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EXISTENCE, UNIQUENESS, AND REGULARITY OF OPTIMAL
TRANSPORT MAPS∗

ALESSIO FIGALLI†

Abstract. Adapting some techniques and ideas of McCann [Duke Math. J., 80 (1995), pp. 309–
323], we extend a recent result with Fathi [Optimal Transportation on Manifolds, preprint] to yield
existence and uniqueness of a unique transport map in very general situations, without any inte-
grability assumption on the cost function. In particular this result applies for the optimal trans-
portation problem on an n-dimensional noncompact manifold M with a cost function induced by a
C2-Lagrangian, provided that the source measure vanishes on sets with σ-finite (n− 1)-dimensional
Hausdorff measure. Moreover we prove that in the case c(x, y) = d2(x, y), the transport map is
approximatively differentiable a.e. with respect to the volume measure, and we extend some results
of [D. Cordero-Erasquin, R. J. McCann, and M. Schmuckenschlager, Invent. Math., 146 (2001),
pp. 219–257] about concavity estimates and displacement convexity.
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1. Introduction and main result. Let M be an n-dimensional manifold (Haus-
dorff and with a countable basis), N a Polish space, c : M ×N → R a cost function,
and μ and ν two probability measures on M and N , respectively.

In a recent work with Fathi [6], we proved, under general assumption on the
cost function, existence and uniqueness of optimal transport maps for the Monge–
Kantorovich problem. More precisely, the result is as follows.

Theorem 1.1. Assume that c : M × N → R is lower semicontinuous, bounded
from below, and such that∫

M×N

c(x, y) dμ(x) dν(y) < +∞.

If
(i) x �→ c(x, y) = cy(x) is locally semiconcave in x locally uniformly in y;
(ii) ∂c

∂x (x, ·) is injective on its domain of definition;
(iii) and the measure μ gives zero mass to sets with σ-finite (n − 1)-dimensional

Hausdorff measure,
then there exists a measurable map T : M → N such that any plan γ optimal for the
cost c is concentrated on the graph of T .

More precisely, there exists a sequence of Borel subsets Bn ⊂ M , with Bn ⊂ Bn+1,
μ(Bn) ↗ 1, and a sequence of locally semiconcave functions ϕn : M → R, where ϕn

is differentiable on Bn, such that, thanks to assumption (ii), the map T : M → N is
uniquely defined on Bn by

∂c

∂x
(x, T (x)) = dxϕn.(1)
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EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS 127

This implies both existence of an optimal transport map and uniqueness for the Monge
problem.

Now we want to generalize this existence and uniqueness result for optimal trans-
port maps without any integrability assumption on the cost function, adapting the
ideas of [8]. We observe that, without the hypothesis∫

M×N

c(x, y) dμ(x) dν(y) < +∞,

denoting with Π(μ, ν) the set of probability measures on M ×N whose marginals are
μ and ν, in general the minimization problem

C(μ, ν) := inf
γ∈Π(μ,ν)

{∫
M×N

c(x, y) dγ(x, y)

}
(2)

is ill-posed, as it may happen that C(μ, ν) = +∞. However, it is known that the
optimality of a transport plan γ is equivalent to the c-cyclical monotonicity of the
measure-theoretic support of γ whenever C(μ, ν) < +∞ (see [2], [11], [13]), and so
one may ask whether the fact that the measure-theoretic support of γ is c-cyclically
monotone implies that γ is supported on a graph. Moreover one can also ask whether
this graph is unique, that is, it does not depend on γ, which is the case when the
cost is μ⊗ ν integrable, as Theorem 1.1 tells us. In that case, uniqueness follows by
the fact that the functions ϕn are constructed using a pair of functions (ϕ,ψ) which
is optimal for the dual problem, and so they are independent of γ (see [6] for more
details). The result we now want to prove is the following.

