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WEAK NOTIONS OF JACOBIAN DETERMINANT
AND RELAXATION

Guido De Philippis1

Abstract. In this paper we study two weak notions of Jacobian determinant for Sobolev maps,
namely the distributional Jacobian and the relaxed total variation, which in general could be different.
We show some cases of equality and use them to give an explicit expression for the relaxation of some
polyconvex functionals.
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1. Introduction

The aim of this paper is to study weak notions of Jacobian determinant, detDu, for maps u : Ω ⊂ R
n → R

n

in the Sobolev class W 1,p for some p.
If u is a diffeomorphism, the change of variable formula and Lebesgue differentiation Theorem give a clear

geometric meaning to detDu(x), it is the “infinitesimal” change of volume due to the deformation u. If u is
not a bijective map the area formulas (in the unoriented version (1.1) or in the oriented one (1.2))∫

Ω

| detDu(x)|dx =
∫

Rn

N(u,Ω, y)dy (1.1)

∫
Ω

detDu(x)dx =
∫

Rn

deg(u,Ω, y)dy (2) (1.2)

relate the integral of the Jacobian determinant to how many times the image of u covers the target space.
If u is merely a Sobolev map it is still possible to consider the area formula and the “pointwise” Jacobian

detDu (see [26]), however if u is not sufficiently regular (more precisely if u ∈ W 1,p and p < n) this gives only
a partial information about the behaviour of u.

If p ≥ n, Hölder inequality implies detDu ∈ L
p
n ; moreover the map

W 1,p → L
p
n

u �→ detDu
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is continuous if we endow both spaces with the strong topology. What is more surprising is that if p > n this
map is still (sequentially) continuous also if we endow the spaces with the weak topology (see Thm. 2.2). If
p = n we don’t have continuity if we consider the L1 weak topology for Jacobians, however we have it if we
consider the weak-∗ topology (see for example [12], Chap. 8), however if detDuk ≥ 0 we still have continuity
with respect to the L1 weak topology (see [10,35]).

This implies the semicontinuity with respect to the weak convergence of the functional:

u �→ TV (u,Ω) :=
∫

Ω

| detDu| (1.3)

and, more in general, of polyconvex functionals, i.e. the ones that can be represented as the integral of a convex
function of the minors of the gradient:

F (u,Ω) =
∫

Ω

g(Du,M1(Du), . . . ,detDu).

If p < n, in general detDu is not a summable function; moreover also if detDu ∈ L1 we lose continuity and
semicontinuity properties. In particular it is possible to see that:

• the function u(x) = x
|x| is in W 1,p(B) for any p < n, detDu = 0 almost everywhere but for any sequence

of smooth functions strongly converging to u in W 1,p(B) ∩ L∞ with p > n− 1 we have:

detDuk
*
⇀ωnδ0 (3)

in the sense of distributions.
• For any smooth function u there exists a sequence {uk} ∈ W 1,p, with p < n, weakly converging to u

and such that detDuk = 0 almost everywhere (see Ex. 3 at p. 284 in [26] where it is shown for the map
u(x) = x, this implies the result for any smooth function).

The main reason for this behaviour is that the pointwise Jacobian detDu doesn’t count in any way the
presence of fractures in the image of u.

We now introduce the two weak formulations we are going to study. The first one is based on the particular
structure of the Jacobian determinant and it leads to the notion of distributional determinant (introduced by
Ball [3] in the context of non-linear elasticity and widely studied also in different contexts, see for example
[1,9,11,14,15,28,34,36–38] and references therein). The second one is based on the Lebesgue-Serrin extension
and it leads to the relaxed total variation (first introduced by Marcellini in [30] and then systematically studied
in [6,20–23,31–33,41]).

Let u be a C2 map, thanks to the divergence free property of the cofactor matrix (see Sect. 2 for a precise
definition) ∑

i

∂j(adjDu)j
i = 0 (1.4)

we can express the Jacobian as a divergence

detDu(x) =
1
n

∑
i

∂j

(∑
j

ui(x)(adjDu(x))j
i

)
=

1
n

div(adjDu · u).

Therefore formal integration by parts suggests that we may define the distribution:

〈Ju, ϕ〉 := − 1
n

∫
Ω

(adjDu · u) ·Dϕ ϕ ∈ D(Ω) (4). (1.5)

3We denote with ωn the Lebesgue measure of the unit ball B and with δ0 the usual Dirac distribution.
4D(Ω) is the usual space of test functions.
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Notice that for smooth maps we have Ju = detDu and this can be extended by density to u ∈W 1,n
loc . However

the distribution (1.5) is well defined as far as u adjDu ∈ L1
loc, for example if u ∈ W 1,p ∩L∞ and p ∈ (n− 1, n).

The distributional Jacobian enjoys continuity properties with respect to weak convergence and may differ from
detDu if p < n. For example if u(x) = x

|x| we have

Ju = ωnδ0,

while detDu = 0.
If Ju is a Radon measure and u ∈ W 1,p with p ≥ n− 1 we have the following theorem (see [36] for the case

p > n2

n+1 and [16] for the case n− 1 ≤ p ≤ n2

n+1 ).

Theorem 1.1. Let u ∈ W 1,p(Ω) ∩ L∞
loc, if Ju is a Radon measure then

Ju = detDudLn + JuS .

The second formulation we consider is the Lebesgue-Serrin extension of the functional (1.3) (see Sect. 2.4 for
a more detailed discussion). We define for every p ∈ (n− 1, n)

TV p(u,Ω) = inf

{
lim inf
k→∞

∫
Ω

| detDuk| : uk ∈W 1,n
loc , uk ⇀ u in W 1,p

}
. (1.6)

If u ∈ W 1,n and p > n − 1 semicontinuity results below the natural growth exponent (see [13,30,31]) ensure
that:

TV p(u,Ω) :=
∫

Ω

| detDu|.
Observe we had underlined the dependence on p, however in all known example we have that TV p(u,Ω) =
TV q(u,Ω), as long as p, q ∈ (n − 1, n) and u ∈ W 1,p ∩W 1,q, it seems natural to conjecture this to be always
true.

Recently it has been shown by Schmidt [43] that the relaxed total variation enjoys the following quasi-
convexity property5:

TV p(uA,Ω) ≤ TV p(uA + ϕ,Ω)
for any affine map uA and deformation ϕ ∈W 1,p

0 .
When p ∈ (n − 1, n), u ∈ L∞ and TV p(u,Ω) < ∞, then TV p(u, ·) can be extended to a Radon measure

on Ω. Moreover in this case it is possible to show that also Ju is a Radon measure and that, for any open subset
A ⊆ Ω

|Ju|(A) ≤ TV p(u,A) (1.7)
where |Ju| is the total variation of the measure Ju (see [22,23] and Prop. 3.2 below).

In this paper we discuss equality cases in previous inequality (Thms. 4.3 and 5.6) and we show how to obtain
explicit representation formulas for the extension of general polyconvex functionals satisfying suitable growth
conditions (Thms. 6.1 and 6.2).

The paper is structured as follows. In Section 2 we recall some preliminary results, in particular the notion
of Brouwer degree for Sobolev maps, the measure representation theorem and a theorem of Brian White about
minimal mass currents. In Section 3 we begin the comparison between |Ju| and TV p showing which are the
main obstructions to equality in (1.7). In Section 4 we prove that equality holds for maps with values in the
(n − 1)-dimensional sphere. In Section 5, inspired by Müller and Spector INV condition [38], we introduce

5Recall that a map f : M
n×n → R is said to be quasi-convex if

f(ξ)|B| ≤
∫

B
f(ξ + Dϕ) ∀ϕ ∈ C1

0 (B)

i.e. every affine map is a minimizer with respect to its boundary condition.
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a particular class of Sobolev maps for which we are able to obtain equality in (1.7). In Section 6 we show the
general relaxation result.

