(t, θ)dt+ χ{θ≥rm}

∫ r2m

0

e−m
2tp(t, θ)dt = O(m−2),

so we focus on the main term, χθ≤rm
∫ r2m

0
e−m

2tp(t, θ)dt. Thanks to (4.2.4), we have∫ r2m

0

e−m
2tp(t, θ)dt = H(θ)

∫ r2m

0

e−m
2tqt(θ)dt+O(1).
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Integrating by parts, straightforward computations show that∫ r2m

0

e−m
2tqt(θ)dt =

1

4π

∫ 1

0

exp

(
−c2 log2m− θ2

r2
m

)
ds

s
= − 1

2π
log

θ

rm
+O(1),

and since H(0) = 1 and H is differentiable in 0, the thesis follows. �

4.3. The Case of a Bounded Domain

In this Section, D ⊂ R2 is a bounded domain with smooth boundary, G(x, y)
is the Green function of −∆ on D with Dirichlet boundary conditions. The
naught subscript refers to boundary conditions: Hα

0 (D), α > 0, are the (frac-
tional) L2(D)-based Sobolev spaces defined as the closure of compactly supported
functions C∞c (D) with respect to the norm

‖u‖Hα0 (D) =
∥∥∥(1−∆)α/2u

∥∥∥
L2(D)

,

whereas H−α(D) = Hα
0 (D)′. We recall the representation for the Green function

G given in (3.2.2), and the estimate (3.2.3) deriving from it.

4.3.1. Gibbs Ensembles and Gaussian Measures. The motion of a sys-
tem of N vortices with intensities ξ1, . . . , ξN ∈ R and positions x1, . . . , xN ∈ D is
governed by the Hamiltonian function

H(x1, . . . , xn) =

N∑
i<j

ξiξjG(xi, xj) +
1

2

N∑
i=1

ξ2
i g(xi, xi).

The additional (with respect to the cases with no boundary) self-interaction terms
involving g are due to the presence of an impermeable boundary: it is thanks to
these terms that the system satisfies (in weak sense) Euler’s equations. We refer
again to [135, Section 4.1] for further details. We will consider intensities ξi = σi√

γN

with signs σi = ±1 as in the previous section. We denote by dx the normalized
Lebesgue measure on D, and for γ > 0, β ≥ 0 we define

(4.3.1) νβ,γ,N (dx1, . . . , dxn) =
1

Zβ,γ,N
exp (−βH(x1, . . . , xn)) dx1, . . . , dxn.

Proposition 4.3.1. For any choice of γ > 0, β ∈ R, and signs σi = ±1, if

−8π
N

max(n+, n−)
<
β

γ
< 4π

N

1 + min(n+, n−)
,

then Zβ,γ,N < ∞, and the measure νβ,γ,N is thus well-defined, where n+, n− are,
respectively, the number of vortices with positive and negative intensity.

Proof. Let us denote by Hi the interaction part and by Hs the self-interaction
part of the Hamiltonian H,

Hi =

N∑
i<j

ξiξjG(xi, xj), Hs =
1

2

N∑
i=1

ξ2
i g(xi, xi).

If β < 0, −βHs is bounded from above by (3.2.3). Since G ≥ 0, we can neglect
in Hi the contribution of vortices with different sign and

βHi ≤ −
β

2γN

∑
σi,σj>0

G(xi, xj)−
β

2γN

∑
σi,σj<0

G(xi, xj) := −βH+
i − βH

−
i

The terms H+
i , H−i are functions on disjoint sets of variables, so the integral of

their exponential factorizes in the product of two integrals. We analyse the first
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integral, the estimate of the second will follow likewise. Let I+ = {i : σi > 0}.
Again by (3.2.3), the self-interaction terms is bounded, therefore∫
Di+e−βH

+
i .

∫
Di+

∏
i∈I+

∏
j∈I+,j 6=i

|xi−xj |
β

4πγN ≤
∏
i∈I+

(∫
D

dxi
∏

j∈I+,j 6=i

∫
D

|xi−xj |
β

4πγN n+ dxj

) 1
n+

The integrals above are finite if β
4πγN n+ > −2. Likewise, for H−i we obtain

β
4πγN n− > −2.

We turn to the case β > 0. By the Hölder inequality with conjugate exponents
p and q, we can bound separately the contributions of Hi and Hs

Thanks to (3.2.3), it holds∫
DN

e−βqHs(x1,...,xN )dx1 . . . dxN ≤
(∫

D

d(x)−
βq

4πγN dx

)N
<∞

as soon as β
4πγ < N

q . As for the interaction term, since G is positive and g is

uniformly bounded from above,

−pβHi ≤ −
βp

2πγN

N∑
σi·σj<0

log |xi − xj |+ CN.

Assume without loss of generality that n− ≤ n+, then by the Hölder inequality,∫
DN

e−βHi .
∫
Dn−

∏
i∈I+

(∫
D

∏
j∈I−

|xi − xj |−
pβ

2πγN dxi

)
=

∫
Dn−

(∫
D

∏
j∈I−

|y − xj |−
pβ

2πγN dy
)n+

≤
∫
Dn−

∏
j∈I−

(∫
D

|y − xj |−
pβ

2πγN n− dy
) n+
n−
.

The right-hand side is finite if pβ
2πγn− < 2. Combining the two conditions on p, q

we get the announced restriction on β/γ. �

The reader will notice that, unlike in Proposition 4.1.1, when N →∞ we still
have a restriction on the values of β/γ. See Remark 4.3.7 for more details.

We define the probability µNβ,γ on finite signed measures M(D) as the law of

ωNβ,γ =

N∑
i=1

ξiδxi ,

with x1, . . . xn sampled under νβ,γ,N . In the case of a bounded domain we will
assume the neutrality condition

(4.3.2)

N∑
i=1

σi = 0,

so that ωNβ,γ has zero average.
The limiting Gaussian random field should also have zero space average. Since

the constant function 1 does not belong to the spaces in which we set the problem
(it does not satisfy the Dirichlet b.c.), the definition is somewhat more involved
than it was on T2. Define the bounded linear operator

M : L2(D)→ L2(D), Mf(x) = f(x)−
∫
D

f(y)dy.
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For γ > 0 and β ≥ 0, let ωβ,γ be the centred Gaussian random field on D with
covariance

∀f, g ∈ L2(D), E [〈ωβ,γ , f〉 〈ωβ,γ , g〉] = 〈f,Qβ,γg〉 , Qβ,γ = M∗(γ − β∆)−1M.

Equivalently, ωβ,γ is a centred Gaussian stochastic process indexed by L2(D) with
the specified covariance. Analogously to the torus case, ωβ,γ can be identified with
a random distribution taking values in Hs(D) for all s < −1.

Renormalised energy of the vorticity distribution µβ,γ is defined just as in
(2.4.2), and the equivalent definition of µβ,γ provided by Lemma 2.4.1 still applies
in this context. In fact, all Gaussian computations in Fourier series of the last
Section still work on domains D ⊂ R2 if one considers an orthonormal basis of
L2(D) diagonalising the Laplace operator: for n ∈ N,

−∆en = λnen, λn ∼ n,

the latter being the well known Weyl’s law. The main difference is that explicit
expression in Fourier series on D are complicated by the presence of the zero-
averaging operator M in the covariance. We are now able to state the main result
of the Section, a perfect analogue of the Central Limit Theorem we proved above
on T2.

Theorem 4.3.2. Let β/γ ∈ [0, 8π), assume the neutrality condition (4.3.2),
and set ḡ =

∫
D
g(y, y)dy. It holds:

(1) limN→∞ Zβ,γ,N = eβḡZβ,γ ;
(2) the sequence of M-valued random variables ωN ∼ µNβ,γ converges in law

on Hs(D), any s < −1, to a random distribution ω ∼ µβ,γ , as N →∞;
(3) the sequence of real random variables H(ωN )− ḡ converges in law to :E:

(ω) as N →∞, with ωN , ω as in point (2).

Remark 4.3.3. Minor modifications of our arguments allow to replace the

neutrality condition on intensities with the hypothesis
∑N
i=1 ξi = o((logN)−1/2).

Moreover, it is possible to consider random signs σi taking values ±1 with proba-
bility 1/2, or more generally i.i.d. bounded signs with zero expected value. Such
generalisations are in fact inessential from the physical point of view, namely we
are still dealing with fluctuations around a null profile (see Section 4.4): we omit
details.

We conclude this paragraph proving the case β = 0 (and γ = 1, for notational
simplicity): if we can then provide a uniform bound for partition functions Zβ,γ,N ,
the content of subsection 4.1.4 completely carries on to the domain case. In the
remainder of this Section we show out how to adapt the strategy we used in the
torus case to control partition functions.

The expression (1.5.1) of double stochastic integrals with respect to white noise
still holds, and so does Lemma 1.5.1 in the following form:

Lemma 4.3.4. Let ωN ∼ µN0,γ . On continuous functions h ∈ C(D2) vanishing
on the diagonal, i.e. h(x, x) = 0 for all x, define the map

h 7→
∫
D2

h(x, y)dωN (x)dωN (y) =
∑
i 6=j

ξiξjh(xi, xj).

Since it holds

E


∑
i 6=j

ξiξjh(xi, xj)

2
 ≤ Cγ ‖h‖2L2(D2)
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with Cγ a constant independent of N , the map takes values in L2(µN0,1), and it

extends by density to a bounded linear map from L̇2(D2) to L2(µN0,1) which we will
denote by

f 7→
∫
D2

f(x, y) :dωN (x)dωN (y): .

The proof only differs from the one on T2 in that is uses neutrality of total
intensity in place of the zero average condition. In considering the relation between
the Hamiltonian and renormalised energy, another relevant difference with respect
to the torus case appears: defining the renormalised energy of point vortices as in
Section 4.1,

2 :E: =

∫
D2

G(x, y) :dωN ⊗ dωN :=
∑
i 6=j

ξiξjG(xi, xj)

= 2H −
N∑
i=1

ξ2
i g(xi, xi).

This is why we need corrections depending on ḡ =
∫
D
g(y, y)dy in points (1) and

(3) of Theorem 4.3.2: the Hamiltonian H alone is not a centred variable, and its
mean value is

N∑
i=1

ξ2
i g(xi, xi) =

1

N

N∑
i=1

g(xi, xi),

which converges by the law of large numbers to ḡ. That being said, proceeding as
in subsection 4.1.4 straightforwardly concludes the proof of the case β = 0.

4.3.2. Potential Splitting on Bounded Domains. We want to decompose
G = Vm+Wm as in Section 4.1, with Vm a regular (long range) potential converging
to G as m → ∞, and Wm a singular but vanishing remainder. In order for our
strategy to work we need to rewrite the part of H corresponding to Vm as sum
of covariances (in particular, positive terms) of a regular Gaussian field with zero
space average. At the same time, we will need a quite precise description of Wm.
We thus choose Wm as the Green function of m2−∆ on D with Dirichlet boundary
conditions, that is
(4.3.3)

Wm(x, y) =
1

2π
K0(m|x−y|)+wm(x, y),

{
(m2 −∆)wm(x, y) = 0 x ∈ D
wm(x, y) = − 1

2πK0(m|x− y|) x ∈ ∂D

for all y ∈ D, and where we notice that 1
2πK0(m|x−y|) = Wm,R2(x, y) is the Green

function of m2 −∆ on the whole plane. We then set

Vm = G−Wm, vm = g − wm.

Unfortunately, Vm is not zero averaged, so we need to further define the potential

(4.3.4) V 0
m(x, y) = Vm(x, y)−

∫
D

Vm(x, y)dy−
∫
D

Vm(x, y)dx+

∫
D2

Vm(x, y)dxdy,

which we will use as covariance kernel for the Gaussian field Fm: indeed, notice
that, as an integral kernel,

V 0
m = M∗m2(−∆(m2 −∆))−1M,

thus V 0
m is positive definite and zero averaged.
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Looking now at the corresponding decomposition of the Hamiltonian,

H =

N∑
i<j

ξiξjWm(xi, xj) +
1

2

N∑
i=1

ξ2
iwm(xi, xi) +

N∑
i<j

ξiξjVm(xi, xj) +
1

2

N∑
i=1

ξ2
i vm(xi, xi)

:= HWm
+HVm ,

a simple computation exploiting the neutrality condition yields

N∑
i,j

ξiξjVm(xi, xj) =

N∑
i,j

ξiξjV
0
m(xi, xj)−

N∑
i=1

ξ2
i Vm(xi, xi),

so that, since Vm + vm = Vm,R2 (the Green function of −m−2∆(m2 −∆)), we can
rewrite

HVm =
1

2

N∑
i,j

ξiξjV
0
m(xi, xj)−

1

2

N∑
i=1

ξ2
i Vm,R2(xi, xi).

One can easily show that Vm,R2 is a regular, symmetric, translation invariant func-

tion; moreover, it has a global maximum in Vm,R2(0, 0) = 1
2π logm+ o(logm), as it

is shown by taking the difference of

GR2(x, y) = − 1

2π
log |x−y|, Wm,R2(x, y) =

1

2π
K0(m|x−y|) ∼ − 1

2π
log(m|x−y|),

for close x, y ∈ R2. This, together with (4.3.4), implies that for all x ∈ D we also
have V 0

m(x, x) = 1
2π logm+ o(logm) .

Lemma 4.3.5. Let Fm be the centred Gaussian field on D with covariance kernel
V 0
m. There exists a version of Fm(x) which is α-Hölder for all α < 1/2, and

moreover for any α > 0, p ≥ 1 and m→∞, it holds

E
[
‖Fm‖pp

]
'p (logm)p/2(4.3.5)

E
[
exp

(
−α ‖Fm‖22

)]
. m−

α
2π .(4.3.6)

Proof. Hölder property descends from Kolmogorov continuity theorem since
Vm is continuously differentiable (and so is V 0

m). The estimate of p-moments is the
same as in the periodic case, so let us turn to exponential moments. Identifying
kernels and their associated integral operators, it holds

E
[
exp

(
−α ‖Fm‖22

)]
= exp

{
−1

2
Tr
(
log
(
1 + 2αV 0

m

))}
.

Hence, we only need to compute the asymptotic behaviour in m of TrV 0
m, since

then we can apply the inequalities x − x2

2 < log(1 + x) < x and conclude as in

Lemma 4.1.2. We resort again to Fourier series: by definition of the kernel V 0
m we

have

TrV 0
m =

∞∑
n=1

∫
D2

V 0
m(x, y)en(x)en(y)dxdy

= TrVm − 2

∞∑
n=1

ēn

∫
D2

Vm(x, y)en(x)dxdy +

∫
D2

Vm(x, y)dxdy

∞∑
n=1

ē2
n

= TrVm −
∞∑
n=1

m2ē2
n

λn(m2 + λn)
= TrVm +O(1), m→∞,
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where we denoted ēn the space averages of en(x) (that is, the Fourier coefficients
of the constant function 1). The last passage is a consequence of

0 ≤
∞∑
n=1

m2ē2
n

λn(m2 + λn)
≤

( ∞∑
n=1

m4

λ2
n(m2 + λn)2

)1/2

.

(∫ ∞
1

m4

x2(m2 + x)2
dx

)1/2

=

(
m2 + 2

m2 + 1
− 2 log(m2 + 1)

m2

)1/2

= O(1), m→∞,

where we used
(∑∞

n=1 ē
4
n

)1/2 ≤ ∑∞
n=1 ē

2
n = ‖1‖2L2(D) = 1 and Cauchy-Schwarz

inequality. We conclude by noting that

TrVm =

∞∑
n=1

m2

λn(m2 + λn)
= Vm(0, 0). �

We can now apply the transformation

e−βHVm = e
β
2γ Vm,R2 (0,0)E

[
ei
√
β
∑N
i=1 ξiFm(xi)

]
and proceed as in the previous Section. The proof of Proposition 4.1.4 in the
bounded domain setting is just the same, thanks to Lemma 4.3.5. We are only
left to prove the analogue of Proposition 4.1.5, from which a uniform bound on
partition functions is derived as in Corollary 4.1.6.

Proposition 4.3.6. Let N ≥ 1, |β/γ| ≤ 8π and m > 0. There exists a constant
Cβ,γ > 0 such that∫

T2N

e−βHWmdx1 · · · dxn ≤
(

1 + Cβ,γ
(logm)2

m2

)N
.

Proof. As in the first part of the proof of Proposition 4.1.5, we reduce by
means of Hölder inequality to bound the integral

I =

∫
D2

e
β
2γWm(x,d)dxdy.

We thus proceed to bound pointwise the interaction potentialWm(x, y) = Wm,R2(x, y)+

wm(x, y). Let us first fix x, and consider the small radius rm = 2 logm
m , as we did

in Proposition 4.1.5. For m large enough, B(x, rm) ⊆ D, and we have showed in
Section 4.1 that for all x, y ∈ R2,

Wm,R2(x) ≤ − 1

2π
log

(
|x− y|
rm

)
χB(x,rm)(y) +

C

m2
.

We are thus left to bound wm(x, y): by definition (4.3.3) and the maximum prin-
ciple, it holds, for all x uniformly in y,

wm(x, y) ≤ 1

2π
K0(md(x)) ≤ − 1

2π
log

(
d(x)

rm

)
χd(x)<rm +

C

m2
.

Going back to I, we get

I ≤ eC/m
2

∫
B(x,rm)

(
1 +

(
|x− y|
rm

)− β
4πγ

)
dy ·

∫
D

(
1 +

(
d(x)

rm

)− β
4πγ

)
dx

≤ eC/m
2 (

1 + Cr2
m

)2
,

which concludes just as in Proposition 4.1.5. �
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Remark 4.3.7. The technical reason behind the parameter restriction in Propo-
sition 4.3.6 and Proposition 4.3.1 above could be avoided if a local decomposition
of the Yukawa potential as in Proposition 4.2.2 is available for a general domain
D with smooth enough boundary. Indeed, in that case, one could deduce that
Zβ,γ,N < ∞, and thus that the meaure νβ,γ,N is well defined for all values of
β > 0, γ > 0. Likewise, Proposition 4.3.6 and in turns Proposition 4.3.1 would
hold woithout restrictions.

A way to prove a local decomposition for the Yukawa potential is to use the
same strategy of Section 4.2, namely the general representation (4.2.1), that holds
beyond the geometry of the sphere. Through the point of view of the heat kernel,
the role of the geometry of the domain and of its boundary becomes apparent in
terms of the divergence in time of the heat kernel, whose behaviour depends on
the number of geodetics and their intersection with the boundary. We refer to the
fundamental [139] for further details. We notice in particular that if the intrinsic
geometry of the domain is geodesically convex, that in the flat metric means that
the domain is convex, the same estimates, in particular [139, Theorem 2.1], of
the case without boundary such as the sphere or the torus, hold. This justify the
following corollary, that fully generalizes the central limit theorem of [26] from the
sphere to general convex domains.

Corollary 4.3.8. Assume the neutrality condition (4.3.2). If D is a convex
domain, then the conclusions of Theorem 4.3.2 hold for all β > 0 and γ > 0.

4.4. A Comparison with Mean Field Theory

Let us spend a few words about how our results compare with the mean field
limit studied by [40, 41, 110], on which we will focus in the next Chapter. Those
works cover the case of vortices with identical intensities, while [26, 141] consider
vortices with (random) intensities of different signs. Vortices with random intensi-
ties on S2 have been analyzed in [111].

The scaling of intensities |ξ| ∼ N−1, is dictated by energy considerations, in
order for the dominant (infinite) self-interaction term to vanish. It is not the scaling
we assumed in the previous Sections, as it corresponds to the law of large number
scaling. The scaling of inverse temperature β ∼ N is chosen so that the limit is
non-trivial, see [135]. The resulting Hamiltonian on a bounded domain D ⊂ R2,
with parameters of order one up to rescaling, is

1

N

∑
i<j

σiσjG(xi, xj) +
1

2N

N∑
i=1

σ2
i g(xi, xi),

with σi uniformly bounded. The corresponding Gibbs measure coincides with our
νNβ = νNβ,1.

In the case of a bounded domain, for vortices with the same intensity, [40]
proved that the single vortex distribution, that is the one dimensional marginal of
νNβ , converges to a superposition of solutions to the Mean Field Equation,

(4.4.1) ω =
e−βψ∫

D
e−βψdx

, −∆ψ = ω,

with the Poisson equation for the stream function ψ being complemented with
Dirichlet boundary conditions. Solutions to (4.4.1) are particular steady solutions
of the Euler equations that minimize the energy-entropy functional βE+S, defined
in (1.4.1). A unique minimum exists when β > 0 (and for β ≤ 0 close enough to 0),
so that νNβ converges, in the sense of finite dimensional distributions, to an infinite

product measure (propagation of chaos). Connections of the mean field equation
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with the microcanonical ensemble and equivalence with the canonical ensemble are
considered in [41].

The case of intensities with different signs is studied in [26] through a large de-
viations approach. Under the assumption that the empirical measure of intensities
converges to a probability distribution µ, the joint empirical measure of intensities
and positions satisfies a large deviation principle with speed N−1, and the extended
energy-entropy functional as rate function:

(4.4.2) H(ν) +
β

2

∫
R2×D2

σσ′G(x, x′)ν(dσ, dx)ν(dσ′, dx′),

where H is the relative entropy of ν with respect to the product of µ and the nor-
malized Lebesgue measure on D. The mean field equation satisfied by the density
(corresponding to the Euler-Lagrange equation for the minimisation problem of the
rate function) is

ρ(σ, x) =
1

Z
e−βσψ,

with Z a normalising constant and ψ is the averaged stream function,

(4.4.3) ψ(x) =

∫
σG(x, y)ρ(σ, y)µ(dσ)dy.

Similar statement also hold in the periodic case.
Looking back to our setting, in both the case of zero average vortices on T2,S2,

and the one of vortices in a bounded domain D with neutral global intensity, for
β ≥ 0, the free energy (4.4.2) is non-negative and attains the value zero on the
N -fold product uniform measure. Moreover, the stream function (4.4.3) is null.
The large deviations principle of [26] implies a law of large numbers, while our
Theorem 1.5.2 and Theorem 4.3.2 provide the convergence of fluctuations with
respect to the null average. We mention again the central limit theorem derived
in [26], which is however restricted to a disk domain and to a small class of test
function.



CHAPTER 5

Decay of Correlations in the Mean Field Limit

Mean Field scaling limits of 2-dimensional Euler point vortices, or the equiva-
lent 2-dimensional Coulomb gas, are a classical topic in Statistical Mechanics, and
a well established literature is devoted to them. The contribution to such theory
of [99], to which this Chapter is devoted, consists in determining the rate at which
correlations of vortices, i.e. charges, decay in the Mean Field limit.

Once again we focus on T2 as space domain: other 2-dimensional compact
manifolds without boundary, or bounded domains of R2 with smooth boundaries
can be covered by minor modifications of our arguments. On T2, in the Mean Field
scaling limit, that is in the limit N →∞, β → 0, Nβ = 1, the k-particle correlation
function of the Gibbsian enseble converge to 1. In other words, in such limit the
positions of vortices completely decorrelates. To evaluate the rate at which this
happens we will resort to the technique developed in the previous Chapter, in fact
exploiting techniques dating back to classical works on statistical mechanics of the
Coulomb Gas, such as the aforementioned [80, 152, 33, 34, 107, 108].

5.1. Mean Field Theory and Previous Results

Our discussion begins with a brief review of the Mean Field theory for point
vortices on the torus T2. We consider a system of an even number N of vortices
with positions

(x1, . . . xN ) =
(
y1, . . . yN/2, z1, . . . zN/2

)
;

the first N/2 vortices have intensity +1, the others −1. For brevity, we will denote
x = (y, z) ∈ T2×N the array of all positions. We consider the Canonical Gibbs
measure at inverse temperature β associated to the Hamiltonian

(5.1.1) HN (x) =
1

2

N/2∑
i6=j

(G(yi, yj) +G(zi, zj))−
N/2∑
i=1

N/2∑
j=1

G(yi, zj).