Theorem 1.2. Assume that c : M×N → R is lower semicontinuous and bounded
from below, and let γ be a plan concentrated on a c-cyclically monotone set. If

(i) the family of maps x �→ c(x, y) = cy(x) is locally semiconcave in x locally
uniformly in y;

(ii) ∂c
∂x (x, ·) is injective on its domain of definition;

(iii) and the measure μ gives zero mass to sets with σ-finite (n − 1)-dimensional
Hausdorff measure,

then γ is concentrated on the graph of a measurable map T : M → N (existence).
Moreover, if γ̃ is another plan concentrated on a c-cyclically monotone set, then γ̃ is
concentrated on the same graph (uniqueness).

Once the above result is proven, the uniqueness of the Wasserstein geodesic be-
tween absolutely continuous measures will follow as a simple corollary (see section 3).
Finally, in subsection 3.1, we will prove that in the particular case c(x, y) = 1

2d
2(x, y),

the optimal transport map is approximatively differentiable a.e. with respect to the
volume measure, and we will obtain a concavity estimate on the Jacobian of the op-
timal transport map, which will allows us to generalize to noncompact manifolds a
displacement convexity result proven in [4].

2. Proof of Theorem 1.2.
Existence. We want to prove that γ is concentrated on a graph. First we recall

that since γ is concentrated on a c-cyclically monotone set, there exists a pair of
functions (ϕ,ψ), with ϕ μ-measurable and ψ ν-measurable, such that

ϕ(x) = inf
y∈N

ψ(y) + c(x, y) ∀x ∈ M,

which implies

ϕ(x) − ψ(y) ≤ c(x, y) ∀(x, y) ∈ M ×N.
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128 ALESSIO FIGALLI

Moreover we have

ϕ(x) − ψ(y) = c(x, y) γ-a.e.(3)

and there exists a point x0 ∈ M such that ϕ(x0) = 0 (see [13, Theorem 5.9]). In
particular, this implies

ψ(y) ≥ −c(x0, y) > −∞ ∀y ∈ N.

So, we can argue as in [6]. More precisely, given a suitable increasing sequence of
compact sets (Kn) ⊂ N such that ν(Kn) ↗ 1 and ψ ≥ −n on Kn (it suffices to
take an increasing sequence of compact sets Kn ⊂ {ψ ≥ −n} such that ν({ψ ≥
−n} \Kn) ≤ 1

n ), we consider the locally semiconcave function

ϕn(x) := inf
y∈Kn

ψ(y) + c(x, y).(4)

Then, thanks to (3), it is possible to find an increasing sequence of Borel sets Dn ⊂
supp(μ), with μ(Dn) ↗ 1, such that ϕn is differentiable on Dn, ϕn ≡ ϕ on Dn, the
set {ϕn = ϕ} has μ-density 1 at all the points of Dn, and γ is concentrated on the
graph of the map T uniquely determined on Dn by

∂c

∂x
(x, T (x)) = dxϕn for x ∈ Dn.

Moreover one has

ϕ(x) = ψ(T (x)) + c(x, T (x)) ∀x ∈
⋃
n

Dn(5)

(see [6] for more details).
Uniqueness. As we observed before, the difference here with the case of Theorem

1.1 is that the function ϕn depends on the pair (ϕ,ψ), which in this case depends on
γ. Let (ϕ̃, ψ̃) be a pair associated to γ̃ as above, and let ϕ̃n and D̃n be such that γ̃ is
concentrated on the graph of the map T̃ determined on D̃n by

∂c

∂x
(x, T̃ (x)) = dxϕ̃n for x ∈ D̃n.

We need to prove that T = T̃ μ-a.e.
Let us define Cn := Dn ∩ D̃n. Then μ(Cn) ↗ 1. We want to prove that if x

is a μ-density point of Cn for a certain n, then T (x) = T̃ (x) (we recall that since
μ(∪nCn) = 1, the union of the μ-density points of Cn is also of full μ-measure; see,
for example, [5, Chapter 1.7]).

Let us assume by contradiction that T (x) �= T̃ (x), that is,

dxϕn �= dxϕ̃n.

