EXISTENCE, UNIQUENESS, AND REGULARITY OF OPTIMAL TRANSPORT MAPS*

ALESSIO FIGALLI ${ }^{\dagger}$

Abstract

Adapting some techniques and ideas of McCann [Duke Math. J., 80 (1995), pp. 309323], we extend a recent result with Fathi [Optimal Transportation on Manifolds, preprint] to yield existence and uniqueness of a unique transport map in very general situations, without any integrability assumption on the cost function. In particular this result applies for the optimal transportation problem on an n-dimensional noncompact manifold M with a cost function induced by a C^{2}-Lagrangian, provided that the source measure vanishes on sets with σ-finite ($n-1$)-dimensional Hausdorff measure. Moreover we prove that in the case $c(x, y)=d^{2}(x, y)$, the transport map is approximatively differentiable a.e. with respect to the volume measure, and we extend some results of [D. Cordero-Erasquin, R. J. McCann, and M. Schmuckenschlager, Invent. Math., 146 (2001), pp. 219-257] about concavity estimates and displacement convexity.

Key words. optimal transportation, existence, uniqueness, approximate differentiability, concavity estimate, displacement convexity

AMS subject classifications. 28A12, 28A15, 37J50, 49J99, 49N60, 53B21
DOI. 10.1137/060665555

1. Introduction and main result. Let M be an n-dimensional manifold (Hausdorff and with a countable basis), N a Polish space, $c: M \times N \rightarrow \mathbb{R}$ a cost function, and μ and ν two probability measures on M and N, respectively.

In a recent work with Fathi [6], we proved, under general assumption on the cost function, existence and uniqueness of optimal transport maps for the MongeKantorovich problem. More precisely, the result is as follows.

Theorem 1.1. Assume that $c: M \times N \rightarrow \mathbb{R}$ is lower semicontinuous, bounded from below, and such that

$$
\int_{M \times N} c(x, y) d \mu(x) d \nu(y)<+\infty
$$

If
(i) $x \mapsto c(x, y)=c_{y}(x)$ is locally semiconcave in x locally uniformly in y;
(ii) $\frac{\partial c}{\partial x}(x, \cdot)$ is injective on its domain of definition;
(iii) and the measure μ gives zero mass to sets with σ-finite $(n-1)$-dimensional Hausdorff measure,
then there exists a measurable map $T: M \rightarrow N$ such that any plan γ optimal for the cost c is concentrated on the graph of T.

More precisely, there exists a sequence of Borel subsets $B_{n} \subset M$, with $B_{n} \subset B_{n+1}$, $\mu\left(B_{n}\right) \nearrow 1$, and a sequence of locally semiconcave functions $\varphi_{n}: M \rightarrow \mathbb{R}$, where φ_{n} is differentiable on B_{n}, such that, thanks to assumption (ii), the map $T: M \rightarrow N$ is uniquely defined on B_{n} by

$$
\begin{equation*}
\frac{\partial c}{\partial x}(x, T(x))=d_{x} \varphi_{n} \tag{1}
\end{equation*}
$$

[^0]This implies both existence of an optimal transport map and uniqueness for the Monge problem.

Now we want to generalize this existence and uniqueness result for optimal transport maps without any integrability assumption on the cost function, adapting the ideas of [8]. We observe that, without the hypothesis

$$
\int_{M \times N} c(x, y) d \mu(x) d \nu(y)<+\infty
$$

denoting with $\Pi(\mu, \nu)$ the set of probability measures on $M \times N$ whose marginals are μ and ν, in general the minimization problem

$$
\begin{equation*}
C(\mu, \nu):=\inf _{\gamma \in \Pi(\mu, \nu)}\left\{\int_{M \times N} c(x, y) d \gamma(x, y)\right\} \tag{2}
\end{equation*}
$$

is ill-posed, as it may happen that $C(\mu, \nu)=+\infty$. However, it is known that the optimality of a transport plan γ is equivalent to the c-cyclical monotonicity of the measure-theoretic support of γ whenever $C(\mu, \nu)<+\infty$ (see [2], [11], [13]), and so one may ask whether the fact that the measure-theoretic support of γ is c-cyclically monotone implies that γ is supported on a graph. Moreover one can also ask whether this graph is unique, that is, it does not depend on γ, which is the case when the cost is $\mu \otimes \nu$ integrable, as Theorem 1.1 tells us. In that case, uniqueness follows by the fact that the functions φ_{n} are constructed using a pair of functions (φ, ψ) which is optimal for the dual problem, and so they are independent of γ (see [6] for more details). The result we now want to prove is the following.

ThEOREM 1.2. Assume that $c: M \times N \rightarrow \mathbb{R}$ is lower semicontinuous and bounded from below, and let γ be a plan concentrated on a c-cyclically monotone set. If
(i) the family of maps $x \mapsto c(x, y)=c_{y}(x)$ is locally semiconcave in x locally uniformly in y;
(ii) $\frac{\partial c}{\partial x}(x, \cdot)$ is injective on its domain of definition;
(iii) and the measure μ gives zero mass to sets with σ-finite $(n-1)$-dimensional Hausdorff measure,
then γ is concentrated on the graph of a measurable map $T: M \rightarrow N$ (existence). Moreover, if $\tilde{\gamma}$ is another plan concentrated on a c-cyclically monotone set, then $\tilde{\gamma}$ is concentrated on the same graph (uniqueness).

Once the above result is proven, the uniqueness of the Wasserstein geodesic between absolutely continuous measures will follow as a simple corollary (see section 3). Finally, in subsection 3.1, we will prove that in the particular case $c(x, y)=\frac{1}{2} d^{2}(x, y)$, the optimal transport map is approximatively differentiable a.e. with respect to the volume measure, and we will obtain a concavity estimate on the Jacobian of the optimal transport map, which will allows us to generalize to noncompact manifolds a displacement convexity result proven in [4].

