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Abstract

This paper proposes a nonparametric theory for statistical inferences on

zero returns of high-frequency asset prices. Using an infill asymptotic design,

we derive limit theorems for the percentage of zero returns observed on a

finite time interval and for other related quantities. Within this framework,

we develop two nonparametric tests. First, we test whether intra-day zero

returns are independent and identically distributed. Second, we test whether

intra-day variation of the likelihood of occurrence of zero returns can be solely

explained by a deterministic diurnal pattern. In an empirical application to

ten representative stocks of the NYSE, we provide evidence that the null of

independent and identically distributed intra-day zero returns can be con-

clusively rejected. We further find that a deterministic diurnal pattern is
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not sufficient to explain the intra-day variability of the distribution of zero

returns.

Keywords: Average Staleness, Instantaneous Price Staleness, Liquidity, Zero Re-

turns, Stable Convergence.
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1 Introduction

Traditional models in continuous-time finance entail that the price of a financial as-

set, traded in a frictionless market, evolves as a semimartingale. Bandi et al. (2017)

provide empirical evidence against this hypothesis by showing that, even at mod-

erately high frequency, asset prices do not update as frequently as expected under

the semimartingale assumption. Indeed, while under the standard semimartingale

hypothesis high-frequency returns should exceed an appropriately defined threshold

with large probability, often the converse is true; asset prices are stale in the sense

that they show a large incidence of zero or, more generally, “small” returns. The

inclusion of price staleness in the data-generating process is pivotal from both an

economic and an econometric point of view. Bandi et al. (2017) provide a micro-

structural model of price formation (following the spirit of Kyle, 1985; Hasbrouck

and Ho, 1987; Glosten and Milgrom, 1985) where the lack of price updates is deter-

mined by the joint effect of asymmetric information, transaction costs and delays

in the incorporation of the information flow into the assets’ prices. Kolokolov and

Renò (2017) show that neglecting price staleness leads to severe distortions of the

widely used power and multi-power estimators (Woerner, 2006; Barndorff-Nielsen

et al., 2006; Barndorff-Nielsen and Shephard, 2004; Lee and Mykland, 2008; Ca-

porin et al., 2017), which results in distorting traditional jump tests towards false

jump detection. Even though one may claim that such sluggish dynamics are only

the spurious consequence of price discreteness, the empirical analysis in Bandi et al.

(2019) shows that this argument is false. On a large dataset of New York Stock

Exchange (NYSE)-listed stocks, they document that high-frequency transaction

prices show an excess of zero returns with respect to what would be expected from

price rounding alone. Most importantly, they prove that this excess of staleness,

being strictly related to transaction volumes, bid-ask spreads, and volatility, brings

insightful economic information.

The occurrence of zero returns is thus an economically meaningful feature of the

data-generating process of financial asset prices. As the past financial econometric

literature has successfully investigated stochastic volatility (see, among many oth-

ers, Hull and White, 1987; Scott, 1987; Heston, 1993; Bates, 1996) focusing on the

erratic behavior of price paths, here we look at the other side of the coin and we

answer the following research questions: does the price staleness vary empirically

on an intra-daily basis? In the affirmative case, what is an appropriate model for

such variability?

We assume the existence of an efficient price process Y , which we define as the

asset price that would be observed if the market was perfectly liquid. Hereafter, we

will assume that the process Y has not “genuine” zeros, i.e. that the increments of
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Y follow a continuous distribution: ∀t 6= s, P [Yt − Ys = 0] = 0.1 In the presence

of illiquidity frictions (such as trading costs), the trading activity is inhibited. We

model this frictional dynamics assuming that, for any partition 0 = t0,n < t1,n <

. . . < tn,n = T of the interval [0, T ] (e.g., one trading day) there is a non-zero

probability that, in each element of the partition, the efficient price is not observed.

Whenever this event occurs, we substitute the missing price with the price observed

in the previous point of the partition.2 Assuming that the efficient price is observed

with probability one in t = 0, the observed price process X(n) at the frequency3 n

is generated by the following recursive scheme

X
(n)
0 = Y0,

X
(n)
tj,n = Ytj,n (1− Bj,n) +X

(n)
tj−1,n

Bj,n, j = 1, . . . , n, (1)

where Ytj,n indicates the efficient price sampled in the j-th element of the partition

and where (Bj,n)j=1,...,n is a triangular array of Bernoulli random variates such that

1

T

n∑
j=1

(tj,n − tj−1,n)Bj,n
p−→ pT , as n→∞, (2)

for some (random) pT ∈ (0, 1), which can be interpreted as the average staleness on

the time interval [0, T ]. The recursive equation (1) implies that at each instant tj,n

the observed price X
(n)
tj,n may either coincide with the latent efficient price (if Bj,n =

0) or may not update and stay constant (if Bj,n = 1), thus leading to a stale price.

The event {Bj,n = 1} has, in this setting, a twofold interpretation: it may indicate

the impossibility of observing the efficient price in the point tj,n, or the occurrence

of a zero return in the time interval [tj−1,n, tj,n]. For equi-spaced observations,

i.e. imposing tj,n − tj−1,n = T
n

, the assumption in equation (2) implies that the

average probability, over the time interval [0, T ], of the event {Bj,n = 1} converges,

asymptotically, to E [pT ]. This setting is in line with the data generating process

1This assumption is motivated by the ubiquitous semimartingale model for asset prices in
continuous time. Nonetheless, it holds for a much larger class of stochastic processes. For instance,
it holds for infinite activity pure-jump processes, such as α-stable motion (Cont and Tankov,
2004), or for non-semimartingales processes, such as fractional Brownian motion (Mandelbrot and
Van Ness, 1968).

2Here, we work under the assumption of no multiple observations, i.e. at each instant of the
partition tj,n we have at most one observation of the price process. However, recent literature
(Liu et al., 2018) suggests that the presence of multiple observations is a common feature in (high-
frequency) datasets. The inclusion of this feature in the proposed inferential theory is outside of
the scope of this paper.

3The superscript (n) in the notation X
(n)
tj,n indicates that even if tj,n = tj,n′ = t for n 6= n′ it

typically occurs that X
(n)
t 6= X

(n′)
t . That is, we model the observed price process as a realization

of a frequency-dependent process.
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studied in Phillips and Yu (2007) and with the alternative (to a semimartingale null)

hypothesis proposed by Bandi et al. (2017). Here, we build on this assumption by

representing pT as

pT =

∫ T

0

pt dt,

where p is a suitable stochastic process whose values fall within the open interval

(0, 1). In this paper, we derive suitable conditions for the triangular array Bj,n to

guarantee the existence of a feasible local estimator of the process p. The economet-

ric interpretation of p is straightforward: as the spot volatility is the time derivative

(or the instantaneous variation) of the integrated volatility (which is consistently

estimated, in absence of micro-structural noise and jumps, by the realized volatil-

ity), the process p represents the instantaneous variation4 of p, which is consistently

estimated by the idle time defined in Bandi et al. (2017) or, as we will prove in this

paper, by the realized staleness (defined below). For this reason, having in mind

that p represents integrated price staleness, we call p instantaneous (price) stale-

ness. In other words, as p represents the average staleness on a time interval of

finite length, p represents the same average, but on an infinitesimal time interval.

In this paper, we develop an inferential theory for the dynamics of p and, con-

sequently, for the intra-day dynamics of instantaneous price staleness. Our first

result is to show that, under a suitable assumption on the triangular array Bj,n,

the intra-day fraction of zero returns, which we address as realized staleness, is

a consistent estimator of
∫ T

0
pt dt. Then, under the assumption that the process

(pt)t∈[0,T ] evolves as a Brownian semimartingale, we derive a (stable) central limit

theorem (CLT) for the realized staleness. To set up a feasible confidence interval,

we introduce a new economic indicator, called the m-realized staleness, and we de-

rive its limiting properties when n → ∞. Next, we introduce a consistent local

estimator of p and prove that 1) it allows the construction of a non-parametric test

capable of distinguishing between a constant and a time-varying p and 2) under

the null of a Brownian semimartingale for p, it allows the definition of a consistent

estimator of its integrated volatility. Empirically, using the transactions prices of

ten representative stocks of the NYSE for the period 2006-2014, we prove that the

null of a constant p is not compatible with the data. This intra-day variability

could be, in principle, solely driven by a deterministic seasonal effect or, in con-

4To clarify the intuition, note that, for a generic time t such that 0 < t < T , one can define pt
as the average staleness on the time interval [0, t], following the same construction used to define
pT as the average staleness on [0, T ]. The process pt could be thus alternatively defined as

pt = lim
h→0

pt+h − pt
h

= lim
h→0

∫ t+h
t

ps ds

h

provided that the limit exists in an appropriate sense.
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trast, it could be the result of stochastic shocks superimposed to a deterministic

pattern. To test whether a recurrent deterministic pattern is sufficient to explain

the time-dependence of instantaneous staleness, following Christensen et al. (2018),

we derive a feasible test, based on transaction prices, that is (stably) distributed as

a standard normal random variable if p coincides, up to a multiplicative constant,

with a deterministic recurrent pattern, and diverges (in probability) otherwise.

The test, when run on our dataset, reveals that the intra-day dynamics of in-

stantaneous price staleness is richer than a simple deterministic seasonal effect,

although the latter constitutes the leading determinant of its variability.

The remainder of the paper is organized as follows. Section 2 introduces the

mathematical setting. Section 3 contains the limit results. The nonparametric

tests are derived in Section 4. Section 5 shows the finite sample accuracy of our

asymptotic theory using a Monte Carlo exercise and Section 6 presents the empirical

results. Section 7 contains the conclusions. All technical proofs are confined to

Appendix A. Finally, Appendix B contains an extension of the Monte Carlo exercize

presented in Section 5.

2 The mathematical setting

We work on a filtered probability space
(
Ω, (Ft)t≥0 ,P

)
that supports all the stochas-

tic elements defined below. The structure of the filtration (Ft)t≥0 is quite technical

and is reported in Appendix A.1. From now on let T = 1 for simplicity of no-

tation. We consider refining equispaced partitions of the unit time interval [0, 1],

Πn = {t0,n, . . . , tn,n}, with 0 = t0,n < t1,n < . . . < tn,n = 1, where n belongs to an

increasing subsequence of N, such that Πn ⊆ Πn′ for all n′ ≥ n in the subsequence5.

The value of a generic stochastic process X at a point tj,n of a partition Πn are

denoted with Xtj,n or, to avoid excessive subscripts, simply with Xj,n. Because the

partitions are equispaced, we have tj,n = j/n for j = 0, ..., n, and we indicate the

distance between two consecutive points of the partition with ∆n = 1/n.

As anticipated in the introduction, our inferential theory develops around the

concept of instantaneous staleness p. What follows formalizes this idea.

Assumption 1. There exists an adapted a.s. Riemann-integrable continuous-time

stochastic process (pt)t∈[0,1], taking the values in (0, 1), such that the triangular array

(Bj,n)j=1,...,n in equation (1) consists of Bernoulli random variables Bj,n = Btj,n
5The requirement that Πn ⊆ Πn′ allows us to significantly simplify the proofs, and it is natural

for financial applications. For instance, one-minute partitioning of a trading day contains five-
minute partitioning
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defined as:

∀t, Bt
.
= 1{ut≤pt}, (3)

where 1{·} is the indicator function and where (ut)t∈[0,1] is a collection of uniformly

distributed random variables (independent of pt) satisfying ut ⊥ ut′, ∀t 6= t′, and

ut ∈ Ft ∀ t.

Assumption 1 has two important implications and deserves some additional

comments.

First, it preserves the compatibility relationship (see Aı̈t-Sahalia and Jacod, 2014,

p. 211) over different sampling frequencies for the array Bj,n. Formally, this prop-

erty guarantees that if tj,n = j/n and tj′,n = j′/n are two equally spaced partitions of

[0, 1], with j = 1, . . . , n and j′ = 1, . . . , n′, then Bj,n = Bj′,n′ whenever j/n = j′/n′.

Since, as anticipated in the introduction, the event {Bj,n = 1} represents the impos-

sibility of observing the efficient price in tj,n, this means that if the efficient price is

not observed at a given point in time, its value will not be revealed by increasing

the frequency. On the other hand, if we do observe the efficient price at a given

point, this observation will not be lost as n increases. To clarify, suppose that

Bt1,1 = B1 = 1, i.e. the efficient price process Y is not observed at t1,1 = 1. Then,

the observed price at the frequency n = 1 in the point t1,1 is set, according to the

recursive scheme in equation (1), equal to the observed price in the previous point

of the grid, i.e. X
(1)
t1,1 = X

(1)
t0,1 . As a consequence, at the frequency n = 1, a zero

return over the time interval [0, 1] is observed. Doubling the sampling frequency,

i.e. going to n = 2, equation (3) implies that Bt2,2 = Bt1,1 = B1 = 1, but nothing

more. That is, having observed at the frequency n = 1 a zero return over [0, 1]

does not imply that also the return in [0, 1/2] is zero. In fact, the price process

could have been observed, if sampled, at time t = 1/2, but since for n = 1 the

partition contains only the points {t0,1 = 0, t1,1 = 1}, this event is ignored, because

the instant t = 1/2 is not part of it.

Second, it implies that the probability of a zero return on any time interval

[tj−1,n, tj,n] depends only on the terminal point tj,n, and not on the distance between

the two points. This assumption could, in principle, be relaxed, replacing the p in

equation (1) with a sequence of stochastic processes p(n) converging, in some sense,

to p. Here we abide by Assumption 1, avoiding further complications, since the

asymptotic distributions of all the quantities of interest would be driven, in any

case, by p. Frequency-dependent returns could be accommodated following other

modelling choices. For example, one could assume that, for all j = 0, ..., n, the
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probability of the event {Bj,n = 1} is given by

ptj,n,∆n = E
[
Btj,n

]
= E

[
exp

(
−
∫ tj,n

tj−1,n

λt dt

)]
, (4)

for a suitable positive stochastic process λt ≥ 0, which would play the role of a

time-varying staleness intensity. It is immediately clear that equation (4) implies

that
1

n

n∑
j=0

Btj,n
p−→ 1,

forcing, accordingly, the p in equation (2) to be exactly equal to one. Although it

would be interesting to develop the intensity-based approach, we leave it for future

projects, since in the present paper we focus on instantaneous price staleness.

Assumption 1 encompasses different specifications of (Bj,n)j=1,...,n. If pt = p0

∀t ∈ [0, 1], then the Bernoulli variates are i.i.d. with P [Bj,n = 1] = E [p0]. An-

other (more sophisticated) specification is obtained when (pt)t∈[0,1] is described by

a Brownian semimartingale. As an illustrative example, Figure 1 plots a simulated

path of the observed price process in equation (1) in which p is either constant (left

panel) or a Brownian semimartingale (right panel). Although the number of zero

returns (whose location is indicated by a red cross) is the same, the two graphs look

rather different. In the i.i.d. scenario, stale prices are uniformly distributed over

the trading day. However, in the semimartingale case, there is clustering of lack of

price adjustments.

09:30 10:30 11:30 12:30 13:30 14:30 15:30

4.59

4.595

4.6

4.605

4.61

4.615

09:30 10:30 11:30 12:30 13:30 14:30 15:30

4.59

4.595

4.6

4.605

4.61

4.615

Figure 1: Shows two examples of price staleness. Zero returns are indicated by
red crosses. Instantaneous staleness is either constant (left panel) or follows a
semimartingale model (right panel). The total number of zeros is the same in both
cases.
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3 Asymptotic results

In this section, we derive a (stable) CLT for the fraction of zero returns within

one day. This quantity is the natural estimator of the integrated (over one day)

instantaneous staleness
∫ 1

0
ps ds. As we will discuss below, the derivation of CLTs

for the estimators of random variables of the form
∫ 1

0
pms ds, with m any strictly

positive integer, is required to define a test capable of distinguishing between a

constant and a time-varying p. Nevertheless, as it happens for stable CLTs in the

literature of integrated volatility estimators (see, among others, Kinnebrock and

Podolskij, 2008; Podolskij and Vetter, 2009, 2010), an additional assumption on the

dynamics of p is required. In this paper, we stay with semimartingale dynamics for

p.

Assumption 2. The process (pt)t∈[0,1] is described by the following stochastic dif-

ferential equation (SDE)

pt = p0 +

∫ t

0

µs ds+

∫ t

0

νs dWs, (5)

where Wt is a standard Brownian motion, and µt and νt are adapted càdlàg pro-

cesses, such that ∀t, pt ∈ (0, 1) almost surely.

The following remark clarifies that the class of semimartingales whose values are

confined within the open interval (0, 1) is not empty.

Remark 1. Let G : R→ (0, 1) be a twice differentiable function and (χt)t∈[0,1] be a

Brownian semimartingale described by the following SDE

χt = χ0 +

∫ t

0

as ds+

∫ t

0

bs dZs,

where Z is a F-Brownian motion and the processes a and b are cádlág and F-

adapted. Consider the process defined as pt
.
= G (χt), for each t ∈ [0, 1]. Hence,

by construction, pt ∈ (0, 1) for all t. By Itô lemma (pt)t∈[0,1] is itself a Brownian

semimartingale. In fact

pt = p0 +

∫ t

0

(
as G

′ (χs) +
1

2
b2
s G
′′ (χs)

)
ds+

∫ t

0

bs G
′ (χs) dZs.

Remark 2. Assumption 2 is not exhaustive for the asymptotic theory derived. For

instance, one may allow the dynamics of the process (pt)t∈[0,1] to include a jump

component or even to be a pure-jump process. Investigating the jump dynamics of

(pt)t∈[0,1] would provide a number of interesting research questions. We defer the

generalization of Assumption 2 to future projects.
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Having, as anticipated, the necessity to define an estimator of functionals of the

form
∫ 1

0
pms ds, in what follows we develop a theory of estimation of all integrals

of the type
∫ 1

0
f (ps) ds, for a smooth enough test function f (·). We then derive a

non-parametric test designed to asymptotically discriminate between the null of a

time-independent p and an alternative in which the instantaneous staleness varies

during the day. Finally, under Assumption 2, we derive a consistent estimator of

the integrated volatility of p, that is,
∫ 1

0
νs ds.

3.1 Realized staleness

We define realized staleness as6

RZn
.
=

1

n

n∑
j=1

1{
X

(n)
j,n−X

(n)
j−1,n=0

}, (6)

where X(n) is the observed price process defined in equation (1). Despite its sim-

plicity, RZn encompasses economically meaningful features of the data-generating

process of financial asset prices. Here, we are not going to discuss this point further

and we refer to the paper by Bandi et al. (2019) for additional discussions. We

focus instead on the limiting properties of RZn, which are exposed in the following

theorem.

Theorem 3.1. Under Assumption 1, as n→∞, we have that

RZn
p−→
∫ 1

0

ps ds.

In addition, if both Assumptions 1 and 2 hold, as n→∞,

√
n

(
RZn −

∫ 1

0

ps ds

)
stably
=⇒ MN (0,ΣRZ) , (7)

whereMN (0,ΣRZ) denotes the mixed-normal distribution with a stochastic variance

ΣRZ defined as

ΣRZ =

∫ 1

0

ps (1− ps) ds. (8)

Proof. See Appendix A.2.

6There is a subtle difference between the definition in equation (6) and the idle time introduced
by Bandi et al. (2017), as in this latter case idle time indicates the percentage of log returns that
in absolute value are below an asymptotically vanishing threshold ξn. We set ξn = 0 because, in
our theoretical framework, the introduction of a threshold is unnecessary.
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The convergence in probability implies that RZn is a consistent estimator of the

integrated instantaneous staleness over one trading day, and this result holds under

very general assumptions on the dynamics of the process p. In fact, more general

uniform convergence on compacts in probability of RZn can be established, as is

done in Theorem 4.1 below.

Under Assumption 2, the difference RZn −
∫ 1

0
ps ds converges stably, at rate

n1/2, to a zero-mean (mixed) normal distribution whose variability has an intuitive

expression. Indeed, in the case pt = p0 ∀ t ∈ [0, 1], the asymptotic variance coincides

(given the independence of the driving Bernoulli variates) with the variance of a

Bernoulli random variable with (random) mean p0, that is, p0 (1− p0). In the non-

constant case, the expression of the asymptotic variance naturally generalizes to its

integral version.

Since RZn is a consistent estimator of
∫ 1

0
ps ds, a feasible confidence interval

for RZn can be defined once a consistent estimator of
∫ 1

0
p2
s ds is available. Actu-

ally, we consider the more general problem of developing a consistent estimator of∫ 1

0
(ps)

m ds for some integers m ≥ 2. For this purpose, we introduce m-realized

staleness as

RZm,n
.
=

1

n−m

n−m∑
j=1

m−1∏
q=0

1{
X

(n)
j+q,n−X

(n)
j+q−1,n=0

}. (9)

The rationale of the estimator is the following. Consider, for a fixed m ≥ 2 and

j ∈ {1, . . . , n−m}, the product of the indicator functions that appear in equation

(9). If all the m consecutive price adjustments are zero, the product of the indicator

functions is equal to one and contributes to the summation. Conversely, if at

least one among the m price adjustments is different from zero, the product of

the indicator functions is equal to zero and does not contribute to RZm,n. When

Bernoulli variates are i.i.d., RZm,n estimates the joint probability of m consecutive

zeros. In the most general case, we have the following result.