Since x ∈ supp(μ), each ball around x must have positive measure under μ. Moreover,
the fact that the sets {ϕn = ϕ} and {ϕ̃n = ϕ̃} have μ-density 1 in x implies that the
set

{ϕ = ϕ̃}
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EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS 129

has μ-density 0 in x. In fact, as ϕn and ϕ̃n are locally semiconcave, up to adding a
C1 function they are concave in a neighborhood of x and their gradients differ at x.
So we can apply the nonsmooth version of the implicit function theorem proven in
[8], which tells us that {ϕn = ϕ̃n} is a set with finite (n − 1)-dimensional Hausdorff
measure in a neighborhood of x (see [8, Theorem 17 and Corollary 19]). So we have

lim sup
r→0

μ({ϕ = ϕ̃} ∩Br(x))

μ(Br(x))
≤ lim sup

r→0

[
μ({ϕ �= ϕn} ∩Br(x))

μ(Br(x))

+
μ({ϕn = ϕ̃n} ∩Br(x))

μ(Br(x))
+

μ({ϕ̃n �= ϕ̃} ∩Br(x))

μ(Br(x))

]
= 0.

Therefore, exchanging ϕ with ϕ̃ if necessary, we may assume that

μ({ϕ < ϕ̃} ∩Br(x)) ≥ 1

4
μ(Br(x)) for r > 0 sufficiently small.(6)

Let us define A := {ϕ < ϕ̃}, An := {ϕn < ϕ̃n}, En := A ∩ An ∩ Cn. Since the sets
{ϕn = ϕ} and {ϕ̃n = ϕ̃} have μ-density 1 in x, and x is a μ-density point of Cn, we
have

lim
r→0

μ((A \ En) ∩Br(x))

μ(Br(x))
= 0,

and so, by (6), we get

μ(En ∩Br(x)) ≥ 1

5
μ(Br(x)) for r > 0 sufficiently small.(7)

Now, arguing as in the proof of Aleksandrov’s lemma (see [8, Lemma 13]), we can
prove that

X := T̃−1(T (A)) ⊂ A

and X ∩ En lies a positive distance from x. In fact let us assume, without loss of
generality, that

ϕ(x) = ϕn(x) = ϕ̃(x) = ϕ̃n(x) = 0, dxϕn �= dxϕ̃n = 0.

To obtain the inclusion X ⊂ A, let z ∈ X and y := T̃ (z). Then y = T (m) for a
certain m ∈ A. For any w ∈ M , recalling (5), we have

ϕ(w) ≤ c(w, y) − c(m, y) + ϕ(m),

ϕ̃(m) ≤ c(m, y) − c(z, y) + ϕ̃(z).

Since ϕ(m) < ϕ̃(m) we get

ϕ(w) < c(w, T̃ (z)) − c(z, T̃ (z)) + ϕ̃(z) ∀w ∈ M.

In particular, taking w = z, we obtain z ∈ A, which proves the inclusion X ⊂ A.
Let us suppose now, by contradiction, that there exists a sequence (zk) ⊂ X ∩En

such that zk → x. Again there exists mk such that T̃ (zk) = T (mk). As dxϕ̃n = 0,
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130 ALESSIO FIGALLI

the closure of the superdifferential of a semiconcave function implies that dzk ϕ̃n → 0.
We now observe that, arguing exactly as above with ϕn and ϕ̃n instead of ϕ and ϕ̃,
by using (4), (5), and the fact that ϕ = ϕn and ϕ̃ = ϕ̃n on Cn, one obtains

ϕn(w) < c(w, T̃ (zk)) − c(zk, T̃ (zk)) + ϕ̃n(zk) ∀w ∈ M.

Taking w sufficiently near to x, we can assume that we are in R
n×N . We now remark

that since zk ∈ En ⊂ D̃n, T̃ (zk) vary in a compact subset of N (this follows by the
construction of T̃ ). So, by hypothesis (i) on c, we can find a common modulus of
continuity ω in a neighborhood of x for the family of uniformly semiconcave functions
z �→ c(z, T̃ (zk)). Then we get

ϕn(w) <
∂c

∂x
(zk, T̃ (zk))(w − zk) + ω(|w − zk|)|w − zk| + ϕ̃n(zk)

= dzk ϕ̃n(w − zk) + ω(|w − zk|)|w − zk| + ϕ̃n(zk).

