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In this study we provide an analytical characterization of the impact of zero returns on the popular
realized covariance estimator of Barndorff-Nielsen and Shephard (2004). In our framework, efficient price
processes evolve as a semimartingale with some likelihood of repeated prices. We show that the standard
realized covariance estimator is asymptotically affected by a downward bias, and the size of the bias
depends on these likelihoods. We demonstrate that this result can be used to construct a consistent
estimator of the integrated covariance of a vector semimartingale. The advantages with respect to other
estimators are discussed in data.
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1. Introduction

It is well known that the lack of synchronicity in the observation times of stock price returns
causes some unwanted features in the inference of their integrated covariance. In particular, non-
parametric estimators of the integrated covariance, constructed on artificially synchronized time
series by previous tick or other interpolation schemes, tend to have an attenuation bias as the sam-
pling interval progressively shrinks. This effect was documented for the first time by Epps (1979)
and was named, after him, Epps effect. Intuitively, the previous-tick interpolation scheme, which
attributes to each instant of the sampling partition the last available observation, generates, at a
high-frequency, a large number of zero returns. The latter are known to be the main determinant of
the Epps effect (cf. e.g. Hayashi and Yoshida 2005 and references therein). However, the asymptotic
bias induced by zero returns on integrated covariance estimators is not analytically known.

Phillips and Yu (2007) study the impact of zero returns or, in their terminology, “flat trad-
ing”, on realized volatility and find that the latter remains consistent when trading prices have a
nonzero probability of being repeated. This paper investigates the impact of flat trading on the
realized covariance estimator of Barndorff-Nielsen and Shephard (2004) and provides a closed-form
expression for its asymptotic bias, thus leading to an analytical characterization of the Epps effect.
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Building on the model1 of Phillips and Yu (2007), where flat trading is built-in to the data gener-
ating process, we show that the standard realized covariance estimator is asymptotically affected
by a downward bias that depends on the probabilities of flat trading of the assets.

From an empirical perspective, the Epps effect has been investigated by many scholars over
the last decades. Among the numerous references, in the present work we will name just a few of
them. The impact of asynchronous data on covariance measurement has been studied in Scholes
and Williams (1977) and Lo and MacKinlay (1990). On the other hand, Renò (2003) investigates
the relative impact of asynchronous trading and genuine lagged correlations on the Epps effect.
Tóth and Kertész (2007b,a) confirm the findings of the previous study in the sense that they con-
clude that the asynchronous trading affects the Epps effect the most, as a result of the increasing
market efficiency. Moreover, the authors put forward the idea that the Epps effect is related also
to the typical reaction time of market participants. Münnix et al. (2010) investigate the impact of
decimalization of prices and, later on, Münnix et al. (2011) argue that the Epps effect is mainly
caused by asynchrony of trades and the tick-size. An empirical study on the effect of asynchronic-
ity and lagged correlations is provided also in Mastromatteo et al. (2011), whereas Saichev and
Sornette (2014) propose a simple microstructure return model explaining microstructure noise and
the Epps effect. More recently, Gurgul and Machno (2016) and Gurgul and Machno (2017) have
investigated the impact of asynchronous trading on the Epps effect in, respectively, the stock ex-
changes of Vienna and Warsaw. However, less attention has been paid to the problem of finding an
analytical characterization of the bias. A notable exception is given by the work of Zhang (2011),
who provides an expression for the bias induced by previous-tick synchronization on realized covari-
ance. The main difference with our approach is that, instead of dealing with asynchronous prices,
we assume that prices are synchronized but we allow for the possibility of repeated prices. Zero
returns naturally arise in this framework as a consequence of illiquidity or, more precisely, of lack
of trading activity. We show that the consistency of standard realized covariance can be restored
via multiplication by a correction coefficient that is particularly simple to compute in practice.

Researchers have employed several methods to deal with asynchronous data when inferring
the integrated covariance of two or more asset prices. Hayashi and Yoshida (2005) provided an
estimator based on tick-by-tick data and proved its asymptotic consistency. A similar route has
been undertaken by De Jong and Nijman (1997). In contrast, the Multivariate Realized Kernel
approach by Barndorff-Nielsen et al. (2011) is based on data synchronized with the refresh-time
scheme (introduced, for the first time, by Harris et al. 1995), which prescribes to recursively pick-
up the most recent price-update among all the assets under analysis. This methodology has also
been employed in Christensen et al. (2010) in addition with a pre-averaging filter introduced to
mitigate the effect of market microstructure noise. Mancino and Sanfelici (2011), instead, apply a
multivariate Fourier method which does not require any synchronization procedure. Finally, Ait-
Sahalia et al. (2010), Corsi et al. (2015), Shephard and Xiu (2017) propose estimators based on
quasi-maximum likelihood estimation.

In our approach, we assume that flat trading is a characterizing feature of the data generating
process for asset prices. More precisely, we focus on a bivariate process and assume the existence of

two correlated latent efficient price processes
!

Y
p1q
t ; t ě 0

)

and
!

Y
p2q
t ; t ě 0

)

, each of which follows

an Itô-semimartingale. Then, at each sampling time, we assume that for each stock the occurrence
of a zero return (or of a repeated price) is driven by a triangular array of i.i.d. Bernoulli random
variables. The observed price may thus either coincide with the latent efficient price (Bernoulli
variate equals to one), or not update and stays constant (Bernoulli variate equals to zero). Using
a standard infill asymptotic framework (i.e. processes are assumed to be observed on a fixed time
interval with mesh tending to zero) we prove that the realized covariance between the two processes
of observed prices converges in probability to the integrated covariance of the two latent prices,

1This model appears also in Bandi et al. (2017) and Bandi et al. (2018), where authors prove that zero returns bring insightful

economic information. An analogous model is used in Lo and MacKinlay (1990) to show that even in daily data, asynchronicity

can cause difficulties.
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multiplied by a coefficient that depends on the probabilities of flat trading of the two stocks, i.e. the
(uniform) probability that a Bernoulli variate equals one. We find that the multiplying coefficient is
always strictly smaller than one, eventually leading to a downward bias of the realized covariance
estimator and, as a direct consequence, to the Epps effect. Importantly, the multiplicative bias
can be consistently estimated by using recent results in Bandi et al. (2017, 2018). We thus obtain
a consistent estimator of the integrated covariance between the efficient prices by correcting the
realized covariance estimator for its asymptotic bias.

We conduct a Monte Carlo study in which we confirm the robustness of the proposed correc-
tion with respect to three sources of disturbance: microstructure noise, tick size and a time-varying
probability of flat trading with a seasonal component.

Our methodology can be used to build an estimator of the integrated covariance of a mul-
tivariate semimartingale by applying the asymptotic bias correction to each off-diagonal element
of the realized covariance matrix and then regularizing it to obtain a positive-definite matrix. We
discuss the advantages of such bias-corrected estimator in an empirical exercise based on minimum
variance portfolio (Engle and Colacito 2006, Patton and Sheppard 2009), which proves that the
performances of the corrected estimator are, at worst, in line with those of other robust estimators
and superior in case of illiquid portfolios. Importantly, our asymptotic correction remains compu-
tationally simple even for large dimensions, since it only requires estimates of the probabilities of
flat trading. This is a relevant advantage, considering that, with large datasets, methods based on
the refresh-time synchronization imply significant data reduction while likelihood-based methods
become computationally difficult.

The paper proceeds as follows: in Section 2 we motivate and present our working framework.
In Section 3 we provide an asymptotic theory for our Epps-effect corrected estimator of integrated
covariance. We discuss the finite sample properties of the proposed estimator via Monte Carlo
simulations in Section 4. Section 5 contains the empirical application of our proposed estimator to
a portfolio of 10, 20, 30 stocks taken from the universe of the Russel 3000 constituents, and Section
6 concludes. Proofs for all limiting results are presented in the Appendix.

2. Model assumptions

We assume the existence of a filtered probability space pΩ, tFtutě0,Pq satisfying standard condi-
tions (Protter 1992). We begin with assumptions on the efficient price process and on the volatility
process.

Assumption 1 (Efficient price process) Let t P r0, T s. There exists two real-valued logarithmic
efficient price processes, denoted as Y p1q and Y p2q, each of which is a Brownian semimartingale

dY
p`q
t “ µ

p`q
t dt` σ

p`q
t dW

p`q
t ` “ 1, 2. (1)

where W
p`q
t is a standard Brownian motion, µ

p`q
t and σ

p`q
t are predictable and adapted, path-wise

Riemann integrable and bounded. The time interval r0, T s can be thought of as representing the
trading day. Besides, there exists a process ρt P p´1, 1q such that d

〈
W p1q,W p2q

〉
t
“ ρt dt. We

assume that σt has a semimartingale dynamics as well.

Our estimation target is the integrated covariance between the two efficient log-price processes,
defined as

IC “

ż T

0
σp1qs σp2qs ρsds.

The typical way of proceeding to estimate IC is to synchronize the prices of the two assets. For
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instance, in the previous tick interpolation scheme, one fixes a regular grid Υn “ tt1,n, . . . , tn,nu
where elements are equally spaced in time and attributes to each instant of the sampling partition
the last available observation. Then, the realized covariance estimator of Barndorff-Nielsen and
Shephard (2004) is applied to this artificially synchronized time series. If it were possible to directly

observe the efficient price processes Y
p1q
j,n and Y

p2q
j,n the convergence in probability

”

Y p1q, Y p2q
ı

n

.
“

n
ÿ

j“1

´

Y
p1q
j,n ´ Y

p1q
j´1,n

¯´

Y
p2q
j,n ´ Y

p2q
j´1,n

¯

p
ÝÑ IC (2)

would appoint
“

Y p1q, Y p2q
‰

n
as a consistent estimator of IC. In practice, however, several frictions

prevent the observed log-price paths from following the semimartingale dynamics represented by
Eq. (1). In fact, it is well known that the estimator represented by the sum in Eq. (2), when
implemented on real data, is affected by an attenuation bias that increases with sampling frequency.
This problem was first documented by Epps (1979) and was dubbed Epps effect after him. The
wellspring of this unwanted feature resides in a pretty simple mechanical effect: at a high-frequency,
due to the asynchronicity of the trading activity, the previous tick interpolation scheme generates
a large number of zero returns1. The existence of periods of no-trading activity is the signature
left by several illiquidity frictions and translates to a loss of information, which in turn induces the
negative bias. Accordingly, this effect is exacerbated for less liquid stocks. In order to analytically
assess the impact of no-trading activity on the realized covariance estimator, in our theoretical
framework we acknowledge the existence of zero returns as an integral part of the data generating
process of asset prices. To this purpose, we build on the model of Phillips and Yu (2007), where the
authors study the impact of zero returns on realized measures of volatility. From a microstructure
viewpoint, the introduction of a nonzero probability of flat trading can be motivated in a market
model with bid-ask spread and asymmetric information, as recently discussed by Bandi et al. (2017)
and Bandi et al. (2018).

In what follows, we assume that price processes are observed at n ` 1 non-random times
equispaced over the time interval r0, T s, namely 0 ă t0,n ă t1,n ă . . . ă tn,n “ T with ∆n “

tj,n ´ tj´1,n for j ě 1.

Assumption 2 (Observed price) The two observed price processes, denoted as Xp1q and Xp2q, are

such that, on the time grid tj “ j∆n, X
p`q
t0,n “ Y

p`q
t0,n for ` “ 1, 2 while, for j “ 1, . . . , n, we have

X
p`q
tj,n “ Y

p`q
tj,n

´

1´B
p`q
j,n

¯

`B
p`q
j,nXtj´1,n

(3)

where B
p`q
j,n with ` “ 1, 2 are pairwise-independent triangular arrays of Ftj -measurable i.i.d.

Bernoulli variates such that

p`,n
def
“ P

”

B
p`q
j,n “ 1

ı

“ E
”

B
p`q
j,n

ı

nÑ8
ÝÑ p` P p0, 1q and n pp`,n ´ p`q

nÑ8
ÝÑ 0. (4)

Notice that under Assumption 2, we allow for some likelihood of occurrence of zero returns
and this likelihood is modeled as being independent across assets and in time-series. Moreover,
the probabilities p`,n, ` “ 1, 2, are assumed to be frequency-specific, in agreement with what has
been documented on equity stock data (Bandi et al. 2018).

1To have an intuition on the number of zero returns in high-frequency data, see Table (4) in the empirical application in Section

5.
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3. Limiting properties: an analytical characterization of the Epps effect

In order to develop our limit theory, we need to restrict the class of triangular arrays Bj,n with the
following additional assumption:

Assumption 3 For all j “ 1, . . . , n and ` “ 1, 2 define the number of consecutive flat trades for
asset ` before instant tj,n as

K
p`q
j,n “ min

!

k P t0, . . . , ju |B
p`q
j,n “ 1, B

p`q
j´1,n “ 1, . . . , B

p`q
j´k`1,n “ 1, B

p`q
j´k,n “ 0

)

. (5)

We assume that the maximum K
p`q
n “ maxj“1,...,n K

p`q
j,n is such that

K
p`q
n log pnq

n

p
ÝÑ 0, as nÑ8.

The theorem that follows constitutes the main theoretical result of the paper.

Theorem 3.1 Let
!

Y
p`q
t ; t ě 0

)

and
!

