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SOME RESULTS ON BELLMAN EQUATION IN HILBERT SPACES*

G. DA PRATOf

Abstract. We give an existence result on the Bellman equation related to an infinite dimensional control
problem.

Key words. Bellman equation, dynamic programming, nonlinear semigroup

1. Introduction. This paper deals with the evolution equation

(1.1)
et=1/2Tr(S,x)+(Ax, ex)-F(x, ,),

(O,x)=o(X),

as well as with the stationary equation

(1.2) A-1/2Tr(Sexx)-(Ax, ,,)+ F(x, ) 0, A>0.

Here A is the infinitesimal generator of a strongly continuous semi-group in H, F a
mapping from H H into , a mapping from [0, T] x H into (t and ,, denote
derivatives with respect to and x).

Equations (1.1) and (1.2) are relevant in the study of dynamic programming in
the control of stochastic differential equations (see for instance [3], [7]). In [1] (1.1)
is studied in the particular case

(1.3) F(x, ) 1/2112- g(x).

In this case it is possible to prove the existence and uniqueness of if o and g are
convex (with polynomial growth to infinity). In applications to control theory, the
hypothesis of convexity is fulfilled if the state equation is linear and the cost functional
is convex. In this paper we give an approach to (1.1) and (1.2) without convexity
hypotheses.

We remark that, using abstract Gauss measure, some results have been proved in
[9] in the particular case when A 0.

Our method consists first in solving the linear problem

(1.4)
(O,x)=o(X),

then in considering the nonlinear term as a perturbation of the linear one. Section 2
is devoted to problem (2.4) and 3 to (1.1), (1.2) (using the theory of nonlinear
semigroups). Finally in 4 we present an application of our results to a problem of
stochastic control.

2. The linear problem. We are here concerned with the problem

(2.1)
6(0, x) bo(X).

Let us list the following hypotheses"
HI) S is a self-adjoint, positive nuclear operator in a separable Hilbert space H.

* Received by the editors October 13, 1983.
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62 G. DA PRATO

S is given by

(2.2) Sx ., X,{x, e,)e,
i=I

where {ei} is a complete orthonormal system in H and hi>0, i= 1,2,..- ((.) denotes
the inner product and[. [the norm in H).

H2) A: DA c H + H is the infinitesimal generator of a strongly continuous, linear
semi-group e tA in H. Moreover [etA[<_-- and {ei}c DA.

We shall denote by Cb(H) the set of all mappings p: H-R uniformly continuous
and bounded. Cb(H), endowed with the norm

(2.3) IIll= sup
xH

is a Banach space. By C(H), h 1, 2,. , we mean the set of all mappings : H --> R
uniformly continuous and bounded, with all derivatives of order less than or equal
to h.

Let {/3i} be a sequence of mutually independent real Brownian motions in a
probability space (f, e, P). Set

(2.4) W x//3i(t)ei
i=1

then it is well known (see for instance [5]) that W is a H-valued Brownian motion
with covariance operator S.

To solve (2.1) we consider the following approximating problem:

b7 =1/2 Tr (S.6") +(A,,x, 6,),

"(0, x) 6o(X), xeH.

where H, P,(H), P,x i=1 (x, ei}ei, S, SP,, A, P,AP,. Note that A, is bounded
by virtue of hypothesis H2b.

The following lemma is standard (since problem (2.5) is finite dimensional).
LEMMA 2.1. Assume that boe C2b(H). Then problem (2.5) has a unique solution

qb" given by

(2.6)

where

"(t, x)= Eo(etA"x +X’) lx H,,,

E means expectation).
In the sequel we set

(2.8) (TTO)(x) E(e’A"x +XT)
for any Cb(H). It is easy to check that T’ is a strongly continuous semi-group of
contractions in Cb(H,) whose infinitesimal generator s, is given by

(2.9) 4", =1/2 Tr (S.,xx) +(A,x, d/x) V@ C2b(H.).
Note now that X’ is a Gaussian random variable in H, whose covariance X’ is given

(2.7) XT= e(t-s)A"dWns, Wns=PnWs
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SOME RESULTS ON BELLMAN EQUAT|ON IN HILBERT SPACES 63

by

(2.10)

It follows:

E ’x eSA s,, esA"x ds tx H,,.

