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Partial regularity for mass-minimizing
currents in Hilbert spaces

By Luigi Ambrosio at Pisa, Camillo De Lellis at Ziirich and Thomas Schmidt at Erlangen

Abstract. Recently, the theory of currents and the existence theory for Plateau’s prob-
lem have been extended to the case of finite-dimensional currents in infinite-dimensional man-
ifolds or even metric spaces; see [5] (and also [7,39] for the most recent developments). In
this paper, in the case when the ambient space is Hilbert, we provide the first partial regularity
result, in a dense open set of the support, for n-dimensional integral currents which locally
minimize the mass. Our proof follows with minor variants [34], implementing Lipschitz ap-
proximation and harmonic approximation without indirect arguments and with estimates which
depend only on the dimension 7 and not on codimension or dimension of the target space.

1. Introduction

In recent years the theory of currents has undergone several developments, finding suit-
able extensions to metric spaces [5,31] and general group coefficients [18,40,41]. These ideas
have led to general existence results for Plateau’s problem [5, 7,38, 39] which cover also non-
smooth and infinite-dimensional spaces, and the relevant techniques (in particular an intrinsic
approach to metric-space-valued Sobolev and BV maps [3] and the Jerrard—Soner BV esti-
mate [28,29]) had also an impact on the classical theory, leading to more powerful Lipschitz
approximation results [14, 15] and rectifiability criteria [27].

In a similar vein, in this paper we investigate regularity properties of 7-dimensional mass-
minimizing integral currents 7" in 3, where both the finite dimensionn € N = {1,2,3,...}
and the infinite-dimensional separable Hilbert space I are fixed for all of the following. (We
remark that the separability assumption on JH is not restrictive, as the metric currents of [5] are
always concentrated on a o-compact set and have thus separable support; see [5, Lemma 2.9].)
Particularly, we treat those currents which appear as minimizers of the general Plateau problem
(see [7] for the corresponding existence result)

(1.1) min{M(T) : T € 1,,(}), oT = S}.
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no. 246923.
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Here, S € I,—1(H) is an arbitrary cycle with bounded support, and we have started to use the
notations explained in Section 2.

Since our arguments are completely local in nature, we will rather deal with the class of
local minimizers, defined as follows (for minimizers in (1.1) one may take Q2 = H):

Definition 1.1 (Locally mass-minimizing currents). We call T € I, (3{) locally mass-
minimizing in an open set 2 C J{ if there holds

M(T) < M(T 4+ R) whenever R € I,,(H), oOR = 0, dist(spt R, H \ Q) > 0.

As in the finite-dimensional theory, the regular set Reg T of T € I,(H) is the collection
of all z € sptT such that T is represented near z by a C! graph with some multiplicity m:
more precisely, it is the set of all z € spt T such that

T [z+B] +Bj”] = m|Graph f]

holds for some o > 0, some n-plane 7 in 7, some non-zero integer m, and some C!-function
Sf:p™(z) + By — (Span 7)+ (we refer once more to Section 2 for notation and precise defi-
nitions).

Evidently, Reg T is always an open subset of spt 7 \ sptoT . Providing the first partial
regularity result for mass-minimizing currents in infinite dimensions, we will however show
that, for minimizers in (1.1), Reg T is also dense in spt 7' \ spto7. This assertion follows in
fact from the choice Q2 = H \ sptdT in our following main theorem:

Theorem 1.2 (Partial regularity for locally mass-minimizing currents). If T € I, (3H)
is locally mass-minimizing in an open set Q@ C H with (0T) | Q2 = 0, then Reg T is dense in
QNsptT.

To put our result in perspective, let us mention that in the case n = 1 one can represent 7'
in €2 as a locally finite union of non-intersecting line segments (endowed with orientations and
multiplicities), so that we have full interior regularity 2 Nspt 7 = 2 N Reg T in this situation.
Therefore, we focus in the sequel on the (much) more challenging case n > 2.

In the finite-dimensional case H{ = R¥, the regularity theory has been developed first in
codimension 1, i.e. forn = N — 1, and then in general codimension. In codimension 1 (see for
instance [25,36] for accounts of the theory), the partial regularity result of [12] and a detailed
analysis of singular minimal cones [23, 35] gave the optimal bound n — 7 for the dimension
of the singular set Xo(7) = Q2 N (sptT \ RegT). In higher codimension, the first partial
regularity results have been obtained in [1,32]. However, the so-called branching phenomenon
provided for many years an obstacle to the development of a sharp theory, until Almgren’s
monumental work, completed in 1984 and now published in [2], led to the bound n — 2 for the
dimension of ¥ (7'), optimal in codimension higher than 1. Recently, Almgren’s program has
been revisited, simplified, and improved in a series of papers [13—17] by the second author and
Spadaro. Many parts of this program are by now sufficiently robust to work even in infinite
dimensions, but at this moment it is not clear whether the whole program, starting from the
theory of Dir-minimizing Q-valued maps, can be carried out with constants independent of the
codimension.
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For these reasons, in the present paper we focus on the more modest goal of proving
regularity at || T ||-almost all those points where branching is excluded by a suitable assumption
on the density of T'; see (4.2) and (4.3) in Assumption 4.1. However, as a typical outcome, the
general form of our e-regularity result (see Theorem 4.2) also gives that the whole singular set
3q(T) is | T ||-negligible if the multiplicity of 7" equals a constant |7 ||-a.e. in H. Our proof
follows in large parts the approach of [34], valid even for more general functionals than the
mass (compare also [8, 10, 19]): the main novelty of [34], in comparison to the older strategy
of [1] (which is also adapted in [22]), is that the constants involved in the e-regularity theorem
do not arise by contradiction arguments, and therefore — at least in principle — they can be
explicitly computed or estimated. In the case of the mass functional our main contribution is to
show that, as a matter of fact, all these constants can be bounded using the dimension 7 only.
This, combined with other codimension-free tools (Kirszbraun and Rademacher theorems, for
instance), leads to the result.

Finally, we close the introduction by explaining where the restriction to the mass func-
tional comes from. It would not be too difficult, using the tools developed in [5], to provide an
existence theory for the minimization of more general “anisotropic” functionals. On the other
hand, the linearization of the functional around a given n-plane leads to a suitable elliptic PDE
for functions defined on an n-dimensional plane in J{ with values in its infinite-dimensional
orthogonal complement: in other words, this is an infinite system of PDEs. The proof of the e-
regularity result crucially depends on estimates for solutions of such a system, specifically C!-¢
estimates in [34] and W17 estimates (with p > 2 sufficiently large) in our proof. In case of
the mass functional the linearization is the Laplace equation, leading to appropriate estimates
for harmonic functions, which in turn can be proved with (more or less) explicit computations,
see Section 3. It might be a problem of independent interest to identify a more general class of
infinite elliptic systems for which analogous estimates hold.

2. Notation and preliminaries

2.1. Hilbert space geometry. We denote the inner product of the Hilbert space I as
(-,-). Moreover, we write A,(7() for the space of n-vectors! over H, and we notice that
Ay (H) carries the induced inner product, characterized by

(2.1) (ZinzZ2 A AN Zp ELANEL AL NE) = det((zi, E)iLj=1,2,.0n

for z;,&; € H. In the following we will briefly write |-| for the inner product norm on both H
and A, ().