Letting k → ∞ and recalling that dzk ϕ̃n → 0 and ϕ̃n(x) = ϕn(x) = 0, we obtain

ϕn(w) − ϕn(x) ≤ ω(|w − x|)|w − x| ⇒ dxϕn = 0,

which is absurd.
Thus there exists r > 0 such that Br(x) ∩ En and X ∩ En are disjoint, and (7)

holds. Defining now Y := T (A), by (7) we obtain

ν(Y ) = μ(T−1(Y )) ≥ μ(A) = μ(En) + μ(A \ En) ≥ μ(Br(x) ∩ En)

+ μ(X ∩ En) + μ(X \ En) = μ(Br(x) ∩ En) + μ(X) ≥ 1

5
μ(Br(x)) + ν(Y ),

which is absurd.
Let us now consider the special case N = M , with M a complete manifold. As

shown in [6], this theorem applies in the following cases:
1. c : M ×M → R is defined by

c(x, y) := inf
γ(0)=x, γ(1)=y

∫ 1

0

L(γ(t), γ̇(t)) dt,

where the infimum is taken over all the continuous piecewise C1 curves, and
the Lagrangian L(x, v) ∈ C2(TM,R) is C2-strictly convex and uniform su-
perlinear in v, and verifies a uniform boundedness in the fibers.

2. c(x, y) = dp(x, y) for any p ∈ (1,+∞), where d(x, y) denotes a complete
Riemannian distance on M .

Moreover, in the cases above, the following important fact holds.
Remark 2.1. For μ-a.e. x, there exists a unique curve from x to T (x) that

minimizes the action. In fact, since ∂c
∂x (x, y) exists at y = T (x) for μ-a.e. x, the fact

that ∂c
∂x (x, ·) is injective on its domain of definition tells us that its velocity at time 0

is μ-a.e. uniquely determined (see [6]).
Let us recall the following definition; see [1, Definition 5.5.1, p. 129].
Definition 2.2 (approximate differential). We say that f : M → R

m has an
approximate differential at x ∈ M if there exists a function h : M → R

m differentiable
at x such that the set {f = h} has density 1 at x with respect to the Lebesgue measure
(this just means that the density is 1 in the charts). In this case, the approximate
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EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS 131

value of f at x is defined as f̃(x) = h(x), and the approximate differential of f at x
is defined as d̃xf = dxh. It is not difficult to show that this definition makes sense.
In fact, neither h(x) nor dxh depend on the choice of h, provided x is a density point
of the set {f = h} for the Lebesgue measure.

We recall that many standard properties of the differential still hold for the ap-
proximate differential, such as linearity and additivity. In particular, it is simple
to check that the property of being approximatively differentiable is stable by right
composition with smooth maps (say C1), and in this case the standard chain rule
formula for the differentials holds. Moreover we remark that it makes sense to speak
of approximate differential for maps between manifolds.

In [6], the following formula is proven: In the particular case c(x, y) = d2(x, y),
if μ is absolutely continuous with respect to the Lebesgue measure, then the optimal
transport map is given by

T (x) = expx[−∇̃xϕ],

where ∇̃xϕ denotes the approximate gradient of ϕ at x, which simply corresponds to
the element of TxM obtained from d̃xϕ using the isomorphism with T ∗

xM induced by
the Riemannian metric (the above formula generalizes the one found by McCann on
compact manifolds; see [10]).

3. The Wasserstein space W2. Let (M, g) be a smooth complete Riemannian
manifold, equipped with its geodesic distance d and its volume measure vol. We
denote with P (M) the set of probability measures on M . The space P (M) can be
endowed with the so-called Wasserstein distance W2:

W2(μ0, μ1)
2 := min

γ∈Π(μ0,μ1)

{∫
M×M

d2(x, y) dγ(x, y)

}
.