X
p`q
t ; t ě 0

)

, with ` “ 1, 2, be as in Assumption 1 and 2,

with the triangular arrays of Bernoulli B
p`q
j,n satisfying Assumption 3. Then, the Realized Covariance

estimator RCn, defined as

RCn
.
“

n
ÿ

j“1

´

X
p1q
j,n ´X

p1q
j´1,n

¯´

X
p2q
j,n ´X

p2q
j´1,n

¯

. (6)

has the following limit in probability

RCn
p
ÝÑ

p1´ p1q p1´ p2q

p1´ p1 p2q

ż 1

0
σp1qs σp2qs ρs ds, as nÑ8. (7)

Proof. See Appendix A.
As a result of our limit theory, RCn converges to the true integrated covariance, up to a multi-

plicative bias depending on the two asymptotic probabilities of flat trading p1 and p2. Note that
the bias is the ratio between the probability that both asset prices are updated and the probability
that at least one asset price is updated. Thus, apart from the trivial case p1 “ p2 “ 0, the multi-
plicative coefficient is lower than one and the estimated covariance is always smaller than the true
integrated covariance. We define our bias-corrected realized covariance estimator as:

RC‹n
.
“

p1´ ppn,1 ppn,2q

p1´ ppn,1q p1´ ppn,2q
RCn, (8)

where, for ` “ 1, 2, ppn,` is the estimator defined as

ppn,` “
1

n

n
ÿ

j“1

1
tX

p`q
j,n´X

p`q
j´1,n“0u

p
ÝÑ p` (9)

and where the last convergence in probability holds under Assumption 2 and 3 as proved in Bandi
et al. (2017).
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As a direct consequence of Theorem 3.1 and Eqs. (9) we have

RC‹n
p
ÝÑ

ż 1

0
σp1qs σp2qs ρs ds,

i.e. RC‹n is a consistent estimator of the integrated covariance under the presence of flat trading. It

is immediate to see that, in case the efficient price process Y
p`q
t,n is contaminated by an uncorrelated

noise term, RC‹n remains asymptotically unbiased but has an inflated variance depending on the
variance of the noise. Note that the same happens to RCn in absence of flat trading. The effect of
microstructure noise will be discussed in the simulation study in the next section.

4. Monte Carlo Simulations

Here, we assess the finite sample accuracy of the bias-corrected RC estimator proposed in Section
3. We study the impact of three (independent) sources of disturbance: micro-structural noise, price
rounding and intra-day effect in the probability of flat trading. Finally, we investigate how the
variance of RC is affected by the asymptotic probabilities of flat trading.

For these purposes, we simulate the efficient log-prices Y
p`q
t , ` “ 1, 2, following the model by

Barndorff-Nielsen et al. (2011)

dY
p`q
t “ µ

p`q
t dt` ρ σ

p`q
t dZ

p`q
t `

a

1´ ρ2 σ
p`q
t dWt, ` “ 1, 2, (10)

where Z
p`q
t and W

p`q
t are two independent Brownian motions. The stochastic volatility σ

p`q
t is sim-

ulated according to the following SDE

σ
p`q
t “ exp

´

β
p`q
0 ` β

p`q
1 f

p`q
t

¯

,

df
p`q
t “ αp`q f

p`q
t dt` dZ

p`q
t .

The value chosen for the model parameters are
´

µp`q, αp`q, β
p`q
0 , β

p`q
1

¯

“ p0.03,´1{40,´5{16, 1{8q,

for ` “ 1, 2 and ρ “ ´0.3. This set of parameters ensures that E
”

ş1
0

`

σp`q
˘2
ds
ı

“ 1. We simulate1

1000 replications of a trading day of 6.5 hours on a time-grid of one second, for a total of
6.5ˆ60ˆ60 steps.

High-frequency noise. To assess how the estimator RC‹n is affected by micro-structural noise,
we sample every second the efficient price paths simulated according to Eq. (10). The sampled

prices, Y
p`q
j,n with j “ 1, ..., n and n “ 6.5 ˆ 60 ˆ 60, are then contaminated through an additive

noise in the following way

rY
p`q
j,n “ Y

p`q
j,n ` η

p`q
j,n

where η
p`q
j,n

d
„ N

`

0, ω2
˘

and ω2 “ ξ2

c

1
n

řn
j“1

´

σ
p`q
j,n

¯4
. The tuning parameter ξ2 determines the

impact of the noise on the efficient price and it is inversely proportional to the signal-to-noise
ratio2. Once simulated, the (contaminated) efficient price is re-sampled every 1 second, 30 seconds,

1Numerical integration of the SDEs is performed on a one-second time grid via the Euler scheme.
2The larger the ξ the larger the impact of the noise and, hence, the lower the signal-to-noise ratio.
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1 minute, 5 minutes and 10 minutes. On the coarser time-grids we construct the observed price

process X
p`q
j,m, for ` “ 1, 2, following the recursive equation

#

X
p`q
0,m “

rY
p`q

0,m

X
p`q
j,m “

´

1´ Bp`qj,m
¯

rY
p`q
j,m ` Bp`qj,mX

p`q
j´1,m, j “ 1, ...,m,

where m is the number of points in the time-grid (hence m “ n “ 6.5ˆ 60ˆ 60 for the one-second

time grid, m “ 6.5ˆ60ˆ60{30 for the 30-second time grid, and so on and so forth), rY
p`q

0,m “ log pP0q

with P0 “ 100 and Bp`qj,m are independent Bernoulli random variables with E
”

Bp`qj,m
ı

“ p`,m, ` “ 1, 2.

We input the following scaling law for the probabilities of flat trading,

p`,m “ p` p1´ exp p´0.001mqq , (11)

where the parameter p` determines the asymptotic probability of flat trading. Note that, the scaling
law in Eq. (11) is compatibile with the requirement imposed by Eq. (4) of Assumption 2. As an
explicative example, at the sampling frequency of one-minute we have

m “ 390 ñ p`,m « 0.32ˆ p`,

that is, the probability of flat trading is 32% of the asymptotic probability.
We consider two different scenarios. In the first, the two stocks feature the same level of illiquidity

(i.e. p1 “ p2 with p1 P t0.20, 0.40, 0.60u). In the second, they present different levels of illiquidity
(i.e. p1 ‰ p2, with p1 P t0.20, 0.40, 0.60u and p2 “ 0.80). Table 1 (resp. Table 2) reports the average,
across all replications, of the relative1 percentage bias in the first (resp. second) case. Both tables
entail different values for ξ2 (the aggressiveness of the noise) and ∆ (the sampling frequency).

The results in Table 1 indicate that the magnitude of the bias of both RC and RC‹ is weakly
affected by the entity of microstructure noise. Concerning RC, for a fixed level of ξ2 and p1, the bias
increases (in absolute value) with the sampling frequency, because of the Epps effect. Moreover,
consistently with the result in Theorem 3.1, the probability p1 plays a crucial role. For instance,
when p1 “ 0.6 and at the sampling frequency of ∆ “ 1 second, the conventional realized covariance
estimator has a downward bias of roughly 75%, compared with a downward bias of roughly 33%
when p1 “ 0.2. This bias is attenuated at lower frequencies. At the sampling frequency of ∆ “ 10
minutes, for example, the bias of RCn varies from (approximately) 3% to 6% when p1 “ 0.2 and
p1 “ 0.6, respectively. On the other hand, the bias of RC˚ is lower than 3% in all the scenarios.
The increase of the bias of RC˚ with ∆ is a finite sample effect.

The results of Table 2 can be summarized in the following two points: 1) the bias of RC is
mainly driven by the most sluggish asset and 2) (the relative) performances of both RC and RC‹

are weakly affected by the presence of the noise.
Finally, Figure 2 shows the kernel densities of the relative bias of both RC and RC‹ (vertical axes

are reported in logarithmic scale) in the scenario p1 “ p2 “ 0.20, for different values of the sampling
frequency. The figure confirms the consistency of our bias-corrected estimator. Furthermore, Figure
2 confirms that the aggressiveness of the noise ξ solely impacts the variance of the estimator, without
affecting the bias, and it plays a significant role only at very high sampling frequencies (such as
one second).

1We consider the difference between the estimator and the true value, in units of the true value. Accordingly, the relative bias

of RCm is computed as

100ˆ
RCm ´ IC

IC
,

where IC is the true integrated covariance defined in Eq. (2). An identical definition holds for RC‹
m.
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Tick size. The finite sample performances of the bias-corrected estimator RC˚ may be under-
mined by stock tick size. In fact transaction prices are, for institutional settings, rounded at one
cent. Hence, a fraction of the observed zero returns cannot be inputed to the data generating
process in Assumption 2, which is designed to describe the lack of price adjustment induced by
absence of trading activity.

To assess the impact of tick size on the bias-corrected estimator RC˚ we explicitly accommodate
rounding of the simulated prices. We consider the case of two stocks with an equal level of illiquidity.

To isolate the role of the tick size, in this paragraph, we simulate the model in Eq. (10) with
P0 “ 50 (instead of P0 “ 100) for 1000 replications, 6.5 hours on a time-grid of one second and
ξ “ 0 (no micro-structural noise). Then we round prices to the nearest cent ($0.01), as imposed
by the actual settings of electronic financial markets. Since, in these settings, the estimator of the
probability of zero return in Eq. (9) is highly biased, we adopt the finite-sample correction proposed
by Bandi et al. (2018). Here, the authors develop an estimator of the probability of zero return
robust to the presence of rounding. Table 3, second two columns, collects the results. We see that
the bias of RC˚ is, for all the scenarios considered, remarkably smaller than that of RC.

Time-varying probability of flat trading. Here, we evaluate the impact of a time-varying
probability of zero returns on the covariance estimators RC˚ and RC. For this purpose, we generate
1000 replications of the price process in Eq. (4) (using, again, an initial price of P0 “ 100, a
time grid of m “ n “ 6.5 ˆ 60 ˆ 60 and ξ “ 0) but with a time-dependent specification of the

probability of flat trading. For this purpose, we need the following additional notation: let p
p`q
j,n

be the probability that the Bernoulli random variable B
p`q
j,n, appearing in Eq. (4), is equal to one,

i.e. p
p`q
j,n “ E

”

B
p`q
j,n

ı

. We construct p
p`q
j,n in the following way. Mirroring a standard approach in the

high-frequency volatility literature (see, among many others, Engle and Sokalska 2012), we assume

that p
p`q
j,n “ p̄

p`q
j,n ϑ

p`q
j,n, where p̄

p`q
j,n and ϑ

p`q
j,n represent two distinct sources of time-variation in the

probability of observing a zero return. The first factor, i.e. p̄
p`q
j,n, denotes the stochastic component

of p
p`q
j,n. The second factor, i.e. ϑ

p`q
j,n, is the deterministic seasonal component that represents the

diurnal pattern. To ensure identification, we impose that p1{nq
řn
j“1 ϑ

p`q
j,n “ 1. In order to generate

p̄
p`q
j,n we proceed in the following way (cfr. also Kolokolov et al. 2018). For each replication, we

construct a trajectory of a latent stochastic process u with the following integration scheme:

#

u
p`q
0,n “ F´1 pp`q ,

u
p`q
j,n “ u

p`q
j´1,n `

´

F´1 pp`q ´ u
p`q
j´1,n

¯

{n` σuε
p`q
j,n{
?
n,

where j “ 1, . . . , n, p` P t0.20, 0.40, 0.60u, and where F´1 pxq is the inverse of the cumulative
distribution function of a standard Gaussian variable. In addition, the εj,n’s are i.i.d. standard

Gaussian shocks, and σu “ 0.5 is a tuning parameter. Then, we set p̄
p`q
j,n “ F

´

u
p`q
j,n

¯

; in this way

the stochastic component of the probability of observing a zero return is mean-reverting around p`.

The seasonal pattern ϑ
p`q
j,n is estimated directly on the available real data using a non-parametric

estimator. Let then X
p`q
j,n,t be the observed price process X

p`q
j,n in the t-th day of the sample. We first

compute the average

pϑ
p`q,‹
j,n

.
“

1

T

T
ÿ

t“1

1
tX

p`q
j,n,t´X

p`q
j´1,n,t“0u

,

where T is the number of days in the sample. Then, we normalize pϑ
p`q,‹
j,n to obtain the desired

quantity. For all the simulations of this paragraph, we adopt the seasonal pattern produced by
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the estimator (4) computed on the transaction history of GE (General Electric). Since the time
resolution of our data is one-minute (see Section 5), we implement a linear interpolation to obtain
the diurnal pattern for higher frequencies. Figure 1 reports (continuous red line) the seasonal
pattern used for the simulation, together with an example of the simulated trajectory of the time-
varying probability pj,n (blue line with crosses). Note that the intraday pattern has an inverse
U-shape, which reflects the fact that zero returns are more concentrated in the middle of the day,
mirroring the U-shaped profile of intraday volatility. Table 3, first two columns, displays the results.
We compare them with the first two columns in Table 1, where a constant probability is considered.
As expected, the performance of RC‹ deteriorates at high frequencies (∆ “ 1 second and ∆ “ 30
seconds), whereas RCn is unaffected by the presence of a time-of-the-day dependent probability of
zero returns. Nonetheless, even in the worst case scenario (∆ “ 1 second and p1 “ 0.60) the bias
of the RC‹n is `2.92% against a ´73.72% of RC.

09:30 10:30 11:30 12:30 13:30 14:30 15:30
0.15

0.2

0.25

0.3

0.35

0.4
#j;n (non-standardised)

p
(`)
j;n

Figure 1.: Example of a non-standardised diurnal pattern ϑj,n (in red) together with a typical
trajectory of the time-varying probability pj,n (in blue)

Asymptotic variance of the bias-corrected estimator. The asymptotic variance of the bias-
corrected estimator RC‹ may be affected by the asymptotic probabilities of flat trading defined in
Eq. (4) of Assumption 2. Since the derivation of a central limit theorem for RC‹ is beyond the scope
of this paper, we investigate this aspect through Monte Carlo simulations. To do that, we produce
104 replications of two price processes under the frictional dynamics described by Assumption 2,
where efficient prices are simulated according to the model in Eq. (10). Figure 3 reports the variance
of RC‹ computed at the frequency of one second, hence with 6.5ˆ60ˆ60 “ 23400 observations. The
two horizontal axes report the values of the probabilities of flat trading that have been inputed in
simulating the recursive equation (3), hence they must be interpreted as probabilities of flat trading
at one second. The vertical axis reports the percentage variance of RC‹ which is, notably, almost
unaffected by the choice of p1 and p2, unless the two probabilities are simultaneously close to one.
In summary, apart from the case of two highly illiquid assets, the precision of the bias-corrected
estimator does not depart much from the ideal case p1 “ p2 “ 0 of two perfectly liquid assets.