If a simple n-vector m is unitary with respect to the inner product of (2.1), we will call
it an n-plane in J(. This terminology is motivated by the fact that 7= can be identified with
an oriented n-dimensional subspace of J{; indeed, when we represent 7 = A7_; 7; with
orthonormal vectors 71, 72, . .., 7, € H, then we write Span 7 for the n-dimensional subspace
of J{ which is spanned by 71, 72, .. ., ,, and 7 is one of the two possible constant orientations
of Span r (notice that Span 7 depends only on 7, but not on the choice of the ;). Without
further mentioning we will identify Span 7 with R” in some regards: for instance, while we

D) 'We adopt the convention that A, () contains only finite sums of simple n-vectors; however, this will
not play an essential role in the following.
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write " for the n-dimensional Hausdorff measure on JH, we view its restriction to Span 7
as a Lebesgue measure £", and we do not clearly distinguish between harmonic functions on
(subsets of) Span 7z and R”. Finally, by (Span ) we denote the orthogonal complement of
Span v in H which is closed and itself an infinite-dimensional separable Hilbert space.

We will sometimes write L™ for the Hilbert space of linear maps Span 7w — (Span )=+,
endowed with the Hilbert—Schmidt product. When {1, 7>, ..., 7, is an orthonormal basis of
Span 7, then this product is given by

n
(€.Lo) := > (tm; Lom;) forl. Lo € L™,

i=1

with the inner product of J{ on the right-hand side (and again the definition does not depend
on the choice of the ;). We also keep writing |-| for the corresponding Hilbert—Schmidt norm,
that is,

n
> i fort eL”.
i=1

2.2) 1e] :=

Furthermore, we define the ball with center 0 and radius r in H by
B, :={zeH:|z| <r}
and its counterparts in Span 77 and (Span )~ respectively by
BT :=B,NSpanz and B}" :=B, N (Spanx)t
We frequently use related notations like
z+B,={z+£:£€B,}, BF+B}" ={x+y:xeBl, yecB}

(where addition is understood in the sense of the Minkowski sum). In addition, p”: H — H
and q": H —  denote the orthogonal projections onto Span 7 and (Span )=, respectively,
and the cylinder CJ over BT is given by

Cl:={zeH:p"(z) e B]}.

Finally, we define the n-dimensional spherical densities of a Borel measure p on J{ at a point
z € H by

p(z + Byg)

B
®*n(u’z) = limsupm -
a)nQ

. O%(uw,z) = liminf
o\0 wn Q" < o\0

where w, stands for the volume of the unit ball in R”. Whenever we have the equality
O*(u,z) = O%(u, z), the common value will be denoted by ©" (i, z).

2.2. Differentiable functions, graphs, area formula, and Jacobian. For a function
g:z +B¥ — (Spanx)t we write G:z + B¥ — z + CF for its graph mapping given by
G(x) := x 4 g(x) (generally the graph mapping is denoted by the corresponding upper-
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case letter), and we set Graphg := {G(x) : x € z + BJ}. In the following the notations
Dg(x): Spanz — (Span )T and DG(x): Spant — F will refer to the Fréchet differentials
of the maps g and G at x € z + B (notice in particular Dg(x) € L7), and we say that g
is C or C1* if the derivative Dg exists everywhere as a continuous or «-Holder-continuous
(L™ -valued) mapping. We have the orthogonal decomposition DG (x)§ = & +Dg(x)£, and the
image of DG(x) is the tangent space to Graph g at G(x) which, compatibly with the notation
introduced below for integer rectifiable currents, will be denoted by Tan®™ (Graph g, G (x)).

If g is locally Lipschitz continuous, then the derivatives Dg(x) and DG (x) exist for £"-
a.e. x € z + BT by the generalized Rademacher theorem for Lipschitz maps between Hilbert
(or even Banach) spaces, see [9, Theorem 5.11.1]. Furthermore, as a particular case of the area
formula (see [30, Corollary 8], [6, Theorem 5.1]) we then have

2.3) / o dH" = [ 0(G(x))In(DG(x)) d2L" (x)
Graph g z+BJ

for every bounded Borel function ¢: Graph g — R. Here, the Jacobian J, (L) of a linear map
L:Span w — J can be computed as

n
/\LT[i,

i=1

(2.4) In(L) = \Jdet(Li, L) j=1,2,.m =

whenever 71, 72, ..., T, is an orthonormal basis of Span 7. If we choose the 77; as eigenvec-
tors of L* o L, the elementary inequality between the arithmetic and geometric means leads
to the (optimal) estimate J, (L) < n"3 |L|". We also record the following useful expansion,
whose proof resembles the computations of Section 2.5:

(2.5) Jn(Id + eL)* — 1 — ¢ tracez (L)| < Ce*(1 + |[L|*") forall e € (0,1].
Here, Id: Span 7 — J is the embedding, the constant C' depends only on n, and trace, (L) is

defined by

n

(2.6) trace; (L) := Z(Ln,-, ;).

i=1

2.3. General issues about currents. In the sequel we follow widely [5]. We recall that
an n-dimensional current 7" in X is defined as an (1 4 n)-linear functional

Llpb(‘}c) X Llp(g{)n = ((pv ‘le s Wn) = T((p’ WI’ ORI Wn) € R

satisfying suitable continuity and locality axioms, where Lip, denotes the class of bounded
Lipschitz functions. Currents with finite mass are characterized by the existence of a positive,
finite Borel measure p satisfying

T Y.yl < [] Lipw) [H lpldi forall g € Lipy(30), ¥1..... Yin € Lip(30).
i=1

The smallest measure p with this property is denoted by || T'||, the mass is M(T) := || T ||(H),
and the class of currents with finite mass is called M, ().
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The class N, (H) of normal currents is, as in the classical Federer—Fleming theory,
N, (H) = {T eM,(H):0T M,,(J-C)},
where, at the level of general n-dimensional currents 7, the boundary operator is defined by

aT(% ‘/fl» e 1/fn—1) = T(l’ (28 E/fI, cees ‘/fn—l)-

We recall that when H =~ R¥ is finite-dimensional, the class N, (%) and the class R, ()
of rectifiable currents defined below are fully consistent with those of the Federer—Fleming
theory. As a matter of fact, in the rest of the paper the maps y; will often be linear maps.

For currents T with finite mass (the only ones we shall consider) the action can be canon-
ically extended to bounded Borel functions ¢. Furthermore, we adopt the conventional notation

7 (o /\ dyi) = T(@. 1. Yn),

i=1
justified by the fact that the axioms imply the chain rule

n

n
T((p /\ d(y; o W)) = T(go (detVy) oy /\ dwi) for all y € C'(R™:;R") Lipschitz
i=1 i=1

(see [5, Theorem 3.5]) and, in particular, the alternating property.