2. Proof of Theorem 1.2.

Existence. We want to prove that γ is concentrated on a graph. First we recall that since γ is concentrated on a c-cyclically monotone set, there exists a pair of functions (φ, ψ), with $\varphi \mu$-measurable and $\psi \nu$-measurable, such that

$$
\varphi(x)=\inf _{y \in N} \psi(y)+c(x, y) \quad \forall x \in M
$$

which implies

$$
\varphi(x)-\psi(y) \leq c(x, y) \quad \forall(x, y) \in M \times N
$$

Moreover we have

$$
\begin{equation*}
\varphi(x)-\psi(y)=c(x, y) \quad \gamma \text {-a.e. } \tag{3}
\end{equation*}
$$

and there exists a point $x_{0} \in M$ such that $\varphi\left(x_{0}\right)=0$ (see [13, Theorem 5.9]). In particular, this implies

$$
\psi(y) \geq-c\left(x_{0}, y\right)>-\infty \quad \forall y \in N
$$

So, we can argue as in [6]. More precisely, given a suitable increasing sequence of compact sets $\left(K_{n}\right) \subset N$ such that $\nu\left(K_{n}\right) \nearrow 1$ and $\psi \geq-n$ on K_{n} (it suffices to take an increasing sequence of compact sets $K_{n} \subset\{\psi \geq-n\}$ such that $\nu(\{\psi \geq$ $\left.-n\} \backslash K_{n}\right) \leq \frac{1}{n}$), we consider the locally semiconcave function

$$
\begin{equation*}
\varphi_{n}(x):=\inf _{y \in K_{n}} \psi(y)+c(x, y) \tag{4}
\end{equation*}
$$

Then, thanks to (3), it is possible to find an increasing sequence of Borel sets $D_{n} \subset$ $\operatorname{supp}(\mu)$, with $\mu\left(D_{n}\right) \nearrow 1$, such that φ_{n} is differentiable on $D_{n}, \varphi_{n} \equiv \varphi$ on D_{n}, the set $\left\{\varphi_{n}=\varphi\right\}$ has μ-density 1 at all the points of D_{n}, and γ is concentrated on the graph of the map T uniquely determined on D_{n} by

$$
\frac{\partial c}{\partial x}(x, T(x))=d_{x} \varphi_{n} \quad \text { for } x \in D_{n}
$$

Moreover one has

$$
\begin{equation*}
\varphi(x)=\psi(T(x))+c(x, T(x)) \quad \forall x \in \bigcup_{n} D_{n} \tag{5}
\end{equation*}
$$

(see [6] for more details).
Uniqueness. As we observed before, the difference here with the case of Theorem 1.1 is that the function φ_{n} depends on the pair (φ, ψ), which in this case depends on γ. Let $(\tilde{\varphi}, \tilde{\psi})$ be a pair associated to $\tilde{\gamma}$ as above, and let $\tilde{\varphi}_{n}$ and \tilde{D}_{n} be such that $\tilde{\gamma}$ is concentrated on the graph of the map \tilde{T} determined on \tilde{D}_{n} by

$$
\frac{\partial c}{\partial x}(x, \tilde{T}(x))=d_{x} \tilde{\varphi}_{n} \quad \text { for } x \in \tilde{D}_{n}
$$

We need to prove that $T=\tilde{T} \mu$-a.e.
Let us define $C_{n}:=D_{n} \cap \tilde{D}_{n}$. Then $\mu\left(C_{n}\right) \nearrow 1$. We want to prove that if x is a μ-density point of C_{n} for a certain n, then $T(x)=\tilde{T}(x)$ (we recall that since $\mu\left(\cup_{n} C_{n}\right)=1$, the union of the μ-density points of C_{n} is also of full μ-measure; see, for example, [5, Chapter 1.7]).

Let us assume by contradiction that $T(x) \neq \tilde{T}(x)$, that is,

$$
d_{x} \varphi_{n} \neq d_{x} \tilde{\varphi}_{n}
$$

Since $x \in \operatorname{supp}(\mu)$, each ball around x must have positive measure under μ. Moreover, the fact that the sets $\left\{\varphi_{n}=\varphi\right\}$ and $\left\{\tilde{\varphi}_{n}=\tilde{\varphi}\right\}$ have μ-density 1 in x implies that the set

$$
\{\varphi=\tilde{\varphi}\}
$$

has μ-density 0 in x. In fact, as φ_{n} and $\tilde{\varphi}_{n}$ are locally semiconcave, up to adding a C^{1} function they are concave in a neighborhood of x and their gradients differ at x. So we can apply the nonsmooth version of the implicit function theorem proven in [8], which tells us that $\left\{\varphi_{n}=\tilde{\varphi}_{n}\right\}$ is a set with finite $(n-1)$-dimensional Hausdorff measure in a neighborhood of x (see [8, Theorem 17 and Corollary 19]). So we have

$$
\begin{aligned}
& \limsup _{r \rightarrow 0} \frac{\mu\left(\{\varphi=\tilde{\varphi}\} \cap B_{r}(x)\right)}{\mu\left(B_{r}(x)\right)} \leq \limsup _{r \rightarrow 0}\left[\frac{\mu\left(\left\{\varphi \neq \varphi_{n}\right\} \cap B_{r}(x)\right)}{\mu\left(B_{r}(x)\right)}\right. \\
&\left.+\frac{\mu\left(\left\{\varphi_{n}=\tilde{\varphi}_{n}\right\} \cap B_{r}(x)\right)}{\mu\left(B_{r}(x)\right)}+\frac{\mu\left(\left\{\tilde{\varphi}_{n} \neq \tilde{\varphi}\right\} \cap B_{r}(x)\right)}{\mu\left(B_{r}(x)\right)}\right]=0 .
\end{aligned}
$$