(2.11)

(T’dq,)(x)=(27r)-’/ det ()-1/2 I exp (-1/2((E’)-y., y,,))q.,(e’A"x+y) dy

Vt# e Cb(H,).

Observe that, due to the hypothesis that Ai > 0, we have det (Z’) 0.
We will compute now the derivative of T’.
LEMMA 2.2. For any Cb(H,), t> 0 and x H, the derivative of T’ with respect

to x exists and is given by

(2.12)
d
dx(T, dd)(x)= E(e,A*.(y,, -, ,A.x,) X,g,(e +X’)).

Proof Setting in (2.11) z etA"x + y, we get

(2.13t

(T’q,)(x) (27r) -n/2 det (E)-I/2 I exp (-1/2((p)-(g- e’A"x), Z-- e’A"x))(Z) dz
H.

from which

dTTg’](x)=(2rr)-"/2 det (y..,)-/2f exp (--1/2((E’)-’(z--e’A"x) z--e’A"x))
dx] ,.

(2.14) e’a*"(Y_.’)-’(z e’a.x)O(z) dz

f e’A*.(Z’)-’yq,(e’a.x +y)f.(y) dy
dHn

where f, is the n-dimensional density of X’. Thus (2.12) follows.
For any q Cb(H) we now set

(2.15) Tt)(x) E(etAx + X), > O, x H,

where

(2.16) Xt e(’-S)a dWs.

LEMMA 2.3. Let k C(H), q"(x)= 0(P,x); then the following statements hold:
a) (T7 q,")(x) T,q,(x) Vx H;
b) T,O Cb(H);
c) T, is a semi-group of contractions in Cb(H).
Proof. We have

T,q,(x) T’q"(x)l <= Elg,(e’Ax + Xt)- O(e’a"P.x + XT)l.

Now e’A"p.x- e’ax by the Trotter-Kato theorem; moreover X’ X, in probability
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64 G. DA PRATO

since

E]X, X’I:: A, le(’-s)Aeil ds
i=n+l

+ Ai le(’-s)Aei- e(’-)A.e[ ds
i=l

<=t
i=n+l

1i + E ii le(’-s)a,,ei e(’-s)a"ei]2 ds -+ 0
i=1

as n -> o. (Recall that i=1 /i Tr (S) < +c.) Conclusion a) follows from the Lebesgue
theorem. The statements b) and c) are straightforward, l-1

We will study now the differentiability of T,. From (2.12) it appears (for n-->
that we have no chance to define (d/dx)(Ttp) for every , Cb(H). To this end we
need some additional hypotheses and a new definition of differentiality. The situation
is similar to the Gross theory for the heat equation in Hilbert spaces (when A 0, see
[81).

We set

(2.17) A7 S. e’a*-( ",)-
and assume"

H3) a) There exists the limit

lim A’ P,,x A,x Vx H.

b) There exists a constant 3’ > 0 such that

IATI Vt>0.

Let us give an example in which H3 is fulfilled.
Example 2.4. Assume that

(2.18) Aei txiei, tzi >= 0,

Then

(2.19)

so that

ei e-2t’tA dt el,

2
(2.20) Aei

e-20z, e,,

i-- 1,2,....

i=1,2,...,

i= 1,2,.’..

Now the limit in H3a exists; in fact

(2.21)

where

(2.22)

+p n.?+IA, P,+pX- At P,,xl2=
i=n+l

2/xi e-
e-2txit

i=n+l

-a/2ae
y=sup

>o 1-e
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SOME RESULTS ON BELLMAN EQUATION IN HILBERT SPACES 65

H3a, b follow easily from (2.21).
Let us now define ditterentiability.
DEFINITION 2.5. We assume that q Cb(H) is S-ditterentiable if:
a) For any x, y H there exists the limit

(2.23) limo -((x + hSy) (x)) Lx(y);

b) Lx(y) is linear, continuous in y.
If q is S-ditterentiable we denote by Sq, the element of H defined by

(.4) Lx(y) (Sq,(x), y).