Theorem 3.2. Under Assumption 1 and Assumption 2, as n→∞, we have

RZm,n
p−→
∫ 1

0

pms ds.

Moreover, as n→∞

√
n

[
RZn −

∫ 1

0
ps ds

RZm,n −
∫ 1

0
pms ds

]
stably
=⇒ MN (0,Σm) ,
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where MN (0,Σm) denotes the mixed-normal distribution with covariance matrix

Σm =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
m pms (1− ps) ds∫ 1

0
m pms (1− ps) ds

∫ 1

0
pms

pms (2m+1)−pm+1
s (2m−1)−(1+ps)
1−ps ds

]
.

Proof. See Appendix A.2, Lemma 6.

The estimation of the entries of the matrix Σm requires a consistent estimator

of functionals of the form

U (f) =

∫ 1

0

f (ps) ds, (10)

with f (·) being a (sufficiently regular) deterministic function. We discuss this point

below.

3.2 Local estimation of instantaneous staleness

The estimation of functionals of the type (10) is feasible once a local estimator of

p is available. Therefore, we first choose a sequence kn ≥ 2 of integers that satisfies

kn →∞ and kn∆n → 0, and then we define the estimator

p̂j (kn) =
1

kn

kn−1∑
`=0

1{
X

(n)
j+`+1,n−X

(n)
j+`,n=0

}, j ∈ {1, . . . , n− kn} . (11)

Note that the condition kn∆n → 0 ensures that the number of observations used to

perform the local average in (11) is an order of infinity smaller than the sampling

frequency of the Bernoulli variates, which diverges as 1/∆n. The functional U (f)

can then be estimated via standard Riemann sums, in which instantaneous staleness

p is replaced by the estimator in (11). For this reason, we define the discretized

version of U (f) as

U (∆n, f)n = ∆n

n−kn+1∑
i=1

f
(
p̂i (kn)

)
,

and we derive its asymptotic properties in the following theorem.

Theorem 3.3. Let f ( · ) be a locally bounded function. Under Assumption 1 and

Assumption 2, as n→∞, it holds that

U (∆n, f)n
p−→
∫ 1

0

f (ps) ds. (12)

Proof. See Appendix A.3.
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The idea of estimating the functionals U (f) through U (∆n, f)n follows the

same logic as in Jacod and Rosenbaum (2013, 2015) for the estimation of volatility

functionals. As in their case, the U (∆n, f)n in (12) admits a stable CLT with an

F -conditional Gaussian limit, which is, however, not centered. If kn ∼ θ/
√

∆n for

some constant θ, the F -conditional mean of the limit consists of several bias terms

depending on end effects, the second derivative of f , and the quadratic variation of

p. If kn diverges slower than 1/
√

∆n, the F -conditional mean of the limit depends

only on the second derivative of f , while the other bias terms are asymptotically

immaterial. Because the estimation of the quadratic variation of p carries some

complications (in particular, the convergence rate of the estimator is small, see

Jacod and Rosenbaum, 2015), in what follows we will assume that kn
√

∆n → 0.

Under these settings, the bias-corrected7 version of U (∆n, f)n takes the form

U ′ (∆n, f)n = ∆n

n−kn+1∑
j=1

(
f
(
p̂j (kn)

)
− 1

2 kn
f ′′
(
p̂j (kn)

)
p̂j (kn)

(
1− p̂j (kn)

))
(13)

and delivers the following stable CLT.

Theorem 3.4. As n→∞, let kn be a sequence of integers such that k2
n∆n → 0 and

k3
n∆n →∞. In addition, let f be a test function satisfying the following condition:

∣∣f (`) (x)
∣∣ ≤ K

(
1 + |x|m−`

)
, ` = 0, 1,

for suitable positive constants K and m. As n → ∞, under Assumption 1 and

Assumption 2, we have that

1√
∆n

(
U ′ (∆n, f)n −

∫ 1

0

f (ps) ds

)
stably
=⇒ MN (0,ΣU),

where MN (0,ΣU) denotes the mixed-normal distribution with covariance matrix

ΣU =

∫ 1

0

f ′ (ps)
2 ps (1− ps) ds.

Proof. See Appendix A.3.

7Notice that the form of the bias is analogous to that of Jacod and Rosenbaum (2013), equation
(3.8). In both cases, this bias is due to the local estimation of the instantaneous staleness.
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3.3 On the estimation of the volatility of instantaneous stal-

eness

In this section, we prove that under the semimartingale model of Assumption 2,

it is possible to define a feasible and consistent estimator of ν
.
=
∫ 1

0
ν2
s ds, that

is, the quadratic variation of p. From an economic point of view, interpreting

p as an illiquidity proxy,8 ν is readily interpretable as a measure of volatility of

illiquidity. If p was observed, the natural estimator for the quadratic variation of

the semimartingale in (5) would be

n∑
j=1

(
∆n
j p
)2
,

where ∆n
j p

.
= pj,n − pj−1,n. However, the process p is latent, and therefore a proxy

for the discrete increments ∆n
j p is needed. The estimator in equation (11) can be

adopted for this purpose, as stated in the following theorem.

Theorem 3.5. Let kn = bθ
√
nc be a sequence of integers for some constant θ > 0.

As n→∞, under Assumption 1 and Assumption 2, it holds that

ν̂
?

n(kn)
.
= k−1

n

n−2kn+1∑
j=1

(
p̂j+kn(kn)− p̂j(kn)

)2 p−→ 2

3

∫ 1

0

ν2
s ds+

2

θ2

∫ 1

0

ps (1− ps) ds,

(14)

where p̂j(kn) is the estimator defined in equation (11).

Proof. See Appendix A.4.

Several remarks are needed at this point. First, in contrast to the assumption in

Theorem 3.4, now we must assume kn ∼ θ/
√

∆n. Second, the sum of the squared

increments of p̂j(kn) converges in probability to two-thirds of the integrated volatil-

ity of p plus a bias term that is proportional to the asymptotic variance of RZn (see

Theorem 3.2). Nevertheless, this bias does not constitute an issue because it can

be consistently estimated via U ′′ (∆n, f)n using a suitable f . Indeed, a consistent

estimator of ν can be defined as:

ν̂n
.
=

3

2

(
ν̂
?

n(kn)− 2

θ2
U ′′(∆n, f)n

)
, (15)

where f (x) = x (1− x). Note that, by construction, it is not guaranteed that

8The interpretation of p as an illiquidity proxy is (mainly) motivated by the work of Bandi et al.
(2017), where the authors provide an economic rationale for zeros that hinges on micro-structural
theories of price formation with transaction costs and asymmetries in information. In particular,
the probability of the occurrence of a zero return is driven by p.

14



ν̂n ≥ 0. To circumvent this problem, one might use max
(
ν̂n, 0

)
instead as a non-

negative estimator.

4 Statistical tests

4.1 A test for time-varying versus constant instantaneous

staleness

The inferential theory discussed thus far is the basis for a statistical test apt to

discriminate, over one day of observation, between a constant and a time-varying

instantaneous staleness. Consider, therefore, the following partition of the sample

space Ω:

Ω0 =

{
ω ∈ Ω

∣∣∣∣ ∫ 1

0

(pt(ω))m dt =

(∫ 1

0

pt(ω) dt

)m}
,

Ω1 =

{
ω ∈ Ω

∣∣∣∣ ∫ 1

0

(pt(ω))m dt 6=
(∫ 1

0

pt(ω) dt

)m}
,

(16)

where m is an arbitrary integer. If a path pt (ω) is constant on [0, 1] then ω ∈ Ω0. On

the other hand, if ω ∈ Ω1 then the corresponding trajectory pt (ω) must depart from

a constant path in, at least, a subset of the interval [0, 1] with a non-zero Lebesgue

measure. In particular, the null hypothesis is formally defined as H0 : (ω ∈ Ω0),

whereas the alternative is H1 : (ω ∈ Ω1). By virtue of Theorem 3.1, Theorem 3.2,

and the delta method, the random variable defined as

Ψm,n
.
=

√
n (RZm,n − (RZn)m)√

(RZn)2m+1(m2+2m−1)−(RZn)2m(2m2+2m+1)+(RZn)m+1+(RZn)m

RZn−1

(17)

is the natural candidate for a test statistic that may asymptotically distinguish

whether the observed instantaneous staleness stems from a p in Ω0 or in Ω1. The

asymptotic limits of the Ψm,n test statistic are discussed in the following corollary.

Corollary 1. As n→∞ it holds thatΨm,n
stably
=⇒ N (0, 1) on Ω0,

Ψm,n
p−→ +∞ on Ω1.

Proof. See Appendix A.5.

Under the null, the limiting null distribution of Ψm,n coincides with that of the

zero-mean normal random variable with unit variance while, under the alternative,
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the test statistic diverges in probability, thus delivering a unit power. Note that the

asymptotic properties of Ψm,n are independent from the value of m. In the finite

sample, however, m can trade off the size and power of the test. We will discuss

this point in Section 5, which is dedicated to the Monte Carlo simulations.

4.2 A test for deterministic instantaneous staleness

A rejection of the null hypothesis H0 : (ω ∈ Ω0) poses the question of which kind of

intra-day variability is observed for the instantaneous staleness p. Since staleness is

expected to be inversely related to volatility, an intra-day non-constant path for p

could be simply the result of an inverse U-shaped seasonal pattern. Alternatively,

the intra-day variation could be the outcome of random shocks, superimposed on a

deterministic seasonal pattern.

To discriminate between the two scenarios, we develop a non-parametric method-

ology which takes cues from the work of Christensen et al. (2018), in which the

authors investigate the source of variation in intra-day volatility. The major chal-

lenge in designing the new test stems from the fact that p, as for the case of spot

volatility, is not directly observed and both the (potential) stochastic and determin-

istic components of p can change over the course of the day. To circumvent these

problems, following Christensen et al. (2018), we resort to a long-span asymptotic

theory, as opposed to the infill asymptotic framework used so far. Accordingly,

some additional notation is needed. Let T be the number of days in the sample

and let [t− 1, t] be the sub-interval indicating the t-th day. We assume that the

processes are observed over [0, T ] with observations recorded on a refining partition

Πn = {t0,n, . . . , tnT,n}, where tj,n = j/n, j = 0, . . . , nT . For a generic process X, let

X
(t)
j,n indicate the observation of X at point j/n of day t. Hereafter, X

(1)
j,n is denoted

as Xj,n.

The philosophy of the test reflects what it is usually done in the volatility lit-

erature (see, for instance, Engle and Sokalska, 2012). That is, we assume that at

each time instant s ∈ (t− 1, t) the value of the process ps is equal to the product

of a deterministic recurrent factor, say ϑs, and an intra-day stochastic part, say p?s;

see Assumption 3 below. We formulate a null hypothesis in which p?s is constant

during the day. Under the alternative, instead, p?s = ps/ϑs is allowed to be time-

varying and, since the deterministic intra-day variation of ps is assumed to be fully

absorbed by ϑs, this scenario corresponds to an instantaneous staleness driven also

by random shocks.

We put now some structure on the problem. We start from an additional as-

sumption.
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Assumption 3. The process pt is equal to pt = p?t ϑt, where p?t denotes the stochas-

tic part of pt and ϑt the deterministic seasonal component. Moreover:

(a) The process p?t satisfies Assumption 2 and assumes values in the interval(
0, ϑ̄
)
, with ϑ̄ =

(
sups∈[0,1] ϑs

)−1
. In addition, it is stationary and such that

E [p?t ] = π? and
∑∞

k=1Cov
[
p?t , p

?
t+k

]
<∞.

(b) The diurnal component ϑt is a continuously differentiable one-periodic bounded

function, bounded away from zero, with bounded derivative for t → 0 and

t→ 1. Moreover, it is normalized such that
∫ 1

0
ϑs ds = 1.

Some observations are in order. Point (a) ensures the stationarity of p?t as well as

restricting its memory, which implies that the process is ergodic (Christensen et al.,

2018). On the other hand, point (b) allows for the identification of both components

of pt and, in particular, they allow the estimation of the diurnal component from

a long sample of data. Indeed, let s ∈ (0, 1) be a fixed time of the day. Then, we

have

1

T

T∑
t=0

pt+s =
1

T

T∑
t=0

p?t+sϑt+s = ϑs
1

T

T∑
t=0

p?t+s
p−→ ϑ?s

.
= ϑsπ

?.

Then we define, for some integer m ≥ 2, the diurnal corrected m-realized stale-

ness (at day t) as:

R̃Z
(t)

m,n
.
=

1

n−m

n−m+1∑
j=1

m−1∏
q=0

1{
X

(t)
j+q,n−X

(t)
j+q−1,n=0

}
ϑ̂?j+q,n

, (18)

where ϑ̂?j,n is the long-scale estimator of ϑ?j,n and it is defined as:

ϑ̂?j,n
.
=

1

T

T∑
t=1

1{
X

(t)
j,n−X

(t)
j−1,n=0

}. (19)

We derive the limiting properties of R̃Z
(t)

m,n in the following theorem.

Theorem 4.1. Let Assumption 3 hold. Suppose that n/T −→ 0 as n, T → ∞.

Then we have

R̃Z
(t)

m,n

u.c.p.−→ 1

(π?)m

∫ t

t−1

(p?s)
m ds,
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and

√
n

 R̃Z
(t)

1,n − 1
π?

∫ t
t−1

p?s ds

R̃Z
(t)

m,n − 1
(π?)m

∫ t
t−1

(p?s)
m ds

 stably
=⇒ MN

(
0, Σ̃(m)

)
,

where MN (0, Σ̃(m)) denotes the mixed-normal distribution with covariance matrix

Σ̃(m) =

 ∫ t
t−1

(p?sϑ−1
s −(p?s)2)
(π?)2 ds

∫ t
t−1

m (p?s)m (ϑ−1
s −p?s)

(π?)m+1 ds∫ t
t−1

m (p?s)m (ϑ−1
s −p?s)

(π?)m+1 ds
∫ t
t−1

∑m−1
`=0

(2m−2`−1)(p?s)2m−`−1(ϑ−1
s −p?s)ϑ−`

s

(π?)2m ds

 .
Proof. See Appendix A.5.

Theorem 4.1 shows that the m-realized staleness “scaled” by the diurnal effect

converges, uniformly in probability, to a quantity that depends solely from the

stochastic component of p. As for the limiting distribution, instead, note that the

entries of Σ̃(m) depend on ϑs. However, they can be estimated consistently by the

following estimators

̂̃
Σ

(m)

(1,1) =
1

n

n∑
j=1

(
ϑ̂?n R̃Z

(t)

1,n

(
ϑ̂?j,n

ϑ̂?n

)−1

−
(
ϑ̂?nR̃Z

(t)

1,n

)2
)

(
ϑ̂?n

)2 ,

̂̃
Σ

(m)

(1,2) =
1

n

n∑
j=1

m

(
ϑ̂?n R̃Z

(t)

1,n

)m((
ϑ̂?j,n

ϑ̂?n

)−1

− ϑ̂?n R̃Z
(t)

1,n

)
(
ϑ̂?n

)m+1 ,

̂̃
Σ

(m)

(2,2) =
1

n

n∑
j=1

m−1∑
`=0

(2m− 2 `− 1)

(
ϑ̂?n R̃Z

(t)

1,n

)2m−`−1
((

ϑ̂?j,n

ϑ̂?n

)−1

− ϑ̂?n R̃Z
(t)

1,n

)(
ϑ̂?j,n

ϑ̂?n

)−`
(
ϑ̂?n

)2m ,

(20)

where, to avoid clutter, we set ϑ̂?n = 1
n

∑n
j=1 ϑ̂

?
j,n.

To test wether the diurnal pattern is sufficient to explain the observed intra-day

variation in p, we partition the sample space Ω into

Ω?
t,0

.
=

{
ω ∈ Ω

∣∣∣∣∣ p?s (ω) is constant for s ∈ [t− 1, t]

}

and Ω?
t,1, defined as the complement of Ω?

t,0. Therefore, the null hypothesis is

formally defined as H?
0 :

(
ω ∈ Ω?

t,0

)
, whereas the alternative is H?

1 :
(
ω ∈ Ω?

t,1

)
.
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An implication of Theorem 4.1 is that for any integer m ≥ 2 as n→∞

R̃Z
(t)

m,n −
(
R̃Z

(t)

1,n

)m
u.c.p.−→ 1

(π?)m

(∫ t

t−1

(p?s)
m ds−

(∫ t

t−1

p?s ds

)m)
,

which means that, under the null H?
0, the limit of the difference R̃Z

(t)

m,n−
(
R̃Z

(t)

1,n

)m
is zero while, under the alternative H?

1, it is a strictly positive quantity. We thus

build a test for H?
0 against H?

1 via the following statistic:

Υ(t)
m,n

.
=

√
n

(
R̃Z

(t)

m,n −
(
R̃Z

(t)

1,n

)m)
√
m2

(
R̃Z

(t)

1,n

)2(m−1) ̂̃
Σ

(m)

(1,1) +
̂̃
Σ

(m)

(2,2) − 2m

(
R̃Z

(t)

1,n

)m−1 ̂̃
Σ

(m)

(1,2)

,

where
̂̃
Σ

(m)

(1,1),
̂̃
Σ

(m)

(2,2) and
̂̃
Σ

(m)

(1,2) are defined in equation (20). The asymptotic limits of

Υ
(t)
m,n are described in the following corollary.

Corollary 2. As n→∞, T →∞ and n
T
→ 0,Υ

(t)
m,n

stably
=⇒ N (0, 1) on Ω?

t,0,

Υ
(t)
m,n

p−→ +∞ on Ω?
t,1.

Proof. See Appendix A.5.

Therefore, the limiting null distribution of Υ
(t)
m,n coincides with that of a stan-

dard normal while, under the alternative hypothesis, the test statistic diverges in

probability. In the next section we will discuss how, in finite sample, the parameter

m affects the size and power of both Ψm,n and Υ
(t)
m,n.

5 Monte Carlo simulations

The settings in force of electronic financial markets force transaction prices to round

off at one cent. Hence, in real data, price discreteness may affect the limits derived

in Section 3 and Section 4, producing unwanted spurious effects.

More precisely, in the presence of rounding, there could be some extra zero

returns not generated by the stochastic process p, defined in Assumption 1. In

this section, we explore the finite sample contaminations of the asymptotic theory

by means of Monte Carlo simulations. For this purpose, we generate an artificial

dataset of efficient price paths contaminated by staleness and rounded at one cent.

For each replication we simulate a trading day of 6.5 hours on a grid of one second
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for a total of 6.5 × 60 × 60 steps. To begin, we create the path of an efficient log-

price process Yt = log (Pt) driven by a one-factor stochastic volatility model, the

dynamics of which is driven by the SDE

d log σ2
t =

(
α− β log σ2

t

)
dt+ η dWσ,t,

dYt = µ dt+ cσ σt dWY,t, (21)

where Wσ,t and WY,t are two Brownian motions with corr (dWσ,t, dWY,t) = ρ dt.

We adopt the values for the parameters α, β, η, µ, and ρ estimated by Andersen

et al. (2002) on S&P500. The volatility factor cσ can be tuned to generate different

volatility scenarios. It will be equal to cσ = 3, unless otherwise specified. Numerical

integration of the SDE in (21) is performed on a one-second time grid via a standard

Euler scheme and with the initial conditions Y0 = log (P0), with P0 = 100, and

log σ2
0 = α/β (different simulation scenarios are considered in Appendix B). Once

simulated, the efficient prices are sampled every 30 seconds. Then, on the time

grid of 30 seconds we construct the staleness-contaminated log-price process Xj,n

following the recursive equationX0,n = Y0,n = log (P0) ,

Xj,n = (1− Bj,n) Yj,n + Bj,nXj−1,n,
(22)

where Bj,n are Bernoulli random variables generated as described below. Finally,

the prices exp (Xj,n) are rounded at one cent. The rounding is the only factor that

prevents taking the highest frequency available. In the numerical experiments that

follow we will consider different dynamics for p.

Ω0,Ψ: constant instantaneous staleness. In this specification we assume that

p is constant. Therefore, this choice corresponds to the null hypothesis of the test

Ψm,n. In this specification, the Bj,n’s are i.i.d. Bernoulli random variables with

constant expected value E [Bj,n] = pF for all j. We put pF = 0.5. Hence, at the

frequency of 30 seconds, fifty percent of the log-returns are zeros. This corresponds

to a moderately high level of illiquidity for the asset.

Ω0,Υ: deterministic time-varying instantaneous staleness. We input a p

solely driven by a deterministic diurnal pattern. In this scenario, the simulated

instantaneous staleness p, once standardized by the seasonal component, is con-

stant and equal to pF = 0.5. The deterministic pattern is estimated from real data

employing the methodology described in Section 4.2. This hypothesis is, simulta-

neously, the null hypothesis for the test statistic Υ
(t)
m,n and one possible alternative
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for the test statistic Ψm,n.

Ω1,Υ: stochastic plus deterministic time-varying instantaneous staleness.