Therefore, exchanging φ with $\tilde{\varphi}$ if necessary, we may assume that

$$
\begin{equation*}
\mu\left(\{\varphi<\tilde{\varphi}\} \cap B_{r}(x)\right) \geq \frac{1}{4} \mu\left(B_{r}(x)\right) \quad \text { for } r>0 \text { sufficiently small. } \tag{6}
\end{equation*}
$$

Let us define $A:=\{\varphi<\tilde{\varphi}\}, A_{n}:=\left\{\varphi_{n}<\tilde{\varphi}_{n}\right\}, E_{n}:=A \cap A_{n} \cap C_{n}$. Since the sets $\left\{\varphi_{n}=\varphi\right\}$ and $\left\{\tilde{\varphi}_{n}=\tilde{\varphi}\right\}$ have μ-density 1 in x, and x is a μ-density point of C_{n}, we have

$$
\lim _{r \rightarrow 0} \frac{\mu\left(\left(A \backslash E_{n}\right) \cap B_{r}(x)\right)}{\mu\left(B_{r}(x)\right)}=0
$$

and so, by (6), we get

$$
\begin{equation*}
\mu\left(E_{n} \cap B_{r}(x)\right) \geq \frac{1}{5} \mu\left(B_{r}(x)\right) \quad \text { for } r>0 \text { sufficiently small. } \tag{7}
\end{equation*}
$$

Now, arguing as in the proof of Aleksandrov's lemma (see [8, Lemma 13]), we can prove that

$$
X:=\tilde{T}^{-1}(T(A)) \subset A
$$

and $X \cap E_{n}$ lies a positive distance from x. In fact let us assume, without loss of generality, that

$$
\varphi(x)=\varphi_{n}(x)=\tilde{\varphi}(x)=\tilde{\varphi}_{n}(x)=0, \quad d_{x} \varphi_{n} \neq d_{x} \tilde{\varphi}_{n}=0
$$

To obtain the inclusion $X \subset A$, let $z \in X$ and $y:=\tilde{T}(z)$. Then $y=T(m)$ for a certain $m \in A$. For any $w \in M$, recalling (5), we have

$$
\begin{gathered}
\varphi(w) \leq c(w, y)-c(m, y)+\varphi(m), \\
\tilde{\varphi}(m) \leq c(m, y)-c(z, y)+\tilde{\varphi}(z)
\end{gathered}
$$

Since $\varphi(m)<\tilde{\varphi}(m)$ we get

$$
\varphi(w)<c(w, \tilde{T}(z))-c(z, \tilde{T}(z))+\tilde{\varphi}(z) \quad \forall w \in M
$$

In particular, taking $w=z$, we obtain $z \in A$, which proves the inclusion $X \subset A$.
Let us suppose now, by contradiction, that there exists a sequence $\left(z_{k}\right) \subset X \cap E_{n}$ such that $z_{k} \rightarrow x$. Again there exists m_{k} such that $\tilde{T}\left(z_{k}\right)=T\left(m_{k}\right)$. As $d_{x} \tilde{\varphi}_{n}=0$,
the closure of the superdifferential of a semiconcave function implies that $d_{z_{k}} \tilde{\varphi}_{n} \rightarrow 0$. We now observe that, arguing exactly as above with φ_{n} and $\tilde{\varphi}_{n}$ instead of φ and $\tilde{\varphi}$, by using (4), (5), and the fact that $\varphi=\varphi_{n}$ and $\tilde{\varphi}=\tilde{\varphi}_{n}$ on C_{n}, one obtains

$$
\varphi_{n}(w)<c\left(w, \tilde{T}\left(z_{k}\right)\right)-c\left(z_{k}, \tilde{T}\left(z_{k}\right)\right)+\tilde{\varphi}_{n}\left(z_{k}\right) \quad \forall w \in M
$$

Taking w sufficiently near to x, we can assume that we are in $\mathbb{R}^{n} \times N$. We now remark that since $z_{k} \in E_{n} \subset \tilde{D}_{n}, \tilde{T}\left(z_{k}\right)$ vary in a compact subset of N (this follows by the construction of \tilde{T}). So, by hypothesis (i) on c, we can find a common modulus of continuity ω in a neighborhood of x for the family of uniformly semiconcave functions $z \mapsto c\left(z, \tilde{T}\left(z_{k}\right)\right)$. Then we get

$$
\begin{aligned}
\varphi_{n}(w) & <\frac{\partial c}{\partial x}\left(z_{k}, \tilde{T}\left(z_{k}\right)\right)\left(w-z_{k}\right)+\omega\left(\left|w-z_{k}\right|\right)\left|w-z_{k}\right|+\tilde{\varphi}_{n}\left(z_{k}\right) \\
& =d_{z_{k}} \tilde{\varphi}_{n}\left(w-z_{k}\right)+\omega\left(\left|w-z_{k}\right|\right)\left|w-z_{k}\right|+\tilde{\varphi}_{n}\left(z_{k}\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ and recalling that $d_{z_{k}} \tilde{\varphi}_{n} \rightarrow 0$ and $\tilde{\varphi}_{n}(x)=\varphi_{n}(x)=0$, we obtain

$$
\varphi_{n}(w)-\varphi_{n}(x) \leq \omega(|w-x|)|w-x| \Rightarrow d_{x} \varphi_{n}=0
$$

