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SYNTHESIS OF OPTIMAL CONTROL FOR AN INFINITE DIMENSIONAL
PERIODIC PROBLEM*
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Abstract. We prove an existence and uniqueness result on periodic solutions of an infinite dimensional
Riccati equation.
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1. Introduction. Consider the following optimal control problem: minimize

(1.1) J(u) =- [(M(t)y(t), y(t))+(N(t)u(t), u(t))] dt

over all u L2(0, 7"; U) subject to

(1.2) y’(t) A(t)y(t)+ B(t)u(t)+f(t), y(O)= y(z).

Here A(t) is a linear operator in a Hilbert space H, U is the Hilbert space of the
controls, M(t) is a linear operator in H, N(t) is a linear operator in U, B(t) is a linear
operator from U into H andf L2(0, % H). We give precise notations and assumptions
in 2. In 3 we study existence and uniqueness of periodic solutions of the infinite
dimensional Riccati equation

(1.3) Q’+ A’Q+ QA-QBB*Q+M 0

and in 4 we prove that the optimal control for problem (1.1), (1.2) is a feedback
control. We shall use an argument of dynamic programming, which follows closely
[2] where a similar problem was studied in a finite dimensional space.

2. Notation and hypotheses. Let U and H be Hilbert spaces (scalar product )).
We shall denote by L(H) the Banach algebra of all linear bounded operators in H.
We set

(2.1) E(H)={TL(H); T= T*}, E+(H)={T,(H); T_>0}

where T* represents the adjoint of T.
Given any interval [a, b] we shall denote by C([a, b]; L(H)) the set of all the

mappings [a, b]- L(H), t T(t) such that T(.)x is continuous for any x H. If a
and b are finite, then C([a, b]; L(H)), endowed with the norm

(2.2) [[Tll =Sup {[[ T(t)ll; t[a, b]},

is a Banach space (by the uniform boundedness theorem). We set moreover

(2.3) C([a,b];E(H))={TC([a,b];L(H)); T(t)E(H)},

(2.4) C([a,b];E+(H))={TC([a,b];L(H)); T(t)E+(H)}.
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SYNTHESIS OF OPTIMAL CONTROL 707

Cs([a, b]; L(U)) and Cs([a, b]; L(U, H)) are defined analogously. Concerning the
operators A(t), R, we shall assume:

(i) A(t) A( + r), .
(ii) There exists an evolution operator U(t, s), 0 <- s =< such that the initial

value problem

z’( t) A( t)z( t) + g( t), z(O) x

with g L2(0, r; H) and x H has a unique mild solutiOn z given by

z(t)= U(t, 0)x+ U(t, s)g(s) ds.

(iii) A,(t)= n2(n-A(t))-l-nI is defined for n sufficiently large. Moreover
we have z,- z in C([0, r]; H), where z, is the strict solution of the
approximating problem

z’(t)=A,(t)z,(t)+g(t), z,,(0) x.

We shall denote by U, (t, s) the evolution operator relative to A,(t). We remark
that (2.5) are fulfilled under the usual hypotheses of Tanabe and Kato-Tanabe (see
for instance [3], [6], [8]).

Concerning M, N, B and f we shall assume:

(2.6) (i) f:I H is r-periodic and f L2(0, r; H),
(ii) B C(, L( U, H)) and it is r-periodic,
(iii) M C(; E+(H)) and it is r-periodic,
(iv) N C(, E+( U)), it is r-periodic and there exists e>0 such that

N(t)>= eI, t<=O.

Finally, in order to solve uniquely problem (1.2), we need the following assumption:

(2.7) 1 belongs to the resolvent set p( U(r, 0)) of U(r, 0).

Under hypotheses (2.5)-(2.7) it is easy to prove that problem (1.2) has a unique mild
solution y given by

(2.8)

y(t)= U(t, 0)(I- U(r, 0)) -1 U(r, s)(f(s)+ B(s)u(s)) ds

+ U(t, s)(f(s)+ B(s)u(s)) ds.