We also record the following statement, which follows from the codimension 1 case of the
slicing theorem [5, Theorem 5.6]: Given 7" € N, (), ¥ € Lip(H), and —oo < 51 < 53 < 00,
the function ¢ — M(0(T L { > t})) is £'-measurable and £'-a.e. finite, and we have

52

@) ITLavls <y <sa) = [ METL(y > ) de' o)

§1

provided that (dT) L {¢y > 51} = 0.

2.4. Rectifiable and integral currents in JH{. Following [5] again, we call T € M,, ()
rectifiable if | 7| is absolutely continuous with respect to #” and concentrated on a countably
H"-rectifiable set. The class of rectifiable currents will be denoted by R, (). Inside this class
we can also single out the class I, (J() of integer-rectifiable currents, defined by the property

(2.8) O"(|T|,z) e N for |T|-ae.z € K.

Finally, the class I, (J() of integral currents, which will be our main object of investigation, is
simply I, (H) N N, (H).

Next we recall some results of [5, Section 9] about rectifiable currents, specialized to the
present Hilbertian case. By [5, Theorem 9.1], for every 7" € R, (H) there exist a countably
J" -rectifiable subaet St of H, a Borel function 07:S7 — (0, c0) with fSr Or dH" < oo,
and an orientation 7" of St such that we have

n

(2.9) T<¢ /n\ dwl-) = /S (p< /\ D7 s, T") o7 dJe"

i=1 i=1
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for all (¢, ¥) € Lip,(H() xLip(3)". Here, the orientation T:S7 — Ay () is a Borel function
such that f‘(z) is a unit simple n-vector over the approximative tangent space Tan (S, z),
in other words T(z) is an n-plane with Span T(z) = Tan"(S7,z), for H"-ae. z € Sr.
Moreover, DST Y; is the tangential differential of y; along S7. In [5, Section 9], the differ-
ential D% Yi(2): Tan®™ (S7,z) — R is understood as a 1-covector over Tan™ (St z), and
correspondingly the angle brackets in (2.9) denote the usual evaluation of an n-covector on
an n-vector. In our situation, taking into account the Hilbertian structure of 3, we identify
D57y, (z) with a 1-vector over Tan™ (S, z) via the Riesz isomorphism, and correspondingly
we reinterpret the angle brackets as the inner product of (2.1).

A triplet (S, 07, f), for which (2.9) holds, is — up to sets F”-measure zero — uniquely
determined by 7', and for the following we can indeed fix the canonical choices

Sr:={zeH: O(|T|.z) >0}, Or(z):=0""(|T|.z2).

Moreover, by [5, Theorem 9.1] we know that every suitable triplet (S, 3, t) originates from
acurrent in T € R, (H) (in the sense that (S7, 07, T) equals (S, 9, 7) up to H"-negligible
sets), and we will denote this current by J[S]*. Here, the superscript * is often omitted when
there is a canonical choice of the orientation. In particular, for balls z + B in an n-plane = we
always understand [z + B7] := [z + BF]" € I,(H). Moreover, when we write 7 = A\J_; ;i
with orthonormal 71, 72, ..., 7w, € Spanx and g:z + B} — (Span 7)+ is a locally Lipschitz
continuous function, A\’_; DG(x)r; is an n-vector over Tan® (Graph g, G(x)) for £"-a.e.
x € z + BJF. This n-vector depends only on 7, but not on the choice of the 7;, its modulus is
T, (DG(x)) (compare with (2.4)), and when #" (Graph g) < oo we can use it to endow Graph g
with a canonical orientation: when dealing with the integer-rectifiable current [Graph g] we
always understand

Ni=1 DG(x)7;

(2.10) M(G (x)) = J,(DG(x))

for #"-a.e. point G(x).

In case of a globally Lipschitz continuous g we finally infer via the area formula that
[Graph g]] = Gy[z + BF].
With the previous notation the characterization of mass [5, Theorem 9.5] yields
(2.11) I\T| = 6rH" LSt

forevery T € R, (J(), and in combination with (2.9) we get

n

2.12) 7(p /\avi) ZAw(;\DSTwi,T)d||T||

i=1 i=1

for all (¢, ¥) € Lip,(3{) x Lip(H)". In view of this formula it appears reasonable to extend
the action of T to arbitrary bounded Borel functions y: H — A, (H) by

@.13) 100 = [ el
X
We record in particular that with this convention we have

(2.14) T(x) =0 whenever T has zero boundary and y is a constant n-vector.
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We provide a simple proof of (2.14) for the reader’s convenience: We first observe that it
suffices to show (2.14) for simple n-vectors y = AJ_; xi. Setting pf((z) = (xi,z), the
tangential derivative DSTpl?( (z) is the projection of y; onto Tan"™(S7, z), and as a conse-
quence we have (y, f) = (A\iz; DSTplX, f") With (2.12) and (2.13) we can thus conclude
T(y) =T N2 dpl).‘) = 0, where the last equality follows from 07 = 0.

Finally, consider a current 7 € R, (J) and a cylinder z + CJ, where n is an n-plane
(i.e. an oriented n-dimensional subspace) in H, z is a point in J, and » > 0 is a positive radius.

The cylindrical excess of T in the cylinder z + C is then the quantity

E(T.z,r,7) = r_"[ IT —7|?4d|T].
z+CF
which measures the deviation of 7' from 7 and which will play a major role in this article.
Abbreviating 777, = T'L (z + C}') and using the same arguments as for (2.14), we obtain

n
e1s [ =1z A o)
z4+CF ’

i=1

= (") TE (1 A dpf) = (") TE, ().

i=1

In particular, since |f“| = || = 1, we can write E in the alternative form
2
(2.16) E(T,z.rm) = —[IT1G + CF) = (p™)T2, ()]

Finally, if T is locally mass-minimizing in €2, we have the monotonicity property

IT(z + Br)
r —

2.17
@17) wnr"

is non-decreasing in (0, dist(z, 0L2))
for all z € Q (see Appendix B for an outline of the relevant arguments). As a standard conse-
quence, we obtain the lower mass estimate

(2.18) |IT|(z +By) = O™ (|T||, z)wnr™ whenever z € Q and r € (0, dist(z, 0R2)),

and the existence and upper semicontinuity of ®” (|| 7||, -) in all of Q2. In turn, these properties
of ®*(||T||, -) and (2.8) imply that the set {z € Q : O"(||T|,z) > 1} is closed in  and
coincides with € N spt 7. Therefore, in the applications of (2.18) with z € Q N spt7T, the
density on the right-hand side is controlled from below by 1.

Finally, if I" is a subset of 2 Nspt T with positive distance from 02, then we claim that I’
can be covered, for every given ¢ € (0, 2 dist(I", 9R2)), by finitely many open balls with centers
in I and with radius ¢. Indeed, by the Hausdorff maximal principle there exists a maximal set
C C T of centers such that |Z — z| > & holds whenever z # Z in C; then the balls z + B/,
with z € € are disjoint and (2.18) gives ||T'[[(z + Bg/2) > wn(e/2)", so that € need be finite,
and thus the balls z 4+ B, with z € € form the claimed cover. This argument shows that I is
totally bounded, and thus every closed subset of 2 N spt T with positive distance from 0S2 is
necessarily compact.
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2.5. Some multilinear and Grassmannian algebra. In what follows we assume again
that 7 is an n-plane in H, and we represent 7 as A\’_; 7; with a fixed orthonormal basis
71,72, ..., 7, of Span . Moreover, £, £o: Span 7w — (Span )L are linear maps with graph
mappings L and L, respectively. With these notations we will now collect some (in)equalities
for the n-vector /\_,; L;, where all constants, here generically denoted by C, are understood
to depend only on n.