2. Notations and preliminary results

Throughout this paper Ω is an open subset of R
n with Lipschitz boundary. Points in R

n will be denoted
by x, their ith component by xi, |x| is the usual Euclidean norm and we will also consider the ∞-norm:

|x|∞ = max{|xi| : i = 1, . . . , n}.

We write B(x0, r) for {x : |x− x0| < r} and Q(x0, r) for {x : |x− x0|∞ < r}, if it is clear from the context we
will drop the dependence on x0 and simply write Br and Qr. C and M will be constants, possibly depending on
previous ones, whose value could change from line to line. Ln and Hk will denote the n-dimensional Lebesgue
measure and the k-dimensional Hausdorff measure, we will write dx to mean dLn. Given a measure μ we denote
with μ U the restriction of μ to U and with |μ| its total variation, we write μa and μS respectively for its
absolutely continuous and singular part with respect to the Lebesgue measure. If f is a function f U means
its restriction to U .

For any matrix A ∈ M
n×n and vectors v, w ∈ R

n we will denote with:
• Aj

i the entry in the jth row and ith column, AT is the transpose of A, A · v the usual action of a matrix
on a vector and w · v the Euclidean scalar product between v and w;

• Mh(A) ∈ R
τ , with τ =

(
n
h

)2, the vector of minors of order h of A (i.e. the vector formed by the
determinants of all h× h submatrices of A);

• adjA the n× n matrix that satisfies:

(adjA)A = (detA)Id

i.e. the transpose of the cofactor matrix of A.

2.1. Sobolev maps and precise representative

We will denote with W 1,p(Ω; Rn) the space of Sobolev maps and we refer to [17] for its main properties and
notations. In the sequel we will need to consider the restriction of a function u to lower dimensional subsets,
mainly to the boundary ∂D of Lipschitz subsets. This can be done in two ways:

(1) considering the trace γ(u) ∈ Lp(∂D);
(2) considering the pointwise value of the precise representative of the class of u defined by:

u(x) =

⎧⎨
⎩ lim

r→0

1
|B(x, r)|

∫
B(x,r)

u(y)dy if the limit exists

0 otherwise.

It turns out that u = u Hn−1-almost everywhere and γ(u) equals u ∂D. Being this understood we will
simply refer to the restriction of u to ∂D.

Given a domain D with Lipschitz boundary we say that a function is in W 1,p(∂D) if its restriction satisfies:∫
∂D

|u|p + |DTu|pdHn−1 <∞

whereDTu(x) = Du(x) Tx(∂D)6. The definition could equivalently be given locally by flattening the boundary.
With an abuse of notation we say that u ∈W 1,p(D) if u ∈ W 1,p(D) ∩W 1,p(∂D).

6Tx(∂D) is the tangent space defined Hn−1 ∂D-almost everywhere.
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Proposition 2.1. If u ∈ W 1,p(D) there exists a sequence of Lipschitz maps uk converging to u in W 1,p(D),
i.e.

‖u− uk‖W 1,p(D) := ‖u− uk‖W 1,p(D) + ‖u− uk‖W 1,p(∂D) → 0.

Proof. By standard arguments we can reduce to the case where u ∈W 1,p(B+) and sptu is a compact subset of
B+ = {x = (x′, xn) : |x| < 1, xn ≥ 0}. Moreover if we consider the sequence:

uk(x) =

{
u(x′, 0) if 0 ≤ xn ≤ 1

k

u(x′, xn − 1
k ) if xn ≥ 1

k

we have that uk → u in W 1,p(B+) so we may suppose u to be a constant function of xn for small xn, say smaller
than δ. Consider now a sequence of smooth maps {vk} converging to u in W 1,p(D). Then we have

∫ δ

0

∫
Rn−1

|u(x′, t) − vk(x′, t)|p + |Du(x′, t) −Dvk(x′, t)|pdx′dt→ 0.

Hence there exists an s ∈ (0, δ) such that, up to subsequences:

∫
Rn−1

|u(x′, s) − vk(x′, s)|p + |Du(x′, s) −Dvk(x′, s)|pdx′ → 0.

Recalling that u(x′, 0) = u(x′, s) it is easy to see that the sequence defined by:

uk(x) =

{
vk(x′, s) if 0 ≤ xn ≤ s

vk(x′, xn) if xn ≥ s

satisfies ‖uk − u‖
W 1,p(B+)

→ 0. �

We end this section by stating the following theorem about continuity of minors (see [12], Thm. 8.20).

Theorem 2.2 (Reshetnyak). Let uk ∈ W 1,p(Ω) weakly converging to u, if h < p we have:

Mh(Duk) ⇀Mh(Du) in L
p
h (Ω). (2.1)

2.2. Brouwer degree

In [38] (see also [7,8,19,25,39,40]) a definition of Brouwer degree has been given for the class of, possibly
discontinuous, Sobolev maps W 1,p with p > n− 1 (see [11] for the case p = n− 1). Here we report some of its
main properties.

Recall that for a smooth map v : Ω → R
n the Brouwer degree is defined for any y ∈ R

n \ v(∂Ω) by:

deg(v,Ω, y) :=
∑

x∈v−1({y})
sign(detDv(x)).

Moreover the oriented area formula (1.2) says that for any h ∈ L1(Rn; R):

∫
Rn

h(y) deg(v,Ω, y)dy =
∫

Ω

h(v(x)) detDv(x)dx. (2.2)
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Recalling equation (1.4) we have for any g ∈ C1(Rn; Rn) ∩W 1,∞:

∫
Rn

deg(v,Ω, y) divy g(y) dy =
∫

Ω

divy g(v(x)) detDv(x) dx

=
∫

Ω

∑
i

∂gi

∂yi
(v(x)) detDv(x) dx =

∫
Ω

∑
i,m

∂gi

∂ym
(v(x))δm

i detDv(x) dx

=
∫

Ω

∑
i,m,k

∂gi

∂ym
(v(x))

∂vm

∂xk
(x)(adjDv(x))k

i dx

=
∫

Ω

∑
k,i

∂

∂xk

(
gi(v(x))

)
(adjDv(x))k

i dx

=
∫

Ω

∑
k,i

∂

∂xk

(
gi(v(x))(adjDv(x))k

i

)
dx

=
∫

Ω

divx (adjDv(x) · g(v(x))) dx =
∫

∂Ω

(adjDv(x) · g(v(x))) · ν∂ΩdHn−1.

The previous equations reveal the following facts:
(1) deg(v,Ω, y) depends only on v ∂Ω;
(2) deg(v,Ω, ·) is a BV function (see [17] for the definition and for the main properties of BV functions),

moreover:

|Dy(deg(v,Ω, y))|(Rn) ≤
∫

∂Ω

| adjDu| ≤ c

∫
∂Ω

|Du|n−1 (2.3)

and sptDy(deg(v,Ω, y)) ⊂ v(∂Ω).
According to this we give the following definition:

Definition 2.3. Let u ∈W 1,p(Ω,Rn) with p ∈ (n−1, n). For every D ⊂⊂ Ω with Lipschitz boundary and such
that u ∈ W 1,p(D), we define the degree of u on D, Deg(u,D, y), as the only BV (Rn,Z) function satisfying:

∫
Rn

Deg(u,D, y) div g(y)dy =
∫

∂D

(adjDu · g(u(x))) · ν∂DdHn−1 (2.4)

for every g ∈ C1(Rn; Rn).

Using Proposition 2.1 and equation (2.3) it is easy to see that Deg(u,D, y) is well defined.
It is clear from the definition that Deg(u,D, y) depends only on the value of u restricted to ∂D. By Sobolev

embedding Theorem, we have that u ∈ C0(∂D), and classical theorems imply that there exists a continuous
function ϕ : D → R

n such that ϕ ∂D = u ∂D. It is possible to show (see [38]) that:

deg(ϕ,D, y) = Deg(u,D, y).