We input an instantaneous staleness expressed as the product of two factors, as

described in Assumption 3 of Section 4.2. The diurnal deterministic component ϑt

is inputted as in the the hypothesis Ω0,Υ. The stochastic component p? is simulated

with the following scheme. For each replication, we generate a path of a latent

stochastic process u with the following (discrete-time) integration schemeu0,n = F−1 (pF )

uj,n = uj−1,n + (F−1 (pF )− uj−1,n)/n+ σu εj,n/
√
n,

(23)

with j = 1, ..., n, n = 780, pF = 0.5, and where F−1 (x) is the inverse of the

cumulative distribution function of a standard Gaussian variable. The εj,ns are i.i.d.

standard Gaussian shocks, and σu is a tuning parameter that we set to σu = 1.5.

The path of p? is generated as

p?j,n =

∫ uj,n

−∞

1√
2π

e−z
2/2 dz = F (uj,n) . (24)

Note that since the process u is mean-reverting around F−1 (pF ) then, by construc-

tion, p? is mean-reverting around pF . This hypothesis is an alternative for both

Υ
(t)
m,n and Ψm,n.

5.1 Sizes and powers of Ψm,n and Υ
(t)
m,n

The test statistics Ψm,n and Υ
(t)
m,n are characterized, for a given frequency of observa-

tion n, by the choice variable m. Asymptotically, their distributions are unaffected

by the value of m, as well as their divergence toward +∞ under the corresponding

alternative hypothesis. Nevertheless, in a finite sample, m can be chosen to trade-

off the size and power of the tests. Our Monte Carlo simulations9 shows that, at the

frequency of one minute, m = 4 maximizes the rejection powers and simultaneously

preserves the size of the tests under the null. Hence, in what follows, we will always

adopt m = 4.

Figure 2 shows the kernel densities of Ψm,n over 104 replications of prices under

the null Ω0,Ψ and the two alternatives Ω0,Υ and Ω1,Υ, described in the previous

section. As expected, the highest rejection rates are found in the case of Ω1,Υ.

Price rounding, which is already included in the simulations of Figure 2, has the

9All details and routines are available upon request. They are omitted here for the sake of
conciseness.
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effect of slightly distorting the distribution under the null (toward negative values)

and to reduce the rejection power of the tests.10

Similarly, Figure 3, shows the kernel densities of Υ
(t)
m,n over 104 replications of

prices under the null Ω0,Υ and the alternative Ω1,Υ. As for the case of the Ψm,n

statistic, rounding has the effect of slightly distorting the distribution of the test

under Ω0,Υ and to reduce the rejection power under Ω1,Υ.
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Figure 2: Kernel density of the test statistic Ψm,n under the null Ω0,Ψ (dotted red
line) and the two alternatives Ω0,Υ (blue crosses) and Ω1,Υ (magenta stars). n = 780
and m = 4. Prices are rounded at one cent.

6 Empirical application

We employ a dataset whose constituents are the most 250 liquid11 NYSE-listed

stocks. The data range from January 3, 2006 to December 31, 2014, covering a

time span of 2263 trading days. We rank the stocks in deciles according to the

total volume traded (during the whole period available) and, within each decile,

we select the stock with the highest average price. This choice is dictated by the

necessity of mitigating the impact of rounding. This data filtering returns the ten

tickers APA, BA, CVX, DE, EOG, GS, MCD, MMM, UNP, and XOM. Transaction

prices are sampled every thirty seconds with previous-tick interpolation, producing

780 observations from 09:30 EST to 15:30 EST for each trading day.

10This claim is corroborated by comparing the results in Figure 2 with the corresponding plots
obtained simulating prices without rounding. For conciseness, the results of these numerical
experiments are omitted but are available upon request.

11In terms of average transaction volumes during the period considered.
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Figure 3: Kernel density of the test statistic Υ
(t)
m,n under the null Ω0,Υ (blue crosses)

and the alternative Ω1,Υ (magenta stars). n = 780 and m = 4. Prices are rounded
at one cent.
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Figure 4: The black line reports the percentage of days (across the ten stocks) for
which the nullH0 is rejected through Ψm,n at confidence level α. The red dotted line
reports the percentage of days, among those selected rejecting the null H0 through
Ψm,n with 99% confidence level, for which the null H?

0 is rejected through Υ
(t)
m,n at

confidence level α.

We apply two quality cuts. In order to avoid spurious results due to scheduled

market interruptions, we first remove all days with ten consecutive minutes of no

trading activity. Then, we remove days with a realized staleness smaller than 20%.

After these quality cuts, the final dataset is made of 11689 days out of 2263× 10 =

22630 of the original sample.
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Figure 5: (Left panel) The red line with circles and the black continuous line rep-
resent, respectively, instantaneous price staleness of XOM during a day in which
the null H0 of constant instantaneous price staleness is and is not rejected at 99%
confidence level. (Right panel). Intra-day instantaneous price staleness estimates
of XOM averaged over the whole sample available (black continuous line) and cor-
responding 95% confidence bands (grey shaded area).

First we test, for each day in the sample, for constancy of instantaneous price

staleness using the test statistic Ψm,n. Then, on the sub-sample composed by the

days for which H0 is rejected at 99% confidence level, we run the Υ
(t)
m,n test. Figure

4, black continuous line, shows the percentage of days, across the ten stocks, in

which the null H0 is rejected at the confidence level α. At the 99% confidence

level, the rejection rate is a remarkable 25%. This constitutes empirical evidence

in favour of a time-varying model for p. The left panel of Figure 5 provides two

examples of estimated (using the estimator defined in equation (11)) trajectories

of the instantaneous staleness for a day in which the null H0 is rejected (red line

with circles) and not rejected (black solid line), at the 99% confidence level. The

difference in the dynamics of the two trajectories is striking.

Being related to trading activity, staleness is expected to be low at the beginning

and the end of the trading day, and high in the middle. Indeed, right panel of Figure

5 illustrates the presence of a pronounced inverse U-shape pattern in the estimates

of instantaneous staleness of XOM, averaged across the sample. Zero returns are

mostly concentrated around midday: the average instantaneous staleness is equal

to 0.12 at 09:30 EST, and increases up to 0.24 at 12:30 EST. Hence, we examine

whether a deterministic recurrent pattern alone is sufficient to explain the intra-day

variability of price staleness.

For this purpose, we apply the Υ
(t)
m,n test to a Ψ-filtered sample defined by se-

lecting the days for which the null hypothesis of constant instantaneous staleness

H0 is rejected at 99% confidence level. The sample consists of 3102 days out of

the 11689 of the original sample. Figure 4, red dotted line, displays the percentage
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of days, in the Ψ-filtered sample, for which the null hypothesis H?
0 is rejected at

the confidence level α. With a rejection rate that at the 99% confidence level is

still 40%, this plot provides empirical evidence that the diurnal pattern alone is not

sufficient to explain the intra-day variation of p. The left panel of Figure 6 reports

an example of estimated instantaneous staleness p (red markers) for a (randomly

selected) day in which the null H?
0 is not rejected with 99% confidence level. The

black continuous line shows the (non-standardized) intra-day pattern of p. The

right panel of Figure 6 illustrates a (randomly selected) day in which the null H?
0

is rejected with the same confidence level. When H?
0 is not rejected, the estimated

instantaneous staleness almost coincides with the intra-day seasonal pattern. On

the other hand, should the null H?
0 be rejected as in the case of the right panel,

the intra-day path of p significantly deviates from the seasonal pattern. Overall,

the analysis suggests that, although the diurnal pattern certainly constitutes an

important driving factor, it is not sufficient to fully explain the intra-day variation

of the staleness. A more complex modelling is required.

Time
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Figure 6: Examples of the estimated trajectories of pt (red markers) and the (non-
standardized) intra-day pattern, ϑt (black continuous lines). Left panel: the null
H?

0 is not rejected at 99% confidence level. Right panel: the null H?
0 is rejected at

99% confidence level.

7 Conclusions

Transaction prices of financial assets show, from moderate to high-frequency (e.g.

from five-minute to higher frequency), a non-null probability of being repeated.

This feature translates in an excess of zero (or small) returns with respect to what

would be expected under semimartingale dynamics (Bandi et al., 2017).

Building on this point, we provided a new econometric framework, where the

statistical properties of the likelihood of observing zero returns are driven by a
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stochastic process p, which we refer to as instantaneous staleness. Once integrated

over a given time horizon, the expected value of instantaneous staleness delivers

the asymptotic average probability of observing a zero return, where the average

is relative to the time window considered. Hence, instantaneous staleness can be

interpreted as the localized version of average price staleness which, in turn, is

consistently estimated by the realized staleness or, also, by the idle time, defined

by Bandi et al. (2017).

Zero returns are naturally linked to lack of liquidity. The proposed framework

thus allows to derive statistical inferences on liquidity-related variates. In particu-

lar, we derived a test statistic capable of distinguishing between a null in which the

process p is constant and an alternative in which it is time-varying. We show, on

ten representative stocks of the NYSE, that the 99%-rejection rate of the statistic

is a remarkable 25%. We investigated further the dynamics of instantaneous stal-

eness, developing an asymptotic theory to test whether a deterministic recurrent

pattern is sufficient to explain the time-variation in p. For this purpose, following

Christensen et al. (2018), we derived a test statistic that is (stably) distributed

as a standard normal random variable if p coincides, up to a multiplicative con-

stant, with a periodic deterministic function of time. Under the alternative, which

encompasses all models in which the de-seasonalized instantaneous staleness is time-

varying, the test diverges (in probability) to infinity. Running this newly defined

test we found that the intra-day seasonal pattern is the leading effect in determin-

ing the time-variation of p. Nevertheless, it cannot explain all the variability in p

since, for example, at 99% confidence level the null is still rejected in 40% of the

days considered. In summary, our empirical results point toward the necessity of

investigating which dynamical model is more appropriate to explain the intra-day

pattern of instantaneous staleness.
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A Appendix: Proofs

This appendix is divided into five parts. Section A.1 introduces the notation and collects auxiliary results on the

convergence of triangular arrays. Section A.2 is dedicated to the proofs of limiting results from Sections 3.1 and 3.2.

Section A.3 presents the proofs of Theorems 3.3 and 3.4 in the main text. Section A.4 presents the proof of Theorem 3.5

in the main text. Finally, the proofs of the results in Section 4 of the main text are reported in Section A.5.

A.1 Notations and auxiliary results

In what follows, we indicate with tj,n = j/n, j ∈ {0, . . . , n}, the deterministic equispaced partition of the interval [0, 1]

and with Nn (s)
.
= max {j | tj,n ≤ s}. Trivially, Nn (1) = n. When necessary, we assume the existence of finitely many

out-of-sample values (i.e. the variables defined outside the interval [0, 1]) in order to simplify the notations (this allows

us, for example, considering quantities like
∑n
i=1 Bi,nBi+1,n instead of

∑n−1
i=1 Bi,nBi+1,n, which have identical asymptotic

properties). We use the symbol
p−→ for convergence in probability, and

u.c.p.−→ for uniform convergence in probability.

Now, we specify the structure of the σ-field F . We have the following flows of information on F : i) (F (p)
t )t∈[0,1] is the

natural filtration associated with the process pt, ii) Utj,n is the σ-algebra generated by random variables u0,n, . . . , uj,n, and

iii) Ftj,n = F (p)
tj,n ∨ Utj ,n is a discrete time filtration associated with partitioning the interval [0, 1] with a descretization

step ∆n = 1/n. Let F (p)
∞ = ∨t∈[0,1]F

(p)
t be the smallest σ-algebra, that contains ∪t∈[0,1]F

(p)
t , U∞ = ∨∞n=1 Un,n, and

Ftn,n = F (p)
∞ ∨ Un,n.

For the sake of readability, we denote, for a generic index j ∈ {1, . . . , n}, by Pj [ · ], Ej [ · ], Vj [ · ] the conditional

probability, the conditional expectation, and the conditional variance with respect to the filtration Ftj,n .

In what follows, our proofs and formalism will be inspired by those of Jacod (2012), Jacod and Protter (2012), and

Aı̈t-Sahalia and Jacod (2014). We say that a triangular array of random variables ξnj , j ∈ {0, . . . , n}, is asymptotically

negligible (AN) if:

n∑
j=1

ξnj
u.c.p.−→ 0,

that is,

sup
s∈[0,1]

∣∣∣∣∣∣
Nn(s)∑
j=1

ξnj

∣∣∣∣∣∣ p−→ 0. (25)

The following two remarks state simple properties that will be invoked repeatedly during the proofs.

Remark 3. Suppose that
∑n
j=1

∣∣ξnj ∣∣ converges to zero in L1, i.e.:

E

 n∑
j=1

∣∣ξnj ∣∣
→ 0. (26)

By standard argument, this implies that
∑n
j=1

∣∣ξnj ∣∣ p−→ 0 and so it is sufficient to note that

sup
s∈[0,1]

∣∣∣∣∣∣
Nn(s)∑
j=1

ξnj

∣∣∣∣∣∣ ≤ sup
s∈[0,1]

Nn(s)∑
j=1

∣∣ξnj ∣∣ =

n∑
j=1

∣∣ξnj ∣∣ p−→ 0

to conclude that condition (26) is enough to guarantee that ξnj is AN.

Remark 4. Throughout the paper, we will implicitly use this simple fact. If g (s) is a Riemann-integrable function then
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on [0, 1]

sup
t∈[0,1]

∫ t

0

|g (s)| ds =

∫ 1

0

|g (s)| ds,

where for any sequence of function gn (s), uniform convergence on [0, 1] of the integral of |gn (s)| is equivalent to the

convergence of
∫ 1

0
|gn (s)| ds.

Finally, we remind readers of the following two lemmas that give us a simple criterion to conclude that a triangular array

is AN; these are used repeatedly in the rest of the appendix. The first one is Lemma 4.1 in Jacod (2012) and the second

is Lemma B.8 in Aı̈t-Sahalia and Jacod (2014).

Lemma 1. Let ξnj be a triangular array of Ftj,n-measurable random variables. If the following condition is satisfied:

n∑
j=1

Ej−1

[∣∣ξnj ∣∣] p−→ 0,

then
∑n
j=1 ξ

n
j

u.c.p.−→ 0, i.e. ξnj is AN. Moreover, the same conclusion holds under the following two conditions:

n∑
j=1

Ej−1

[
ξnj
] u.c.p.−→ 0, (27)

n∑
j=1

Ej−1

[(
ξnj
)2] p−→ 0. (28)

As a consequence, if Ej−1

[
ξnj
]

= 0 then condition (28) is sufficient to guarantee that
∑n
j=1 ξ

n
j

u.c.p.−→ 0.

Lemma 2. If mn, `n ≥ 1 are arbitrary integers, and if for all n ≥ 1 and 1 ≤ i ≤ mn the variable ξnj is Ftj+`,n
-measurable,

and if
mn∑
j=1

∣∣Ej−1

[
ξnj
]∣∣ p−→ 0, `n

mn∑
j=1

E
[∣∣ξnj ∣∣2]→ 0,

then

sup
i≤mn

∣∣∣∣∣∣
i∑

j=1

ξnj

∣∣∣∣∣∣ p−→ 0,

that is,
∑n
j=1 ξ

n
j

u.c.p.−→ 0.

We now turn to characterizing the stable convergence of triangular arrays (see Podolskij and Vetter, 2010, Definition

1). For a sequence of random variables Yn (representing the sequence of partial sums of a triangular array), the stable

convergence is defined as follows.

Definition 1. A sequence of random variables Yn defined on (Ω,F ,P) is said to converge G-stably with limit Y defined

on an extension of the original probability space (Ω′,F ′,P′) if and only if for any bounded continuous function g and any

bounded G-measurable random variable Z it holds that:

E [g(Yn)Z] −→ E [g(Y )Z] .

In what follows, by stable convergence we mean F (p)
∞ -stable convergence (denoted simply

stably
=⇒ ), unless otherwise stated.

The classical stable CLT of Hall and Heyde (1980) is not valid for the triangular arrays considered in the present paper.

Indeed, by construction, we have that Ftj,m * Ftj,n whenever n > m. As a consequence, the nesting assumption on the

filtrations as in Theorem 3.2 of Hall and Heyde (1980) fails. However, a similar stable CLT holds.
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Theorem A.1. For any given integer ` consider the triangular array random variables:

γ
(`)
j,n = ϕ (Bj−`,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+`,n]) ,

where ϕ : R2 `+1 → R is a locally bounded function of a finite number of variables. Define the centred triangular array

X
(`)
j,n as:

X
(`)
j,n =

1√
n

(
γ

(`)
j,n − Ej−1

[
γ

(`)
j,n

])
and assume that:

n∑
j=1

(
X

(`)
j,n

)2 p−→ σ2, (29)

for an a.s. finite random variable σ. Then, as n→∞

n∑
j=1

X
(`)
j,n

stably
=⇒ Z, (30)

where Z is a random variable with F (p)
∞ -conditional Gaussian distribution with variance σ2, defined on an extension of

the original probability space.

Proof. The technicalities of the proof largely follow the results in Hall and Heyde (1980), Lemma 3.1, and Theorem 3.2.

Because of the locally boundedness of ϕ and the distributional assumptions on random variables Bj−`,n, . . . ,Bj+`,n, it

is easy to check that max1≤j≤n

∣∣∣X(`)
j,n

∣∣∣ p−→ 0. Moreover, by hypothesis
∑n
j=1

(
X

(`)
j,n

)2 p−→ σ2 for an a.s. finite random

variable σ. As a consequence (see Lemma 3.1 in Hall and Heyde, 1980), to prove the statement above it is sufficient to

prove that for all real t the random variable Tn (t) defined as (ı =
√
−1)

Tn(t)
.
=

n∏
j=1

(
1 + ı tX

(`)
j,n

)

converges to 1 as n→∞ weakly in L1. By definition, this is equivalent to prove that for all E ∈ F , E [Tn (t) I (E)]→ P [E],

where I (E) is the indicator function of the event E. For a fixed 2 ≤ m ≤ n, let Em ∈ Ftm,m
. We compute

E [Tn (t) I (Em)] = E
[
E
[
Tn (t) I (Em) |Ftm,m

]]
= E

E
 n∏
j=1

(
1 + ı tX

(`)
j,n

)
I (Em)

∣∣∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

 ∏
j∈I2∪I3

(
1 + ı tX

(`)
j,n

) ∣∣∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

E
 ∏
j∈I2∪I3

(
1 + ı tX

(`)
j,n

) ∣∣∣∣∣F (p)
∞

 ∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

∏
j∈I2

(
1 + ı tX

(`)
j,n

) ∣∣∣Ftm,m

E
∏
j∈I3

(
1 + ı tX

(`)
j,n

) ∣∣∣F (p)
∞

 , (31)

where I1, I2, and I3 are three sets of indexes such that X
(`)
j,n ∈ Ftm,m

for j ∈ I1, X
(`)
j,n ∈ Ftm+`,m+`

for j ∈ I2, and

X
(`)
j,n ∈

(
Ftn,n�Ftm+`,m+`

)
for j ∈ I3. In particular,

(
Ftn,n�Ftm+`,m+`

)
denotes the smallest σ-algebra containing all the

events of Ftn,n
that are not included in Ftm+`,m+`

. First, we note that I1 and I2 include at most a finite number of terms
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and that

E

∏
j∈I3

(
1 + ı tX

(`)
j,n

) ∣∣∣F (p)
∞

 =
∏
j∈I3

E
[(

1 + ı tX
(`)
j,n

) ∣∣∣F (p)
∞

]
= 1,

because of the independence of the factors conditionally on F (p)
∞ and the fact that for each j ∈ {1, . . . , n} X(`)

j,n has

expected value equal to one. Equation (31) then becomes

E [Tn (t) I (Em)] = E

I (Em)
∏

j∈I1∪I2

(
1 + ı tX

(`)
j,n

) = P [Em] +Rn,

where the remainder term Rn consists of at most 22|I1∪I2| − 1 terms of the form E
[
I (Em) (it)

r
X

(`)
j1,n

. . . X
(`)
jr,n

]
, with

1 ≤ r ≤ |I1 ∪ I2| and j1, . . . jr ∈ I1 ∪ I2. Note that Rn converges to zero as n→∞. Consequently,

E [Tn (t) I (Em)]
p−→ P [Em] .

Finally, let 4 denote the symmetric difference. For any E ∈ F (p)
∞ and any ε > 0 there exists an m and an Em ∈ Ftm,m

,

such that P [E 4 Em] ≤ ε. Because Tn is uniformly integrable by assumption,

|E [Tn (t) I (Em)]− E [Tn (t) I (E)]| ≤ E [|Tn (t)| I (E 4 Em)] ,

and supn |E [Tn (t) I (Em)]− E [Tn (t) I (E)]| can be made arbitrarily small by choosing sufficiently small ε. Whence the

thesis.

We state now the following corollary, which will be used in the subsequent sections.

Corollary 3. Let X
(`)
j,n be a q-dimensional random vector with each component defined as X

(`)
j,n in Theorem A.1 such that

n∑
j=1

X
(`)
j,n

(
X

(`)
j,n

)′ p−→ Σ, (32)

for an a.s. finite positive definite random matrix Σ = {σi,j}. Then,

n∑
j=1

X
(`)
j,n

stably
=⇒ MN (0,Σ) ,

where MN (0,Σ) is a q-dimensional mixed-normal random variable.