In order to avoid redundant notation, we already introduce in the definition of
Gibbs’ measures the Mean Field Limit scaling, β 7→ β

N .
We have seen above that for any 0 ≤ β < 4πN ,

Zβ,N =

∫
T2×N

e−
β
NHN (x)dxN <∞, dµβ,N (x) =

1

Zβ,N
e−

β
NHN (x)dxN ,

defines a probability measure on T2×N , symmetric in its first N/2 variables yi and
in the second N/2 variables zi.

The central object of our discussion is the k-point correlation function, the aim
being understanding its asymptotic behaviour in the limit N →∞. We fix a finite
number of vortices: by symmetry, there is no loss in considering (y1, . . . , yh, z1, . . . z`)
for N ≥ h+ `. To ease notation, we will write

x = (x̂, x̌), x̂ = (ŷ, ẑ) = (y1, . . . , yh, z1, . . . z`),

71
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and analogously x̌ the array of vortices we are not fixing. We define

ρNh,`(y1, . . . , yh, z1, . . . z`) = ρNh,`(x̂) =
1

Zβ,N

∫
TN−h−`

e−
β
NHN (x)dx̌.

Here and from now on dx̌ (respectively dx̂) indicates integration with respect to
the N − h− ` 2-dimensional variables x̌ (resp. the h+ ` variables x̂).

Theorem 5.1.1. Let β > 0; the free energy functional

F(ρ+, ρ−) =
1

β

∫
T2

(ρ+ log ρ+ + ρ− log ρ−) +

∫
T2

(ρ+ − ρ−)G ∗ (ρ+ − ρ−),(5.1.2)

ρ+, ρ− probability densities on T2 such that ρ± log ρ± ∈ L1(T2),

admits the unique minimiser ρ+ = ρ− ≡ 1. For any 1 ≤ h+ ` ≤ N and 1 ≤ p <∞,
the (h+`)-point correlation function ρNh,` converges to ρ⊗h+ ⊗ρ⊗`− ≡ 1 in Lp topology,

(5.1.3) lim
N→∞

∥∥ρNh,` − 1
∥∥
Lp(T2×N )

= 0.

The latter is a classical result, valid for more general geometries of the space
domain and for small negative temperatures regimes, although in such generality
the minimiser of the functional (maximiser for β < 0) might not be unique and
limit points of the sequence (ρNk,h)N∈N can thus be superpositions of minima (resp.

maxima) of F . We refer to [40, 41] and the monography [127] for a complete
discussion.

Stationary points of the free energy can be characterised as solutions of the
Mean Field equation for the potential φ = G ∗ (ρ+ − ρ−),

−∆φ =
e−βφ

Z+
− eβφ

Z−
, Z± =

∫
T2

e∓βφdx,

which, up to a suitable choice of the average ψ = φ + c, is equivalent to the sinh-
Poisson equation,

(5.1.4) ∆ψ =
1

α
sinh(βψ), 4α2 =

∫
T2

e−βψdx

∫
T2

eβψdx,

see [135, section 7.5]. Since on the torus there is a unique and trivial solution
ρ ≡ 1, such equivalence is trivial in our setting: it is nonetheless a more general
fact.

The main result of the present paper is the following refinement of Theo-
rem 5.1.1, concerning the rate at which the convergence (5.1.3) takes place.

Theorem 5.1.2. For any β > 0, 1 ≤ k + h ≤ N and 1 ≤ p <∞,

‖ρNh,` − 1‖Lp(T2×N ) ≤
Cβ,p,h,`√

N
(logN)

3
2 .

The core idea behind our computations is the correspondence, provided by
Gaussian integration, between functionals of the vortex ensemble and certain Eu-
clidean field theoretic integrals. We are able to exploit such link, to be outlined in
the forthcoming section, only for positive temperatures, β > 0. This unfortunately
rules out a relevant regime, β < 0, in which the Mean Field equation on T2 admits
nontrivial solutions, see [127].

5.2. The Coulomb Gas and Sine-Gordon Field Theory

The 2-dimensional, Coulomb gas is a classical mechanics system consisting of
point charges: we will consider the case in which there are two species of charges
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of opposite signs, but with same intensity. For a system of N charges, say half
positive and half negative, their dynamics is described by the Hamiltonian function

H =
1

2

N∑
i=1

p2
i +

1

2

∑
i 6=j

σiσjG(xi, xj),

where G is the Green function of the Laplacian, as above, xi are the positions and
pi the momenta of the charges, σi = ±1 the signs of the charges. In Gibbsian
ensembles of the system, momenta have Maxwellian (Gaussian) independent distri-
butions; when dealing with correlation functions or analogous functionals –which
is ultimately the aim of the present work– we can always integrate them out: it
is thus convenient to only consider the configurational (interaction) part of the
Hamiltonian.

We consider the system of charges in a bounded domain D ⊆ R2, so boundary
conditions have to be supplemented to define G: for the sake of this discussion
there is no difference in considering free boundary conditions, Dirichlet boundary
conditions (physically interpreted as considering the system in a cavity inside a
conductor) or the periodic case T2. It is immediate to observe that the (configura-
tional) Canonical Gibbs ensemble for the 2D Coulomb gas actually coincides with
the vortices ensemble defined above, provided that the same boundary conditions
are taken into account, since the configurational part of the Hamiltonian H is in
fact the same as (5.1.1).

5.2.1. The Sine-Gordon representation. It is a classical and well-known
fact that Gaussian integration provides a correspondence between two-dimensional
Coulomb gas and the Sine-Gordon field theory, as described in [152]. This equiva-
lence has been instrumental in the study of both systems, see for instance [80, 33,
34], since it allowed to employ techniques from both statistical mechanics and field
theory. The remainder of this section is dedicated to review such correspondence,
which we will exploit in the proof of Theorem 5.1.2. The following arguments are
mostly formal and not rigorous: indeed we only aim to provide a heuristic motiva-
tion of the techniques we are going to use.

The equivalence with Sine-Gordon theory is exact only when the Coulomb gas
is considered in the Grand Canonical ensemble. Let us then consider the (configu-
rational part of the) Grand Canonical partition function,

Zz,β =

∞∑
n=0

zn

n!

∫
Dn

exp (−βHn(x1, σ1, . . . xn, σn)) dxndνn,(5.2.1)

where the activity z > 0 controls the arbitrary (Poisson distributed) number n of
charges and ν is the law of a 1

2 -Bernoulli variable on {±1}; the positions xi and

signs σi are thus independent variables with law, respectively, dx on T2 and ν.
Notice that the neutrality condition has been replaced with an average neutrality,∫
σdν(σ) = 0; this is only for the sake of simplicity of exposition, different and

more general choices can be made.
The corresponding (Euclidean) Sine-Gordon field theory has Lagrangian

L(φ) = β |∇φ|2 − 2z cos (βφ) ,

so that the vacuum expectation value is

Vz,β =

∫
e−

∫
L(φ)dxDφ =

∫
exp

(
−β
∫
D

|∇φ|2dx+ 2z

∫
D

cos(βφ)dx

)
Dφ.

The equivalence with Grand Canonical Coulomb gas is most immediately seen by
observing that the partition function Zz,β actually coincides with the Sine-Gordon
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vacuum expectation, up to a normalising factor given by the vacuum expectation
of the free field,

(5.2.2) Zz,β = Vz,β/V0,β .

This can be shown with the following formal computation. If X,Y are two real
standard Gaussian variables, it holds

e
s2+t2

2 E
[
ei sXei tY

]
= e−stE[XY ].

By means of this Fourier transform, we can thus formally see any exponential
function e−G(xi,xj) as the field theoretic correlation function of the field operators
eiχ(xi), eiχ(xj) with respect to the free (Gaussian) theory with action

∫
|∇χ|2dx

(the 2-dimensional Gaussian free field). More explicitly, we write∫
ei β

∑n
i=1 σiχ(xi)e−β

∫
D
|∇φ|2dxDφ∫

e−β
∫
D
|∇φ|2dxDφ

= exp

−β
2

n∑
i 6=j

σiσjG(xi, xj)

 .

The computation is only formal since the random field χ has singular covariance:
its samples are not functions (χ can be realised as a random distribution), and
thus the above complex exponentials need renormalisation to be rigorously defined.
Proceeding with the formal computation (in which for a moment we omit the infinite

renormalisation term V0,β =
∫
e−β

∫
|∇φ|2Dφ),

∞∑
n=0

zn

n!

∫
dx1 · · · dxndν(σ1) · · · dν(σn)

∫
e−β

∫
D
|∇φ|2dxDφei β

∑n
i=1 σiχ(xi)

=

∞∑
n=0

zn

n!

∫
e−β

∫
D
|∇φ|2dxDφ

(∫
dxdν(σ)ei βσχ(x)

)n
=

∫
e−β

∫
D
|∇φ|2dxDφ

∞∑
n=0

zn

n!

(∫
dx2 cos(βχ(x))

)n
=

∫
e2z

∫
cos(βφ(x))dxe−β

∫
D
|∇φ|2dxDφ = Vz,β ,

from which (5.2.2).

5.2.2. Mean Field Scaling and Correlation Functions. The Mean Field
scaling of Coulomb charges in the Canonical ensemble is

β 7→ εβ, N 7→ N

ε
, ε→ 0,

and it corresponds in the Grand Canonical Ensemble to

β 7→ εβ, z 7→ z

ε
, ε→ 0

(ε sometimes referred to as the plasma parameter). Applying the Mean Field scaling
to the Sine-Gordon theory one recovers the Klein-Gordon field theory: looking at
vacuum expectations,

Vz/ε,εβ
ε→0−−−→

∫
exp

(∫
D

|∇φ|2dx+ zβ

∫
D

φ2dx

)
Dφ,

the right-hand side being the vacuum expectation of the theory with Lagrangian

L(φ) = |∇φ|2 − zβφ2,

This is because in such a scaling every term in the power expansion of the
interaction term cos(ξ

√
βφ) is negligible save for the quadratic one. A straight-

forward computation –using for instance Fourier series on T2– reveals that the
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Mean Field scaling limit of Zz,β in fact coincides with the partition function of the
Energy-Enstrophy invariant measure of the 2-dimensional Euler equations,

Zz/ε,εβ = Vz/ε,εβ/V0,0
ε→0−−−→ Zβ =

∫
exp

(
−β
∫
D

ω∆−1ωdx

)
dµ(ω),

dµ(ω) =
1

Z

∫
e−

∫
D
ω2dxDω,

where µ –the Enstrophy measure– is actually the space white noise on T2. The
following result of [98] (to which we refer for a complete discussion of the involved
Gaussian measures), rigorously establishes such convergence for the Canonical en-
semble of charges on the torus T2.

Theorem 5.2.1. For any β ≥ 0,

lim
N→∞

Zβ,N = Zβ .

Let us now fix the first k charges, with positions x1, . . . xk ∈ D and intensities
ξi = σi, σi ∈ {±1}, i = 1, . . . k. Their Grand Canonical correlation function is
obtained considering the ensemble composed of those and other n charges with
random position and intensities, n being also randomly distributed as before,

ρ(x1, ξ1, . . . xk, ξk) =
1

Zz,β

∞∑
n=1

zn

n!

∫
Dn

e−βHn+k(xi,σi)
n+k∏
i=k+1

dxidν(σi)

In the Sine-Gordon correspondence, these statistical mechanics correlation func-
tions transform into the correlation (Green function) of the field operators ei ξiχ(xi),

(5.2.3) ρ(x1, ξ1, . . . xk, ξk) =

∫ ∏k
i=1 e

i
√
βσiφ(xi)e−

1
ε

∫
D
L(φ)dxDφ∫

e−
1
ε

∫
D
L(φ)dxDφ

The latter expression follows from the same formal computations of the previous
paragraph: we applied the Gaussian integration formula with respect to the free
field with Lagrangian 1

ε

∫
|∇φ|2dx, so that the dependence on ε is factored out from

the action.
As ε goes to zero, the dominant contribution of the functional integrals in

(5.2.3) comes from the stationary points of the action S(φ) =
∫
D
L(φ)dx, which are

given by
δS
δφ

= ∆φ− 2z sin(
√
βφ) = 0,

which is equivalent, setting ψ = − iφ, to the Debye-Hückel Mean Field equation,

∆ψ = 2z sinh(
√
βψ),

which is a sinh-Poisson equation in agreement with the one in (5.1.4). In the
particular case of the torus, D = T2, this equation only admits the trivial solution
ψ ≡ 0. The limit of correlation functions can thus be obtained by evaluating the

field operator
∏k
i=1 e

i
√
βσiφ(xi) at the stationary point,

ρ(x1, ξ1, . . . xk, ξk) ∼
k∏
i=1

e−
√
βξiψ(xi) = 1.

Formal computations involving power expansion of the cosine interaction term leads
to further orders behaviour of the correlation function in ε, see [107].

Our work actually finds an analogue in [107], with some important differences:
they consider Coulomb charges in dimension 3 (while we exclusively focus on the
2-dimensional case), and their charges are smeared, the cutoff parameter going to
zero in a suitable rate with respect to the Mean Field scaling, while we retain the
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whole singularity of the interaction. The latter difference is analogous to the one
between the two works [17] and [98].

5.3. Decay of Correlations

Let us now proceed to the proof of our main result, Theorem 5.1.2. The main
difficulty is due to the logarithmic singularity of the Green function G, which we
solve splitting the potential as in the previous Chapter. We thus make use of
notation and results of Section 4.1: for m > 0,

(5.3.1) G = −∆−1 =
(
−∆−1 − (m2 −∆)−1

)
+ (m2 −∆)−1 := Vm +Wm.

and accordingly

H = HVm +HWm =

N∑
i<j

ξiξjVm(xi, xj) +

N∑
i<j

ξiξjWm(xi, xj).

We will regard the regular part of the Hamiltonian corresponding to Vm as
the covariance of a Gaussian field as we formally did in Section 5.2 for the full
Hamiltonian. Let Fm be the centred Gaussian field on T2 with covariance kernel
Vm: we have shown above that Fm has a version taking values in L̇p(T2) for all
p ≥ 1, and a version which is α-Hölder for all α < 1/2. Moreover, we have the
following estimates:

Lemma 5.3.1. For any α > 0, p ≥ 1 and m→∞,

E
[
‖Fm‖pp

]
'p (logm)p/2,(5.3.2)

E
[
exp

(
−α ‖Fm‖22

)]
' m− α

2π ,(5.3.3)

and, moreover, for 0 < α ≤ α′,
(5.3.4) E

[
exp(−α‖Fm‖2L2)

]
− E

[
exp(−α′‖Fm‖2L2)

]
. (α′ − α)m−

α
2π logm.

The first two estimates were proved in Section 4.1; (5.3.4) is obtained consider-
ing the first order Taylor expansion of the exponential and controlling the remainder
by means of Gaussian computations analogous to the ones above.

Let us now consider the Sine-Gordon transformation applied to HVm , that is
we recall (4.1.7):∫

T2N

e−βHVmdx1 · · · dxn

=

∫
T2N

exp

− β

2N

N∑
i6=j

σiσjVm(xi, xj)

 dx1 · · · dxn

= e
β
2 Vm(0,0)E

[∫
T2N

exp

(
− i

√
β

N

N∑
i=1

σiFm(xi)

)
dx1 · · · dxn

]
.

In both expressions, E denotes expectation with respect to the law of the Gaussian
field Fm. We obtained above the following estimate on the regular Gibbs partition
function (see also Proposition 5.3.4 below):

Proposition 5.3.2. For any β > 0 and integer n ≥ 1, if m = m(N) grows at
most polynomially in N , then it holds∫

T2N

e−βHVmdx1 · · · dxn ≤ Cβ,n

(
1 +

m
β
4π (logm)

2n

Nn/2

)
uniformly in N .
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We will also need the control on (the partition function associated to) the
singular part of the potential Wm provided by Proposition 4.1.5. Finally, we will
need some elementary properties of real and complex exponential integrals, which
we isolate here for the reader’s convenience.

Lemma 5.3.3. Let (X,µ) be a probability space and f ∈ L1(X,µ) with
∫
fdµ =

0 and
∫
e−αfdµ <∞ for α > 0. Then for all n ≥ 1,∫ (

e−f − 1
)2n

dµ ≤ 22n−2

∫
(e−2nf − 1)dµ.

Moreover, if additionally f ∈ L4(X,µ) , then∣∣∣∣∫ ei fdµ− e− 1
2‖f‖

2
2

∣∣∣∣ ≤ ‖f‖336
+
‖f‖42

8
.

Proof. Expanding the product,∫ (
e−f − 1

)2n
dµ =

2n∑
k=0

(
2n

k

)
(−1)k

∫
e−kfdµ,

and controlling positive and negative terms respectively with Young’s and Jensen’s
inequalities,

1 ≤ e−k
∫
fdµ ≤

∫
e−kfdµ ≤ k

2n

∫
e−2nfdµ+

2n− k
2n

,

we get ∫ (
e−f − 1

)2n
dµ ≤

(
n∑
k=0

k

n

(
2n

2k

))∫
e−2nfdµ

+

n∑
k=0

(
2n

2k

)
n− k
n
−
n−1∑
k=0

(
2n

2k + 1

)
= 22n−2

∫
(e−2nf − 1)dµ,

which proves the first statement. As for the second one, thanks to the zero average
condition, we can expand∫

T2

ei f(x)dx− e− 1
2‖f‖

2
2

=

∫
T2

(
eif(x) − 1− i f(x) +

f(x)2

2

)
dx−

(
e−

1
2‖f‖

2
2 − 1 +

‖f‖22
2

)
and then apply Taylor expansions∣∣∣∣eit − 1− it+

t2

2

∣∣∣∣ ≤ t3

6
,
∣∣e−t − 1 + t

∣∣ ≤ t2

2
. �

5.3.1. Proof of Theorem 5.1.2. To ease notation, in the following argument
we will denote

Ej =

∫
T2

ei ξj
√
βFm(xj) dxj , E = e−

β
2Nγ ‖Fm‖

2
L2 ,

(notice that both depend on N,m = m(N)) and thus write (4.1.7) as∫
T2N

e−βHVmdx1 · · · dxn = e
β
2γ Vm(0,0)E

 N∏
j=1

Ej
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In sight of Lemma 5.3.3, we expect the 0-th order term (in 1/N) to be given by

e
β
2γ Vm(0,0)E

[
EN
]
, which is O(1) as shown above in Lemma 5.3.1. The forthcoming

proof applies the Taylor expansion of Lemma 5.3.3 to further and further orders.

Proposition 5.3.4. For any β ≥ 0 and integer k ≥ 0, let

Rk =
( N∏
j=k+1

Ej

)
− EN−k.

If m = m(N) grows at most polynomially in N , for every integer n ≥ 1

E[|Rk|] ≤
Cβ,k,n√
N

m−
β
4π (logm)

3
2 +

Cβ,k,n
N

n
2

(logm)3n/2.

Proof. For n = 1, we expand the product
∏N
j=k+1Ej by means of the alge-

braic identity introduced in (4.1.8),

(5.3.5)

N∏
j=k+1

Ej = EN−k +

N∑
`=k+1

(E` − E)EN−`
(

`−1∏
j=k+1

Ej

)
.

For n = 2, by iterating (5.3.5) we get the identity

Rk = EN−k−1
N∑

`=k+1

(E` − E)

+

N∑
k+1≤`1<`2≤N

EN−k−`1+1(E`1 − E)(E`2 − E)

(
`1−1∏
j=k+1

Ej

)
.

For general n, the iteration of (5.3.5) yields,

Rk =

n−1∑
`=1

EN−k−`
∑

k+1≤k1<···<k`≤N

∏̀
j=1

(Ekj − E)

+
∑

k+1≤k1<···<kn≤N

EN−n−k1+1

(
n∏
j=1

(Ekj − E)

)(
k1−1∏
j=k+1

Ej

)
.

To estimate the expectation of Rk, everything boils down to estimate expectations
of terms Ea‖Fm‖3bL3 for a, b > 0. Indeed, we notice that |Ej | ≤ 1 and E ≤ 1, and
that by Taylor expansion, and since Fm has zero average on the torus, |Ej − E| ≤
N−3/2‖Fm‖3L3 . By Lemma 5.3.1 and Cauchy-Schwarz,

E[Ea‖Fm‖3bL3 ] ≤ E[E2a]
1
2 ‖Fm‖6bL3 ]

1
2 ≤ m− a

4πN β(logm)3b.

Thus,

E[|Rk|] .
n−1∑
`=1

N−`/2E
[
EN−k−`‖Fm‖3`L3

]
+

1

N

N−n+1∑
k1=k+1

N−n/2E
[
EN−n−k1+1‖Fm‖3nL3

]
.
n−1∑
`=1

N−`/2m−
N−k−`
4πN β(logm)3`/2 +N−n/2(logm)3n/2

.
1√
N
m−

β
4π (logm)

3
2 +N−n/2(logm)3n/2,

since m is polynomial in N , therefore N−1/2(logm)3/2mβ/4πN is smaller than 1 for
N large enough. �
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Remark 5.3.5. In fact, Proposition 5.3.4 reprises the argument used in [98] to
prove Proposition 5.3.2: indeed, the latter can be deduced from the former.

Proof of Theorem 5.1.2. Fix an even integer N ≥ 1 large enough, an ex-
ponent p ∈ [1,∞), and denote by q ∈ (1,∞] the Hölder conjugate exponent, so that
1/p + 1/q = 1. Let f ∈ Lq(T2×k) be a test function such that ‖f‖Lq ≤ 1. We use
the potential splitting (4.1.3), with m polynomial in N , to decompose the integral
of f , ∫

T2k

f(x̂)ρNh,`(x̂) dx̂ =
1

Zβ,N

∫
T2k

f(x̂)(e−
β
NHWm − 1)e−

β
NHVm dx̂ dx̌

+
1

Zβ,N

∫
T2k

f(x̂)e−
β
NHVm dx̂ dx̌

:= [S] + [R].

We first consider [S]. Let r, s ≥ 1 be such that 1/r+ 1/s = 1/p, then by the Hölder
inequality,

[S] ≤ 1

Zβ,N
‖e−

β
NHWm − 1‖Lr‖e−

β
NHVm ‖Ls .

By Jensen’s inequality, Zβ,N ≥ 1, moreover, by Proposition 5.3.2, ‖e−
β
NHVm‖Ls is

uniformly bounded in N by our choice of m. If n is the smallest integer such that
2n ≥ r (thus 2n ≤ r + 2), by Proposition 4.1.5 and Lemma 5.3.3,

(5.3.6) ‖e−
β
NHWm − 1‖Lr ≤

(∫
T2N

e−
2nβ
N HWm − 1

) 1
2n

.
( N
m2

(logm)2
) 1
r+2

,

since by our choice of m, N/m2 converges to 0 polynomially in 1/N .
We turn to the estimate of [R]. Set

δ(x̂) =

(
h∏
j=1

ei
√
βFm(yj)

)(∏̀
j=1

e− i
√
βFm(zj)

)
,

then as in (4.1.7),

[R] =
1

Zβ,N
e

1
2βVm(0,0)E

[( N∏
j=k+1

Ej

)∫
T2k

f(x̂)δ(x̂) dx̂

]
.

Consider the two terms that originate from the decomposition of the product in
EN−k + Rk. First, by Proposition 5.3.4,

(5.3.7)

e
1
2βVm(0,0)

Zβ,N
E
[
Rk

∫
T2k

f(x̂)δ(x̂) dx̂
]
≤ 1

Zβ,N
e

1
2βVm(0,0)E[|Rk|]

≤ (logm)
3
2

√
N

+
m

β
4π

Nn/2
(logm)3n/2.