5. Empirical assessment of the bias-corrected estimator

In this section we prove empirically that the performances of the bias-corrected estimator RC‹ are
generally comparable with those of commonly used integrated covariance estimators but remarkably

9
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ξ2

p1 Freq.(sec) 0 0.0001 0.0005
RC‹ RC RC‹ RC RC‹ RC

0.20

1 -0.2089 -33.4646 -0.1481 -33.4135 0.3174 -33.1220
30 -0.2083 -19.7722 -0.5220 -19.9147 -0.3229 -19.8248
60 -0.4244 -12.6576 -0.5537 -12.6153 -1.2145 -13.2915
300 -1.2053 -4.1650 -1.3661 -4.2597 -2.7168 -5.6878
600 -3.3331 -4.7520 -2.6566 -4.0619 -4.0480 -5.4835

0.40

1 -0.2914 -57.2765 -0.3836 -57.3072 -0.5998 -57.4007
30 -0.2161 -35.8139 0.4310 -35.4004 0.5382 -35.2916
60 -0.4645 -23.3011 0.1741 -22.7971 -0.5998 -23.3209
300 -1.8349 -7.4120 -0.8162 -6.5223 -1.4490 -7.2148
600 -2.7332 -5.6796 -1.0361 -3.9416 -4.3822 -7.2807

0.60

1 -0.3292 -75.0813 -0.2192 -75.0418 0.5513 -74.8715
30 -0.4685 -49.3759 -0.8919 -49.5189 -0.7147 -49.3824
60 -0.4878 -32.7471 -0.8243 -33.0470 1.1100 -31.8801
300 -1.7899 -10.3175 -1.7988 -10.1267 -3.3381 -11.4537
600 -1.5240 -6.2752 -2.7887 -7.2564 -3.1937 -7.4286

Table 1.: Relative biases in percentage, for different values of the sampling frequency and of the
parameter ξ2, of the estimators RC˚ and RC when p1 “ p2 P t0.20, 0.40, 0.60u.

ξ2

p1 Freq.(sec) 0 0.0001 0.0005
RC‹ RC RC‹ RC RC‹ RC

0.20

1 -0.1239 -80.9760 -0.5174 -81.0509 2.0211 -80.5674
30 -0.4140 -47.1973 -0.2231 -47.0961 -0.7550 -47.3781
60 -0.6337 -29.8954 -0.5343 -29.8253 -1.4998 -30.5065
300 -0.7756 -8.0488 -1.9026 -9.0931 -1.2924 -8.5277
600 -3.0459 -6.7098 -4.1530 -7.7750 -2.3958 -6.0843

0.40

1 -0.0330 -82.3588 0.3222 -82.2961 -3.2452 -82.9256
30 -0.4828 -51.2427 -0.6279 -51.3138 -0.7975 -51.3969
60 0.1730 -33.0704 -1.2493 -34.0207 0.8851 -32.5946
300 -1.8595 -10.3580 -1.5207 -10.0486 -1.0047 -9.5772
600 -2.6301 -7.0102 -3.1146 -7.4729 -2.2761 -6.6721

0.60

1 -0.6269 -84.7118 -0.2296 -84.6507 0.1582 -84.5910
30 -0.9231 -55.8857 -1.5412 -56.1608 -0.6926 -55.7830
60 -1.0472 -37.7141 -0.2797 -37.2310 -1.4429 -37.9632
300 -2.9917 -12.6843 -1.3131 -11.1733 -0.2304 -10.1989
600 -3.7065 -8.7312 -1.2934 -6.4440 -3.1883 -8.2400

Table 2.: Relative biases in percentage, for different values of the sampling frequency and of the
parameter ξ2, of the estimators RC˚ and RC when p1 ‰ p2. We set p1 P t0.20, 0.40, 0.60u and
p2 “ 0.8.
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p1 Freq.(sec) Intraday Effects Effect of Rounding
RC‹ RC RC‹ RC

0.20

1 0.3978 -33.9595 -0.4815 -33.5203
30 -0.2273 -20.9712 0.5927 -19.5979
60 -0.5715 -13.5051 0.2380 -12.3971
300 -0.9797 -4.5269 -0.4773 -3.6810
600 -3.3701 -5.2793 -1.7587 -3.4271

0.40

1 1.4317 -56.3516 0.4024 -57.2634
30 0.7505 -35.2118 0.2097 -35.9009
60 0.2386 -23.5389 -0.1514 -23.5474
300 -0.4127 -6.7385 -1.5869 -7.5290
600 -0.5073 -3.9314 -2.9282 -6.0529

0.60

1 2.9288 -73.7234 -0.8021 -75.0454
30 1.3802 -48.8772 0.6840 -48.9279
60 0.4521 -32.7392 0.3702 -32.5286
300 -1.2073 -10.5503 -0.1117 -8.9239
600 -1.5775 -7.0337 -2.7468 -7.3826

Table 3.: Relative biases in percentage for different values of the sampling frequency of the esti-
mators RC˚ and RC in case of a time-dependent probability of observing a zero return (Intraday
Effects) and in the case of rounded observed prices (Effect of Rounding). In the first case we in-
put a time-dependent probability which is mean-reverting around p1 “ p2 P t0.20, 0.40, 0.60u. In
the second case the probabilities are constant with p1 “ p2 P t0.20, 0.40, 0.60u. In the Effect of
Rounding case we set P0 “ 50 instead of P0 “ 100 to magnify the impact of tick size.

-150 -100 -50 0 50 100 150
10-6

10-4

10-2

100

102

-100 -80 -60 -40 -20 0 20 40 60
10-4

10-2

100

102

-80 -60 -40 -20 0 20 40 60
10-4

10-2

100

102

-100 -50 0 50 100
10-6

10-4
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Figure 2.: Kernel density of the relative bias (in percentage) of the standard realized covariance
estimator and our bias-corrected estimator. Different sampling frequencies ∆ and levels of noise ξ2

are considered.
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Figure 3.: Variance of the estimator RC‹ computed over 104 replications of two observed price
processes under the frictional dynamics postulated by Assumption 2. The value of the probabilities
of flat trading p1 and p2 are reported in the two horizontal axes. The vertical axis reports the
percentage variance.

superior in case of portfolios with low liquidity. We perform a horse-racing exercise comparing
the performances of different estimators through the minimum variance portfolio criterion (for
an exhaustive discussion on the topic see Engle and Colacito 2006, Patton and Sheppard 2009,
amongst others). This method adopts the realized (ex-post) variance of the (ex-ante) minimum

variance portfolio as a loss measure. In particular, given a group of N assets and a forecast pΣt of
their variance-covariance matrix for day t, the criterion requires to solve the the global minimum
variance portfolio (GMV) problem

pwt “argmin
wtPRN

wt pΣtwt

subject to wt ι “ 1,

(12)

where ι P RN is a vector of ones and wt P RN are portfolio weights. The loss function is defined as
the norm

dt “ pwt rt r
1
t pwt (13)

where rt P RN is the vector of daily open-to-close returns and pwt is the solution of the GMV
problem (12). The criterion selects the best covariance estimator as that with the lowest portfolio
variance, computed as the daily average of dt. In our analysis, one-day-ahead covariance forecasts
are computed through the HAR-DRD model of Oh and Patton (2016) fitted on times series of
competing realized covariance estimators.

When N ą 2, the asymptotic bias correction in Eq.(8) can be applied to any off-diagonal ele-
ment of the realized covariance matrix. Therefore, the construction of the new estimator requires
estimates of the probabilities of flat trading for each of the N assets in the portfolio. These proba-
bilities can be estimated by solely using transaction data, as described by Bandi et al. (2017) and
Bandi et al. (2018). As anticipated in Eq. (9), we follow Bandi et al. (2018) and we estimate pn,`,
` “ 1, . . . , N , as the daily fraction of zero returns, at a given sampling frequency. The resulting
estimator is thus computationally simple. However, it is not necessarily positive definite and needs
to be regularized in order to be employed in the portfolio optimization problem. As a regularization

12
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method, we simply replace negative eigenvalues with the smallest positive eigenvalue. We verify
that this approach leads to well conditioned covariance matrices and stable portfolio weights. Other
more sophisticated techniques are possible, such as those based on random matrix theory (Hautsch
et al. 2012).

Our dataset1 consists of unbalanced one-minute transaction data of Russel 3000 constituents
over the period from 18-11-1999 to 27-09-2013. The total number of assets is 4166. In order to avoid
discontinuities due to changes on index composition, we restrict the analysis to the subsample com-
prising the last T “ 2000 days, that is all data from 27-09-2005 to 27-09-2013. For each day in the
sample we consider trades from 9:30 to 16:00, leading to 390 one-minute timestamps per day. As a
further cleaning procedure, we select assets having at least ten trades per day. This choice removes
from the sample extremely illiquid assets, whose presence can cause the occurrence of poor and
ill-conditioned covariance estimates. After this filtering, we are left with N “ 984 assets. Within
this universe, we form five liquidity portfolios made of Np “ 10, 20, 30 assets and built using the
following procedure:

(i) we compute, for all assets, the average probability of flat trading p`, ` “ 1, ..., N , using all
data at one-minute frequency.

(ii) We compute the quartile separators Qj , j “ 1, 2, 3 of the empirical distribution of
pp1, ¨ ¨ ¨ , pN q.

(iii) For a given value of Np, the first, second, third and fourth portfolios are obtained by picking
up, randomly, Np assets from the N available with, respectively, p` ă Q1, Q1 ď p` ă Q2,
Q2 ď p` ă Q3 and Q3 ď p`. These portfolios are called, in order, very high, high, medium,
low liquidity portfolios.

(iv) The Np constituents of the fifth portfolio are randomly selected within the whole sample
of 984 assets and, therefore, this portfolio includes assets with different levels of liquidity.
Accordingly, we refer to it as the mixed liquidity portfolios.

Min Q1 Q2 Q3 Max
0.0258 0.2847 0.3991 0.5633 0.9246

Table 4.: Minimum, maximum and quartiles of one-minute average probabilities of flat trading of
the N “ 984 assets in the dataset.

On the aforementioned portfolios we compute nine different variance-covariance matrix estima-
tors. The first six estimators are the realized covariance RC defined in Eq. (6) and our bias-corrected
RC‹ defined in Eq. (8), both computed at one-, five- and ten-minute sampling frequencies. Along
with these estimators, we consider the Multivariate Realized Kernel (MRK) of Barndorff-Nielsen
et al. (2011), which is a kernel estimator applied to one-minute synchronized data. We implement
the MRK with a Parzen kernel and, following the standard practice, we use the refresh time as
a synchronization scheme. To avoid excessive data reduction due to refresh-time synchronization,
we compute the MRK separately for each couple of assets. Similarly to our RC‹ estimators, the
full covariance matrix of Np assets is regularized in order to guarantee positive-definiteness. We
also consider the covariance matrix constructed through the following method: the off-diagonal
elements of the realized covariance are replaced by the pairwise estimator of Hayashi and Yoshida
(2005); the diagonal elements are set equal to those of standard realized covariance. We denote this
estimator as HY. One advantage of the HY is that it uses all available data when constructing co-
variances. Similarly to RC‹n and MRK, HY is regularized to guarantee positive-definiteness. Finally,
we consider the quasi-maximum likelihood (QMLE) estimator of Corsi et al. (2015) and Shephard
and Xiu (2017). This estimator does not require synchronization and, as well as the MRK, is robust

1The data that support the findings of this study are available from Kibot (http://www.kibot.com/). Restrictions apply to the

availability of these data, which were used under license for this study.
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to microstructure noise.
The nine estimators described thus far are used to construct daily time series of covariance

estimates. The sample of T “ 2000 days is divided in two parts of equal length. The former is used
to estimate the HAR-DRD model, whereas the latter employs the forecasts pΣt (derived using the
OLS estimates of the first part) to obtain, solving the minimization problem (12), a sequence of
daily portfolio weights pwt. In order to assess if the variance of a portfolio is significantly lower than
the variances of other portfolios, we use the model confidence set (MCS) of Hansen et al. (2011).
In particular, we consider a model confidence set at the 90% confidence level, denoted by M90%.

Fig. 4 shows averages of one-step-ahead covariance forecasts obtained through the HAR-DRD
fitted on both standard (RC) and bias-corrected (RC‹) realized covariances. We consider the GMV
portfolio with Np “ 10 assets belonging to the group with low liquidity. Note that, as the sam-
pling frequency increases, covariance forecasts obtained through standard realized covariance are
largely downward biased. In contrast, covariance forecasts constructed through the bias-corrected
estimator RC‹ are very similar across sampling frequencies, an empirical result that confirms the
robustness to price flatness of the corrected estimator. At ten minutes, standard realized covariance
forecasts are close to those obtained from bias-corrected realized covariances, consistently with the
fact that the probability of flat trading decreases as the sampling frequency decreases. Thus, the
Epps effect can be seen as a direct consequence of ignoring price flatness when computing realized
covariance.

Tables 5, 6 and 7 show the results of the analysis, for, respectively Np “ 10, 20, 30. We first
note that the variances of portfolios constructed through RC‹ are significantly lower than those
of portfolios built through RC. In particular, larger differences are observed at high sampling fre-
quencies (e.g. one minute) and for “low” liquidity portfolios. This is related to the fact that the
probability of flat trading is larger in these cases and, consequently, realized covariance estimates
are extremely biased. Note also that, in these cases, the MCS tends to exclude the standard realized
covariance, while it includes RC‹.