Returning now to the control problem (1.1), (1.2), we remark that the functional
J: L2(0, r; U)- R has a unique minimum u* (since it is a coercive quadratic form);
u* is called the optimal control and the corresponding solution of (1.2) the optimal
state. Finally J(u*) is the optimal cost.

The optimality conditions are also easily derived. Namely if u is the optimal
control and y the optimal state, we have"

y’=Ay+Bu+f y(0) y(r),

(2.9) p’=-A*p-My, p(O) =p(r),

u -N-1B*p.

Concerning the synthesis problem we shall look for a linear operator Q such that

(2.10) p=Qy+r.
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708 G. DA PRATO

As easily seen, Q and r must satisfy the equations

(2.11) Q’ + A’Q+ QA- QBN-1B*Q/M 0,

(2.12) r’ + (A*- QBN-1B*)r/ Qf-0

with the periodic conditions

(2.13) Q(0)- Q(z), r(0)- r(’).

The differential equations in (2.9), (2.12) are intended in the mild sense, whereas the
precise meaning of a solution of (2.11) will be stated in the next section.

In 4 we will prove that the optimal control u is given by the formula

(2.14) u=-S-lB*(Qy+r)

where y (the optimal state) is the solution of the closed loop equation

(2.15) y’= Ay- BN-1B*Qy BN-IB*r+f
with the condition

(2.16) y(0) y(’).

We remark that if the following hypothesis holds:

(2.17) 1 belongs to the resolvent sets of the evolution
operators relative to A- BN-B*Q and A*- QBN-1B*,

then (2.12) and (2.15) have a unique --periodic solution.

3. Periodic solutions of the Riccati equation. We are here concerned with periodic
solutions of the Riccati equation

(3.1) Q’ + A’Q+ QA- QBN-1B*Q+M =0.

We first recall some result on the final value problem

(3.2) Q’+A*Q+QA-QBN-B*Q+M=O, Q(r)=LZ+(H),

which we write in the following integral form:

Q(t)x= U*(’r, t)LU(% t)x

(3.3) U*(s, t)(Q(s)B(s)N-l(s)B*(s)Q(s)-M(s))U(s, t)xds, xe g.

Under suitable hypotheses (see Proposition 3.1 below) (3.3) has a unique solution
Q(t)=A(t,L).

We say that Q Cs([0, r]; E+(H)) is a r-periodic solution of (3.1) if it is a solution
of (3.3) with Q(r)= Q(0); this is equivalent to

(3.4) Q(r) A(0, Q(r)).

We shall consider also the approximating problem

(3.5) Q’+A*Q,+QA,-Q,,BN-1B*Q,+M=O, Q,,(r)=L

where A,(t)= n(n-A(t))-1- nI. Problem (3.5) has clearly a unique solution that we
denote by Q(t) A(t, L).

PROPOSITION 3.1. Assume (2.5), (2.6) and let L belong to E+(H). Then

(3.6) (i) There exists a unique solution Q (resp. Q,) of (3.3) (resp. (3.5)). Moreover
Q - Q in Cs([0, ’]; E+(H)).
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SYNTHESIS OF OPTIMAL CONTROL 709

(ii) If L <= L we have:

A(t, L) _-< A( t; L).
(iii) If {L/} is an increasing sequence in ,+(H) that converges strongly to L,

then A(., Lk) converges to A(.,/S) in Cs([0, r]; E+(H)).

Proof. Statement (i) is essentially proved in [4] (see also [1, Thm. 1, p. 64]). The
proof of (ii) is completely similar to that of [1, Lemma 16, p. 83]. Let us prove (iii).
Setting Q(t) A(t, L), Qk(t) A(t, Lk) we have

Qk(t)x U*(’, t)LkU(r, t)x

(3.7) U*(s, t)(Qk(s)B(s)N-(s)B*(s)Ok(s)-M(s))U(s, t)xds,

xH.

