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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE*

GIUSEPPE DA PRATO AND AKIRA ICHIKAWA$

Abstract. Quadratic control problems for integrodifferential equations of parabolic type are
considered. A state-space representation of the system is obtained by choosing an appropriate prod-
uct space. By using the standard method based on Riccati equation, a unique optimal control over
a finite horizon and under a stabilizability condition is obtained and the quadratic problem over an
infinite horizon is solved. It is shown that the approach is also valid for some integrodifferential
equations of different types. Two examples covered by the model are given.
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1. Introduction. Let H and U be Hilbert spaces. Consider the control system

(1)
y’(t) Ay(t) + f K(t r)y(r)dr + Bu(t),

where A is the infinitesimal generator of an analytic semigroup etA in H. We denote by
D(A) the domain of A and by ID(A) the graph norm of A. g(.) is an L(D(A); H)-
valued operator, and B E L(U; H). Under suitable conditions (see Hypothesis 1
below) there exists a resolvent operator (see [3], [13], [16]) associated with (1) and a
unique classical solution to (1). For each u e L2 (0, T; U) we can define a mild solution
to (1) in C([0, T]; H). We then wish to minimize the functional

T

a(u) {IMy(t)l2 + lu(t)l2} dt + (Gy(T),y(T)}

over all u L2(0,T; U). Here M L(H; Ho), Ho is a Hilbert space, and G
L+ (H) is the space of selfadjoint nonnegative operators on H. Under a stabilizability
condition (see Hypothesis 4 below) we also wish to minimize the functional

(3) J(u) {IMy(t)l2 + lu(t)l 2 } dt

over all u L2(0, cx:); U). To our knowledge there is no direct method to solve these
problems. In this paper we give a state-space representation of (1) similar to those in
[15] and [19]. As in [9]-[11] we then reduce our problems to linear quadratic problems
of standard type [1].

We recall some fundamental results concerning the resolvent operator associated
with (1). It is convenient to introduce equations

(4)
y’(t) Ay(t) + f K(t r)y(r) dr,
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1168 G. DAPRATO AND A. ICHIKAWA

(5)
y’(t) Ay(t) / f K(t r)y(r)dr + f(t),

(0) o,

In [6] and [16] the existence of a resolvent operator for (4) is shown under the following
conditions.

Hypothesis 1.

(i) g(.) e LI(0, c; L(D(A); H)).
(ii) For all h E D(A), the Laplace transform K(.)h can be extended to a sector

S-- { E C" w, arg(-w)l < }, where w R, ]/2,[.
(iii) There exist fl el0, 1] and c > 0 such that IAz(.)h] cIhlD(A), A e S,

h e D(A).
The following result is proved in [3] and [16].
THEOREM 1.1. There exists an analytic resolvent operator R(t) e L(H; D(A)),

t O, such that
(i) R(t)yo is continuous for any Yo e H and R(O) I.
(ii) For each Yo e D(A) and T > O,

R(t)yo e C([0, T]; D(A)) A C1([0, T]; H)

and it satisfies (4).
(iii) For each Yo e D(A) and f e C([O,T];H) (a-Hhlder continuous), y(t),

given by

y(t) R(t)yo + R(t r)f(r) dr,

is a unique classical solution (see [3]), in

C([0, T]; H) A C(]0, T]; D(A)) C (]0, T]; H).

(iv) There exist ro > 0 and o e ], ] such that for any e S with I1
ro, I ’1 < o, hn opror - A- K() D(A) - H nvnbe nd

( A K()))-1 e L(H; D(A)) coincides with the Laplace transform of R(t).
For each Y0 H and u L2(0, T; U)

(6) y(t) R(t)yo + R(t r)Bu(r) dr

is well defined and is in C([0, T]; H). It is a mild solution of (1) in the sense

y(t) etAyo + e(t-r)A K(r s)y(s) ds dr + e(t-r)ABu(r) dr.

Note that the cost function (2) makes sense for the mild solution.
For later use we establish additional properties of R(t) that are not given in

[3]. Let DA(c,2), c e ]0, 1[ be the real interpolation space between D(A) and H.
Consider the problem

(8) y’(t) Ay(t) + f(t), y(O) yo.
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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS 1169

THEOREM 1.2. (i) Let Yo E DA(1/2,2), and let f L2(0, T; H). Then the mild
solution of (8) lies in

L2(O,T;D(A)) N WI’2(O,T;H) C C([O,T];DA(5,

There exists a unique solution y to (4) in L2(0, T; D(A)) W1,2(0, T; H). Hence
R(t)yo, R , f e L2(0, T; D(A)) W,2(0, T; H).