Significant portfolio variance reduction is also observed in the “mixed” liquidity portfolio. For
instance, the variance of the Np “ 30 portfolio constructed through RC‹ at one-minute frequency
is « 17% lower than that of the portfolio constructed through RC at the same frequency. Lower
differences are instead observed for portfolios of assets with “medium” and “high” liquidity, con-
sistently with the fact that the average probability of flat trading is smaller in these portfolios.
However, the bias-correction leads to significant portfolio variance reduction. For instance, the RC‹

portfolio of Np “ 10 assets shows the lowest variance in the “high liquidity” case.
In the “very high liquidity” portfolio, probabilities of flat trading are extremely low and, con-

sequently, the Epps effect is less relevant. In this case, the use of our asymptotic bias correction
does not lead to significant variance reduction, except for the portfolio with Np “ 20 assets, where
the MCS selects five-minutes RC‹ and excludes all portfolios built through RC. Note also that, in
this scenario, the performances of all estimators are generally closer among each other, with the
MCS including all of them in the portfolio with Np “ 30 assets.

As a final remark, we note that the performances of the bias-corrected estimators are compa-
rable to those of MRK, HY and QMLE. In particular, all the portfolios built with RC‹ feature the
lowest variance in the “low liquidity” case. Besides, for this liquidity scenario and for Np “ 20, the
estimator RC‹ implemented at ten-minute frequency is the only estimator included in the MCS.

In summary, the empirical advantages of the bias-corrected estimator RC‹ are independent of the
number Np of assets held in the portfolio. Besides, RC‹ requires few additional computations with
respect to RC since flat trading probabilities are estimated through the Eq. (9), hence as simple
means.
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Portfolio liquidity, Np “ 10.

Estimator Freq. (min) Very high High Medium Low Mixed
1 1.7157˚ 1.4254 0.9673 1.3918 0.9695

(0.754) (0.012) (0.000) (0.053) (0.001)

RC 5 1.7370˚ 1.3151˚ 0.9036˚ 1.3148 0.8918
(0.408) (0.718) (0.100) (0.053) (0.064)

10 1.7563˚ 1.3090˚ 0.9044˚ 1.2887˚ 0.8945
(0.408) (0.806) (0.100) (0.932) (0.064)

1 1.8410 1.3568 0.9221 1.2909˚ 0.8667˚

1.0730 0.9519 0.9533 0.9275 0.8940
(0.061) (0.046) (0.031) (0.932) (0.581)

RC‹ 5 1.7698˚ 1.2711˚ 0.8984˚ 1.2944˚ 0.8487˚

1.0189 0.9665 0.9942 0.9845 0.9517
(0.135) (1.000) (0.100) (0.902) (0.900)

10 1.7466˚ 1.2834˚ 0.8917˚ 1.2828˚ 0.8726
0.9945 0.9804 0.9859 0.9954 0.9755
(0.408) (0.806) (0.100) (1.000) (0.088)

MRK - 1.7106˚ 1.3714˚ 0.9261 1.2830˚ 0.8898
(0.754) (0.354) (0.031) (0.932) (0.088)

HY - 1.7379˚ 1.2896˚ 0.8655˚ 1.3107˚ 0.8549˚

(0.408) (0.806) (1.000) (0.795) (0.771)

QMLE - 1.6929˚ 1.3163˚ 0.8790˚ 1.3129˚ 0.8470˚

(1.000) (0.806) (0.364) (0.795) (1.000)

Table 5.: Ex-post average variances (ˆ104) of the five randomly selected portfolios of Np “ 10
assets. Numbers in parentheses denote p-values of the MCS test. The asterisk implies that the
estimator is included in M90%. For the three RC‹ estimators, we report in italics the ratio between
the variance obtained through the bias-corrected estimator and that obtained through the standard
realized covariance estimator computed at the same sampling frequency. Bold numbers denote
portfolios with lowest absolute variance.

6. Conclusion

Studies of correlation estimated from asynchronous stock price returns documented the Epps effect
(Epps 1979), i.e. a progressive increase of the (negative) bias in estimating the integrated covariance
as the sampling frequency increases. Since Epps (1979), researchers have been trying to mitigate
the impact of this unwanted feature. In this paper we provide an analytical characterization of
the Epps effect by showing how zero returns, which naturally arise in previous-tick interpolated
data due to asynchronicity in the trading activity, induce a negative bias in the estimation of the
integrated covariance. In particular, we prove that the realized covariance estimator of Barndorff-
Nielsen and Shephard (2004) of a two-dimensional vector semimartingale with some asset-specific
likelihood of repeated prices is asymptotically downward biased, with the bias depending only on
the probabilities of repeated price of the two assets. Since these likelihoods can be consistently
estimated from transaction prices, a consistent estimator is constructed by adjusting realized co-
variance for its asymptotic bias.

The finite sample properties of the proposed estimator are assessed through Monte Carlo sim-
ulations. In the presence of microstructure noise, the estimator remains unbiased but it is affected
by an inflated variance depending on the signal-to-noise ratio. In the presence of rounded prices
or a time-varying probability of zero returns, the performances of the proposed estimator slightly
deteriorates at high frequency. Nonetheless, even in the worst case scenario, the relative bias of the
corrected estimator is orders of magnitudes smaller than that of the standard realized covariance.
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Portfolio liquidity, Np “ 20.

Estimator Freq. (min) Very high High Medium Low Mixed
1 1.1864 1.2130 0.6919 1.5975 0.9037

(0.025) (0.045) (0.019) (0.007) (0.000)

RC 5 1.1998 1.1115˚ 0.6549˚ 1.6264 0.8015
(0.025) (0.122) (0.769) (0.007) (0.012)

10 1.2150 1.1165 0.6626˚ 1.6061 0.7853˚

(0.025) (0.051) (0.528) (0.023) (0.179)

1 1.1798 1.1228 0.6769˚ 1.4435 0.7891˚

0.9944 0.9257 0.9782 0.9036 0.8732
(0.031) (0.097) (0.351) (0.023) (0.179)

RC‹ 5 1.1752˚ 1.0678˚ 0.6455˚ 1.4116 0.7729˚

0.9796 0.9606 0.9856 0.8679 0.9644
(0.160) (0.914) (0.769) (0.023) (0.416)

10 1.1939 1.0904˚ 0.6526˚ 1.3432˚ 0.7809˚

0.9827 0.9767 0.9849 0.8363 0.9943
(0.025) (0.234) (0.769) (1.000) (0.267)

MRK - 1.1562˚ 1.1476 0.6720 1.5988 0.7432˚

(0.207) (0.051) (0.066) (0.023) (1.000)

HY - 1.1335˚ 1.0637˚ 0.6502˚ 1.4090 0.7795˚

(0.272) (1.000) (0.769) (0.034) (0.383)

QMLE - 1.1131˚ 1.0758˚ 0.6411˚ 1.7431 0.7619˚

(1.000) (0.914) (1.000) (0.007) (0.542)

Table 6.: Ex-post average variances (ˆ104) of the five randomly selected portfolios of Np “ 20
assets. Numbers in parentheses denote p-values of the MCS test. The asterisk implies that the
estimator is included in M90%. For the three RC‹ estimators, we report in italics the ratio between
the variance obtained through the bias-corrected estimator and that obtained through the standard
realized covariance estimator computed at the same sampling frequency. Bold numbers denote
portfolios with lowest absolute variance.

Finally, a horse-race exercise based on minimum variance portfolios, proves empirically that
the proposed estimator reduces significantly the ex-post portfolio variance and that its perfor-
mances are, typically, in line with those of other robust estimators and, in particular, superior in
case of illiquid portfolios. Remarkably, the empirical advantages of the bias-corrected estimator are
independent of the number of assets held in the portfolio and, although its computational com-
plexity grows as the square of the number of assets, the additional operations involved are simple
arithmetic means. Hence, the proposed bias-correction can be applied even in the case of very
large datasets, where other methods imply significant data reduction or become computationally
cumbersome.
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Portfolio liquidity, Np “ 30.

Estimator Freq. (min) Very high High Medium Low Mixed
1 0.5042˚ 0.7437 0.4882 1.2053 0.7115

(1.000) (0.003) (0.068) (0.014) (0.000)

RCn 5 0.5332˚ 0.7191 0.4597˚ 1.2427 0.6088˚

(1.000) (0.098) (0.740) (0.014) (0.108)

10 0.5347˚ 0.7149 0.4613˚ 1.2569˚ 0.6020˚

(1.000) (0.084) (0.740) (0.387) (0.369)

1 0.5168˚ 0.7352 0.5100 1.0251˚ 0.5925˚

1.0250 0.9886 1.0445 0.8505 0.8328
(1.000) (0.006) (0.002) (1.000) (0.715)

RC‹n 5 0.5243˚ 0.7008˚ 0.4654˚ 1.0343˚ 0.5875˚

0.9832 0.9747 1.0124 0.8323 0.9650
(1.000) (0.140) (0.283) (0.748) (0.792)

10 0.5421˚ 0.7171 0.4575˚ 1.0263˚ 0.5960˚

1.0139 1.0032 0.9918 0.8166 0.9900
(1.000) (0.082) (0.740) (0.978) (0.657)

MRK - 0.5007˚ 0.7139 0.4701˚ 1.0693˚ 0.5721˚

(1.000) (0.098) (0.283) (0.746) (1.000)

HY - 0.4891˚ 0.6814˚ 0.4551˚ 1.1399˚ 0.6051˚

(1.000) (0.250) (0.740) (0.387) (0.413)

QMLE - 0.4835˚ 0.6638˚ 0.4506˚ 1.2321 0.5805˚

(1.000) (1.000) (1.000) (0.014) (0.889)

Table 7.: Ex-post average variances (ˆ104) of the five randomly selected portfolios of Np “ 30
assets. Numbers in parentheses denote p-values of the MCS test. The asterisk implies that the
estimator is included in M90%. For the three RC‹ estimators, we report in italics the ratio between
the variance obtained through the bias-corrected estimator and that obtained through the standard
realized covariance estimator computed at the same sampling frequency. Bold numbers denote
portfolios with lowest absolute variance.

17



June 19, 2019 Quantitative Finance rQUFguide

2010 2012 2013
0

0.02

0.04

0.06

2010 2012 2013
0

0.02

0.04

0.06

2010 2012 2013
0

0.02

0.04

0.06

Figure 4.: Averages of off-diagonal elements (reported in percentage) of one-step-ahead covariance
matrix forecasts for the portfolio with Np “ 10 assets belonging to the group with low liquidity.
Black lines are standard realized covariance forecasts while dotted lines are bias-corrected forecasts.
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APPENDIX

The Appendix is divided into two parts. Section A introduces the notation and collects auxiliary
lemmas. Section B is dedicated to the proof of the main theorem.

Appendix A: Auxiliary Lemmas

In what follows, for a generic index j with j P t1, . . . , nu, we denote by tj,n “ j{n the deterministic
equispaced partition of the interval r0, 1s and with ∆j,n “ ∆n “ tj,n ´ tj´1,n the distance between
two consecutive points of the partition. For any stochastic process X we denote by ∆n

j X the
difference process ∆n

jX
.
“ Xtj,n ´ Xtj´1,n

. In subsequent statements and proofs, to save upon
notation, we write Xj,n in place of Xtj,n whenever this does not cause any ambiguity.
Additionally, for a generic index j with j P t1, . . . , nu, we denote by Pj r ¨ s, Ej r ¨ s, and Vj r ¨ s the
conditional probability, the conditional expectation, and the conditional variance with respect to

a suitable filtration Ftj,n . Finally,
p
ÝÑ denotes the convergence in probability.

First, we provide lemmas regarding some statistics and asymptotic results for K
p`q
j,n, ` P t1, 2u.

Lemma 1 For each n P N and each j P t1, . . . , nu, let K
p1q
j,n and K

p2q
j,n be defined as in Definition

(3), and let B̄
p`q
j,n

.
“

´

1´B
p`q
j,n

¯

and pn,` “ E
”

B
p`q
j,n

ı

, ` P t1, 2u. Then, the following equality hold true:

µ
p`q
j,n

.
“ E

”

K
p`q
j,n

ı

“
pn,`

´

1´ pjn,`

¯

1´ pn,`
,

ν
p`q
j,n

.
“ E

„

´

K
p`q
j,n

¯2


“
pn,`

´

1` pn,` ´ p2 j p1´ pn,`q ` 1` pn,`q p
j
n,`

¯

p1´ pn,`q
2 ,

Φ
p1,2q
j,n

.
“ E

„

K
p1q
j,n1

!

K
p1q
j,nďK

p2q
j,n

)



“
pn,1

´

pjn,‹ pj p1´ pn,2q p1´ pn,‹q ´ p1´ pn,1q pn,2q ´ pn,‹ ` pn,2

¯

p1´ pn,1pn,2q
2 ,

Φ
p1,2,2q
j,n

.
“ E

„

´

K
p1q
j,n

¯2

1!
K
p1q
j,nďK

p2q
j,n

)



“
pn,1 pppn,1 ´ 1qpn,2ppn,‹ ` 1qq

ppn,‹ ´ 1q3
,

`

pn,1

´

pjn,‹
`

j2ppn,2 ´ 1qppn,‹ ´ 1q2 ` 2jppn,1 ´ 1qpn,2ppn,‹ ´ 1q ´ ppn,1 ´ 1qpn,2ppn,‹ ` 1q
˘

¯

ppn,‹ ´ 1q3
,

where pn,‹
.
“ pn,1pn,2.

Proof. First, notice that since B
p1q
0,n ” 0, i.e. at t0,n the observed price coincides with the efficient

one, we have that P
”

K
p1q
j,n “ j

ı

“ ppn,1q
j and, besides, that asymptotic results are not influenced

by the initial condition. Therefore, we have:

K
p1q
j,n “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0 with probability 1´ pn,1

1 with probability p1´ pn,1q pn,1

2 with probability p1´ pn,1q ppn,1q
2

...
...

j ´ 1 with probability p1´ pn,1q ppn,1q
j´1

j with probability ppn,1q
j .