Proof. The condition (32) implies that

n∑
j=1

(
c′X

(`)
j,n

)2 p−→ c′Σc

for an arbitrary real valued vector c = (c1, ..., cq)
′
. Consequently, by Theorem A.1, we have

n∑
j=1

c′X
(`)
j,n

stably
=⇒ MN (0, c′Σc) ,

where MN (0, c′Σc) denotes a mixed-normal random variable. Because c is arbitrary, the later convergence implies the

statement of the Corollary.
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Remark 5. The statement of Theorem A.1 remains true if the condition (29) is replaced by the analogous condition for

conditional variances:
n∑
j=1

E
[(
X

(`)
j,n

)2
∣∣∣∣ Ftj,n] p−→ σ2.

We conclude the present section with the following useful lemma.

Lemma 3. For any sequence of bivariate random vectors Bn, and any differentiable function ν(X,Y ) : R2 → R, the

stable convergence
√
n (Bn − B)

stably
=⇒ N (0,Σ) ,

implies that √
n (ν (Bn)− ν (B))√

ν1 (B)
2
σ1,1 + ν2 (B)

2
σ2,2 + 2ν1 (B) ν2 (B)σ1,2

stably
=⇒ N (0, 1) ,

where B is a bivariate random vector, Σ =

[
σ1,1 σ1,2

σ1,2 σ2,2

]
, and ν1 (B) and ν2 (B) denote, respectively, the derivatives of the

function ν(X,Y ) with respect to the first and second argument.

Proof. The proof of the result above can be found in Podolskij and Vetter (2010).

A.2 Proofs of limit theorems of Section 3.1 and 3.2

The proofs of the limiting results from Sections 3.1 follow directly from several auxiliary lemmas on the limiting behaviour

of triangular arrays of Bernoulli random variables presented below.

We start with a remark about Assumption 2, which is repeatedly used in the subsequent proofs.

Remark 6. Under Assumption 2,

Ej−1 [Bj,n] = pj−1,n +Op

(
∆1/2
n

)
. (33)

Indeed,

Ej−1 [Bj,n] = E
[
E
[
Bj,n

∣∣∣ Ftj−1,n ∨ F
(p)
tj,n

]]
= Ej−1 [pj,n] = pj−1,n + Ej−1 [pj,n − pj−1,n] , (34)

where

|Ej−1 [pj,n − pj−1,n]| ≤ Ej−1 [|pj,n − pj−1,n|] ≤ C (∆n)1/2,

where the last inequality follows from standard estimates for semimartingales (Jacod, 2008). Moreover, by Proposition 1

of Barndorff-Nielsen et al. (2006),

|pj,n − pj−1,n| = Op

(
(∆n |log ∆n|)1/2

)
,

which implies that for every finite integer k

pj+k = pj−1 +Op

(
k (∆n |log ∆n|)1/2

)
. (35)

Lemma 4. Under Assumption 2, as n→∞,

1

n

n∑
j=1

m−1∏
i=0

Bi+j,n
u.c.p.−→

∫ 1

0

(ps)
m
ds.

Proof. Consider the following quantity:

An =
1

n

n∑
j=1

m−1∏
i=0

Bi+j,n −
1

n

n∑
j=1

(pj−1,n)
m

=
1

n

n∑
j=1

[
Bj,nBj+1,n · · ·Bj+(m−1),n − (pj−1,n)

m]
,
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We show that An
u.c.p.−→ 0. To do so, we rewrite the quantity An as a sum of a Ftj,n-measurable quantity and a negligible

term. We introduce the following quantity:

ς
(m)
j,` = Bj,nBj+1,n · · ·Bj+`−1,n (Bj+`,n − pj−1,n) (pj−1,n)

m−`−1

and we show that An can be rewritten in the following way

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` +

Rn
n
, (36)

where Rn/n is AN. Let us consider the following expressions:

ψj,1 = Bj,n − pj−1,n
.
= ς

(1)
j,0

ψj,2 = Bj,nBj+1,n − p2
j−1,n = Bj,n (Bj+1,n − pj−1,n) + (Bj,n − pj−1,n) pj−1,n

.
= ς

(2)
j,1 + ς

(2)
j,0

ψj,3 = Bj,nBj+1,n (Bj+2,n − pj−1,n) + Bj,n (Bj+1,n − pj−1,n) pj−1,n + (Bj,n − pj−1,n) p2
j−1,n

.
= ς

(3)
j,2 + ς

(3)
j,1 + ς

(3)
j,0 ,

and similarly for each fixed m. Then An = n−1
∑n
j=1 ψj,m becomes:

An =
1

n

n∑
j=1

m−1∑
`=0

ς
(m)
j,` =

1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j,` +

1

n

m−1∑
j=1

m−1∑
`=0

ς
(m)
j,` =

1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,`+

1

n

n∑
j=m

m−1∑
`=0

(
ς
(m)
j,` − ς

(m)
j−`,`

)
︸ ︷︷ ︸

R1

+
1

n

m−1∑
j=1

m−1∑
`=0

ς
(m)
j,`︸ ︷︷ ︸

R2

.

We show now that both R1/n and R2/n are op (1). Because m is fixed, by the boundedness of the Bernoulli variables

we have R2/n = op (1). Now, considering that all the terms with ` = 0 in R1,n are identically zero, we get:

R1 =

m−1∑
`=1

n∑
j=m

(
ς
(m)
j,` − ς

(m)
j−`,`

)
=

m−1∑
`=1

 n∑
j=m

ς
(m)
j,` −

n∑
j=m

ς
(m)
j−`,`

 =

m−1∑
`=1

 n∑
j=m

ς
(m)
j,` −

n−∑̀
j=m−`

ς
(m)
j,`



=

m−1∑
`=1


n∑

j=n−`+1

ς
(m)
j,`︸ ︷︷ ︸

` addends

−
m−1∑
j=m−`

ς
(m)
j,`︸ ︷︷ ︸

`addends

 .

Therefore, as for R2, for given m the number of addends in R1 is independent of n (and bounded) so that R1/n = op (1).

Thus, by setting Rn
.
= R1 +R2 the decomposition in (36) hold; that is:

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` + op (1) ,

To conclude, we have to show that An is AN. Before proceeding, for the sake of clarity, we briefly describe how we achieve

this result. Let us set ζnj = 1
n ς

(m)
j−`,`, for fixed ` and m. We note that to prove the asymptotic negligibility of An, it is

sufficient to prove that ζnj is AN. By Lemma 1, this amounts showing that the following two conditions are satisfied:

n∑
j=1

Ej−1

[
ζnj
]

=

n∑
j=1

1

n
Ej−1

[
ς
(m)
j−`,`

]
u.c.p.−→ 0 (37)
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and

n∑
j=1

Ej−1

[(
ζnj
)2] p−→ 0. (38)

In particular, to prove equation (37) we set ξnj = n−1Ej−1

[
ς
(m)
j−`,`

]
and by using Lemma 1 again, we show that

n∑
j=1

Ej−1

[
|ξnj |
] p−→ 0. (39)

Therefore, we start from the assertion in (39) and we prove:

n∑
j=1

Ej−1

[∣∣ξnj ∣∣] =

n∑
j=1

Ej−1

[∣∣∣∣ 1nEj−1

[
ς
(m)
j−`,`

]∣∣∣∣] =

n∑
j=1

1

n

∣∣∣Ej−1

[
ς
(m)
j−`,`

]∣∣∣
=

n∑
j=1

1

n

∣∣∣Ej−1

[
Bj−`,n · ... · Bj−1,n (pj−`−1,n)

m−`−1
(Bj,n − pj−`−1,n)

]∣∣∣
=

n∑
j=1

1

n

∣∣∣Bj−`,n · ... · Bj−1,n (pj−`−1,n)
m−`−1 Ej−1 [(Bj,n − pj−`−1,n)]

∣∣∣
=

n∑
j=1

1

n

∣∣∣Bj−`,n · ... · Bj−1,n (pj−1,n)
m−`−1 Ej−1 [(pj,n − pj−`−1,n)]

∣∣∣
≤

n∑
j=1

1

n
Ej−1 [|pj,n − pj−`−1,n|] ≤

n∑
j=1

1

n
C∆1/2

n ≤ C∆1/2
n .

At this point, it is enough to prove the convergence in equation (38). This is an easy check because of the boundedness

of the Bernoulli variates, that is:

n∑
i=1

Ej−1

[(
ζnj
)2]

=
1

n2
Ej−1

[(
ς
(m)
j−`,`

)2
]
≤ K∆n −→ 0,

which implies the asymptotic negligibility of An. Finally, by Riemann integrability:

1

n

n∑
j=1

(pj−1,n)
m −→

∫ 1

0

(ps)
m
ds,

which completes the proof.

Before proceeding, we state and prove another useful lemma.

Lemma 5. Under Assumption 2, for any finite numbers `, d ≥ 0 and powers q1, . . . , qd ≥ 0, as n→∞,

1

n

n∑
j=1

Bj−`,n · · ·Bj,n (Ej−1 [Bj+1,n])
q1 · · · (Ej−1 [Bj+d,n])

qd p−→
∫ 1

0

p`+vs ds,

where v = q1 + . . .+ qd.

Proof. First, by Remark 33:

1

n

n∑
j=1

Bj−`,n · · ·Bj,n (Ej−1 [Bj+1,n])
q1 · · · (Ej−1 [Bj+d,n])

qd =
1

n

n∑
j=1

Bj−`,n · · ·Bj,n pvj−1,n +Op

(
∆1/2

)
.
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Next, by conditioning on F (p)
∞ and using the law of iterated expectations:

E
[
Bj−`,n · · ·Bj,n pvj−1,n − pj−`,n . . . pj,n p

v
j−1,n

]
= 0.

Therefore, by Theorem 2.13 in Hall and Heyde (1980)12 applied to the martingale difference X
(`)
j,n = Bj−`,n · · · Bj,npvj−1,n−

pj−`,n · · · pj,npvj−1,n:

1

n

n∑
j=1

(
Bj−`,n · · ·Bj,n pvj−1,n − pj−`,n · · · pj,n pvj−1,n

) p−→ 0.

Using Remark (33) again:

1

n

n∑
j=1

pj−`,n . . . pj,n p
v
j−1,n =

1

n

n∑
j=1

p`+vj−1,n +Op

(
∆1/2

)
.

Finally, by Riemann integrability we have, path-wise on Ω:

1

n

n∑
j=1

p`+vj−1,n −→
∫ 1

0

p`+vs ds,

which completes the proof.

Lemma 6. Let m ≥ 2 be a given integer number. Under Assumption 2, as n→∞

√
n

[
RZn −

∫ 1

0
ps ds

RZm,n −
∫ 1

0
(ps)

m
ds

]
stably
=⇒ MN (0,Σm) , (40)

where

RZn =
1

n

n∑
j=1

Bj,n RZm,n =
1

n

n∑
j=1

m−1∏
i=0

Bj+i,n,

and MN (0,Σm) denotes the mixed-normal distribution with covariance matrix Σm:

Σm =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
m pms (1− ps) ds∫ 1

0
m pms (1− ps) ds

∫ 1

0
pms

pm
s (2m+1)−pm+1

s (2m−1)−(1+ps)
1−ps

ds

]
.

Proof. We consider the following decomposition:

√
n

[
RZn −

∫ 1

0
ps ds

RZm,n −
∫ 1

0
(ps)

m
ds

]
= A1 +A2,

where

A1 =
1√
n

n∑
j=1

 Bj,n − Ej−1 [Bj,n]
m−1∏
i=0

Bj+i,n −
m−1∏
i=0

Ej+i−1 [Bj+i,n]

 , A2 =
1√
n

n∑
i=1

 Ej−1 [Bj,n]−
∫ 1

0
ps ds

m−1∏
i=0

Ej+i−1 [Bj+i,n]−
∫ 1

0
(ps)

m
ds

 .
A2 is AN. Therefore, it is enough to prove that A1

stably
=⇒ MN (0,Σm). To do so, we rewrite the quantity A1 as a sum of

a Ftj,n-measurable quantity and a negligible term. We introduce the following quantity:

ζ
(m)
j,` = Bj,n Bj+1,n · · ·Bj+`−1,n (Bj+`,n − Ej+`−1 [Bj+`,n]) Ej+` [Bj+`+1,n] · · ·Ej+m−2 [Bj+m−1,n] ,

12The hypotheses of the Theorem are readily satisfied because of the boundedness of the Bernoulli random variables
with Bn = n.
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and we consider the following expression:

ϕj,m =

m−1∏
i=0

Bj+i,n −
m−1∏
i=0

Ej+i−1 [Bj+i,n]

for a generic m. Note that ϕj,m =
∑m−1
`=0 ζ

(m)
j,` . Indeed:

ϕj,1 = Bj,n − Ej−1 [Bj,n] ≡ ζ(1)
j,0

ϕj,2 = Bj,n Bj+1,n − Ej−1 [Bj,n] Ej [Bj+1,n]

= Bj,n Bj+1,n − Bj,n Ej [Bj+1,n] + Bj,n Ej [Bj+1,n]− Ej−1 [Bj,n] Ej [Bj+1,n]

= Bj,n (Bj+1,n − Ej [Bj+1,n]) + Bj,n Ej [Bj+1,n]− Ej−1 [Bj,n] Ei [Bj+1,n]

= Bj,n (Bj+1,n − Ej [Bj+1,n])︸ ︷︷ ︸
ζ

(2)
j,1

+ (Bj,n − Ej−1 [Bj,n]) Ej [Bj+1,n]︸ ︷︷ ︸
ζ

(2)
j,0

ϕj,3 = Bj,n Bj+1,n Bj+2,n − Ej−1 [Bj,n] Ej [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n Bj+2,n − Bj,n Bj+1,n Ej+1 [Bj+2,n] + Bj,n Bj+1,n Ej+1 [Bj+2,n]

− Ej−1 [Bj,n] Ej [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n (Bj+2,n − Ej+1 [Bj+2,n]) +

+Bj,n Bj+1,n Ej+1 [Bj+2,n]− Bj,n Ei [Bj+1,n] Ej+1 [Bj+2,n] +

+Bj,n Ej [Bj+1,n] Ej+1 [Bj+2,n]− Ej−1 [Bj,n] Ei [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n (Bj+2,n − Ej+1 [Bj+2,n])︸ ︷︷ ︸
ζ

(3)
i,2

+Bj,n (Bj+1,n − Ej [Bj+1,n]) Ej+1 [Bj+2,n]︸ ︷︷ ︸
ζ

(3)
j,1

+

+ (Bj,n − Ej−1 [Bj,n]) Ej [Bj+1,n] Ej+1 [Bj+2,n]︸ ︷︷ ︸
ζ

(3)
j,0

,

and so on for every m. Therefore, the second component of A1, i.e. A1 (2) = n−1/2
∑n

j=1 ϕj,m, can be rewritten

as:

A1 (2) =
1√
n

n∑
j=1

m−1∑
`=0

ζ
(m)
j,` =

1√
n

n∑
j=m

m−1∑
`=0

ζ
(m)
j,` +

m−1∑
j=1

m−1∑
`=0

ζ
(m)
j,`

=
1√
n

n∑
j=m

m−1∑
`=0

ζ
(m)
j−`,` +

1√
n

n∑
j=m

m−1∑
`=0

(
ζ

(m)
j,` − ζ

(m)
j−`,`

)
︸ ︷︷ ︸

R1

+
1√
n

m−1∑
j=1

m−1∑
`=0

ζ
(m)
j,`︸ ︷︷ ︸

R2

.

Reasoning as in Lemma 4, one can prove that both R1/
√
n and R2/

√
n are op (1). To render A1 (2)

Ftj,n-measurable, a further step is necessary. We define

ζ̃
(m)
j−`,` = Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n] ,
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and consider

R3 =

n∑
j=m

m−1∑
`=0

(
ζ

(m)
j−`,` − ζ̃

(m)
j−`,`

)

=
n∑

j=m

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])×

× (Ej [Bj+1,n] · · ·Ej−`+m−2 [Bj−`+m−1,n]− Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])

=

n∑
j=m

m−1∑
`=0

R3(`) =

m−1∑
`=0

n∑
j=m

R3(`), (41)

where for every ` ∈ {0, 1, . . . ,m− 1} we have:

R3(`) =
n∑

j=m

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])×

× (Ej [Bj+1,n] · · ·Ej−`+m−2 [Bj−`+m−1,n]− Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])

=

n∑
j=m

rj(`). (42)

Using Lemma 2, we show that 1√
n
R3(`) are AN ∀` ∈ {0, 1, . . . ,m− 1}. Notice that rk(`) is Ftj+m−`−2,n

-

measurable. Using the law of iterated expectations, we obtain:

Ej−1

[
1√
n
rj(`)

]
= 0. (43)

Now note that using the triangular inequality and a recursive decomposition for any set of bounded random

variables x1, . . . , xm−`−1, y1, . . . , ym−`−1 we obtain (to reduce notation we put M = m− `− 1)

|x1 · · ·xM − y1 · · · yM | = |x1 · · ·xM−1 (xM − yM ) + (x1 · · ·xM−1 − y1 . . . yM−1) yM |

≤ |x1 · · ·xM−1 (xM − yM )|+ |(x1 · · ·xM−1 − y1 · · · yM−1) yM |

≤ K |(xM − yM )|+K |(x1 · · ·xM−1 − y1 · · · yM−1)|

≤ . . .

≤ K
M∑
k=1

|xk − yk| ,

where the constant K changes from line to line. Applying this inequality to |rj(`)|, we obtain

|rj(`)| ≤ K
m−`−1∑
i=1

|Ej−1 [Bj+i,n]− Ej+i−1 [Bj+i,n]| ≤ K∆1/2
n ,

where the last inequality follows from Remark 6. Then, because m and ` are finite, we have:

n∑
j=m

Ej−1

[(
1√
n
rj(`)

)2
]
≤ K

n∑
j=m

1

n
Ej−1

(m−`−1∑
i=1

|Ej−1 [Bj+i,n]− Ej+i−1 [Bj+i,n]|

)2
→ 0. (44)
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Therefore, by Lemma 2, 1√
n
R3(`) are AN ∀` ∈ {0, 1, . . . ,m− 1}, which implies that R3 AN as well.

Now, decompose A1 as

A1 =
1√
n

n∑
j=m

ηj +
1√
n
Rn =

1√
n

n∑
j=m

[
ηj(1)

ηj(2)

]
+

1√
n

[
Rn(1)

Rn(2)

]
,

with

ηj(1)
.
= Bj,n − Ej−1 [Bj,n] , ηj(2)

.
=

m−1∑
`=0

ζ̃
(m)
j−`,`,

and where the reminders are given by

Rn(1) =

m−1∑
j=1

(Bj,n − Ej−1 [Bj,n]) , Rn(2) = R1 +R2 +R3.

Since the first component of Rn consists of a finite number of bounded terms and the second component of Rn

is the sum of AN terms, Rn/
√
n is AN. Therefore, it is enough to establish the following convergence:

1√
n

n∑
j=m

ηj
stably
=⇒ MN (0,Σm) .

To establish the previous convergence, we use Corollary 3. We have to find two functions ϕ(1) and ϕ(2) such

that:

ηj (1) = ϕ(1) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])− Ej−1

[
ϕ(1) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

]
and the same is necessary for ηj (2). The case of ηj (1) is trivial because it is enough to define ϕ(1) (x1)

.
= x1

to have the identity ηj (1) = ϕ(1) (Bj,n)− Ej−1

[
ϕ(1) (Bj,n)

]
. Concerning, ηj (2) note that:

ηj (2) =
m−1∑
`=0

ζ̃
(m)
j−`,` =

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n]

= (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n] +

+Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−2,n] + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])

= Bj,n Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n] + Bj−1,n Bj,n Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−2,n] + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n Bj,n − (Ej−1 [Bj,n] Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n]) + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n Ej−1 [Bj,n]

= ϕ(2) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

− Ej−1

[
ϕ(2) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

]
,

where ϕ(2) : R2 (m−1)+1 → R takes the following form:

ϕ(2)
(
x1, · · · , xm, · · · , x2(m−1)+1

) .
= xm xm+1 · · ·x2(m−1)+1 + xm−1 xm · · ·x2(m−1) + . . .+ x1 x2 · · ·xm.
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We now proceed by noticing that for all j the vector ηj is Ftj,n-measurable and bounded, where

n∑
j=m

Ej−1

[∥∥∥∥ 1√
n
ηj

∥∥∥∥4
]

p−→ 0,

and Ej−1 [ηj (1)] = 0. To also see that Ej−1 [ηj (2)] = 0, it is better to write down Ej−1 [ηj (2)] explicitly:

Ej−1 [ηj (2)] =

m−1∑
`=0

Ej−1

[
ζ̃

(m)
j−`,`

]
=

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n Ej−1 [(Bj,n − Ej−1 [Bj,n])]︸ ︷︷ ︸
=0

Ej−1 [Bj+1,n] Ej−1 [Bj+2,n] · · ·Ej−1 [Bj−`+m−1,n] .