Recalling that Lw; = m; + {m;, we expand /\]_, Lm; correspondingly and, for
k €{l1,2,...,n}, we write [{]7 for the sum of those terms in the expansion which are k-linear
in £. In particular, the constant term is [(]] = A7_; 7; = m, the linear one is

n
[()F = Z[m Ao ATt AT A T4 A A T,
i=1

and for the higher-order terms we just record
(2.19) 171 < Clefs.
Evidently we then have the following basic error estimates:

n
/\Lm—n

i=1

/\ Lz — 7 =[O

i=1

(2.20)

< C[lef + 14"],

(2.21) <C[lef? + 14"].

Now we observe that the 7r; are mutually orthonormal and orthogonal to each £mr; and £qr;
(remember that £ and £o map Span 7 into (Span 7)1). Using these orthogonality relations in
(2.1), one finds® ([£]7, [€o]T) = (£, {o) (in particular |[{]T| = |£|) and ([1% . [bolf") = O for
k # 1, and all in all we get

(2.22) (A Li ]\ Lom;) = 1+ (€ o) + D (OF. [£of),
j=1

i=1 k=2

n
s/\Lnl——n

i=1

2 n
(2.23) = (s = D>+ 2 + 5 ) _|[UEP

k=2

for every s € R. Recalling (2.4), we also infer

(2.24) Tn(L)? =1+ 0>+ Y IR,
k=2

from which we conclude J,, (L) > 1 and (taking also (2.19) into account)

L)> -1 S

1
2.25 1 - =
(2.25) ‘ Jn(L)‘ Jn(L)Jn(L) +1) — k=1

2 Indeed, the formula for ([€1T . [€o]T) is quite easy to check, while the general orthogonality relation
between [€]7 and [€o]] can be verified as follows: when X and ¥, respectively, are simple summands of [€]7
and [{o]7 with k <[ < n, there is an index i such that X contains a factor 7;, while X; contains {o7; instead.
Thus, n; is actually orthogonal to all the factors in X;, and recalling the determinant structure (2.1) this suffices to
conclude (X4, ;) = 0.
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Next we record two simple algebraic lemmas which relate different ways of measuring
the distance between n-planes.

Lemma 2.1. Given two n-planes & and @ in H with | — | < % there exists a linear
map £: Spant — (Span )T with

(2.26) Graph{ = Spanw and |{| <2|w — 7|

Proof. We first observe Spanw N (Spanz)® = {0} (for otherwise we would have
(w, ) = 0and |w — m|?> = 2). This observation implies that the restriction of p”* to Span @
maps Span @ one-to-one onto Span i, and the inverse of this mapping minus the identity gives
a linear £: Span 7 — (Span )+ with Graph £ = Span w.

Now we fix again an orthonormal basis 71, 132, ..., 7, of Span . As there are only two
constant orientations of Span @, we have
_ /\?:1 L or w = _/\z"l=1 L
Jn(L) Jn(L)
Here, the second case however cannot occur, since (2.23) with s = —1/J,,(L) would then give

the contradlctlon > |lw —n|? > (ﬁ + 1)2. In the first case, (2.23) yields the estimate

1 ) 1 2 |€]?
riiad Z(J,,(L)_l) N

from which we subsequently deduce 1 — J,,(;L) < % hence J,, (L) < 2, and finally the inequality
in (2.26). O
Lemma 2.2. Given two n-planes w and @ in H there holds
p? (z) —p™(2)| < 8n|w — x||z| forallz € K.
Proof. Weassume |w—rn| < % (otherwise the claim is trivially true), and we use the £ of
Lemma 2.1 and an orthonormal basis 1, 72, ..., 7, of Span r which consists of eigenvectors

of L*o L. Setting w; := Iéﬂ > we then find an orthonormal basis w1, w3, ..., wy, of Span w.
We have

26)
2eni) 2 dw — ).

| —mi| =

i + i (1 — |7 +€n,|)‘
|7 + Lm;
Now we can compute

n

Z[(Z, ZD',')ZD’,' — (Z, n,-)n,-]

i=1

Ip”(2) —p"(2)| =

<2 |mi —mil|z| < 8n|w — | |z]. O
i=1

We will mostly apply the previous considerations to the differential of locally Lipschitz
functions g:BY — (Span )+ with #"(Graph g) < oo. In this case, at any point x of differ-
entiability of g, we set £ = Dg(x) for x € BT and we observe that L = DG(x) (remember
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that G and L denote the graph mappings of g and £, respectively). Recalling (2.10), we com-
bine (2.20), (2.21), and (2.25) to achieve the following estimates (which are all understood to
hold £"-a.e. on BY):

—_—
(2.27) |[Graphg] o G — 7| < C min{|Dg|. 1},
P ——
(2.28) |[Graph g] o G —  — [Dg]F| < C|Dg|min{|Dg|, 1}.

Moreover, (2.10) and (2.23) with s = 1/J,(DG) tell us

(229)  |[Graphg] o G — n|*Ja(DG)? = (1 —14(DG))* + Dg[* + > _|[Dgl7 >

k=2
> |Dg|>.

3. Codimension-free elliptic estimates

We now write B} for the open ball with center 0 and radius o in R", and we continue
to use |-| for Hilbertian norms, here specifically for the Hilbert—-Schmidt norm of the matrix-
valued derivatives. With this notation we state an interior bound, an interior Lipschitz estimate,
and a global L?-estimate for the gradients of harmonic functions.

Lemma 3.1. For every harmonic function h:B} — RY and 0 < n < o one has

C
(3.1) sup|Dh|? < —/ |Dh|? d£",
B! (0 —m" Jgn
2 |y _x|2 2 n n
(3.2) |IDA(y) — Dh(x)|* < Cm/];" |IDh|“dL™  forx,y € B,

where C depends only on n and is in particular independent of N. Moreover, if h is harmonic
and contained in a Dirichlet class f + W(l,’z(B(’}, RN with f e whoeoBn, RN), then for all
1 < p < 0o one has

(3.3) / [DA|? d£™ < Co™ esssup|D f|?,
B3 BZ

where C depends only on n and p and is again independent of N.

All three estimates are classical, except for the claim that the constants do not depend
on N. In case of (3.1) and (3.2) the latter claim can however be checked very easily: one may
either revisit a classical proof® of these estimates or add up the respective estimates for the
N single component functions of /. In contrast, for (3.3) (in the non-trivial case p > 2) the
analogous summation over the component functions does not give an N -independent constant

3" A very short and elementary proof indeed starts from the observation that a mollification of D/ with a
smooth and rotationally symmetric kernel, supported in Bg_,,, coincides with D/ on B,’7’ by the mean value property.
From this equality one can easily obtain (3.1). Furthermore, differentiating the equality, one finds an estimate for
supp [D2 1|2, which readily implies (3.2).
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(the basic obstruction is that the L?-structure is not compatible with the inner-product norm |-|),
but revisiting the classical proofs it is still possible to justify our claim. In the following we
will suggest a slightly modified approach to (3.3), which is specific for the Dirichlet problem
on balls and has the advantage of reducing the portion of the classical argument which needs
to be revisited.