The Brouwer degree enjoys the following continuity property:

Proposition 2.4. Let uk, u ∈W 1,p(Ω,Rn), then for every domain D ⊂⊂ Ω with Lipschitz boundary such that

uk ⇀ u in W 1,p(∂D)

we have:
Deg(uk, D, ·) → Deg(u,D, ·) in L1(Rn). (2.5)
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Proof. Thanks to the weak convergence and the Sobolev embedding Theorem we have

sup ‖uk‖L∞(∂D) + ‖Du‖Lp(∂D) ≤ C.

Equation (2.3) ensures that the sequence {Deg(uk, D, ·)} is relatively compact in L1(Rn). Call d(y) ∈ BV (Rn,Z)
its limit. Recalling that, thanks to our hypothesis,

(adjDuk)T · ν∂D ⇀ (adjDu)T · ν∂D

in L
p

n−1 (∂D) and g(uk) → g(u) in any Lq(∂D) (see Thm. 2.2) we can pass to the limit in both sides of (2.4) to
show

d(y) = Deg(u,D, y). �

2.3. White’s Theorem

In this section we report a theorem about approximation of minimal mass rectifiable current due to White [44].
We will use it only in the simplified form expressed by Proposition 2.6 which doesn’t involve currents.

Recall that a k-current in R
n, T ∈ Dk(Rn) is defined as linear continuous functional on the space of compactly

supported k-forms Dk(Rn). A current T is said rectifiable, T ∈ Rk(Rn), if its action on a k-form can be expressed
as:

T (ω) =
∫

M

〈ω(x), τM (x)〉θ(x)dHk

where M is an Hk-rectifiable set, τM (x) is a k-vector orienting TxM and θ(x) is an integer-valued positive
function (see [18,26] for a precise definition and the statements of the theorems we use in the sequel). If
T ∈ Dk(Rn) we define:

• the boundary ∂T ∈ Dk−1(Rn) as ∂T (ω) = T (dω);
• the mass M(T ) = sup{T (ω) : |ω| ≤ 1};
• the push-forward by a smooth proper map f as f#T (ω) = T (f#ω)7.

We can now state:

Theorem 2.5 (White). Let f : ∂B(0, 1) ⊂ R
n → R

k be a Lipschitz map and 3 ≤ n ≤ k then:

min
{
M(T ), T ∈ Rn(Rk), ∂T = f#[[∂B]]

}
= inf

{∫
B

Jng(x)dx, g : B → R
k, g Lipschitz, g ∂B = f

}

where Jng =
√

detDgTDg.

Notice the restriction n ≥ 3, which is a consequence of Hurewicz Theorem about the relation between
homotopy and homology groups (see [27]). Example 3.5 shows that this restriction is sharp.

As said before we will use the theorem only in the following form:

Proposition 2.6. Let u : B ⊂ R
n → R

n be Lipschitz, n ≥ 3. Then for every σ > 0 there exists g : B → R
n

Lipschitz such that g = u on ∂B and:∫
B

| detDg(x)|dx ≤
∫

Rn

| deg(u,B, y)|dy + σ.

Proof. We have only to show that:∫
Rn

| deg(u,B, y)|dy = min
{
M(T ), T ∈ Rn(Rn) ∂T = u#[[∂B]]

}
.

7f#ω is the usual pull-back of a differential form.



188 G. DE PHILIPPIS

We will show more, namely that the current T = u#[[B]] = Ln deg(u,B, y)e1 ∧ . . . ∧ en is the only finite
mass current in the class of competitors of the previous minimum.

First of all notice that u#[[∂B]] = ∂u#[[B]] and:

u#[[B]](ψ(y)dy1 ∧ . . . ∧ dyn) = [[B]](ψ(u(x))du1 ∧ . . . ∧ dun)

=
∫

B

ψ(u(x)) detDudx =
∫

Rn

ψ(y) deg(u,B, y)dy

so that:

M(T ) =
∫

Rn

| deg(u,B, y)|dy.
Let now S ∈ Rn(Rn) be such that ∂S = ∂T , then by Constancy Theorem (see [18] 4.1.7) we have that there
exists c ∈ R such that:

S = T + c[[Rn]]
and so M(S) = ∞ unless c = 0. �

2.4. Lebesgue-Serrin extension

We briefly recall the definition of Lebesgue-Serrin extension of a functional below its natural growth exponent.
See [21,30,31] and references therein for a more detailed exposition and [6,20] for the proof of the cited results.

Suppose we have a continuous function f : M
n×n → [0,∞) satisfying the growth assumption:

f(ξ) ≤ c(1 + |ξ|)q

and define:

F (u,Ω) =
∫

Ω

f(Du(x)).

Then F is finite and strongly continuous only on W 1,q (in our case we are considering f(ξ) = | det ξ| and so
q = n). There is a standard way to extend F to W 1,p for p < q by defining:

Fp(u,Ω) = inf

{
lim inf
k→∞

F (uk,Ω) uk ∈ W 1,q
loc , uk ⇀ u in W 1,p

}
.

We remark that the choice of sequences in W 1,q
loc prevents some problems at the boundary of Ω if this is

not smooth, see [20]. Observe that if F is p-coercive (i.e. F (u) ≥ c‖u‖W 1,p) then Fp is the largest lower-
semicontinuous functional below F .

In general F cannot be (extended to) a measure in the second variable, however we have the following result:

Theorem 2.7. Let p < q < p n
n−1 and let u ∈ W 1,p be such that Fp(u,Ω) < ∞. Then there exists a Radon

measure μp
u on Ω such that:

μp
u(A) = Fp(u,A)

for any open set A ⊆ Ω. Moreover if f is a quasi-convex function we have that the Radon-Nykodim derivative
of μp

u equals f , that is:
dμp

u

dLn
(x) = f(Du(x))

almost everywhere in Ω.

In the sequel we show, under appropriate hypotheses, how to characterize the singular part of μp
u.

We end this section by recalling two classical theorems about continuity and semi-continuity for functionals
defined on the space of Radon measures (see [2] for a proof).
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If g : R → [0,∞) is a convex function, we define the recession function as:

g∞(s) := lim
t→+∞

g(st) − g(0)
t

,

which turns out to be a positively homogeneous, lower semicontinuous function. Moreover if g(t) ≤ c(1 + |t|)
we have that g∞ is locally bounded and hence continuous.

Theorem 2.8. Let μ be a positive Radon measure and g : R → [0,∞) be a convex function. Then the functional
defined on M(Ω; R)8 by:

G(λ) =
∫

Ω

g

(
dλ
dμ

)
dμ+

∫
Ω

g∞

(
dλ
d|λ|

)
d|λ|

is lower semicontinuous with respect to weak-* convergence.

Theorem 2.9 (Reshetnyak). Let h : R
n → [0,∞) be a continuous, convex and positively homogeneous function

and for any λ ∈ M(Ω; Rn) consider:

H(λ) =
∫

Ω

h

(
dλ
d|λ|

)
d|λ|.

Then if μk
*
⇀μ and |μk|(Ω) → |μ|(Ω) we have:

H(μk) → H(μ).

3. TV VS. Ju

First of all we show the continuity of the distributional Jacobian:

Proposition 3.1. Let {uk} ⊂W 1,p(Ω) such that uk ⇀ u, suppose p > n− 1 and

sup
k

‖uk‖L∞(K) ≤ C(K)

for any compact K ⊂ Ω, then

Juk
*
⇀Ju

as distributions.

Proof. We have to prove that for every ϕ ∈ D(Ω):

∑
j

∫
spt ϕ

ui
k(adjDuk)j

i∂jϕ→
∑

j

∫
spt ϕ

ui(adjDu)j
i∂j , ϕ.