.
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At this point it is a matter of elementary calculations to compute the desired quantities.

µj,n
.
“ E

”

K
p1q
j,n

ı

“ 0 ¨ p1´ pn,1q ` 1 ¨ p1´ pn,1q pn,1 ` 2 p1´ pn,1q p
2
n,1 ` ...` pj ´ 1q p1´ pn,1q p

j´1
n,1 ` j p

j
n,1

“

pn,1

´

1´ pjn,1

¯

1´ pn,1
.

νj,n
.
“ E

„

´

K
p1q
j,n

¯2


“ 0 ¨ p1´ pn,1q ` 1 p1´ pn,1q pn,1 ` 22 p1´ pn,1q p
2
n,1 ` ...` pj ´ 1q

2
p1´ pn,1q p

j´1
n,1 ` j

2 pjn,1

“
pn,1

`

1` pn,1 ´ p2j p1´ pn,1q ` 1` pn,1qx
j
n

˘

p1´ pn,1q
2 ,

Φ
p1,2q
j,n “ E

„

E
„

K
p1q
j,n 1

!

K
p1q
j,nďK

p2q
j,n

)

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n



“ E

»

—

–

K
p1q
j,n

¨

˚

˝

p1´ pn,2q
j´1
ÿ

q“K
p1q
j,n

pqn,2 ` p
j
n,2

˛

‹

‚

fi

ffi

fl

“ E
„

K
p1q
j,n

ˆ

p
K
p1q
j,n

n,2 ´ pjn,2 ` p
j
n,2

˙

“ E
„

K
p1q
j,n p

K
p1q
j,n

n,2



“

pn,1

´

pjn,1p
j
n,2pjp1´ pn,2qp1´ pn,1pn,2q ´ p1´ pn,2qpn,2q ´ pn,2pn,2 ` pn,2

¯

p1´ pn,1pn,2q2
,

and, by using the same strategy one can easily derives an expression for Φ
p1,2q
j,n .

Lemma 2 For each n P N and each j P t1, . . . , nu, let K
p1q
j,n and K

p2q
j,n be defined as in Definition

(3). Let ηt be any bounded stochastic process path-wise Riemann integrable and independent of K
p1q
j,n ,

and let B̄
p1q
j,n “

´

1´B
p2q
j,n

¯

and B̄
p2q
j,n. We have:

n´1
ÿ

j“0

sB
p1q
j`1,n

sB
p2q
j`1,n ηj,n ∆nK

p1q
j,n

p
ÝÑ µK

ż 1

0
ηs ds, (A1)

where the constant µK is given by

µK “ lim
jÑ8, jďn

E
”

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,n

ı

“ p1 p1´ p2q , (A2)

and

n´1
ÿ

j“0

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,nηj,n ∆n 1tKp1qj,nďK

p2q
j,nu

p
ÝÑ µ̄K

ż 1

0
ηs ds, (A3)

where the constant µ̄K is given by

µ̄K “ lim
jÑ8, jďn

E
”

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,n 1tKp1qj,nďK

p2q
j,nu

ı

“
p1´ p1q

2
p1´ p2q p1 p2

p1´ p1 p2q
2 . (A4)

Moreover, if the indicator function in Eq.(A3) is replaced with 1
tK

p1q
j,n“K

p2q
j,nu

, then the constant µ̄K
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is given by

µ̄K “
p1´ p1q

2
p1´ p2q

2 p1 p2

p1´ p1 p2q
2 . (A5)

Before proceeding with the proof, we need the following result.

Lemma 3 Let f : r0, 1s Ñ R any Riemann-integrable bounded function. For all n let sj,n ě 0 with
j “ 0, . . . , n a positive sequence of real numbers such that sj,n Ñ S when j Ñ8 and

lim
nÑ8

1

n

n
ÿ

j“0

|S ´ sj,n| “ 0.

Therefore

n
ÿ

j“0

f ptj,nq ∆j,n sj,n Ñ S

ż 1

0
f ptq dt.

Proof. Immediate:

1

n

n
ÿ

j“0

f ptj,nq sj,n “ S
n
ÿ

j“0

f ptj,nq ∆j,n

l jh n

An

´

n
ÿ

j“0

f ptj,nq ∆j,n pS ´ sj,nq

l jh n

Bn

,

since An Ñ
ş1
0 f ptq dt using the Riemann-integrability and Bn Ñ 0 is such that:

|Bn| ď

n
ÿ

j“0

|f ptj,nq ∆j,n| |S ´ sj,n| ď C s∆n

n
ÿ

j“0

|S ´ sj,n| Ñ 0,

where s∆n “ maxj“1,...,n ∆j,n and C “ suptPr0,1s |f ptq| ă 8.

Proof of Lemma 2. We write Zj,n
.
“ B̄

p1q
j`1,nB̄

p2q
j`1,nK

p1q
j,n and Lj,n “ B̄

p1q
j`1,nB̄

p2q
j`1,nK

p1q
j,n1tKp1qj,nďK

p2q
j,nu

and we notice that they form a triangular array of dependent random variable. Thus, to prove the
convergence in probability of Riemman sums of the type Rn “

řn
j“0 ηj,n ∆n Zj,n, we have to show

that the following two conditions hold:

i) Var rZj,ns
.
“ E

”

pZj,n ´ E rZj,nsq2
ı

jÑ8
ÝÑ σ2

8 ă 8

ii) 1
n2

řn
j“1

řn´1
k“1 Cov rZj,n, Zj`k,ns

nÑ8
ÝÑ 0.

The same reasoning applies to the triangular array pLj,nq. In what follows, we prove results in
(A1) and (A3). The proof of the result in (A5) is omitted since it can be easily obtained from that
of (A3) with minor changes. Additionally, for sake of convention, we use the following notation:
xn “ pn,1 and x “ p1, so that xn Ñ x when nÑ8.
We start from the result in Eq.(A1) and in particular from the first condition i). By using Lemma
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(1), the variance of Zj,n is given by:

Var rZj,ns “ E
“

Z2
j,n

‰

´ E rZj,ns2 “ E
„

´

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,n

¯2


´ E
”

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,n

ı2

“ E
”

sB
p1q
j`1,n

ı

E
”

sB
p2q
j`1,n

ı

E
„

´

K
p1q
j,n

¯2


´ E
”

sB
p1q
j`1,n

ı2
E
”

sB
p2q
j`1,n

ı2
E
”´

K
p1q
j,n

¯ı2

“ p1´ xnq p1´ ynq νj,n ´ p1´ xnq
2
p1´ ynq

2 µ2
j,n

jÑ8
ÝÑ

xpy ´ 1q
`

x2py ´ 1q ´ xy ´ 1
˘

1´ x
ă 8

Regarding the computation of the covariance between Zj,n and Zj`k,n, we first notice that – similar

expressions holds for K
p2q
j`k,n:

K
p1q
j`1,n “ B

p1q
j`1,n `B

p1q
j`1,nK

p1q
j,n .

Therefore:

K
p1q
j`k,n “ B

p1q
j`k,n `B

p1q
j`k,nB

p1q
j`k´1,n `B

p1q
j`k,nB

p1q
j`k´1,nB

p1q
j`k´2,n ` ...`B

p1q
j`k,n ¨ ¨ ¨B

p1q
j`1,nK

p1q
j,n ,

and, as a consequence we have:

E rZj,n Zj`k,ns “ E
”

K
p1q
j,n

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j`k,n

sB
p1q
j`k`1,n

sB
p2q
j`k`1,n

ı

“ E
”

sB
p2q
j`k`1,n

sB
p2q
j`1,n

sB
p1q
j`k`1,n

ı

ˆ

ˆ E
”

K
p1q
j,n

´

B
p1q
j`k,n `B

p1q
j`k,nB

p1q
j`k´1,n `B

p1q
j`k,nB

p1q
j`k´1,nB

p1q
j`k´2,n ` ...`B

p1q
j`k,n ¨ ¨ ¨B

p1q
j`1,nK

p1q
j,n

¯

sB
p1q
j`1,n

ı

“ p1´ ynq
2
p1´ xnq ˆ

ˆ E
”

K
p1q
j,n

´

B
p1q
j`k,n `B

p1q
j`k,nB

p1q
j`k´1,n `B

p1q
j`k,nB

p1q
j`k´1,nB

p1q
j`k´2,n ` ...`B

p1q
j`k,n ¨ ¨ ¨B

p1q
j`2,n

¯´

1´B
p1q
j`1,n

¯ı

“ p1´ ynq
2
p1´ xnq E

”

K
p1q
j,n

ı

`

xn ` x
2
n ` ...` x

k´1
n

˘

p1´ xnq “ xn
`

1´ xk´1
n

˘

p1´ ynq
2
p1´ xnq µj,n.

The auto-covariance at lag k of pZj,nq is given by:

Cov rZj,n, Zj`k,ns “ E rZj,nZj`k,ns ´ E rZj,nsE rZj`k,ns

“ xn

´

1´ xk´1
n

¯

p1´ ynq
2
p1´ xnq µj,n ´ p1´ xnq

2
p1´ ynq

2 µj,n µj`k,n

“ ´p1´ ynq
2
`

1´ xjn
˘ `

1´ xj`1
n

˘

xk`1
n .

In particular, it holds that :

1

n2

n
ÿ

j“1

n´j
ÿ

k“1

Cov rZj,n, Zj`k,ns “
1

n2
x2py ´ 1q2

`

n
`

x2 ´ 1
˘

ppx` 1qxn ` 1q ´ pxn ´ 1q px px pxn ` 2q ` 2q ` 1q
˘

px´ 1q
2
px` 1q

nÑ8
ÝÑ 0,

i.e. both conditions i) and ii) are satisfied. The conclusion readily derives by applying Lemma 3
to sj,n “ E rZj,ns with S “ xp1´ yq. Therefore:

1

n

n
ÿ

j“0

ηtj,n E
”

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,n

ı

p
ÝÑ p1 p1´ p2q

ż 1

0
ηs ds

path-wise on Ω.
We proceed with the result in Eq.(A3). Again, we need to show that conditions i) and ii) are
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satisfied. By using Lemma (1), the variance of Lj,n is given by:

Var rLj,ns “ E
“

L2
j,n

‰

´ E rLj,ns
2

“ E

«

ˆ

B̄
p1q
j`1,n B̄

p2q
j`1,nK

p1q
j,n1

!

K
p1q
j,nďK

p2q
j,n

)

˙2
ff

´ E
„

B̄
p1q
j`1,n B̄

p2q
j`1,nK

p1q
j,n1

!

K
p1q
j,nďK

p2q
j,n

)

2

“ E
”

B̄
p1q
j`1,n

ı

E
”

B̄
p2q
j`1,n

ı

E
„

´

K
p1q
j,n

¯2

1!
K
p1q
j,nďK

p2q
j,n

)



´ E
”

B̄
p1q
j`1,n

ı2

E
”

B̄
p2q
j`1,n

ı2

E
„

´

K
p1q
j,n

¯2

1!
K
p1q
j,nďK

p2q
j,n

)

2

“ p1´ xnqp1´ ynqΦ
p1,2,2q
j,n ´ p1´ xnq

2p1´ ynq
2
´

Φ
p1,2,2q
j,n

¯2

jÑ8
ÝÑ

p1´ xq2xp1´ yqypxypxpxpy ´ 1q ´ 3y ` 2q ` y ´ 1q ` 1q

p1´ xyq4
ă 8.

To prove ii), we need some additional steps. Let Ij`k,n be defined as Ij`k,n
.
“ 1

tK
p1q
j`k,nďK

p2q
j`k,nu

.

Then:

Ij`k,n “
´

1´B
p1q
j`k,n

¯

`B
p1q
j`k,nB

p2q
j`k,n 1tKp1qj`k´1,nďK

p2q
j`k´1,nu

.
“ B̄

p1q
j`k,n ` Cj`k,nIj`k´1,n,

where Cj`k,n “ B
p1q
j`k,nB

p1q
j`k,n. The solution of the recursion in the previous equation is given by:

Ij`k,n “ sB
p1q
j`k,n,n ` Cj`k,n

sB
p1q
j`k´1,n,n ` Cj`k,nCj`k´1,n

sB
p1q
j`k´2,n,n

` . . .` Cj`k,nCj`k´1,n ¨ ¨ ¨ Cj`2,n
sB
p1q
j`1,n,n ` Cj`k,n ¨ ¨ ¨Cj`1,n Ij,n.

By using the property that I2
j,n “ Ij,n and Cj`1,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n,n ” 0, we write

Ij`k,n Ij,n sB
p1q
j`1,n,n

sB
p2q
j`1,n,n “

Ij,n sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

˜

sB
p1q
j`k,n,n ` Cj`k,n

sB
p1q
j`k´1,n,n `

`Cj`k,nCj`k´1,n
sB
p1q
j`k´2,n,n ` . . .` Cj`k,nCj`k´1,n ¨ ¨ ¨ Cj`2,n

sB
p1q
j`1,n,n

¸

`

`Cj`k,n ¨ ¨ ¨Cj`1,n
sB
p1q
j`1,n,n

sB
p2q
j`1,n,nIj,n.

“ Ij,n sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

˜

sB
p1q
j`k,n,n ` Cj`k,n

sB
p1q
j`k´1,n,n `

`Cj`k,nCj`k´1,n
sB
p1q
j`k´2,n,n ` . . .` Cj`k,nCj`k´1,n ¨ ¨ ¨ Cj`2,n

sB
p1q
j`1,n

¸

.