By a Taylor expansion,

|δ(x̂)− 1| . 1√
N

h∑
j=1

Fm(yj) +
1√
N

∑̀
j=1

Fm(zj),

therefore, by Lemma 5.3.1,

(5.3.8)
e

1
2βVm(0,0)

Zβ,N

∣∣∣E[EN−k ∫
T2k

f(x̂)(δ(x̂) dx̂− 1)
]∣∣∣ . 1√

N
(logm)1/2.

It remains to consider only the term,

1

Zβ,N

(
e

1
2βVm(0,0)(E[EN−k]− Zβ,N

)∫
T2k

f(x̂) dx̂+

∫
T2k

f(x̂) dx̂
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and we wish to estimate the contribution to the rate of convergence of the term in
brackets in the formula above. Applying the same estimates of above to f ≡ 1, we
see that the term in brackets is, up to error terms of the same order of those in
(5.3.6) and (5.3.7), controlled by

(5.3.9) e
1
2βVm(0,0)(E[EN−k]− E[EN ]) .

1

N
logm

The last inequality follows from Lemma 5.3.1. We finally choose m = Na. With
a = 1 + r

4 , (5.3.6) is controlled by N−1/2(logN)3/2, as well as (5.3.8) and (5.3.9).

Likewise for (5.3.7) if we choose the integer n > 1 + β
2πa. �



CHAPTER 6

Stationary Solutions by Point Vortices
Approximations

In this Chapter, following [94], we discuss again solutions to the 2-dimensional
incompressible Euler’s equation with frictional damping, on the torus T2 = R2/Z2,

(6.0.1) ∂tut + ut · ∇ut +∇pt = −θut + Ft, ∇ · ut = 0,

where θ > 0 and Ft is a stochastic forcing term. We will consider weak solutions in
the form of point vortices systems, and their scaling limit to Gaussian solutions, in
the spirit of [71] and Chapter 4.

We will treat our model equation in vorticity form,

(6.0.2) ∂tωt = −θωt + ut · ∇ωt + Πt, ωt = ∇⊥ · ut,

and exhibit solutions by adapting the point vortices model for Euler’s equation. In-
clusion of the damping term in our model will amount to an exponential quenching
of the vortex intensities, with rate θ. Because of dissipation due to friction (which
physically results from the 3-dimensional environment in which the 2-dimensional
flow is embedded), a forcing term is necessary in order for the model to exhibit
stationary behaviour. We will choose as Πt a Poisson point process, so to add new
vortices and rekindle the system. The linear part of (6.0.2) suggests that stationary
distributions are made of countable vortices with exponentially decreasing inten-
sity, but in fact dealing with solutions of (6.0.2) having such marginals seems to
be as hard as the white noise marginals case. The latter will be also addressed,
considering a central limit scaling of the vortices model, resulting in solutions of
(6.0.2) with space white noise marginal, and space-time white noise as forcing term.

The main result of the Chapter is the existence of solutions to (6.0.2) in these
two cases: infinite vortices marginals and Poisson point process forcing; white noise
marginals and space-time white noise forcing. The latter one draws us closer to the
models in [27], where the forcing term was Gaussian with delta time-correlations.
We will apply a compactness method: our approximant processes will not be ap-
proximated solutions (as in Faedo-Galerkin methods), but true point vortices solu-
tions with finitely many vortices.

6.1. Preliminaries and Main Result

Our space domain is the torus T2: we adopt notation and conventions estab-
lished in previous Chapters. We denote Hα = Hα(T2) = Wα,2(T2) for α ∈ R,
and L2 = L2(T2). We recall that Sobolev spaces enjoy the compact embeddings
Hα ↪→ Hβ whenever β < α, the injections being furthermore Hilbert-Schmitd if
α > β + 1. We will often consider functions of two space variables, i.e. functions
on T2 × T2 = T2×2, and denote by L2

sym(2 × 2) the space of symmetric square
integrable functions,

L2
sym(2× 2) =

{
f ∈ L2(2× 2) : f(x, y) = f(y, x) ∀x, y ∈ T2

}
.
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Analogously, Hα
sym(T2×2), α ∈ R will be the L2

sym(2 × 2)-based Sobolev space of
symmetric functions. The space of finite signed measures on the torus is denoted
by M =M(T2).

The capital letter C will denote (possibly different) constants, and subscripts
will point out occasional dependences of C on other parameters. Lastly, we write
X ∼ Y when the random variables X,Y have the same law.

6.1.1. Random Variables. In order to lighten notation, in this paragraph
we denote random variables (or stochastic processes) and their laws with the same
symbols. Let us also fix H := H−1−δ, with δ > 0, the Sobolev space in which
we embed our random measures and distributions. We will deal with stochastic
objects of Gaussian and Poissonian nature: we refer to [145, 153] for a complete
discussion of the underlying classical theory.

We denote Wt be the cylindrical Wiener process on L2(T2), that is 〈Wt, f〉 is
a real-valued centred Gaussian process indexed by t ∈ [0,∞) and f ∈ L2(T2) with
covariance

(6.1.1) E [〈Wt, f〉 , 〈Ws, g〉] = t ∧ s 〈f, g〉L2(T2)

for any t, s ∈ [0,∞) and f, g ∈ L2(T2). Since the embedding L2(T2) ↪→ H−1−δ(T2)
is Hilbert-Schmidt, Wt defines a H−1−δ-valued Wiener process. The law η of W1

is the white noise on T2, and it can thus be regarded as a Gaussian probability
measure on H−1−δ. Analogously, the law ζ of the (distributional) time derivative
of W is the space-time white noise and it can be identified both with a centred
Gaussian process indexed by L2([0,∞) × T2) and identity covariance operator or
with a centred Gaussian probability measure on H−3/2−δ([0,∞)× T2).

Besides those Gaussian distributions, we will be interested in a number of
Poissonian variables, which we now define in the framework of [145]. For λ > 0,
let πλ be the Poisson random measure on [0,∞) ×H−1−δ with intensity measure
ν given by the product of the measure λdt on [0,∞) and the image of σδx where
σ = ±1 and x ∈ T2 are chosen uniformly at random. In other terms, one can define
the compound Poisson process on H−1−δ (in fact on M),

(6.1.2) Σλt =
∑
i:ti≤t

σiδxi =

∫ t

0

dπλ,

starting from the jump times ti of a Poisson process of parameter λ, a sequence σi
of i.i.d. ±1-valued Bernoulli variable of parameter 1/2 and a sequence xi of i.i.d
uniform variables on T2. Notice that, since its intensity measure has 0 mean, πλ is
a compensated Poisson measure, or equivalently Σλt is a H−1−δ-valued martingale.
Moreover, Σλt has the same covariance of Wt (up to the factor λ):

(6.1.3) E
[〈

Σλt , f
〉 〈

Σλs , g
〉]

= λ(t ∧ s) 〈f, g〉2L2 ,

and also the same quadratic variation,

(6.1.4)
[〈

Σλ, f
〉]
t

= λt ‖f‖2L2 .

We will need a symbol for another Poissonian integral, the H−1−δ-valued (in
fact M-valued) variable

(6.1.5) Ξλ,θM =
∑

i:ti≤M

σie
−θtiδxi =

∫ M

0

e−θtdπλ,

where M, θ > 0. Thanks to the negative exponential, the above integrals converge
also when M =∞, defining a random measure: we will call it Ξλ,θ = Ξλ,θ∞ .
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Remark 6.1.1. By (6.1.5), a sample of the random measure Ξλ,θM is a finite
sum of point vortices ξiδxi with ξi ∈ R, xi ∈ T2. We will say that the random

vector (ξi, xi)i=1...N ∈ (R × T2)N (with random length N) is sampled under Ξλ,θM
if
∑N
i=1 ξiδxi has the law of Ξλ,θM . Analogously (and in a sense more generally

speaking), the sequence (ti, σi, xi)i∈N is sampled under πλ if the sum of σiδtiδxi has
the law of the Poisson point process πλ.

These Poissonian measures are characterised by their Laplace transforms: for
any measurable and bounded f : T2 → R,

E
[
exp

(
α
〈
f,Σλt

〉)]
= exp

(
λt

∫
{±1}×T2

(eασf(x) − 1)dσdx

)
,(6.1.6)

E
[
exp

(
α
〈
f,Ξλ,θM

〉)]
= exp

(
λ

∫
[0,M ]×{±1}×T2

(eασe
−θtf(x) − 1)dtdσdx

)
,(6.1.7)

where dσ denotes the uniform measure on ±1. By the isometry property of Pois-

sonian integrals, the second moments of Σλt and Ξλ,θM are given by

E
[∥∥Σλt

∥∥2

H−1−δ

]
= Cλt, E

[∥∥∥Ξλ,θM

∥∥∥2

H−1−δ

]
= C

λ

θ
(1− e−θM ),

where C = ‖δ‖2H−1−δ is the Sobolev norm of Dirac’s delta.
An important link between the objects we have defined so far is the following:

Proposition 6.1.2 (Ornstein-Uhlenbeck process). Consider the H−1−δ-valued
linear stochastic differential equation

(6.1.8) dut = −θutdt+ dΠt.

If Πt =
√
λWt, there exists a unique stationary solution with invariant measure√

λ
2θη, and if u0 ∼ Cη (C > 0), the invariant measure is approached exponentially

fast, ut ∼
√

λ
2θ (1− e−2θt(1− C2))η.

Analogously, if Πt = Σλt , there exists a unique stationary solution with invariant

measure Ξθ,λ∞ , and if u0 ∼ Ξθ,λM , then ut will have law Ξθ,λM+t for any later time t > 0.

The linear equation (6.1.8), in both the outlined cases, has a unique H−1−δ-
valued strong solution, with continuous trajectories in the Gaussian case, and cadlag
trajectories in the Poissonian one. Well-posedness of the linear equation and unique-
ness of the invariant measure are part of the classical theory, and they descend from
the explicit solution by stochastic convolution:

(6.1.9) ut = e−θtu0 +

∫ t

0

e−θ(t−s)dΠs,

from which it is not difficult to derive also the last statement of the Proposition.

6.1.2. Stochastic Double Integrals. Let η be the space white noise on T2 as
in the previous section. Considering η as a random distribution inH−1−δ, the tensor
product η⊗ η is defined as a distribution in H−2−2δ(T2×2), so for h ∈ H2+δ(T2×2)
we can couple 〈h, η ⊗ η〉.

The couplings of η against L2(T2) functions are only defined as Ito-Wiener
integrals: double Ito-Wiener integrals play a crucial role in our discussion, so let
us reprise and expand the arguments of Section 1.4. We have denoted above the
double stochastic integral with respect to η as

L2
sym(T2×2) 3 h 7→ 〈h, η � η〉 ∈ L2(η)
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the map being an isometry of Hilbert spaces which is not onto: its image is the sec-
ond Wiener chaos. The following Lemma provides a rigorous definition expanding
the one given above.

Lemma 6.1.3. The following provide equivalent definitions of the map h 7→
〈h, η � η〉:

• the extension by density in L2(T2×2) of

L2
sym(T2×2) 3 f � g 7→:〈η, f〉 〈η, g〉:= 〈η, f〉 〈η, g〉 − 〈f, g〉 ∈ L2(η),

for all f, g ∈ L2(T2) and with f � g(x, y) = f(x)g(y)+f(y)g(x)
2 ;

• the extension by density in L2(T2×2) of the map

(6.1.10)
∑

i1,i2=1,...,n
i1 6=i2

ai1,i21Ai1×Ai2 (x, y) 7→
∑

i1,i2=1,...,n
i1 6=i2

ai1,i2η(Ai1)η(Ai2) ∈ L2(η),

where n ≥ 0, A1, . . . , An ⊂ T2 are disjoint Borel sets and ai,j ∈ R, so that
functions of the form above vanish on the diagonal x = y ∈ T2;

• the extension by density in L2(T2×2) of the map

(6.1.11) ∀h ∈ C∞(T2×2) : ∀x ∈ T2 h(x, x) = 0, h 7→ 〈h, η ⊗ η〉 .

For any h ∈ H2+δ
sym(T2×2) it holds as an equality between L2(η) variables

(6.1.12) 〈h, η ⊗ η〉 = 〈h, η � η〉+

∫
T2

h(x, x)dx

(since it is true for the dense subset of symmetric products) where we remark that∫
T2 h(x, x)dx makes sense since h has a continuous version by Sobolev embedding.

We thus see that Ito-Wiener integration corresponds to “subtract the diagonal
contribution” to the tensor product.

Let λ, θ,M > 0. In the Poissonian case, we can define double integrals against
continuous functions h ∈ C(T2×2) P-almost surely as〈

h,Ξλ,θM ⊗ Ξλ,θM

〉
=

∑
i,j:ti,tj≤M

σiσje
−θ(ti+tj)h(xi, xj),

where xi, σi, ti are distributed as in the definition of Ξλ,θM , (6.1.5). If we consider in
the Poissonian case the third approximation procedure of Lemma 6.1.3, we obtain
a different, “renormalised” Poissonian double integral.

Lemma 6.1.4. Let A ⊂ C(T2×2) be the family of continuous functions vanishing
on the diagonal, h(x, x) = 0 for all x ∈ T2. Then for all h ∈ A

(6.1.13) E
[∣∣∣〈h,Ξλ,θM ⊗ Ξλ,θM

〉∣∣∣2] =
λ2

θ
(1− e−θM )2 ‖h‖2L2(T2×2) .

As a consequence, the map A 3 h 7→
〈
h,Ξλ,θM ⊗ Ξλ,θM

〉
∈ L2(Ξλ,θM ) extends by conti-

nuity to a map

L2(T2×2) 3 h 7→
〈
h,Ξλ,θM � Ξλ,θM

〉
∈ L2(Ξλ,θM )

which satisfies (6.1.13), and which is given, for functions h ∈ L2(T2×2) continuous
outside the diagonal set

{
(x, x) : x ∈ T2

}
⊂ T2×2, but possibly discontinuous or

singular on it, by

(6.1.14)
〈
h,Ξλ,θM � Ξλ,θM

〉
=

∑
i,j:ti,tj≤M

i 6=j

σiσje
−θ(ti+tj)h(xi, xj).
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The proof of the latter (as well as the one of Lemma 6.1.3) is a straightforward
computation. In a sense, in the Poissonian case the “subtraction of diagonal con-
tributions” is made even more evident then in the Gaussian case by (6.1.14), where
the sum runs over distinct indices.

6.1.3. Main Results. Fix λ, θ > 0. Our model is the stochastic differential
equation

(6.1.15) dω = −θωdt+ (K ∗ ω) · ∇ωdt+ dΠt,

where dΠt is either the Poisson process dΣλt or the space-time white noise dWt.
We have seen in Proposition 6.1.2 how the linear part of the equation behaves; the
intuition provided by the point vortices system suggests that, thanks to the Hamil-
tonian form of the nonlinearity, the latter only contributes to “shuffle” the vorticity
without changes to the fixed time statistics. This intuition can be motivated as
follows. Since the point vortices system preserves the product Lebesgue measure,

the system must preserve the Poissonian random measures Ξλ,θM we introduced in
subsection 6.1.1, because the positions of vortices under those measures are uni-
formly, independently scattered (this fact will be rigorously proved in Section 6.2
for M < ∞). Building Gaussian solutions by approximation with Poissonian ones
thus must produce the same phenomenon. In other words, with an eye towards
stationary solutions, we expect to be able to build a Poissonian stationary solu-
tion with ωt ∼ Ξθ,λ∞ in the case Πt = Σλt , and a stationary Gaussian solution with

ωt ∼
√

λ
2θη in the case Πt =

√
λWt.

Remark 6.1.5. These claims are deeply related with the fact that 2D Euler’s
equation preserves enstrophy,

∫
T2 ω(x)2dx, when smooth solutions are considered.

The quadratic form associated to enstrophy, that is the L2(T2) product, is (up to

multiplicative constants) the covariance of random fields Ξλ,θM and η: as already
remarked in [4], one should expect all random fields with such covariance to be
invariant for Euler’s equation, even if the very meaning of the latter sentence has
to be clarified.

First and foremost, we need to specify a suitable concept of solution: inspired
by the discussion of the last paragraph, we give the following one.

Definition 6.1.6. Fix T, δ > 0, and let (Ω,F ,P,Ft) be a probability space with
a filtration Ft satisfying the usual hypothesis, and let (ωt)t∈[0,T ] be a H−1−δ-valued
Ft-predictable process, with trajectories of class

(6.1.16) L2([0, T ], H−1−δ) ∩ D([0, T ], H−3−δ)

(D([0, T ], S) denotes the space of S-valued cadlag functions into a metric space S).
On (Ω,F ,P,Ft) we also consider a H−1−δ-valued Ft-martingale (Πt)t∈[0,T ]. We
consider the following cases: for θ, λ > 0,

(P) Πt = Σλt and ωt ∼ Ξλ,θM+t (defined respectively in (6.1.2) and (6.1.5)) for
all t ∈ [0, T ], with 0 ≤M <∞;

(Ps) Πt = Σλt and ωt ∼ Ξλ,θ∞ for all t ∈ [0, T ];

(G) Πt =
√
λWt and ωt ∼

√
λ
2θ (1− e−2θ(M+t))η for all t ∈ [0, T ], with 0 ≤

M <∞;

(Gs) Πt =
√
λWt and ωt ∼

√
λ
2θη for all t ∈ [0, T ].

We say that (Ω,F ,P,Ft,Πt, ω0, (ωt)t∈[0,T ]) is a weak solution of (6.1.15) if for any

f ∈ C∞(T2) it holds P-almost surely for any t ∈ [0, T ]:

(6.1.17) 〈f, ωt〉 = e−θt 〈f, ω0〉+
∫ t

0

e−θ(t−s) 〈Hf , ωs � ωs〉 ds+
∫ t

0

e−θ(t−s) 〈f, dΠs〉 ,
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where 〈Hf , ωs � ωs〉 is defined as in Lemma 6.1.4 in cases (P), (Ps) and as in
Lemma 6.1.3 in (G), (Gs). If instead, given (Ω,F ,P,Ft,Wt) there exists a process
ωt as above, we call it a strong solution.

Remark 6.1.7. The “variation of constants” expression in the above definition
is equivalent to the “integral” one

(6.1.18) 〈f, ωt〉 = 〈f, ω0〉 − θ
∫ t

0

〈f, ωs〉 ds+

∫ t

0

〈Hf , ωs � ωs〉 ds+ 〈f,Πt〉 ,

as one can verify integrating by parts in time. Both versions will be useful in what
follows, but we deem (6.1.17) more suggestive.

Remark 6.1.8. The nonlinear term of (6.1.17) is well-defined thanks to the
isometry properties of Gaussian and Poissonian double integral (see Section 6.1):
indeed, the integrand is bounded in L2(P) uniformly in time, so that, in particular,∫ t

0
〈Hf , ωs � ωs〉 ds is a continuous function of time.

We are now able to state our main result.

Theorem 6.1.9. There exist weak solutions of (6.1.15) in all the outlined cases,
stationary (as H−1−δ-valued stochastic processes) in the cases (Ps) and (Gs).

As already remarked, equation (6.1.15) is difficult to deal with directly in the
Gaussian (or even the stationary Poisson) case: for instance it does not seem pos-
sible to treat it with fixed point or semigroup techniques. We prove existence of
stationary solutions by taking limits of point vortices solutions, corresponding to
the case (P). We begin with a solution ωM of the equation (6.1.15) with noise Σλt
starting from finitely many vortices distributed as Ξθ,λM . Well-posedness in this case
is ensured by a generalisation of Theorem 1.3.1, whose proof is the content of Sec-
tion 6.2. The first limit we consider is M → ∞, so to build a stationary solution
with invariant measure Ξθ,λ and thus obtain existence in case (Ps). Scaling inten-
sities σ → σ√

N
and generation rate λ → Nλ, we prove that as N → ∞ the limit

points are stationary solutions of (6.1.15) driven by space-time white noise and with
invariant measure the space white noise. The nonstationary Gaussian case (G) will
be derived analogously, in this sort of central limit theorem.

We are applying a compactness method : first, we prove probabilistic bounds on
the involved distribution, in order to -second step- apply a compactness criterion
ensuring tightness of the approximating processes; finally, we pass to the limit the
equation satisfied by the approximants.

Remark 6.1.10. Consider the case when no damping or forcing are present:
we noted above that the classical finite vortices system Equation 1.3.1 preserves the

product Lebesgue’s measure, so in particular the distributions Ξθ,λM with M < ∞
and θ, λ > 0 are also invariant. The very same limiting procedure we are going
to use, as M → ∞, proves existence of stationary solutions to Euler’s equation in
its weak formulation with invariant measure Ξθ,λ∞ (or η, the case of [71]). More
generally, Poissonian and Gaussian stationary solutions, as suggested in [4], should
be particular cases of stationary solutions with independently scattered random
distributions.

6.2. Solutions with finitely many vortices

Even in the case of initial data distributed as Ξλ,θM , that is with almost surely
finitely many initial vortices, solving the nonlinear equation

(6.2.1) dω = −θωdt+ (K ∗ ω) · ∇ωdt+ dΣλt
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is not a trivial task. We will build a solution describing explicitly how the initial
vortices and the ones added by the noise term evolve, as a system of increasingly
numerous differential equations for the positions of vortices xi. Intuitively, the
process ωM,t is defined as follows: from the initial datum ωM (0), which is sampled

under Ξθ,λM , we let the system evolve according to the deterministic dynamics

ẋi =
∑
j 6=i

ξje
−θtK(xi, xj)

until the first jump time t1 of the driving noise Σλt , when we add the vortex corre-
sponding to the jump, and so on. To treat the model rigorously, let us introduce
the following notation: let x1,0, . . . , xn,0 and ξ1,0, . . . , ξn,0 be the (random) posi-
tions and signs of vortices of the initial datum, and set for notational convenience
t1 = · · · = tn = 0 their birth time; at time ti it is added a vortex with intensity
ξi,ti = ±1 in the position xi,ti , but we can pretend it to actually have existed since
time 0, and just come into play at the time ti. Thus, our equations are

xi,t = xi,ti + 1ti≤t

∫ t

ti

∑
j 6=i:tj≤s

ξj,sK(xi,s, xj,s)ds,(6.2.2)

ξi,t =

{
ξi,0 t < ti

e−θ(t−ti)ξi,0 t ≥ ti
.(6.2.3)

In this formulation of the problem, part of the randomness consists in the positions
and intensities of the initial vortices and the ones to be: the random jump times
ti then determine when the latter ones become part of the system. Let us thus
fix the ti’s (that is, condition the process given the distribution of the ti’s) so to
reduce us to a deterministic problem with random initial data. The existence of a
solution for almost every initial condition is ensured by the following generalisation
of Theorem 1.3.1.

Proposition 6.2.1. Let (xi,0)i∈N be a sequence of i.i.d uniform variables on
T2. For every locally finite sequence of jump times 0 ≤ t1 ≤ · · · ≤ ti ≤ · · · ≤ ∞
and initial intensities (ξi,0) ∈ [−1, 1] the system of equations (6.2.2) and (6.2.3)
possesses a unique, piecewise smooth and continuous, global in time solution, for a
full probability set which does not depend on the choice of ti, ξi,0. At any time, the
joint law of positions xi is the infinite product of Lebesgue measure on T2.