From Theorem 2.2 we have adjDuk ⇀ adjDu in L
p

n−1 , moreover the sequence is L∞ bounded on sptϕ, hence

we have ui
k∂jϕ→ ui∂jϕ in L

p
p−(n−1) =

(
L

p
n−1

)∗
, so the thesis follows. �

8M(Ω; R) is the set of finite Radon measures on Ω.
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It is clear from the proof that if uk ⇀ u in W 1,p with p > n2

n+1 then Juk
*
⇀Ju as distributions without any

boundedness assumptions, in fact in this case Sobolev embedding theorem implies that uk → u in L
p

p−(n−1) .
Consequence of this is the following comparison result (see [22,23]):

Proposition 3.2. Suppose p ∈ (n − 1, n) and u ∈ W 1,p(Ω; Rn) ∩ L∞
loc satisfies TV p(u,Ω) < ∞, then Ju is a

Radon measure and for any open subset A ⊂ Ω:

|Ju|(A) ≤ TV p(u,A). (3.1)

Proof. Suppose u ∈ L∞(Ω) and let uk ∈W 1,n
loc (Ω) be a sequence weakly converging to u and satisfying

lim inf
k→∞

∫
Ω

| detDuk| <∞.

Applying Lemma A.1 we can find a sequence {vk}, also weakly converging to u, such that ‖vk‖∞ ≤ 2‖u‖∞ and,
for any open set A ⊂ Ω,

lim inf
k→∞

∫
A

| detDvk| ≤ lim inf
k→∞

∫
A

| detDuk|. (3.2)

Then, thanks to Proposition 3.1, detDvkdLn is a sequence of Radon measures with equi-bounded total variation
which converges to Ju in the sense of distributions, hence the first part of the theorem follows. The second
part is a consequence of equation (3.2) and of the semicontinuity of the total variation with respect to weak-∗
convergence of measures.

Let now u be in L∞
loc(Ω), by the previous part the distribution Ju is a Radon measure when restricted to any

open set A ⊂⊂ Ω, moreover for any ϕ ∈ D(Ω) we can choose an open set U such that sptϕ ⊂ U ⊂⊂ Ω, then
we have

〈Ju, ϕ〉 ≤ ‖ϕ‖∞TV p(u, U) ≤ ‖ϕ‖∞TV p(u,Ω),

and hence, thanks to the Riesz theorem, Ju is a Radon measure also in Ω. Equation (3.1) can now be extended
to any open set A ⊂ Ω by approximation. �

Equality in (3.1) is not achieved in general. The reasons for this gap being essentially of two types: cancellation
and topological obstruction. In order to show this we prove two propositions which link the Brouwer degree for
Sobolev maps to the Distributional Jacobian and the Total Variation. The first one is well known (see [28])
while the second one is an immediate generalization of Theorem 1.4 of [33].

We call a map u ∈ W 1,p(B(0, 1); Rn) 0-homogeneous if there exists a Lipschitz map ϕ : Sn−1 = ∂B → R
n

such that u(x) = ϕ( x
|x|). Observe that u ∈ Liploc(B \ {0}) ∩W 1,p for every p < n.

Proposition 3.3. Let u be a 0-homogeneous map, then:

Ju =

(∫
Rn

Deg(u,B, y)dy

)
δ0.

Proof. Let v : B → R
n be a Lipschitz map coinciding with ϕ on ∂B, then:

Deg(u,B, y) = deg(v,B, y).

Moreover the sequence:

uε(x) =

{
ϕ
(

x
|x|
)

if ε < |x| < 1

v
(

x
ε

)
if |x| < ε
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converges to u in W 1,p. Thanks to Proposition 3.1 we have:

detDuε
*
⇀Ju

in the sense of distributions. Let ψ be a test function, then:

∫
ψ(x) detDuε(x) =

1
εn

∫
B(0,ε)

ψ(x) detDv
(x
ε

)
dx

=
∫

B(0,1)

ψ(εx) detDv(x)dx → ψ(0)
∫

B(0,1)

detDv

and thanks to (1.1) we have: ∫
B

detDv(x)dx =
∫

Rn

deg(v,B, y)dy. �

Proposition 3.4. Let u : B → R
n be a 0−homogeneous map and n ≥ 3. Then for any p ∈ (n− 1, n):

TV p(u,B) =
∫

Rn

|Deg(u,B, y)|dy.

Proof. Let w be a Lipschitz map that agrees with ϕ on ∂B. Thanks to Proposition 2.6, for any positive σ there
exists a Lipschitz map g which agrees with w on ∂B and such that:

∫
B

| detDg| ≤
∫

Rn

| deg(w,B, y)| + σ =
∫

Rn

|Deg(u,B, y)| + σ.

Considering

uε(x) =

{
ϕ
(

x
|x|
)

if ε < |x| < 1

g
(

x
ε

)
if |x| < ε

we have

TV p(u,B) ≤
∫

Rn

|Deg(u,B, y)|dy.

To prove the reverse inequality we recall that for 0-homogeneous maps the approximation sequences could be
chosen to satisfy uk = u on ∂B (see [22], Lem. 22). So for any such sequence we have, thanks to the unoriented
version of the area formula:∫

B

| detDuk| =
∫

Rn

#{x ∈ Ω: uk(x) = y}dy

≥
∫

Rn

| deg(uk, B, y)|dy =
∫

Rn

|Deg(u,B, y)|dy. �

It is clear now that for 0-homogeneous maps and n ≥ 3 a necessary and sufficient condition for equality
in (3.1) is that Deg(u,B, y) does not change sign (i.e. there must not be cancellation).

The following example, considered for the first time by Malý in [29], shows that the situation for n = 2 is
more involved (see also [22–24]). Some kind of homotopic topological obstructions prevents the equality in (3.1).
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Example 3.5. Consider the following function ϕ : S1 → R
2:

ϕ(ϑ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1 + cos 4ϑ, sin 4ϑ) ϑ ∈ [0, π
2 ]

(1 − cos 4ϑ, sin 4ϑ) ϑ ∈ [π
2 , π]

(−1 + cos 4ϑ,− sin 4ϑ) ϑ ∈ [π, 3π
2 ]

(1 − cos 4ϑ,− sin 4ϑ) ϑ ∈ [3π
2 , 2π]

which covers the “eight” curve:

X ={(x1, x2) ∈ R
2 : (x1 − 1)2 + (x2)2 = 1}

∪ {(x1, x2) ∈ R
2 : (x1 + 1)2 + (x2)2 = 1}

two times with opposite orientation. Define its 0-homogeneous extension to the unit ball u(�, ϑ) := ϕ(ϑ). We
have that Deg(u,B, y) = 0 and so:

Ju = 0
however:

TV p(u, ·) = 2πδ0.
In fact, because of the non trivial homotopy type of ϕ(S1) in R

2 \ {(1, 0), (−1, 0)}, any smooth map approxi-
mating u must cover one of the disks bounded by X at least two times (see [41] for a precise discussion).

4. Sphere-valued maps

In this section we show how to get equality between Ju and TV p in the case of functions whose image
is contained in the (n − 1)-dimensional sphere Sn−1. This result, conjectured in [23] and proved in [41] for
0-homogeneous maps, is a simple consequence of Bethuel’s approximation Theorem 4.2 and of the structure of
Distributional Jacobian for sphere-valued maps (Thm. 4.1).

The following can be found in [28] (see also [1] for a different proof with more general hypotheses).

Theorem 4.1. Let u ∈ W 1,p(Ω;Sn−1), p ≥ n − 1 and suppose that Ju is a Radon measure, then exist
{xi}m

i=1 ⊂ Ω and di ∈ Z such that:

Ju = ωn

m∑
i=1

diδxi

where di = deg(u, ∂B(xi, ri), Sn−1) with ri small enough.

Observe that if p > n− 1, thanks to Sobolev immersion, u ∂Br(x) is continuous for almost all radii, so the
degree considered in the theorem is the classical Brouwer degree of a continuous map (in the case p = n− 1 one
should refer to the theory of Brouwer degree in BMO, see [7]).

Theorem 4.2. Let u ∈ W 1,p(Ω;Sn−1), p ≥ n − 1 then there exists a sequence {uk} ⊂ C∞(Ω;Sn−1) strongly
converging to u if and only if

Ju = 0.