The quantity W2(μ0, μ1) will be called the Wasserstein distance of order 2 between
μ0 and μ1. It is well known that it defines a metric on P (M) (not necessarily finite),
and so one can speak about geodesic in the metric space (P (M),W2). This space
turns out, indeed, to be a length space (see, for example, [12], [13]). Now, whenever
W2(μ0, μ1) < +∞, we know that any optimal transport plan is supported on a c-
cyclical monotone set (see, for example, [2], [11], [13]). We denote with P ac(M)
the subset of P (M) that consists of the Borel probability measures on M that are
absolutely continuous with respect to vol. Thus, if μ0, μ1 ∈ P ac(M) and W2(μ0, μ1) <
+∞, we know that there exists a unique transport map between μ0 and μ1.

Proposition 3.1. P ac(M) is a geodesically convex subset of P (M). Moreover, if
μ0, μ1 ∈ P ac(M) and W2(μ0, μ1) < +∞, then there is a unique Wasserstein geodesic
{μt}t∈[0,1] joining μ0 to μ1, which is given by

μt = (Tt)�μ0 := (exp[−t∇̃ϕ])�μ0,

where T (x) = expx[−∇̃xϕ] is the unique transport map from μ0 to μ1, which is optimal
for the cost 1

2d
2(x, y) (and so also optimal for the cost d2(x, y)). Moreover,

1. Tt is the unique optimal transport map from μ0 to μt for all t ∈ [0, 1];
2. T−1

t is the unique optimal transport map from μt to μ0 for all t ∈ [0, 1] (and,
if t ∈ [0, 1), it is countably Lipschitz);

3. T ◦ T−1
t is the unique optimal transport map from μt to μ1 for all t ∈ [0, 1]

(and, if t ∈ (0, 1], it is countably Lipschitz).
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132 ALESSIO FIGALLI

Proof. Regarding the fact that μt ∈ P ac(M) (which corresponds to saying that
P ac(M) is geodesically convex) and the countably Lipschitz regularity of the transport
maps (i.e., there exists a countable partition of M such that the map is Lipschitz on
each set), they follow from the results in [6].

Thanks to the results proved in the last section, the proof of the rest of the proposi-
tion is quite standard. In fact, a basic representation theorem (see [13, Corollary 7.20])
states that any Wasserstein geodesic curve necessarily takes the form μt = (et)#Π,
where Π is a probability measure on the set Γ of minimizing geodesics [0, 1] → M ,
and et : Γ → M is the evaluation at time t: et(γ) := γ(t). Thus the thesis follows
from Remark 2.1.

The above result tells us that also (P ac(M),W2) is a length space.

3.1. Regularity, concavity estimate, and a displacement convexity re-
sult. We now consider the cost function c(x, y) = 1

2d
2(x, y). Let μ, ν ∈ P ac(M) with

W2(μ, ν) < +∞, and let us denote with f and g their respective densities with respect
to vol. Let

T (x) = expx[−∇̃xϕ]

be the unique optimal transport map from μ to ν.

We recall that locally semiconcave functions with linear modulus admit vol-a.e. a
second order Taylor expansion (see [3], [4]). Let us recall the definition of approximate
hessian.

Definition 3.2 (approximate hessian). We say that f : M → R
m has a approxi-

mate hessian at x ∈ M if there exists a function h : M → R such that the set {f = h}
has density 1 at x with respect to the Lebesgue measure and h admits a second order
Taylor expansion at x, that is, there exists a self-adjoint operator H : TxM → TxM
such that

h(expx w) = h(x) + 〈∇xh,w〉 +
1

2
〈Hw,w〉 + o(‖w‖2

x).

In this case the approximate hessian is defined as ∇̃2
xf := H.

As in the case of the approximate differential, it is not difficult to show that this
definition makes sense.