which is absurd.
Thus there exists $r>0$ such that $B_{r}(x) \cap E_{n}$ and $X \cap E_{n}$ are disjoint, and (7) holds. Defining now $Y:=T(A)$, by (7) we obtain

$$
\begin{aligned}
\nu(Y) & =\mu\left(T^{-1}(Y)\right) \geq \mu(A)=\mu\left(E_{n}\right)+\mu\left(A \backslash E_{n}\right) \geq \mu\left(B_{r}(x) \cap E_{n}\right) \\
& +\mu\left(X \cap E_{n}\right)+\mu\left(X \backslash E_{n}\right)=\mu\left(B_{r}(x) \cap E_{n}\right)+\mu(X) \geq \frac{1}{5} \mu\left(B_{r}(x)\right)+\nu(Y),
\end{aligned}
$$

which is absurd.
Let us now consider the special case $N=M$, with M a complete manifold. As shown in [6], this theorem applies in the following cases:

1. $c: M \times M \rightarrow \mathbb{R}$ is defined by

$$
c(x, y):=\inf _{\gamma(0)=x, \gamma(1)=y} \int_{0}^{1} L(\gamma(t), \dot{\gamma}(t)) d t
$$

where the infimum is taken over all the continuous piecewise C^{1} curves, and the Lagrangian $L(x, v) \in C^{2}(T M, \mathbb{R})$ is C^{2}-strictly convex and uniform superlinear in v, and verifies a uniform boundedness in the fibers.
2. $c(x, y)=d^{p}(x, y)$ for any $p \in(1,+\infty)$, where $d(x, y)$ denotes a complete Riemannian distance on M.
Moreover, in the cases above, the following important fact holds.
Remark 2.1. For μ-a.e. x, there exists a unique curve from x to $T(x)$ that minimizes the action. In fact, since $\frac{\partial c}{\partial x}(x, y)$ exists at $y=T(x)$ for μ-a.e. x, the fact that $\frac{\partial c}{\partial x}(x, \cdot)$ is injective on its domain of definition tells us that its velocity at time 0 is μ-a.e. uniquely determined (see [6]).

Let us recall the following definition; see [1, Definition 5.5.1, p. 129].
DEFINITION 2.2 (approximate differential). We say that $f: M \rightarrow \mathbb{R}^{m}$ has an approximate differential at $x \in M$ if there exists a function $h: M \rightarrow \mathbb{R}^{m}$ differentiable at x such that the set $\{f=h\}$ has density 1 at x with respect to the Lebesgue measure (this just means that the density is 1 in the charts). In this case, the approximate
value of f at $\underset{\tilde{d}}{x}$ is defined as $\tilde{f}(x)=h(x)$, and the approximate differential of f at x is defined as $\tilde{d}_{x} f=d_{x} h$. It is not difficult to show that this definition makes sense. In fact, neither $h(x)$ nor $d_{x} h$ depend on the choice of h, provided x is a density point of the set $\{f=h\}$ for the Lebesgue measure.

We recall that many standard properties of the differential still hold for the approximate differential, such as linearity and additivity. In particular, it is simple to check that the property of being approximatively differentiable is stable by right composition with smooth maps (say C^{1}), and in this case the standard chain rule formula for the differentials holds. Moreover we remark that it makes sense to speak of approximate differential for maps between manifolds.

In [6], the following formula is proven: In the particular case $c(x, y)=d^{2}(x, y)$, if μ is absolutely continuous with respect to the Lebesgue measure, then the optimal transport map is given by

$$
T(x)=\exp _{x}\left[-\tilde{\nabla}_{x} \varphi\right]
$$

where $\tilde{\nabla}_{x} \varphi$ denotes the approximate gradient of φ at x, which simply corresponds to the element of $T_{x} M$ obtained from $\tilde{d}_{x} \varphi$ using the isomorphism with $T_{x}^{*} M$ induced by the Riemannian metric (the above formula generalizes the one found by McCann on compact manifolds; see [10]).
3. The Wasserstein space $\boldsymbol{W}_{\mathbf{2}}$. Let (M, g) be a smooth complete Riemannian manifold, equipped with its geodesic distance d and its volume measure vol. We denote with $P(M)$ the set of probability measures on M. The space $P(M)$ can be endowed with the so-called Wasserstein distance W_{2} :

$$
W_{2}\left(\mu_{0}, \mu_{1}\right)^{2}:=\min _{\gamma \in \Pi\left(\mu_{0}, \mu_{1}\right)}\left\{\int_{M \times M} d^{2}(x, y) d \gamma(x, y)\right\}
$$

The quantity $W_{2}\left(\mu_{0}, \mu_{1}\right)$ will be called the Wasserstein distance of order 2 between μ_{0} and μ_{1}. It is well known that it defines a metric on $P(M)$ (not necessarily finite), and so one can speak about geodesic in the metric space $\left(P(M), W_{2}\right)$. This space turns out, indeed, to be a length space (see, for example, [12], [13]). Now, whenever $W_{2}\left(\mu_{0}, \mu_{1}\right)<+\infty$, we know that any optimal transport plan is supported on a c cyclical monotone set (see, for example, [2], [11], [13]). We denote with $P^{a c}(M)$ the subset of $P(M)$ that consists of the Borel probability measures on M that are absolutely continuous with respect to vol. Thus, if $\mu_{0}, \mu_{1} \in P^{a c}(M)$ and $W_{2}\left(\mu_{0}, \mu_{1}\right)<$ $+\infty$, we know that there exists a unique transport map between μ_{0} and μ_{1}.

