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NONLINEAR OPTIMAL CONTROL WITH INFINITE HORIZON FOR
DISTRIBUTED PARAMETER SYSTEMS AND STATIONARY

HAMILTON-JACOBI EQUATIONS*

P. CANNARSA? AND G. DA PRATO

Abstract. Optimal control problems, with no discount, are studied for systems governed by nonlinear
"parabolic" state equations, using a dynamic programming approach.

If the dynamics are stabilizable with respect to cost, then the fact that the value function is a generalized
viscosity solution of the associated Hamilton-Jacobi equation is proved. This yields the feedback formula.
Moreover, uniqueness is obtained under suitable stability assumptions.
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I. Introduction and setting of the problem. Let us consider two separable reflexive
Banach spaces, X (the state space) and U (the control space). We denote by] the
norm of X, which we assume to be continuously ditterentiable in X\{0}, by X* the
dual space of X and by the pairing between X and X*. We denote by lxl the
subgradient of ]x], which is obviously single-valued on X\{0}. The same symbols will
also be used in the Banach space U. Moreover, we will use the following notation:

(i) For any Banach space K and any nonnegative integer k we denote by
ck(x; K) the set of all the mappings f: X K that are continuous and bounded on
all bounded sets of X, together with their derivatives of order less than or equal to k.

(ii) We denote by ck’I(x’ K) (respectively, ck’I(x’ K)oc), the set of all the
mappings f in ck(x; K) whose derivative of order k is Lipschitz continuous in X
(in every bounded set of X).

We are interested in the following optimal control problem.
Minimize

(1.1) J(u,x)= {g(y(s))+h(u(s))} ds

over all u LI(0, c; U)loc, subject to state equation

(1.2) y’= Ay + F(y) + Bu, y(O) x.

Following the dynamic programming approach, we will study the Hamilton-Jacobi
equation

(1.3) H(B*DV(x)) -(Ax + F(x), DV(x))- g(x) 0

where H denotes the Legendre transform of h, that is,

(1.4) H(v) sup {-(u, v)-h(u)}.

The connections between (1.3) and problem (1.1)-(1.2) are well known.
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862 P. CANNARSA AND G. DA PRATO

We assume the following hypotheses.
(SL) (i) A: D(A)cXX generates an analytic semigroup e ta in X and there

exists to R such that e’Atl-< e
(ii) The embedding D(A) X is compact.
(iii) B ( U; X).
(iv) F CI’I(X, X)oc and there exists a R such that (F(x), x*) <- alxl, for all

x* olxl, for all x X.
(v) g Ca’I(X, R)oc and g(x) >- 0 for all x e X.
(vi) h Ca’a(U, R)o is strictly convex and there exists p > 1 such that h(u)>-_

lul for all u e U and some /> 0.
We remark that, if (SL) are fulfilled, then, by classical arguments (see, for instance,

[21]), problem (1.2) has a unique global mild solution y C([0, eo[; X).
In the analysis of (1.3), we meet with two immediate difficulties: the nonsmoothness

of solutions and the unboundedness of A. In fact, first-order partial differential
equations have, in general, no global classical solutions even in finite dimensions.
Therefore, a suitable notion of weak solution is required. Moreover, such a generalized
solution will have to take care of the fact that Ax is defined only on a dense subspace
of X.

The first problem can be successfully treated by the notion of viscosity solution,
introduced by Crandall and Lions [12]-[15]. In [16] they have also extended their
definition of solutions to problems involving unbounded operators. Further results in
these directions have been obtained in [4] and [10] by an approximation procedure.

Stationary Hamilton-Jacobi equations have been extensively studied (see [20] for
general references and results; see also 13]-[ 16]) mainly in the case when the equation
contains an additional term of the form hV with h > 0. This corresponds to the
introduction of a discount factor e-at in the cost.

However, in many applications we are required not to have such a discount, as
in linear quadratic optimal control problems. A large amount of work has been devoted
to the analysis of this case (see, for instance, the review paper [22]). For linear quadratic
optimal control problems, the Hamilton-Jacobi equation is replaced by the algebraic
Riccati equation, as it is well known. In general, uniqueness is false for this equation.
Therefore, we do not expect to have uniqueness for (1.3).

Optimal control problems with a linear state equation and a convex cost functional
are also studied in [3] and [6]. Some generalizations to the nonconvex case, by using
variational methods, are contained in [4], [6], and [7].