By (3.6), {Ok(t)} is increasing for any and Ok(t)_-< Q(t). It follows that there exists
O(t) _<- Q(t) such that Qk(t) - O(t)x for any x e H. By the dominated convergence
theorem, taking the limit, as k- oe in (3.7), we obtain

Q(r)x= u*(7", t)LU(7", t)x

(3.8) U*(s, t)(O(s)B(s)N-l(s)B*(s)O(s)-M(s))U(s, t)xds, xeH.

From (3.8) it follows that (e Cs([0, ’];E+(H)) so that, by uniqueness, we have
Q=Q.

In order to prove the existenc of a periodic solution of (.1), we need a stabilizabil-
ity assumption:

(.9) There exists a ’-periodic function K e C(; L(H, U)) and two numbers,
to > 0,/z > 0 such that [1UA_BK (t, s)[[ <- e-’(’-), > s, where UA_BK is the
evolution operator relative to A(t)-B(t)K(t), t[0, r].

This hypothesis reduces to the usual one for the algebraic Riccati equation when A,
B and M are time-independent (see [7]).

Remark 3.2. Hypothesis (3.9) is fulfilled if either u(t, s)ll <- a e-b(t-s) with b > 0
or B(t)_->cr>0 and a=l. [3

We are ready now to prove the following theorem:
THEOREM 3.3. Assume (2.5), (2.6) and (3.9). Then there exists a ’-periodic solution

of (3.1).
Proof. We first recall a well-known identity (see for instance [1]). Let u e

L(0, T; U), T> 0 and let y be the mild solution of the problem

(3.10) y’= Ay+ Bu, y(0)=x, x H.

Let W be the solution of the final value problem

(3.11) W’ + A* W+ WA WBN-B* W+m 0, W(T) 0;

then we have"

(3.12) (W(O)x,x>+ IIN-1/2B*Wy+g/2ull2ds [(My, y>+(gu, u>]ds.

We prove now the existence of a r-periodic solution of (3.1). Set

(3.13) $o=0, S,/(t) A(t, S, (0)), n N.
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710 G. DA PRATO

By (3.6) {Sn} is increasing. For any kN we set

Wk( t) Sh( t-(k- h -1)r),
(3.14)

t[(k-h-1)r,(k-h)r],

As easily checked, Wk is a solution of the problem

(3.15)
Wk +A* Wk + WkA WkBN B* Wk +M O

Wk(kr) =0, 0 -< t_-< kr.

We now resort to (3.9) and (3.12) with u and y given by

u(t)=--K(t)UA’__n:(t, O)x, y(t)= UA-ni(t, O)x,(3.16)

and we get

h=l,...,k.

xH

We remark that (3.18) implies (2.17).
We first prove two lemmas as follows.
LEMMA 3.5. Assume (2.5), (2.6) and (3.18) and set L A- BN-1B*Q where Q is

a r-periodic solution of (3.1). Then there exists c > 0 such that

(3.19) t, s)xll = at <- cllxll =.
Proof. Let Q be a r-periodic solution of (3.1), fix k hi. Then we have

(3.20) Q’+L*Q+QL+QBN-1B*Q+M=O, Q(kr)=Q(O), t[O, kr].

Let Qn be the solution of the approximating problem

(3.21) Q’ + L*Qn + QnL, + QnBN-1B*Qn + M=0, Qn(kr) Q(o)

where Ln--An- BN-1B*Qn. We remark that Qn is not necessarily periodic. For any
x 6 H we have

d
--< Qn(t)U.(t,s)x, U (t,s)x)
dt

(3.22)
-II NI/BQnUL. (t, s)x]l2- I1/- UL. (t, s)xll =.

(3.18) There exists a z-periodic function K1 Cs(, L(H)) and two numbers to1.> 0,
/x > 0 such that

UA-Kx/--( t, S)]] ]J’l e-’’-s), >-- s

where Ua-lq,/- is the evolution operator relative to

A(t) Kl(t)x/M(t), [0, r].