Since, for any q ď j ` k, it holds that

E
”

Cq,n

ˇ

ˇ

ˇ
K
p1q
j`k,n

ı

“ Bp1qq,n yn, E
”

sB
p1q
j`1,n

sB
p2q
j`1,n

sBp1qq,n

ˇ

ˇ

ˇ
K
p1q
j`k,n

ı

“ p1´ ynq sB
p1q
j`1,n

sBp1qq,n (A6)
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and E
”

Ij,n

ˇ

ˇ

ˇ
K
p1q
j`k,n

ı

“ y
K
p1q
j,n

n , we get

E
”

Ij`k,n Ij,n sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

ˇ

ˇ

ˇ
K
p1q
j`k,n

ı

“ p1´ ynq y
K
p1q
j,n

n
sB
p1q
j`1,n

´

sB
p1q
j`k,n ` ynB

p1q
j`k,n

sB
p1q
j`k´1,n `

`y2
nB

p1q
j`k,nB

p1q
j`k´1,n

sB
p1q
j`k´2,n ` . . .` y

k´1
n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`2,n

sB
p1q
j`1,n

¯

.

At this point, we can compute the following expected value:

E rLj,nLj`k,ns “ E
”

K
p1q
j,n K

p1q
j`k,n Ij`k,n Ij,n sB

p1q
j`k`1,n

sB
p1q
j`1,n

sB
p2q
j`k`1,n

sB
p2q
j`1,n

ı

“ p1´ ynq p1´ xnq
´

y0
nA1 ` y

1
nA2 ` ...` y

k´1
n Ak

¯

,

where the quantities A1, A2, ..., Ak are computed as:

A1 “ E
”

yK
p1q
j,n sB

p1q
j`k,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n,nKj,nKj`k,n

ı

“ E
”

yK
p1q
j,n sB

p1q
j`k,nKj pBj`k,n `Bj`k,nKj`k´1,nq sB

p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ 0

A2 “ E
”

yK
p1q
j Bj`k,n sBj`k´1,nKjKj`k,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ E
”

yK
p1q
j Bj`k,n sBj`k´1,nKj pBj`k,n `Bj`k,nKj`k´1,nq sB

p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ E
”

yK
p1q
j Bj`k,n sBj`k´1,nKj Bj`k,n sB

p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ E
”

yK
p1q
j Bj`k,n sBj`k´1,nKj

sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ x p1´ xq2 p1´ yq Φ
p1,2q
j,n

A3 “ E
”

yK
p1q
j Bj`k,nBj`k´1,n

sB
p1q
j`k´2,nKj,nKj`k,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ 2E
”

yK
p1q
j Bj`k,nBj`k´1,n

sB
p1q
j`k´2,nKj,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

ı

“ 2x2
n p1´ xnq

2
p1´ ynq Φ

p1,2q
j,n

and so on and so forth. In summary, for a generic q ď k´1, the corresponding quantity Aq results:

Aq “ E
”

yK
p1q
j,n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`k´pq´2q,n

sB
p1q
j`k´pq´1q,nK

p1q
j,n K

p1q
j`k,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n

ı

“ E

«

yK
p1q
j,n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`k´pq´2q,n

sB
p1q
j`k´pq´1q,nK

p1q
j,n ˆ

ˆ

˜

B
p1q
j`k,n `B

p1q
j`k,nB

p1q
j`k´1,n ` . . .`B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨B

p1q
j`k´pq´2q,n `

` B
p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨B

p1q
j`k´pq´2q,nK

p1q
j`k´pq´1q,n ˆ

sB
p1q
j`1,n,n

sB
p2q
j`1,n,n

¸ff

“ pq ´ 1qE
”

yK
p1q
j,n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`k´pq´2q,n

sB
p1q
j`k´pq´1q,nK

p1q
j,n

sB
p1q
j`1,n

sB
p2q
j`1,n

ı

“ pq ´ 1qxq´1
n p1´ xnq

2
p1´ ynq Φ

p1,2q
j,n ,
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whereas for q “ k we have:

Ak “ E
”

yK
p1q
j,n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`2,n

sB
p1q
j`1,nK

p1q
j,n K

p1q
j`k,n

sB
p1q
j`1,n,n

sB
p2q
j`1,n

ı

“ E

«

yK
p1q
j,n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`2,n

sB
p1q
j`1,nK

p1q
j,n ˆ

ˆ

˜

B
p1q
j`k,n `B

p1q
j`k,nB

p1q
j`k´1,n ` . . .`B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨B

p1q
j`2,n `

` B
p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨B

p1q
j`2,nK

p1q
j`1,n

¸

sB
p2q
j`1,n,n

ff

“ pk ´ 1qE
”

yK
p1q
j,n B

p1q
j`k,nB

p1q
j`k´1,n ¨ ¨ ¨ B

p1q
j`2,n

sB
p1q
j`1,nK

p1q
j,n

sB
p2q
j`1,n,n

ı

“ pk ´ 1qxk´1
n p1´ xnq p1´ ynq Φ

p1,2q
j,n .

In particular:

E rLj,nLj`k,ns “ p1´ xnq
3
p1´ ynq

2
Φ
p1,2q
j,n

k´1
ÿ

q“1

yq´1
n pq ´ 1q xq´1

n pk ´ 1q yk´1
n xk´1

n p1´ xnq
2
p1´ ynq

2
Φ
p1,2q
j,n ,

and:

Cov rLj,n, Lj`k,ns “ E rLj,nLj`k,ns ´ E rLj,nsE rLj`k,ns

“ p1´ xnq
3
p1´ ynq

2
Φ
p1,2q
j,n

k´1
ÿ

q“1

yq´1
n pq ´ 1q xq´1

n ` pk ´ 1q yk´1
n xk´1

n p1´ xnq
2
p1´ ynq

2
Φ
p1,2q
j,n

´ p1´ xnq
2
p1´ ynq

2
Φ
p1,2q
j,n Φ

p1,2q
j`k,n.

In particular, it holds that:

lim
nÑ8

1

n2

n
ÿ

j“1

n´j
ÿ

k“1

Cov rLj,n, Lj`k,ns “ 0.

The conclusion readily derives by applying Lemma 3 to sj,n “ E rLj,ns with:

S “
p1´ xq

2
p1´ yqx y

p1´ x yq
.

Therefore, path-wise on Ω,

1

n

n
ÿ

j“0

ηtj,n E
„

sB
p1q
j`1,n

sB
p2q
j`1,nK

p1q
j,n 1

!

K
p1q
j,nďK

p2q
j,n

)



p
ÝÑ

p1´ p1q
2
p1´ p2q p1p2

p1´ p1 p2q
2

ż 1

0

ηs ds.

Lemma 4 Let K
p1q
j,n and K

p2q
j,n be defined as in Definition 3. Let ηs be any bounded stochastic process

path-wise Riemann integrable and independent from K
p1q
j,n . Then

n
ÿ

j“0

sB
p1q
j`1,n

sB
p2q
j`1,n ηtj,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2
p
ÝÑ µK

ż 1

0
ηs ds. (A7)
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where the constant µK is given in Eq.(A2) and

n
ÿ

j“0

sB
p1q
j`1,n

sB
p2q
j`1,n ηtj,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tK

p1q
j,nďK

p2q
j,nu

p
ÝÑ sµK

ż 1

0
ηs ds, (A8)

where the constant sµK is given in Eq.(A4). Moreover, if the indicator function in Eq.(A7) is replaced
with 1

tK
p1q
j,n“K

p2q
j,nu

, then the constant µ̄K is given in Eq.(A5). Finally

n´1
ÿ

j“0

sB
p1q
j`1,n

sB
p2q
j`1,n ηtj,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙ ˆ

W
p1q

j´K
p1q
j,n,n

´W
p1q

j´K
p2q
j,n,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

p
ÝÑ 0. (A9)

Symmetric results hold exchanging asset 1 with asset 2.

Proof. We write Z̄j,n “ sB
p1q
j`1,n

sB
p2q
j`1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

and

L̄j,n “ sB
p1q
j`1,n

sB
p2q
j`1,n

´

Wj ´Wj´K
p1q
j,n

¯2
1
tK

p1q
j,nďK

p2q
j,nu

and we notice that they form a triangular

array of dependent random variables. To prove the convergence in Eq.(A7) and Eq.(A8) we need
to show that both

`

Z̄j,n
˘

and
`

L̄j,n
˘

satisfy conditions i) and ii). We exploit results in Lemma 2.
We start from Z̄j,n’s. Condition i) is easily verified by noticing that:

E
“

Z̄j,n
‰

“ E
”

E
”

Z̄j,n|K
p1q
j,n

ıı

“ p1´ xnq p1´ ynq ∆n µj,n

and

E
“

Z̄2
j,n

‰

“ 3 p1´ xnq p1´ ynq∆2
nE

„

´

K
p1q
j,n

¯2


,

so that Var
“

Z̄j,n
‰

“ 2 ∆2
nVar rZj,ns. We now prove that:

Cov
“

Z̄j,n, Z̄j`k,n
‰

“ ∆2
nCov rZj,n, Zj`k,ns `∆2

nRj,k,

which implies that:

lim
nÑ8

1

n2

n
ÿ

j“1

n´j
ÿ

k“1

Cov
`

Z̄j,n, Z̄j`k,n
˘

“ lim
nÑ8

1

n4

n
ÿ

j“1

n´j
ÿ

k“1

Cov pZj,n, Zj`k,nq

l jh n

“0 from Lemma 2

` lim
nÑ8

1

n4

n
ÿ

j“1

n´j
ÿ

k“1

Rj,k.

Therefore, it is sufficient to show that the remainder Rj,k is such that:

lim
nÑ8

1

n4

n
ÿ

j“1

n´j
ÿ

k“1

Rj,k “ 0.

To do so, let us set for sake of notation C̄
p1,2q
j,n “ B̄

p1q
j,nB̄

p2q
j,n and compute E

“

Z̄j,n Z̄j`k,n
‰

. Notice that

it is necessary to distinguish the case in which the Brownian increment W
p1q
j`k,n´W

p1q

j`k´K
p1q
j`k,n,n

has

no overlap, partial overlap or a total overlap with W
p1q
j,n ´W

p1q

j´K
p1q
j,n

. Figure A1 clarifies the situation.
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j + k

j + k � K
(1)
j+k

jj � K
(1)
j

j + kjj � K
(1)
j

j + kjj � K
(1)
j

j + k � K
(1)
j+k

j + k � K
(1)
j+k

�3�2�1

�3�2�1

Figure A1.: Schematic representation of the three possible cases regarding the entity of the overlap

of the Brownian increment W
p1q
j`k,n ´ W

p1q

j`k´K
p1q
j`k,n,n

with W
p1q
j,n ´ W

p1q

j´K
p1q
j,n,n

: i) No overlap (top

figure), ii) partial overlap (middle figure) and iii) total overlap (bottom figure).

Let us calculate

E
“

Z̄j`k,n Z̄j,n
‰

“

“ E

«

C̄
p1,2q
j`k`1,n

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2

C̄
p1,2q
j`1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2
ff

“ E

«

C̄
p1,2q
j`k`1,n

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2

C̄
p1,2q
j`1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tK

p1q
j`k,nďku

ff

`

E

«

C̄
p1,2q
j`k`1,n

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2

C̄
p1,2q
j`1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tkăK

p1q
j`k,nďk`K

p1q
j,nu

ff

`

E

«

C̄
p1,2q
j`k`1,n

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2

C̄
p1,2q
j`1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tk`K

p1q
j,năK

p1q
j`k,nu

ff

.
“ E1 ` E2 ` E3.

Term E1 corresponds to the case depicted in the top of Figure A1, E2 to the case depicted

in the middle, and E3 to the case depicted in the bottom. Let F p1,2qj`k`1,n be F p1,2qj`k`1,n “

σ
´

K
p1q
j,n ,K

p1q
j`k`1,n,K

p2q
j`k`1,n

¯

. We consider each term separately.
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E1:

E1 “ E

«

C̄
p1,2q
j`k`1,n

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2

C̄
p1,2q
j`1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tK

p1q
j`k,nďku

ff

“ E

«

E

«

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2 ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tK

p1q
j`k,nďku

ˇ

ˇ

ˇ

ˇ

ˇ

F p1,2qj`k`1,n

ffff

“ ∆2
n E

”

C̄
p1,2q
j`k`1,n C̄

p1,2q
j`1,nK

p1q
j`k,nK

p1q
j,n 1tKp1qj`k,nďku

ı

E2:
With reference to Figure A1 we define, for the sake of conciseness and clarity, the quantities

∆1
.
“

ˆ

W
p1q

j`k´K
p1q
j`k,n,n

´W
p1q

j´K
p1q
j,n,n

˙

ñ Ej´Kp1qj,n,n

“

∆2
1

‰

“

´

K
p1q
j,n ´K

p1q
j`k,n ` k

¯

∆n

∆2
.
“

ˆ

W
p1q
j,n ´W

p1q

j`k´K
p1q
j`k,n

˙

ñ Ej`k´Kp1qj`k,n

“

∆2
2

‰

“

´

K
p1q
j`k,n ´ k

¯

∆n

∆3
.
“

´

W
p1q
j`k,n ´W

p1q
j,n

¯

ñ Ej,n
“

∆2
3

‰

“ k∆n

. (A10)

Hence

E2 “ E
„

C̄
p1,2q
j`k`1,n

´

Wj`k ´Wj`k´K
p1q
j`k,n

¯2

C̄
p1,2q
j`1,n

´

Wj ´Wj´K
p1q
j,n

¯2

1!
kăK

p1q
j`k,nďk`K

p1q
j,n

)



“ E
„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,nE

„

p∆3 `∆2q
2
p∆2 `∆1q

2
1!

kăK
p1q
j`k,nďk`K

p1q
j,n

)

ˇ

ˇ

ˇ

ˇ

F p1,2qj`k`1,n



“ E
„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,nE

„

`

∆2
3 `∆2

2 ` 2 ∆2 ∆3

˘ `

∆2
2 `∆2

1 ` 2 ∆1 ∆2

˘

1!
kăK

p1q
j`k,nďk`K

p1q
j,n

)

ˇ

ˇ

ˇ

ˇ

F p1,2qj`k`1,n



(Using Eq.s(A10) and after some algebraic computations)