The main idea of our approach is to obtain a viscosity solution V of (1.3) as

(1.5) V(x) lim 4(t, x)
t---

where b solves the forward equation (in the generalized sense of [10]):

(1.6) qSt(t, x)+ H(B*Vd(t, x))-(Ax + F(x), Vd(t, x))-g(x) =O, 6(0,x)=0.

For the value function of the control problem (1.1)-(1.2) to be finite, we introduce
the notion of stabilizability that generalizes a welt-known concept in linear quadratic
control (see, e.g., [22]).

DEFINITION 1.1. We say that (A + F, B, h) is stabilizable with respect to the observa-
tion g (or, for brevity, that problem (1.1)-(1.2) is stable) if for any x X there exists

Ux e L(0, oe; U)oc such that J(ux, x) <oe. Such a control ux will be called an admissible
control at x.
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STATIONARY HAMILTON-JACOBI EQUATIONS 863

Finally, we define the value function of problem (1.1) (1.2) as

(1.7) V(x)=inf{J(u,x); u6 LI(0, o; U)loc}.

We say that u* LI(0, ; U)loc is an optimal control if J(u*) V(x); in this case,
we call the corresponding solution y* of (1.2) an optimal state and (u*, y*) an optimal
pair at x.

In this paper we show that, if (A + F, B, h) is g-stabilizable, then V is a generalized
viscosity solution of (1.3). Moreover, we obtain the existence of optimal pairs as well
as the feedback formula (see Theorem 4.4).

In 3 we study the "stability" of the closed-loop system. When this system is
stable and B is invertible, we prove the uniqueness of the nonnegative generalized
viscosity solution of (1.3) vanishing at zero (Theorem 5.4).

An application to a nonlinear control problem for a distributed parameter system
is illustrated in 6.

We now explain our definition of generalized solutions. We define solutions of
(1.3) as stationary solutions of the following evolution equation:

(1.8) Wt(t, x) + H(B*V W(t, x)) -(Ax + F(x), V W(t, x)) g(x).

More precisely, we have the following definition.
DEFINITION 1.2. Assume (SL). We say that V C’I(x; R)loc is a generalized

viscosity solution of (1.3) if W(t, x):= V(x) is the generalized viscosity solution of (1.8)
in [0, T] X with terminal data W(T, x) V(x), for all T> 0.

We recall below the definition of generalized viscosity solutions of the Cauchy
problem (see [10])

(1.9)
Wt(t, x)+ H(B*V W(t, x))-(Ax + F(x), V W(t, x))= g(x)

W(T,x)=cho(X), xX, t6[0, T]

where

(1.10) bo c’l(x; l)loc.

DEFINITION 1.3. Assume (SL) and (1.10). We say that We C([0, T]X; R) is a
generalized viscosity solution of (1.9) if we have

(1.11) lim W,(t,x)= W(t,x), VxD(A), Vt[t, T]

where Wn is the viscosity solution (in the sense of Crandall and Lions [13]) of the
problem

(1.12)
Wnt(t, x)+ H(B*V W(t, x))-(A,,x + F(x), V W.(t, x))-g(x) =0,

W.(T,x)=o(X)

where

(1.13) An nA(n-A)-1.

We note that problem (1.12) has a unique viscosity solution (see [13] and also [10]).
A property of generalized viscosity solutions that turns out to be essential to our

approach is semiconcavity (see [9]).
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864 P. CANNARSA AND G. DA PRATO

In applications it is also useful to consider the following more general assumptions:
(SL’) (i) Hypotheses (SL) (i), (ii), (iii), (v) and (vi) hold.

(ii) there exists a Banach space Z (with pairing denoted )), continuously
embedded in X, such that the part of A in Z, Az, generates an analytic
semigroup in Z with domain D(Az) (not necessarily dense in Z)

D(Az) {x D(A) fq Z; Ax Z}.

Moreover, e taz " e"’ for all 0 and some tz R.
(iii) There exists a ]0, 1-I/p[, aR, and two continuous functions /3,

p:[0, [ [0, [, such that Da(a, p) is embedded in Z and

(1.14) F C’"(DA(,p); X),oe,

(1.15) (F(z),z*)zalz]z VzZ, Vz*O[z]z,
(1.16) ]F(x)l(lX[z)+p(Xlz)[Xl.e VxDa(a,p).