Proof of (3.3) with N -independent constant C. We assume n > 3, as the case n = 1
is trivial and the case n = 2 is covered by a minor adaption (with modified functions I" and
G) of the following arguments. Moreover, we will assume that o equals 1 and that f* vanishes
on B} ,. To justify the last simplifying assumption we argue as follows: reducing first to
f(0) = 0, we replace f with ¢f, where ¢ is a smooth function, which vanishes on B ,, takes
the constant value 1 near the boundary of B”, and satisfies supp lo| + supp [Dp| < 4. We
then have ess supgn ID(pf)] < 4ess supgn |D f|; thus it indeed suffices to prove the claim with
@f in place of f.

Keeping in mind the preceding reductions, we now perform a partial integration in
Green’s representation formula for solutions of the Poisson equation (see for instance [24, Sec-
tions 2.4, 2.5] or [20, Section 2.2.4]). The resulting formula remains valid for right-hand sides
in W—12(B", RY). Applying it to h — f (which solves the Laplace equation with zero bound-
ary datum and right-hand side —A f'), we achieve

(3.4) B = ) = [ DFOIDLGEr ) dL" () forx < B,

where G is Green’s function of the unit ball B in R” and D f(y) € RN>7 is multiplied with
D, G(x, y) € R” in the sense of the usual matrix-vector product. In our simple case, G is in
fact given by the explicit formula

G(x,y) =T(x—y)—|y*"T'(x —y*) forx,y e B,

where we used the abbreviations I'(x) := m |x|>~" and y* = |y|~2y for the fundamen-
tal solution of Laplace’s equation and the reflection at the unit sphere, respectively. Calculating

D, G, we can rewrite (3.4) as

G35 h0) =S == [ DIGIDIG = y)aLn(y)

1

|y [Pldpsn — 2y ® y
+ [ D) e E L ey ()
1

y
|y

+0=2) [ D) oy ae )

for x € B}. Now we introduce g: R" — RN and g: R” — RN by

e —Df(y) for [y[ <1,
= *|2 Ak *
D f(y*) RSB for |y*| < 1,
0 for |y| < 1,

)= {(n SODF() o for |y < 1.
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When we change variables in the second and the third integral on the right-hand side of (3.5),
the first term can be grouped with the second. Then, fori € {1,2,...,n} we can differentiate
with respect to x; to get

() =00 () = By div( + D)) + [ FOAT =)L)

Summing overi € {1,2,...,n}, it follows that
(3.6) / |Dh|pd:€”<C[/ IDf|Pdem + Z IZ,J+ZH,},
i,j=1 i=1
where C depends only on n and p, and where we have set
1= [ 100, s o)l at”,
B
P
I1; ::/ / g»)oir(x —y)de” dL™ (x).
B! |/R”

To estimate I; ; we exploit the L?-estimates for the second derivatives of the Newton potential
g x I' of g. By adapting the proof of [24, Theorem 9.9] to the vectorial case, these estimates
can — with moderate effort*) — be verified with an N -independent constant. Via these estimates,
using the definition of g and changing back to the original variable, we get

DSO)] \# AL (y)
(3.7) I','SC/ densc[/ D Pd:c"+/
w = C Ll b7 | B¢(|y|n|y*|2") NS

e / IDAO)IP (14 [y[7"~27) 4" ().
BY

In order to bound the non-singular terms II; we rely on the fact that g vanishes outside B%,
which in turn follows from the assumption f/* = 0 on B} /2° Indeed, via the control
0T (x — y)| < Clx — y|'™",

Holder’s inequality, Fubini’s theorem, and the same arguments as before yield

a9 m=c [ [ aor TER ([ ) e

[x =y~ T\ gy |x—yn—1

- dL"(x) ~
C p T d¥r C P qsger
- /Bg'g(y)' /B,f oy ) = /Bg'g(y)' a£" ()
IDf(y)| \2 dL"(y)
C
= /B;«(|y|"—1|y*|2n> B

—c [ ID£()[Py17HPn2m e ().
BY

4 We here rely only on the most classical and simplest L?-estimates as originally established by Calderon
and Zygmund [11]. The proof of these singular-integral estimates requires only the Calderon-Zygmund covering
arguments and the Marcinkiewicz interpolation theorem (see again [24, Chapter 9] and compare also [26, Theo-
rem 2.13] for a vector-valued version of the latter theorem). In particular, our whole approach does not rely on
flattening-of-the-boundary arguments.
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When we combine (3.6), (3.7), (3.8) and control the occurrences of |D f|? by its ess sup, we
arrive at the claim (3.3). D

Remark 3.2. Even though it will not play a role in our reasoning, we find it worthwhile
to record that for 2 < p < oo the exponents at |y| in (3.7) and (3.8) are positive, and then the
same approach (with a slightly modified reduction argument at the beginning of the proof) also
yields a stronger form of (3.3), where o™ supgn |D f'|? is replaced by fBg D f|PdL".

In the sequel, we call a function 4 € L2(B”; 3) harmonic if (k,a) is harmonic for all
vectors a € J{. Thanks to the codimension-free estimates of Lemma 3.1 we can easily provide
the following existence and uniqueness result.

Theorem 3.3. For every Lipschitz function f:B} — I there exists a unique harmonic
h € C(BZ; H) with h = f on 0B. It satisfies

(3.9) f |Dh|2d$"§/ ID f|?d£?,
BZ B2
2 C 2 n
(3.10) sup|Dh? < —/ IDA|? d”,
B (c—m" JBz
3.11) IDA(y) — Dh(x)[? < cﬂf IDA|? d”
' = (o—n"t2 Jpn

for0 <n<oandx,y € B?, where C depends only on n, and
(3.12) / |Dh|? dL™ < Co™ esssup|D f |7,
BG B2

where C depends only on n and p.

Proof.  Uniqueness can be easily achieved arguing component-wise, so let us focus on
existence. Let (e;),en be an orthonormal basis of H, and denote by fy the Lipschitz func-
tion which is the composition of f with the projection on Span(ey,...,ey). Since f(BZ)
is compact in H, for N — oo we clearly have fy — f uniformly in B_g Furthermore,
ID fv| < |IDf| holds £*-a.e., and the D fx converge to D f in the Hilbert space L?(B,, L),
where L denotes the space of linear maps from R” to K.