We use the hypothesis that the jump times ti are locally finite (there are only
finitely many of them in every compact [0, T ]) so to reduce ourselves to a system
of finitely many vortices. In fact, we repeat the proof of [65, 135] adapting it to
our context. The issue is the possibility of collapsing vortices, which is ruled out
as follows. We define an approximating system with interaction kernel smoothed
in a ball around 0: the smooth interaction readily gives well-posedness of the ap-
proximants, on which we evaluate a Lyapunov functional measuring how close the
vortices can get. Bounding the Lyapunov function then ensures that as the regu-
larisation parameter goes to 0, the approximant vortices in fact perform the same
motion prescribed by the non-smoothed equation.

Proof. Let δ > 0, and consider smooth functions Gδ coinciding with G outside
the fattened diagonal

{
(x, y) ∈ T2×2 : d(x, y) < δ

}
(d being the distance on the

torus T2), and such that

(6.2.4) |Gδ(x, y)| ≤ C|G(x, y)|, |∇Gδ(x, y)| ≤ C

d(x, y)
∀x, y ∈ T2.

Note in particular that the latter inequality was already true for G. Let us first
restrict ourselves to a time interval [0, T ]: in particular, we can consider only the
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finitely many vortices with ti ≤ T , let them be x1, . . . , xn. Notice that smoothing
K does not effect the evolution of the intensities ξi,t.

Thanks to Cauchy-Lipschitz theorem, the system with smoothed interaction
kernel Kδ = ∇⊥Gδ has a unique smooth solution xδi,t for t ∈ [0, t1]. The time

derivative ẋδi,t is not right-continuous at t = t1, but on (t1, t2] is again smooth,
so we can extend the unique solution applying Cauchy-Lipschitz in [t1, t2] starting
from xδi,t1 ; notice that the resulting solution on [0, t2] is continuous, although not
differentiable at t1. Proceeding as such we extend well-posedness to all t ≥ 0.

Because of the Hamiltonian structure of the equations, that is, since Kδ =
∇⊥Gδ, it holds div ẋδi,t = 0 for any t 6= t1, . . . tn. As a consequence, by Liouville’s
theorem (see for instance [50, Section 2.2]) the flow is measure preserving on inter-
vals (ti, ti+1], where it is smooth. But we have seen that the solution xδi,t is given
by a composition of such transformations, so that the product Lebesgue measure
is preserved at all times.

Let us now introduce a Lyapunov function measuring how close the existing
vortices are by means of Gδ:

Lδ(t) = Lδ(t, x
δ
1,t, . . . , x

δ
n,t) = −

∑
i 6=j:ti,tj≤t

Gδ(x
δ
i,t, x

δ
j,t).

By replacing Gδ with Gδ−k for a large enough k > 0 in the definition of Lδ we can
assume that Lδ is nonnegative. Observe that, because of (6.2.4),

∫
T2×n Lδ(0)dx1, . . . dxn ≤

C for a constant C independent of δ. Upon differentiating, and keeping in mind
that

ẋδi,t =
∑

j 6=i:tj<t

ξj,t∇⊥Gδ(xδi,t, xδj,t), ∀t > ti, t 6= t1, . . . tn,

(again, the flow is continuous but only differentiable away from jump times), we
obtain, for all t 6= t1, . . . tn,

d

dt
Lδ(t) = −

∑
i 6=j:ti,tj≤t

∇Gδ(xδi,t, xδj,t) · (ẋδi,t + ẋδj,t)

=
∑

i,j,k≤n

ãijk(t)∇Gδ(xδi,t, xδj,t) · ∇⊥Gδ(xδi,t, xδk,t),

where ãijk(t) depend on time t as functions of the intensities ξi,t, ãijk = 0 whenever
two indices are equal, since ∇Gδ(xδi,t − xδj,t) · ∇⊥Gδ(xδi,t − xδj,t) = 0 and it always

holds |ãijk(t)| ≤ 1. As a consequence, and using the fact that the solution xδi,t is
continuous, we have

Lδ(t) = Lδ(0) +
∑

i,j,k≤n

∫ t

0

ãijk(t)∇Gδ(xδi,s, xδj,s) · ∇⊥Gδ(xδi,s, xδk,s)ds.

We can use this to prove the following integral bound on Lδ: denoting by dxn the
n-fold Lebesgue measure of the distribution of initial position,∫

T2×n
sup
t∈[0,T ]

Lδ(t)dx
n ≤

∫
T2×n

Lδ(0)dxn

+
∑′

i,j,k

∫ T

0

∫
T2×n

∣∣∇Gδ(xδi,s, xδj,s) · ∇⊥Gδ(xδi,s, xδk,s)∣∣ dxnds
≤
∫
T2×n

Lδ(0)dxn + T
∑′

i,j,k

∫
T2×n

∣∣∇Gδ(xi, xj) · ∇⊥Gδ(xi, xk)
∣∣ dxn

≤
∫
T2×n

Lδ(0)dxn + TCn

∫
T2×3

∣∣∇Gδ(x, y) · ∇⊥Gδ(x, z)
∣∣ dxdydz ≤ CT ,
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CT being a constant depending only on T (n depends on T ). In the second and

third lines,
∑′

denotes summation over indices i, j, k = 1, . . . n such that no pair of

them coincide. In the second inequality we have used the invariance of Lebesgue’s
measure, in the third one the fact that summation is over distinct indices and in
the last step the aforementioned integrability of Lδ(0) and the fact that, because
of (6.2.4), the integrands in the second term are bounded by∣∣∇Gδ(x− y) · ∇⊥Gδ(x− z)

∣∣ ≤ C

|x− y||x− z|
.

With these estimates at hand, we can now pass to the limit as δ → 0: let

dδ,T (xn) = min
t∈[0,T ]

min
i 6=j

d(xδi,t − xδj,t),

so that
dδ,T (xn) < δ ⇒ sup

t∈[0,T ]

Lδ(t) > −C log(δ),

since when two points x, y are closer than δ, Gδ(x, y) ≥ C log(δ) for some universal
constant C. As a consequence, by Čebyšëv’s inequality,

P(Ωδ,T ) := P(dδ,T (xn) < δ) ≤ C ′(− log δ)−1.

By construction, in the event Ωcδ,T the solution xδi,t is in fact a solution of the

original system in [0, T ]. Hence, the thesis holds if the event

Ω̄ =
⋃
T>0

⋂
δ>0

Ωδ,T

is negligible. But this is true: Ωδ,T is monotone in its arguments, so that the
intersection in δ is negligible because of the above estimates, hence the increasing
union in T must be negligible too. �

The forthcoming Corollary is a direct consequence of Proposition 6.2.1: indeed
to complete our construction we only need to randomise the jump times and inten-
sities so that the initial conditions and driving noise have the correct distribution.
Assume that

• (x1,0, ξ1,0), . . . (xn,0, ξn,0) are positions and intensities of vortices sampled

under Ξθ,λM ,
• (tn+m, xn+m,0, ξn+m,0 = σn+m)m≥1 is sampled under πλ,

both in the sense of Remark 6.1.1, with variables defined on a probability space
(Ω,F ,P). Then there exists a piecewise smooth, cadlag solution of the system of
equations (6.2.2) and (6.2.3) for all t ∈ [0,∞), P-almost surely. Moreover, the
positions of vortices at any time t, xi,t, are i.i.d. uniform variables on the torus T2.

Corollary 6.2.2. In the outlined setting, the process ωM,t =
∑
i:ti≤t ξi,tδxi,t

is a M-valued cadlag Markov process with fixed time marginals ωM,t ∼ Ξθ,λM+t for
all t ≥ 0. It is a strong solution of

dωM = −θωMdt+ (K ∗ ωM ) · ∇ωMdt+ dΣλt ,

in the sense of Definition 6.1.6

Proof. Fix s < t: by construction, given the positions xi,0, the initial in-
tensities ξi,0 and the jump times ti (in a P-full measure event), ωM,t is given by a
deterministic function of (xi,s, ξi,s)i:ti<s and (ti, xi,0, ξi,0)i:s≤ti<t. As a consequence,
ωM,t is a function of ωM,s and of the driving noise (Σλr )s≤r<t, which is independent
from ωM,s: this implies the Markov property. Since the trajectories of positions
xi,t and the evolution of intensities ξi,t are smooth in time, ωM,t is also smooth in
time, save for the jump times ti when a new Dirac’s delta is added.
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As for the marginal distributions, let us first evaluate:

E
[
eiα〈ωM,t,f〉

]
= E

exp

iα
∑
i:ti≤t

ξi,tf(xi,t)


= E

E
exp

iα
∑
i:ti≤t

ξi,tf(xi,t)

∣∣∣∣∣∣ (ti)i≥0


= E

 ∏
i:ti≤t

∫
T2

eiαξi,tf(x)dx

 =: E

 ∏
i:ti≤t

F (ξi,t)

 .
Using the definition of ξi,t, and distinguishing the cases i ≤ n and i > n (which
correspond to two independent groups of random variables), we can write

E
[
eiα〈ωM,t,f〉

]
= EN

 ∏
si∈[0,M ]

F (e−θsi)

 · EN
 ∏
si∈[0,t]

F (e−θ(t−si))


= EN

 ∏
si∈[0,M+t]

F (e−θsi)


where N is a Poisson point process of parameter λ on R whose points are denoted
by si, and the second passage follows from the fact that the points N in disjoint
intervals are independent and their distribution does not change if we reverse the
parametrisation of the interval. Comparing to the characteristic function of ΞM+t

given in (6.1.7), we conclude that ωM,t ∼ Ξθ,λM+t.

Observe now that in this case it holds, for any f ∈ C∞(T2), P-almost surely
for all t ≥ 0,

〈Hf , ωM,t � ωM,t〉 =
∑

i,j:ti,tj≤t
i6=j

ξi,tξj,tHf (xi,t, xj,t),

(cf. with subsection 6.1.1). Given this, it is straightforward to show that we do
have built solutions of (6.1.17): for f ∈ C∞(T2), by (6.2.2) and (6.2.3),

〈f, ωM,t〉 =
∑
i:ti≤t

ξi,tf(xi,t)

=
∑
i:ti≤t

ξi,t

f(xi,ti) +

∫ t

ti

∑
j 6=i:tj≤s

ξj,s∇f(xi,s) ·K(xi,s, xj,s)ds


=

 n∑
i=1

+
∑

i>n:ti≤t

 ξi,tf(xi,ti) +
∑
i:ti≤t

ξi,t

∫ t

ti

∑
j 6=i:tj≤s

ξj,s∇f(xi,s) ·K(xi,s, xj,s)ds

=

n∑
i=1

e−θtf(xi,0) +
∑

i>n:ti≤t

e−θ(t−ti)f(xi,ti)

+

∫ t

0

∑
i,j:ti,tj≤s

i 6=j

e−θ(t−s)ξi,sξj,s∇f(xi,s) ·K(xi,s, xj,s)ds

= e−θt 〈f, ωM,0〉+

∫ t

0

e−θ(t−s) 〈f, dΣs〉+

∫ t

0

〈Hf , ωM,s � ωM,s〉 ds.
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The latter equation holds regardless of the choice of initial positions, intensities and
jump times (as soon as the dynamics is defined) so in particular it holds P-almost
surely uniformly in t, and this concludes the proof. �

The method of [65] thus provides, quite remarkably, existence and pathwise
uniqueness of measure-valued strong solutions. Unfortunately, it only seems to
apply to systems of finitely many vortices, since it relies on the very particular,
discrete nature of the measures involved to control the “diagonal collapse” issue.
We refer to [95] for further uniqueness results for point vortices systems obtained
by means of refinements of the above techniques.

Let us conclude this section noting that we have obtained the first piece of
Theorem 6.1.9, namely we have built solutions in the case (P) for all M <∞.

6.3. Proof of the Main Result

In Section 6.2 we built the point vortices processes ωM,t =
∑
i:ti≤t ξi,tδxi,t . Let

us introduce the scaling in N ≥ 1: we will denote ωM,N,t =
∑
i:ti≤t

ξi,t√
N
δxi,t where

xi,t, ξi,t solve equations (6.2.2) and (6.2.3), and where the ti’s are the jump times of
a real valued Poisson process of intensity Nλ. In other words, by Corollary 6.2.2,
ωM,N,t is a strong solution of

(6.3.1) dωM,N = −θωM,Ndt+ (K ∗ ωM,N ) · ∇ωM,Ndt+
1√
N
dΣNλt ,

(in the sense of Definition 6.1.6) with fixed time marginals ωM,N,t ∼ 1√
N

Ξθ,NλM+t .

It is worth to note here that, by construction of ωM,N,t, its natural filtration Ft
coincides with the one generated by the driving noise ΣNλt and the initial datum.

The forthcoming paragraphs deal with, respectively: a recollection of some
compactness criterions, the bounds proving that the laws of ωM,N are tight, the
proof of the fact that limit points of our family of processes are indeed solutions in
the sense of Definition 6.1.6, that is, the main result.

6.3.1. Compactness Results. Let us first review a deterministic compact-
ness criterion due to Simon (we refer to [156] for the result and the required gen-
eralities on Banach-valued Sobolev spaces).

Proposition 6.3.1 (Simon). Assume that

• X ↪→ B ↪→ Y are Banach spaces such that the embedding X ↪→ Y is
compact and there exists 0 < θ < 1 such that for all v ∈ X ∩ Y

‖v‖B ≤M ‖v‖
1−θ
X ‖v‖θY ;

• s0, s1 ∈ R are such that sθ = (1− θ)s0 + θs > 0.

If F ⊂W is a bounded family in

W = W s0,r0([0, T ], X) ∩W s1,r1([0, T ], Y )

with r0, r1 ∈ [0,∞], and we define

1

rθ
=

1− θ
r0

+
θ

r1
, s∗ = sθ −

1

rθ
,

then if s∗ ≤ 0, F is relatively compact in Lp([0, T ], B) for all p < − 1
s∗

. In the case

s∗ > 0, F is moreover relatively compact in C([0, T ], B).

Let us specialise this result to our framework. Take

X = H−1−δ/2(T2), B = H−1−δ(T2), Y = H−3−δ(T2),
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with δ > 0: by Gagliardo-Niremberg estimates the interpolation inequality is sat-
isfied with θ = δ/2. Let us take moreover s0 = 0, s1 = 1/2− γ with γ > 0, r1 = 2
and r0 = q ≥ 1, so that the discriminating parameter is

s∗ = −γθ − 1− θ
q

.

Note that as we take δ smaller and smaller, and q bigger and bigger, we can get
s∗ < 0 arbitrarily close to 0, but not 0. We have thus derived:

Corollary 6.3.2. If the sequence

{vn} ⊂ Lp([0, T ], H−1−δ) ∩W 1/2−γ,2([0, T ], H−3−δ)

is bounded for any choice of δ > 0 and p ≥ 1, and for some γ > 0, then it is
relatively compact in Lq([0, T ], H−1−δ) for any 1 ≤ q <∞. As a consequence, if a
sequence of stochastic processes un : [0, T ]→ H−1−δ defined on a probability space
(Ω,F ,P) is such that, for any δ > 0, p ≥ 1 and some γ > 0, there exists a constant
Cδ,γ,q for which

(6.3.2) sup
n

E
[
‖un(t)‖Lp([0,T ],H−1−δ) + ‖un‖W 1/2−γ,1([0,T ],H−3−δ)

]
≤ Cδ,γ,p,

then the laws of un on Lq([0, T ], H−1−δ) are tight for any 1 ≤ q <∞.

The processes we will consider are discontinuous in time: this is why we con-
sider only fractional Sobolev regularity in time. However, as we have just observed,
this prevents us to use Simon’s criterion to prove any time regularity beyond Lq.
This is why we will combine the latter result with a compactness criterion for cadlag
functions. We refer to [138] for both the forthcoming result and the necessary pre-
liminaries on the space D([0, T ], S) of cadlag functions taking values in a complete
separable metric space S.

Theorem 6.3.3 (Aldous’ Criterion). Consider a sequence of stochastic pro-
cesses un : [0, T ] → S defined on probability spaces (Ωn,Fn,Pn) and adapted to
filtrations Fnt . The laws of un are tight on D([0, T ], S) if:

(1) for any t ∈ [0, T ] (a dense subset suffices) the laws of the variables unt are
tight;

(2) for all ε, ε′ > 0 there exists R > 0 such that for any sequence of Fn-
stopping times τn ≤ T it holds

sup
n

sup
0≤r≤R

Pn
(
d(unτn , u

n
τn+r) ≥ ε′

)
≤ ε.

6.3.2. Tightness of Point Vortices Processes. The following estimate on
our Poissonian random measures is the crux in all the forthcoming bounds; it is
essentially a Poissonian analogue of the ones in Section 3 of [71].

Proposition 6.3.4. Let ωM,N ∼ 1√
N

Ξθ,NλM . For any 1 ≤ p <∞ there exists a

constant Cp > 0 such that for any measurable bounded functions h : T2 → R and
f : T2×2 → R it holds

(6.3.3) E
[
〈h, ωM,N 〉2p

]
≤ Cp ‖h‖2p∞ , E [〈f, ωM,N ⊗ ωM,N 〉p] ≤ Cp ‖f‖p∞ ,

uniformly in N ≥ 0 and M ∈ [0,∞]. As a consequence, since for δ > 0 the Green
function ∆−1−δ is smooth,

(6.3.4) E
[
‖ωM,N‖2pH−1−δ

]
= E

[〈
∆−1−δ, ωM,N ⊗ ωM,N

〉p] ≤ Cp,δ,
uniformly in M,N .
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Proof. Since

〈f, ωM,N ⊗ ωM,N 〉 =
〈
f̃ , ωM,N ⊗ ωM,N

〉
, f̃(x, y) =

1

2
(f(x, y) + f(y, x)),

we reduce ourselves to symmetric functions. Moreover, without loss of generality
we can check (6.3.3) for functions with separate variables f(x, y) = h(x)h(y), h :
T2 → R measurable and bounded, for which it holds

E [〈f, ωM,N ⊗ ωM,N 〉p] = E
[
〈h, ωM,N 〉2p

]
.

Moments of the random variable 〈h, ωM,N 〉 can be evaluated by differentiating
the moment generating function (6.1.7): using Faà di Bruno’s formula to take 2p
derivatives we get

E
[
〈h, ωM,N 〉2p

]
=

= (2p!)
∑

r1,...,r2p≥0
r1+2r2+···+2pr2p=2p

2p∏
k=1

1

(k!)rkrk!

(
Nλ

∫
[0,M ]×{±1}×T2

σk

Nk/2
e−θtkh(x)dσdxdt

)rk

≤ (2p!)
∑

r1,...,r2p≥0
r1+2r2+···+2pr2p=2p

2p∏
k=1

(Nλ)rk ‖h‖krkk 1rk2|k

(θk)rkNkrk/2(k!)rkrk!

=
(2p!) ‖h‖2p∞

Np

∑
r1,...,r2p≥0

r1+2r2+···+2pr2p=2p

2p∏
k=1

(Nλ)rk1rk2|k

(θk)rk(k!)rkrk!

(see [145, 148] for similar classical computations). Let us stress that when an
integral in the latter formula is null, its 0-th power is to be interpreted as 00 = 1.
The contribution of 12|k =

∫
σkdσ is crucial: when k is odd, 12|k is null, so only

terms with mk = 0 survive in the sum (again, 00 = 1). Thus, the highest power of
N appearing is Nr2 ≤ N2p/2 = Np, which is compensated by the N−p we factored
out, and this concludes the proof. �

We can now discuss convergence at fixed times.

Proposition 6.3.5. The laws of a family of variables ωM,N ∼ 1√
N

Ξθ,NλM , de-

fined on a probability space (Ω,F ,P) and taking values in on H−1−δ are tight, for
any fixed δ > 0. Moreover,

• the limit as M →∞ at fixed N , say N = 1, is the law of Ξθ,λ∞ ;

• the limit as N →∞ at fixed M (any M ∈ (0,∞]) is the law of
√

(1−e−2θM )λ
2θ η;

and if the variables converge almost surely, they do so also in Lp(Ω, H−1−δ) for
any 1 ≤ p <∞, δ > 0.

Proof. The embedding Hα ↪→ Hβ is compact as soon as α > β, and we know
that the variables are uniformly bounded elements of Lp(Ω, H−1−δ) for any p ≥ 1
by (6.3.3), so by Čebyšëv’s inequality their laws are tight.

Identification of limit laws is yet another consequence of (6.1.7): by Theorem
2 of [93] (an infinite-dimensional Lévy theorem) we only need to check that char-
acteristic functions E

[
ei〈ωM,N ,h〉

]
converge to the ones of the announced limits for

any h ∈ H1+δ. Since (6.1.7) is valid for all M ∈ [0,∞], the limit for M →∞ poses
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no problem. As for the limit N →∞, for any test function h ∈ H1+δ,

E [exp (i 〈h, ωM,N 〉)] = e−Nλ exp

(
Nλ

∫
[0,M ]×{±1}×T2

exp

(
iσ√
N
h(x)e−θt

)
dxdσdt

)

= e−Nλ exp

(
Nλ

∫ M

0

1

N
‖h‖22 e

−2θtdt+Oh

(
1

N

))
N→∞−−−−→ exp

(
λ

2θ
‖h‖22 (1− e−2θM )

)
,

where in the second step we used the following elementary expansion: for φ ∈
C(T2),

(6.3.5)

∣∣∣∣∣12
∫
T2

(
exp

(
φ(x)√
N

)
+ exp

(
−φ(x)√

N

))
dx− 1−

‖φ‖22
2N

∣∣∣∣∣ ≤ ‖φ‖4424N2
.

Since E [exp (i 〈h, η〉)] = exp(−‖h‖22), this concludes the proof. �

The latter result provides compactness “in space” (“equi-boundedness”): in
order to apply Corollary 6.3.2 and Theorem 6.3.3, we also need to obtain a control
on the regularity “in time” (“equi-continuity”). We will obtain it by exploiting the
equation satisfied by ωM,N , which we derived in Corollary 6.2.2, which allows us to
prove the forthcoming estimate on increments.

Proposition 6.3.6. Let ωM,N : [0, T ] → H−1−δ be the stochastic process de-
fined at the beginning of this Section. For any Ft-stopping time τ ≤ T (possibly
constant), r, δ > 0, there exists a constant Cδ,T independent of M,N, τ, r such that

(6.3.6) E
[
‖ωM,N,τ+r − ωM,N,τ‖2H−3−δ

]
≤ Cδ,T · r.

Proof. In order to lighten notation, and since the final result must not depend
on M,N , let us drop them when writing ωM,N,t = ωt. By its definition in 6.3.1 and
Remark 6.1.7 we know that the process satisfies the integral equation
(6.3.7)

〈f, ωt+r〉−〈f, ωt〉 = −θ
∫ t+r

t

〈f, ωs〉 ds+
∫ t+r

t

〈Hf , ωs � ωs〉 ds+
〈
f,

1√
N

(ΣNλt+r − ΣNλt )

〉
,

for any smooth f ∈ C∞(T2). Since this equation holds P-almost surely uniformly
in s, t ∈ [0, T ], it is also true when we replace t with the stopping time τ . It is
convenient to recall that

‖u‖2H−3−δ =
∑
k∈Z2

(1 + |k|2)−3−δ|ûk|2,

so we can use the weak integral equation against the orthonormal functions ek to
control the full norm:

(6.3.8) E
[
‖ωτ+r − ωτ‖2H−3−δ

]
=
∑
k∈Z2

(1 + |k|2)−3−δE
[
|〈ωτ+r − ωτ , ek〉|2

]
.