We recall that DA(,p) is the real interpolation space between D(A) and X,
introduced by Lions and Peetre [19], with norm

Definition 1.2 remains unchanged under assumptions (SL’), except for the fact
that we assume V c’l(Da(o,p); R)oc. Moreover, in Definition 1.3 we assume We
C([0, T] DA(Ce, p); R) and replace (1.12) by

W,,( t, x) + H(B*V W,( t, x)) -(A,x + F( n(n A)-’x), V W,( t, x))- g(x) O,

W.(7",x)=Oo(X).

2. Preliminaries. In this section we recall the basic results on the time-dependent
Hamilton-Jacobi equation (1.9).

P.o,osroN 2.1. Assume (1.10) and either (SL) or (SL’). Then, there exists a
unique generalized viscosity solution W ofproblem (1.9) given by

(2.1) W(t,x)=inf [g(y(s))+h(u(s))]ds+qbo(y(T)); uL’(t, T; g),oc

where y is the solution of
(2.2) y’(s)= Ay(s)+ F(y(s))+ Bu(s), t<=s<= T, y(t)= x.

Moreover, W satisfies (1.9) in the sense that for every t, x) [0, T] D(A) we have

(2.3) (i) V(pt, px)D+W(t,x), -p,+H(B*p)-(Ax+F(x),p,)<-g(x),

(ii) t(pt, p,)D-W(t,x), -p,+H(B*p)-(ax+F(x),p,)>=g(x).

We recall the definition of the semidifferentials D+ and D-

D+ W(t, x) { (Pt, Px) R X*; lim sup

(2.4)
(s,y)(t,x)

D- W(t, x) { (p,, p) e R x X*; lim inf
(s,y)(t,x)

W(s, y) W( t,[s -x) (s
+ lY

t)p, -(y Px) <= 0},
W(s, y)- W(t,ls_ tl/ly_xlX)-(s- t)p,-(y-x, Px)

>=0}.
Remark 2.2. The results of Proposition 2.1 are proved in Theorems 3.3 and 3.7

of [10] in a slightly different form that is equivalent to the one above in view of the
coercivity assumption on h.
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STATIONARY HAMILTON-JACOBI EQUATIONS 865

We now recall the Maximum Principle [8], the feedback formula [4], [9], and
some regularity properties of optimal pairs [9].

PROPOSITION 2.3. Assume (SL) (respectively, (SL’)) and (1.10). Let Wbe given by
(2.1) and t, x) E [0, T] X (respectively, t, x) [0, T] DA 0, p)). Let (u*, y*) be an
optimal pair for W at t, x). Then, there exists p* C([ t, T]; X*) such that

(2.5) p*’(s)+ A*p*(s)+(DF(y*(s))*p*(s)+ Dg(y*(s))=0, p*(T)= Ddp(y*(T)),

(2.6) u*(s)=-DH(B*p*(s)), t<-s <- T.

We call p* a dual arc. Moreover,

(2.7) u*(s) -DH(B*V+W(s, y*(s))),

where

(2.8) V+W(s,x)={qX*’, limsup

t<=s<_T

W(s, y)- W(s, x)-(y-x, q) <0}
Furthermore, there exists 6 ]0, 1[ such that

(2.9) y* E Cl’a(]t, T[; X),

(2.10) p* Cl’(]t, T[; X), u* c,’(]t, T[; X).

Above we have denoted by C1’(I; X), for any real interval I, the space of functions
that are H61der continuous with exponent 3, together with their first derivative, on
each subinterval [a, b] contained in/.

Finally, the following results are proved in [4] and [9].
PROPOSITION 2.4. Assume (SL) (respectively, (SL’)) and (1.10) and let Wbe given

by (2.1). Then we have the following:

(2.11) (i)
(ii)

W( t,.) is locally Lipschitz in Xfor all 6 [0, T];
W(., x) is Lipschitz continuous in [0, T] for all x D(A).

Furthermore, if B-1 (H; U), then W(t, .) is semiconcave in Xfor all E[0, T[; that
is, for all r > 1/T there exists Cr > 0 such that

AW(t,x+(1-A)x’)+(1-A)W(t,x-Ax’)- W(t,x)<-__CrA(1-A)[x’[2

for all t[0, T-1/r], Ix[, [x’l<-_r, A 6[0, 1].
Along with the backward Cauchy problem (1.9), we will consider the forward

problem:

(2.12)
,( t, x) + H(B*Vth( t, x)) -(Ax + F(x), V oh( t, x))- g(x) 0;

6(o, x) 6o(X).

We say that th C([0, T] X; R) (respectively, 4’ ([0, T] Da(a, p); R)) is the gen-
eralized viscosity solution of (2.12) if W(t, x)= oh(T-t, x) is the generalized viscosity
solution of (1.9).