Welethy € C(B_g, H) be the harmonic functions taking values in Span(ey, ..., ey ) and

coinciding with fy on oB. In particular, we then have
[ ohnPaz < [ pfyar.
B/ BG

Moreover, we can apply Lemma 3.1: the corresponding estimates (3.1) and (3.2) show that the
maps h and DAy are locally equi-Lipschitz in B}, and moreover

o

(3.13) / DAy |? d£™ < Co™ esssup|D f|?,
n Bg

with C depending only on n and p.
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Given any unit vector a € H we can apply the maximum principle to (hy — hpr,a): we
thus achieve
max|hy —hp| < sup max{hy — hpr,a) < max|fy — fu| — 0.
B la|=1 BZ oB;

Hence, the &y converge uniformly to a function & € C(B”, 7). By the Dirichlet principle we
have

/ |Dh —DhM|2d§€n f/ D fa —DfM|2d$n
B B5

for N, M € N. Since (D fn ) yen is a Cauchy sequence in L2(B%, L), so is (D) yen, Which
hence converges to alimit Y. Obviously (k,a) = limy oo {hy,a) is harmonic, and so is / (by
definition). Moreover, & is locally Lipschitz continuous and hence a.e. differentiable. Using
the convergence (hy,a) — (h,a) and the harmonicity, we easily conclude that Y = D#;
thus, we have DAy — Dh in L?(B”, L), and (3.9) follows. Combining the preceding pieces
of information with the local uniform regularity of D/, we obtain that D4 has a continuous
representative in B], and that Dhy — Dh locally uniformly in B].. This provides at once
(3.10) and (3.11) by a passage to the limit. In connection with (3.12), we use (3.13) to obtain

/ [DA|P d£™ < Co™ esssup|D f|?,
By Bj

with n < 0, and thenletn " o. |

4. The e-regularity theorem

In this section we state the main e-regularity theorem for mass-minimizing currents. The
basic assumption that allows to initiate the regularization process is stated below.

Assumption 4.1. We assume that 7' € I,()) is locally mass-minimizing in zo + CJ
with

(4.1 @T)L (zo + CT) =0,

(42) (0™)(T L (20 + CF)) = m[z0 + BT,

4.3) O"(|T|,z) =m for|T|-ae.z € zo + C}J,
4.4) E(T,zo,r,m) <¢

for positive parameters r, ¢, some n-plane 7 in J, zg € Spanw, and m € N.

Indeed, when these conditions are satisfied, we will say that Assumption 4.1 (with mul-
tiplicity m) holds for 7" on zg 4+ CJ up to e. We will occasionally refer to the radius r as the
scale of the assumption.

In view of the constancy theorem, (4.1) automatically implies

(P™)g(T L (z0 + C)) = m'[z0 + BY]

for some integer m’. Therefore, apart from the requirement that m’ should be positive, which
can always be achieved replacing 7' by —7', the main point in imposing (4.2) is to guarantee
that m = m’ (i.e. that m’ equals the lower bound m in (4.3)).
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In the sequel we permanently fix the multiplicity m € N, and in particular when referring
to Assumption 4.1 we always mean the statement with this fixed multiplicity.
We can now state our e-regularity theorem.

Theorem 4.2 (¢-regularity theorem for mass-minimizing currents). There exists a posi-
tive constant e, depending only on n,m € N, with the following property: Whenever Assump-
tion 4.1 holds for a current T on CF up to € < ex, there exists a function f B;T/z — (Span )T,
which is CY% for all @ < 1 and such that T | C ;T/z is represented by the graph of f with mul-
tiplicity m, in more precise terms

T'LCJ, = m[Graph f].

The proof of Theorem 4.2 will be carried out in the following two sections and will be
finalized at the end of Section 6.

S. Vertical separation and Lipschitz approximation

As in [34], we rely on a vertical separation lemma, which is often called Federer’s height
bound, although a result of this type appeared first in [1]. The proof in our setting is widely
analogous to the one of [34, Lemma 2], which in turn resembles the argument of Federer
[22, Lemma 5.3.4], but nevertheless we prefer to carry out the details.

Lemma 5.1 (Vertical separation). There exist eg = eo(n,m) and Ay = Ao(n, m) with
the following property. Whenever Assumption 4.1 holds for T on zo + C} up to ¢ < &g for
some n-plane 1, then we have

(5.1) 107 (z1) — " (z2)| < AorEYC(T, 2o, 1, 7)

forall zy,z5 € sptT N (zo + Cf/z).

Proof. By scaling we can assume zg = 0 and r = 1. To simplify the notation we set
E := E(T,0,1, ), and we write p = p”, q = q” for the orthogonal projections onto Span 7
and its orthogonal complement, respectively. We will assume in the following that &¢ is chosen
sufficiently small so that three smallness conditions, needed during the proof, hold.

We fix a unit vector @ € (Span n)J- and for 51, §2 € [—00, +00] with 51 < s, we define

S(s1.52) :={z € CT : (z,a) € (s1.52)}.
We denote by § a median value for the function s + ||T||(S(—o0, 5)), namely

ITH(S(00.5) = SITICT) and TG, +00) < 5ITICT)

and we denote by s4 the supremum of all s > 5 such that || T'||(S(s, +00)) > +E. If no such s
exists, we set s« = 5. We also impose the smallness condition g9 < 1, so that

ITI(S(s,+00)) > VE = E fors €[5, 54).
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We recall that every n-dimensional integral current R with support in Span s can be
canonically identified with an integer-valued function of bounded variation f'. We shall use the
following Sobolev-type inequality for such integer-valued BV functions, which can be derived
from the isoperimetric inequality (see for instance [22, 5.3.2]):

Wp

—1/n
([ 1raen) ™" <eipsimh) it e ®7 (s = o= 2

Here |D f| is the total variation of the distributional derivative of f and &, is a constant which
depends on n. In terms of the current R associated to f, the inequality reads

52 (IRIBD)' ™" <&loRIBT) it £" BT N{E"(IR].) = 0}) = 2.

For a.e. s € R, we introduce the integral currents Ts = T L S(s, +00) and R := pyTs,
and we now aim to apply (5.2) to Rs. Since (2.16) and (4.2) yield

ITI(CT) <mwn +E/2 < (Bm/2)w, ifeg < mwy,

we get
_ 3
(5.3) ITI(S . +00)) = S men.

For all s > s it holds

£" (BT N{O" (|| Rsll.-) > 0}) = H*(CT N{O" (| Tl.-) > 0})
= J"(CT N{O" (I T5l.-) = m})

1 1 3
= —[ITI(S(s, +00)) = —[IT[[(S(, +00)) < S wn.
m m 4

In the above chain of inequalities, the first follows from ||Rs|[(BT \ p(spt(7y))) = O and
spt(T) = {®" (|| Ts||,-) > 0}, the subsequent equality comes from (4.3), and the last inequality
is obtained from (5.3). Thus, we can indeed apply (5.2) and use the identity ORs = pydTy to
get

(5.4) (M(Ry))' ™" < &,]|0Rs||(BT) < &, ||0T[|(CT) forae.s > 5.