We estimate increments by bounding separately the terms in the equation, let us
start from the linear one:
(6.3.9)

E

[∣∣∣∣∫ τ+r

τ

〈f, ωs〉 ds
∣∣∣∣2
]
≤ rE

[∫ T

0

|〈f, ωs〉|2 ds

]
= r

∫ T

0

E
[
|〈f, ωs〉|2

]
ds ≤ CTr ‖f‖2∞ ,

where the last passage makes use of the uniform estimate (6.3.3). The nonlinearity
is the harder one, and its singularity is the reason why we can not obtain space
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regularity beyond H−3−δ,

E

[∣∣∣∣∫ τ+r

τ

〈Hf , ωs � ωs〉 ds
∣∣∣∣2
]
≤ r

∫ T

0

E
[
|〈Hf , ωs � ωs〉|2

]
ds(6.3.10)

≤ CTr ‖Hf‖2∞ ≤ CTr ‖f‖
2
C2(T2) ,(6.3.11)

where the second passage uses (6.3.3), and the third is due to the fact that by
Taylor expansion

|Hf (x, y)| = 1

2
|K(x, y)(∇f(x)−∇f(y))| ≤ C |∇f(x)−∇f(y)|

d(x, y)
≤ C ‖f‖C2(T2) .

By (6.1.4), the martingale (
〈
f,N−1/2(ΣNλt+r − ΣNλt )

〉
)t∈[0,T ] has constant quadratic

variation λr ‖f‖2L2 , so Burkholder-Davis-Gundy inequality gives

E
[∣∣∣〈f,N−1/2(ΣNλτ+r − ΣNλτ )

〉∣∣∣2] ≤ E

[
sup
t∈[0,T ]

∣∣∣〈f,N−1/2(ΣNλt+r − ΣNλt )
〉∣∣∣2] ≤ Cλr ‖f‖2L2 .

(6.3.12)

Applying estimates (6.3.9,6.3.10,6.3.12) to the functions ek, from (6.3.7) and Cauchy-
Schwarz inequality we get

E
[
|〈ωτ+r − ωτ , ek〉|2

]
≤ Cθ,λ,T r|k|4,

so that (6.3.8) gives us

E
[
‖ωτ+r − ωτ‖2H−3−δ

]
≤
∑
k∈Z2

(1 + |k|2)−3−δCr
(
T + |k|4T + λ

)
≤ Cθ,λ,T,δr,

which concludes the proof. �

Proposition 6.3.7. The laws of the processes ωM,N : [0, T ]→ H−1−δ are tight
in

Lq([0, T ], H−1−δ) ∩ D([0, T ], H−3−δ)

for any δ > 0, 1 ≤ q <∞.

Proof. Since ωM,N,t ∼ 1√
N

Ξθ,NλM+t , they are bounded in Lp(Ω, H−1−δ) for any

δ > 0, 1 ≤ p < ∞ uniformly in M,N, t as shown in Proposition 6.3.5, and as a
consequence the processes ωM,N are uniformly bounded in Lp(Ω × [0, T ], H−1−δ),
for any δ > 0, 1 ≤ p < ∞. Moreover, we have proved fixed-time tightness. We are
thus left to prove Aldous’ condition in H−3−δ and to control a fractional Sobolev
norm in time in order to apply Corollary 6.3.2 and Theorem 6.3.3, concluding the
proof. As in the previous proof, we denote ωM,N,t = ωt.

We only need to apply the uniform bound on increments (6.3.6). Starting from
the fractional Sobolev norm, we evaluate

E
[
‖ω‖Wα,1([0,T ],H−3−δ)

]
= E

[∫ T

0

∫ T

0

‖ωt − ωs‖H−3−δ

|t− s|1+α
dtds

]

≤
∫ T

0

∫ T

0

E [‖ωt − ωs‖H−3−δ ]

|t− s|1+α
dtds

≤ C
∫ T

0

∫ T

0

|t− s|−1/2−α,

which converges as soon as α < 1/2. Aldous’s condition follows from Čebyšëv’s
inequality: if τ is a stopping time for ωt, then

sup
0≤r≤R

P (‖ωτ+r − ωτ‖H−3−δ ≥ ε) ≤ ε−1 sup
0≤r≤R

E [‖ωτ+r − ωτ‖H−3−δ ] ≤ Cε−1R1/2,
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where the right-hand side is smaller than ε′ > 0 as soon as R, which we can choose,
is small enough. �

Let us conclude this paragraph with a martingale central limit theorem con-
cerning the driving noise of our approximant processes.

Proposition 6.3.8. Let (ΠN
t )t∈[0,T ],N∈N be a sequence of H−1−δ-valued mar-

tingale with laws ΠN ∼ 1√
N

ΣNλ (fix δ > 0). The laws of ΠN are tight in

(6.3.13) Lq([0, T ], H−1−δ) ∩ D([0, T ], H−1−δ)

for any δ > 0, 1 ≤ q < ∞, and limit points have the law of the Wiener process√
λWt on H−1−δ with covariance

E [〈Wt, f〉 , 〈Ws, g〉] = t ∧ s 〈f, g〉L2(T2) .

Proof. By (6.3.12) we readily get

E
[∥∥ΠN

τ+r −ΠN
τ

∥∥2

H−1−δ

]
≤ Cδ,λr

for any N ∈ N, δ, r > 0 and any τ stopping time for ΠN , uniformly in N . The very
same argument of the last proposition (here with a better space regularity) proves
then the claimed tightness. The martingale property (with respect to the processes
own filtrations) carries on to limit points since it can be expressed by means of the
following integral formulation: for any s, t ∈ [0, T ],

E
[
(ΠN

t −ΠN
s )Φ(ΠN |[0,s])

]
= 0

for all the real bounded measurable functions Φ on (H−1−δ)[0,s]. Limit points are
Gaussian processes, since at any fixed time

1√
N

ΣNλt ∼ 1√
N

Ξθ=0,Nλ
t

N→∞−−−−→
√
λtη ∼

√
λWt,

as one can show by repeating the computations on characteristic functions in Propo-
sition 6.3.5 with θ = 0,M = t. It now suffices to recall the covariance formulas
(6.1.1) and (6.1.3),

E
[〈

1√
N

ΣNλt , f

〉〈
1√
N

ΣNλs , g

〉]
= λ(t∧s) 〈f, g〉2L2 = E

[〈√
λWt, f

〉
,
〈√

λWs, g
〉]
,

to conclude that any limit point has the law of
√
λW . �

6.3.3. Identifying Limits. The last step is to prove that limit points of the
family of processes ωM,N satisfy Definition 6.1.6. First, let us recall once again our
setup for the sake of clarity:

• λ, θ > 0 are fixed throughout;
• there is a probability space (Ω,F ,P) on which the stochastic processes

ΣNλt and the random variables Ξθ,NλM are defined, for M ≥ 0, N ∈ N, their
laws being as in Section 6.1;

• the processes (ωM,N,t)t∈[0,T ] are defined as at the beginning of this section:

strong solutions of (6.3.1) with initial datum 1√
N

Ξθ,NλM and driving noise
1√
N

ΣNλt , built as in Corollary 6.2.2.

To fix notation, let us consider separately the following three cases: by Proposi-
tion 6.3.7, we can consider converging sequences

(Ps) (ωMn,N=1)n∈N, with Mn →∞ as n→∞, the limit being ωPt ;
(G) (ωM,Nn)n∈N, with Nn →∞ as n→∞ and fixed M <∞, the limit being

ωGM,t;

(Gs) (ωMn,Nn)n∈N, with Mn, Nn →∞ as n→∞, the limit being ωGt ;
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the convergence in law takes place in Lq([0, T ], H−1−δ) ∩D([0, T ], H−3−δ), for any
fixed δ > 0, 1 ≤ q < ∞. By Proposition 6.3.5, the Poissonian limit (Ps) has

marginals ωPt ∼ Ξθ,λ∞ , and the Gaussian ones ωGM,t ∼
√

λ
2θ (1− e−2θ(M+t))η for all

t ∈ [0, T ], M ∈ [0,∞), and ωGt ∼
√

λ
2θη (the labels are given so to match the ones

in Definition 6.1.6). Notice that (ωPm)m∈N have all the same driving noise Σλt , but
different initial data, while in the Gaussian limiting sequences the driving noise also
varies. Let us show that the limit laws in the cases where M →∞ are stationary.

Proposition 6.3.9. The processes ωPt and ωGt are stationary.

Proof. As the intuition suggests, the key is the fact that M is a time-like
parameter, and taking M → ∞ corresponds to the infinite time limit. Formally,
we observe that for all r > 0, 0 ≤ t1 ≤ · · · ≤ tk <∞, and M,N ,

(6.3.14) (ωM,N,t1+r, . . . , ωM,N,tk+r) ∼ (ωM+r,N,t1 , . . . , ωM+r,N,tk).

Indeed, by construction (see Section 6.2), for all s < t, ωM,N,t is given as a mea-
surable function of ωM,N,s and the driving noise,

(6.3.15) ωM,N,t = Fs,t(ωM,N,s,Σ
Nλ |[s,t])

this, combined with the fact that ωM,N,t ∼ ωM+t,N,0 and the invariance of ΣNλ by
time shifts proves (6.3.14). Passing (6.3.14) to the limits (Ps) and (Gs) concludes
the proof, since the dependence on r of the right-hand side disappears. �

Remark 6.3.10. Equation (6.3.15) is equivalent to the Markov property, cf.
the beginning of the proof to Corollary 6.2.2. Equation (6.3.14) is the time omo-
geneity property. The Markov property is a consequence of uniqueness for the
system (6.2.2), (6.2.3). Since uniqueness result in cases (Ps), (G) and (Gs) of Defi-
nition 6.1.6 seem to be out of reach by now, we can not hope to derive the Markov
property as well.

We are only left to show that our limits do produce the sought solutions of
Theorem 6.1.9. First, we apply Skorokhod’s theorem to obtain almost sure conver-
gence.

Proposition 6.3.11. There exist stochastic processes (ω̃Pn )n∈N, Σ̃
λ
t , defined on

a probability space (Ω̃, F̃ , P̃), such that their joint distribution coincides with the
one of the original objects and with ω̃Pm converging to a limit ω̃P almost surely in
Lq([0, T ], H−1−δ) ∩ D([0, T ], H−3−δ) for any fixed δ > 0, 1 ≤ q <∞.

Analogously, there exist (ω̃GM,n, ω̃
G
n , Σ̃

Nnλ
t )n∈N, defined on (Ω̃, F̃ , P̃), such that

their joint distribution coincides with the one of the original objects and with ω̃GM,n, ω̃
G
n

converging respectively to limits ω̃GM , ω̃
G almost surely in Lq([0, T ], H−1−δ)∩D([0, T ], H−3−δ)

for any fixed δ > 0, 1 ≤ q <∞.

The proof is a straightforward application of the following version of Sko-
rokhod’s theorem, which we borrow from [140] (see references therein). The re-
quired tightness is provided by Proposition 6.3.7 and Proposition 6.3.8.

Theorem 6.3.12 (Skorokhod Representation). Let X1 ×X2 be the product of
two Polish spaces, χn = (χ1

n, χ
2
n) be a sequence of X1×X2-valued random variables,

defined on a probability space (Ω,F ,P), converging in law and such that χ1
n have

all the same law ρ. Then there exist a sequence χ̃n = (χ̃1
n, χ̃

2
n) of X1 ×X2-valued

random variables, defined on a probability space (Ω̃, F̃ , P̃), such that

• χn and χ̃n have the same law for all n;
• χ̃n converge almost surely to a X1 × X2-valued random variable χ̃ =

(χ̃n1 , χ̃
n
2 ) on (Ω̃, F̃ , P̃);
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• the variable χ̃n1 and χ̃1 coincide almost surely.

Proof of Proposition 6.3.11. In the case (P) we apply the above result
with X1 = X2 = X = Lq([0, T ], H−1−δ) ∩ D([0, T ], H−3−δ) and χm1 = Σλt , χ

m
2 =

ωPm, while for the case (G) we take X1 = {0} and X2 = X × X, with χn2 =

(ωGn ,Σ
Nnλ
t ). �

The new processes still are weak solutions of (6.3.1) in the sense of Defini-
tion 6.1.6. Consider for instance the ω̃Gn (the other case being identical): clearly
their trajectories have the same regularity as ωGn , and they have the same fixed time
distributions. As for the equation, it holds, for any f ∈ C∞(T2) and t ∈ [0, T ],
P-almost surely,〈
f, ω̃Gn,t

〉
−
〈
f, ω̃Gn,0

〉
+θ

∫ t

0

〈
f, ω̃Gn,s

〉
ds−

∫ t

0

〈
Hf , ω̃

G
n,s � ω̃Gn,s

〉
ds−

〈
f,

1√
Nn

ΣNnλt

〉
= 0,

since taking the expectation of the absolute value (capped by 1) of the right-hand

side gives a functional of the law of ω̃Gn , Σ̃
Nnλ
t , which is the same of the original

ones. Moreover, since all the terms in the last equation are cadlag functions in time
(in fact they are all continuous but the noise term), one can choose the P̃-full set
on which the equation holds uniformly in t ∈ [0, T ].

Remark 6.3.13. In fact, one can prove more. Following the proof of Lemma
28 in [71], it is possible to show that the new Skorokhod process have in fact the
same point vortices structure of ωM,N , namely it is possible to represent ω̃Pm,t and

ω̃GM,n,t, ω̃
G
n,t as sums of vortices satisfying equations (6.2.2) and (6.2.3) of Section 6.2.

The argument would be quite long, and we feel that it would not add much to our
discussion, so we refrain to go into details, contenting us with our analytically weak
notion of solution.

To ease notation, from now on we will drop all tilde symbols, implying that
we are going to work only with the new processes and noise terms. We are finally
ready to pass to the limit the stochastic equations satisfied by our approximating
processes, thus concluding the proof of our main result.

Proof of Theorem 6.1.9. The limits of ωPn , ωGM,n and ωGn provide respec-

tively the sought solutions in the cases (Ps), (G) and (Gs) of Definition 6.1.6. We
focus again our attention on ωGn , case (Gs), the other ones being analogous.

Since ωGn converges almost surely in the spaces (6.3.13), we immediately deduce
that, for any f ∈ C∞(T2) and t ∈ [0, T ], P-almost surely,〈

f, ωGn,t
〉
→
〈
f, ωGt

〉
,(6.3.16) ∫ t

0

〈
f, ωGn,s

〉
ds→

∫ t

0

〈
f, ωGs

〉
ds.(6.3.17)

The nonlinear term is only slightly more difficult. Let Hk ∈ C∞(T2×2), k ∈ N, be
symmetric functions vanishing on the diagonal converging to Hf as k → ∞ (it is
yet another equivalent of the approximation procedure (6.1.10)). Then〈

Hk, ω
G
n,t � ωGn,t

〉
=
〈
Hk, ω

G
n,t ⊗ ωGn,t

〉
→
〈
Hk, ω

G
t ⊗ ωGt

〉
=
〈
Hk, ω

G
t � ωGt

〉
in L2(Ω × [0, T ]) (the last passage is due to (6.1.12)). Almost sure convergence
of the noise terms is ensured by Proposition 6.3.11, and the limiting law has been
determined in Proposition 6.3.8, hence, summing up, it holds P-almost surely〈

f, ωGt
〉
−
〈
f, ωG0

〉
+ θ

∫ t

0

〈
f, ωGs

〉
ds−

∫ t

0

〈
Hf , ω

G
s � ωGs

〉
ds−

〈
f,
√
λWt

〉
= 0.
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As already noted above, quantifiers in P and t ∈ [0, T ] can be exchanged thanks to
the fact that we are dealing with cadlag processes in time. Stationarity of ωPt and
ωGt follows from Proposition 6.3.9. This concludes the proof of Theorem 6.1.9. �





CHAPTER 7

Gaussian Invariant Measures of Barotropic
Quasi-Geostrophic Equations

This Chapters review the arguments of [96], which we introduced in Chapter 1.
It is structured as follows. In Section 7.1 we collect some preliminary material,
including a short discussion on regularity regimes in which (BQG) are well-posed.
In Section 7.2 we thoroughly discuss the formulation of weak solution required by
our low-regularity setting, and finally in Section 7.3 we will prove Theorem 1.6.1 by
approximating the infinite-dimensional stationary solution with finite-dimensional,
stationary Galerkin truncations of (BQG).

7.1. Definitions and Preliminary Results

We consider mixed boundary conditions on R for the small scale stream func-
tion ψ′, that is periodicity in the x variable and Dirichlet boundary at y = 0, π.
In order to simplify Fourier analysis, let us extend the space domain to the 2-
dimensional torus D = [−π, π]2 with periodic boundary conditions on both x, y
variables, extending ψ′ to D so that it becomes an odd function of y. We still
denote points z = (x, y) ∈ D.

To study (BQG) on D we also extend q, h in the same way; the extension of
h might be discontinuous at y = 0, but this will not be relevant in the following.
Indeed, it is not difficult to see that equations (BQG) preserve such condition. We
also remark that the beta-plane term βy of (1.6.4) is coherent with the domain
extension.

Due to the (skew-)symmetry in y variable, it will be convenient to introduce
the following set of orthonormal functions of L2(D,C),

(ej)j∈Z, (ejsk, ejck)(j,k)∈Λ Λ = {(j, k) : j ∈ Z, k ∈ N \ {0}, }

ej(x) =
1

2π
ei jx, sk(y) = sin(ky), ck(y) = cos(ky).

Since we work with real valued objects, Fourier coefficients relative to modes (j, k)
and (−j, k) will always be complex conjugated. With this relation between Fourier
coefficients, {ej , ejsk, ejck}(j,k)∈Λ is a Hilbert basis of L2 = L2(D,R).

Odd functions of y only have non null Fourier coefficients relative to (ejsk)(j,k)∈Λ:

we will denote those coefficients, say of ψ′, by

Fj,k(ψ′) = ψ̂′j,k =

∫
D

ψ′(x, y)e−j(x)sk(y)dxdy.

so that

ψ′(x, y) =
∑

(j,k)∈Λ

ψ̂′j,kej(x)sk(y), ψ̂′j,k = ψ̂′−j,k.

For α ∈ R, we denote by Hα = Wα,2(D,R) the L2(D,R)-based Sobolev spaces,
which enjoy the compact embeddings Hα ↪→ Hβ whenever β < α, the injections
being furthermore Hilbert-Schmidt if α > β+1. The scale of Sobolev spaces of odd

101
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distributions in y,

Hα =

u =
∑

(j,k)∈Λ

ûj,kejsk : ‖u‖2Hα =
∑

(j,k)∈Λ

|ûj,k|2 (j2 + k2)2α <∞

 ,

clearly share the same properties. We denote withH0 the subspace of odd functions
of y in L2(D), and more generally each Hα is a closed subspace of Hα. Brackets
〈·, ·〉 will denote H0-based duality couplings.

As a convention, C will denote a positive constant, possibly changing in every
occurrence even in the same formula and depending only on its eventual subscripts.

7.1.1. Well-posedness regimes. Our main aim is to give meaning to (BQG)
in distributional regimes dictated by the formally invariant Gibbs measures. Before
we undertake that task, we briefly discuss, for the sake of completeness, more regular
regimes in which our equations are actually well-posed. Let us begin by introducing
the notion of weak solution.

Definition 7.1.1. Given (V0, q0) ∈ R× L∞(D), we say that

(V (t), q(t))t∈[0,T ] ∈ L∞([0, T ],R×D)

is a weak solution to (BQG) with initial datum (V0, q0) if for any ϕ ∈ C1([0, T ]×D)
it holds ∫

D

ϕ(T, z)q(T, z)dz −
∫
D

ϕ(0, z)q0(z)dz(7.1.1)

=

∫ T

0

∫
D

(∂tϕ(s, z) +∇⊥ψ(s, z) · ∇ϕ(s, z))q(s, z)dzds,

V (t) = V0 +

∫ t

0

−
∫
D

h(z)∂xψ
′(z, s)dzds,(7.1.2)

ψ = −V y + ψ′, q = ∆ψ′ + h+ βy.(7.1.3)

Thanks to the fact that the equation for q is in the active scalar form, the
method of characteristics produces an existence result: a minor modification of the
proof of [135, Ch.2,Theorem 3.1] leads to the following:

Proposition 7.1.2. Let (V0, q0) ∈ R × L∞(D), and consider the Lagrangian
formulation of (BQG) given by{

d
dtφt(z) = ∇⊥ψ(t, φt(z))

φ0(z) = z
, q(t, z) = q0(φ−t(z)),(7.1.4)

together with equations (7.1.2),(7.1.3). There exists a unique solution (φ, V, q) of
such system, and moreover (V, q) is a weak solution of (BQG) in the sense of
Definition 7.1.1.

The argument ultimately relies on the fact that ∇∇⊥∆−1 is a singular kernel of
Calderón-Zygmund type, so that its associated convolution operator is a bounded
linear map from L∞(D) to the Bounded Mean Oscillation (BMO) space. This
implies that the vector field

∇⊥ψ = V

(
0

1

)
+∇⊥∆−1(q − h− βy)

has gradient in BMO, and thus it is log-Lipschitz (cfr. [135, Ch.2,Lemma 3.1]).
The vector field ∇⊥ψ then satisfies the Osgood condition ([144]) for the associated
Cauchy problem (7.1.4), which is thus well-posed; it is not difficult to check that
q(t, z) = q0(φ−t(z)) satisfies the weak formulation (7.1.1). All these ideas date
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back to the celebrated work of Judovič, [105], concerning well-posedness of Euler
equations for initial vorticity in L∞.

Proposition 7.1.3. For any (V0, q0) ∈ R×L∞(D), the weak solution of (BQG)
in the sense of Definition 7.1.1 is unique.

Uniqueness can be obtained by energy estimates at the level of the velocity
vector field v = ∇⊥ψ. Such estimates are performed for instance in [128, Theorem
8.2] for the 2D Euler equations (h = 0, β = 0), and again they rely on the fact
that ∇∇⊥ψ is in BMO to arrive at Gronwall-type inequalities, something which
is not influenced by the addition of regular terms such as h + βy to q. We refer
to [12] for a thorough discussion of uniqueness for a large class of active scalar
equations sharing similar features. We also mention the recent work [43], where
the arguments we just sketched are applied to a barotropic quasi-geostrophic model
closely related to ours: the difference consists in impermeable boundary conditions
on the whole boundary and the presence of a free surface effect instead of the fixed
topography h we consider. The paper [44], moreover, is devoted to multi-layered
barotropic quasi-geostrophic equations.

7.1.2. Conserved Quantities and Gibbsian Measures. Smooth solutions
of (BQG) preserve the first integrals energy and enstrophy,

E =
1

2
V 2 +

1

2
−
∫ ∣∣∇⊥ψ′∣∣2 , Q = βV +

1

2
−
∫

(q − βy)2.

We refer again to [130, Section 1.4] for a detailed discussion of conserved quantities.
As already remarked, energy E can be seen as a functional of variables (V, q) by
solving the Poisson equation (1.6.4).

In (1.6.7) above, we have formally introduced the Gibbsian measures

dνα,µ(V, q) =
1

Zα,µ
e−α(µE+Q)dV dq, α, µ > 0,

the expression meaning that we consider the Gaussian measure whose inverse co-
variance operator is given by the quadratic functional α(µE +Q) of (V, q).

Let us now provide a rigorous framework: we define να,µ as the joint law of the

Gaussian variable V ∼ N
(
−βµ ,

1
αµ

)
and the Gaussian random field q indexed by

H0 with mean and covariance given by, for f, g ∈ H0,

E [〈q, f〉] = 〈q̄, f〉 =

〈
µ

µ−∆
h+ βy, f

〉
E [〈q, f〉 〈q, g〉]− 〈q̄, f〉 〈q̄, g〉 =

〈
f,

1

α(1− µ 1
∆ )
g

〉
,

V and q being independent. Notice that α only plays a role in the variance. The
link between the latter and the formal definition (1.6.7) is perhaps clearer thinking
of the formal reference measure dV dq as the infinite product of uniform measures
on the infinite product space R×CΛ of Fourier modes (modulo the relation q̂j,k =

q̂−j,k), and considering the Boltzmann exponent e−α(µE+Q) as the infinite product
of densities given by the Parseval expansion of the quadratic form α(µE +Q).