2

(3 17) <W(O)x,x)<(llMIl+llNIIIIgll)llxll,
-2r/

which implies that the sequence {Sn(0)} is bounded in E+(H). By a well-known result
on the monotone sequences of linear operators it follows that there exists q e +(H)
such that Sn(O)x- x for any x e H. Now, by Proposition 3.1(iii) and by (3.13) we
have, as n oe S A(0, S) so that A(t, S) is the required periodic solution. [1

Remark 3.4. Theorem 3.3 generalizes a result in [9].
We consider now uniqueness and to this purpose we introduce a detectability

assumption which reduces to the usual one for the algebraic Riccati equation (see [7]).
We assume:
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SYNTHESIS OF OPTIMAL CONTROL 711

By integrating in [s, t] and letting n go to infinity we find

(Q(s)x, x)= (Q(kr)Ut(kr, s)x, Ut(kr, s)x)
(3.23) l"k

/| [IIN-’/=Q()U(, s)xlI=/ II4M()U(, s)xlI-3 &r.
d o

Then functions N-/SQUL(., s)x and x/UL(’, S)X belong to LS(s, oo; H). Let now
H be defined by

(3.24) L= II + (K,x/-- BN-’B*Q)
and remark that, by (2.18),

(3.25) U(t, s)ll-<- ’, e-’’-s.
By (3.24) it follows

UL( t, s)x Un( t, s)x
(3.26)

+ Un(t, o-)(g(o.)M(o-)-(o)N-l(o-)*(o-)Q(o-))UL(O’ s)xdo-;

now, by the Young inequality U(., s)x belongs to L(s, oe; H) as required.
LEMMA 3.6. Under the same hypocheses ofLemma 3.5 there exists a constant c > 0

such that

(3.27) UL(t, S)II< t> S.=(t’s)’
Proof. Since L is r-periodic, there exist/x2 > 0 and e such that

UL(t, s)ll -< ,= e’-, > s.(3.28)

For any x H we have

1
)11 u(t, s)xl[ e2-s){[ u(t, s)xll = do"

<_- e=e(-’)ll g(, s)xll=ll s(t, )11 = d

<_- c e=’-llxll =
by (3.19); thus there exists 3’ > 0 such that

(3.29) u,(t, s)ll--< %
We have finally

(t-- s)ll g(t, )xll = gL(t, )xll = d

t>=s.

UL( or, s)xll211UL(t, o’)112 dr=< 3"211/112

and the conclusion follows.
Remark 3.7. The above proof is inspired by the proof of the Datko theorem given

in [7].
We are now ready to prove uniqueness.
THEOREM 3.8. Assume (2.5), (2.6) and (3.18). Then (3.1) has at most one r-periodic

solution.
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712 G. DA PRATO

Proof. Let Q, Q1 be --periodic solutions of (3.1); set R Q- Q1. Then R verifies
the equation

(3.30) R’ + L*R + RL+ RBN-B*R O, E [0, kr]

for any k E N. Let R, be the solution of the final value problem

(3.31) R’, + L*,R, + R,L, + RBN-1B*R, -0,

It follows that

(3.32)

which implies

(3.33)

R,(k-)=R(k-).

d
-(R,,(t) UL.(t, s)x, UL.(t, s)x)

-IIN-/B;(t)R,(t) UL.( t, S)Xll 2 --< 0,

(R(O)UL(k’, s)x, UL(kr, s)x) <-(R(s)x, x).

Letting k go to infinity and using (3.27), we get (R(s)x, x)>=O, that is, Q(s)>= Ql(S);
by interchanging Q and Q1 we find Q(s) -> Ol(S) and finally that Q Q1. D

Remark 3.9. Stability. Assume the hypotheses of Theorems 3.3 and 3.8; let Q be
the unique periodic solution of (3.1) and S a solution of the final value problem

S’+A*S+SA-SBN-1B*S+M=O, S(O)=SoE+(H), -< t=<0.

Setting Z Q-S, L= A-BN-B*Q, we have

Z’ + L*Z+ ZL+ZBN-1B*Z O.