Consequently, it is enough to show that n−1
n∑

i=m
Ej−1

[
ηjη
′
j

]
p−→ Σm. Consider each component of the matrix

ηjη
′
j separately:

ηj(1)ηj(1) = Bj,n − 2Bj,nEj−1 [Bj,n] + (Ej−1 [Bj,n])2 .

By Lemma 5,

1

n

n∑
i=m

Ei−1 [ηi(1)ηi(1)]
p−→
∫ 1

0

(
ps − p2

s

)
ds.

Now consider the following product:

ηj(2) ηj(2) =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2
+ 2

m−1∑
`=0

m−1∑
`′=`+1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`′,`′ =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2
+ 2

m−1∑
`=0

m−`−1∑
k=1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k.

We note that(
ζ̃

(m)
j−`,`

)2
= Bj−`,n · · ·Bj−1,n︸ ︷︷ ︸

` factors

(Bj,n − Ej−1 [Bj,n])2 (Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])2︸ ︷︷ ︸
m− `− 1 factors

and

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k

= Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n]×

×Bj−`−k,n Bj−`−k+1,n · · ·Bj−`,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−k−1,n]

= Bj−`−k,n...Bj−1,n︸ ︷︷ ︸
`+ k factors

(Bj,n − Ej−1 [Bj,n])2 ×

(Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−k−1,n])2︸ ︷︷ ︸
m− (`+ k)− 1 factors

Ej−1 [Bj+m−`−k,n] · · ·Ej−1 [Bj+m−`−1,n]︸ ︷︷ ︸
k factors

.

Consequently, using Lemma 5,

1

n

n∑
j=m

Ej−1 [ηj(2)ηj(2)]
p−→ Σm(2, 2)

.
=

∫ 1

0

(
m−1∑
`=0

p2m−`−1
s (1− ps) + 2

m−1∑
`=0

(m− `− 1) p2m−`−1
s (1− ps)

)
ds,
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which, after some standard algebra becomes:

Σm(2, 2) =

∫ 1

0
p2m−1
s (1− ps)

(
m−1∑
`=0

p−`s + 2
m−1∑
`=0

(m− `− 1) p−`s

)
ds

=

∫ 1

0

pms (1 + ps − (2m(1− ps) + 1 + ps)p
m
s )

1− ps
ds

=

∫ 1

0
pms

pms (2m+ 1)− pm+1
s (2m− 1)− (1 + ps)

1− ps
ds. (45)

Finally:

ηj(1)ηj(2) = (Bj,n − Ej−1 [Bj,n])2 Ej−1 [Bj+1,n] ...Ej−1 [Bj+m−1,n]

+ Bj−1,n (Bj,n − Ej−1 [Bj,n])2 Ej−1 [Bj+1,n] ...Ej−1 [Bj+m−2,n]

+ . . .

+ Bj−m−1,n...Bj−1,n (Bj,n − Ej−1 [Bj,n])2 .

Applying Lemma 5 again:

1

n

n∑
j=m

Ej−1 [ηj(1)ηj(2)]
p−→
∫ 1

0
m pms (1− ps) ds,

which completes the proof.

A.3 Proofs of Theorems 3.3 and 3.4 from Section 3.2

For an arbitrary sequence of integers kn such that kn →∞ and kn∆n = kn
n → 0, let

αnj
.
=

1

kn

kn−1∑
i=0

(Bj+i,n − pj+i,n) , βnj
.
=

1

kn

kn−1∑
i=0

(pj+i,n − pj−1,n) ,

and set hn = n− kn. Note that

p̂j (kn)− pj−1,n = αnj + βnj , j ∈ {1, . . . , hn + 1} .

The auxiliary results for the proofs of Theorems 3.3 and 3.4 are summarized by the following lemma.
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Lemma 7. Under Assumptions 1, 2, and 3, for C > 0 and for all q ≥ 2, we have:

Ej−1

[
sup

s∈[0,∆n]

|pj−1+s,n − pj−1,n|q
]
≤ C ·∆1∧(q/2)

n (46)

|Ej−1 [pj,n − pj−1,n]| ≤ C ·∆n (47)∣∣Ej−1

[
βnj
]∣∣ ≤ C · kn∆n (48)

Ej−1

[∣∣βnj ∣∣q] ≤ C · (kn∆n)
q/2

(49)∣∣Ej−1

[
αnj
]∣∣ = 0 (50)

Ej−1

[∣∣αnj ∣∣q] ≤ Ck−q/2n (51)∣∣∣∣Ej−1

[
(αni )

2 − 1

kn
pi−1,n (1− pj−1,n)

]∣∣∣∣ ≤ C ·∆n (52)∣∣Ej−1

[
αnj β

n
j

]∣∣ = 0 (53)

Proof. The proof of (46)–(50) follows the same arguments as in the proof of the results of Appendix A and Lemma B-4

of Aı̈t-Sahalia and Jacod (2012). To complete the proof of the Lemma, we need to prove (50)–(53). Equality (50) easily

follows by conditioning on the path of the process pt.

∣∣Ej−1

[
αnj
]∣∣ =

∣∣∣∣∣∣ 1

kn

kn−1∑
j=0

Ej−1 [Bj+i,n − pj+i,n]

∣∣∣∣∣∣ = 0.

To prove the other relationships, we first observe that conditioning on the path (pt)t∈[0,1] we have

Ei−1

[(
αnj
)2]

=
1

k2
n

Ej−1

[
kn−1∑
i=0

(Bj+i,n − pj+i,n)
2

]
+

2

kn
Ej−1

[
kn−2∑
i=0

kn−1−i∑
m=1

(Bj+i,n − pj+i,n) (Bj+i+m,n − pj+i+m,n)

]

=
1

k2
n

kn−1∑
i=0

Ej−1

[
(Bj+i,n − pj+i,n)

2
]

=
1

k2
n

kn−1∑
i=0

Ej−1 [pj+i,n (1− pj+i,n)] ≤ C

kn
,

(54)

where the last inequality is due to the fact that pt ∈ (0, 1). Moreover, we have:

Ej−1

[(
αnj
)2 − 1

kn
pj−1,n(1− pj−1,n)

]
=

1

k2
n

kn−1∑
i=0

Ej−1 [pj+i,n − pj−1,n]− 1

k2
n

kn−1∑
i=0

Ej−1

[
p2
j+i,n − p2

j−1,n

]
.

By applying triangular inequality, we obtain:

∣∣∣∣Ej−1

[(
αnj
)2 − 1

kn
pj−1,n(1− pj−1,n)

]∣∣∣∣ ≤ 1

k2
n

kn−1∑
i=0

|Ej−1 [pj+i,n − pj−1,n]|+ 1

k2
n

kn−1∑
i=0

∣∣Ej−1

[
p2
j+i,n − p2

j−1,n

]∣∣ .
Therefore, (52) follows from (47), whereas (51) follows from Hölder’s inequality and (54). Finally, (53) is obtained by

conditioning on the path (pt)t∈[0,1] and by using equation (50).

Proof of Theorem 3.3. For any t > 0, define a function of t, p̂(kn, t) as:

p̂(kn, t)
.
= p̂j(kn), t ∈ ((j − 2)∆n, (j − 1)∆n].

First, we prove that p̂(kn, t) converges in probability to pt for every t ∈ [0, 1]. For any t ∈ [0, 1] and jt such that
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t ∈ ((jt − 2)∆n, (jt − 1)∆n], we have:

(j + 1)∆n ≤ (jt + j)∆n − t ≤ (j + 2)∆n.

Second, we have:

E
[(
p̂(kn, t)− pt

)2]
= E

( 1

kn

kn−1∑
i=0

(Bjt+i,n − pt)

)2
 = E

 1

k2
n

kn−1∑
i=0

(Bjt+i,n − pt)
2

+
1

k2
n

∑
i 6=i′

(Bjt+i,n − pt) (Bjt+i′,n − pt)


= E

[
1

k2
n

kn−1∑
i=0

(Bjt+i,n − pt)
2

]
+ E

 1

k2
n

∑
i 6=i′

(Bjt+i,n − pt) (Bjt+i′,n − pt)

 .
The first of the two terms converges to zero by the boundedness of Bjt+i,n and pt. Concerning the second, by conditioning

on (pt)t∈[0,1] and (47) we have that:

|E [(Bjt+i,n − pt) (Bjt+i′,n − pt)]| =
∣∣E [p(jt+i)∆n

− pt
]
E
[
p(jt+i′)∆n

− pt
]∣∣ ≤ C(kn∆n)2.

Therefore, ∣∣∣∣∣∣E
 1

k2
n

∑
j 6=j′

(Bit+j,n − pt) (Bit+j′,n − pt)

∣∣∣∣∣∣ ≤ C(kn∆n)2 −→ 0.

Thus, p̂(kn, t)
p−→ pt for each t ∈ [0, 1]. Now, we write U (∆n, f)

n
as:

U (∆n, f)
n

= ∆nf(p̂1(kn)) +

hn∆n∫
0

f(p̂(kn, t)) ds

and we compute:

E
[∣∣∣∣U (∆n, f)

n −
∫ 1

0

f(ps) ds

∣∣∣∣] = ∆n E
[∣∣∣∣f(p̂1(kn))−

∫ 1

0

f(ps) ds

∣∣∣∣]+

hn∆n∫
0

as ds

= ∆n E
[∣∣∣∣∫ 1

0

(
f(p̂1(kn))− f(ps)

)
ds

∣∣∣∣]+

hn∆n∫
0

as ds

≤ ∆n E
[∫ 1

0

∣∣(f (p̂1 (kn)
)
− f(ps)

)∣∣ ds]+

hn∆n∫
0

as ds

≤ C ∆n +

hn∆n∫
0

an(s) ds,

where an(s)
.
= E

[∣∣f(p̂(kn, s))− f(ps)
∣∣], C is a suitable constant, and we used the locally boundedness of f(·) and the

boundedness of ps and p̂(kn, s). By the continuous mapping theorem, condition p̂(kn, t)
p−→ pt implies that for a given

s ∈ [0, 1]:

f(p̂(kn, s))
p−→ f(ps). (55)

Nonetheless, because the sequence of random variables f(p̂(kn, s)) is uniformly integrable (again using the locally bound-

edness of f(·) and the boundedness of p̂(kn, s)), the convergence in equation (55) is also in L1 norm and therefore

an(s) −→ 0 for each s. In addition, because an(s) is uniformly bounded in (n, s), U (∆n, f)
n u.c.p.−→

∫ 1

0
f (ps) ds by the

dominated convergence theorem (see Jacod and Protter, 2012, Theorem 9.4.1).
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Proof of Theorem 3.4. First, consider the following decomposition:

1√
∆n

(U ′ (∆n, f)
n − U (f)) =

√
∆n

hn+1∑
j=1

(
f
(
p̂j (kn)

)
− 1

2 kn
f ′′
(
p̂j (kn)

)
p̂j (kn)

(
1− p̂j (kn)

))
− 1√

∆n

∫ 1

0

f (ps) ds

=

4∑
r=1

U (r)
n
,

with

U (1)
n

=
1√
∆n

hn+1∑
j=1

∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds−
1√
∆n

∫ 1

(hn+1) ∆n

f (ps) ds

U (2)
n

=
√

∆n

hn+1∑
j=1

f ′ (pj−1,n)βnj

U (3)
n

=
√

∆n

hn+1∑
j=1

(
f
(
p̂j (kn)

)
− f (pj−1,n)− f ′ (pj−1,n)

(
αnj + βnj

)
− 1

2 kn
f ′′
(
p̂j (kn)

)
p̂j (kn)

(
1− p̂j (kn)

))

U (4)
n

=
√

∆n

hn+1∑
j=1

f ′ (pj−1,n)αnj .

At this point, the rest of the proof is divided into four parts. In the first three, we prove that U (k)
n
, k = 1, 2, 3, is AN,

whereas in the last part we show that U(4)n
stably
=⇒ MN (0,ΣU).

Part 1: Proof of the AN of U (1)
n

Remember that hn = n− kn and that n = 1/∆n, where 1− (hn + 1) ∆n = 1− (n− kn + 1) ∆n = kn ∆n −∆n. Because

f(ps) is bounded, for the second term of U(1)n we have:∣∣∣∣∣∣∣
1√
∆n

1∫
(hn+1) ∆n

f (ps) ds

∣∣∣∣∣∣∣ ≤ Ckn
√

∆n −→ 0.

The first term of U(1)n1 can be expressed as
hn+1∑
j=1

ξnj , where

ξnj =
1√
∆n

∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds.

Because the process f(pt) is a bounded semimartingale, by using inequality (47) we get:

∣∣E [ξnj ]∣∣ =
1√
∆n

∣∣∣∣∣E
[∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds

]∣∣∣∣∣ =
1√
∆n

∣∣∣∣∣
∫ j∆n

(j−1)∆n

E [Ej−1 [(f (pj−1,n)− f (ps))] ds]

∣∣∣∣∣
≤ 1√

∆n

∫ j∆n

(j−1)∆n

|E [Ej−1 [(f (pj−1,n)− f (ps))]]| ds ≤
1√
∆n

∫ j∆n

(j−1)∆n

E [|Ej−1 [(f (pj−1,n)− f (ps))]|] ds

≤ C√
∆n

∆2
n = C (∆n)

3/2 −→ 0,
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while using inequality (46) and Holder’s inequality, we obtain

E
[∣∣ξnj ∣∣2] =

1

∆n
E

(∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds

)2


=
1

∆n
E

 j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

(f(pj−1,n)− f(pq)) (f(pj−1,n)− f(ps)) ds dq


=

1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

E [(f(pj−1,n)− f(pq)) (f(pj−1,n)− f(ps))] ds dq

≤ 1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

√
E
[
|f(pj−1,n)− f(pq)|2

]
E
[
|f(pj−1,n)− f(ps)|2

]
ds dq

≤ 1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

C ∆n ds dq ≤ C ∆2
n −→ 0.

Consequently, by Lemma 2, U(1)n is AN.

Part 2: Proof of the AN of U (2)
n

Using Lemma 7 and the boundedness of f ′ (pj−1,n), we obtain

hn+1∑
j=1

∣∣∣Ej−1

[√
∆nf

′ (pj−1,n)βnj

]∣∣∣ ≤ C hn+1∑
j=1

√
∆n

∣∣Ej−1

[
βnj
]∣∣ ≤ C hn+1∑

j=1

kn (∆n)
3/2 −→ 0

and

hn+1∑
j=1

Ej−1

[∣∣∣√∆nf
′ (pj−1,n)βnj

∣∣∣2] ≤ C hn+1∑
j=1

Ej−1

[
∆n

∣∣βnj ∣∣2] ≤ C hn+1∑
j=1

kn (∆n)
2

= C (n− kn) kn ∆2
n ≤ C kn ∆n −→ 0,

and so

kn

hn+1∑
j=1

E
[∣∣∣√∆nf

′ (pj−1,n)βnj

∣∣∣2] ≤ C k2
n ∆n −→ 0.

Consequently, by applying Lemma 2 we get that U(2)n is AN.

Part 3: Proof of the AN of U (3)
n

As a first step, we rewrite U (3)
n

as U(3)n =
hn+1∑
j=1

4∑
k=1

vnj (k) with vjn (k), k = 1, . . . , 4, suitably defined triangular arrays.

To do so, we remind readers that:

αnj + βnj =
1

kn

kn−1∑
i=0

(Bj+i,n − pj−1,n) = p̂j (kn)− pj−1,n.

Using Taylor’s expansion of f (p) around p0 = pj−1,n and computing the expansion in p = p̂j (kn), we obtain:

f
(
p̂j (kn)

)
− f (pj−1,n)− f ′ (pj−1,n)

(
αnj + βnj

)
=

1

2
f ′′ (pj−1,n)

(
αnj + βnj

)2
+

1

6
f ′′′
(
p?j
) (
αnj + βnj

)3
,
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where p?j is a point between pj−1,n and pj−1,n + αnj + βnj . We then have:

1

2
f ′′ (pj−1,n)

(
αnj + βnj

)2
=

1

2
f ′′ (pj−1,n)

(
(αnj )2 + 2αnj β

n
j −

1

kn
pj−1,n(1− pj−1,n)

)
+

1

2 kn
f ′′ (pj−1,n) pj−1,n(1− pj−1,n) +

1

2
f ′′ (pj−1,n)

(
βnj
)2
.

Consequently, U(3)n can be represented as U(3)n =
hn+1∑
j=1

4∑
k=1

vnj (k), where:

vnj (1) =

√
∆n

2
f ′′ (pj−1,n)

(
(αnj )2 + 2αnj β

n
j −

1

kn
pj−1,n(1− pj−1,n)

)
,

vnj (2) =

√
∆n

2 kn
f ′′ (pj−1,n) pj−1,n(1− pj−1,n)−

√
∆n

2 kn
f ′′
(
p̂j (kn)

)
p̂j (kn)

(
1− p̂j (kn)

)
,

vnj (3) =

√
∆n

2
f ′′ (pj−1,n)

(
βnj
)2
,

vnj (4) =

√
∆n

6
f ′′′
(
p?j
) (
αnj + βnj

)3
.

We have to prove that all the triangular arrays vnj (k) are AN for k = 1, 2, 3, 4. First, consider vni (1). Inequalities (52)

and (53) imply that
∣∣Ej−1

[
vnj (1)

]∣∣ ≤ C ∆
3/2
n , and so:

hn+1∑
j=1

∣∣Ej−1

[
vnj (1)

]∣∣ ≤ C ∆1/2
n

p−→ 0. (56)

In addition,

vnj (1)2 =
∆n

4
f ′′ (pj−1,n)

2
(

(αnj )4 + 4
(
αnj β

n
j

)2
+

1

k2
n

p2
j−1,n(1− pj−1,n)2 +

+4
(
αnj
)3
βnj − 2

(αnj )2

kn
pj−1,n(1− pj−1,n)−

4αnj β
n
j

kn
pj−1,n(1− pj−1,n)

)
≤ ∆n

4
f ′′ (pj−1,n)

2
(

(αnj )4 + 4
(
αnj β

n
j

)2
+

1

k2
n

p2
j−1,n(1− pj−1,n)2 +

+4
∣∣∣(αnj )3 βnj ∣∣∣+ 2

(αnj )2

kn
pj−1,n(1− pj−1,n)−

4αnj β
n
j

kn
pj−1,n(1− pj−1,n)

)
.

Now, in computing E
[
vnj (1)2

]
we consider that:

• Inequality (51) implies that

Ej−1

[
(αnj )4

]
≤ C k−2

n ,

and that

Ej−1

[
(αnj )2

kn
pj−1,n(1− pj−1,n)

]
≤ C k−2

n .

• Cauchy-Schwartz inequality plus (51) and (49) imply that

Ej−1

[(
αnj β

n
j

)2] ≤ (Ej−1

[(
αnj
)4])1/2 (

Ej−1

[(
βnj
)4])1/2

≤ C ∆n

and that ∣∣∣Ej−1

[(
αnj
)3
βnj

]∣∣∣ ≤ (Ej−1

[(
αnj
)6])1/2 (

Ej−1

[(
βnj
)2])1/2

≤ C k−1
n ∆1/2

n .

• Equation (53) implies that Ej−1

[
αnj β

n
j knpj−1,n(1− pj−1,n)

]
= 0.
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Summing up:

Ej−1

[
vnj (1)2

]
≤ C ∆n

(
1

k2
n

+ ∆n +

√
∆n

kn

)
,

where

kn

hn∑
j=1

E
[
vnj (1)2

]
−→ 0. (57)

Therefore, the limits in (56) and (57) imply, through Lemma 2, that vnj (1) is AN. Now, consider vnj (4). Because both pt

and p̂i(kn) are in [0, 1], |f ′′′(p?i )| ≤ C for some constant C > 0 we therefore have:

hn+1∑
j=1

∣∣∣∣√∆n

6
f ′′′
(
p?j
) (
αnj + βnj

)3∣∣∣∣ ≤ C hn+1∑
j=1

√
∆n

∣∣∣(αnj + βnj
)3∣∣∣ = C

hn+1∑
j=1

√
∆n

(∣∣αnj ∣∣3 + 3
∣∣αnj ∣∣ ∣∣βnj ∣∣2 + 3

∣∣αnj ∣∣2 ∣∣βnj ∣∣+
∣∣βnj ∣∣3) .

Using estimates from the preliminary results and Cauchy-Schwartz inequality, we have the following implications.

• inequality (51) implies
hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣3] ≤ C · k−3/2
n (∆n)−1/2 p−→ 0,

• Inequalities (51) and (49), and Cauchy-Schwartz, imply

hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣2 ∣∣βnj ∣∣] ≤ C hn+1∑
j=1

√
∆n

√
Ej−1

[∣∣αnj ∣∣4]Ej−1

[∣∣βnj ∣∣2] ≤ C k−1/2
n

p−→ 0

and
hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣ ∣∣βnj ∣∣2] ≤ C hn+1∑
j=1

√
∆n

√
Ej−1

[∣∣αnj ∣∣2]Ej−1

[∣∣βnj ∣∣4] ≤ C · (kn ∆n)
1/2 p−→ 0.