2). Then the mild(ii) Let yo e D(A), f e W’2(O,T;H), and Ayo+f(O) e DA(,
solution of (8) lies in

WI’2(O,T;D(A)) W2’2(O,T;H) c CI([O, TI;DA(1/2,2)).
Moreover, there exists a unique solution y to (4) in W,2(0, T; D(A)) W2,2(0, T; H).
Hence R(t)yo, R, f e W1’2(0, T; D(A)) W2,2(0, T; H).

Proof. The first assertion in (i) is well known [17]. To show the second assertion
of (i) we consider the corresponding integral equation of the type (7). For a small T
we apply a contraction-mapping theorem on L2(O,T; D(A)). The general case then
follows by splitting the interval into small subintervals. The first assertion in (ii) is
proved as in [15]. The second part of (ii) follows by raising regularity and considering
a contraction mapping on WI’2(0, T; D(A)). See [15] for details. D

To give a state-space representation [8], [9] of (1) we consider

(9)

y’(t) Ay(t) + K(t- r)y(r) dr,

y(O) y (), e] cx), 0[, y e L2(-, 0; D(A)).

We now rewrite this as

(10)
y’(t) Ay(t) + K(t- r)y(r) dr + f(t),

where f(t) fo K(t O)y () dO e L2(0, ; H).
Hypothesis 2. K(.) e L2(0, cx; L(D(A); H)).
If we assume Hypothesis 2 is true, then the operator ]C defined by

(11) ]Cy K(-O)y (O)dO, y e L2(-, 0; D(A))

lies in L(L2(-cx, 0; D(A)), H).
(-oc, 0; D(A)) since

Moreover, f W,2 (O, T; H) for any y W1,2

f’(t) K(t)y(O) + K(t-O)y’l(O)dO e L2(O,T;H).

Note also f(0)
following corollary.

Using these observations and Theorem 1.2, we have the
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1170 G. DAPRATO AND A. ICHIKAWA

COROLLARY 1.3. (i) For each Yo E DA(1/2;2) and Yl L2(-oc, O;D(A)) there
exists a unique solution to (10) (and hence to (9)) in the space L2(O,T;D(A))
WI,2(O,T;H).

(ii) Assume Hypothesis 2, and let yl e W’2(-oc, 0; D(A)), y(O) Yo, and
Ayo + ]y DA( 1/2 2). Then there exists a unique solution to (9) in

W’2(-oc, O;D(A)) N W2’2(O,T;H) C CI([O,T];DA(1/2;2)).

Proof. Part (i) follows directly from Theorem 1.2(i). Under Hypothesis 2 f
W,2(0,T; H) and the assumptions in (ii) of Theorem 1.2 are satisfied. Hence (10)
has a unique solution in W1,2(0, T; D(A)) N W2’2(0, T; U). Since y (0) Yo D(A),
there exists a unique solution to (5) in W1,2(-c, T; D(A)). D

Now we write (9) in the form

(12)

y’(t) Ay(t) / K(-O)y(t / ) dO,

u(0) uo,

y(O) Yl (0), 0 e] --(:X), 0[.

This is a delay equation with infinite delay. A more general delay equation, but with
finite delay, was considered in [15], and a semigroup was constructed on the product
space DA(1/2; 2) n2(-r, 0; D(A)). To obtain a similar result we assume Hypothesis 2
and rewrite (12) as

y’(t) Ay(t) + t:yt,

(13) y(0) Yo,

Y(O) Yl(O), e] --CX:), 0[.

where yt(’) y(t + .). The following result is a modification of [15, Thms. 4.1 and
4.2] for the case with infinite delay.