We prove now the analogue of representation formula (2.1).
PROPOSITION 2.5. Assume (SL) (respectively, (SL’)) and (1.10). Let ch be the

generalized viscosity solution of (2.12). Then we have

(2.13) 4(t,x)=inf [g(y(s))+h(u(s))]ds+do(y(t)); uELl(O, eo; U)Io

where y is the solution of (1.2).
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866 P. CANNARSA AND G. DA PRATO

Proof. By definition we have

4(t, x) inf {g(y(s))+h(u(s))} ds+do(y(T));
T-

(2.14)
u La( T- t, T; U), y’(s) Ay(s) + F(y(s)) + Bu(s), y( T- t) xI

Set tr s- T+ to obtain

4(t, x) inf g(y(o-+ r-t))+h(u(r+ T-t))+o(y(r));

u e LI( T- t, T: U), y’(s) Ay(s) + F(y(s)) + Bu(s), y(T- t) x}.
Now, let y(s) y(s + T- t), y(s) u(s + T- t); then

(t, x)=inf {g(g(s)) + h((s))} ds+ o(g(t));

e 1(0, ; u, g’(s ag(s + (g(sl + (s, g(0 x}
and the assertion is proved.

3. Seet efis fr sfllt. To our knowledge there are no general
conditions that yield global stabilizability in the sense of Definition 1.1 (for local results
see [2] and [18]). In the following we give some sucient conditions that may be
applied to various situations. For instance, the problem we analyze in 6 fits into the
framework of Proposition 3.3 below.

The simplest case for which there is stabilizability is when the dynamical system
(t, x) generated by A + F, that is the solution of

is exponentially stable." Indeed, in this case it suces to take u =0 in (1.2). More
precisely, we can easily prove the following proposition.

PROPOSiTiON 3.1. Assume (SL) (respecively, (SL’)). Lee h(O)=0 and suppose that
there exist positive constants C, R, , , and such

(3.2) (, x)l C e-’lxl" for all x e X,

(3.3) g(x)l Clx for Ixl e.
en, (1.1)-(1.2) is stable.

Remark 3.2. A typical assumption that implies (3.2) is that A + F+ e be dissipative
for some e > 0, i.e.,

(3.4) {Ax + F(x) + ex, x*} N 0 for all x D(A) and x*

Next, when B is invertible, we can prove a quite general result.
Pooso 3.3. Assume (SL) (respectively, (SL’)) and let B-e (X; U). Sup-

pose furcher tha there exist positive constants C, R, and such that

(3.5) If(xl Clxt fo Ixl e (respectively, IF(x)l C(lxl,)fo Ixl,
(3.6) Ig(x)l ClxI for Ixl R,

(3.7) Ih(u) Cu for lu R.

en, (1.1)-(1.2) is stable.
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STATIONARY HAMILTON-JACOBI EQUATIONS 867

(3.8)

Then

Proof. We set

U(/) -B-’{(to + 1) et(A-t-l)x-F F(et(A--I)x)}.

lu(t)l =< IIB-11l(x;){lo + lllxl e-t+ Clxl e-v’) for t> log (Ixl/R)/%

So, the corresponding solution of the state equation (1.2) is given by y(t)= et(A-’-l)x.
In view of (3.5), (3.6), and (3.7), u is an admissible control at x and the proof is
complete. [3

Now we consider the case when F is "small."
PROPOSITION 3.4. Assume (SL) (respectively (SL’)) and that there exist positive

constants C, R, and cr such that (3.5), (3.6), and (3.7) hold. Assume in addition that
there exists K (X; U) such that A-BK is exponentially stable, i.e., that (A, B) is
stabilizable by a feedback K. There exists Co)0 such that if

(3.9)
IF(x) F(y)I N eolx Yl for all x, y X

(respectively, IF(x)- F(y)I N eolx- y[.p for all x, y DA(a, p));

then (1.1)-(1.2) is stable.
Proof. Assume that (3.9) hold for some e, and let x X. We will show that, if e

is sufficiently small, then the following control

(3.10) ux(t) e’(A--BK)x

is admissible. Let N > 0 and c > 0 be such that

(3.11) e’A-’>ll =< Ne-2ct,

and set

(3.12)

(3.13)

t=>0

[Ivllc=Sup{eC’lv(t)l; t->0}, vE c([0, oo[; x),

(respectively, Ilvllc=Sup{e’lv(t)],,,; t->0}, VE C([0, m[; DA(a,p)),

(respectively, E {v e C([0, oe[; DA(a, p)); IlVllc < oo)),

E, equipped with the norm [[c, is a Banach space. Now consider the problem

(3.14) z’= (A- BK)z + F(z), z(0) x.