We shall denote by Cs(H) the set of all mappings q in Cb(H) such that
i) q is S-ditterentiable,
ii) Sq e Cb(H),

and Cs(H), endowed with the norm

is a Banach space.
We are ready now to prove the main result of this section.
PROPOSITION 2.6. Assume that HI, H2 and H3 are fulfilled. Let d/ C,(H) and

> 0; then T,d/ cls(H) and

(2.26) S(Tfl/),(x)= F_,(AtXtO(etax +Xt)) lim S,(TTd/),(P,,x).

Moreover

(2.27)

< Y /Tr (S)

y
IIS(T,q) IIo <-- tdTr (S),

where y is the constant in H3b.
Proof For any x, y H we set

(2.28) F(h) Ttb)(x + hSy),

(2.29) F,,(h) T’O)(P,x + hS,,y).

Clearly F, (h) F(h) uniformly in [0, ]. Moreover from Lemma 2.2 we have

(2.30) F’,(h) (E(ATX’ q(e’A"(p,,x + hS,y) + X’)), y)

so that, as h- 0,

(2.31) F’,,(h)-(E(A,X(e’A(x+hSy)+Xt)),y) uniformly in [0, 1].

Thus F(h) is differentiable in h and equality (2.26) follows. Concerning (2.27) we have

3 1/2IIs( T,q,)xll<-llq, llo(E(IX, 2)
(2.32)

Ai le(t-)Aei[ 2 dt <- S. [3
i=l

D
ow

nl
oa

de
d 

08
/2

6/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



66 G. DA PRATO

We remark now that the semi-group T, on Cb(H) is not strongly continuous (when
H is infinite-dimensional and A is unbounded). Since we cannot use the Hille-Yosida
theorem, we use the following procedure to define the "infinitesimal generator" of T,.

We set

(2.33)
(Fxd/)(x) e-X’( TtO)(x) dt

e-"’E(e"x +X) dt V4e Cb(H),xe H.

Clearly there exists a linear operator in Cb(H) such that

(2.34) R(A, M), Fxp VA > 0;

moreover

<1 VA>0(2.35) IIR(A, )11oo=
so that M is m-dissipative in Cb(H). M can be viewed as the abstract realization of
the linear operator

1/2 Tr (Sq,,) +(Ax, ).

The following corollary is straightforward:
COROLLARY 2.7. Assume that H1, H2 and H3 are fulfilled. Let 4’ Cb(H) and

A > O. Then R(A, )d/ Cs(H) and

(2.36) S(R(A, ))x(x)= lim S.(R(A, ,)d/n)x(P,x),

where the operators M, and M are defined by (2.9) and (2.34) respectively. Moreover,

(2.37) IIS(R(A, ))11
yF(1/2)4Tr (S)

3. The nonlinear problem. We consider here the problem.

b, =1/2 Tr (Sqbxx) +(Ax, qb)- F(Sbx),
(3.1)

b(0, x) bo(X).

Denote by Lip (H) the set of all mappings @" H --> R Lipschitz continuous and set

(3.2) ]]FllL sup { ]f(x) f(y)l
Ix-yl

,x, y6H, xCy

Let F Lip (H, H) and 3 be the mapping in Cb(H) defined by

(3.3) -F(Sdpx) b CS(H).

We are going to prove that + is m-dissipative, and then we shall invoke the
Crandall-Ligget theorem [4] to solve (3.1).

Let us also introduce the approximating operator

(3.4) ,, -F(S,ckx) Vck C(H,).
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SOME RESULTS ON BELLMAN EQUATION IN HILBERT SPACES 67

LEMMA 3.1. Assume that the hypotheses H1, H2 and H3 hold. Let FLip (H);
then M,, + ,, is m-dissipative. Moreover, if
(3.5) A > 4(V’IIFII,.)
we have

(3.6)

and

(3.7) (A Mn ,)-lg R(A, M,)(1 ,(R(A, M,)))-’g Vg Cb(H,).