Observing that d2(x, y) is locally semiconcave with linear modulus (see [6, Ap-
pendix]), we get that ϕn is locally semiconcave with linear modulus for each n. Thus
we can define μ-a.e. an approximate hessian for ϕ (see Definition 3.2):

∇̃2
xϕ := ∇2

xϕn for x ∈ Dn ∩ En,

where Dn was defined in the proof of Theorem 1.2, En denotes the full μ-measure set
of points where ϕn admits a second order Taylor expansion, and ∇2

xϕn denotes the
self-adjoint operator on TxM that appears in the Taylor expansion on ϕn at x. Let
us now consider, for each set Fn := Dn ∩ En, an increasing sequence of compact sets
Kn

m ⊂ Fn such that μ(Fn \ ∪mKn
m) = 0. We now define the measures μn

m := μ�Kn
m

and νnm := T�μ
n
m = (exp[−∇ϕn])�μ

n
m, and we renormalize them in order to obtain two

probability measures:

μ̂n
m :=

μn
m

μn
m(M)

∈ P ac
2 (M), ν̂nm :=

νnm
νnm(M)

=
νnm

μn
m(M)

∈ P ac
2 (M).
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EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS 133

We now observe that T is still optimal. In fact, if this were not the case, we would
have ∫

M×M

c(x, S(x)) dμ̂n
m(x) <

∫
M×M

c(x, T (x)) dμ̂n
m(x)

for a certain S transport map from μ̂n
m to ν̂nm. This would imply that∫

M×M

c(x, S(x)) dμn
m(x) <

∫
M×M

c(x, T (x)) dμn
m(x),

and so the transport map

S̃(x) :=

{
S(x) if x ∈ Kn

m,
T (x) if x ∈ M \Kn

m

would have a cost strictly less than the cost of T , which would contradict the opti-
mality of T .

We will now apply the results of [4] to the compactly supported measures μ̂n
m

and ν̂nm in order to get information on the transport problem from μ to ν. In what
follows we will denote by ∇xd

2
y and by ∇2

xd
2
y, respectively, the gradient and the hessian

with respect to x of d2(x, y), and by dx exp and d(expx)v the two components of the
differential of the map TM � (x, v) �→ expx[v] ∈ M (whenever they exist). By [4,
Theorem 4.2], we get the following.

Theorem 3.3 (Jacobian identity a.e.). There exists a subset E ⊂ M such that
μ(E) = 1 and, for each x ∈ E, Y (x) := d(expx)−∇̃xϕ

and H(x) := 1
2∇2

xd
2
T (x) both

exist and we have

f(x) = g(T (x)) det[Y (x)(H(x) − ∇̃2
xϕ)] �= 0.

Proof. It suffices to observe that [4, Theorem 4.2] applied to μ̂n
m and ν̂nm gives

that, for μ-a.e. x ∈ Kn
m,

f(x)

μn
m(M)

=
g(T (x))

μn
m(M)

det[Y (x)(H(x) −∇2
xϕn)] �= 0,

which implies

f(x) = g(T (x)) det[Y (x)(H(x) − ∇̃2
xϕ)] �= 0 for μ-a.e. x ∈ Kn

m.

Passing to the limit as m,n → +∞ we get the result.

We can thus define μ-a.e. the (weak) differential of the transport map at x as

dxT := Y (x)
(
H(x) − ∇̃2

xϕ
)
.

Let us prove now that, indeed, T (x) is approximately differentiable μ-a.e., and that
the above differential coincides with the approximate differential of T . In order to
prove this fact, let us first make a formal computation. Observe that since the map
x �→ expx[− 1

2∇xd
2
y] = y is constant, we have

0 = dx(expx[− 1
2∇xd

2
y]) = dx exp[− 1

2∇xd
2
y] − d(expx)− 1

2∇xd2
y

(
1
2∇2

xd
2
y

)
∀y ∈ M,
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134 ALESSIO FIGALLI

By differentiating (in the approximate sense) the equality T (x) = exp[−∇̃xϕ] and
recalling the equality ∇̃xϕ = 1

2∇xd
2
T (x), we obtain

d̃xT = d(expx)−∇̃xϕ

(
−∇̃2

xϕ
)

+ dx exp[−∇̃xϕ]

= d(expx)−∇̃xϕ

(
−∇̃2

xϕ
)

+ d(expx)− 1
2∇xd2

T (x)

(
1
2∇2

xd
2
T (x)