By a fixed point argument we can easily show that if e is small, then (3.14) has a
unique solution in Y. Since z coincides with the solution of the state equation (1.2)
when u ux, we have obtained the conclusion. [3

4. Existence. In this section we prove that the existence of solutions to the
Hamilton-Jacobi equation

(4.1) H(B*DVoo(x)) -(ax + F(x), DV(x))- g(x) 0

is equivalent to the fact that (A + F, B, h) is g-stabilizable. We will obtain V as the
limit of the generalized viscosity solution to the problem

(4.2) cht(t,x)+H(B*Vch(t,x))-(Ax+F(x),Vch(t,x))-g(x)=O, th(0, x) 0

when - +o.
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868 P. CANNARSA AND G. DA PRATO

PROPOSITION 4.1. Assume (SL) and suppose that problem (1.1)-(1,2) is stable, Let
qb be the generalized viscosity solution to (4.2) and let Voo be given by (1.4). Then, for
all x X we have

(4.3) V(x) lim &(t, x).

Proof. By Proposition 2.5 it follows that ok(t, x) is increasing in for any x X
and 49(t, x) <= V(x). Thus

(4.4) 6oo(x) lim oh( t, x) <- Vo(x).
t’oo

Now let (ut, y,) be such that

4(.t, x)= {g(y,(s)) + h(u,(s))} ds

where u e L(0, t; U) and y’,(s)=Ay,(s)+f(y(s))+ Bu,(s); y(0)= x. Then we have

(4.5) V(x) > h(u,(s)) as >  llu, L’(0,t;n)-

Set u_,(s)=u,(s) if se[0, t] and _u,(s)=0 is s> t; since by (4.5) {_u,} is bounded in
LP(0, c; U), there exists

t, ’ + such that v, := _ut,, u* weakly in LP(0, ; U); set z, _y,,,.

Now fix T> 0; since e ’a is compact for all > 0 (by hypothesis (SL)(ii)) we have that
z, y* in C([0, T]; X), where y* is the solution of (1.2) with u u*. Since h is convex
it follows that

4)oo(x) >- {g(y*(s))+ h(u*(s))} ds.

But T is arbitrary, so g(y*) and h(u*) belong to L(0, oe; R) and

ch(x)>= {g(y*(s))+h(u*(s))} ds>= V(x). l-]

Under assumptions (SL’) a similar result can be proved.
PROPOSITION 4.2. Assume (SL’) and suppose that problem (1.1)-(1.2) is stable. Let

ch be the generalized viscosity solution to (4.1) and V the value function given by (1.4).
Then, for all x Da(a, p) we have

(4.6) V(x) lim th(t, x).
t$

Proof The reasoning is similar to the one above. Since F is only defined in
DA(a, p), now we must prove that

(4.7) z, --> y* in C([O, t]; DA(a, p)).

From (SL’)(ii) and (1.15) it follows that

(4.8)
d+

d--- Iz"( t)lz <- (a + w)lz.( t)]z + ]By.(
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STATIONARY HAMILTON-JACOBI EQUATIONS 869

where d+/dt denotes the right derivative. Thus, there exists C(T)>0 such that
Iz,(t)lz <- C(T) for every e [0, T]. We set ’, F(z,) + By,. Then, from the representa-
tion formula

(4.9) z,( t) e’Ax + e(t-s)An(S as

and the fact that v, is bounded in LP(O, oo; U), we conclude that there exists CI(T) > 0
such that Izn(t)l,p<-Cl(T) for every te[0, T]. Therefore, {srn} is bounded in
LP(O, T; X) and we can find a subsequence, still denoted by {rn}, such that r, -*weakly in LP(O, T; X). Moreover, z, y* in C([0, t]; X).

To show (4.7) note that, for all t, e ]0, T[,

ly*(t) z,( t)[,p le<t-’)A,(s)l=,p ds

(4.10)
+ ]Ie’-)AIIQ,<,p)) ds ]ff,(s)[ p ds

Also,

const
(4.11) (X,DA(a,p)) Vt > O.

So, using the fact that e ta, t>0, is a compact operator from X into DA(a, p) and
recalling that c ]0, 1-1/p[, we can easily derive (4.7) from (4.10) and (4.11).