Proposition 3.1. $P^{a c}(M)$ is a geodesically convex subset of $P(M)$. Moreover, if $\mu_{0}, \mu_{1} \in P^{a c}(M)$ and $W_{2}\left(\mu_{0}, \mu_{1}\right)<+\infty$, then there is a unique Wasserstein geodesic $\left\{\mu_{t}\right\}_{t \in[0,1]}$ joining μ_{0} to μ_{1}, which is given by

$$
\mu_{t}=\left(T_{t}\right)_{\sharp} \mu_{0}:=(\exp [-t \tilde{\nabla} \varphi])_{\sharp} \mu_{0},
$$

where $T(x)=\exp _{x}\left[-\tilde{\nabla}_{x} \varphi\right]$ is the unique transport map from μ_{0} to μ_{1}, which is optimal for the cost $\frac{1}{2} d^{2}(x, y)$ (and so also optimal for the cost $\left.d^{2}(x, y)\right)$. Moreover,

1. T_{t} is the unique optimal transport map from μ_{0} to μ_{t} for all $t \in[0,1]$;
2. T_{t}^{-1} is the unique optimal transport map from μ_{t} to μ_{0} for all $t \in[0,1]$ (and, if $t \in[0,1)$, it is countably Lipschitz);
3. $T \circ T_{t}^{-1}$ is the unique optimal transport map from μ_{t} to μ_{1} for all $t \in[0,1]$ (and, if $t \in(0,1]$, it is countably Lipschitz).

Proof. Regarding the fact that $\mu_{t} \in P^{a c}(M)$ (which corresponds to saying that $P^{a c}(M)$ is geodesically convex) and the countably Lipschitz regularity of the transport maps (i.e., there exists a countable partition of M such that the map is Lipschitz on each set), they follow from the results in [6].

Thanks to the results proved in the last section, the proof of the rest of the proposition is quite standard. In fact, a basic representation theorem (see [13, Corollary 7.20]) states that any Wasserstein geodesic curve necessarily takes the form $\mu_{t}=\left(e_{t}\right)_{\#} \Pi$, where Π is a probability measure on the set Γ of minimizing geodesics $[0,1] \rightarrow M$, and $e_{t}: \Gamma \rightarrow M$ is the evaluation at time $t: e_{t}(\gamma):=\gamma(t)$. Thus the thesis follows from Remark 2.1.

The above result tells us that also $\left(P^{a c}(M), W_{2}\right)$ is a length space.
3.1. Regularity, concavity estimate, and a displacement convexity result. We now consider the cost function $c(x, y)=\frac{1}{2} d^{2}(x, y)$. Let $\mu, \nu \in P^{a c}(M)$ with $W_{2}(\mu, \nu)<+\infty$, and let us denote with f and g their respective densities with respect to vol. Let

$$
T(x)=\exp _{x}\left[-\tilde{\nabla}_{x} \varphi\right]
$$

be the unique optimal transport map from μ to ν.
We recall that locally semiconcave functions with linear modulus admit vol-a.e. a second order Taylor expansion (see [3], [4]). Let us recall the definition of approximate hessian.

DEFINITION 3.2 (approximate hessian). We say that $f: M \rightarrow \mathbb{R}^{m}$ has a approximate hessian at $x \in M$ if there exists a function $h: M \rightarrow \mathbb{R}$ such that the set $\{f=h\}$ has density 1 at x with respect to the Lebesgue measure and h admits a second order Taylor expansion at x, that is, there exists a self-adjoint operator $H: T_{x} M \rightarrow T_{x} M$ such that

$$
h\left(\exp _{x} w\right)=h(x)+\left\langle\nabla_{x} h, w\right\rangle+\frac{1}{2}\langle H w, w\rangle+o\left(\|w\|_{x}^{2}\right) .
$$

In this case the approximate hessian is defined as $\tilde{\nabla}_{x}^{2} f:=H$.
As in the case of the approximate differential, it is not difficult to show that this definition makes sense.

Observing that $d^{2}(x, y)$ is locally semiconcave with linear modulus (see [6, Appendix]), we get that φ_{n} is locally semiconcave with linear modulus for each n. Thus we can define μ-a.e. an approximate hessian for φ (see Definition 3.2):

$$
\tilde{\nabla}_{x}^{2} \varphi:=\nabla_{x}^{2} \varphi_{n} \quad \text { for } x \in D_{n} \cap E_{n}
$$

where D_{n} was defined in the proof of Theorem $1.2, E_{n}$ denotes the full μ-measure set of points where φ_{n} admits a second order Taylor expansion, and $\nabla_{x}^{2} \varphi_{n}$ denotes the self-adjoint operator on $T_{x} M$ that appears in the Taylor expansion on φ_{n} at x. Let us now consider, for each set $F_{n}:=D_{n} \cap E_{n}$, an increasing sequence of compact sets $K_{m}^{n} \subset F_{n}$ such that $\mu\left(F_{n} \backslash \cup_{m} K_{m}^{n}\right)=0$. We now define the measures $\mu_{m}^{n}:=\mu\left\llcorner K_{m}^{n}\right.$ and $\nu_{m}^{n}:=T_{\sharp} \mu_{m}^{n}=\left(\exp \left[-\nabla \varphi_{n}\right]\right)_{\sharp} \mu_{m}^{n}$, and we renormalize them in order to obtain two probability measures:

$$
\hat{\mu}_{m}^{n}:=\frac{\mu_{m}^{n}}{\mu_{m}^{n}(M)} \in P_{2}^{a c}(M), \quad \hat{\nu}_{m}^{n}:=\frac{\nu_{m}^{n}}{\nu_{m}^{n}(M)}=\frac{\nu_{m}^{n}}{\mu_{m}^{n}(M)} \in P_{2}^{a c}(M)
$$