• Inequality (49) implies
hn+1∑
j=1

√
∆nEj−1

[∣∣βnj ∣∣3] ≤ C · k3/2
n ∆n

p−→ 0.

Therefore:
hn+1∑
j=1

∣∣Ej−1

[
vnj (4)

]∣∣ p−→ 0. (58)

Now consider

hn+1∑
j=1

vnj (4)
2 ≤ C

hn+1∑
j=1

∆n

( ∣∣αnj ∣∣6 + 9
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 + 9

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +
∣∣βnj ∣∣6 + 6

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +

+ 6
∣∣αnj ∣∣5 ∣∣βnj ∣∣+ 2

∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 18
∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 6

∣∣αnj ∣∣ ∣∣βnj ∣∣5 + 6
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 ).

= C

hn+1∑
j=1

∆n

( ∣∣αnj ∣∣6 + 15
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 + 15

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +
∣∣βnj ∣∣6 + 6

∣∣αnj ∣∣5 ∣∣βnj ∣∣+ 20
∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 6

∣∣αnj ∣∣ ∣∣βnj ∣∣5 ).
inequalities (51) and (49), respectively, imply:

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣6] ≤ C k−2

n −→ 0,
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kn

hn+1∑
j=1

∆nE
[∣∣βnj ∣∣6] ≤ C (k4/3

n ∆n

)3

−→ 0

and, using also Cauchy-Schwartz, they imply:

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣2 ∣∣βnj ∣∣4] ≤ C (kn ∆n)

2 −→ 0,

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣4 ∣∣βnj ∣∣2] ≤ C k−2

n ∆n −→ 0,

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣5 ∣∣βnj ∣∣] ≤ C k−1

n ∆1/2
n −→ 0,

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣ ∣∣βnj ∣∣5] ≤ C (k6/5

n ∆n

)5/2

−→ 0,

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣3 ∣∣βnj ∣∣3] ≤ C (k2/3

n ∆n

)3/2

−→ 0.

Consequently:

kn

hn+1∑
j=1

E
[
vnj (4)

2
]
−→ 0. (59)

As before, the limits in (58) and (59) imply, through Lemma 2, that vnj (4) is AN. Similarly, for vnj (3) we have:

hn+1∑
j=1

Ej−1

[∣∣∣∣√∆n

2
f ′′ (pj−1,n)

(
βnj
)2∣∣∣∣] ≤ C · kn√∆n

p−→ 0. (60)

In addition:

kn

hn+1∑
j=1

E
[∣∣∣∣∆n

4
(f ′′ (pj−1,n))

2 (
βnj
)4∣∣∣∣] ≤ C · (k3/2

n ∆n

)2

−→ 0. (61)

Therefore, the limits in (60) and (61) imply, through Lemma 2, that vnj (3) is AN. Finally, consider vnj (2). Using Taylor’s

expansion, we have (remember that p̂j(kn)− pj−1,n = αnj + βnj ):

f ′′
(
p̂j(kn)

)
= f ′′ (pj−1,n) + f ′′′

(
p?j
) (
αnj + βnj

)
.
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Consequently, vnj (2) takes the form:

vnj (2) =

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

(1− p(j−1)∆n
)−
√

∆n

2 kn
f ′′
(
p̂j (kn)

)
p̂j (kn)

(
1− p̂j (kn)

)
=

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

(1− p(j−1)∆n
)−
√

∆n

2 kn

(
f ′′ (pj−1,n) + f ′′′

(
p?j
) (
αnj + βnj

))
p̂j (kn)

(
1− p̂j (kn)

)
=

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

−
√

∆n

2 kn
f ′′ (pj−1,n) p2

(j−1)∆n

−
√

∆n

2 kn
f ′′ (pj−1,n) p̂j (kn) +

√
∆n

2 kn
f ′′ (pj−1,n) p̂j (kn)

2 −
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn)

(
1− p̂j (kn)

)
= −

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)− pj−1,n

)
+

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)2 − p2

j−1,n

)
−
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn)

(
1− p̂j (kn)

)
= −

√
∆n

2 kn
f ′′ (pj−1,n)

(
αnj + βnj

)
︸ ︷︷ ︸

Aj,n

+

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)2 − p2

j−1,n

)
︸ ︷︷ ︸

Bj,n

−
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn)

(
1− p̂j (kn)

)
︸ ︷︷ ︸

Cj,n

.

Using Lemma 7, we have:

hn∑
j=1

∣∣∣∣Ej−1

[√
∆n

kn
f ′′
(
p(j−1)∆n

)
αnj

]∣∣∣∣ = 0,

kn

hn∑
j=1

E
[

∆n

k2
n

(
f ′′
(
p(j−1)∆n

))2 ∣∣αnj ∣∣2] ≤ C k−2
n ,

hn∑
j=1

∣∣∣∣Ej−1

[√
∆n

kn
f ′′
(
p(j−1)∆n

)
βnj

]∣∣∣∣ ≤ C ∆1/2
n ,

kn

hn∑
j=1

E
[

∆n

k2
n

(
f ′′
(
p(j−1)∆n

))2 ∣∣βnj ∣∣2] ≤ C ∆n,

which imply, through Lemma 2, that Aj,n is AN. Now because:

Bj,n =

√
∆n

2 kn
f ′′ (pj−1,n)

(
αnj + βnj

) (
p̂j(kn) + pj−1,n

)
= Aj,n

(
p̂j(kn) + pj−1,n

)
and being

(
p̂j(kn) + pj−1,n

)
bounded, we can apply to Bj,n the same reasoning used for Aj,n, ; therefore, Bj,n is AN. An

identical reasoning applies to Cj,n, which is then AN as well.

Part 4: Proof of the convergence Un (4)
stably
=⇒ MN (0,ΣU)

Recall that U(4)n is defined as:

U (4)
n

=

√
∆n

kn

hn+1∑
j=1

f ′ (pj−1,n)

kn−1∑
i=0

Bj+i,n.

For the sake of readability, we temporarily define the variables

aj−1 = f ′ (pj−1,n) , Bj+i = Bj+i,n − pj+i,n
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so that:

U (4)
n

=

√
∆n

kn

n−kn+1∑
j=1

aj−1

kn−1∑
i=0

Bj+i.

The convolution of summation in U (4)
n

can be rewritten as:

n−kn+1∑
j=1

aj−1

kn−1∑
i=0

Bj+i = a0 (B1 + B2 + · · ·+ Bkn) + a1 (B2 + B3 + · · ·+ Bkn+1) + · · ·

· · · +akn−1 (Bkn + Bkn+1 + · · ·+ B2 kn−1) + akn (Bkn+1 + Bkn+2 + · · ·+ B2 kn) + · · ·

· · · +an−kn−1 (Bn−kn + Bn−kn+1 + · · ·+ Bn−1) + an−kn (Bn−kn+1 + Bn−kn+1 + · · ·+ Bn)

= B1 a0 + B2 (a0 + a1) + B3 (a0 + a1 + a2) + · · ·+ Bkn (a0 + a1 + a2 + . . .+ akn−1)

+ Bkn+1 (a1 + a2 + a3 + . . .+ akn) + Bkn+2 (a2 + a3 + a4 + . . .+ akn+1) + · · ·

+ Bn−kn+1 (an−2 kn+1 + an−2 kn+1 + . . .+ an−kn)

+ Bn−kn+2 (an−2 kn+2 + an−2 kn+3 + . . .+ an−kn) + · · ·+ Bn−1 (an−kn−1 + an−kn) + Bn an−kn

=

kn∑
j=1

Bj
j−1∑
i=0

ai +

n−kn+1∑
j=kn+1

Bj
j−1∑
i=j−k

ai +

n∑
j=n−kn+1

Bj
n−kn∑
i=j−kn

ai

(i→ j − i− 1) =

kn∑
j=1

Bj
i−1∑
j=0

aj−i−1 +

n−kn+1∑
j=kn+1

Bj
kn−1∑
i=0

aj−i−1 +

n∑
j=n−kn+1

Bj
kn−1∑

i=j−n+kn−1

aj−i−1

=

n∑
j=1

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

aj−i−1Bj .

Hence,

U (4)
n

=
√

∆n

n∑
j=1

1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n) (Bj,n − pj,n)

=
√

∆n

n∑
j=1

 1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n)

− f ′ (pj−1,n) + f ′ (pj−1,n)

 (Bj,n − pj,n)

=
√

∆n

n∑
j=1

f ′ (pj−1,n) (Bj,n − pj,n) +
√

∆n

n∑
j=1

wnj (Bj,n − pj,n) ,

where

wnj =
1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n)− f ′ (pj−1,n) .

By conditioning on (pt)t∈[0,1], E
[
wnj (Bj,n − pj,n)

]
= 0. Next, by the assumption about the derivative of f ,

∣∣wnj ∣∣ ≤ C sup
s∈[(j−1)∆n,(j+kn−1)∆n]

|ps − pj−1,n| .

Hence, inequality (46) implies that E
[∣∣wnj ∣∣2] ≤ C

√
∆n when kn ≤ j ≤ b1/∆nc − kn and

∣∣wnj ∣∣ ≤ C always. Therefore,

since both Bj,n and pt are bounded,

Ej−1

[∣∣∣√∆nw
n
j (Bj,n − pj,n)

∣∣∣2] ≤
C∆

3/2
n kn ≤ j ≤ hn,

C∆n otherwise.
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Consequently,
∑b1/∆nc
j=1 Ej−1

[∣∣√∆nw
n
j (Bj,n − pj,n)

∣∣2] −→ 0, which by Lemma 2 implies that
√

∆n

∑b1/∆nc
j=1 wnj (Bj,n − pj,n)

is AN. Now, set ξnj =
√

∆nf
′ (pj−1,n) (Bj,n − pj,n). Clearly, E

[
ξnj
]

= 0, and we have:

Ej−1

[(
ξnj
)2]

= ∆n (f ′ (pj−1,n))
2 Ej−1

[
pj,n − (pj,n)2

]
.

Because (f ′ (pj−1,n))
2

is bounded, using (47) we have:∣∣∣Ej−1

[(
ξnj
)2]−∆n (f ′ (pj−1,n))

2 (
pj−1,n − (pj−1,n)2

)∣∣∣ ≤ C(∆n)2.

Therefore,
b1/∆nc∑
j=1

Ej−1

[(
ξnj
)2] P−→

∫ 1

0

f ′ (ps)
2
ps(1− ps) ds.

Consequently,
b1/∆nc∑
j=1

ξnj
stably
=⇒ MN (0,ΣU),

which completes the proof.

A.4 Proof of Theorem 3.5 from Section 3.3

For any process X, denote the increments by ∆n
jX = X(j+1) ∆n

−Xj∆n . Set kn = θ b
√
nc and define:

ν̃n =

n−2kn+1∑
i=1

(
p̂i+kn (kn)− p̂i (kn)

)2
.

We then have to prove that, as n→∞:

k−1
n ν̃n

p−→ 2

3

∫ 1

0

ν2
s ds+

2

θ2

∫ 1

0

ps (1− ps) ds.

We have:

p̂j (kn) =
1

kn

kn−1∑
i=0

(Bj+i,n − pj+i,n) +
1

kn

kn−1∑
i=0

pj+i,n.

Consequently, the difference between p̂j+kn (kn) and p̂j (kn) can be expressed as:

p̂j+kn (kn)− p̂j (kn) =
1

kn

2kn−1∑
i=0

ε(1)i (Bj+i,n − pj+i,n) +
1

kn

kn−1∑
i=0

(pj+i+kn,n − pj+i,n) , (62)

where, for m ∈ {0, . . . , 2kn − 1}:

ε(1)m =

−1, 0 ≤ m < kn,

+1, kn ≤ m < 2kn.

Then, using telescopic sums, notice that:

(pj+i+kn,n − pj+i,n) =

kn−1∑
`=0

∆j+i+`,np.
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Now note that the sum Sj,n =
∑kn−1
i=0 (pj+i+kn,n − pj+i,n), collecting identical terms, becomes:

Sj,n = ∆n
j p + ∆n

j+1p + ∆n
j+2p + . . .+ ∆n

j+kn−1p+∆n
j+knp

∆n
j p + ∆n

j+1p + ∆n
j+2p + . . .+ ∆n

j+kn−1p + ∆n
j+knp

∆n
j p + ∆n

j+1p + ∆n
j+2p + . . .+ ∆n

j+kn−1p + ∆n
j+knp + ∆n

j+kn+1p

∆n
j p + ∆n

j+1p + ∆n
j+2p+

...∆n
j+kn−1p

∆n
j p + ∆n

j+1p + ∆n
j+2p + . . .+ ∆n

j+kn−1p + ∆n
j+knp + ∆n

j+kn+1p + . . .+ ∆n
j+2 kn−2p

= ∆n
j p + 2 ∆n

j+1p + 3 ∆n
j+2p + . . .+ kn ∆n

j+kn−1p︸ ︷︷ ︸
kn terms

+ (kn − 1) ∆n
j+knp + . . .+ ∆n

j+2 kn−2p︸ ︷︷ ︸
kn−1 terms

,

which can be rewritten as:

1

kn

kn−1∑
i=0

(pj+i+kn,n − pj+i,n) =
1

kn

2kn−1∑
i=0

ε(2)i (pj+i+1,n − pj+i,n) ,

where, for i ∈ {0, . . . , 2kn − 1},
ε(2)i = (i+ 1) ∧ (2kn − i− 1),

and, in particular, ε(2)2kn−1 = 0. Now expression (62) becomes:

p̂j+kn (kn)− p̂j (kn) =
1

kn

2kn−1∑
j=0

(ε(2)i (Bi+j,n − pj+i,n) + ε(2)i (pj+i+1,n − pj+i,n)) .

Therefore:

(
p̂j+kn (kn)− p̂j (kn)

)2
=

1

k2
n

2kn−1∑
i=0

(
ε(2)2

i (Bj+i,n − pj+i,n)
2

+ ε(2)2
i (pj+i+1,n − pj+i,n)

2

+ 2 ε(2)i ε(2)i (Bj+i,n − pj+i,n) (pj+i+1,n − pj+i,n)

)

+ 2

2 kn−2∑
j=0

2 kn−1∑
`′=j+1

(
ε(2)iε(1)` (Bj+i,n − pj+i,n) (Bj+`,n − pj+`,n)

+ ε(2)i ε(2)` (Bj+i,n − pj+i,n) (pj+`+1,n − pj+`,n)

+ ε(1)` ε(2)i (Bj+`,n − pj+`,n) (pj+i+1,n − pj+i,n)

+ ε(2)i ε(2)` (pj+i+1,n − pj+i,n) (pj+`+1,n − pj+`,n)

)
. (63)

So, setting

ζ(1)j = Bj,n − pj,n, ζ(2)j = pj+1,n − pj,n,

we have the following more compact expression:

(
p̂j+kn (kn)− p̂j (kn)

)2
=

1

k2
n

2∑
u,v=1

(
2kn−1∑
i=0

ε(u)iε(v)iζ(u)j+iζ(v)j+i + 2

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(u)iε(v)`ζ(u)j+iζ(v)i+`

)
.

Consequently, ν̃n can be expressed as:

ν̃n =

7∑
s=1

n−2kn+1∑
i=1

vni (s),
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where

vni (1) =
1

k2
n

2kn−1∑
i=0

(Bj+i,n − pj+i,n)
2
, vni (2) =

1

k2
n

2kn−1∑
i=0

ε(2)2
i (pj+i+1,n − pj+i,n)

2
,

vni (3) =
2

k2
n

2kn−1∑
i=0

ε(1)iε(2)i (Bj+i,n − pj+i,n) (pj+i+1,n − pj+i,n) ,

vni (4) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε(1)iε(1)` (Bj+i,n − pj+i,n) (Bj+`,n − pj+`,n) ,

vni (5) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(2)iε(2)` (pj+i+1,n − pj+i,n) (pj+`+1,n − pj+`,n) ,

vni (6) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(1)iε(2)` (Bj+i,n − pj+i,n) (pj+`+1,n − pj+`,n) ,

vni (7) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(2)iε(1)` (pj+i+1,n − pj+i,n) (Bj+`+1,n − pj+`,n) .

Consequently, to study the convergence of ν̃n in probability, we need to study the convergence of the sums
n−2kn+1∑
j=1

vnj (s)

for s = 1, . . . 7. In what follows, we use the abbreviation gn = n− 2kn + 1. For the sake of readability, we divide the rest

of the proof into six parts.

Part 1: Proof of the convergence in probability of vni (1)

The quantity 1
kn

gn∑
j=1

vnj (1) can be decomposed as

1

kn

gn∑
j=1

vnj (1) =

gn∑
j=1

d
(n)
j,1 +

gn∑
j=1

d
(n)
j,2 ,

where

d
(n)
j,1 =

1

k3
n

2kn−1∑
j=0

(
(Bj+i,n − pj+i,n)

2 − pi−1,n (1− pi−1,n)
)
, d

(n)
j,2 =

1

k3
n

2kn−1∑
j=0

pi−1,n (1− pi−1,n) .

First, we show that
gn∑
j=1

d
(n)
j,1 is AN. We have

gn∑
j=1

∣∣∣Ej−1

[
d

(n)
j,1

]∣∣∣ =

gn∑
j=1

1

k3
n

2kn−1∑
j=0

∣∣Ej−1

[
pj+i,n − pj−1,n + p2

j−1,n − p2
j+i,n

]∣∣
≤

gn∑
j=1

1

k3
n

2kn−1∑
i=0

(
|Ej−1 [pj+i,n − pj−1,n]|+

∣∣Ej−1

[
p2
j+i,n − p2

j−1,n

]∣∣)
=

gn∑
j=1

1

k3
n

2kn−1∑
i=0

(|Ej−1 [pj+i,n − pj−1,n]|+ |Ej−1 [(pj+i,n + pj−1,n) (pj+i,n − pj−1,n)]|)

≤ C

gn∑
j=1

1

k3
n

2kn−1∑
i=0

kn∆n = C
kn∆n(2kn − 1)gn

k3
n

∼ 1

kn
−→ 0,

where we use conditioning on (pt)t∈[0,1], triangular inequality, and Lemma 7. Next, using the boundedness of pt, we
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obtain:

kn

gn∑
j=1

Ej−1

[∣∣∣d(n)
j,1

∣∣∣2] ≤ kn gn∑
j=1

1

k6
n

(
2kn−1∑
i=0

C

)2

= C
(2kn − 1)2 gn

k5
n

∼ 1

k3
n ∆n

−→ 0.

Consequently, by Lemma 2,
gn∑
j=1

d
(n)
j,1 is AN. Now, consider

gn∑
j=1

d
(n)
j,2 . We have

gn∑
j=1

d
(n)
j,2 =

2

k2
n

gn∑
j=1

1

2kn

2kn−1∑
j=0

pj−1,n(1− pj−1,n) =
2

θ2

gn∑
j=1

pj−1,n(1− pj−1,n)
1

b
√
nc2
−→ 2

θ2

1∫
0

ps(1− ps) ds,

where the convergence is point-wise, by Riemann integrability. Combining the two results, we obtain:

1

kn

gn∑
j=1

vnj (1)
u.c.p.−→ 2

θ2

1∫
0

ps(1− ps) ds. (64)

Part 2: Proof of the convergence in probability of vni (2)

To begin, note that vnj (2) can be written as

vnj (2) =
1

k2
n

2kn−1∑
i=0

ε(2)2
i

(
∆n
j+ip

)2
=

1

k2
n

2kn−1∑
i=0

ε(2)2
i

(
∆n
j p
)2

+
1

k2
n

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

,

so that the sum over the index i of all the vnj (2) becomes:

1

kn

gn∑
j=0

vnj (2) =
1

k3
n

2kn−1∑
i=0

ε(2)2
i

gn∑
j=0

(
∆n
j p
)2

︸ ︷︷ ︸
An

+
1

k3
n

gn∑
j=0

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

︸ ︷︷ ︸
Bn

.

Now we want to prove that An converges in probability to a finite quantity, while Bn is AN. Using the definition of the

integers’ coefficients ε(2)i it is easy to show that:

1

k3
n

2 kn−1∑
j=0

ε(2)2
i =

1

3 k3
n

(
2k3
n + kn

)
−→ 2

3
.

Hence, the standard theory of realized volatility for the semimartingale,

pt = p0 +

∫ t

0

µs ds+

∫ t

0

νs dWs

now implies that

An
p−→ 2

3

∫ 1

0

ν2
s ds.

Concerning Bn, we write it as

Bn =

gn∑
j=0

ϑj+1,n with ϑj+1,n =
1

k3
n

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

,
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and, by Markov inequality, the Itô isometry and the boundedness of13 ν:∫ ∆

0

νs dWs = ν0 (W∆ −W0) +Op(∆
1/2), (65)

Considering also that
∫ t

0
µs ds is Op (∆n) for bounded µ , we have

pj+1,n − pj,n =

∫ (j+1) ∆n

j∆n

µs ds+

∫ (j+1) ∆n

j∆n

νs dWs =
(
νj,n +Op

(√
∆n

))
(Wj+1,n −Wj,n) +Op(∆n)

= νj,n (Wj+1,n −Wj,n) +Op

(
∆1/2
n

)
(Wj+1,n −Wj,n) +Op (∆n) .