To prove our existence result, we need a lemma.
LEMMA 4.4. Assume (SL) (respectively, (SL’)). For any T>0 and x X (respec-

tively, x Da o, p we have

Vow(x) =inf [g(y(s))+ h(u(s))] ds+ V(y(T));

(4.12)
U tl(0, T; U), y’(s)+ Ay(s)+ F(y(s))+ Bu(s), y(O)= x}.

Proof Denote by V* the right-hand side of (4.12). Let u be an admissible control
and let y be the corresponding solution of (1.2). Then,

{g(y(s))+ h(u(s))} ds {g(y(s)) + h(u(s))} ds

+ {g(y(cr + T))+ h(u(cr+ T))} do"

whence

{g(y(s))+h(u(s))} ds>= {g(y(s))+h(u(s))} as+ V(y(T)),

which implies that V*>= V(x). We now prove the reverse inequality. Fix T>0 and
u LI(0, T; U); let y C([0, T]; X) be the corresponding solution of (1.2) and (ur, Yr)
be an optimal pair for problem (1.1), (1.2) with x y(T). Set

u_ (s) u(s) if0=<s=<T,
_
(S) UT($-- T) if s >= T.

Since yr(0)= y(T), we have

y(s)=y(s) if0=<s -T, y(s)=yT(S--T) if s=>T.
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870 P. CANNARSA AND G. DA PRATO

Then,

Voo(x)<-_ {g(y(s))+ h(u(s))} ds+ {g(yT-(s- T))+ h(yr(s- T))}. ds
T

T

{g(y(s)) + h(u(s))} ds+ Vo(y(T)),
o

which implies Voo(x)<= V*. [3

The main result of this section is the following theorem.
TrEOREM 4.4. Assume (SL) (respectively, (SL’)) and suppose that problem (1.1)-

(1.2) is stable. Then Voo is a generalized viscosity solution of equation (4.1). Moreover,
for any x X (respectively, x DA(a, p)) there exists an optimal pair (u*, y*) and the
following feedback formula holds:

(4.13) u*(t)-DH(B*V+Voo(y*(t))), t>-O.

Proof By Lemma 4.3 and by Proposition 2.1 it follows that V(x) W(t, x) where
W is the generalized viscosity solution of the problem

(4.14)
W(t, x) + H(B*DW(t, x)) -(Ax + F(x), DW(t, x))- g(x) O,

W( T, x) V(x).

Then, Vo is a generalized viscosity solution of (4.1). The existence of an optimal pair
(u*, y*) was implicitly obtained in the proof of Proposition 4.1 (respectively, Proposi-
tion 4.2). Finally, Proposition 2.3 yields the feedback formula (4.13). [3

Remark 4.5. From (2.3) we also obtain that, for all x D(A),

(4.15) H(B*p)-(Ax+F(x),p)-g(x)<=O IpD+V(x),

(4.16) H(B*p)-(Ax+F(x),p)-g(x)>=O VpD-V(x).

Remark 4.6--(Maximum principle). Assume (SL) (respectively, (SL’)). From
Proposition 2.3 we conclude that, if x X (respectively, x Da(a, p)) and (u*, y*) is
an optimal pair at x, then there exists p* C([0, oe[; X) such that

p*’(s) + A*p*(s) + (DF(y*(s))* + Dg(y(*s))) O,

(4.17) p*(s)D+Voo(y*(s)),

u*(s) -DH(B*D+V(y*(s)))

for any s e [0, T].
Remark 4.7re(Feedback dynamical system). Assume (SL) (respectively, (SL’))

and let (u*, y*) be an optimal pair at x eX (respectively, x e Da(a,p)). Then, by
Remark 4.6, y* is a solution of the closed loop equation

(4.18) y’(t)6Ay(t)+F(y(t))-BDH(B*D+Voo(y(t))), y(0)=x, t=>O.

Moreover, by Proposition 2.3, there exists 3 ]0, 1[ such that

(4.19) y* C1.(]0, oo[; X).

Now, we denote by St the dynamical system generated by (4.18), that is,

(4.20) St(x) y( t), >= 0, x S.

Then, from the Dynamic Programming Principle (4.12) it follows that St is a semigroup
of nonlinear operators in X.
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STATIONARY HAMILTON-JACOBI EQUATIONS 871

We remark that no theory is available to directly solve the initial value problem
(4.18) except for special situations such as

X U Hilbert space, B 1, h(x)= 1/211xll =, convex.