THEOREM 1.4. Assume Hypotheses 1 and 2 are true, and let y be the unique solu-
tion of(12) foryo e DA(-12; 2) and yl e L2(-oc, O; D(A)), which lies in L2(O,T; D(A)) N
W1,2(0, T; H) for any T > O. Then the map

(14) S(t). ( yo ) (y(t)Yl Yt(’) )
on Z DA( 1/2 2) x L2(-oc, 0; D(A)) is a strongly continuous semigroup. Its infinites-
imal generator is given by

(5) y a_
dO

(16) D(.4) {(y0,y) e Z: yl e W1,2(-oc, O;D(A)),
y(O) yo, Ayo + t:y e DA(1/2; 2)}
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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS 1171

Proof. The only difference between (13) and the equation in [15] is the length of
the memory involved. Hence one could repeat the proofs in [15]. However, we shall
give a different proof for the characterization of the generator. Note first that the
strong continuity and the semigroup property of S(t) follow from Corollary 1.3(i).
We now show that 4, given by (15) and (16) is the infinitesimal generator of the
semigroup _S(t). Choose [Y0, yl]’ e D(,4); then _S(t)[y0, yl]’= [y(t), yt(’)], where y(t)
is the solution of (13) and hence of (9). Then by Corollary 1.3 (ii) we have

limY(t)-Y ( )t-o t
y’(O) Ayo + Yl in DA ;2

lim Yt (’) Y (’) dy__1
t--,o t dO

in L2 (-oc, 0; D(A)).

This implies that the infinitesimal generator of the semigroup _S_S(t) coincides with J[
on D(J() and is an extension of ,4. To see that 4 is in fact the generator we need to
show only that the resolvent set of 4 is nonempty. Now choose A > 0 and consider

This is equivalent to

(/ 4)[y0, Yl]’ [Z0, Zl] e Z.

AYo Ah y zo E DA (1/2; 2),

dyl
Ay

dO z 52 (-oc, 0; D(A)).

The second equation yields

/oYl (0) eAOyl (0) A- eA(O-) z (r/) dr/.

Setting yl(O) Yo and substituting yl into the first equation, we obtain

/o(,x A- Ce’)o zo + e(-’z(v) dv =: o.

Noting that/Ce’o ’(A)o, we have

(- 4- g(a))o o.
By virtue of Theorem 1.1(iv) this is solvable for any A > ro and o (- A-
K(A))-Io D(A). Then

/oYl (0) eA0(A- .4-/(/))--10 -[- e)(0--v/)Zl(r/) dr/

lies in W,2(-c, 0; D(A)). We also have

Ayo + 1Cy Ay0 zo DA( 1/2 2).

Hence A p(J[) and ,4 is the infinitesimal generator of the semigroup _S(t). [:]
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1172 G. DAPRATO AND A. ICHIKAWA

Remark 1.5. Let A A0 / A1, where A0 is selfadjoint and negative. If A1 E
L(D(-A)/2;H), then we can replace DA(1/2;2) by D(-A)/2 and DA(--1/2;2) by
D(-A*)1/2 (see 2).

In [14] a special case of the delay equation in [15] was considered and a quadratic
control problem on DA(1/2; 2) x L2(-r, 0; D(A)) was solved.

If we take B e L(U;DA(1/2;2)), M e L(DA( -2; 2),H0), and G e L+(DA(1/2;2)),
then by using the semigroup __S(t) in Theorem 1.4 we can solve our control problem as
in [14]; however, the state space Z is not convenient in applications, and we wish to
take the initial value Y0 in H rather than in DA (1/2;2). Moreover, our cost functionals
(2) or (3) are more natural, as we can see from examples (see Example 5.1). Thus we
need a representation of our system (1) in a larger space.

2. The semigroup model. Let DA(--c,2), c ]0,1[, be the extrapolation
space of A (see [2]). To take Y0 in H rather than in DA(1/2; 2) we replace H (re-
spectively, D(A)) by DA(--1/2;2) (respectively, DA(1/2;2)) and assume, in addition to
Hypothesis 1, the following hypothesis.

Hypothesis 3. K(.) L2(O, oc); L(DA(-1/2; 2); DA(1/2; 2)).
Then the operator K in (11) belongs to L(L2(-oc, 0; DA(-; 2)); DA(---; 2)). By

translation we obtain all results similar to those in 1. In particular, we state results
corresponding to Corollary 1.3 and Theorem 1.4, respectively.