In order to deal with centred variables we set

(7.1.5) U = V +
β

µ
, ω = q − q̄,

the new variables satisfying equations of motion

(7.1.6)

{
∂tω +∇⊥∆−1ω · ∇ω + Lω = 0
dU
dt = −

∫
D
h∂x∆−1ω

,
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where Lω collects all affine terms in ω,

Lω =

(
U − β

µ

)
∂xω + U

µ∂x
µ−∆

h+
∇⊥

µ−∆
h · ∇ω

+∇⊥∆−1ω · µ∇
µ−∆

h+ β∂x∆−1ω.

The equivalence of (7.1.6) and (BQG) is intended for smooth solutions.
We now define the purely quadratic pseudoenergy : for µ > 0,

(7.1.7) Sµ(U, ω) =
µ

2
U2 +

1

2

∫
D

(ω − µ∆−1ω)ωdxdy

so that the law of (V, ω) under να,µ is given by

(7.1.8) dηα,µ(U, ω) =
1

Z̃α,µ
e−αSµ(U,ω)dUdω,

the latter to be interpreted analogously to the definition of να,µ above, (1.6.7): it

is the joint law of the real Gaussian variable U ∼ N
(

0, 1
αµ

)
and the independent

centred Gaussian field ω with covariance operator α−1(1 − µ∆−1)−1. In order to
lighten the exposition, we will abuse notation denoting by ηα,µ(dω) the law of ω
under ηα,µ, and analogously for U . We will also denote

σ2 :=

∫
U2dνα,µ(U, ω) =

1

αµ
, σ2

j,k :=

∫
|ω̂j,k|2dηα,µ(U, ω) =

j2 + k2

α(µ+ j2 + k2)
.

Indeed, under ηα,µ the Fourier modes ω̂j,k are independent centred Gaussian vari-
ables with the above covariances; notice that they are complex valued, but subject
to the condition ¯̂ωj,k = ω̂−j,k.

We have considered ω under ηα,µ as a Gaussian random field indexed by H0

(its reproducing kernel Hilbert space): it is well known that it can also be identified
with a random distribution in a larger Hilbert space into which H0 has an Hilbert-
Schmidt embedding, such as H−1−δ for any δ > 0. In other terms, since all σ2

j,k,

(j, k) varying in Λ, are of order 1, the random Fourier series ω =
∑

(j,k)∈Λ ω̂j,kejsk

converges in L2(ηα,µ) in H−1−δ for any δ > 0, but not for δ ≥ 0.

Lemma 7.1.4. For any δ > 0, (R×H−1−δ,R×H0, ηα,µ) is a (complex) abstract
Wiener space; equivalently, under ηα,µ, ω can be identified with a H−1−δ-valued
Gaussian random variable.

7.2. Weak Solutions for Low-Regularity Marginals

We now discuss how to interpret (7.1.6) in the case when, at a fixed time,
(U, ω) is a sample of ηα,µ. Indeed, as we remarked above, in that case ω can be
identified at best as a distribution in H−1−δ, δ > 0, and thus the main concern
is the nonlinear term of the evolution equation, the affine term Lω being easily
defined pathwise as a distribution of class H−2−δ.

7.2.1. Fourier Expansion of the Nonlinear Term. Let us fix δ > 0, and
consider the coupling between the nonlinear term ∇⊥∆−1ω ·∇ω and a smooth test
function φ ∈ C∞(D) . If ω ∈ H−1−δ, we can define the tensor product ω ⊗ ω as a
distribution on D ×D via

(7.2.1) 〈ω ⊗ ω, ϕ⊗ ψ〉 := 〈ω, ϕ〉 〈ω, ψ〉 , ϕ, ψ ∈ C∞(D),

where ϕ⊗ψ(z, z′) := ϕ(z)ψ(z′); it is easily observed that the resulting distribution
ω ⊗ ω is of class H−2−2δ(D ×D) (with Hα(D ×D) we denote the closed subspace
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of Hα(D ×D) generated by vectors ejsk ⊗ ej′sk′), so the expression

(7.2.2)

∫
D×D

H(z, z′)ω(dz)ω(dz′) = 〈ω ⊗ ω,H〉

is well defined via duality for every H ∈ H2+2δ(D × D). Now, given any smooth
test function φ ∈ C∞(D), we look for a suitable function Hφ such that

(7.2.3)

∫
D

∇⊥∆−1ω(z) · ∇ω(z)φ(z)dz =

∫
D×D

Hφ(z, z′)ω(z)ω(z′)dzdz′.

We perform the computation in Fourier series. Let us also recall that we denote
points of D by z = (x, y), z′ = (x′, y′). We thus have

ω(z) =
∑

(j,k)∈Λ

ω̂j,kej(x)sk(y), ∆−1ω(z) = −
∑

(j,k)∈Λ

ω̂j,k
j2 + k2

ej(x)sk(y),

∇ω(z) =
∑

(j,k)∈Λ

(
i jsk(y)

kck(y)

)
ω̂j,kej(x),

∇⊥∆−1ω(z) =
∑

(j,k)∈Λ

(
kck(y)

− i jsk(y)

)
ω̂j,k

j2 + k2
ej(x),

∇⊥∆−1ω(z) · ∇ω(z) =
∑

(j,k)∈Λ

∑
(j′,k′)∈Λ

((jk′ − j′k)sk+k′(y) + (j′k + jk′)sk−k′(y))

× ω̂j,kω̂j′,k′

2 i(j2 + k2)
ej+j′(x),

so that equation (7.2.3) becomes∫
D

∇⊥∆−1ω(z) · ∇ω(z)φ(z)dz

=
∑

(j,k)∈Λ

∑
(j′,k′)∈Λ

(
(jk′ − j′k)φ̂−j−j′,k+k′ + (j′k + jk′)φ̂−j−j′,k−k′

) ω̂j,kω̂j′,k′

2 i(j2 + k2)

=
∑

(j,k)∈Λ

∑
(j′,k′)∈Λ

(
(jk′ − j′k)φ̂−j−j′,k+k′ + (j′k + jk′)φ̂−j−j′,k−k′

)
×
(

1

j2 + k2
− 1

j′2 + k′2

)
ω̂j,kω̂j′,k′

4 i
=

∑
(j,k)∈Λ

(j′,k′)∈Λ

F−j,kF−j′,k′(Hφ)ω̂j,kω̂j′,k′ ,

the second step consisting in a symmetrisation with respect to indices (j, k) and
(j′, k′). The last equality is the Fourier expansion of the right-hand side of (7.2.3),
and becomes our definition of Hφ:

Fj,kFj′,k′Hφ :=
(

(j′k − jk′)φ̂j+j′,k+k′ − (j′k + jk′)φ̂j+j′,k−k′
)

×
(

1

j2 + k2
− 1

j′2 + k′2

)
1

4 i
,

where Fj,kFj′,k′ is an abbreviation for the more rigorous notation Fj,k⊗Fj′,k′ , the
Fourier projector on ejsk ⊗ ej′sk′ . We also adopt the convention

φ̂j+j′,k−k′ := −φ̂j+j′,k′−k whenever k − k′ < 0.

So far, Hφ is defined only as a formal Fourier series: the forthcoming Lemma
discusses the convergence of the latter, i.e. the regularity of Hφ.

Lemma 7.2.1. For every φ ∈ H2, Hφ ∈ H0(D ×D).
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Proof. To ease notation, we denote l = (j, k) and l′ = (j′, k′). We have that
Hφ ∈ H0(D ×D) if and only if

(7.2.4)
∑
l,l′∈Λ

|FlFl′(Hφ)|2 <∞.

The Fourier coefficients of Hφ are given by two summands which we estimate sep-
arately. The first one is

Fj+j′,k+k′(φ)(j′k−jk′)
(

1

j2 + k2
− 1

j′2 + k′2

)
= Fl+l′(φ)

(
−l⊥ · l′

)( 1

|l|2
− 1

|l′|2

)
,

where |l|2 = j2 + k2, and similarly for l′; taking squares and summing over l+ l′ =
m ∈ Λ gives us

(7.2.5)
∑
m∈Λ

|Fm(φ)|2
∑
l∈Λ
l 6=m

(
l⊥ · (m− l)

(
1

|l|2
− 1

|m− l|2

))2

.

We now resort to the following inequalities:

l⊥ · (m− l) = l⊥ ·m ≤ |l||m|,(7.2.6)

|m− l|2 − |l|2 = m · (m− 2l) ≤ |m||m− 2l| ≤ |m|
(
|m− l|2 + |l|2

)1/2
,(7.2.7)

so that the inner summation in (7.2.5) can be estimated with∑
l∈Λ
l 6=m

(
|l|2|m|4|m− l|2

|l|4|m− l|4
+
|l|4|m|4

|l|4|m− l|4

)
= |m|4

∑
l∈Λ
l 6=m

(
1

|l|2|m− l|2
+

1

|m− l|4

)

≤ 2|m|4
∑
l∈Λ

1

|l|4
.

Modulo a multiplicative constant, (7.2.5) is therefore smaller or equal to∑
m∈Λ

|Fm(φ)|2|m|4,

which is finite as soon as φ ∈ H2. The other contribution is given by the terms of
the form

Fj+j′,k−k′(φ)(j′k + jk′)

(
1

j2 + k2
− 1

j′2 + k′2

)
,

which after the change of variables (j, k, j′, k′) 7→ (j, k,−j′, k′) becomes

Fl−l′(φ)
(
l⊥ · l′

)( 1

|l|2
− 1

|l′|2

)
,

which can be estimated in a similar fashion taking the modulo square and summing
over l − l′ = m ∈ Λ. Thus (7.2.4) is proved. �

Remark 7.2.2. Even though we will not need it in the following, for every
δ < 1 the above computation actually yields Hφ ∈ Hδ(D×D) if φ ∈ H2+δ. This in
fact is the optimal Sobolev regularity, since in general Hφ /∈ Hδ(D ×D) for δ ≥ 1,
even for more regular φ. Indeed, for φ(x, y) = sin(y) the Fourier coefficients of Hφ

are given by

Fj,kFj′,k′(Hφ) =
1{j+j′=0}1{k−k′=1}

4 i

j(1− 2k)

(j2 + k2)(j2 + (k − 1)2)
,

therefore Hφ ∈ Hδ(D ×D) if and only if∑
(j,k)∈Λ

(
1 + 2j2 + k2 + (k − 1)2

)δ j2(1− 2k)2

(j2 + k2)2(j2 + (k − 1)2)2
<∞,
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but the sum above can be estimated from below (modulo a positive multiplicative
constant) by ∑

(j,k)∈Λ

j2k2

(j2 + k2)4−δ ,

the latter converging if and only if δ < 1.

Unfortunately, since Hφ does not belong to H2+2δ(D×D), it is not possible to
define the nonlinear term of (7.1.6) pathwise, that is fixing a realisation of ω under
ηα,µ and taking products of distributions. It is at this point that we make essential
use of the probabilistic approach to invariant measures.

7.2.2. The Nonlinear Term as a Stochastic Integral. Thanks to the
peculiar form of the fluid-dynamic nonlinearity, which in our setting is reflected
by the coefficients of Hφ, when ω is sampled from the Gaussian measure ηα,µ it is
possible to define the nonlinear term as a (double) stochastic integral, that is, as
an L2(ηα,µ)-limit of suitable approximations.

The following result finds analogues in [8, Lemma 1.3.2], see also [7], and in [71,
Theorem 8] or the related [58, 73, 94, 72], all dealing with stationary solutions of
2-dimensional Euler equations.

Proposition 7.2.3. Let H ∈ H0(D ×D) be a symmetric function. Consider
functions (Hn)n∈N ⊂ H2+2δ(D ×D) such that, for every (j, k), (j′, k′) ∈ Λ,

(7.2.8) lim
n→∞

∑
(j,k)∈Λ

Fj,kFj,k(Hn)σ2
j,k = 0, Fj,kFj′,k′(Hn) = Fj′,k′Fj,k(Hn),

and suppose that the sequence Hn approximates H in the following sense:

(7.2.9) lim
n→∞

∑
(j,k)∈Λ
(j′k′)∈Λ

(Fj,kFj′,k′(Hn −H))
2
σ2
j,kσ

2
j′,k′ = 0.

Under ηα,µ, the sequence of random variables 〈ω ⊗ ω,Hn〉 defined by (7.2.1), con-
verges in mean square. Moreover, the limit does not depend on the approximating
sequence Hn.

Proof. To ease notation we denote l = (j, k) and l′ = (j′, k′). For any function
H ∈ H0(D ×D), we compute

E
[
〈ω ⊗ ω,H〉2

]
= E

 ∑
l,l′∈Λ
m,m′∈Λ

FlFl′(H)FmFm′(H)ω̂lω̂l′ ω̂mω̂m′


=

∑
l,l′∈Λ
m,m′∈Λ

FlFl′(H)FmFm′(H)E
[
ω̂lω̂l′ ω̂mω̂m′

]
.

By Wick-Isserlis formula the expected value in the last summand is given by

E
[
ω̂lω̂l′ ω̂mω̂m′

]
= σ2

l σ
2
mδl,l′δm,m′ + σ2

l σ
2
l′δl,mδl′,m′ + σ2

l σ
2
l′δl,m′δl′,m.

Substituting and using the relations (7.2.8) one gets

E
[
〈ω ⊗ ω,H〉2

]
=

(∑
l∈Λ

Fl(H)σ2
l

)2

+ 2
∑
l,l′∈Λ

FlFl′(H)2σ2
l σ

2
l′ .

If conditions (7.2.8) and (7.2.9) hold, applying the latter equation to differences
Hm−Hn we obtain that the sequence of random variables 〈ω ⊗ ω,Hn〉 is a Cauchy
sequence in L2(Ω). The independence of limit from the sequence (Hn) follows from
triangular inequality and (7.2.9). �
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Remark 7.2.4. In [71], conditions (7.2.8) and (7.2.9) are replaced by

Hn symmetric, lim
n→∞

∫
Hn(z, z)dz = 0,

lim
n→∞

∫ ∫
(Hn(z, z′)−H(z, z′))2dzdz′ = 0,

where integration is performed over the 2-dimensional torus. These conditions are
simpler than ours since we deal with coloured noise ηα,µ rather then space white
noise.

Consider now a test function φ ∈ C∞(D): Proposition 7.2.3 allows us to de-

fine the nonlinearity (7.2.3) as the L2(ηα,µ)-limit of
〈
ω ⊗ ω,Hn

φ

〉
for any sequence

Hn
φ approximating Hφ in the above sense (for instance, progressive truncations of

Fourier series). To emphasize the peculiarity of its definition, we adopt a special
notation for this object.

Definition 7.2.5. For any H ∈ H0(D ×D), and Hn as in Proposition 7.2.3,

(7.2.10) 〈ω � ω,H〉 := L2(ηα,µ)− lim
n→∞

〈ω ⊗ ω,Hn〉 .

We chose a distinct symbol because if we consider a smooth H and confront the
new object we define and coupling with tensor products (7.2.1), a straightforward
computation reveals that

〈ω � ω,H〉 = 〈ω ⊗ ω,H〉 −
∑

(j,k)∈Λ

Fj,kFj,k(H)σ2
j,k.

Indeed, let Hn be the following approximation of H:

Fj,kFj′,k′(Hn) := Fj,kFj′,k′(H)− S

nσ2
0,k

1{j=j′=0,k=k′=1,...,n},

where S :=
∑

(j,k)∈Λ Fj,kFj,k(H)σ2
j,k <∞. Hence

〈ω � ω,H〉 = 〈ω ⊗ ω,H〉 − lim
n→∞

n∑
k=1

ω̂2
0,k

S

nσ2
0,k

= 〈ω ⊗ ω,H〉 − S.

as an equality between random variables in L2(ηα,µ). Notice that the last summand
in the latter expression diverges for a generic H ∈ H0(D × D), according to the
fact that the coupling with tensor product ω ⊗ ω can not be defined in that case.

Remark 7.2.6. The present paragraph takes its name because the coupling
〈ω � ω,H〉 we defined in fact corresponds to the double Itō-Wiener integral of H
with respect to the Gaussian measure ηα,µ.

We now extend Proposition 7.2.3 to manage stochastic processes, rather than
just random variables.

Proposition 7.2.7. On a probability space (Ω,F ,P) consider a stochastic pro-
cess (ωt)t∈[0,T ] with trajectories in C([0, T ],H−1−δ) such that the law of ωt is

ηα,µ(dω) for every t ∈ [0, T ]. Let (Hn
φ )n∈N ⊆ H2+2δ(D × D) be an approxi-

mation of Hφ in the sense of Proposition 7.2.3. Then the sequence of processes

t 7→
〈
ωt ⊗ ωt, Hn

φ

〉
converges in L2([0, T ], L2(P)). Moreover, the limit does not

depend on the approximating functions Hn
φ .

The proof is a direct consequence of Proposition 7.2.3 and stationarity of the
process ω. We are now ready to give the definition of solution we mentioned in
Theorem 1.6.1.
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Definition 7.2.8. A stochastic process (Ut, ωt)t∈[0,T ] defined on a probability

space (Ω,F ,P), with trajectories in C([0, T ];R × H−1−δ), solves the reduced form
(7.1.6) of (BQG) in the weak vorticity formulation if, for every test function φ ∈
C∞(D), P-almost surely, for every t ∈ [0, T ],

〈ωt, φ〉 = 〈ω0, φ〉+

∫ t

0

〈ωs � ωs, Hφ〉 ds+

∫ t

0

〈Lωs, φ〉 ds,(7.2.11)

Ut − U0 =

∫ t

0

−
∫
D

h

(
∂x∆−1ωs +

∂x
µ−∆

h

)
dzds,(7.2.12)

where the process s 7→ 〈ωs � ωs, Hφ〉 is defined by Proposition 7.2.7.

In the remainder of the paper we will focus on equations for centred variables
(U, ω), and thus prove the following corresponding version of Theorem 1.6.1, from
which the latter is straightforwardly recovered.

Theorem 7.2.9. Let β 6= 0 and h as above. For any α, µ > 0 there exists a
stationary stochastic process (Ut, ωt)t∈[0,T ] with trajectories in C([0, T ],R×H−1−δ)
and fixed-time marginals ηα,µ, whose trajectories solve (7.1.6) in the weak vorticity
formulation of Definition 7.2.8.

7.3. A Galerkin Approximation Scheme

Let us define the finite-dimensional projection of L2(D) onto the finite set of
modes ΛN =

{
(j, k) ∈ Λ : j2 + k2 ≤ N

}
,

(7.3.1) ΠN : L2(D) 3 f 7→ ΠNf :=
∑

(j,k)∈ΛN

Fj,k(f)ejsk ∈ HN ,

where we can identify the finite dimensional codomain with

HN =

 ∑
(j,k)∈ΛN

ξj,kejsk : ξj,k = ξ−j,k

 ' {ξ ∈ CΛN : ξj,k = ξ−j,k
}
' CΛ̃N ,

Λ̃N =
{

(j, k) ∈ Λ : j ≥ 0, j2 + k2 ≤ N
}
.

7.3.1. Truncated Barotropic Quasi-Geostrophic Equations. Let hN =
ΠNh: we consider the following truncated version of (7.1.6),

(7.3.2)

{
∂tω

N + ΠN

(
∇⊥∆−1ωN · ∇ωN

)
+ LNω

N = 0
dUN

dt = −
∫
D
hN∂x∆−1ωN ,

with LNω
N collecting affine terms in ωN :

LNω
N =

(
UN − β

µ

)
∂xω

N + UN
µ∂x
µ−∆

hN + ΠN

(
∇⊥

µ−∆
hN · ∇ωN

)
+ ΠN

(
∇⊥∆−1ωN · µ∇

µ−∆
hN
)

+ β∂x∆−1ωN .

For the sake of simplicity, equations (7.3.2) can be rewritten in the compact form

(7.3.3) ∂t(U
N , ωN ) = BN (UN , ωN ),

where ωN is the vector with components (ω̂Nj,k)(j,k)∈Λ̃N
, and BN : R × HN →

R × HN . Let us stress the fact that we can reduce ourselves to consider Fourier

modes in Λ̃N thanks to ω̂Nj,k = ω̂N−j,k.

Galerkin approximants (7.3.2) are globally well-posed, and truncation is such
that they preserve the following projection of ηα,µ,

ηNα,µ = (IdR,ΠN )#ηα,µ.
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In other words, under ηNα,µ, UN has the same Gaussian distribution of U under

ηα,µ, while ωN is the projection of ω under ηα,µ. More explicitly, we can define

ηNα,µ by density with respect to the product Lebesgue measure on HN ' Λ̃N ,

dηNα,µ(UN , ωN ) =
1

ZNα,µ
e−

αµ
2 (UN )2dUN

×
∏

(j,k)∈Λ̃N

exp

(
−α

2
|ω̂Nj,k|2

(
1 +

µ

j2 + k2

))
dω̂Nj,k.

Proposition 7.3.1. For ηNα,µ-almost every initial datum (UN0 , ω
N
0 ), there exists

a unique solution (UNt , ω
N
t ) ∈ C∞([0,∞),R × HN ) to the ordinary differential

equation (7.3.2). Moreover, the global flow preserves ηNα,µ.

Proof. The components of vector fieldBN are polynomials of UN , ω̂Nj,k, (j, k) ∈
Λ̃N , and thus BN and its derivatives have finite moments of all orders under ηNα,µ.
The thesis then follows from non-explosion results in [51, Section 3], as soon as we
check that BN has null divergence with respect to ηNα,µ, i.e.

0 = divηNα,µ B
N = ∂UNB

N
UN +

∑
(j,k)∈Λ̃N

∂j,kB
N
j,k

− αµUNBNUN − α
∑

(j,k)∈Λ̃N

(
1 +

µ

j2 + k2

)
ω̂Nj,kB

N
j,k,

subscripts denoting components (and derivatives) relative to UN or ω̂j,k. In fact,
[51] treats the case of a standard Gaussian measure on Rn, but their results are
easily extended to our case. Showing that BN is divergence-free with respect to
ηNα,µ can be done by direct computation: the full computation in the case of com-
pletely periodic geometry can be found in [129, Section 6.2], to which we refer, the
differences with our case being minimal. �

7.3.2. The Truncated Nonlinear Term. In the finite-dimensional Galerkin
truncation (7.3.2) we can repeat the arguments of subsection 7.2.1 to cast couplings
of the nonlinear term into a double integral formulation. For any φ ∈ C∞(D),
expanding in Fourier series the equality〈

ΠN

(
∇⊥∆−1ωN · ∇ωN

)
, φ
〉
H0 =

〈
∇⊥∆−1ωN · ∇ωN ,ΠNφ

〉
H0

=
〈
ωN ⊗ ωN , HN

φ

〉
H0(D×D)

,

we deduce a Fourier expansion of HN
φ ,

Fj,kFj′,k′HN
φ = (j′k − jk′)φ̂j+j′,k+k′

1{(j+j′,k+k′)∈ΛN}

4 i

(
1

j2 + k2
− 1

j′2 + k′2

)
− (j′k + jk′)φ̂j+j′,k−k′

1{(j+j′,k−k′)∈ΛN}

4 i

(
1

j2 + k2
− 1

j′2 + k′2

)
,

the computation being completely analogous to the one in subsection 7.2.1.

7.3.3. Compactness Results. The first step towards taking the limit of
Galerkin approximants as N → ∞ is to provide estimates from which we can
deduce relative compactness of approximations.