The square of the increment ∆n
j p = (pj+1,n − pj,n) then becomes

(
∆n
j p
)2

= ν2
j,n

(
∆n
jW

)2
+
(
∆n
jW

)2
Op(∆n) +Op

(
∆2
n

)
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+
(
∆n
jW

)
Op (∆n) +

(
∆n
jW

)
Op

(
∆3/2
n

)
= ν2

j,n

(
∆n
jW

)2
+Op

(
∆2
n

)
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+
(
∆n
jW

)
Op (∆n) ,

which, by preserving only the leading terms, can be further simplified into

(
∆n
j p
)2

= ν2
j∆n

(
∆n
jW

)2
+Op

(
∆1/2
n

) (
∆n
jW

)2
+ νj,n

(
∆n
jW

)
Op (∆n) , (66)

so that:

Ej
[(

∆n
j p
)2]

= ν2
j,n ∆n +Op(∆

3/2
n ).

Now consider the same increment shifted by i units:

(
∆n
j+ip

)2
= ν2

i+j,n

(
∆n
j+iW

)2
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n)

=
(
ν2
j∆n

+Op (j∆n) +Op

(√
j∆n

)) (
∆n
j+iW

)2
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n)

= ν2
j∆n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
j∆n

)
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n) ,

which, by preserving only the leading terms, can be further simplified into

(
∆n
j+ip

)2
= ν2

j,n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
i∆n

)
, (67)

and so:

Ej
[(

∆n
j+ip

)2]
= ν2

j,n ∆n +Op

(
i1/2 ∆3/2

n

)
.

Therefore the Fti,n -conditional expected value of the difference between
(
∆n
j+ip

)2
and

(
∆n
j p
)2

has the following order in

probability:

Ej
[(

∆n
j+ip

)2 − (∆n
j p
)2]

= Op

(
i1/2 ∆3/2

n

)
,

implying that
gn∑
j=0

Ej [ϑj+1,n] =
1

k3
n

gn∑
j=0

2kn−1∑
i=0

ε(2)2
iOp

(
i1/2 ∆3/2

n

)
= Op

(
(kn ∆n)

1/2
)

p−→ 0,

13Here we follow the standard approach

P
(∣∣∣∣ 1
√

∆

[ ∫ ∆

0
νs dWs − ν0(W∆ −W0)

]∣∣∣∣ > M

)
≤

1

M2∆
E

(∣∣∣∣∫ ∆

0
(νs − ν0) dWs

∣∣∣∣2
)

=
1

M2∆
E
(∫ ∆

0
(νs − ν0)2 ds

)
,

and then the identity (65) follows from the boundedness of ν.
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which is the first of the two conditions in Lemma 2 that guarantee AN. To prove that also the second condition is satisfied

consider:

kn ϑ
2
j+1,n =

1

k5
n

2kn−1∑
i=0

ε(2)4
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]2

︸ ︷︷ ︸
Ci,n

+
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(2)2
i ε(2)2

`

[(
∆n
j+ip

)2 − (∆n
j p
)2] [(

∆n
j+`p

)2 − (∆n
j p
)2]

︸ ︷︷ ︸
Di,n

.

From (66) we get

(
∆n
j p
)4

= ν4
j,n

(
∆n
jW

)4
+Op(∆n)

(
∆n
jW

)4
+ ν2

j,n

(
∆n
jW

)2
Op
(
∆2
n

)
+ 2 ν2

j,n

(
∆n
jW

)4
Op

(
∆1/2
n

)
+ 2 ν3

j,n

(
∆n
jW

)3
Op (∆n) + 2 νj,n

(
∆n
jW

)3
Op

(
∆3/2
n

)
,

and therefore:

Ej
[(

∆n
j p
)4]

= 3 ν4
j,n ∆2

n +Op(∆
3
n) +Op(∆

3
n) +Op(∆

5/2
n ) = 3 ν4

j,n ∆2
n +Op(∆

5/2
n ).

Similarly, from (67) we get

(
∆n
j+ip

)4
= ν4

j,n

(
∆n
j+iW

)4
+
(
∆n
j+iW

)4
Op (j∆n) + 2 ν2

j,n

(
∆n
j+iW

)4
Op

(√
i∆n

)
,

and hence:

Ej
[(

∆n
j+ip

)4]
= 3 ν4

j,n ∆2
n +Op

(
i∆3

n

)
+Op

(
i1/2 ∆5/2

n

)
= 3 ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Summing up the two fourth powers so obtained:

Ej
[(

∆n
j+ip

)4
+
(
∆n
j+ip

)4]
= 6 ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Finally consider that

(
∆n
j+ip

)2 (
∆n
j p
)2

=
(
ν2
j,n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
i∆n

))
×(

ν2
j,n

(
∆n
jW

)2
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+ νj,n

(
∆n
jW

)
Op (∆n)

)
= ν4

j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
+ ν2

j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(
∆1/2
n

)
+ ν3

j,n

(
∆n
j+iW

)2 (
∆n
jW

)
Op (∆n)

+ ν2
j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(√
i∆n

)
+
(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(
i1/2 ∆n

)
+ νj,n

(
∆n
j+iW

)2 (
∆n
jW

)
Op

(
i1/2 ∆3/2

n

)
,

where

Ej
[(

∆n
j+ip

)2 (
∆n
j p
)2]

= ν4
j,n ∆2

n +Op

(
∆5/2
n

)
+Op

(
i1/2 ∆5/2

n

)
+Op

(
i1/2 ∆3

n

)
= ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Therefore

Ej
[(

∆n
j+ip

)4
+
(
∆n
j+ip

)4 − 2
(
∆n
j+ip

)2 (
∆n
j p
)2]

= 6 ν4
j,n ∆2

n +Op

(
i1/2 ∆5/2

n

)
,

which implies:

gn∑
i=0

E [Cj,n] =
1

k5
n

gn∑
i=0

2kn−1∑
i=0

ε(2)4
iE
[((

∆n
j+ip

)2 − (∆n
j p
)2)2

]
=

1

k5
n

gn∑
i=0

2kn−1∑
i=0

ε(2)4
iE
[
ν4
j,n ∆2

n +Op

(
i1/2 ∆5/2

n

)]
= O (∆n) −→ 0.
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Concerning Cj,n, first call ε2
i,` = ε(2)2

i ε(2)2
` and then note that:

E [|Dj,n|] =
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
i,` E

[∣∣∣(∆n
j+ip

)2 − (∆n
j p
)2∣∣∣ ∣∣∣(∆n

j+`p
)2 − (∆n

j p
)2∣∣∣]

≤ 2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
j,`

(
E
[((

∆n
j+ip

)2 − (∆n
j p
)2)2

]) 1
2
(
E
[((

∆n
j+`p

)2 − (∆n
j p
)2)2

]) 1
2

=
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
j,`

(
E
[
6 ν4

j,n ∆2
n +Op

(
j

1
2 ∆

5
2
n

)]) 1
2
(
E
[
6 ν4

j,n ∆2
n +Op

(
`

1
2 ∆

5
2
n

)]) 1
2

.

Because ε(2)2
i ε(2)2

` ≤ C k4
n, we get

E [|Dj,n|] ≤ C kn ∆2
n,

so that
gn∑
j=0

E [|Dj,n|] ≤ C kn ∆n → 0,

and hence, in conclusion, Bn is AN.

Part 3: Proof of the convergence in probability of vni (3)

In what follows, we call:

ζ (1)j
.
= Bj,n − pj,n and ζ (2)j

.
= pj+1,n − pj,n.

The quantity vnj (3) can be rewritten as:

vnj (3) =
2

k2
n

2kn−1∑
i=0

ε (1)i ε (2)i ζ (1)j+i ζ (2)j+i .

Therefore, the quantity 1
kn

∑gn
i=0 v

n
i (3) becomes:

1

kn

gn∑
i=0

vnj (3) =

gn∑
i=0

2

k3
n

2kn−1∑
i=0

ε (1)i ε (2)i ζ (1)j+i ζ (2)j+i .

First, we observe that, conditionally on (pt), we have that E
[
ζ (1)j

]
= 0 and so Ej−1

[
vnj (3)

]
= 0. Then, we note that

term kn

(
vnj (3)

kn

)2

can be decomposed as:

kn

(
vnj (3)

kn

)2

=
4

k5
n

2kn−1∑
i=0

(ε (2)i)
2
(
ζ (1)j+i

)2 (
ζ (2)j+i

)2

+
8

k5
n

2kn−2∑
j=0

2kn−1∑
i=0

ε(1)jε(2)jζ(1)i+jζ(2)i+jε(1)`ε(2)lζ(1)i+`ζ(2)i+`

.
= A1,n +A2,n.

Now, by conditioning on (pt), we readily obtain that E [A2,n] = 0. Concerning A1,n, we have:

E [|A1,n|] ≤ E

[
4

k5
n

2kn−1∑
i=0

(ε (2)i)
2

(
ζ (1)

2
j+i

(
ζ (2)j+i

)2
)]
≤ C

k5
n

∆n

2kn−1∑
i=0

(ε (2)i)
2
.

By the boundedness of Bernoulli random variables and (pt) we have that
(
ζ (1)j+i

)2

≤ C for some positive constant C.
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Therefore:

E [|A1,n|] ≤
C

k5
n

∆n

2kn−1∑
j=0

(ε (2)i)
2

=
C

k5
n

∆n
2k3
n + kn

3
∼ ∆n

k2
n

.

Therefore:
gn∑
j=1

E [|A1,n|] ≤
C

kn
→ 0.

Consequently, by Lemma 2, 1
kn
vnj (3) is AN.

Part 4: Proof of the convergence in probability of vni (4)

First, by conditioning on (pt) we readily obtain Ej−1

[
vnj (4)

]
= 0. Next, consider the decomposition

(
vnj (4)

kn

)2

= A1,n +A2,n,

where

A1,n =
C

k6
n

2kn−2∑
j=0

(
2kn−1∑
`=i+1

ε(1)iε(1)`ζ(1)j+iζ(1)j+`

)2

,

and

A2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

(
2kn−1∑
`=i+1

ε(1)iε(1)lζ(1)j+iζ(1)j+`

)(
2kn−1∑
u=m+1

ε(1)mε(1)uζ(1)j+mζ(1)j+u

)
,

=
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

2kn−1∑
`=i+1

2kn−1∑
u=i+2

ε(1)iε(1)`ε(1)mε(1)uζ(1)j+iζ(1)j+`ζ(1)j+uζ(1)j+m.

By conditioning on (pt) again, we have E [ζ(1)j+iζ(1)j+`ζ(1)j+uζ(1)j+m] = 0 if at least two of the indexes i, `, u,m are

different. Because in the sums that appear in A2,n one among m, `, or u is different from i, we have E [A2,n] = 0.

Analogously: the expected value of the cross-product terms in A1,n is zero. Next, because |ζ(1)j+`| ≤ C, for some

constant C > 0,

E [A1,n] =
C

k6
n

2kn−2∑
i=0

2kn−1∑
`=i+1

E
[
(ζ(1)j+iζ(1)j+`)

2
]
≤ C(2kn − 2)(2kn − 1)

k6
n

∼ 1

k4
n

.

Therefore:

kn

gn∑
i=1

E

[(
vnj (4)

kn

)2
]
≤ C

k3
n∆n

→ 0.

Consequently, by Lemma 2, 1
kn
vnj (4) is AN.

Part 5: Proof of the convergence in probability of vni (5)

By successive conditioning and using Lemma 7, we obtain

∣∣Ej−1

[
vnj (5)

]∣∣ ≤ C

k2
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε(2)iε(2)`∆
2
n = C

∆2
n

k2
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε(2)iε(2)` ∼ C ∆2
nk

2
n,

where we use the fact that
∑2kn−2
i=0

∑2kn−1
`=i+1 ε(2)iε(2)` ∼ k4

n. Therefore, we have:

gn∑
j=1

1

kn

∣∣Ej−1

[
vnj (5)

]∣∣ ∼ ∆nkn → 0.
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Next, we have (
vnj (5)

kn

)2

= A1,n +A2,n,

where:

A1,n =
C

k6
n

2kn−2∑
i=0

(
2kn−1∑
`=i+1

ε(2)iε(2)`ζ(2)j+iζ(2)j+`

)2

,

A2,n =
C

k6
n

2kn−3∑
j=0

2kn−2∑
m=j+1

2kn−1∑
`=i+1

2kn−1∑
u=j+2

ε(2)iε(2)`ε(2)mε(2)uζ(2)j+iζ(2)j+`ζ(2)i+uζ(2)i+m.

Furthermore, we have

A1,n = A1,1,n +A1,2,n,

where:

A1,1,n =
C

k6
n

2kn−2∑
i=0

2kn−1∑
`=i+1

(ε(2)iε(2)`ζ(2)j+iζ(2)j+`)
2
,

A1,2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
`=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)`ε(2)m (ζ(2)j+i)

2
ζ(2)j+`ζ(2)j+m.

Using the estimate (46) of Lemma 7, and the fact that
∑2kn−2
i=0

∑2kn−1
`=i+1 (ε(2)iε(2)`)

2 ∼ k6
n, we obtain

E [A1,1,n] ≤ C ∆2
n

k6
n

2kn−2∑
i=0

2kn−1∑
`=i+1

(ε(2)iε(2)`)
2 ∼ ∆2

n,

which implies that kn
gn∑
i=1

E [A1,1,n] ≤ kn ∆n → 0. Next, using the estimates (46) and (47) of Lemma 7, we have

E
[
(ζ(2)j+i)

2
ζ(2)j+`ζ(2)j+m

]
≤ C

∆2
n, ` = m,

∆3
n, i 6= ` 6= m.

Therefore, we have

E [A1,2,n] ≤ C∆2
n

k6
n

S1 + C
∆3
n

k6
n

S2 ∼ ∆2
n ∨∆3

nkn,

where:

S1 =

2kn−3∑
j=0

2kn−2∑
`=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)`ε(2)mI ({` = m}) =

2kn−3∑
i=0

2kn−2∑
l=i+2

(ε(2)i)
2

(ε(2)`)
2 ∼ k6

n,

S2 =

2kn−3∑
i=0

2kn−2∑
`=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)`ε(2)mI ({` 6= m}) =

2kn−3∑
i=0

2kn−2∑
`=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)`ε(2)m − S1 ∼ k7

n.

Consequently,

kn

gn∑
j=1

E [A1,2,n] ≤ C ∆nkn → 0.
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So, summing up kn
∑gn
j=1 E [A1,n]→ 0. With a procedure similar to that used for A1,2,n, we obtain

kn

gn∑
j=1

E [A2,n] ≤ C ∆nkn → 0.

Thus, 1
kn
vnj (5) is AN by Lemma 2.

Part 6: Proof of the convergence in probability of vni (6) and vni (7). First, by conditioning on (pt) we readily obtain

Ej−1

[
vnj (6)

]
= 0. Next, consider the decomposition

(
vnj (6)

kn

)2

= A1,n +A2,n,

where

A1,n =
C

k6
n

2kn−2∑
i=0

(
2kn−1∑
`=i+1

ε(1)iε(2)`ζ(1)j+iζ(2)j+`

)2

and

A2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

(
2kn−1∑
`=i+1

ε(1)iε(2)`ζ(1)j+iζ(2)j+`

)(
2kn−1∑
u=m+1

ε(1)mε(2)uζ(1)j+mζ(2)j+u

)
,

=
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

2kn−1∑
`=i+1

2kn−1∑
u=i+2

ε(1)iε(2)`ε(1)mε(2)uζ(1)j+iζ(2)j+`ζ(1)j+uζ(2)j+m.

By conditioning on (pt), E [A2,n] = 0, because E [ζ(1)j+iζ(1)j+u] = 0 for u > i. Analogously, the expected value of the

cross-product terms in A1,n is zero. Therefore, we have:

E [A1,n] =
C

k6
n

2kn−2∑
i=0

2kn−1∑
`=i+1

E
[
(ε(1)iε(2)`ζ(1)j+iζ(2)j+l)

2
]
≤ C ∆n

k6
n

2kn−2∑
i=0

2kn−1∑
`=i+1

(ε(2)`)
2 ∼ ∆n

k2
n

.

Thus:

kn

gn∑
j=1

E [A1,n] ≤ C

kn
→ 0.

Consequently, 1
kn
vnj (6) is AN by Lemma 2. Analogously, 1

kn
vnj (7) is AN as well.

A.5 Proof of the results in Section 4

Proof of Corollary 1. By Theorem 3.2, as n→∞,

√
n

[
RZn −

∫ 1

0
ps ds

RZm,n −
∫ 1

0
(ps)

m
ds

]
stably
=⇒ MN (0,Σm) ,

where MN (0,Σm) denotes the mixed-normal distribution with covariance matrix:

Σm =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
m pms (1− ps) ds∫ 1

0
m pms (1− ps) ds

∫ 1

0
pms

pm
s (2m+1)−pm+1

s (2m−1)−(1+ps)
1−ps

ds

]
.
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Therefore, applying Lemma 3 with ν(X,Y ) = Y − (X)
m

, we obtain:

√
n
(
RZm,n − (RZn)m −

(∫ 1
0 (ps)m ds−

(∫ 1
0 ps ds

)m))√
m2 (RZn)2(m−1)

∫ 1
0 ps (1− ps) ds +

∫ 1
0 pms

pm
s (2m+1)−p

m+1
s (2m−1)−(1+ps)

1−ps
ds + 2m (RZn)m−1

∫ 1
0 m pms (1− ps) ds

stably
=⇒ N (0, 1) .

On Ω0,
(∫ 1

0
(ps)

m
ds−

(∫ 1

0
ps ds

)m)
= 0 and the integrals

∫ 1

0
(ps)

m
ds in the denominator of the test statistic can be

consistently estimated by (RZn)
m

. Consequently, plugging in the estimates of the integrals
∫ 1

0
(ps)

m
ds and simplifying,

we obtain:

Ψm,n =

√
n (RZm,n − (RZn)

m
)√

(RZn)2m+1(m2+2m−1)−(RZn)2m(2m2+2m+1)+(RZn)m+1+(RZn)m

RZn−1

stably
=⇒ N (0, 1) , on Ω0. (68)

On Ω1,

RZm,n − (RZn)
m p−→

(∫ 1

0

(ps)
m
ds−

(∫ 1

0

ps ds

)m)
> 0, (69)

which implies that :
√
n (RZm,n − (RZn)

m
)

p−→ +∞. (70)

Due to the boundedness of the Bernoulli random variables, the denominator of Ψm,n is bounded as well. Hence, Ψm,n
p−→

+∞, which completes the proof.

Proof of Theorem 4.1 We start from the consistency result and we state the following lemma.

Lemma 8. Under Assumption 3, as n→∞,

1

n

n∑
j=1

m−1∏
i=0

B(t)
i+j,n

ϑ?i+j,n

u.c.p.−→ 1

(π?)
m

∫ t

t−1

(p?s)
m
ds.

Proof. In order to simplify notation, we present the proof for the case t = 1. The proof follows the lines of that of Lemma

4 and therefore we omit some details. Consider the following quantity:

An =
1

n

n∑
j=1

m−1∏
i=0

Bi+j,n
ϑ?i+j,n

− 1

n

n∑
j=1

(
p?j−1,n

)m
(π?)

m =
1

n

n∑
j=1

[
Bj,nBj+1,n · · ·Bj+(m−1),n

ϑ?j,nϑ
?
j+1,n · · ·ϑ?j+(m−1),n

−
(
p?j−1,n

)m
(π?)

m

]
.

We show that An
u.c.p.−→ 0. In particular, the latter can be rewritten as

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` + op (1) ,

where

ς
(m)
j,` =

Bj,nBj+1,n · · ·Bj+`−1,n

ϑ?j,nϑ
?
j+1,n · · ·ϑ?j+`−1,n

(
Bj+`,n
ϑ?j+`,n

−
p?j−1,n

π?

)(
p?j−1,n

π?

)m−`−1

.

For fixed ` and m let ζnj = 1
n ς

(m)
j−`,`. Thus, to prove that An is AN, it is sufficient to prove that

∑n
j=1 ζ

n
j is AN, i.e., to

show that

n∑
j=1

1

n

∣∣∣Ej−1

[
ς
(m)
j−`,`

]∣∣∣ p−→ 0
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and

n∑
j=1

Ej−1

[(
ζnj
)2] p−→ 0.

Notice that, by conditioning on pj,n we have:

Ej−1

[
Bj,n
ϑ?j,n

]
= Ej−1

[
pj,n
ϑ?j,n

]
= Ej−1

[
p?j,n
π?

]
.

Therefore:

n∑
j=1

1

n

∣∣∣Ej−1

[
ς
(m)
j−`,`

]∣∣∣ =

n∑
j=1

1

n

∣∣∣∣∣Ej−1

[
Bj−`,n · · ·Bj−1,n

ϑ?j−`,n · · ·ϑ?j−`,n

(
p?j−`−1,n

π?

)m−`−1
(
Bj,n
ϑ?j,n

−
p?j−`−1,n

π?