We now observe that T is still optimal. In fact, if this were not the case, we would have

$$
\int_{M \times M} c(x, S(x)) d \hat{\mu}_{m}^{n}(x)<\int_{M \times M} c(x, T(x)) d \hat{\mu}_{m}^{n}(x)
$$

for a certain S transport map from $\hat{\mu}_{m}^{n}$ to $\hat{\nu}_{m}^{n}$. This would imply that

$$
\int_{M \times M} c(x, S(x)) d \mu_{m}^{n}(x)<\int_{M \times M} c(x, T(x)) d \mu_{m}^{n}(x),
$$

and so the transport map

$$
\tilde{S}(x):= \begin{cases}S(x) & \text { if } x \in K_{m}^{n}, \\ T(x) & \text { if } x \in M \backslash K_{m}^{n}\end{cases}
$$

would have a cost strictly less than the cost of T, which would contradict the optimality of T.

We will now apply the results of [4] to the compactly supported measures $\hat{\mu}_{m}^{n}$ and $\hat{\nu}_{m}^{n}$ in order to get information on the transport problem from μ to ν. In what follows we will denote by $\nabla_{x} d_{y}^{2}$ and by $\nabla_{x}^{2} d_{y}^{2}$, respectively, the gradient and the hessian with respect to x of $d^{2}(x, y)$, and by $d_{x} \exp$ and $d\left(\exp _{x}\right)_{v}$ the two components of the differential of the map $T M \ni(x, v) \mapsto \exp _{x}[v] \in M$ (whenever they exist). By [4, Theorem 4.2], we get the following.

Theorem 3.3 (Jacobian identity a.e.). There exists a subset $E \subset M$ such that $\mu(E)=1$ and, for each $x \in E, Y(x):=d\left(\exp _{x}\right)_{-\tilde{\nabla}_{x} \varphi}$ and $H(x):=\frac{1}{2} \nabla_{x}^{2} d_{T(x)}^{2}$ both exist and we have

$$
f(x)=g(T(x)) \operatorname{det}\left[Y(x)\left(H(x)-\tilde{\nabla}_{x}^{2} \varphi\right)\right] \neq 0 .
$$

Proof. It suffices to observe that [4, Theorem 4.2] applied to $\hat{\mu}_{m}^{n}$ and $\hat{\nu}_{m}^{n}$ gives that, for μ-a.e. $x \in K_{m}^{n}$,

$$
\frac{f(x)}{\mu_{m}^{n}(M)}=\frac{g(T(x))}{\mu_{m}^{n}(M)} \operatorname{det}\left[Y(x)\left(H(x)-\nabla_{x}^{2} \varphi_{n}\right)\right] \neq 0,
$$

which implies

$$
f(x)=g(T(x)) \operatorname{det}\left[Y(x)\left(H(x)-\tilde{\nabla}_{x}^{2} \varphi\right)\right] \neq 0 \quad \text { for } \mu \text {-a.e. } x \in K_{m}^{n} .
$$

Passing to the limit as $m, n \rightarrow+\infty$ we get the result.
We can thus define μ-a.e. the (weak) differential of the transport map at x as

$$
d_{x} T:=Y(x)\left(H(x)-\tilde{\nabla}_{x}^{2} \varphi\right) .
$$

Let us prove now that, indeed, $T(x)$ is approximately differentiable μ-a.e., and that the above differential coincides with the approximate differential of T. In order to prove this fact, let us first make a formal computation. Observe that since the map $x \mapsto \exp _{x}\left[-\frac{1}{2} \nabla_{x} d_{y}^{2}\right]=y$ is constant, we have

$$
0=d_{x}\left(\exp _{x}\left[-\frac{1}{2} \nabla_{x} d_{y}^{2}\right]\right)=d_{x} \exp \left[-\frac{1}{2} \nabla_{x} d_{y}^{2}\right]-d\left(\exp _{x}\right)_{-\frac{1}{2} \nabla_{x} d_{y}^{2}}\left(\frac{1}{2} \nabla_{x}^{2} d_{y}^{2}\right) \quad \forall y \in M,
$$

By differentiating (in the approximate sense) the equality $T(x)=\exp \left[-\tilde{\nabla}_{x} \varphi\right]$ and recalling the equality $\tilde{\nabla}_{x} \varphi=\frac{1}{2} \nabla_{x} d_{T(x)}^{2}$, we obtain

$$
\begin{aligned}
\tilde{d}_{x} T & =d\left(\exp _{x}\right)_{-\tilde{\nabla}_{x} \varphi}\left(-\tilde{\nabla}_{x}^{2} \varphi\right)+d_{x} \exp \left[-\tilde{\nabla}_{x} \varphi\right] \\
& =d\left(\exp _{x}\right)_{-\tilde{\nabla}_{x} \varphi}\left(-\tilde{\nabla}_{x}^{2} \varphi\right)+d\left(\exp _{x}\right)_{-\frac{1}{2} \nabla_{x} d_{T(x)}^{2}}\left(\frac{1}{2} \nabla_{x}^{2} d_{T(x)}^{2}\right) \\
& =d\left(\exp _{x}\right)_{-\tilde{\nabla}_{x} \varphi}\left(H(x)-\tilde{\nabla}_{x}^{2} \varphi\right)
\end{aligned}
$$

as wanted. In order to make the above proof rigorous, it suffices to observe that for μ-a.e. $x, T(x) \notin \operatorname{cut}(x)$, where $\operatorname{cut}(x)$ is defined as the set of points $z \in M$ which cannot be linked to x by an extendable minimizing geodesic. Indeed we recall that the square of the distance fails to be semiconvex at the cut locus, that is, if $x \in \operatorname{cut}(y)$, then

$$
\inf _{0<\|v\|_{x}<1} \frac{d_{y}^{2}\left(\exp _{x}[v]\right)-2 d_{y}^{2}(x)+d_{y}^{2}\left(\exp _{x}[-v]\right)}{|v|^{2}}=-\infty
$$