THEOREM 2.1. (i) For each Yo H and y L2 (-oo, 0; On (-12; 2)) there exists a
unique solution to (10) in

1,2 2)) C C([0 T] H).L2(O,T;DA(;2)) C W (O,T;DA( 1/2;

(ii) Assume Hypothesis 3, and let y e WI’2(--oo, O;DA(1/2;2)), y(O) Yo, and
Ayo + yl H. Then there exists a unique solution to (9) in

W’2(-oo, T;DA(1/2;2)) 3 W2’2(O,T;DA(-1/2;2)) C CI([O,T];H).

THEOREM 2.2. Assume Hypothesis 1 and 3 with H (respectively D(A)) replaced
2)). Let e H, let e L2(-c, 0 DA(5; 2)), andby DA(--1/2;2) (respectively DA(; Yo Yl

let y(t) be the solution of (9) (and hence of (13)) given in Theorem 2.1(i). Define the
map on Z U x L2(-c, 0; DA(1/2;2))

(17) S(t). (yo)__, (y(t) )"
Then S(t) is a strongly continuous semigroup on Z, and its infinitesimal generator is
given by

(18) 4( yO ( AyO--Kyl )dO

(19)
D(A) { (yo, y e Z yl e W’2(-oc, 0; DA (1/2; 2)), y (0) Y0,

Ayo + Ky H).D
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1173OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS

Next we express S(t) by using the resolvent operator. We write (9) as

(20) y’(t) Ay(t) + K(t- r)y(r) dr + K1 (t)yl,

where

2 ( (1))(gl(t)yl g(t-O)yl(O)dO e L20,c;DA --;2 NC [O,T];DA -;2
The solution of (20) can be written as

(t) R(t)o + R(t r)K1 (r)yl dr

Set

(t)"-(11(t)SI (t) S(t)

then y(t) Sll(t)yo - Sl2(t)yl. Thus we have

Sl (t)o R(t)o,

Similarly, we have

’12(t)yl R(t r)K1 (r)yl dr.

(s(t)0)(.) R(t + .)o,

(S22(t)yl)(’) R(t- r)K(r)yl dr.

Hypotheses 1 and 3 come from physical examples such as Example 5.1. If we assume,
instead of Hypothesis 3, the following hypothesis, we have, in fact, Corollary 2.3.

2))).Hypothesis 3’. g(.) e L2(O, oc;L(DA(1/2;2);H))) N L2(O, cx;L(H;DA(-;
then we can find a semigroup on H x L2(-cx), 0; H).

COROLLARY 2.3. Assume Hypothesis 3’. Then .for each Yo E H and yl

n2(-c, 0; H) there exists a unique solution y(t) to (13) in

.for any T > O. The map

(21)

2)) C([0, T] H)L2(O,T;DA(;

1 (.1 )
is a strongly continuous semigroup on Z H x L2(-oc, 0; H).
generator is given by

(22)
Yl a_

dO

Its infinitesimal
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1174 G. DAPRATO AND A. ICHIKAWA

(23) D(A) ((Y0, Yl) e Z: Yl ( wl’2(-oo, O;H),yi(O) yo, Ayo / Kyl e H}.

If K(.) E L2(0, c: H), then A need not be analytic.
Hypothesis 3". K(.) e L2(0, oc; L(H)).
COROLLARY 2.4. Let A be any infinitesimal generator of a strongly continu-

ous semi-group on H. Assume Hypothesis 3. Then for each yo H and yl

L2(-cx), 0; H) there exists a unique solution y(t) to (13) in C([0, T]; H) for any T > O.
Define the map S(t) as in (21). Then it is a strongly continuous semigroup on
Z H L2(-oc, 0; H) with generator (22), (23).

See [12] for more general cases of integrodifferential operators where A is not
analytic.

3. Quadratic control on finite horizon. Now we consider (13) with control

y’(t) Ay(t) + Kyt + Bu(t)

(ea) (0) o

() (), e] -, 0],

where Yl e L2(-oc, O;DA(1/2,2)). Then by setting z(t)= [y(t),yt(’)]’ we obtain

(25)
z(0) [0,],

where

For each u e L2(0, T; U) we define the mild solution of (25) by

(26) z(t) S(t)[yo, y]’ -t- S(t r)Bu(r) dr.

The mild solution (6) of (1) corresponds to the first component of z(t) of the special
case Yl 0, i.e.,

(27) z(t) S(t)[yo, 0] + S(t r)Bu(r) dr.