Now we can apply (2.16) to Ty to get

M(T,) < M(R) + 5 /

- 1
|T —|?d||T|| < M(Rs) + =E fors > 5.
S(s,+00) 2

If s < 54, it follows that E < M(R;) + E/2, whence E < 2M(R;). Coming back to the
previous inequality, we get

M(Ts) < 2M(Rs) foralls €[5, s%).
This inequality, combined with (5.4), gives

(M(Ty))' 71/ < 21=Une |10T,||(CT) forae. s € (5. 54).
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Now we integrate on (5, s«) and use (2.7) with the slicing function ¥ (z) := (z, a) to get

(5.5) (s« —5)( inf M(Tp))' V"

sE(5,5%)

S Sx
< / (M(T}))' =1/ ds < 28, [ 10T, |(CT) ds

=2sn||Tde|(S(s,s*))=2sn/ 7 Lald|T].

S(5,5%)

where T L a € Ap—1(H) is characterized by (i" La,n) = (f,a A n) forany n € Ay—1(H).
Since a is orthogonal to Span i, using an orthonormal basis including a, it is easy to check
that) |TLa 2 <1- (T, )? < |T — |2, This last estimate, combined with Holder’s inequality
on the right-hand side of (5.5) and with the choice of s on the left-hand side, yields

(52 —HVE " < 26, VE /3man /4,

so that

(5.6) (5% —5) < En/Bmon VE".

Assume now that there is z € sptT N C’l’/2 with (z,a) > s« and let § € (0, (z,a) — sx),
d« = min{d, 1/2}. Since the ball z + Bs_ is contained in S({z,a) — §, +00), the lower mass
bound (2.18) and the inequality {(z,a) — § > s« give

o8y < ITI(S((z.a) =8, +00)) < VE.

Since E < ¢ < gy, if we impose the smallness condition (, /eo/a),,)l/" <1/2,wegetds =6,
so that we can let § 1 (z,a) — s« to get

1
(z,a) — s« < : VEl/n.
/n
Wn

This inequality can be combined with (5.6) to obtain

A 1
sup (Z,a)—Ef—O«/E "
ZEsptT(‘lC’l'[/2 2

for some Ao = Ag(n, m). A similar argument gives

A 1
inf (z,a)—Ez——ovE /"
zesptTNCY), 2

and, since a € (Span 7)™ is arbitrary, the conclusion follows. O

Before turning to the main estimates of this section, we record that Lemma 5.1 implies
some inclusions of tilted cylinders, which will be useful later on.

2 Indeed, writing as usual T = /\; Ti, one verifies the formulas Tla= Z?zl(—l)j_l(fi,a) /\i7+_j T;
and 1 = |T]? = |\; p"(T)* + |\ (Ti,a)al> = (T, x)* +|T L al?.
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Lemma 5.2 (Tilting of cylinders). Suppose that we have 0 € sptT and that Assump-
tion 4.1 holds for T on C} up to ¢ < Ao 21 \where \g is the constant from Lemma 5.1. Then,

forT =T LC;’/Z, all T € (0, %], and all n-planes w1 and w5 in H we have

2
2tr-

T
|2 — 1] < Ton = C7} NsptT,, CC

Proof. We consider some z € CT} N sptT, /2. Then by Lemma 5.1, the assumption
0 €sptT,and (4.4) with ¢ < )\0_2”, we have

97 (2)] < AgrEV(T. 0.7, ) <.
Together with [p™ (z)| < r/2 we find |z| < 3r/2 and via Lemma 2.2 we obtain

P @) = IpP™ ()| + 8n|me — mi| |z| < Tr + 12n|m — 711

2

Whenever | — 1| < 7/(12n) holds, we thus get [p™(z)| < 2zr and z € C;7,.

Next, we will construct a Lipschitz graph approximating T in the sense of the following
lemma.

Lemma 5.3 (Lipschitz approximation). Let (4.1), (4.2), and (4.3) hold for T on CF.
Then for every A € (0, 1] there exists a Lipschitz function f:BY 1y~ (Span 1)L with

Lip(f) = A
such that T® := m|[Graph f] € 1,,(H) approximates T in C ;T/z in the sense of
(5.7) TEL (™)1 (Ga) = T L (p") " (Ga),
(5.8) IT8 = T||(C]),) < CAT>r"E(T, 0,7, 70),

where the closed subset G of B /2 will be specified in Lemma 5.5 below, and where C depends
only on m and n.

Finally, if the full Assumption 4.1 holds for T on CF up to & < g, then we additionally
have the oscillation bound

(5.9) sup| f — f£(0)] < AorEY@"(T,0,r, 7).

Br/2

where g and Ao are the constants of Lemma 5.1.

In principle, the approximation result of Lemma 5.3 is well known, and even in our
case of an infinite-dimensional ambient space we could follow, for instance, the proof of [34,
Lemma 3], which is based on vertical separation. We prefer however to involve an alternative
and more recent idea from [15], which relies on a refined version of the Jerrard—Soner BV
estimate [28,29] and on well-known inequalities for maximal functions. This approach leads
to two slight improvements in Lemma 5.3, when compared to the more classical statements: on
the one hand, we obtain the optimal power 272 in (5.8) (while [34, Lemma 3] contains a factor
A 72" instead); on the other hand, in order to obtain (5.7) and (5.8) we only assume (4.1), (4.2),
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and (4.3), where in particular the last hypothesis rules out branching phenomena. In contrast,
the full strength of Assumption 4.1 is only needed for Lemma 5.1 and the corresponding bound
(5.9).

For the remainder of this section we abbreviate again p = p*, q = 7, and we set
Tx := q4(T.p, x), where (T, p, x) are the O-dimensional slices of the current 7" with respect to
the slicing map p according to [5, Theorem 5.6]. Moreover, given any ¥ € Lip, ((Span 7)t)
we introduce the notation

@y (x) := Tx(y) for £"-ae. x € BT.

We next provide the announced version of the BV estimate used in [5] to estimate the BV
norm of ®,. To keep our presentation elementary, we state it without appealing to the general
theory of metric-space-valued BV maps developed in [3].

Lemma 5.4 (BV estimate). Suppose that T € 1,,(H) satisfies (4.1) and (4.2) on CT
(i.e. with zg = 0 and r = 1). For every bounded ¥ € C'((Span)Lt) with Lip(¥) < 1, we
then have ®y, € BV(BY), and on every Borel subset A C BT there holds

(5.10) (ID@y[(4)* < 2n% (IT (™' (4)) — mE" (AT (0 (A)).

Proof. It suffices to prove (5.10) for an open subset A of B . For such A we recall from
[4, Proposition 3.6] that

(5.11) DDy |(A) = SUP{/ACDW divpde" :p € Cé(A,Spann), sgp|<p| < 1}.