“ ∆2
nE

„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

´

K
p1q
j,nK

p1q
j`k,n

¯

1!
kăK

p1q
j`k,nďk`K

p1q
j,n

)



` 2∆2
nE

„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

´

K
p1q
j`k,n ´ k

¯2

1!
kăK

p1q
j`k,nďk`K

p1q
j,n

)



(A11)

E3:
Mimicking the procedure in the previous point, we define

∆1
.
“

ˆ

W
p1q

j´K
p1q
j,n,n

´W
p1q

j`k´K
p1q
j`k,n

˙

ñ Ej`k´Kp1qj`k,n

“

∆2
1

‰

“

´

K
p1q
j`k,n ´K

p1q
j,n ´ k

¯

∆n,

∆2
.
“

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙

ñ Ej´Kp1qj,n,n

“

∆2
2

‰

“ K
p1q
j,n ∆n,

∆3
.
“

´

W
p1q
j`k,n ´W

p1q
j,n

¯

ñ Ej,n
“

∆2
3

‰

“ k∆n.
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Then

E3 “ E

«

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

´

W
p1q
j`k,n ´Wj`k´K

p1q
j`k,n,n

¯2
ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tk`K

p1q
j,năK

p1q
j`k,nu

ff

“ E
”

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,nE

”

p∆3 `∆2 `∆1q
2 ∆2

2 1tk`Kp1qj,năK
p1q
j`k,nu

ˇ

ˇ

ˇ
F p1,2qj`k`1,n

ıı

“ E

«

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,nE

«˜

∆2
3 ∆2

2 `∆4
2 `∆2

1 ∆2
2

¸

1
tk`K

p1q
j,năK

p1q
j`k,nu

ˇ

ˇ

ˇ

ˇ

ˇ

F p1,2qj`k`1,n

ffff

“ ∆2
nE

„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

ˆ

kK
p1q
j,n ` 3

´

K
p1q
j,n

¯2
` pKj`k ´Kj ´ kq Kj

˙

1
tk`K

p1q
j,năK

p1q
j`k,nu



“ ∆2
nE

„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

ˆ

KjK
p1q
j`k,n ` 2

´

K
p1q
j,n

¯2
˙

1
tk`K

p1q
j,năK

p1q
j`k,nu



.

Summing up and using the fact that E
“

Z̄j,nZ̄j`k,n
‰

“ ∆n E
”

K
p1q
j,n

ı

we obtain

Cov
“

Z̄j,n, Z̄j`k,n
‰

“ ∆2
nCov rZj,n, Zj`k,ns ` 2 ∆2

nE
„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

´

K
p1q
j,n

¯2
1
tk`K

p1q
j,năK

p1q
j`k,nu



` 2∆2
nE

„

C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n

´

K
p1q
j`k,n ´ k

¯2
1
tkăK

p1q
j`k,nďk`K

p1q
j,nu



.

The last two terms correspond to the reminder Rj,k in Eq.(A). The product C̄
p1,2q
j`k`1,nC̄

p1,2q
j`1,n is in

p0, 1q so, to prove (A10) it is sufficient to notice that

E
„

´

K
p1q
j,n

¯2
1
tk`K

p1q
j,năK

p1q
j`k,nu



“ E
„

´

K
p1q
j,n

¯2
1
tk`K

p1q
j,năK

p1q
j`k,nu

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n ď j ´ 1



`

1´ xjn
˘

“ E

»

—

–

´

K
p1q
j,n

¯2

¨

˚

˝

p1´ xnq

j`k´1
ÿ

q“K
p1q
j,n`k`1

xqn ` x
j`k
n

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n ď j ´ 1

fi

ffi

fl

`

1´ xjn
˘

“ xk`1
n E

„

´

K
p1q
j,n

¯2
x
K
p1q
j,n

n

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n ď j ´ 1



`

1´ xjn
˘

“

`

1´ xj
˘

´´

j2
`

x2 ´ 1
˘2
` 2jx

`

x2 ´ 1
˘

´ x
`

x2 ` 1
˘

¯

x2j ` x3 ` x
¯

xk`2

px´ 1q2px` 1q3

and thus

lim
nÑ8

1

n4

n
ÿ

j“1

n´1
ÿ

k“1

`

1´ xj
˘

´´

j2
`

x2 ´ 1
˘2
` 2jx

`

x2 ´ 1
˘

´ x
`

x2 ` 1
˘

¯

x2j ` x3 ` x
¯

xk`2

px´ 1q2px` 1q3
“ 0,
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together with

E
„

´

K
p1q
j`k,n ´ k

¯2
1
tkăK

p1q
j`k,nďk`K

p1q
j,nu



“ E
„

E
„

´

K
p1q
j`k,n ´ k

¯2
1
tkăK

p1q
j`k,nďk`K

p1q
j,nu

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n



“ E

»

–

k`K
p1q
j,n

ÿ

q“k`1

pq ´ kq2 1
tkăqďk`K

p1q
j,nu

P
”

K
p1q
j`k,n “ q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n

fi

fl

“

j
ÿ

l“0

k`l
ÿ

q“k`1

pq ´ kq2 1tkăqďk`luP
”

K
p1q
j`k,n “ q

ı

P
”

K
p1q
j,n “ l

ı

“

j´1
ÿ

l“0

k`l
ÿ

q“k`1

pq ´ kq2 1tkăqďk`luP
”

K
p1q
j`k,n “ q

ı

p1´ xnq x
l `

k`j
ÿ

q“k`1

pq ´ kq2 1tkăqďk`juP
”

K
p1q
j`k,n “ q

ı

xjn

“ p1´ xnq
2
j´1
ÿ

l“0

k`l
ÿ

q“k`1

pq ´ kq2 xqn x
l ` p1´ xnq

k`j´1
ÿ

q“k`1

pq ´ kq2 xqnx
j
n ` j

2xk`jn xjn

“

´´

j2
`

x2 ´ 1
˘2
` 2jx

`

x2 ´ 1
˘

´ x
`

x2 ` 1
˘

¯

x2j ` x3 ` x
¯

xk`1

px´ 1q2px` 1q3
,

and thus

lim
nÑ8

1

n4

n
ÿ

j“1

n´1
ÿ

k“1

´´

j2
`

x2 ´ 1
˘2
` 2jx

`

x2 ´ 1
˘

´ x
`

x2 ` 1
˘

¯

x2j ` x3 ` x
¯

xk`1

px´ 1q2px` 1q3
“ 0.

Therefore condition ii) holds. So does Eq.(A7) since Lemma 3 readily applies to sj,n “ E
“

Z̄j,n
‰

.
We consider now the L̄j,n’s and we proceed as for Z̄j,n’s. Again, condition i) is easily verified by

noticing that Var
“

L̄j,n
‰

“ 3∆2
nVar rLj,ns. As regards as condition ii), we show that

Cov
“

L̄j,n, L̄j`k,n
‰

“ ∆2
nCov rLj,n, Lj`k,ns `∆2

nRj,k

with

lim
nÑ8

1

n4

n
ÿ

j“1

n´j
ÿ

k“1

Rj,k “ 0.

To simplify notations call Ij “ 1
tK

p1q
j,nďK

p2q
j,nu

. Computations that led to decomposition in Eq.(A10)

can be easily replicated also in this case by just extending the filtration used in the law of iterated

30



June 19, 2019 Quantitative Finance rQUFguide

expectation. We obtain

E
“

L̄j`k,n L̄j,n
‰

“ E

«

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n

˙2 ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

Ij`k Ij

ff

“ E

«

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2
´

Wj ´Wj´K
p1q
j,n

¯2
1
tK

p1q
j`k,nďku

Ij`k Ij

ff

`

E

«

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2 ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tkăK

p1q
j`k,nďk`K

p1q
j,nu

Ij`k Ij

ff

`

E

«

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

ˆ

W
p1q
j`k,n ´W

p1q

j`k´K
p1q
j`k,n,n

˙2 ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙2

1
tk`K

p1q
j,năK

p1q
j`k,nu

Ij`k Ij

ff

“ E1 ` E2 ` E3.

with

E1 “ ∆2
n E

”

C̄
p1,2q
j`k`1C̄

p1,2q
j`1 K

p1q
j`k,nK

p1q
j,n 1tKp1qj`k,nďku

Ij`k Ij

ı

E2 “ ∆2
nE

”

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

´

K
p1q
j,nK

p1q
j`k,n

¯

1
tkăK

p1q
j`k,nďk`K

p1q
j,nu

Ij`k Ij

ı

` 2∆2
nE

„

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

´

K
p1q
j`k,n ´ k

¯2
1
tkăK

p1q
j`k,nďk`K

p1q
j,nu

Ij`k Ij



E3 “ ∆2
nE

„

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

ˆ

KjK
p1q
j`k,n Ij`k Ij ` 2

´

K
p1q
j,n

¯2
Ij`k Ij

˙

1
tk`K

p1q
j,năK

p1q
j`k,nu



.

However since

0 ď E
„

C̄
p1,2q
j`k`1C̄

p1,2q
j`1

´

K
p1q
j`k,n ´ k

¯2
1
tkăK

p1q
j`k,nďk`K

p1q
j,nu

Ij`k Ij



ď E
„

´

K
p1q
j`k,n ´ k

¯2
1
tkăK

p1q
j`k,nďk`K

p1q
j,nu



and

0 ď E
„

2 C̄
p1,2q
j`k`1C̄

p1,2q
j`1

´

K
p1q
j,n

¯2
1
tk`K

p1q
j,năK

p1q
j`k,nu

Ij`k Ij



ď E
„

2
´

K
p1q
j,n

¯2
1
tk`K

p1q
j,năK

p1q
j`k,nu



,

by virtue of the limits computed in (A) and (A) we can conclude the L̄j,n’s satisfy condition ii) .
Since Lemma 3 is readily satisfied from sj,n “ E

“

L̄j,n
‰

, Eq.(A8) hold.
Finally, to show the convergence in Eq.(A9) we prove that it holds in the L2-norm. This follows

from the fact that, if K
p1q
j,n ď K

p2q
j,n , then W

p1q
j,n´W

p1q

j´K
p1q
j,n,n

is independent from W
p1q

j´K
p1q
j,n,n

´W
p1q

j´K
p2q
j,n,n

,
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which implies

L2 “ E

»

–

˜

n´1
ÿ

j“0

sB
p1q
j`1,n

sB
p2q
j`1,n ηj´1,n

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙ ˆ

W
p1q

j´K
p1q
j,n,n

´W
p1q

j´K
p2q
j,n,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

¸2
fi

fl

.
“ ∆2

n

n´1
ÿ

j“0

E
”

sB
p1q
j`1,n

sB
p2q
j`1,n ηj´1,n

ı

E
”

K
p1q
j,n

´

K
p2q
j,n ´K

p1q
j,n

¯

1
tK

p1q
j,nďK

p2q
j,nu

ı

`

`2
ÿ

iăj

E

«

sB
p1q
j`1,n

sB
p2q
j`1,n ηj´1,n

sB
p1q
i`1,n

sB
p2q
i`1,n ηi´1,n ˆ

ˆ

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙ ˆ

W
p1q

j´K
p1q
j,n,n

´W
p1q

j´K
p2q
j,n,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

ˆ

ˆ

ˆ

W
p1q
i,n ´W

p1q

i´K
p1q
i,n,n

˙ ˆ

W
p1q

i´K
p1q
i,n,n

´W
p1q

i´K
p2q
i,n,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

ff

. (A12)

Nevertheless, for i ă j if K
p1q
j,n ď K

p2q
j,n and K

p1q
i,n ď K

p2q
i,n we get that the random variables

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

,

W
p1q

j´K
p1q
j,n,n

´W
p1q

j´K
p2q
j,n,n

,

W
p1q
i,n ´W

p1q

i´K
p1q
i,n,n

,

W
p1q

i´K
p1q
i,n,n

´W
p1q

i´K
p2q
i,n,n

are mutually independent. Hence, for i ă j

E

«

ˆ

W
p1q
j,n ´W

p1q

j´K
p1q
j,n,n

˙ ˆ

W
p1q

j´K
p1q
j,n,n

´W
p1q

j´K
p2q
j,n,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

ˆ

ˆ

ˆ

W
p1q
i,n ´W

p1q

i´K
p1q
i,n,n

˙ ˆ

W
p1q

i´K
p1q
i,n,n

´W
p1q

i´K
p2q
i,n,n

˙

1
tK

p1q
i,nďK

p2q
i,nu

ˇ

ˇ

ˇ

ˇ

ˇ

K
p1q
j,n ,K

p2q
j,n

ff

“ 0,

whence

L2 “ ∆2
n

n´1
ÿ

j“0

E
”

sB
p1q
j`1,n

sB
p2q
j`1,n ηj´1,n

ı

E
”

K
p1q
j,n

´

K
p2q
j,n ´K

p1q
j,n

¯

1
tK

p1q
j,nďK

p2q
j,nu

ı

ď ∆2
n

n´1
ÿ

j“0

E
”

K
p1q
j,n

´

K
p2q
j,n ´K

p1q
j,n

¯ı

Ñ 0.
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Appendix B: Proof of the main Theorem

Proof. Without loss of generality, we assume that the drift terms are zero and we write:

RCn “

n´1
ÿ

j“0

´

X
p1q
j`1,n ´X

p1q
j,n

¯ ´

X
p2q
j`1,n ´X

p2q
j,n

¯

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j`1,n ´X

p1q
j,n

¯ ´

Y
p2q
j`1,n ´X

p2q
j,n

¯

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j`1,n ´ Y

p1q
j,n ` Y

p1q
j,n ´X

p1q
j,n

¯ ´

Y
p2q
j`1,n ´ Y

p2q
j,n ` Y

p2q
j,n ´X

p2q
j,n

¯

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯ ´

Y
p2q
j`1,n ´ Y

p2q
j,n

¯

`

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯ ´

Y
p2q
j,n ´X

p2q
j,n

¯

`

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j,n ´X

p1q
j,n

¯ ´

Y
p2q
j`1,n ´ Y

p2q
j,n

¯

`

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j,n ´X

p1q
j,n

¯ ´

Y
p2q
j,n ´X

p2q
j,n

¯

“ An ` Bn ` Cn `Dn. (B1)