The cost functional (2) can be rewritten

(28)
T

J(u) []/z(t)l2 + lu(t)l 2] dt + ((z(T), z(T)),

where

M-
0

e L(Z; Ho) and
0 0 e (z).
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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS 1175

The control problem (26), (28) is a standard quadratic problem [1] in the state-space
form [8], [9]. As is well known, the optimal control is given by the feedback law

(29) _u -B*Q(t)z(t),

where Q is the unique selfadjoint nonnegative solution of the Riccati equation

(3o)
Q’+A*Q+QA+*-Q*Q=O,

Q(T) G.

Setting

(t)Q(t) Q21(t)

we can write (29) in the form

Q(t) )Q22(t)

(31) u_(t) -B*[Qll (t)y(t) + Q2(t)yt].

The minimal cost corresponding to u is

(32) j(_u) (Q(O)( Y0)yl ( Y0)).yl
Hence the minimal cost for the problem (1), (2) is given by

(33) J(u_) (Q(O)yo, yo).

Summing up, we have the following theorem.
THEOREM 3.1. Assume Hypothesis 1 and 3 are true. Then there exists a unique

optimal control .for the problem (1), (2). It is given by the feedback law (31), and the
minimal cost is given by (33).

For the control problem (1), (2), where K(.) satisfies either Hypothesis 3’ or
Hypothesis 3", the feedback law (31) is still optimal and the optimal cost is given by
(33).

4. uadratic control on infinite horizon. Here we consider the control prob-
lem (1), (3). To avoid the trivial case we make the following assumption for (27).

Hypothesis 4. For each Y0 E H and y E L2(-(x), 0; DA(1/2,2) there exists a control
u L2(0, cx); U) such that

(34) J(u) Irz(t)l 2 + lu(t)l 2 dt < cx.

Later we give sufficient conditions for Hypothesis 4. Let QT(t) be the solution of
the Riccati equation (30) with QT(T) 0. Then the following is known.

PROPOSITION 4.1. Assume Hypotheses 3 and 4 are true. Then there exists a

strong limit Qo of QT. Q is the minimal nonnegative solution of the algebraic
Riccati equation

(35) A*Q + QA + M*M QBB*Q O.
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1176 G. DAPRATO AND A. ICHIKAWA

If Jr, M is detectable, then Q is the unique nonnegative solution of (35). Moreover,
A- BB*Q generates an exponentially stable semigroup on Z.

THEOREM 4.2. Assume Hypotheses 3 and 4 are true. Then there exists a unique
optimal control .for (26), (34). It is given by the feedback law

(36) __u -B*Qz(t),

and the minimal cost is

(37) J(-)-" IQcx)( ylY ) (yOyl)1"
In particular, the optimal control for the problem (1), (2) is given by

(38) u_(t) -B*[Q11y(t) + Q12yt]

and

(39) J(_u) (Qllyo, yo),

where

Qll Q12 )Q= Q: Q.:

If Q12(y) fo Q12(-0)y(0)dO for some Q2 e L2(0, oc; L(DA(1/2,2); H)), then
the optimal closed-loop system corresponding to (38) is

(40) y’(t) (A BB*Q)y(t) + [K(t r) BB*Q12(t r)]y(r) dr

and of the same form as (1). If (jr, M) is detectable, then the resolvent operator for
(40) is exponentially stable.

A sufficient condition for Hypothesis 4 can be found in [7]. For the sake of
completeness we quote some results from [7]. Let K(.) be a maximal analytic extension
of the Laplace transform of K, and let gt0 be its domain of definition. We set

p0 {A e gt" 3 (A- A- (,))-1},

F(A) (A- A- ())-1 for A e P0,

and we denote by pl the set of all isolated removable singularity of F(.). Moreover,
we set

p-- poUpi,

F(A) limz_, F(z), e p\po.

Define the generalized spectrum a C\p. If 0 is a pole of F(.) of order m0, we set,
for/k sufficiently close to A0,

F(A) Sn(A- A0)n + Q(A- A0)--,
n=0 n=0
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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS 1177

where

and C(A0, e) is the circle with center ,0 having sufficiently small radius > 0.
Let w > 0 be such that a ;3 {, E C: aezk -w} q}, and let a+(w) a 3 {

C Re, > -w}, a_(w) a N {, C ReA < -w}. We can make the following
assumption.