In this case the operator in the right-hand side of (4.18) becomes m-dissipative (see [6]).
Finally we note that

(4.21) g(Stx) cLl(O, oO.’,X) VxX (respectively, xDA(a,p)).

5. Uniqueness. To make the context of this section clearer to the reader, we recall
some known results from linear quadratic control that correspond to the following
choice of data:

(5.1) H(x) =- lxl =, f(x)=0, g(x)=1/2[Cxl, C (X) x 6 X

where X is a Hilbert space. In this case, setting V(x)=1/2(Px, x), (1.3) reduces to the
algebraic Riccati equation:

(5.2) A*P + PA PBB*P + C*C O.

As it is well known, if (A, B) is stabilizable with respect to the observation C, then
there exists a minimal positive solution Poo of (5.2). Moreover, if the feedback operator

(5.3) L=A-BB*P
is exponentially stable, then P is unique among the positive solutions of (5.2).

In general, no necessary and sufficient condition for uniqueness of positive sol-
utions is known. A sufficient condition for L to be exponentially stable (which would
yield uniqueness), is that C be invertible (more generally that (A, C) be detectable;
see [25]).

The aim ofthis section is to generalize the previous results to the general Hamilton-
Jacobi equation

(5.4) H(B*DV(x))-(Ax + F(x), DV(x))-g(x) =0.

Throughout this section we assume either (SL) or (SL’) and that

(5.5) (i) Problem (1.1)-(1.2) is stable;
(ii) g(0) 0, h(0) 0.

By Theorem 4.5 we know that (5.4) has a generalized viscosity solution given by Voo.
First we remark that 1/oo is minimal.
LEMMA 5.1. Assume (SL) (respectively, (SL’)) and (5.5). Let V be a nonnegative

generalized viscosity solution of (5.4) such that V(O)=0. Then Vow(x) <- V(x), for all
x X (respectively, x Da(o, p)).

Proof. By Proposition 2.5 it follows that &(t, x)<- V(x) where b is the solution
of (4.2). Then, Propositions 4.1 and 4.2 yield the conclusion. ]

Now, to prove uniqueness we must show that V is maximal. A sufficient condition
for maximality is that B-1 (H; U) and the semigroup of nonlinear operators St(x),
defined in (4.20), be "stable" for any x in X.

LEMMA 5.2. Assume (SL) (respectively, (SL’)) and (5.5). Suppose that B-I
(H; U) and

(5.6) Vx X (respectively, x Da(a, p)) ::i r >--_ 1 such that --> St (x) belongs to

L(O, oo; X).

D
ow

nl
oa

de
d 

08
/2

2/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



872 P. CANNARSA AND G. DA PRATO

Then Vo is maximal, that is if V is a generalized viscosity solution of (5.4) such that
V(0) 0, then

(5.7) V(x) >= V(x) Vx X.

Proo Let x X (respectively, x DA(a, p)) be fixed. Set y(t) St(x). Recalling
Proposition 2.4, we have that D+V =0 V (see [9]), where 0 V denotes the generalized
gradient in the sense of Clarke [11]. So, by (4.19) and Theorem 2.3.10 of [11], we can
differentiate the function t V(y(t)) in the following sense. There exists q(t)
D+V(y(t)) such that

d
d- V(y(t))=(Ay(t)/ F(y(t))+ Bu(t), q(t) > -g(y(t))/(u(t), B*q(t)/ H(B*q(t))

>--g(y(t))-h(u(t)).

The first of the inequalities above follows from (4.15). Hence,

V(y(t))+ {g(y(s))+h(u(s))}>= V(x).

Since y e L(0, oe; X), there exists a sequence {t} ]’ oe, such that y(t)-0. Thus, by
the above inequality, we conclude that V(x)>-_ V(x) as required.

Remark 5.3. A sufficient condition that yields (5.6) is the coercivity of g, that is,

(5.8) g(x)>-- C]x] Vx X

for some constant C > 0.
From Lemmas 5.1 and 5.2 we deduce the following uniqueness result.
THEOREM 5.4. Assume (SL) (respectively, (SL’)), (5.5), and (5.6). Then (5.4) has

a unique generalized viscosity solution that is nonnegative and vanishes at x O.