This theorem has been proved for the case p = n−1 in [4] but the technique used there cannot be generalized.
The proof for the case p ∈ (n − 1, n), instead, is an easy consequence of the techniques used in the proof of
Theorem 1 of [5]. Another proof has recently been given in [42].

With these tools we are now able to prove the following:

Theorem 4.3. Let u ∈ W 1,p(Ω;Sn−1), p > n− 1, such that TV p(u,Ω) <∞, then:

|Ju|(Ω) = TV p(u,Ω).
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Proof. Recall that TV p(u,Ω) <∞ implies that Ju is a Radon measure hence, thanks to Theorem 4.1, we have

Ju = ωn

m∑
i=1

diδxi .

For simplicity we assume

Ju = ωnd δx0

for some x0 ∈ Ω with d = deg(u, ∂B(x0, r), Sn−1), the proof in the general case being equal. By translation we
can suppose x0 = 0.

Choose an r < 1
2 dist(0,Ω), we clearly have

Ju(Ω \B(0, r)) = 0

and so we can find a sequence uk of smooth maps with values in Sn−1 strongly converging to u in
W 1,p

(
Ω \B(0, r)

)
. Thanks to a Fubini type argument we can find s ∈ (r, 2r) such that:

• ‖uk − u‖W 1,p(∂B(0,s)) → 0;

•
∫

∂B(0,s)

|Du|p ≤ 1
r

∫
B(0,2r)

|Du|p.

From Sobolev Embedding Theorem we have that ‖uk − u‖L∞(∂B(0,s)) → 0 and so, for k large, we have:

deg(uk, ∂B(0, s), Sn−1) = deg(u, ∂B(0, s), Sn−1) = d.

Denote with w : ∂B(0, s) → Sn−1 a smooth map such that:

deg(w, ∂B(0, s), Sn−1) = d

#{x ∈ ∂B(0, s) : w(x) = y} = |d|

where the last equality holds for all points in Sn−1 except two. Hopf Theorem implies that for every k there
exists a continuous homotopy Hk : ∂B(0, s) × [0, 1] → Sn−1 such that

Hk(·, 0) = w(·) and Hk(·, 1) = uk ∂B(0, s)(·).

Mollifying Hk and projecting again on Sn−1 we can suppose the homotopy to be smooth, see [41], Lemma 3.
Let �� s and consider the map:

vk,s,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk(x) if x ∈ Ω \B(0, s)
uk

(
s x
|x|
)

if x ∈ B(0, s) \B(0, 2�)

Hk

(
s x
|x| ,

|x|−�
�

)
if x ∈ B(0, 2�) \B(0, �)

|x|
� w
(
s x
|x|
)

if x ∈ B(0, �).



194 G. DE PHILIPPIS

Then (recall that the area formula (1.1) implies that if v : A→ R
n is Lipschitz and v(A) ⊂ Sn−1 then detDv = 0

a.e. on A):

∫
Ω

| detDvk,s,�| =
∫

B(0,�)

| detDvk,s,�|

=
∫

B(0,�)

∣∣∣∣∣ detD

(
|x|
�
w

(
s
x

|x|

))∣∣∣∣∣ dx =
∫

B(0,1)

∣∣∣∣∣ detD

(
|x|w

(
s
x

|x|

))∣∣∣∣∣ dx
=
∫

Rn

#

{
x ∈ B(0, 1): |x|w

(
s
x

|x|

)
= y

}
dy

=
∫

B(0,1)

#

{
x ∈ ∂B(0, s) : w(x) =

y

|y|

}
dy = ωn|d| = |Ju|(Ω),

since Proposition 3.2 gives the opposite inequality to conclude the proof we just have to show that vk,s,� ⇀ u.
Actually we can show more, in fact we have strong convergence.

Observing that ‖vk,s,�‖∞ ≤ 1 we obtain:

∫
Ω

|vk,s,� − u|p ≤
∫

Ω\B(0,r)

|uk − u|p + 2p|B(0, r)| → 0

for k → ∞ and r → 0 (recall that s ∈ (r, 2r)).
Moreover:

∫
Ω

|Dvk,s,� −Du|p ≤
∫

Ω\B(0,r)

|Duk −Du|p

+ C

{∫
B(0,s)

|Du|p +
∫

B(0,s)

∣∣∣∣∣D
(
uk

(
s
x

|x|

))∣∣∣∣∣
p

+
∫

B(0,2�)

|Dvk,s,�|p
}
. (4.1)

We now estimate the second and third terms inside the brackets.
The second one can be majorized as follows (see Lem. A.2):

∫
B(0,s)

∣∣∣∣∣D(uk

(
s
x

|x|

)∣∣∣∣∣
p

≤ Cs

∫
∂B(0,s)

|Duk|p

≤ 2Cs
∫

∂B(0,s)

|Du|p ≤ 2C
s

r

∫
B(0,2r)

|Du|p ≤ 4C
∫

B(0,2r)

|Du|p.

Finally the last term can be estimated by:

∫
B(0,2�)

|Dvk,s,�|p ≤
(

max{LipHk,Lipw}
)p ∫

B(0,2�)

(
1
�p

+ s
1

|x|p
)

≤ C(n, p)(max{LipHk,Lipw})p�n−p.

Hence, looking at (4.1), we have

∫
Ω

|Dvk,s,� −Du|p ≤ α(k, r) + β(r) + δ(k, �)
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where β(r) → 0 for r → 0, α(k, r) → 0 for k → ∞ (and fixed r) and δ(�, k) → 0 for � → 0 (and fixed k). It’s
now clear that

‖u− vk,s,�‖W 1,p(Ω) → 0. �
We remark that, thanks to the strong convergence and a standard diagonal procedure, the previous theorem

gives a sequence of smooth maps such that for any open cube QR ⊂ Ω such that xi /∈ ∂QR:

•
∫

QR

| detDvk| → TV p(u,QR);

• lim sup
k→∞

∫
QR

|Dvk|p ≤M

∫
QR

|Du|p.
Notice that this is a fine cover of Ω, this fact will be used in the proof of Theorems 6.1 and 6.2.

5. Maps with positive degree

According to the discussion in Section 3 we have to impose some conditions about the sign of Brouwer degree
of u if we want to get equality between |Ju| and TV p. The following one turns out to to be sufficient.

In the sequel we will always assume p ∈ (n− 1, n).

Definition 5.1. We say that u ∈ W 1,p(Ω) weakly preserves orientation (u ∈WOP (Ω)) if for every x ∈ Ω and
almost every radii r:

Deg(u,B(x, r), y) ≥ 0. (5.1)

WOP condition is inspired by the INV condition of [38] and in some sense generalizes it. In fact in [38] it is
showed that if u satisfies the INV condition and detDu > 0 almost everywhere, then Deg(u,B(x, r), y) ∈ {0, 1}
for almost all r.

If u is a smooth map then u ∈ WOP (Ω) if and only if detDu ≥ 0 in Ω. For a generical Sobolev map
WOP condition is stronger that detDu ≥ 0 almost everywhere. Roughly speaking we are asking to preserve
orientation also in the discontinuity points.

Example 5.2. Consider u : B(0, 1) → R
2:

u(x) =
1 − |x|
|x| (−x1, x2)

then detDu > 0 a.e., but Deg(u,B(0, r), y) ≤ 0, in fact a continuous map coinciding with u on ∂B(0, r) is the
affine function:

w(x) =
(1 − r)
r

(−x1, x2)

for which deg(w,B(0, r), y) ≤ 0.

Observe that the class WOP ∩ {‖u‖∞ ≤ C} is weakly closed. This is an immediate consequence of the
continuity of degree with respect to weak convergence and of the following well-known result see [38], Lemma 2.9.

Lemma 5.3. Let {uk} ⊂ W 1,p(Ω), uk ⇀ u then for every x ∈ Ω and almost every r ∈ (0, dist(x, ∂Ω)) there
exists a subsequence, depending on x and r, such that ukj ⇀ u in W 1,p(∂B(x, r)).