Proof The dissipativity of, +, can be easily checked (it is a finite-dimensional
operator). For m-dissipativity it suffices to show (see for instance [6]) that
is surjective for some h > 0. To this purpose choose g C,(H,,) and consider the
equation

(3.8) hb M.4 .b g, h>0.

If we set q h4- .4, (3.8) is equivalent to

(3.9)

where

(3.10) E,q =-F(S,(R(A,

Recalling (2.27) we have

(3.11) lIE. IlL <-

and the conclusion follows from the contraction principle.
The proof of the following lemma is quite similar so it will be omitted.
LEMMA 3.2. Under the same hypotheses of Lemma 3.1, if (3.5) holds then

(A- M- )- exists and is given by

(3.12) (A M- )-’g R(A, M)(1 R(A, M))-’g Vg Cb(H).

Note that at this stage we cannot assert that M + is m-dissipative (we did not
prove that M / is dissipative). This will be proved by the following proposition.

PROPOSITION 3.3. Assume that hypotheses H1, H2, H3 hold. Let F Lip (H); then
s + d is m-dissipative. Moreover, for any g Cb(H) we have

(3.13) ((A-se-)-g)(x) lim ((A-s,-n)-g,)(x) xH,

(3.14) S((A-C-N)-’g),(x)= lim Sn((A-,n-n)-lgn)x(X) VxeH,

where

(3.15) g,(x)=g(P,x).

Proof Set

(3.16)
. (1 .R(A, M.))-lg.,

q (1 R(A, M))-’g.
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68 .G. DA PRATO

By virtue of Corollary 2.7, in order to prove (3.13) and (3.14) it suffices to prove that

(3.17) O(x) lim 0x(X) Vx H.

By the contraction principle we have

(3.18)
ft. lim q" in Cb(H.)

q lim in Cb(H)

where

(3.19)
om+l_.g+.,(om).

However, since g, does not go to g in Cb(H) (as n0), the conclusion (3.17) does
not follow immediately.

Fix now x H; then we have

(3.20)
q,(x)- q,. (P.x)l <--I q,.(x)- q, (x)l + q, (x)-

The first and the third term of the right-hand side of (3.20) go to zero (as m-o)
uniformly in n; moreover, for any fixed m we have I@"(x)-d/"(P,x)lO as n-o;
thus (3.17) is proved. Now dissipativity of M + follows from (3.13), and m-dissipa-
tivity from Lemma 3.2.

Let now p Lip (H, H) and set

(3.21)
c4 (p(x), Sdpx) Yd Cls(H),

.4 (S.p(x), 6) v6 c’(I-I.).

Then by similar arguments we can prove the following.
PROPOSrrION 3.4. Assume that hypotheses HI, H2, H3 hold. Let F Lip (H),

pc Lip (H, H); then M+ + c is m-dissipative. Moreover, for any g Cb(H) we have

(3.22) ((A M- c)-lg)(x) lim ((A , , c,)-’g,)(x) Vx H,

(3.23) S((A M- Y3 c)-g)x(X lim S((A M. Yd, c.)-l gn)x(X /x H,

where g, is given by (3.15).
Remark 3.5. Under the hypotheses of Proposition 3.4 we draw the following

conclusions.
a) For any A > O, g Cb(H) the equations

(3.24) Ab -1/2 Tr (Sbxx)-(ax, Ckx) + F(Sckx)-(p(x), Sdpx)= g,

(3.25) Ab" -1/2 Tr (S,ch,x)-(A,x, 49,) + F(S,qb,)-(S,p(x), b,)= g

have unique solutions 4) and 4)"; moreover

(3.26) qb"(P,x) dp(x), (S,d,)(P,x)-(Sdpx)(x) Vx n.
b) M+ + c verifies the hypotheses of the Crandall-Liggett theorem; thus we

D
ow

nl
oa

de
d 

08
/2

6/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SOME RESULTS ON BELLMAN EQUATION IN HILBERT SPACES 69

can conclude that the problem

b, =1/2 Tr (Sb,,x) +(Ax, qbx)- F(Sqb,) +(p(x), S() g,
(3.27)

qb(O, x) d)oE Cb(n)

has a unique weak solution.