We begin by reviewing a deterministic compactness criterion due to Simon,
which allows us to control separately time and space regularity, in the spirit of
Aubin-Lions compactness Lemma. We refer to [156] for the result and the required
generalities on Banach-valued Sobolev spaces.
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Proposition 7.3.2 (Simon). Assume that

• X ↪→ B ↪→ Y are Banach spaces such that the embedding X ↪→ Y is
compact and there exists 0 < θ < 1 such that for all v ∈ X ∩ Y

‖v‖B ≤M ‖v‖
1−θ
X ‖v‖θY ;

• s0, s1 ∈ R are such that sθ = (1− θ)s0 + θs1 > 0.

If F ⊂W is a bounded family in

W = W s0,r0([0, T ], X) ∩W s1,r1([0, T ], Y )

with r0, r1 ∈ [0,∞], and moreover

s∗ = sθ −
1− θ
r0
− θ

r1
> 0,

then if F is relatively compact in C([0, T ], B).

Let us specialise this result to our framework. Take

X = R×H−1−δ/2, B = R×H−1−δ, Y = R×H−3−δ,

with δ > 0: by Gagliardo-Niremberg estimates the interpolation inequality is sat-
isfied with θ = δ/2. Let us take moreover s0 = 0, s1 = 1, r1 = 2 and r0 = q ≥ 1; if
we can take q large such that

s∗ =
δ

4
− 2− δ

2q
> 0,

then the hypothesis are satisfied and obtain:

Corollary 7.3.3. Let δ > 0. If a family of functions

{vn} ⊂ Lq([0, T ],R×H−1−δ/2) ∩W 1,2([0, T ],R×H−3−δ)

is bounded for any q ≥ 1, then it is relatively compact in C([0, T ],R×H−1−δ).
As a consequence, if a sequence of stochastic processes un : [0, T ]→ R×H−1−δ,

n ∈ N, defined on a probability space (Ω,F ,P) is such that, for any q ≥ 1, there
exists a constant CT,δ,q for which

(7.3.4) sup
n

E
[
‖un(t)‖p

Lq([0,T ],R×H−1−δ/2)
+ ‖un‖W 1,2([0,T ],H−3−δ)

]
≤ CT,δ,q,

then the laws of un on C([0, T ],R×H−1−δ) are tight.

For the sake of completeness we remark that the second, probabilistic part of
the latter statement follows from the deterministic one and a simple application of
Chebyshev inequality.

We want to apply Corollary 7.3.3 to the sequence of finite dimensional Galerkin
approximations we built in Proposition 7.3.1. To obtain the uniform bound (7.3.4),
let us begin with the “space regularity” part: by stationarity of the process (UN , ωN )
we can swap expectations and time integrals, so that

E
[∥∥UN∥∥p

Lq([0,T ])
+
∥∥ωN∥∥p

Lq([0,T ],H−1−δ/2)

]
≤ TE

[∣∣UN ∣∣p +
∥∥ωN∥∥pH−1−δ/2

]
≤ T

∫ (
|U |p + ‖ω‖pH−1−δ/2

)
dηα,µ(dU, dω) ≤ CT,p,α,µ.

As for bounds on time regularity: starting with UN , by the evolution equation

‖UN‖2W 1,2([0,T ]) = ‖UN‖2L2([0,T ]) +

∥∥∥∥dUNdt
∥∥∥∥2

L2([0,T ])

≤
∫ T

0

(
|UNt |2 +

∣∣∣∣−∫
D

hN∂x∆−1ωNt

∣∣∣∣2
)
dt,
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from which we deduce, using that ωN has marginals ηNα,µ(dωN ) for every fixed time
t, and that h ∈ C∞(D),

E
[
‖UN‖2W 1,2([0,T ])

]
≤ CT,h

(
1 + E

[
‖ωN‖2H−1−δ

])
≤ CT,h

(
1 + E

[
‖ω‖2H−1−δ

])
≤ CT,α,µ,h.

Let us now focus on time regularity of ωN : we have

‖ωN‖2W 1,2([0,T ],H−3−δ) = ‖ωN‖2L2([0,T ],H−3−δ) + ‖∂tωN‖2L2([0,T ],H−3−δ)

≤ 2

∫ T

0

(
‖ωNt ‖2H−3−δ + ‖ΠN

(
∇⊥∆−1ωNt · ∇ωNt

)
‖2H−3−δ + ‖LNωNt ‖2H−3−δ

)
dt.

The affine term is controlled at any fixed time t by

E
[
‖LNωNt ‖2H−3−δ

]
≤ Cα,µ,h

(
1 + E

[
‖ωN‖2H−1−δ

])
≤ Cα,µ,h

(
1 + E

[
‖ω‖2H−1−δ

])
≤ Cα,µ,h.

The quadratic term is the one forcing us to consider a large Hilbert space such as
H−3−δ. As above, we denote m = (j, k) ∈ ΛN . We set φm = ejsk and consider

E
[〈
ωN ⊗ ωN , HN

φm

〉2]
= E


 ∑
l,l′∈ΛN

FlFl′(Hφm)ω̂Nl ω̂
N
l′

2
 ,

where, by the expansion we derived in subsection 7.3.2,

FlFl′(HN
φm) = −l⊥ · l′

1{l+l′=m}

4 i

(
1

|l|2
− 1

|l′|2

)
+ l⊥ · l′

1{l−l′=m}

4 i

(
1

|l|2
− 1

|l′|2

)
.

We can consider only the first contribution of the latter sum, since, up to a constant,
we can bound the contribution of the sum with the contributions of the sole first
term, similarly to what we did in the proof of Lemma 7.2.1. We obtain:

E
[〈
ωN ⊗ ωN , HN

φm

〉2] ≤ C ∑
l,h∈ΛN
l,h6=m

l⊥ · (m− l)
(

1

|l|2
− 1

|m− l|2

)
(7.3.5)

× h⊥ · (m− h)

(
1

|h|2
− 1

|m− h|2

)
E
[
ω̂Nl ω̂

N
m−lω̂

N
h ω̂

N
m−h

]
.

By Wick-Isserlis Formula the expected value on the right-hand side is given by

E
[
ω̂Nl ω̂

N
m−lω̂

N
h ω̂

N
m−h

]
= σ2

l σ
2
hδl,m−lδh,m−h + σ2

l σ
2
m−lδl,hδm−l,m−h + σ2

l σ
2
hδl,m−hδm−l,h

= σ2
l σ

2
hδl,m−lδh,m−h + σ2

l σ
2
m−lδl,h + σ2

l σ
2
hδl,m−h.(7.3.6)

Notice that if l = m− l we have l⊥(m− l) = 0, hence the first summand in (7.3.6)
does not play any role in the computation of (7.3.5). Moreover, it is easy to check
that the second and third terms give the same contribution, since l⊥ · h = −h⊥ · l.



7.3. A GALERKIN APPROXIMATION SCHEME 113

Therefore, applying inequalities (7.2.6),(7.2.7),

E
[〈
ωN ⊗ ωN , HN

φm

〉2] ≤ C ∑
l∈ΛN
l 6=m

σ2
l σ

2
m−l

(
l⊥ · (m− l)

(
1

|l|2
− 1

|m− l|2

))2

≤ C
∑
l∈ΛN
l 6=m

σ2
l σ

2
m−l

(
|l|2|m|4|m− l|2

|l|4|m− l|4
+
|l|4|m|4

|l|4|m− l|4

)

= C|m|4
∑
l∈ΛN
l 6=m

σ2
l σ

2
m−l

(
1

|l|2|m− l|2
+

1

|m− l|4

)

≤ C|m|4
∑
l∈ΛN

σ2
l σ

2
m−l
|l|4

.

Recall now the expression for σ2
l :

σ2
l =

|l|2

α(µ+ |l|2)
,

which is smaller than α−1 for every l. Therefore
∑
l∈ΛN

σ2
l σ

2
m−l
|l|4 is bounded form

above uniformly in m ∈ ΛN , N ∈ N. Hence

E
[
‖ΠN

(
∇⊥∆−1ωN · ∇ωN

)
‖2H−3−δ

]
≤ C

∑
m∈ΛN

1

(1 + |m|2)3+δ
E
[〈
ωN ⊗ ωN , HN

φm

〉2]
≤ cδ

∑
m∈ΛN

|m|4

(1 + |m|2)3+δ
≤ Cδ,

where Cδ is a finite constant which does not depend on N . All in all, we arrive to

E
[
‖ωN‖2W 1,2([0,T ],H−3−δ)

]
≤ CT,α,µ,h

(
1 + E

[
‖ω‖2H−1−δ

])
.

The estimates made so far, combined with Corollary 7.3.3, lead us finally to:

Lemma 7.3.4. The laws ΘN
α,µ of the sequence of processes uN = (UNt , ω

N
t )t∈T

defined by Proposition 7.3.1 are tight on C([0, T ],R×H−1−δ).

7.3.4. The Continuous Limit. By Prokhorov theorem there exists a sub-
sequence of ΘN

α,µ –with a slight abuse of notation we will denote it with the same

symbol– weakly converging to a probability measure Θα,µ on C([0, T ],R×H−1−δ).

By Skorokhod theorem, there exists a new probability space (Ω̃, F̃ , P̃) and random
variables ũN , ũ with values in C([0, T ],R×H−1−δ) such that:

• the law of ũN (resp. ũ) is ΘN
α,µ (resp. Θα,µ);

• ũN converges to ũ P̃-almost surely.

In order to lighten notation, we will drop tilde superscripts in the following.
The aim of this final paragraph is to prove that the stochastic process u is a

weak solution of (BQG) in the sense of Definition 7.2.8, thus concluding the proof
of Theorem 7.2.9. First of all, we make the following fundamental observation.

Lemma 7.3.5. The Galerkin approximations uN = (UN , ωN ) solve (7.3.2) in
the sense of Definition 7.2.8. More precisely, given any test function φ ∈ C∞(D),

(7.3.7)
〈
ωNt , φ

〉
=
〈
ωN0 , φ

〉
+

∫ t

0

〈
ωNs ⊗ ωNs , Hφ

〉
ds+

∫ t

0

〈
LNω

N
s , φ

〉
ds,

Proof. This follows from the discussion made in subsection 7.2.1. �
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Proof of Theorem 7.2.9. All but the bilinear term in (7.3.7) converge al-
most surely because of the convergence of ωN → ω in C([0, T ],H−1−δ) and conti-
nuity of duality coupling with φ. The almost sure convergence of UN to U solving
(7.2.12) follows similarly. Let us thus focus on convergence of the nonlinearity. For
any given φ ∈ C∞(D) and M ∈ N it holds∫ t

0

〈
ωNs ⊗ ωNs , Hφ

〉
ds =

∫ t

0

〈
ωNs ⊗ ωNs , Hφ −HM

φ

〉
ds

+

∫ t

0

〈
ωNs ⊗ ωNs − ωs ⊗ ωs, HM

φ

〉
ds

+

∫ t

0

〈
ωs ⊗ ωs, HM

φ

〉
ds.

For the first term on the right-hand side we have the following L1 estimate:

E
[
|
〈
ωN ⊗ ωN , Hφ −HM

φ

〉
|
]
≤ E

[∑
m∈Λ

|φ̂m|
∣∣〈ωN ⊗ ωN , Hφm −HM

φm

〉∣∣]

≤

(∑
m∈Λ

|φ̂m|2(1 + |m|2)β

)1/2
∑
m∈Λ

E
[∣∣∣〈ωN ⊗ ωN , Hφm −HM

φm

〉∣∣∣]2
(1 + |m|2)β


1/2

≤

(∑
m∈Λ

|φ̂m|2(1 + |m|2)β

)1/2
 ∑

m∈Λ
m/∈ΛM

E
[〈
ωN ⊗ ωN , Hφm

〉2]
(1 + |m|2)β


1/2

≤ C‖φ‖Hβ

 ∑
m∈Λ
m/∈ΛM

|m|4

(1 + |m|2)β


1/2

→ 0 as M →∞ for β > 3.

For the last term, Proposition 7.2.7 implies the convergence in L2([0, T ], L2(Ω))∫ t

0

〈
ωs ⊗ ωs, HM

φ

〉
ds→

∫ t

0

〈ωs � ωs, Hφ〉 ds

as long as we check that HM
φ is an approximation of Hφ in the sense of Propo-

sition 7.2.3. But this last property is easily implied by the definition of HM
φ and

Lemma 7.2.1. The second term in the right-hand side goes to zero as N →∞ for ev-
ery fixed M , since ωN⊗ωN converges almost surely to ω⊗ω in C([0, T ],H−2−2δ(D×
D)), and HM

φ belongs to C∞(D×D). Thus, up to subsequences, we have the almost
sure convergence ∫ t

0

〈
ωNs ⊗ ωNs , Hφ

〉
ds→

∫ t

0

〈ωs � ωs, Hφ〉 ds.

Therefore, taking the almost sure limit in (7.3.7) we get

〈ωt, φ〉 = 〈ω0, φ〉+

∫ t

0

〈ωs � ωs, Hφ〉 ds.+
∫ t

0

〈Lωs, φ〉 ds. �



CHAPTER 8

Gaussian Invariant Measures of 2-dimensional
Stochastic Primitive Equations

This Chapter contains the results obtained in [97], which we outlined in Chap-
ter 1, and it is structured as follows: in Section 8.1 we rigorously introduce a sto-
chastic version of 2-dimensional Primitive Equations in terms of vorticity ω = ∂zv
and a Gaussian measure formally preserved by the dynamics. We then summarize
how the theory of [100] applies and state a well-posedness result for martingale
solutions in sufficiently hyperviscous cases. Finally, in Section 8.3 we collect details
and computations completing the proof of our main results.

8.1. Vorticity Formulation and Conservation Laws

The model under consideration in the remainder of the paper is the following
stochastic PDE in the space domain D = [0, 2π]2 3 (x, z),

(8.1.1)


∂tv + v∂xv + w∂zv + ∂xp = −(−∆)θv + η,

∂zp = 0,

∂xv + ∂zw = 0.

Here, v = v(t, x, z) is the horizontal velocity, w = w(t, x, z) is the vertical velocity,
p = p(t, x) is the pressure. The parameter θ and the additive Gaussian noise η will
be specified below. The unknown fields v, w are subject to the following boundary
conditions:

(8.1.2)


w = 0, if z = 0, 2π,

v = 0, if x = 0, 2π,

∂zv = 0, if z = 0, 2π.

The first two lines impose impermeability of the boundary; the third one is called
a free boundary condition for the surface and the bottom of D. Before moving on,
we discuss another possible choice in the next paragraph.

8.1.1. On Physically Realistic Boundary Conditions. While free bound-
ary conditions are suited to describe interfaces between fluids such as the ocean
surface, they can not be used to model a solid boundary such as the ocean bottom.
Instead, one should consider a no-slip boundary condition, leading to a different set
of conditions:

(8.1.3)


w = 0, if z = 0, 2π,

v = 0, if x = 0, 2π,

v = 0, if z = 0,

∂zv = 0, if z = 2π.

In other words, we are assuming that the full velocity field (v, w) vanishes on the
bottom side.

We prefer the choice (8.1.2) since Laplace operator can be diagonalised on func-
tions satisfying that set of boundary conditions. This is not true when we consider

115
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Dirichlet boundary at the bottom, since the eigenvalue problem is overdetermined.
In that case, Fourier analysis can still be carried through with an orthonormal ba-
sis differing from usual trigonometric functions, see [32, Section 6]. We also refer
to [87] for further discussion on boundary condition, and conclude the paragraph
observing that one can reduce conditions (8.1.3) to the ones (8.1.2).

Assume that (v, w) is a smooth solution of (8.1.1) on D satisfying (8.1.3), for
simplicity in the case η = 0. Then, if we extend the solution to the doubled domain
D̃ = [0, 2π] × [−2π, 2π] so that v, w are odd functions in the z direction, we have

obtained a solution of (8.1.1) on D̃ satisfying (8.1.2). The size and aspect ratio of
the domain is in fact irrelevant in our discussion.

8.1.2. Vorticity Formulation. Let us first assume to be dealing with smooth
solutions of (8.1.1), driven by a smooth deterministic η. The aim is to derive
an equivalent formulation of the model in terms of the only scalar field vorticity
ω = ∂zv, on which we will focus the remainder of our discussion.

First of all, let us notice that v must always have zero average in the z direction,
since the incompressibility equation ∂xv+∂zw = 0 and boundary conditions imply,
for all x ∈ [0, 2π]:

∂x

∫ 2π

0

v(x, z′)dz′ =

∫ 2π

0

∂xv(x, z′)dz′ = −
∫ 2π

0

∂zw(x, z′)dz′ = 0,

from which it follows

(8.1.4)

∫ 2π

0

v(x, z′)dz′ =

∫ 2π

0

v(0, z′)dz′ = 0.

Because of this, the solution A(v) of the linear problem{
−∂2

zA(v)(x, z) = v(x, z), (x, z) ∈ [0, 2π]× (0, 2π),

A(v)(x, z) = 0, z = 0, 2π,

is well defined for all v satisfying our hypothesis. Another property of solutions
(v, w) holding independently of time is that w is a diagnostic variable, i.e. it is
completely determined by v:

w(x, z) = w(x, 0)−
∫ z

0

∂xv(x, z′)dz′ = ∂x∂zA(v)(x, z).

Neglecting for a moment boundary conditions, equations (8.1.1) can thus be
rewritten in terms of only v, p by{

∂tv + v∂xv + ∂x∂zA(v)∂zv + ∂xp = −(−∆)θv + η,

∂zp = 0.

The system is then further simplified by considering the equation for vorticity ω =
∂zv, which does not involve the pressure p:

(8.1.5) ∂tω +∇⊥A(ω) · ∇ω = −(−∆)θω + ∂zη,

where ∇⊥ = (−∂z, ∂x). Notice that v is completely determined by its partial
derivative ∂zv and the zero average condition (8.1.4), so (8.1.5) is equivalent to
(8.1.1). Let us also remark that A(ω) is well-defined since ω has zero average in the
z direction, and that A –to be rigorously defined below as an operator on function
spaces– commutes with derivatives.

Let us briefly discuss boundary conditions for ω. Conditions on v immediately
prescribe ω(x, 0) = ω(x, 2π) = 0 for x ∈ [0, 2π] and, moreover, since v is constant
along the z direction at x = 0, 2π, we also have ∂zv(0, z) = ∂zv(2π, z) = 0 for all
z ∈ [0, 2π]: overall ω must vanish on ∂D. The condition w = 0 on z = 0, 2π is not
as easy to translate into a condition for ω, but we will bypass the issue with our
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Fourier series approach below. It is worth noticing, however, that it is because of
the boundary condition on w that A(ω) is well defined.

Remark 8.1.1. The relation between boundary conditions for (v, w) and ω is
thoroughly discussed in [32] in the setting of subsection 8.1.1.

To conclude the paragraph, let us observe that thanks to the driving vector field
∇⊥A(ω) being Hamiltonian, smooth solutions of the hydrostatic Euler equation
(1.7.2) in vorticity form,

(8.1.6) ∂tω +∇⊥A(ω) · ∇ω = 0,

with (v, w) = ∇⊥A(ω) satisfying boundary conditions, preserve the quadratic ob-
servable

∫
D
ω2dxdz. Quite remarkably, this feature is peculiar to the two-dimensional

case, since the quantity ω does not seem to have a counterpart in higher dimensions.

8.1.3. Functional Analytic Setting. As we described above, we are not in-
terested in regular solutions of (8.1.1), but rather to singular, distributional regimes.
It is thus convenient to encode in Fourier series the boundary conditions, and then
set up our results in distribution spaces defined by means of Fourier expansions.

The general Fourier series expansion of a smooth function ω on D such that
A(ω) is well-defined and (v, w) = ∇⊥A(ω) satisfy boundary conditions (8.1.2) is

ω(x, z) =
∑
k∈N2

0

ω̂kek(x, z), ek(x, z) =
1

π
sin(k1x) sin(k2z),

where the ek’s form an orthonormal set in L2(D), ω̂k are the Fourier coefficients of
ω and k = (k1, k2) ∈ N2

0 = (N \ {0})2. We will denote

S =

ω =
∑
k∈N2

0

ω̂kek : ∀p ∈ R
∑
k∈N2

0

|k|p |ω̂k| <∞

 .

Equivalently, S is the space of smooth functions ω on D belonging to the domain
of A and such that (v, w) = ∇⊥A(ω) satisfies the boundary conditions (8.1.2). We
then denote by S ′ its dual space, represented by Fourier series whose coefficients
grow at most polynomially. Brackets 〈·, ·〉 will denote duality couplings between
functions and distributions

〈f, g〉 =
∑
k∈N2

0

f̂kĝk,

defined whenever the right-hand side converges. Let us also introduce, for m ∈ N,
the projection onto the linear space of functions generated by ek with |k|2 = k2

1 +
k2

2 ≤ m2,

πn : S ′ → S, ω 7→ πmω =
∑
k∈N2

0,
|k|≤m

ω̂kek.

Following [100], we set up our analysis on the Banach spaces

FLp,α =

ω ∈ S ′ : ‖ω‖pFLp,α =
∑
k∈N2

0

|k|αp|ω̂k|p <∞

 , α ∈ R, p ≥ 1,

and their p =∞ version with ‖ω‖FL∞,α = supk∈N2
0
|k|α|ω̂k|.

Moving to the Fourier expression of the dynamics (8.1.1), the crux is clearly
the nonlinear term, whose Fourier expansion is given by

(8.1.7) ∇⊥A(ω) · ∇ω = B(ω) =
∑
k∈N2

0

Bk(ω)ek, Bk(ω) =
∑
h∈Z2

0

ω̂hω̂k−h
k · h⊥

h2
2

,
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where Z2
0 = (Z \ {0})2 and, for h = (h1, h2) ∈ Z2

0, ω̂h = sign(h1h2)ω̂(|h1|,|h2|).
With vorticity formulation at hand, the difficulty inherent to the nonlinear

term is now apparent: looking at the z component of the divergence-less vector
field ∇⊥A(ω), the loss of one ∂x derivative is not compensated by the gain of one
∂z derivative. Indeed, such unbalance marks the difference between (8.1.1) and 2-
dimensional SNS, which is especially evident in the Fourier series expansion (8.1.7).

8.1.4. Gaussian Invariant Measures and Driving Noise. Referring to
[59], we now introduce the stochastic analytic tools we will employ below.

Invariance of S(ω) = 1
2

∫
D
ω(x, z)2dxdz for (1.7.2) suggests that existence of an

invariant Gibbs measure formally defined by

(8.1.8) dµ(ω) =
1

Z
e−S(ω)dω.

Since S is quadratic, (8.1.8) can be understood as a Gaussian measure on S ′ with
covariance operator Id, a multiple of space white noise on D. In other words, µ is
the law of the centred Gaussian process χ indexed by FL2,0 with covariance

E [χ(f)χ(g)] = 〈f, g〉 , f, g ∈ FL2,0.

Such µ can be interpreted as the law of a random distribution supported on all
FL2,α with α < −1, the spaces into which the reproducing kernel Hilbert space
FL2,0 has Hilbert-Schmidt embedding. Although a fixed realisation of the random
field χ is only a distribution, couplings 〈f, χ〉 = χ(f) for f ∈ FL2,0 are defined as
random variables in L2(µ) (Itō integrals).

Another equivalent formulation is in terms of infinite products: formally ex-
panding S by Parseval formula, we can write

dµ(ω) =
∏
k∈N2

0

(
1√
2π
e−

1
2 |ω̂k|

2

dω̂k

)
,

that is, under µ the Fourier coefficients ω̂k are independent identically distributed
standard Gaussian variables. As a consequence, for all α < 0, µ is supported by
FL∞,α.