The following proposition gives some useful properties of the distributional Jacobian of WOP maps, the
proof follows the one for INV maps in [38]:

Proposition 5.4. Let u ∈WOP (Ω) ∩W 1,p ∩ L∞ then:
(1) Ju is a positive Radon measure;
(2) for every x and almost every r:

Ju(B(x, r)) =
∫

Rn

Deg(u,B(x, r), y)dy. (5.2)
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Proof. The first statement will follow if we are able to prove that (Ju � �ε)(x) ≥ 0 where �ε are standard
mollifiers. Choose a function f ∈ C∞([0, 1)) with f ′ ≤ 0 such that �ε(x) := fε(|x|) is a family of mollifiers,
where fε(r) := 1

εn f( r
ε )

(Ju � �ε)(x) = 〈Ju, �ε(· − x)〉
= − 1

n

∫
B(x,ε)

(adjDu(y) · u(y)) ·D�ε(x− y)dy

= − 1
n

∫ ε

0

f ′
ε(s)

∫
∂B(x,s)

(adjDu · u) · ν dHn−1ds

= − 1
n

∫ ε

0

f ′
ε(s)Deg(u,B(x, s), y)ds ≥ 0

where in the last equality we have applied (2.4) with g(y) =
y

n
.

To prove the second statement choose:

fδ(�) =

⎧⎪⎨
⎪⎩

1 � < r − δ
r−�

δ r − δ < � < r

0 � > r

then for a.e. r:

Ju(B(x, r)) = lim
δ→0

〈Ju, fδ(| · −x|)〉

= lim
δ→0

− 1
n

∫
B(x,r)

(adjDu(y) · u(y)) ·Dyfδ(|y − x|)dy

= lim
δ→0

1
n

1
δ

∫ r

r−δ

∫
∂B(x,s)

(adjDu · u) · ν dHn−1ds

=
1
n

∫
∂B(x,r)

(adjDu · u) · ν dHn−1 =
∫

Rn

Deg(u,B(x, r), y)dy. �

In the sequel we will need to have a criterion to establish if equality (5.2) holds. Suppose that u ∈ W 1,p(Ω)∩
L∞ and TV p(u,Ω) <∞. Choose a sequence wn ∈ C1(Ω) ∩W 1,n weakly converging to u and such that

lim sup
n→∞

∫
Ω

| detDwn| ≤ C.

Notice that you can also suppose sup ‖wn‖∞ ≤ C without loss of generality (see the proof of Thm. 5 in [23]).
Then (up to subsequences) there exists a positive Radon measure σ such that

detDwndLn *
⇀Ju and | detDwn|dLn *

⇀σ.

Now for any Lipschitz D ⊂ Ω such that

σ(∂D) = 0 and wn ⇀ u in W 1,p(∂D)
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we have

Ju(D) = lim
n

∫
D

detDwn

= lim
n

∫
Rn

deg(wn, D, y)dy =
∫

Rn

Deg(u,D, y)dy

thanks to Proposition 2.4.
We will need the following lemma due to Bethuel [5].

Lemma 5.5. Let Q = [0, R]n, u ∈ W 1,p(Q). Then there exists a constant M such that for almost every
r > 0 small enough we can find a partition of Q in nr = O

(
1

rn

)
cubes Q(i)

r with edge r and n′
r = O

(
1

rn−1

)
parallelepipeds P (i)

r , with edges lj ∈ [ r
4 ,

7r
4 ], j = 1, . . . , n such that:

nr∑
i=1

∫
∂Q

(i)
r

|Du|pdHn−1 +
n′

r∑
i=1

∫
∂P

(i)
r

|Du|pdHn−1 ≤ M

r

∫
Q

|Du|pdx. (5.3)

Moreover we can suppose u ∂Qi
r ∈W 1,p(∂Qi

r) (respectively u ∂P i
r ∈W 1,p(∂P i

r)).

Proof. Let r ∈ (0, R), t ∈ ( r
4 ,

3r
4 ) and i ∈ {1, . . . , n}, define

Hr,i,t =

{
x ∈ Q : xi = t+ jr, j = 0, . . . ,

⌊
R− r

r

⌋}
.

Fubini’s Theorem implies that for every i:

∫ 3r
4

r
4

(∫
Hr,i,t

|Du|pdHn−1

)
dt ≤

∫
Q

|Du|pdx

and so there exists t(i) ∈ ( r
4 ,

3r
4 ) such that:

∫
Hr,i,t(i)

|Du|pdHn−1 ≤ 2
r

∫
Q

|Du|pdx.

Repeating this procedure for every direction i = 1, . . . , n we obtain the desired partition of Q, in fact:

nr∑
i=1

∫
∂Q

(i)
r

|Du|pdHn−1 +
n′

r∑
i=1

∫
∂P

(i)
r

|Du|pdHn−1

≤ 2n
r

∫
Q

|Du|pdx+
∫

∂Q

|Du|pdHn−1 ≤ 2n+ 1
r

∫
Q

|Du|pdx

if r is small enough. �

In the sequel we are going to denote both the cubes and the parallelepipeds with the improper name of
cubes. Observe that for each parallelepiped there exists an affine bijection L : P i

r → [0, r]n such that the
Lipschitz constant of L (and of L−1) is bounded by an universal constant not depending on r.

The following is the main result of this section.
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Theorem 5.6. Let u ∈W 1,p(Ω) ∩ L∞
loc, p ∈ (n− 1, n) and suppose n ≥ 3 and u ∈WOP and TV p(u,Ω) <∞.

Then:

|Ju|(Ω) = TV p(u,Ω).

Moreover for any cube QR ⊂⊂ Ω such that u ∈ W 1,p(QR), there exists a sequence of Lipschitz maps vk ⇀ u
such that: ∫

QR

| detDvk| → TV p(u,QR) = Ju(QR)

and

lim sup
k→∞

∫
QR

|Dvk|p ≤M

∫
QR

|Du|p,

where M is a universal constant not depending on R.

Proof. Theorem 2.7 implies that there exist a Radon measure μu such that

TV p(u,A) = μp
u(A)

for any open subset of A ⊂ Ω. So by Besicovitch covering theorem it is sufficient to show that

TV p(u,QR) = μp
u(QR) = Ju(QR)

holds for any cube QR ⊂⊂ Ω such that u ∈W 1,p(QR).
Since R is fixed we will denote QR simply by Q. Recalling Proposition 3.2 we have just to show that

TV p(u,Q) ≤ Ju(Q).

By Proposition 2.1 we can find a sequence of Lipschitz maps {uh} converging to u in W 1,p(Q) and satisfying:

(1) ‖uh‖L∞(Q) ≤ ‖u‖L∞(Q);

(2)
∫

Q

|Duh|p ≤ 2
∫

Q

|Du|p;

(3)
∑

h

‖uh − u‖W 1,p <∞.

Using Lemma 5.5 we can find a sequence of radii rk → 0 and a partition of QR in nk =
(
C R

rk

)n small cubes
Qi

rk
with edges at most 7rk

2 for which:

(1) Ju(Qi
rk

) =
∫

Deg(u,Qi
rk
, y)dy;

(2) Ju

(⋃
i

∂Qi
rk

)
= 0;

(3)
∑∫

∂Qi
rk

|Du|p ≤ M

rk

∫
Q

|Du|p;

(4) uh → u in W 1,p

(⋃
∂Qi

rk

)
.
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The only point that it is not immediate is the first one but it follows from the remark after Proposition 5.4. In
fact it is easy to see that the sequence of radii rk could be chosen such that

σ(∂Qi
rk

) = 0 and wn ⇀ u in W 1,p(∂Qi
rk

)

where wn is the same sequence appearing in the remark.
Thanks to Proposition 2.4 for every k we can find an h(k) for which:

(1) ‖uh(k) − u‖L∞(
⋃

∂Qi
rk

) ≤ 1
k

;

(2)
∫

|Deg(u,Qi
rk
, y) − deg(uh(k), Q

i
rk
, y)| ≤ 1

knk
for i = 1, . . . , nk.