(see [4, Proposition 2.5]). Now fix $x \in F_{n}$. Since we know that $\frac{1}{2} d^{2}(z, T(x)) \geq$ $\varphi_{n}(z)-\psi(T(x))$ with equality for $z=x$, we obtain a bound from below of the hessian of $d_{T(x)}^{2}$ at x in terms of the hessian of φ_{n} at x (see the proof of [4, Proposition 4.1(a)]). Thus, since each φ_{n} admits vol-a.e. a second order Taylor expansion, we obtain that, for μ-a.e. x,

$$
x \notin \operatorname{cut}(T(x)), \quad \text { or equivalently } \quad T(x) \notin \operatorname{cut}(x) .
$$

This implies that all the computations we made above in order to prove the formula for $\tilde{d}_{x} T$ are correct. Indeed the exponential map $(x, v) \mapsto \exp _{x}[v]$ is smooth if $\exp _{x}[v] \notin$ $\operatorname{cut}(x)$, the function d_{y}^{2} is smooth around any $x \notin \operatorname{cut}(y)$ (see [4, Paragraph 2]), and $\tilde{\nabla}_{x} \varphi$ is approximatively differentiable μ-a.e. Thus, recalling that, once we consider the right composition of an approximatively differentiable map with a smooth map, the standard chain rule holds (see the remarks after Definition 2.2), we have proved the following regularity result for the transport map.

Proposition 3.4 (approximate differentiability of the transport map). The transport map is approximatively differentiable for μ-a.e. x, and its approximate differential is given by the formula

$$
\tilde{d}_{x} T=Y(x)\left(H(x)-\tilde{\nabla}_{x}^{2} \varphi\right)
$$

where Y and H are defined in Theorem 3.3.
To prove our displacement convexity result, the following change of variables formula will be useful.

Proposition 3.5 (change of variables for optimal maps). If $A:[0+\infty) \rightarrow \mathbb{R}$ is a Borel function such that $A(0)=0$, then

$$
\int_{M} A(g(y)) d \operatorname{vol}(y)=\int_{E} A\left(\frac{f(x)}{J(x)}\right) J(x) d \operatorname{vol}(x)
$$

where $J(x):=\operatorname{det}\left[Y(x)\left(H(x)-\tilde{\nabla}_{x}^{2} \varphi\right)\right]=\operatorname{det}\left[\tilde{d}_{x} T\right]$ (either both integrals are undefined or both take the same value in $\overline{\mathbb{R}})$.

The proof follows by the Jacobian identity proved in Theorem 3.3, exactly as in [4, Corollary 4.7].

Let us now define for $t \in[0,1]$ the measure $\mu_{t}:=\left(T_{t}\right)_{\sharp} \mu$, where

$$
T_{t}(x)=\exp _{x}\left[-t \tilde{\nabla}_{x} \varphi\right]
$$

By the results in [6] and Proposition 3.1, we know that T_{t} coincides with the unique optimal map pushing μ forward to μ_{t}, and that μ_{t} is absolutely continuous with respect to vol for any $t \in[0,1]$.

Given $x, y \in M$, following [4], we define for $t \in[0,1]$

$$
Z_{t}(x, y):=\{z \in M \mid d(x, z)=t d(x, y) \text { and } d(z, y)=(1-t) d(x, y)\}
$$

If N is now a subset of M, we set

$$
Z_{t}(x, N):=\cup_{y \in N} Z_{t}(x, y) .
$$

Letting $B_{r}(y) \subset M$ denote the open ball of radius $r>0$ centered at $y \in M$, for $t \in(0,1]$ we define

$$
v_{t}(x, y):=\lim _{r \rightarrow 0} \frac{\operatorname{vol}\left(Z_{t}\left(x, B_{r}(y)\right)\right)}{\operatorname{vol}\left(B_{t r}(y)\right)}>0
$$

(the above limit always exists, though it will be infinite when x and y are conjugate points; see [4]). Arguing as in the proof of Theorem 3.3, by [4, Lemma 6.1] we get the following.

Theorem 3.6 (Jacobian inequality). Let E be the set of full μ-measure given by Theorem 3.3. Then for each $x \in E, Y_{t}(x):=d\left(\exp _{x}\right)_{-t \tilde{\nabla}_{x} \varphi}$ and $H_{t}(x):=\frac{1}{2} \nabla_{x}^{2} d_{T_{t}(x)}^{2}$ both exist for all $t \in[0,1]$ and the Jacobian determinant

$$
\begin{equation*}
J_{t}(x):=\operatorname{det}\left[Y_{t}(x)\left(H_{t}(x)-t \tilde{\nabla}_{x}^{2} \varphi\right)\right] \tag{8}
\end{equation*}
$$

satisfies

$$
J_{t}^{\frac{1}{n}}(x) \geq(1-t)\left[v_{1-t}(T(x), x)\right]^{\frac{1}{n}}+t\left[v_{t}(x, T(x))\right]^{\frac{1}{n}} J_{1}^{\frac{1}{n}}(x)
$$