Hypothesis 5. (i) a+(w) {,1,... ,,g}, where for each j 1,... ,g, Aj is a pole
of F(.) of order mj < oo.

(ii) The residues Ri,k, k O, 1,..., mj, of F(-) at A , are finite-rank operators.
The condition below is called a Hautus condition.
Hypothesis 6. Range Q,k 3 Ker B* {0} for all j 1,2,...,N and k

0, 1,...,m.
Let X be a Banach space, and let C,([0, oo[; X) be the space of bounded contin-

uous functions x(t) in X with property supt>0 IIx(t)etllx < +oo. Under Hypothesis
5 it is shown [7] that Hypothesis 6 holds if and only if the following is true:

For each Y0 e H there exists a control u e C([0, oo[; U) (in fact, u e C([0, oo[; U))
such that y e C,([0, oo[; H), where y is the solution of (1). Hence if Hypotheses 5 and
6 hold, then the control problem (1), (3) is well defined. Modifying slightly the proof
of [7, Thm. 2.3], we can show that under Hypothesis 6 system (13) is stabilizable
in the above sense. We have, in fact, the following result, the proof of which was
suggested to us by A. Lunardi.

THEOREM 4.3. If Hypothesis 6 holds, then the system (13) is stabilizable, i.e.,
for each Yo e H there exists a control t e C([0, oo[; U) such that y e C([0, oo[; H)
for some w ]0, w0[.

Proof. Define

R() / (,)

mj--1 ttketF(d) eJ
k---. Qj,k

k--O

and

N

RT0
j--1

Then as in [7, Prop. 1.1] we can show that problem (13) is stabilizable in the above
sense if and only if for each Y0 E H and yl L2(-, 0, DA(1/2,2)) there exists u
C([0, c[; U) such that

(41)R (t)yo + R’+ (t s)K (s)y ds n+" (t s)Bu(s) ds, t>_O,

where K(.) is as given in 2. First, we assume Re Aj > 0, j 1, 2,..., N, and show
(41) with w w0. If there exists ,kj with Re , 0, then we can set v(t) cRy(t) for
sufficiently small > 0 and reduce the problem to the case for which w w0 .
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1178 G. DAPRATO AND A. ICHIKAWA

As in the proof of Theorem 2.3 in [7], we can show that (41) is equivalent to

Note that the second term is well defined since KI(.)yl is bounded and Re Ay > 0.
Since the functions t eJtt" are linearly independent, (42) is equivalent to Fu
Q[yo, gl (.)y], where

N

F" C([0, +[; U) HK, K Emy,
j--1

Fu e-8(--s)k-’Qy,kBu(s)ds
k--n

and Q" H -- HK,

Q(yo, K(.))y)

Qi,y + ,= e (--s)k-nQy,kKl(S)ylds
j-1 N;n-----O m.-I

Since the range of F and Q are finite-dimensional, (42) holds if and only if

(43) Ker Q* Ker F*.

For each (hjn) (hjn)y=l N;n=O m-I e HK we have

N mj-lm-l-kfOoT(X (_8)kF*(hn)U - k!
e- < u(s)’B*Q;’+hh’+ > ds

j=l k=O h=O-- Q*(hjn)(yo, gl (’))y)
N mj-1

(Yo, O;hhh}
j--1 h----O

N m.-1 m.-l-k

/EE E
j--1 k--0 h--0

+
(K1 (8)y Q,k+nhy,k+n)ds

(--)
k!

so that

KerF* (hyn) e HK" B* Qhhyn j 1,... ,N, k O, 1,... ,my 1
\ h--k

{(hy,) e HK * *B Qyhhy,,j 1,...,N,k 0,1,...,my 1},
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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS 1179

N mi-1
ger Q* D {(hj) e HE" E E * hQ 0}.

j-1 h-0

Now we can show that (13) is stabilizable and is equivalent to (43). It is easy to see
that if (13) is stabilizable, then (43) holds. Conversely, assume that (23) holds and

* * for some jo, ho. Set hjn 5j,joSn,noh; then B*Qhjn 0 forlet h E Ker B Qjoho
each j 1,...,N,h 0,...,m 1. By (43) we have