)]∣∣∣∣∣
=

n∑
j=1

1

n

∣∣∣∣∣Bj−`,n · · ·Bj−1,n

ϑ?j−`,n · · ·ϑ?j−`,n

(
p?j−`−1,n

π?

)m−`−1

Ej−1

[
Bj,n
ϑ?j,n

−
p?j−`−1,n

π?

]∣∣∣∣∣
=

n∑
j=1

1

n

∣∣∣∣∣Bj−`,n · · ·Bj−1,n

ϑ?j−`,n · · ·ϑ?j−`,n

(
p?j−`−1,n

π?

)m−`−1

Ej−1

[
p?j,n − p?j−`−1,n

π?

]∣∣∣∣∣
≤

n∑
j=1

1

n
Ej−1


∣∣∣p?j,n − p?j−`−1,n

∣∣∣
π?

 ≤ C∆1/2
n −→ 0.

Moreover, by using the boundedness of the Bernoulli variates,

n∑
i=1

Ej−1

[(
ζnj
)2]

=
1

n2

n∑
i=1

Ej−1

[(
ς
(m)
j−`,`

)2
]
≤ C∆n −→ 0,

which implies the AN of An. Finally, by Riemann integrability,

n∑
j=1

(
p?j−1,n

π?

)m
1

n
−→ 1

(π?)
m

∫ 1

0

(p?s)
m
ds,

which completes the proof.

As for the limiting distribution, the proof is divided into several steps. We first determine the joint limiting distribution

for the following two quantities (see Lemma 9):

R̂Zt,n =
1

n

n∑
j=1

B(t)
j,n

ϑ?j,n
R̂Z

(t)

m,n =
1

n

n∑
j=1

m−1∏
i=0

B(t)
j+i,n

ϑ?j+i,n
.

However, in the previous definitions we pretend that the diurnal components ϑ?j,n and ϑ?j+1,n of pt are available to deflate

the series of Bernoulli variates. In practice, these components are unobserved and estimated by ϑ̂?j,n and ϑ̂?j+1,n. Lemma

10 enables us to prove the result of Theorem 4.1 and shows that the error induced from estimating ϑ?j,n does not alter

the analysis in Lemma 9. That is, the limiting distribution of R̃Z
(t)

m,n is not altered.

Step I

Lemma 9. Let m ≥ 2 be a given integer number. Under Assumption 3, as n→∞,

√
n

[
R̂Zt,n − 1

π?

∫ t
t−1

p?s ds

R̂Z
(t)

m,n − 1
(π?)m

∫ t
t−1

(p?s)
m
ds

]
stably
=⇒ MN

(
0, Σ̃(m)

)
, (71)
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where

R̂Zt,n =
1

n

n∑
j=1

B(t)
j,n

ϑ?j,n
R̂Z

(t)

m,n =
1

n

n∑
j=1

m−1∏
i=0

B(t)
j+i,n

ϑ?j+i,n

and MN (0, Σ̃(m)) denotes the mixed-normal distribution with covariance matrix:

Σ̃(m) =

 ∫ 1

0

(p?
sϑ
−1
s −(p?

s)2)
(π?)2

ds
∫ 1

0

m (p?
s)m (ϑ−1

s −p
?
s)

(π?)m+1 ds∫ 1

0

m (p?
s)m (ϑ−1

s −p
?
s)

(π?)m+1 ds
∫ 1

0

∑m−1
`=0

(2m−2`−1)(p?
s)2m−`−1(ϑ−1

s −p
?
s)ϑ−`

s

(π?)2m
ds

 .
Proof. Again, in order simplify the notation, we present the proof for the case t = 1. Moreover, the proof is similar to

that of Lemma 6 and therefore we omit some details. We consider the following decomposition:

√
n

[
R̂Z1,n − 1

π?

∫ 1

0
p?s ds

R̂Z
(m)

1,n − 1
(π?)m

∫ 1

0
(p?s)

m
ds

]
= A1 +A2,

where

A1 =
1√
n

n∑
j=1

 Bj,n

ϑ?
j,n
− Ej−1

[
Bj,n

ϑ?
j,n

]
m−1∏
i=0

Bj+i,n

ϑ?
j+i,n

−
m−1∏
i=0

Ej+i−1

[
Bj+i,n

ϑ?
j+i,n

]
 , A2 =

1√
n

n∑
i=1

 Ej−1

[
Bj,n

ϑ?
j,n

]
− 1

π?

∫ 1

0
p?s ds

m−1∏
i=0

Ej+i−1

[
Bj+i,n

ϑ?
j+i,n

]
− 1

(π?)m
∫ 1

0
(p?s)

m
ds

 .
It is easy to see that A2 is AN. Thus, it is enough to prove that A1

stably
=⇒ MN

(
0, Σ̃(m)

)
. In particular, it is sufficient to

establish the convergence

1√
n

n∑
j=m

ηj
stably
=⇒ MN

(
0, Σ̃(m)

)
,

where ηj = [ηj(1) ηj(2)]
′
, with

ηj(1)
.
=
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

]
, ηj(2)

.
=

m−1∑
`=0

ζ̃
(m)
j−`,`,

and

ζ̃
(m)
j−`,` =

Bj−`,n Bj−`+1,n · · ·Bj−1,n

ϑ?j−`,nϑ
?
j−`+1,n · · ·ϑ?j−1,n

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])
Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+m−`−1,n

ϑ?j+m−`−1,n

]
.

At this point we note that if for any finite numbers k, `, d ≥ 0 and powers q1, . . . , qd ≥ 0, we set

ξj,n =
Bj−`−k+1,n · · ·Bj−`,n
ϑ?j−`−k+1,n · · ·ϑ?j−`,n︸ ︷︷ ︸

k factors

× Bj−`+1,n · · ·Bj,n(
ϑ?j−`+1,n · · ·ϑ?j,n

)2

︸ ︷︷ ︸
` factors

×

(
Ej−1

[
Bj+1,n

ϑ?j+1,n

])q1
· · ·

(
Ej−1

[
Bj+d,n
ϑ?j+d,n

])qd
︸ ︷︷ ︸

d factors

,

then, as n→∞,

1

n

n∑
j=m

ξj,n
p−→
∫ 1

0

(p?s)
k+`+v ϑ−`s

(π?)
k+2`+v

ds,

where v = q1 + · · ·+ qd. This result is analogous to Lemma 5 and can be proven in a similar way.

Now, consider each component of the matrix ηjη
′
j separately:

ηj(1)ηj(1) =
Bj,n(
ϑ?j,n

)2 − 2
Bj,n
ϑ?j,n

Ej−1

[
Bj,n
ϑ?j,n

]
+

(
Ej−1

[
Bj,n
ϑ?j,n

])2

.
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Hence, by the convergence result above,

1

n

n∑
i=m

Ei−1 [ηi(1)ηi(1)]
p−→
∫ 1

0

(
p?sϑ
−1
s − (p?s)

2
)

(π?)
2 ds.

Now consider the product:

ηj(2) ηj(2) =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2

+ 2

m−1∑
`=0

m−1∑
`′=`+1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`′,`′ =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2

+ 2

m−1∑
`=0

m−`−1∑
k=1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k.

Note that

(
ζ̃

(m)
j−`,`

)2

=
Bj−`,n · · ·Bj−1,n(
ϑ?j−`,n · · ·ϑ?j−1,n

)2

︸ ︷︷ ︸
` factors

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])2(
Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+m−`−1,n

ϑ?j+m−`−1,n

])2

︸ ︷︷ ︸
m− `− 1 factors

and

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k

=
Bj−`,n · · ·Bj−1,n

ϑ?j−`,n · · ·ϑ?j−1,n

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])(
Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+m−`−1,n

ϑ?j+m−`−1,n

])
×

×Bj−`−k,n Bj−`−k+1,n · · ·Bj−`,n · · ·Bj−1,n

ϑ?j−`−k,n ϑ
?
j−`−k+1,n · · ·ϑ?j−`,n · · ·ϑ?j−1,n

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])(
Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+m−`−k−1,n

ϑ?j+m−`−k−1,n

])

=
Bj−`−k,n · · ·Bj−`−1,n

ϑ?j−`−k,n · · ·ϑ?j−`−1,n︸ ︷︷ ︸
k factors

Bj−`,n · · ·Bj−1,n(
ϑ?j−`,n · · ·ϑ?j−1,n

)2

︸ ︷︷ ︸
` factors

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])2

×

(
Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+1,n

ϑ?j+m−`−k−1,n

])2

︸ ︷︷ ︸
m− (`+ k)− 1 factors

Ej−1

[
Bj+m−`−k,n
ϑ?j+m−`−k,n

]
· · ·Ej−1

[
Bj+m−`−1,n

ϑ?j+m−`−1,n

]
︸ ︷︷ ︸

k factors

.

Hence
1

n

n∑
j=m

(
ζ̃

(m)
j−`,`

)2 p−→
∫ 1

0

(p?s)
2m−`−1

(
ϑ−1
s − p?s

)
ϑ−`s

(π?)
2m ds,

and
1

n

n∑
j=m

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k

p−→
∫ 1

0

(p?s)
2m−`−1

(
ϑ−1
s − p?s

)
ϑ−`s

(π?)
2m ds,

Consequently,

1

n

n∑
j=m

Ej−1 [ηj(2)ηj(2)]
p−→
∫ 1

0

m−1∑
`=0

(2m− 2`− 1)(p?s)
2m−`−1

(
ϑ−1
s − p?s

)
ϑ−`s

(π?)
2m ds
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Finally, for the covariance term, we have:

ηj(1)ηj(2) =

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])2

Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+m−1,n

ϑ?j+m−1,n

]

+
Bj−1,n

ϑ?j−1,n

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])2

Ej−1

[
Bj+1,n

ϑ?j+1,n

]
· · ·Ej−1

[
Bj+m+2,n

ϑ?j+m−2,n

]
+ . . .

+
Bj−m−1,n

ϑ?j−m−1,n

· · · Bj−1,n

ϑ?j−1,n

(
Bj,n
ϑ?j,n

− Ej−1

[
Bj,n
ϑ?j,n

])2

.

Consequently,

1

n

n∑
j=m

Ej−1 [ηj(1)ηj(2)]
p−→
∫ 1

0

m (p?s)
m (

ϑ−1
s − p?s

)
(π?)

m+1 ds,

which completes the proof.

Step II

Lemma 10. Let ϑ̂?j,n be the long-scale estimator of ϑ?j,n. Then, as T →∞, under Assumption 3 we have

ϑ̂?j,n = ϑ?j,n +Op

(
T−1/2

)
.

Proof. First, we consider the following decomposition:

ϑ̂?j,n − ϑ?j,n =
1

T

T∑
t=1

(
B(t)
j,n − p

(t)
j,n

)
+

1

T

T∑
t=1

p
(t)
j,n − ϑ

?
j,n.

Now, the proof is complete if we can show that:

1

T

T∑
t=1

(
B(t)
j,n − p

(t)
j,n

)
= OL2

(
T−1/2

)
(72)

1

T

T∑
t=1

p
(t)
j,n − ϑ

?
j,n = OL2

(
T−1/2

)
(73)

As for (72), note that by conditioning on p
(t)
j,n’s we obtain:

Var

[
1

T

T∑
t=1

(
B(t)
j,n − p

(t)
j,n

)]
=

1

T 2

T∑
t=1

E
[
p

(t)
j,n −

(
p

(t)
j,n

)2
]
≤ K

T
,

where K > 0 is some constant and the last inequality follows from the boundedness of pt. Therefore, we have:

1

T

T∑
t=1

(
B(t)
j,n − p

(t)
j,n

)
= OL2

(
T−1/2

)
.

Hence (72) follows.

Next, (73) can be verified as follows. First, we write:

1

T

T∑
t=1

p
(t)
j,n − ϑ

?
j,n = ϑj,n

(
1

T

T∑
t=1

p
?(t)
j,n − π

?

)
.
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Then, due to Assumption 3 for some constant K, we have

Var

[
1

T

T∑
t=1

p
?(t)
j,n − π

?

]
≤ K

T

(
1 + 2

∞∑
k=1

Cov
[
p?t+j/n, p

?
t+k+j/n

])
,

which implies that 1
T

∑T
t=1 p

?(t)
j,n − π? = OL2

(
T−1/2

)
. Since ϑj,n is bounded, this also implies that:

1

T

T∑
t=1

p
(t)
j,n − ϑ

?
j,n = OL2

(
T−1/2

)
.

Step III We prove now the second part of Theorem 4.1.

Consider the decomposition:

√
n

 R̃Z
(t)

1,n − 1
π?

∫ t
t−1

p?s ds

R̃Z
(t)

m,n − 1
π?

∫ t
t−1

(p?s)
m
ds

 = A1 +A2,

where

A1 =
√
n


1
n

n∑
j=1

B(t)
j,n

ϑ̂?
j,n

− 1
n

n∑
j=1

B(t)
j,n

ϑ?
j,n

1
n−m

n−m+1∑
j=1

m−1∏
q=0

B(t)
j+q,n

ϑ̂?
j+q,n

− 1
n−m

n−m+1∑
j=1

m−1∏
q=0

B(t)
j+q,n

ϑ?
j+q,n

 , A2 =
√
n


1
n

n∑
j=1

B(t)
j,n

ϑ?
j,n
− 1

π?

∫ t
t−1

p?s ds

1
n−m

n−m+1∑
j=1

m−1∏
q=0

B(t)
j+q,n

ϑ?
j+q,n

− 1
π?

∫ t
t−1

(p?s)
m
ds

 .
By Lemma 9,

A2
stably
=⇒ MN

(
0, Σ̃(m)

)
.

Hence, it is sufficient to show that A1 becomes negligible as T →∞. For simplicity we consider only the first component

of A1, as the second component can be treated analogously. We have:

A1(1) =
1√
n

n∑
j=1

(
B(t)
j,n

ϑ̂?j,n
−
B(t)
j,n

ϑ?j,n

)
=

n∑
j=1

1√
n
·
ϑ?j,n − ϑ̂?j,n
ϑ?j,nϑ̂

?
j,n

B(t)
j,n.

By Lemma 10, ϑ?j,n − ϑ̂?j,n = Op(T
−1/2). Consequently, since 0 ≤ B(t)

j,n

ϑ?
j,nϑ̂

?
j,n

≤ K, for some constant K, we have:

A1(1) = Op(n
1/2 T−1/2),

which completes the proof.

Proof of Corollary 2. Combining Theorem 4.1 and Lemma 3 we deduce that on Ω?t,0,

√
n

(
R̃Z

(t)

m,n −
(
R̃Z

(t)

1,n

)m)
√
m2

(
R̃Z

(t)

1,n

)2(m−1)

Σ̃
(m)
(1,1) + Σ̃

(m)
(2,2) − 2m

(
R̃Z

(t)

1,n

)m−1

Σ̃
(m)
(1,2)

stably
=⇒ N (0, 1) , (74)

where Σ̃
(m)
(1,1), Σ̃

(m)
(2,2) and Σ̃

(m)
(1,2) denote the elements of Σ̃(m). Hence, in order to prove that Υ

(t)
m,n

stably
=⇒ N (0, 1) on Ω?t,0

it is enough to show that
̂̃
Σ

(m)

(k,`)
p−→ Σ̃

(m)
(k,`) for k, ` = 1, 2. Consider estimating Σ̃

(m)
(1,1). Notice that, on Ω?t,0, p?s = p?t−1,

67



∀s ∈ [t− 1, t]. Hence,

Σ̃
(m)
(1,1) =

∫ t

t−1

(
p?sϑ
−1
s − (p?s)

2
)

(π?)
2 ds =

p?t−1

(π?)
2

∫ t

t−1

ϑ−1
s ds−

(
p?t−1

π?

)2

.

By Lemma 10, ϑ̂?j,n = ϑ?j,n +Op
(
T−1/2

)
. Since ϑ?j,n is bounded away from zero and bounded from above we also have

(
ϑ̂?j,n

)−`
=
(
ϑ?j,n

)−`
+Op

(
T−1/2

)
,

for every real `. Next, we have:

1

n

n∑
j=1

(
ϑ̂?j,n

)−`
=

1

n

n∑
j=1

(
ϑ?j,n

)−`
+Op

(
T−1/2

)
.

By the Riemann integrability of ϑs,

1

n

n∑
j=1

(
ϑ?j,n

)−` −→ ∫ t

t−1

(ϑ?s)
−`

ds, (75)

hence:
1

n

n∑
j=1

(
ϑ̂?j,n

)−` p−→
∫ t

t−1

(ϑ?s)
−`

ds = (π?)
−`
∫ t

t−1

(ϑs)
−`

ds. (76)

In particular, due to the fact that
∫ 1

0
ϑs ds = 1 (by Assumption 3 ), setting ` = −1 gives:

1

n

n∑
j=1

ϑ̂?j,n
p−→ π?

∫ t

t−1

ϑs ds = π?. (77)

Consequently,

1

n

n∑
j=1

(
ϑ̂?j,n

1
n

∑n
j=1 ϑ̂

?
j,n

)−`
p−→
∫ t

t−1

ϑ−`s ds. (78)

Finally, notice that on Ω?t,0,

R̃Z
(t)

1,n
p−→

p?t−1

π?
. (79)

Combining (79), (78), (77) and the expression for Σ̃
(m)
(1,1), we obtain

̂̃
Σ

(m)

(1,1) =
1

n

n∑
j=1

(
ϑ̂∗n R̃Z

(t)

1,n

(
ϑ̂∗j,n

ϑ̂∗n

)−1

−
(
ϑ̂∗nR̃Z

(t)

1,n

)2
)

(
ϑ̂∗n

)2

p−→ Σ̃
(m)
(1,1),

where θ̂∗n = 1
n

∑n
j=1 θ̂

∗
j,n. With a similar reasoning one can prove the remaining convergences, which implies that:

Υ(t)
m,n

stably
=⇒ N (0, 1), on Ω?t,0.

Finally, we prove that Υ
(t)
m,n is unbounded in probability on Ω?t,1. By Theorem 4.1, for any integer m ≥ 2,

R̃Z
(t)

m,n −
(
R̃Z

(t)

1,n

)m
u.c.p.−→ 1

(π?)
m

(∫ t

t−1

(p?s)
m
ds−

(∫ t

t−1

p?s ds

)m)
> 0. (80)

Consequently,
√
n

(
R̃Z

(t)

m,n −
(
R̃Z

(t)

1,n

)m)
p−→∞. (81)
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Due to the boundedness of the Bernoulli random variables, the denominator of Υ
(t)
m,n is bounded, and, therefore,

Υ(t)
m,n

p−→∞, on Ω?t,1,

which completes the proof.

B Appendix: Additional simulations

In the Monte Carlo simulations reported in Section 5, the log-price paths are generated with the initial condition Y0 =

log(P0), P0 = 100 and the volatility factor cσ = 3, which corresponds to a daily volatility, Σ, of (roughly) 2%. Here

we conduct additional simulations varying both P0 and cσ, while keeping other parameters unchanged. In particular,

we consider P0 ∈ {5, 15, 30, 75, 100} and we also consider four possible values for cσ, chosen in such a way that the

daily average realized volatility Σ ∈ {2%, 6%, 10%, 13%}. Hence, in our simulations the percentage of zeros attributed

to rounding ranges from roughly 95% (when P0 = 5 and Σ ≈ 2%) to roughly 5% (when P0 = 100 and Σ ≈ 13%). The

number of zeros produced by rounding declines as either P0 or cσ increases.

Figure 7 presents the kernel densities of Ψm,n computed on 104 replications of prices under the null (ω ∈ Ω0,Ψ) or

the two alternatives (ω ∈ Ω0,Υ and ω ∈ Ω1,Υ). The figure shows that, if P0 > 15 and Σ > 6%, Ψm,n is correctly centred

under the null and displays only a slight distortion due to price discreteness. For smaller values of P0 and Σ, the test

statistic Ψm,n is negatively biased and the power of the test is reduced accordingly. However, it improves steadily as P0

and Σ grow large. For all values of P0 and Σ, the rejection rate is higher on Ω1,Υ, as expected.

Figure 8 shows the kernel densities of Υ
(t)
m,n over 104 replications of price paths under the null (ω ∈ Ω0,Υ) and the

alternative (ω ∈ Ω1,Υ). Similarly to the case of Ψm,n, the test statistic Υ
(t)
m,n shows good size and power for initial prices

larger than 15 and daily average volatility greater than 2%. For smaller values of P0 and Σ, the test is negatively biased

and shows a poor rejection power.
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Figure 7: From left to right, from top to bottom: This plot reports the kernel density estimates of the
test statistic Ψm,n under the null Ω0,Ψ (dotted red line) and the two alternatives Ω0,Υ (blue crosses) and
Ω1,Υ (magenta star) for different values of the daily average volatility Σ and of the initial price P0. We
set n = 780. Prices are rounded at one cent.
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Figure 8: From left to right, from top to bottom: This plot reports the kernel density estimates of the
test statistic Υ

(t)
m,n under the null Ω0,Υ (blue crosses) and the alternative Ω1,Υ (magenta stars) and Ω1,Υ

(magenta star) for different values of the daily average volatility Σ and of the initial price P0. We set
n = 780. Prices are rounded at one cent.
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