)
= d(expx)−∇̃xϕ

(
H(x) − ∇̃2

xϕ
)
,

as wanted. In order to make the above proof rigorous, it suffices to observe that for
μ-a.e. x, T (x) �∈ cut(x), where cut(x) is defined as the set of points z ∈ M which
cannot be linked to x by an extendable minimizing geodesic. Indeed we recall that
the square of the distance fails to be semiconvex at the cut locus, that is, if x ∈ cut(y),
then

inf
0<‖v‖x<1

d2
y(expx[v]) − 2d2

y(x) + d2
y(expx[−v])

|v|2 = −∞

(see [4, Proposition 2.5]). Now fix x ∈ Fn. Since we know that 1
2d

2(z, T (x)) ≥
ϕn(z)−ψ(T (x)) with equality for z = x, we obtain a bound from below of the hessian
of d2

T (x) at x in terms of the hessian of ϕn at x (see the proof of [4, Proposition 4.1(a)]).
Thus, since each ϕn admits vol-a.e. a second order Taylor expansion, we obtain that,
for μ-a.e. x,

x �∈ cut(T (x)), or equivalently T (x) �∈ cut(x).

This implies that all the computations we made above in order to prove the formula for
d̃xT are correct. Indeed the exponential map (x, v) �→ expx[v] is smooth if expx[v] �∈
cut(x), the function d2

y is smooth around any x �∈ cut(y) (see [4, Paragraph 2]), and
∇̃xϕ is approximatively differentiable μ-a.e. Thus, recalling that, once we consider
the right composition of an approximatively differentiable map with a smooth map,
the standard chain rule holds (see the remarks after Definition 2.2), we have proved
the following regularity result for the transport map.

Proposition 3.4 (approximate differentiability of the transport map). The
transport map is approximatively differentiable for μ-a.e. x, and its approximate dif-
ferential is given by the formula

d̃xT = Y (x)
(
H(x) − ∇̃2

xϕ
)
,

where Y and H are defined in Theorem 3.3.
To prove our displacement convexity result, the following change of variables

formula will be useful.
Proposition 3.5 (change of variables for optimal maps). If A : [0 +∞) → R is

a Borel function such that A(0) = 0, then∫
M

A(g(y)) d vol(y) =

∫
E

A

(
f(x)

J(x)

)
J(x) d vol(x),

where J(x) := det[Y (x)(H(x)−∇̃2
xϕ)] = det[d̃xT ] (either both integrals are undefined

or both take the same value in R).
The proof follows by the Jacobian identity proved in Theorem 3.3, exactly as in

[4, Corollary 4.7].
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EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS 135

Let us now define for t ∈ [0, 1] the measure μt := (Tt)�μ, where

Tt(x) = expx[−t∇̃xϕ].

By the results in [6] and Proposition 3.1, we know that Tt coincides with the unique
optimal map pushing μ forward to μt, and that μt is absolutely continuous with
respect to vol for any t ∈ [0, 1].

Given x, y ∈ M , following [4], we define for t ∈ [0, 1]

Zt(x, y) := {z ∈ M | d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y)}.

If N is now a subset of M , we set

Zt(x,N) := ∪y∈NZt(x, y).

Letting Br(y) ⊂ M denote the open ball of radius r > 0 centered at y ∈ M , for
t ∈ (0, 1] we define

vt(x, y) := lim
r→0

vol(Zt(x,Br(y)))

vol(Btr(y))
> 0

(the above limit always exists, though it will be infinite when x and y are conjugate
points; see [4]). Arguing as in the proof of Theorem 3.3, by [4, Lemma 6.1] we get
the following.

Theorem 3.6 (Jacobian inequality). Let E be the set of full μ-measure given by
Theorem 3.3. Then for each x ∈ E, Yt(x) := d(expx)−t∇̃xϕ

and Ht(x) := 1
2∇2

xd
2
Tt(x)

both exist for all t ∈ [0, 1] and the Jacobian determinant

Jt(x) := det[Yt(x)(Ht(x) − t∇̃2
xϕ)](8)

satisfies

J
1
n
t (x) ≥ (1 − t) [v1−t(T (x), x)]

1
n + t [vt(x, T (x))]

1
n J

1
n
1 (x).