Thus, by (3.27), it follows that

lim IlO(t)-$(t)ll-O uniformly in
IlSoll-o

and the periodic solution Q is stable.

4. Dynamic programming. The Hamilton-Jacobi-Bellman equation correspond-
ing to the control problem (1.1)-(1.2) is

(4.1)
d/t(t, x)-1/2l[N(t)-l/2B*(t)d/x(t, x)tt =

+(Ax +f(t), d/x(t, x))+1/2(M(t)x, x)=0.
The following result is easily proved.

PROPOSITION 4.1. Assume (2.5)-(2.7), (2.17) and (3.9). Let Q be a r-periodic
solution of (3.1) and r the periodic solution of (2.12). Then the function
(4.2) q(t, x)=1/2(Q(t)x, x)+(r(t), x)+ s(t)

is a solution of (4.1) if and only if we have

(4.3) s’-llN-’B*rl]=+(f(t), r(t)) 0.

LEMMA 4.2. Assume the hypotheses of Proposition 4.1. Let , be given by (4.2),
u L(O, ’; U), y be defined by (1.2) and J by (1.1). Then the following identity holds:

J(u) IIN-I/2B*(Oy+ r)+ N1/2ul12 dt

(4.4)
/ [(f, r)-1/211B*rll =3 dt.
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SYNTHESIS OF OPTIMAL CONTROL 713

Proofi Let Q,(t)= A,(t, Q(z)), let rn be the solution of the problem

(4.5) r’+(A*-Q,BN-1B*)rn+Q=O, rn(z)=r(r).

Let s, be such that

(4.6) s’-1/21lN-’/=n*r.ll=/(f, rn) 0

and, finally, let Yn be the solution of the problem

y’ Anyn + Bu +f, yn(O) y(O).(4.7)

Setting

(4.8)

we have

din(t, y)=1/2(Qn(t)y, y)+(rn(t), y)+ sn(t)

(4.9)
d 1 1
d---td/,(t, y,)=-IIN-’/-B*(Q,yn + r.)ll--[(My. + yn)+(Nu, u)].

Now the conclusion follows by integrating (4.9) in [0, ’] and by letting n go to
infinity.

THEOREM 4.3. Assume (2.5)-(2.7), (2.17) and (3.9). Let Q be a r-periodic solution
of (3.1), let r be the corresponding r-periodic solution of (2.12) and y the solution of the
closed loop equation (2.15) with y(O)=y(r). Then the optimal control u* is given by

(4.10) u*=-N-1B*(Qy+ r)

and the optimal cost results from

(4.11) J(u*)= (f, r)-:llB*rll dt.

Proof By (4.4) it follows that

(4.12) J(u) >= <f, r>--llB*rll = dt F;

now, if u is given by (4.10) we have J(u*)= F so that u is optimal.
Example 4.4. Let fl be a bounded subset of R" with smooth boundary 01l. Consider

the following problem:

Minimize

(4.13) J(u)= de d’[ly(,)l+lu(,

over all u e L([O, r] x)

subject to

d
(, e(, (y(, + u(, +f(, ,

(4.14) y(, ) O, e [0, ], e

y(o, (, )

D
ow

nl
oa

de
d 

08
/2

7/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



714 G. DA PRATO

where f and 4 are continuous, z-periodic in and 4 is nonnegative. A is the Laplace
operator acting in the variable .

Set H- U L2(1), M(t)= N(t)= B- I and

(4.15) A(t) A b(t), D(A(t)) H2(1) [’) H(fl).
As easily seen, hypotheses (2.5) and (2.6) hold; moreover

(4.16) U(t, s)=exp C(t-s)- () d

where Cy eY and D(C)= D(A(t)). By the maximum principle we have

(4.17) U(t, s)l 1

so that lp(U(,0)) and (2.7) is fulfilled. Moreover, (2.17) also holds because
A-BN-B*Q= A-Q and Q is positive. Finally (3.9) holds by viue of Remark
3.2.
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