Looking at the laws of Fourier components under µ it is also clear why under
this measure equations (1.7.2) and (8.1.12) are singular : the series defining a single
coefficient Bk(ω) of the vector field diverges almost surely under µ. On the other
hand, the expected value under µ of each summand in the series defining Bk(ω)
vanishes, which is a formal but suggestive argument supporting the invariance of
µ. In fact, the argument becomes rigorous when considering Galerkin truncations
of B, and we will make essential use of this in the following.

The space-time analogue of µ, which we will use to define the stochastic forcing
for (8.1.1), can be defined in two equivalent ways. First, we can consider the centred
Gaussian field ξ indexed by L2([0, T ],FL2,0), with T ∈ [0,∞], whose covariance is
given by

E [ξ(Φ)ξ(Φ′)] = 〈Φ,Φ′〉L2([0,T ],FL2,0) .

When coupled with test functions of the form 1[0,t](s)φ(x, z), φ ∈ S, ξ can be

regarded as the cylindrical Wiener process Wt on FL2,0:〈
ξ,1[0,t]φ

〉
= 〈Wt, φ〉 =

∑
k∈N2

0

φ̂kβ
k
t ,

the latter part being the usual Karhunen-Loève decomposition with (βkt )k∈N2
0

inde-
pendent standard Wiener processes.
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For all θ > 0, ν > 0, the Gaussian measure µ is the unique, ergodic invariant
measure of the infinite-dimensional Langevin’s dynamics

(8.1.9) ∂tX = −ν(−∆)θX +
√

2ν(−∆)θ/2ξ,

which can be interpreted, by means of Fourier decomposition, as the system of
independent one-dimensional SDEs

dX̂k = −ν|k|2θX̂kdt+
√

2ν|k|θdβkt , k ∈ N2
0.

For the sake of simplicity, and without loss of generality, we will set ν = 1 in the
following. Let us conveniently introduce a symbol for the Generator of the dynamics
(8.1.9): first we define cylinder functionals on S ′ by

C =
{
F ∈ L2(µ) : F (ω) = f(ω̂k1 , . . . ω̂kr ), f ∈ C∞(Rr), k1, . . . kr ∈ N2

0, r ∈ N
}
,

and for F ∈ C we denote

(8.1.10) LθF (ω) =

r∑
i=1

|ki|2θ
(
−ω̂ki∂if + ∂2

i f
)
.

Let us also introduce the carré du champ of the diffusion operator Lθ: for F,G ∈ C,

(8.1.11) Eθ(F,G)(ω) =

n∑
i=1

|ki|2θ∂if∂ig,

which satisfies the Gaussian integration by parts formula

Eµ [FLθG] = −Eµ [Eθ(F,G)] .

The above arguments finally lead us to consider the combination of dynamics
(1.7.2) and (8.1.9) as a SPDE preserving µ:

(8.1.12) ∂tω +∇⊥A(ω) · ∇ω = −(−∆)θω +
√

2(−∆)θ/2ξ.

As already noticed, the nonlinear part of the dynamics is not well defined for func-
tions ω in the regularity regime dictated by µ, or rather, it can be given a rigorous
meaning only by exploiting cancellations due to the structure of the stochastic
equation as a whole.

Remark 8.1.2. In terms of v, the latter equation reads{
∂tv + v∂xv + ∂x∂yA(v)∂yv + ∂xp = −(−∆)θv + ∂z

√
2(−∆)θ/2ξ,

∂zp = 0.

The forcing term should have white noise regularity in x, and Brownian regularity
in y, although the covariance structure is a nontrivial copula of the two.

Remark 8.1.3. Just as in the case of 2D Euler or stochastic Navier-Stokes
equations, the invariant measure associated to enstrophy is not able to describe pe-
culiar features of the fluid-dynamic model, such as turbulence phenomena. In fact,
such measures are preserved by any flow of measure-preserving diffeomorphisms
of the domain, among which the Euler flow is a very distinguished case. Energy
ensembles should be in fact more relevant, but they are supported on quite larger
distribution spaces.

8.2. Regularisation by Noise in Hyperviscous Regimes

In this section we outline how the solution theory of [100] (known as Energy
Solutions theory in the context of stochastic Burgers and KPZ equations) applies
to our model in a sufficiently hyperviscous regime. Computations differ from that
work only by small details: we collect them in the last section for the sake of
completeness, and in the present one we only recall the core ideas.
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8.2.1. Controlled Processes and Martingale Solutions. We recall the
notion of controlled process from [100].

Definition 8.2.1. For θ ≥ 0 and T > 0 we define the space Rθ,T of stochastic
processes with trajectories of class C([0, T ],S ′) such that any ω ∈ Rθ,T satisfies:

(1) ω is stationary and for any t ∈ [0, T ], ωt ∼ η;
(2) there exists a stochastic process A with trajectories C([0, T ],S ′) starting

from A0 = 0 and with null quadratic variation such that, for any φ ∈ S,

〈φ, ωt〉 − 〈φ, ω0〉+

∫ t

0

〈
(−∆)θφ, ωs

〉
ds− 〈φ,At〉 = Mt(φ)

is a martingale with respect to the filtration of ω, and it has quadratic

variation [M(φ)]t = 2t
∥∥(−∆)θ/2φ

∥∥2

FL2,0 ;

(3) the reversed process ω̃t = ωT−t satisfies condition (2) with Ãt = −AT−t.

Notice that in fact elements of Rθ,T are the couples (ω,A). The forward and
backward martingale equations defining the classRθ,T allow to obtain good a priori
estimates for nonlinear functionals of controlled process, in a procedure by now
commonly known as Itō trick, especially in literature related to regularisation by
noise techniques, see [70, 67, 16].

In the next paragraph we detail how the Itō trick produces good estimates on
Galerkin approximations of (8.1.12): the idea behind Definition 8.2.1 is to collect
the features of those approximants allowing such estimates, to form a class of pro-
cesses on which the nonlinear term of (8.1.12) is defined. In Section 8.3 we will
prove the following:

Lemma 8.2.2. Let θ > 2, T > 0 and ω ∈ Rθ,T . Then for every ζ < −1

lim
m→∞

∫ t

0

B(πmωs)ds

exists as a limit in C([0, T ],FL∞,ζ). We denote by
∫ t

0
B(ωs)ds the limiting process.

The latter lemma shows that the nonlinear functional B(ω) can be defined for
ω ∈ Rθ,T as a distribution in both space and time. Let us observe that Fourier
truncation πm in Lemma 8.2.2 can in fact be replaced with a large class of mollifiers,
the limit being independent of such choice: for the sake of keeping the exposition
simple, we refrain from going into details.

We can now give a notion of martingale solution to (8.1.12).

Definition 8.2.3. Let θ > 2, T > 0 and ω ∈ Rθ,T . We say that ω is a
martingale solution to (8.1.12) if it holds almost surely, for any t ∈ [0, T ],

At =

∫ t

0

B(ωs)ds.

The solution is pathwise unique if, for any two controlled processes ω, ω̃ ∈ Rθ,T
defined on the same probability space, satisfying conditions (2) and (3) of Defini-
tion 8.2.3 with the same martingales and with ω0 = ω̃0 almost surely, then almost
surely, for all t ∈ [0, T ], ωt = ω̃t.

The following is the main result of the paper: its proof will be given in Sec-
tion 8.3.

Theorem 8.2.4. Let T > 0. For any θ > 2 there exists a solution to (8.1.12) in
the sense of Definition 8.2.3. Moreover, for θ > 3 the solution is pathwise unique.
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8.2.2. Galerkin Approximation and the Itō Trick. Let us introduce ap-
proximating processes (ωm)m∈N by their Fourier coefficients dynamics: for k ∈ N2

0,

dω̂mk = Bmk (ωm)dt− |k|2θω̂mk dt+
√

2|k|θdβkt ,(8.2.1)

where Bm(ω) = πmB(πmω), and ωm0 ∼ µ. The vector field Bm satisfies

divµB
m(ω) = divµ

∑
k∈N2

0,
|k|≤m

∑
h∈Z2

0,
|h|≤m

ω̂hω̂k−h
k · h⊥

h2
2

ek(8.2.2)

=
∑
k∈N2

0,
|k|≤m

∑
h∈Z2

0,
|h|≤m

(∂ω̂k (ω̂hω̂k−h)− ω̂hω̂k−hω̂k)
k · h⊥

h2
2

= 0.

As a consequence, (8.2.1) has a unique, (probabilistically) strong, global in time
solution since µ is preserved by the linear part of the dynamics, and thus [51,
Theorem 3.2] applies. In the following, we denote by Pmµ the law of ωm in C(R+,S ′).

By Itō formula, for any cylinder function F ∈ C, F (ω) = f(ω̂k1 , . . . , ω̂kn), it
holds

dF (ωm) = LθF (ωm)dt+ GmF (ωm)dt+

n∑
i=1

∂if(ω̂mk1 , . . . , ω̂
m
kn)
√

2|ki|θdβkit ,

where Lθ is defined in (8.1.9) and

GmF (ω) =

n∑
i=1

∂if(ω̂k1 , . . . , ω̂kn)Bmki (ω)dt.

In other words, the process

(8.2.3) MF,m
t = F (ωmt )− F (ωm0 )−

∫ t

0

LθF (ωms )ds−
∫ t

0

GmF (ωms )ds

is a martingale with quadratic variation

[MF,m]t = 2

∫ t

0

n∑
i=1

|ki|2θ
(
∂if(ω̂mk1 , . . . , ω̂

m
kn)
)2
ds = 2

∫ t

0

Eθ(F )(ωms )ds.

Let us point out that, thanks to the hydrodynamic form of the nonlinearity,
Gm is a skew-symmetric operator with respect to µ: indeed, since

〈ω,Bm(ω)〉 =
〈
ω, πm(∇⊥A(πmω) · ∇πmω)

〉
= 0,

Gaussian integration shows that

Eµ [FGmG] = −Eµ [GGmF ] , ∀F,G ∈ C.

Let us then consider the reversed process ω̃mt = ωmT−t, for a fixed time horizon
T > 0: ω̃m is a Markov process whose generator is the adjoint of the one of ωm,
that is Lθ − Gm. The process

(8.2.4) M̃F,m
t = F (ω̃mt )− F (ω̃m0 )−

∫ t

0

LθF (ω̃ms )ds−
∫ t

0

GmF (ω̃ms )ds

is thus another martingale with quadratic variation 2
∫ t

0
Eθ(F )(ωms )ds. To sum up,

we have shown that ωm is a controlled process in the sense of Definition 8.2.1.
The trick is now to sum the martingale identities (8.2.3), (8.2.4) for ωm and ω̃m:

in doing so the nonlinear skew symmetric part, together with boundary terms, is
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canceled, leaving us with martingales term and the symmetric Ornstein-Uhlenbeck
generator,

M̃F,m
T−t − M̃

F,m
T −MF,m

t = 2

∫ t

0

LθF (ωms )ds.

Burkholder-Davis-Gundy inequality thus provides, together with stationarity of
ωm, the following powerful estimate: for p ≥ 1 there exists a constant Cp > 0 only
depending on p such that for all F ∈ C

(8.2.5) EPmµ

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

LθF (ωms )ds

∣∣∣∣p
]
≤ Cp

√
TEµ

[
|EθF |p/2

]
.

Remark 8.2.5. As already observed, Definition 8.2.1 actually collects the ele-
ments we used to establish (8.2.5); indeed, the latter holds more generally for any
controlled process ω ∈ Rθ,T .

Inequality (8.2.5) provides good estimates on time integrals of observables for
ωm, provided that we are able to solve a Poisson equation in Gaussian space. The
main aim are clearly bounds to establish the limit in Lemma 8.2.2, which can be
obtained by means of (8.2.5) by solving

LθHm
k (ω) = Bmk (ω).

Since Bmk (ω) belongs to the second chaos in the Wiener chaos decomposition of
L2(µ), and since Lθ is diagonalised by such decomposition, it is easy to obtain the
explicit solution

(8.2.6) Hm
k (ω) = −χ{|k|≤m}

∑
h,`∈Z2

0,
h+`=k
|h|,|`|≤m

ω̂hω̂`
` · h⊥

h2
2(|h|2 + |`|2)θ

.

The computation is completely analogous to [100, Section 3], to which we refer.
With the latter expression at hand, one only needs to estimate moments of Eθ(Hm

k ):
we report such computation in the next section, together with some variants from
which Theorem 8.2.4 follows.

8.3. Proof of Main Result

We complete in this Section the proof of Theorem 8.2.4. First, by means of the
Itō trick estimate (8.2.5) we obtain bounds on Galerkin approximations: the last two
paragraphs are then devoted to existence and uniqueness of martingale solutions.
In this section, the symbol . denotes inequality up to a positive multiplicative
constant uniform in the involved parameters.

8.3.1. Controlling the Nonlinear Term. We start from the expression
(8.2.6) for Hm

k to obtain estimates on the nonlinear term in (8.1.12). By definition
of Eθ, (8.1.11), one has

Eθ(Hm
k )(ω) = χ{|k|≤m}

∑
h∈Z2

0,
|h|≤m

|h|2θ
∣∣∣∣ 2(k − h) · h⊥

h2
2(|k − h|2 + |h|2)θ

ω̂k−h

∣∣∣∣2 ,
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therefore, taking expectation with respect to µ, for |k| ≤ m

Eµ [Eθ(Hm
k )] =

∑
h∈Z2

0,
|h|≤m

|h|2θ
∣∣∣∣ 2(k − h) · h⊥

h2
2(|k − h|2 + |h|2)θ

∣∣∣∣2

.
∑
h∈Z2

0,
|h|≤m

|k|2|h|2+2θ

|k − h|4θ + |h|4θ
.
∑
h∈Z2

0,
|h|≤m

|k|2|h|2

|k − h|2θ + |h|2θ
.

Now we use the fact that, for θ > 2,∑
h∈Z2

0

|h|2

|k − h|2θ + |h|2θ
. |k|4−2θ

(see [101, Lemma 16]) to deduce the following estimate uniformly in m:

Eµ [Eθ(Hm
k )] . |k|6−2θ.

Similarly, increments are controlled by

sup
n>m

Eµ[Eθ(Hn
k −Hm

k )] . |k|2m4−2θ.

With these estimates at hand, by means of (8.2.5) and Gaussian hypercontractivity,
one can prove the following estimates on the nonlinear term of (8.1.12).

Lemma 8.3.1. Let Gmt :=
∫ t

0
B(πmωs)ds and Pmµ be the distribution of the

stationary solution of (8.2.1) described above. For any n > m we have the following
estimates: ∥∥∥∥∥ sup

t∈[0,T ]

(Gmt )k

∥∥∥∥∥
Lp(Pmµ )

. |k|3−θT 1/2,(8.3.1)

∥∥∥∥∥ sup
t∈[0,T ]

(Gnt )k − (Gmt )k

∥∥∥∥∥
Lp(Pmµ )

. |k|T 1/2m2−θ.(8.3.2)

Lemma 8.3.2. Let G̃mt :=
∫ t

0
e−(t−s)(−∆)θB(πmωs)ds and Pmµ as above. For

any m fixed, n > m, s, t ∈ [0, T ], s < t, we have the following estimates:∥∥∥∥∥ sup
t∈[0,T ]

(
G̃mt

)
k

∥∥∥∥∥
Lp(Pmµ )

. |k|3−2θ,(8.3.3)

∥∥∥∥∥ sup
t∈[0,T ]

(
G̃nt

)
k
−
(
G̃mt

)
k

∥∥∥∥∥
Lp(Pmµ )

. |k|−1m4−2θ,(8.3.4)

sup
m

∥∥∥(G̃mt )
k
−
(
G̃ms

)
k

∥∥∥
Lp(Pmµ )

. |k|3−2θ+2εθ(t− s)ε,(8.3.5)

where the last inequality is meant to hold for ε > 0 small enough.

Proofs of the previous estimates follow along the lines of Lemma 5, Lemma 6
and Corollary 1 of [100], so we refrain from repeating them here.

8.3.2. Existence for θ > 2. We first prove Lemma 8.2.2, which gives a mean-
ing to the nonlinear term of (8.1.12). The result easily follows from Lemma 8.3.1.
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Proof of Lemma 8.2.2. Let Gmt :=
∫ t

0
B(πmωs)ds. It is clear that Gm is

a random process with values in C([0, T ],FL∞,ζ) for every m and ζ ∈ R. Since
θ > 2, (8.3.2) gives for any p and n > m

EPmµ

[∑
k

|k|ζp
∣∣∣∣∣ sup
t∈[0,T ]

(Gnt )k − (Gmt )k

∣∣∣∣∣
p]
→ 0

as m→∞ whenever ζ < −2/p− 1. Taking p sufficiently large, for any ζ < −1 we
obtain the almost sure uniform convergence of Gm in the space C([0, T ],FL∞,ζ).

�

We are now ready to prove the first part of Theorem 8.2.4. The proof relies on
subsection 8.3.1 and Skorokhod Theorem.

Proof of Theorem 8.2.4, existence. Let us consider the mild formulation
of (8.2.1):

ωmt = e−t(−∆)θω0 +

∫ t

0

e−(t−s)(−∆)θBm(ωms )ds(8.3.6)

+
√

2(−∆)θ/2
∫ t

0

e−(t−s)(−∆)θdβs,

where ω0 ∼ µ and β is a cylindrical Wiener process on FL2,0. Define

Amt :=

∫ t

0

Bm(ωms )ds, Ãmt :=

∫ t

0

e−(t−s)(−∆)θBm(ωms )ds.

We prove that, for ε > 0 sufficiently small and ζ < −1, the laws of the processes(
ωm,Am, Ãm, β

)
m

are tight in C([0, T ],X ), where

X := FL∞,ζ ×FL∞,θ−3−ε ×FL∞,2θ−3−ε ×FL∞,−ε.
By Borel-Cantelli theorem applied to Fourier expansions, the law µ is concentrated
on FL∞,−ε, and the stochastic convolution takes values in C([0, T ],FL∞,θ−ε) for
every ε > 0. Tightness in this space is given by Fernique Theorem. Tightness of
(Ãm)m descends from Equation 8.3.5 and tightness of (Am)m descends from Equa-
tion 8.3.1. Hence, by a standard application of Prokhorov Theorem and Skorokhod
Theorem, we deduce the a.s. convergence, up to a subsequence and a change of the

underlying probability space, of
(
ωm,Am, Ãm, β

)
towards some random variable(

ω,A, Ã, β
)

in C([0, T ],X ) which satifies

ωt = e−t(−∆)θω0 + Ãt +
√

2(−∆)θ/2
∫ t

0

e−(t−s)(−∆)θdβs

= ω0 +

∫ t

0

(−∆)θωsds+At +
√

2(−∆)θ/2βt.

Now it is easy to check that ω ∈ Rθ,T , see [100] for details. �

8.3.3. Uniqueness for θ > 3.

Proof of Theorem 8.2.4, uniqueness. We have constructed a sequence of
ωm converging a.s. to a solution ω as random variables in C([0, T ],FL∞,ζ) for
every ζ < −1. Here we prove uniqueness, which comes from an estimate on the
quantity πm(ωm − ω) in a suitable space, where ω ∈ Rθ,T is a controlled solution
to (8.1.12) and ωm is its Galerkin approximation defined by (8.3.6). In particular,
we prove that πm(ωm−ω) converges a.s. to zero in the space C([0, T ],FL∞,ξ), for
suitable ξ > ζ. This would conclude the proof by uniqueness at the level of the
Galerkin truncations.
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It is easy to see that

πm(ωmt − ωt) := δmt =

∫ t

0

e−(t−s)(−∆)θ (Bm(ωms )− πmB(ωs))ds

=

∫ t

0

e−(t−s)(−∆)θ (Bm(ωms )−Bm(ωs))ds

+

∫ t

0

e−(t−s)(−∆)θ (Bm(ωs)− πmB(ωs))ds

= αmt + γmt .

for every m, and thus for every ξ

sup
k

sup
t∈[0,T ]

|k|ξ|(δmt )k| ≤ sup
k

sup
t∈[0,T ]

|k|ξ|(αmt )k|+ sup
k

sup
t∈[0,T ]

|k|ξ|(γmt )k|.

By (8.3.3), (8.3.4) and interpolation, γm satisfies∥∥∥∥∥ sup
t∈[0,T ]

|(γmt )k|

∥∥∥∥∥
Lp(Pmµ )

. |k|3−2θ+εm−ε,

and therefore for every ξ < 2θ − 3 we have

sup
k

sup
t∈[0,T ]

|k|ξ|(γmt )k| → 0 a.s. for m→∞.

On the other hand, since

|Bm(ωms )−Bm(ωs)| .
∑
h∈Z2

0,
|h|≤m

|k||h||(ωms + ωs)h||(ωms − ωs)k−h|,

we obtain the following bound on αm:

sup
t∈[0,T ]

|k|ξ|(αmt )k| .|k|ξ sup
h

sup
t∈[0,T ]

|h|ξ|(δmt )h|

× sup
t∈[0,T ]

∣∣∣∣∣∣∣∣∣
∫ t

0

e−(t−s)|k|2θ
∑
h∈Z2

0,
|h|≤m

|h|1−ξ|k||(ωms + ωs)k−h|ds

∣∣∣∣∣∣∣∣∣ .
If ξ > 3 the series

∑
h∈Z2

0
|h|1−ξ converges, therefore by Hölder inequality∣∣∣∣∣∣

∫ t

0

e−(t−s)|k|2θ
∑
|h|≤m

|h|1−ξ|(ωms + ωs)k−h|ds

∣∣∣∣∣∣
.

∣∣∣∣∣∣
∫ t

0

∑
|h|≤m

|h|1−ξe−p
′(t−s)|k|2θds

∣∣∣∣∣∣
1/p′ ∣∣∣∣∣∣

∫ t

0

∑
|h|≤m

|h|1−ξ|(ωms + ωs)k−h|pds

∣∣∣∣∣∣
1/p

. |k|−2θ/p′

∣∣∣∣∣∣
∫ t

0

∑
|h|≤m

|h|1−ξ|(ωms + ωs)k−h|pds

∣∣∣∣∣∣
1/p

.

Taking p′ → 1 such that ξ + 1− 2θ/p′ < 0 and using the fact that ωm and ω have
marginals ∼ µ, we finally get

sup
k

sup
t∈[0,T ]

|k|ξ|(δmt )k| → 0 a.s. for m→∞,

for every 3 < ξ < 2θ− 3, which corresponds to the additional contraint θ > 3. The
proof is complete. �
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Inst. H. Poincaré Probab. Statist., 35(2):205–237, 1999.

[27] Guido Boffetta and Robert E. Ecke. Two-dimensional turbulence. In Annual review of fluid

mechanics. Volume 44, 2012, volume 44 of Annu. Rev. Fluid Mech., pages 427–451. Annual
Reviews, Palo Alto, CA, 2012.

[28] Vladimir Bogachev, Giuseppe Da Prato, and Michael Röckner. Existence and uniqueness of
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[153] Ken-iti Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. Trans-

lated from the 1990 Japanese original, Revised edition of the 1999 English translation.
[154] Steven Schochet. The weak vorticity formulation of the 2-D Euler equations and

concentration-cancellation. Comm. Partial Differential Equations, 20(5-6):1077–1104, 1995.
[155] Steven Schochet. The point-vortex method for periodic weak solutions of the 2-D Euler

equations. Comm. Pure Appl. Math., 49(9):911–965, 1996.
[156] Jacques Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4), 146:65–96,

1987.
[157] Mark A. Stremler and Hassan Aref. Motion of three point vortices in a periodic parallelo-

gram. J. Fluid Mech., 392:101–128, 1999.
[158] Chengfeng Sun, Hongjun Gao, and Mei Li. Large deviation for the stochastic 2D primitive
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