N mj-1

O;o  o Q;o o o.
j=l h--O

Therefore, for each j0, h0 we have

KerQjono B Qjono,
and (13) is stabilizable. F1

Now consider the detectability of ,4, M. It is useful to consider the following:

’ (t) -A*(t) ftT K* (r t)(r) dr,
(44)

v_(T)
Suppose we have classical solutions for (4) and (44). Then by differentiating (y(t), _(t)},
integrating from t 0 to T., and using the Fubini theorem we obtain

(y(T), r]l (yo, q_(O) ).
Hence (44) is the adjoint system of (4). Equations (44) can be also written

’(t) A*r(t) + f K*(t r)y(r) dr,

Thus the detectability of (jr, M) is translated into the stabilizability of the following
system:

(46) ’(t) A*(t) + K*(t- r)(r) dr + My(t).

If A* and K* have properties similar to those of A and K we can obtain sufficient
conditions for detectability. Finally, we note that we can also solve control problems
for inhomogeneous systems as in [4], and [5].

Example 4.4. Let be a bounded open domain in R with C boundary
Consider the heat equation in materials of the fading-memory type introduced by
Nunziato [20]:

(47)

Oy
t x +

cO oobo- - (t r)y(r, x) dr

coAy(t, x) 7(t r)Ay(r, x) dr + Bou(t, x), t > O, x e it,

e
Fy(t,x)=O, t>O, xcOgt,

D
ow

nl
oa

de
d 

08
/2

7/
19

 to
 1

92
.1

67
.2

04
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1180 G. DAPRATO AND A. ICHIKAWA

where Fy y or Fy Oy/On. y(t, x) represents the temperature at x E 12 at time t,
bo, and co are positive constants, and u is the heat supply. and " are completely
monotone kernels with

Z(t) -,(d), (t) -(d),

where # and u are positive Borel measures with compact support supp # and supp u
contained in ]a, oc[, a > 0. Then the heat equation (47) can be written as (1) in
H L2(12) with

1
Ah 7-(coAh -/3(0)h),

o0
D(A) {h e H" Ah e H, Fh 0},

1
K(t)h 7-(-’(t)h -(t)Ah),

oo

1
B 0B0.

Let (.) and (.) be analytic extensions of the Laplace transforms of and - to
C\supp # and C\supp , respectively. Then

po e C.co -() # 0,
x(0 + (x))
0-() #-

F() bo
(o+2())
co-()

R((b +/()) A)0 ()

where {-An } is the decreasing sequence of the eigenvalues of A. Hence

{" ReA>0}={ 0 if Fy=y on Oft,
{0} if Fy= O0n on 0a.

If Fy y, then (47) with u 0 is stable. Hence our control problems (1), (2)
and (1), (3) are well defined. If Fy n’ then (47) with u 0 is not stable, but
satisfies Hypothesis 5. This implies that if h(x) ho (constant different from 0)

Ker B*, then (47) is stabilizable. If Bu b(x)u(t), b(.) H, and u is a scalar,
then fa b(x)dx # 0 implies stabilizability. Hence the quadratic problems (1), (3) and,
of course, (1), (2) are well defined. See [6] for more discussions on this example and
other examples of system (1). See also [19] for heat equations with memory.

The following example was introduced to us by J. Zabczyk and is covered by our
model.

Example 4.5. Consider the delay equation

(48)
x" (t) -k(O)x(t) fk’(-r)x(t + r)dr + u(t),

x(O) xo, ’(o)
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OPTIMAL CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS 1181

which can be regarded as a model of the oscillation of a particle suspended by light lin-
early viscoelastic string, where the relaxation modulus k" [0, [--, R is differentiable
and such that

k(t)>O, k’(t)<0, k"(t)>0, lim k’(t)=0.

Setting

y
x

we can write (48) as

0
-k(0) 0 k(-r) 01 0) (0)0 x(t + r)dr + 1

(xo)y(O) Yo
xl

If k E L2(0, cx), then this is a special case covered by Theorem 4.2. If k(t) e-at, a >
0, the spectrum a is given by

a {" 3 + aA2 + k(O)A + ak(O)- 1 0}.

Set

( 0 1)A= -k(0) 0 1 M=[1,0];

then (A, B) is controllable and (M, A) is observable. Hence the minimization problem

J(u) [Ix(t)l 2 + lu(t)l 2] dt

is well defined.
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