We now consider as source measure μ0 = ρ0 d vol(x) ∈ P ac(M) and as target
measure μ1 = ρ1 d vol(x) ∈ P ac(M), and we assume as before that W2(μ0, μ1) < +∞.
By Proposition 3.1 we have

μt = (Tt)�[ρ0 d vol] = ρt d vol ∈ P ac
2 (M)

for a certain ρt ∈ L1(M,d vol).
We now want to consider the behavior of the functional

U(ρ) :=

∫
M

A(ρ(x)) d vol(x)

along the path t �→ ρt. In Euclidean spaces, this path is called displacement interpo-
lation and the functional U is said to be displacement convex if

[0, 1] � t �→ U(ρt) is convex for every ρ0, ρ1.

A sufficient condition for the displacement convexity of U in R
n is that A : [0,+∞) →

R ∪ {+∞} satisfy

(0,+∞) ∈ s �→ snA(s−n) is convex and nonincreasing, with A(0) = 0(9)
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136 ALESSIO FIGALLI

(see [7], [9]). Typical examples include the entropy A(ρ) = ρ log ρ and the Lq-norm
A(ρ) = 1

q−1ρ
q for q ≥ n−1

n .

By all the results collected above, arguing as in the proof of [4, Theorem 6.2],
we can prove that the displacement convexity of U is still true on Ricci nonnegative
manifolds under the assumption (9).

Theorem 3.7 (displacement convexity on Ricci nonnegative manifolds). If Ric ≥
0 and A satisfies (9), then U is displacement convex.

Proof. As we remarked above, Tt is the optimal transport map from μ0 to μt. So,
by Theorem 3.3 and Proposition 3.5, we get

U(ρt) =

∫
M

A(ρt(x)) d vol(x) =

∫
Et

A

(
ρ0(x)(
J

1
n
t (x)

)n
)(

J
1
n
t (x)

)n

d vol(x),(10)

where Et is the set of full μ0-measure given by Theorem 3.3 and Jt(x) �= 0 is defined
in (8). Since Ric ≥ 0, we know that vt(x, y) ≥ 1 for every x, y ∈ M (see [4, Corollary
2.2]). Thus, for fixed x ∈ E1, Theorem 3.6 yields the concavity of the map

[0, 1] � t �→ J
1
n
t (x).

Composing this function with the convex nonincreasing function s �→ snA(s−n) we
get the convexity of the integrand in (10). The only problem we run into in trying to
conclude the displacement convexity of U is that the domain of integration appears
to depend on t. But, since by Theorem 3.3 Et is a set of full μ0-measure for any
t ∈ [0, 1], we obtain that, for fixed t, t′, s ∈ [0, 1],

U(ρ(1−s)t+st′) ≤ (1 − s)U(ρt) + sU(ρt′),

simply by computing each of the three integrals above on the full measure set Et ∩
Et′ ∩ E(1−s)t+st′ .

Acknowledgment. I wish to thank Cédric Villani for fruitful discussions on this
subject.
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terpolation inequality á la Borell, Brascamp, and Lieb, Invent. Math., 146 (2001), pp.
219–257.

[5] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud.
Adv. Math., CRC Press, Boca Raton, FL, 1992.

[6] A. Fathi and A. Figalli, Optimal Transportation on Manifolds, preprint, 2006.
[7] R. J. McCann, A Convexity Principle for Interacting Gases and Equilibrium Crystals, Ph.D.

thesis, Princeton University, Princeton, NJ, 1994.
[8] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math.

J., 80 (1995), pp. 309–323.
[9] R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), pp. 153–

179.

D
ow

nl
oa

de
d 

07
/2

9/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS 137

[10] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal.,
11 (2001), pp. 589–608.

[11] W. Schachermayer and J. Teichmann, Characterization of optimal transport plans for the
Monge–Kantorovich–problem, Proc. Amer. Math. Soc., to appear.

[12] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, AMS, Providence, RI,
2004.

[13] C. Villani, Optimal Transport, Old and New , Lecture Notes, 2005 Saint-Flour Summer School;
available online from www.umpa.ens-lyon.fr/˜cvillani.

D
ow

nl
oa

de
d 

07
/2

9/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