Put wj`1,n
.
“

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯

and consider the first term

An “

n´1
ÿ

j“0

wj`1,n ∆j`1 Y
p1q∆j`1 Y

p2q

“
1

4

n´1
ÿ

j“0

wj`1,n

„

´

∆j`1 Y
p1q `∆j`1 Y

p2q
¯2

´

´

∆j`1 Y
p1q ´∆j`1 Y

p2q
¯2


“
1

4

n´1
ÿ

j“0

wj`1,n

»

–

˜

ż tj`1

tj

´

σp1qs ` σp2qs ρs

¯

dW p1q
s

¸2

`

˜

ż tj`1

tj

σp2qs ξs dW
p2q
s

¸2
fi

fl

l jh n

A
p`q
n

´
1

4

n´1
ÿ

j“0

wj`1,n

»

–

˜

ż tj`1

tj

´

σp1qs ´ σp2qs ρs

¯

dW p1q
s

¸2

`

˜

ż tj`1

tj

σp2qs ξs dW
p2q
s

¸2
fi

fl

l jh n

A
p´q
n

`
1

2

n´1
ÿ

j“0

wj`1,n

˜

ż tj`1

tj

´

σp1qs ` σp2qs ρs

¯

dW p1q
s

¸˜

ż tj`1

tj

σp2qs ξs dW
p2q
s

¸

l jh n

A
p`q

0,n

`
1

2

n´1
ÿ

j“0

wj`1,n

˜

ż tj`1

tj

´

σp1qs ´ σp2qs ρs

¯

dW p1q
s

¸˜

ż tj`1

tj

σp2qs ξs dW
p2q
s

¸

l jh n

A
p´q

0,n

.
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By standard arguments we have that:

1
4

řn´1
j“0 ωj`1,n

´

ştj`1

tj

´

σ
p1q
s ˘ σ

p2q
s ρs

¯

dW
p1q
s

¯2 p
Ñ 1

4 p1´ p1q p1´ p2q
ş1
0

´

σ
p1q
s ˘ σ

p2q
s ρs

¯2
ds

and so:

Ap`qn ´Ap´qn
p
ÝÑ

1

4
p1´ p1q p1´ p2q

ż 1

0

ˆ

´

σp1qs ` σp2qs ρs

¯2
´

´

σp1qs ´ σp2qs ρs

¯2
˙

ds

“ p1´ p1q p1´ p2q

ż 1

0
σp1qs σp2qs ρs ds (B2)

We show now that A
p`q

0,n
p
Ñ 0. For this purpose consider the L2-norm:

E
„

ˇ

ˇ

ˇ
A
p`q

0,n

ˇ

ˇ

ˇ

2


“

n
ÿ

j“1

E

»

–ωj,n

ˇ

ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

´

σp1qs ` σp2qs

¯

dW p1q
s

ˇ

ˇ

ˇ

ˇ

ˇ

2 ˇ
ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

σp2qs
a

1´ ρ2
s dW

p2q
s

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

“

n
ÿ

j“1

E

»

–ωj,n Ej

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

´

σp1qs ` σp2qs

¯

dW p1q
s

ˇ

ˇ

ˇ

ˇ

ˇ

2 ˇ
ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

σp2qs
a

1´ ρ2
s dW

p2q
s

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

fi

fl

“

n
ÿ

j“1

E

»

–ωj,n Ej

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

´

σp1qs ` σp2qs

¯

dW p1q
s

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

flEj

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

σp2qs
a

1´ ρ2
s dW

p2q
s

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

fi

fl

“

n
ÿ

j“1

E
“

ωj,nC
2
j∆2

n

‰

“ O p∆nq Ñ 0.

The last identity is easily explained by defining Zs either σ
p1q
s `σ

p2q
s or σ

p2q
s

a

1´ ρ2
s and dWs either

dW
p1q
s or dW

p2q
s and noticing that

Ej

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż tj

tj´1

Zs dWs

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “

˜

ż tj

tj´1

Z2
s ds

¸

2
1

2 Γp3
2q?
π

ď Cj∆n.

So since A
p`q

0,n
L2

ÝÑ 0 we get A
p`q

0,n
p
ÝÑ 0 and, with an identical reasoning, also A

p´q

0,n
p
ÝÑ 0. Summa-

rizing,

An “ Ap`qn ´Ap´qn `A
p`q

0,n `A
p´q

0,n
p
ÝÑ p1´ p1q p1´ p2q

ż t

0
σp1qs σp2qs ρs ds.
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We consider now

Bn “

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯´

Y
p2q
j,n ´X

p2q
j,n

¯

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯ ´

1´B
p2q
j`1,n

¯ ´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯

ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j,n,n

˙

“

n´1
ÿ

j“0

ωj`1,n

´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯

ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j,n,n

˙

.

Call

Zj,n “ ωj`1,n

´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯

ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j,n,n

˙

,

so that Bn “
řn´1
j“0 Zj,n. The L2-norm of Bn is now computed as

E

»

–

˜

n´1
ÿ

j“0

Zj

¸2
fi

fl “

n´1
ÿ

j“0

E
“

Z2
j

‰

` 2 ECn

where ECn contains the expected value of the cross-products, that is

ECn “

n´1
ÿ

j“0

n´1
ÿ

i“j`1

E
„

ωj`1,n

´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯

ωi`1,n

´

Y
p1q
i`1,n ´ Y

p1q
i,n

¯

ˆ

Y
p2q
i,n ´ Y

p2q

i´K
p2q
i,n,n

˙ ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j,n,n

˙

“

n´1
ÿ

j“0

n´j´1
ÿ

k“1

E
„

ωj`1,n

´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯

ωj`k`1,n

´

Y
p1q
j`k`1,n ´ Y

p1q
j`k,n

¯

ˆ

ˆ

ˆ

Y
p2q
j`k,n ´ Y

p2q

j`k´K
p2q
j`k,n,n

˙ ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j,n,n

˙

“

n´1
ÿ

j“0

n´j´1
ÿ

k“1

E
„

ωj`1,n ωj`k`1,n

ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j,n,n

˙

´

Y
p1q
j`1,n ´ Y

p1q
j,n

¯

ˆ

ˆ

ˆ

Y
p2q
j`k,n ´ Y

p2q

j`k´K
p2q
j`k,n,n

˙

´

Y
p1q
j`k`1,n ´ Y

p1q
j`k,n

¯



.

since
´

Y
p1q
j`k`1,n ´ Y

p1q
j`k,n

¯

is independent from the other terms for all j “ 0, ..., n ´ 1 and for all

k “ 1, ..., n ´ j ´ 1 and since, besides, E
”´

Y
p1q
j`k`1,n ´ Y

p1q
j`k,n

¯ı

“ 0 we get ECn “ 0. Concerning

E
”

Z2
j

ı

note that, by the boundedness of σp1q and σp2q we have

E
“

Z2
j

‰

ď C ∆2
n E

”

K
p2q
j`k,n

ı

.
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The expected value of K
p2q
j,n for j ě 1 (remember that K

p1q
0 “ 0 identically) can be computed

analytically as

E
”

K
p2q
j,n

ı

“ j ppn,2q
j
` p1´ pn,2q

j´1
ÿ

q“1

q ppn,2q
q

so that

n´1
ÿ

j“1

E
”

K
p2q
j,n

ı

“
pn,2 pppn,2q

n
` n p1´ pn,2q ´ 1q

p1´ pn,2q
2 “ O

`

∆´1
n

˘

and so

n´1
ÿ

j“0

E
“

Z2
j

‰

ď C ∆n Ñ 0.

whence Bn
p
ÝÑ 0 and, by symmetry, Cn

p
ÝÑ 0. We consider the last term

Dn “

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯´

1´B
p2q
j`1

¯´

Y
p1q
j,n ´X

p1q
j,n

¯´

Y
p2q
j,n ´X

p2q
j,n

¯

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯´

1´B
p2q
j`1

¯

ˆ

Y
p1q
j,n ´ Y

p1q

j´K
p1q
j ,n

˙ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j ,n

˙

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯´

1´B
p2q
j`1

¯

ˆ

Y
p2q
j,n ´ Y

p2q

j´K
p2q
j ,n

˙ˆ

Y
p1q
j,n ´ Y

p1q

j´K
p1q
j ,n

˙

“

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯´

1´B
p2q
j`1

¯

ż tj,n

t
j´K

p2q
j

,n

σp2qs ρs dW
p1q
s

ż tj,n

t
j´K

p1q
j

,n

σp1qs dW p1q
s

l jh n

D
p1q
n

`

n´1
ÿ

j“0

´

1´B
p1q
j`1,n

¯´

1´B
p2q
j`1

¯

ż tj,n

t
j´K

p2q
j

,n

σp2qs
a

1´ ρ2
s dW

p2q
s

ż tj,n

t
j´K

p1q
j

,n

σp1qs dW p1q
s

l jh n

D
p2q
n

.

We have now

Dp1qn “

n´1
ÿ

j“0

ωj`1,n

ˆ

σ
p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙

`Op

´

K
p2q
j ∆n

¯

˙ ˆ

σ
p1q
j,n

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙

`Op

´

K
p1q
j ∆n

¯

˙

“

n´1
ÿ

j“0

ωj`1,n

«

σ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙

l jh n

Fn

`Op

ˆ

´

K
p2q
j

¯1{2

K
p1q
j ∆3{2

n

˙

` Op

ˆ

´

K
p1q
j

¯1{2

K
p2q
j ∆3{2

n

˙

`Op

´

K
p1q
j K

p2q
j ∆2

n

¯

ff
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Dp2qn “

n´1
ÿ

j“0

ωj`1,n

ˆ

σ
p2q
j,n

b

1´ ρ2j

ˆ

W
p2q
tj,n ´W

p2q
t
j´K

p2q
j

,n

˙

`Op

´

K
p2q
j ∆n

¯

˙ ˆ

σ
p1q
j,n

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙

`Op

´

K
p1q
j ∆n

¯

˙

“

n´1
ÿ

j“0

ωj`1,n

«

σ
p1q
j,nσ

p2q
j,n

b

1´ ρ2j

ˆ

W
p2q
tj,n ´W

p2q
t
j´K

p2q
j

,n

˙ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙

l jh n

Gn

`Op

ˆ

K
p1q
j

´

K
p2q
j

¯1{2

∆3{2
n

˙

` Op

ˆ

´

K
p1q
j

¯1{2

K
p2q
j ∆3{2

n

˙

`Op

´

K
p1q
j K

p2q
j ∆2

n

¯

ff

.

We consider now the following decomposition of Fn

Fpăqn “

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙2

1
tK

p1q
j,nďK

p2q
j,nu

`

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙ˆ

W
p1q
t
j´K

p1q
j

,n

´W
p1q
t
j´K

p2q
j

,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

,

Fpąqn “

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙2

1
tK

p2q
j,năK

p1q
j,nu

`

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙ˆ

W
p1q
t
j´K

p2q
j

,n

´W
p1q
t
j´K

p1q
j

,n

˙

1
tK

p1q
j,nąK

p2q
j,nu

“

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙2

1
tK

p2q
j,nďK

p1q
j,nu

´

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙2

1
tK

p2q
j,n“K

p1q
j,nu

`

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,nρj

ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙ˆ

W
p1q
t
j´K

p2q
j

,n

´W
p1q
t
j´K

p1q
j

,n

˙

1
tK

p1q
j,nąK

p2q
j,nu

,

and of Gn

Gpăqn “

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,n

b

1´ ρ2
j

ˆ

W
p2q
tj,n ´W

p2q
t
j´K

p1q
j

,n

˙ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p1q
j

,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

`

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,n

b

1´ ρ2
j

ˆ

W
p2q
tj,n ´W

p2q
t
j´K

p1q
j

,n

˙ˆ

W
p1q
t
j´K

p1q
j

,n

´W
p1q
t
j´K

p2q
j

,n

˙

1
tK

p1q
j,nďK

p2q
j,nu

,

Gpąqn “

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,n

b

1´ ρ2
j

ˆ

W
p2q
tj,n ´W

p2q
t
j´K

p2q
j

,n

˙ˆ

W
p1q
tj,n ´W

p1q
t
j´K

p2q
j

,n

˙

1
tK

p1q
j,nąK

p2q
j,nu

`

n´1
ÿ

j“0

ωj`1,nσ
p1q
j,nσ

p2q
j,n

b

1´ ρ2
j

ˆ

W
p2q
tj,n ´W

p2q
t
j´K

p2q
j

,n

˙ˆ

W
p1q
t
j´K

p2q
j

,n

´W
p1q
t
j´K

p1q
j

,n

˙

1
tK

p1q
j,nąK

p2q
j,nu

.
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By applying Lemma 4 we obtain the following convergences in probability:

Fpăqn
p
ÝÑ

p1´ p1q
2
p1´ p2q p1p2

p1´ p1 p2q
2

ż 1

0
σp1qs σp2qs ρs ds,

Fpąqn
p
ÝÑ

˜

p1´ p2q
2
p1´ p1q p1p2

p1´ p1 p2q
2 ´

p1´ p1q
2
p1´ p2q

2 p1p2

p1´ p1p2q
2

¸

ż 1

0
σp1qs σp2qs ρs ds,

Gpąqn
p
ÝÑ 0 and Gpăqn

p
ÝÑ 0.

Thus, by applying simple algebraic computations we obtain

RCn
p
ÝÑ

p1´ p1q p1´ p2q

p1´ p1 p2q

ż 1

0
σp1qs σp2qs ρs ds,

whence the thesis.
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