We now construct the sequence of Lipschitz maps that satisfies the claim of the theorem on every small
cube of the partition. For simplicity we make the construction only on the inner cubes (which are cubes with
edge 2rk and hence of the form Q(xi, rk)). For the ones at the boundary, which are actually parallelepipeds,
we have to do same work considering in place of u Qi

rk
the map v = u Qi

rk
◦L, where L is the affine function

mapping Qi
rk

to [0, rk]n, it is easy to see that everything still works.
For k ∈ N and i = 1, . . . , nk we apply Proposition 2.6 to the map uh(k) Qi

rk
and obtain, for every positive σ,

a Lipschitz map gi
k such that gi

k = uh(k) on ∂Qi
rk

and

∫
Qi

rk

| detDgi
k| ≤

∫
| deg(uh(k), Q

i
rk
, y)|dy +

σ

nk
·

Define now on Qi
rk

:

vk(x) =

{
uh(k)

(
rk

x−xi

|x−xi|∞ + xi

)
if �k ≤ |x− xi|∞ ≤ rk

gi
k

(
rk

�k
x
)

if |x− xi|∞ ≤ �k

where xi is the center of the cube, and �k is a sequence to be chosen later.
Observe now that:

∫
Q

| detDvk| =
nk∑
i=1

∫
Qi

rk

| detDvk|

=
nk∑
i=1

(
rk
�k

)n ∫
Qi

�k

| detDgi
k

(
rk
�k
x

)
|dx =

nk∑
i=1

∫
Qi

rk

| detDgi
k(x)|dx

≤
nk∑
i=1

∫
Rn

| deg(uh(k), Q
i
rk
, y)|dy + σ ≤

nk∑
i=1

∫
Rn

Deg(u,Qi
rk
, y)dy +

1
k

+ σ

=
nk∑
i=1

Ju(Qi
rk

) +
1
k

+ σ = Ju(Q) +
1
k

+ σ

so the first claim will follow if we are able to show that vk ⇀ u.
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First of all we notice that we can suppose ‖gi
k‖∞ ≤ 2‖u‖∞, in fact thanks to Lemma A.1 we can truncate

the sequence in [−2‖u‖∞, 2‖u‖∞]n without increasing the value of:∫
Qi

rk

| detDgi
k|.

∫
Q

|vk − u|p =
nk∑
i=1

∫
Qi

rk

|vk − u|p

≤
nk∑
i=1

C

{∫
Qi

rk

|u− uh(k)|p + �n
k‖gi

k‖p
∞

+
∫

Qi
rk

∣∣∣∣∣uh(k)(x) − uh(k)

(
rk

x− xi

|x− xi|∞ + xi

)∣∣∣∣∣
p

dx

}

≤ C

{∫
Q

|u− uh(k)|p +

(
�k

rk

)n

‖u‖p
∞

+
nk∑
i=1

∫
Qi

rk

∣∣∣∣∣uh(k)(x) − uh(k)

(
rk

x− xi

|x− xi|∞ + xi

)∣∣∣∣∣
p

dx

}

≤ C

{∫
Q

|u− uh(k)|p +

(
�k

rk

)n

‖u‖p
∞ +

nk∑
i=1

rp
k

∫
Qi

rk

|Duh(k)|pdx
}

≤ C

{∫
Q

|u− uh(k)|p +

(
�k

rk

)n

‖u‖p
∞ + rp

k

∫
Q

|Du|p
}

where we have used the fact that nk = O( 1
rn

k
) in the second inequality and Lemma A.3 in the third one.

Consider now the gradient of vk:

∫
Q

|Dvk|p =
nk∑
i=1

∫
Qi

rk

|Dvk|p

≤
nk∑
i=1

∫
Qi

rk

∣∣∣∣∣Dx

(
uh(k)

(
rk

x− xi

|x− xi|∞ + xi

))∣∣∣∣∣
p

+ 2nnk

(
rk
�k

)p

(�k)n max
i∈{1,...,nk}

Lip(gi
k)p

≤ 1
n− p

nk∑
i=1

rk

∫
∂Qi

rk

|Duh(k)|p + C(n,R)

(
�k

rk

)n−p

max
i∈{1,...,nk}

Lip(gi
k)p

≤ 2
n− p

nk∑
i=1

rk

∫
∂Qi

rk

|Du(x)|p + C(n,R)

(
�k

rk

)n−p

max
i∈{1,...,nk}

Lip(gi
k)p

≤M

∫
Q

|Du|p + C(n,R)

(
�k

rk

)n−p

max
i∈{1,...,nk}

Lip(gi
k)p.
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If we choose �k to satisfy:

(1)

(
�k

rk

)n−p

max
i∈{1,...,nk}

Lip(gi
k)p → 0;

(2)

(
�k

rk

)n

→ 0,

we have that vk ⇀ u and so the first claim is proven. Moreover with the previous choice we have:

lim sup
k→∞

∫
Q

|Dvk|p ≤M

∫
Q

|Du|p

and so also the equi-boundedness hypothesis is satisfied. �

6. General relaxation results

In this section we give some closed formulas for the relaxed functional Fp(u) when the hypothesis of Theo-
rems 5.6 and 4.3 are satisfied. This extends some results for radial maps proved in [31], see also [22,23].

Theorem 6.1. Let g : R → [0,∞) be a convex function such that:

a|t| ≤ g(t) ≤ b(1 + |t|). (6.1)

Consider:

G(u) =
∫

Ω

g(detDu)

and the relaxed functional:

G(u,Ω) = inf

{
lim inf
k→∞

G(uk), uk ∈ W 1,n
loc , uk ⇀ u ∈ W 1,p

}
.

If u ∈ W 1,p(Ω; Rn) ∩ L∞
loc with p > n− 1 satisfies G(u,Ω) <∞ and

u ∈W 1,p(Ω;Sn−1)

or
u ∈ WOP (Ω) and n ≥ 3,

then we have:

G(u,Ω) =
∫

Ω

g(detDu) +
∫

Ω

g∞

(
d (Ju)S

d|(Ju)S |

)
d |(Ju)S |. (6.2)

Proof. Thanks to Theorem 2.7 there exists a Radon measure μu such that for every open subset A ⊆ Ω

G(u,A) = μu(A).

Using again Theorem 2.7 we only need to show that

μS
u = g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S | (6.3)
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in fact, in this case

G(u,Ω) = μu(Ω) = μa
u(Ω) + μS

u(Ω)

=
∫

Ω

g(detDu) +
∫

Ω

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |.

From now on suppose u ∈ L∞.

Step 1. Lower bound.
Equation (6.1) implies that TV p(u,Ω) <∞ and so Ju is a Radon measure. Thanks to Lemma A.1, for any

sequence uk ∈ W 1,n
loc weakly converging to u we can find a sequence vk ∈W 1,n

loc still converging to u such that

lim inf
k→∞

∫
A

g(detDvk) ≤ lim inf
k→∞

∫
A

g(detDuk)

for any open set A ⊂ Ω and ‖vk‖∞ ≤ 2‖u‖∞. According to Proposition 3.1 we have that

detDvk dLn *
⇀Ju

as Radon measures. Consider now the functional

H(u,A) =
∫

A

g(detDu(x))dx +
∫

A

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |.

Since, thanks to Theorem 1.1, (Ju)a = detDudLn we can apply Theorem 2.8 to obtain (recall that if v is in
W 1,n

loc then (Jv)S = 0)

lim inf
k→∞

G(uk, A) = lim inf
k→∞

∫
A

g(detDuk)

≥ lim inf
k→∞

∫
A

g(detDvk)

= lim inf
k→∞

H(vk, A) ≥ H(u,A)

=
∫

A

g(detDu(x))dx +
∫

A

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |

and so, taking the infimum on all sequences, the lower bound holds.