We now consider as source measure $\mu_{0}=\rho_{0} d \operatorname{vol}(x) \in P^{a c}(M)$ and as target measure $\mu_{1}=\rho_{1} d \operatorname{vol}(x) \in P^{a c}(M)$, and we assume as before that $W_{2}\left(\mu_{0}, \mu_{1}\right)<+\infty$. By Proposition 3.1 we have

$$
\mu_{t}=\left(T_{t}\right)_{\sharp}\left[\rho_{0} d \mathrm{vol}\right]=\rho_{t} d \mathrm{vol} \in P_{2}^{a c}(M)
$$

for a certain $\rho_{t} \in L^{1}(M, d \mathrm{vol})$.
We now want to consider the behavior of the functional

$$
U(\rho):=\int_{M} A(\rho(x)) d \operatorname{vol}(x)
$$

along the path $t \mapsto \rho_{t}$. In Euclidean spaces, this path is called displacement interpolation and the functional U is said to be displacement convex if

$$
[0,1] \ni t \mapsto U\left(\rho_{t}\right) \quad \text { is convex for every } \rho_{0}, \rho_{1}
$$

A sufficient condition for the displacement convexity of U in \mathbb{R}^{n} is that $A:[0,+\infty) \rightarrow$ $\mathbb{R} \cup\{+\infty\}$ satisfy

$$
\begin{equation*}
(0,+\infty) \in s \mapsto s^{n} A\left(s^{-n}\right) \text { is convex and nonincreasing, with } A(0)=0 \tag{9}
\end{equation*}
$$

(see [7], [9]). Typical examples include the entropy $A(\rho)=\rho \log \rho$ and the L^{q}-norm $A(\rho)=\frac{1}{q-1} \rho^{q}$ for $q \geq \frac{n-1}{n}$.

By all the results collected above, arguing as in the proof of [4, Theorem 6.2], we can prove that the displacement convexity of U is still true on Ricci nonnegative manifolds under the assumption (9).

THEOREM 3.7 (displacement convexity on Ricci nonnegative manifolds). If Ric \geq 0 and A satisfies (9), then U is displacement convex.

Proof. As we remarked above, T_{t} is the optimal transport map from μ_{0} to μ_{t}. So, by Theorem 3.3 and Proposition 3.5, we get

$$
\begin{equation*}
U\left(\rho_{t}\right)=\int_{M} A\left(\rho_{t}(x)\right) d \operatorname{vol}(x)=\int_{E_{t}} A\left(\frac{\rho_{0}(x)}{\left(J_{t}^{\frac{1}{n}}(x)\right)^{n}}\right)\left(J_{t}^{\frac{1}{n}}(x)\right)^{n} d \operatorname{vol}(x) \tag{10}
\end{equation*}
$$

where E_{t} is the set of full μ_{0}-measure given by Theorem 3.3 and $J_{t}(x) \neq 0$ is defined in (8). Since Ric ≥ 0, we know that $v_{t}(x, y) \geq 1$ for every $x, y \in M$ (see [4, Corollary $2.2]$). Thus, for fixed $x \in E_{1}$, Theorem 3.6 yields the concavity of the map

$$
[0,1] \ni t \mapsto J_{t}^{\frac{1}{n}}(x) .
$$

Composing this function with the convex nonincreasing function $s \mapsto s^{n} A\left(s^{-n}\right)$ we get the convexity of the integrand in (10). The only problem we run into in trying to conclude the displacement convexity of U is that the domain of integration appears to depend on t. But, since by Theorem $3.3 E_{t}$ is a set of full μ_{0}-measure for any $t \in[0,1]$, we obtain that, for fixed $t, t^{\prime}, s \in[0,1]$,

$$
U\left(\rho_{(1-s) t+s t^{\prime}}\right) \leq(1-s) U\left(\rho_{t}\right)+s U\left(\rho_{t^{\prime}}\right)
$$

simply by computing each of the three integrals above on the full measure set $E_{t} \cap$ $E_{t^{\prime}} \cap E_{(1-s) t+s t^{\prime}}$.

Acknowledgment. I wish to thank Cédric Villani for fruitful discussions on this subject.

REFERENCES

[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Wasserstein Space of Probability Measures, Lectures in Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005.
[2] L. Ambrosio and A. Pratelli, Existence and stability results in the L^{1} theory of optimal transportation, in Optimal Transportation and Applications (Martina Franca, 2001), Lecture Notes in Math. 1813, Springer-Verlag, Berlin, 2003, pp. 123-160.
[3] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Manigfaltigkeiten, J. Reine Angew. Math., 30 (1979), pp. 309-324.
[4] D. Cordero-Erasquin, R. J. McCann, and M. Schmuckenschlager, A Riemannian interpolation inequality á la Borell, Brascamp, and Lieb, Invent. Math., 146 (2001), pp. 219-257.
[5] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.
[6] A. Fathi and A. Figalli, Optimal Transportation on Manifolds, preprint, 2006.
[7] R. J. McCann, A Convexity Principle for Interacting Gases and Equilibrium Crystals, Ph.D. thesis, Princeton University, Princeton, NJ, 1994.
[8] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80 (1995), pp. 309-323.
[9] R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), pp. 153179.
[10] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), pp. 589-608.
[11] W. Schachermayer and J. Teichmann, Characterization of optimal transport plans for the Monge-Kantorovich-problem, Proc. Amer. Math. Soc., to appear.
[12] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, AMS, Providence, RI, 2004.
[13] C. Villani, Optimal Transport, Old and New, Lecture Notes, 2005 Saint-Flour Summer School; available online from www.umpa.ens-lyon.fr/ ${ }^{\text {c cvillani. }}$

[^0]: *Received by the editors July 20, 2006; accepted for publication (in revised form) October 9, 2006; published electronically April 20, 2007.
 http://www.siam.org/journals/sima/39-1/66555.html
 ${ }^{\dagger}$ Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy (a.figalli@sns.it).