4. An application to control theory. We shall study the following control problem.
Minimize

(4.1) J(x, u)= E e-a’(g(y(s) +1/21u(s)l=)) as, x > 0 fixed,

over all u E U subject to the state equation

(4.2)
dy (Ay + Sp(y) + Su) at + dw,,

y(0)=x.

U (the control space) is the set of all stochastic processes u adapted to W, and such
that lu(t)l--< R where R > 0 is fixed. We shall assume in the whole of this section that
hypotheses HI, H2, H3 hold and moreover that p e Lip (H).

Let J(x) infu u J(x, u) be the value function ofproblem (4.1). The corresponding
Bellman equation is see for instance [3]:

Ab -1/2 Tr (Sqbx)-(Ax, x)-(p(x), Sr) + F(Stpx) g(x),(4.3)

-where

(4.4) F(x) I1/21xl= iflxlR,
R2

[. Rlxl---f if Ixl >- R.

Clearly F e Lip (H), so that by Proposition (3.4) (see also Remark 3.5a), (4.3) has a
unique solution b Cs(H). Moreover, by (3.26) b can be approximated by the solution
b" to the equation

(4.5) Ab" -1/2 Tr (Sb,x)-(A.x, c,)-(S.p(x), b,) + F(S.b,) g(x), x H..

Let us also consider the approximating state equations

(4.6)
dy,, (A,y, + S,p(y,) + S,,i) dt + dW’,

y.(O)=xEH,,.

LEMMA 4.1. Let x H, u U, y be the corresponding solution of (4.2) and the
solution of (4.3). Then the following identity holds,

(4.7)

where

6(x) +1/2E [lu +S,xl=-x(IS6xl- R)] ds

E (g(y(s) +-I u(s)l=) ds + e-X’(y(t)),

(4.8) X(a) { Oa 2 ifa-<O’ifa ->0.
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70 G. DA PRATO

Proof Let y, be the solution of (4.6) and b" the solution of (4.5). By the It6
formula we have

(4.9)

(4.10)

d e-Xtqb"(y,) {F(S,b) +(S,u, b,)- g(y,)} at +(qb,, dWt).

By integrating and taking expectations, we get

6"(x.) +1/2E [lu,, + S.(;b x([S,,6,I- R)] ds

E (g(y,) +1/21u.(s)l =) as + e-X’b"(y,(t)),

where u, P,u, and (4.9) follows by letting n go to infinity.
PROPOSITION 4.2. The solution dp to (4.3) coincides with the value function J of

problem (4.1). Moreover, there exists a unique optimal control u* for problem (4.1) which
is related to the optimal state by the synthesis formula:
(4.11) ,*(t)=-h(Schx(y*(t)), t>-O,

where
[z] iflzl-<R,

(4.12) h(z) z

R iflzl>-R.

Proof First of all we remark that the following inequality holds

(4.13)

the equality being fulfilled if

(4.14) u -h(Sqb,).

Thus, from (4.7) it follows that b(x) -< J(x). To prove the converse let )7 be the solution
of the closed loop equation

d37 (A37 + Sp(y)- h(S6(y))) dt + dW,,
(4.15)

37(0) x.

The existence and uniqueness of Eq. (4.15) are standard because hE Lip (H) and
$4,, E Cb(H). By setting u t, y )7 in (4.7), and letting A go to infinity, we obtain

(4.16) oh(x) E (g(fi(s)) +1/2lfi(s)l 2) ds

so that (a, 37) is an optimal couple for problem (4.1). Finally let (j,)7) be another
optimal couple; again by (4.7) we get

(4.17) E [[a /s4()lZ-x(Is4,x()l-e)l ds--O

which implies a=-h(Sb,()7)); due to the uniqueness of (4.15) we have if= tT. l-1
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