Step 2. Upper bound.
Thanks to (a variant of) Besicovitch covering Theorem, for every ε > 0 we can find a finite family of disjoint

cubes {Qi
Ri
} contained in A such that u ∈W 1,p(QRi

) and:

μu(A) ≤
∑

i

μu(Qi
Ri

) + ε.

Consider now for every cube Qi
Ri

the sequence of maps {uk} ∈ W 1,n(Qi
Ri

) provided by Theorems 5.6 and 4.3.
This sequence satisfies:

detDukdLn *
⇀Ju,
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and ∫
Qi

Ri

| detDuk| → |Ju|(Qi
Ri

).

So we have:

μu(Qi
Ri

) ≤ lim inf
k→∞

∫
Qi

Ri

g(detDuk)

≤ lim sup
k→∞

{
g(0)|Qi

Ri
| +
∫

Qi
Ri

g∞(detDuk(x))dx

}

= g(0)|Qi
Ri
| +
∫

Qi
Ri

g∞

(
d (Ju)
d |(Ju)|

)
d |(Ju)|

≤ g(0)|Qi
Ri
| +
∫

Qi
Ri

g∞

(
d (detDu)
d | detDu|

)
d | detDu| +

∫
Qi

Ri

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |

= g(0)|Qi
Ri
| +
∫

Qi
Ri

g∞(detDu(x))dx +
∫

Qi
Ri

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |

where we have used Reshetnyak continuity Theorem 2.9, the sub-additivity of g∞, the trivial inequality

g(t) ≤ g(0) + g∞(t)

and the fact that if ν and λ are mutually singular measures then

d(ν + λ)
d|ν + λ| =

dν
d|ν|

|ν|− almost everywhere.
Then we have:

μu(A) ≤
∑

i

μu(Qi
Ri

) + ε

≤
∑

i

{
g(0)|Qi

Ri
| +
∫

Qi
Ri

g∞(detDu(x))dx +
∫

Qi
Ri

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |

}
+ ε

≤ g(0)|A| +
∫

A

g∞(detDu(x))dx +
∫

A

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S | + ε.

Letting ε→ 0 and taking singular parts we get the desired upper bound.
Consider now u ∈ L∞

loc, since TV p(u,Ω) < ∞ Proposition 3.2 implies that Ju is a Radon measure in Ω.
Thanks to the previous part of the theorem we know that equation (6.2) holds for any open set A ⊂⊂ Ω and,
since both members are Radon measures, by approximation it holds for Ω. �

We can also prove the following theorem:

Theorem 6.2. Let f : M
n×n → R be a positive quasi-convex function satisfying the growth estimate:

g(det ξ) ≤ f(ξ) ≤ c(1 + |ξ|p) + g(det ξ)
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where g : R → [0,∞) is a convex function satisfying the assumptions of Theorem 6.1. If u ∈W 1,p(Ω; Rn)∩L∞
loc

with p > n2

n+1 satisfies F(u,Ω) <∞ and
u ∈W 1,p(Ω;Sn−1)

or
u ∈WOP (Ω) and n ≥ 3

then:

F(u,Ω) =
∫

Ω

f(Du) +
∫

Ω

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |.

Proof. Since p > n2

n+1 the remark after Proposition 3.1 implies that any admissible sequence uk ⇀ u with
bounded energy satisfies

Juk
*
⇀Ju

as Radon measures. Consider now the measure μu, given by Theorem 2.7 which represents the relaxed func-
tional F , following the same lines of the proof of Theorem 6.1 and recalling that sequences given by Theorems 5.6
and 4.3 satisfy

lim sup
k→∞

∫
Q

|Duk|p ≤M

∫
Q

|Du|p

we obtain, for any open subset A ⊂⊂ Ω, the bounds

∫
A

g(detDu(x))dx +
∫

A

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S | ≤ μu(A)

and

μu(A) ≤ cM

∫
A

(1 + |Du|p) + g(0)|A| +
∫

A

g∞(detDu(x))dx

+
∫

A

g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |.

Taking the singular parts we obtain:

μs
u = g∞

(
d (Ju)S

d |(Ju)S |

)
d |(Ju)S |.

Since Theorem 2.7 gives
μa

u = f(Du)dLn

we obtain the claim exactly as in Theorem 6.1. �
A careful inspection of the proof of Theorem 5.6 shows that in the previous theorem the assumption u ∈ L∞

loc

can be dropped.
We remark that this theorem applies to functionals related to non-linear elasticity whose model case is:

F (u) =
∫

Ω

g(detDu) + |Du|p

and to Geometric Measure Theory, as the area of the graph of u:

A(u) =
∫

Ω

|M(Du)|

where M(Du) is the n-vector tangent to the graph of u.
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A. Appendix

We collect here some useful results.

Lemma A.1. Let g : R → [0,∞). Let u ∈W 1,p(Ω)∩L∞ and uk ∈W 1,n
loc (Ω) a sequence weakly converging to u

in W 1,p and satisfying

lim inf
k→∞

∫
Ω

g(detDuk) <∞,

then there exists a sequence vk ∈ W 1,n
loc (Ω) weakly converging to u such that ‖vk‖∞ ≤ 2‖u‖∞ and

lim inf
k→∞

∫
A

g(detDvk) ≤ lim inf
k→∞

∫
A

g(detDuk)

for any open set A ⊂ Ω.

Proof. Up to a subsequence we can suppose that uk → u almost everywhere. Let vk = πN (uk) where

πN (x) =

⎧⎨
⎩
x if |x| ≤ N

N
x

|x| otherwise

with N = 2‖u‖∞. Clearly vk ∈ W 1,n
loc , vk ⇀ u in W 1,p and ‖vk‖∞ ≤ 2‖u‖∞. To verify the last assertion notice

that
detDvk(x) = detDuk(x)1{|uk|≤N}(x) a.e.

and hence

lim inf
k→∞

∫
A

g(detDvk) ≤ lim inf
k→∞

∫
A

g(detDuk) + lim sup
k→∞

g(0)|{|uk| > N} ∩A|

= lim inf
k→∞

∫
A

g(detDuk). �

Lemma A.2. Let u : B(x0, R) → R
n be a smooth map and consider v defined by

v(x) = u

(
R
x− x0

|x− x0| + x0

)
.

Then, for p < n ∫
B(x0,R)

|Dv|p ≤ C(n, p)R
∫

∂B(x0,R)

|Du|p.

Proof. We can suppose x0 = 0 and R = 1. We have

∫
B

∣∣∣∣∣D
(
u

(
x

|x|

))∣∣∣∣∣
p

≤
∫

B

∣∣∣∣∣Du
(
x

|x|

)∣∣∣∣∣
p

1
|x|p

=
∫ 1

0

∫
∂B

|Du(ω)|pdHn−1(ω)�n−p−1d� ≤ 1
n− p

∫
∂B

|Du(ω)|pdHn−1. �

Lemma A.3. Let u ∈ C1(Q(x0, R)) and define:

w(x) = u

(
R
x− x0

|x− x0|∞ + x0

)
.
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Then, for every p ≥ 1, we have ∫
QR

|u− w|p ≤ C(n, p)Rp

∫
QR

|Du|p.

Proof. We can suppose that x0 = 0 and R = 1. Consider the change of variable:

{
ω = x

|x|∞ ∈ ∂Q1

� = |x|∞ ∈ [0, 1]

we have ∣∣∣∣∣u(x) − u

(
x

|x|∞

)∣∣∣∣∣
p

= |u(�ω) − u(ω)|p ≤ (1 − �)p−1

∫ 1

�

|Du(tω)|pdt.

Multiplying both sides by �n−1 and recalling that � ≤ t we obtain

|u(�ω) − u(ω)|p�n−1 ≤ (1 − �)p−1

∫ 1

�

|Du(tω)|ptn−1dt.

Integrating both members with respect to ω ∈ ∂Q1 and � ∈ [0, 1] and recalling the co-area formula we have the
result. �
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