6. Applicatioa to a semilinear parabolic state equation. Let fl be a bounded open
set of R with smooth boundary . Consider the following optimal control problem:

Minimize

(6.1) J(u, x)
1

dt {ly( t, )[P "-]U( t, sc)l v } dsc
P

over all controls u LP([0, oo[ ’).), p > 1, and states y satisfying

(6.2)
0y

ot
(t’)=AY(t’)+F(y(t’)’Vey(t’))+u(t’) in[0,[xf,

(6.3) y(t, sc) 0 on [0, o[

(6.4) y(0, sc) x(sc) on II

where F(r, s) is a real-valued function defined in R xR and x LP(I).
To apply the results of 3-5, we proceed to check the assumptions (SL’). Let

X U LP(fl), A be defined by

(6.5) D(A) W2’p(’) N W’P(-) Az Az Vz D(A)

and let B= 1. Then A generates an analytic semigroup in LP(-) by [1] and the
embedding of D(A) in LP(-) is compact in view of the Rellich Theorem. Also, we set

(6.6) g(x) =pl fa lx(,)lP d, h(u) =l fa ]u(,)lP d
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STATIONARY HAMILTON-JACOBI EQUATIONS 873

Then, it is well known that g, h C2(Lp(’-)), provided that

(6.7) p=>2.

So far, we have shown that assumptions (SL’)(i) are satisfied.
Now we check (SL’)(ii). For this purpose we define

z=c(n)

and note that by the results of [23] the part of A in Z, Az, generates an analytic
semigroup. This semigroup is also contracting in view of the maximum principle and
so (SL’)(ii) holds with/z 0. Next, to verify (SL’)(iii), recall the following well-known
characterization of the interpolation spaces Da(a, p) (see, for instance, [24])"

{fe w,(a);floa=o} ifce ,
D(,p=

W’P(a) if. O,p
By the Sobolev Embedding Theorem,

(6.8) DA(ge, p) c C(fl) z if a >--.
2p

Note that the constraint in (6.8) is compatible with the requirement ce ]0, 1- l/p[ if

n+2
(6.9) p>.

2

Let F(x)= F(x, ’x) and assume

(6.10) Fm C=(Rx R").

From the Sobolev Embedding Theorem it follows that

n+p C(6.11) ce > ==> W:’’P(fl)
2p

which in turn implies that F fulfills (1.14). Note again that the constraint in (6.11) is
compatible with the requirement a ]0, 1-1/p[ if

(6.12) p > n + 2.

We will now show that the condition

(6.13) rF(r, 0) -<_ ar2 for all r R and some a R

implies (1.15). The argument is known; nevertheless, we recall it for the reader’s
convenience. First, let

(6.14) z C1(1) be such that [z] has a unique maximum point, say

Then, we can easily show that O[z {z*}, where

z* [ 6 if z(sCo)

-6o if Z(o)=-Izlz,
and denotes the Dirac measure. Thus,

f F(Izlz, 0) if z(so) IZlz,
(6.15) <F(z),

-(-I=lz, o)if=(:o)--IZlz.
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874 a. CANNARSA AND G. DA PRATO

From (6.13) and (6.15) we get

(6.16) (F(z), z*) <- alzl
for all z satisfying (6.14). On the other hand, it is well known (see, for instance, [17,
Lemma 11-7-1]) that z Z satisfies (6.16) if and only if

(6.17) Izl<=lz+A(f(z)-az)[ VA >0.

Since the set of functions z satisfying (6.14) is dense in Z, the proof of (1.15) is
complete. Finally, if we assume that

(6.18) IV(r, s)l-<- t3(Irl) + p(Irl)[sl

where/3, p:[0, [--> [0, [ are continuous functions, then (1.16) easily follows. There-
fore, assumptions (SL’) are fulfilled if

(6.19) (n+p)/2p<a<l-1/p,p>n+2, and(6.10),(6.13),and(6.18)hold.

Our next goal is to show that (A + F, B, h) is g-stabilizable. This will be given by
Proposition 3.3 if we assume that the function/3 in (6.18) satisfies

(6.20) fl(r)<=Cr Vr [0, R]

for some constants C, R => 0.
Now, Theorem 5.4 yields the following theorem.
THEOREM 6.1. Assume (6.19) and (6.20). Then the Hamilton-Jacobi equation

(6.21) (p-1)lDV(x)l’.-p(aex+F(x, Vex),DV(x))-lx[=O, p’-
p

p-1

has a unique generalized viscosity solution Vow>= 0 such that Vow(O)= O. V is the value
function of the control problem (6.1)-(6.4). Moreover, for any x DA(a, p) there exists
an optimal pair (u*, y*) at x and the following feedback formula holds:

(6.22) u*( t) ID+ V(y*( t))l P’-2D+ V(y*( t)).
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