Here, writing 7 = /\;’=1 i and @ = Z;’=1 @; r;, with an orthonormal base m1, 73, .. ., 7, for
Span 7, the divergence is computed as div ¢(x) := Y 7_; Dg; (x)m;. Next we extend ¢ from
Span 77 to all of H by ¢(z) := ¢(p(z)) and ¥ from (Span )= to all of H by ¥ (z) := ¥ (q(2)).
We define p7* € Lip(3() by pf(z) := (r;, z) and abbreviate

n n
2 =) (=1""g; /\ o’
j=1

i=1

i#]
and correspondingly
n
dE := (dive) /\ dp].
i=1
As ¢ is supported in CT and (07) L CT vanishes by (4.1), the product and chain rules from

[5, Theorem 3.5] give
T(y dE) = ~T(dy A E),

where the right-hand side can be understood with the help of (2.13). Using the property of the
slice map (see [5, formula (5.7)]), we arrive at

/ Oy divepdL" = / T (Y) dive(x)dE" (x) = T(Y dE)
A BT

— Ty AE) =Y (1) fcﬂ o (DY A N\ 7. T)dIT,
i#j
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where the gradient Dy takes values in (Span 77)® and thus satisfies (D A /\l-?é ;i) = 0.
Therefore, we can also write

n n
[ ovavpazr =Y 07 [ g (ov A A\ T~ (Fmya)alr.
A . Cr .
J:1 1 i=1

i#j

Since ¢ is supported in p~!(A4), we conclude
~ 2 2 2 T 2
([ @u divparr)” < n?suptioliDw?( [ |7~ (F.milalTl)
A cr p1(4)

_ > = 2
=TI ) [ (P T AT,
p~1(4)
In addition, relying in the last step on an equality similar to (2.15) and on (4.2), we find

T o
[ F-Emnfari= [ =@ air

p~1(4)
<2 L — (T, 7))d|T
=2, (=T m)air)
= 2(IT ™ (4)) = 2" (4).

Combining the last two formulas and recalling (5.11), we arrive at the claim (5.10). |

Lemma 5.5 (Lipschitz estimate for good points). There exists a positive constant
y € (0, wy,], depending only on n and m, with the following property. If T € 1,,(H) satis-
fies (4.1) and (4.2) on CF, then for all A € (0, 1] the set

Gy = {x € B, 1 E(T. %, 0,7) < yA® for all (%, 0) € B, x (0,r/2) with x € ¥ + B} }

of good points satisfies

_ Ccr®
(5.12) "B, \ Go) + TN B, \ Ga)) < Sz E(T0.r.m).
(5.13) ITII(p~Y(N)) =0 forall N C G, with £*(N) = 0.

Moreover, for every bounded v € C((Span 7)L) with Lip(y) < 1, there holds

(5.14) 1Ty () — Tx(¥)| < Aly — x|,

whenever x,y € G, are Lebesgue points of @y, and Tx () = Oy (x), Ty (Y) = Py (y) are
understood as the corresponding Lebesgue values.

Proof. 'We only treat the case r = 1, as the general case follows by a simple scaling
argument, and we first observe that G is closed in BT /2 As a consequence of (4.2) the
measure 4 := py[|T|| — md&L" is non-negative on B}, and the non-centered maximal function
of u is given by

¥ /1
mu(x) ;= supw =supE(T,X,0,m) forx e B’f/z,
X,0 o X,0
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where here and in the following the suprema in X, o are taken over all x € B /2 and o € (0,1/2)
such that the ball ¥ + B contains x. In view of

G = {x € B, 1 mpu(x) < yA%}

the estimates (5.12) and (5.13) then follow from well-known maximal-function arguments
(compare [21, Section 6.6.2]).

For v as in the last statement we now work with the BV-function ®, from Lemma 5.4.
Then, by (2.16) in combination with (4.2) and the definition of G we get

ITI(x+C7)
sup ————— <

n mwy, + supE(T,X,0,7) <mw, +y <C forx € Gy,
X,0 o X,0

and, involving the BV estimate (5.10) in the second step, we can conclude
D®y (X + BT X+ CT
DDy |( g)fcsup[u( )
n - n
%.0 Y

1/2
m|D®y |(x) = sup } < C)/l/z)\ for x € Gy.
x.0
For Lebesgue points x, y € G, of ®y we now make use of another well-known property of
maximal functions (compare again [21, Section 6.6.2]) to arrive at

|y (3) — Py (x)] < C[MDDy |(x) + MDDy |[(»)]ly — x| < Cy/2Aly —x|.

Hence, choosing ¥y < min{C 2, w,} (with the constant C appearing in the last line) and
recalling the definition of ®,, we have established (5.14) and the lemma. O

If also the lower density bound (4.3) is in force, then at £"-a.e. x € BT, the 0-dimen-
sional slices Ty are given by ZIN=1 a; 8y, for some N € N, y; € (Span 7)t, and o; € Z with
|oj| > m and ZZN=1 a; = m (where of course N, y; and «; depend all on x). This observation
will now be used to construct a single-valued approximating Lipschitz graph and to give a

Proof of Lemma 5.3.  'We first use the fact that any projection decreases mass, (a conse-
quence of) the slicing theorem [5, Theorem 5.6], and finally (2.16) in combination with (4.2)
and the definition of G, from Lemma 5.5. In this way, recalling also that we have chosen
Yy < wy, we get

2

2
TN+ €y <m+ X <m+

wn Q" Wp

M(Ty) < M((T,p, x)) < liminf
o\0

N —

for £"-a.e. x € G,. Using the observation preceding the proof, we conclude that, for £"-
a.e. x € Gy the slice Ty collapses to a point mass, i.e. there exists some f(x) € (Span )t
such that Ty = mdy(x). We now choose countable dense sets {a1.a2, ...} and {x1, x2,...} in
Bf‘” and {y € C!(R) : yis bounded with Lip(y) < 1}, respectively (where in the latter case
density is understood with respect to the sup-norm). Setting V/; ; (z) := x; ({a;,z)), we obtain
bounded v;; € C!((Span 7)) with Lip(y;, j) = 1, and, having reduced to the countably
many ¥, we can find a Borel subset G ;5 of G, with full £"-measure such that the x € G ) are
all Lebesgue points for all @y, . with Tx (¥, ;) = my; ({ f(x),a;)). We record the equality

(5.15) mlf ) = fEl = sup 1Ty (i) = Tx(Wi )l forx.y € Gy,
i,je
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which indeed follows easily, when we use, for f(x) # f(y), the a; and x; to approximate

= (f(y)— f(x)/|f(y) — f(x)| and some 1-Lipschitz function y with y({(a, f(x))) =0
and y({a, f(»))) = |f(y) — f(x)]. Next we combine (5.15) and (5.14) to get

/() = f() < Aly —x| forallx,y € Gj.

Possibly changing the values of f* on the Lebesgue null set G, \ G, we use the Kirszbraun
extension theorem (see [37]) to get a A-Lipschitz function f on all of B¥ /2 with Ty = mdz(y,)
for all x € G,. Abbreviating 7¢ = m[Graph f] and using the notation of [5, Defini-
tion 2.5], we 1nfer from the slicing theorem [5, Theorem 5.6] that the O0-dimensional currents
T¢l dn = ( )78 and T |_dr = (T 7)||T|| coincide on p~'(G}). In order to deduce
equality of T8 and T on p_1 (G), it thus remains to reason that 7 L p~!(G}) has no verti-
cal parts in the sense that (T 7) # 0 holds ||T||-a.e. on p~1(G,) (while the same is clear
for the Lipschitz graph 7'¢). This s property of T is now verified by looking at an arbitrary
Lebesgue point z € p~1(G,) of T for the base measure |T]. Using (4.3) and the fact that
E(T,p(z),0,7) <y < w, holds for all o € (0,r/2) (since p(z) € G), we find

- 1 = E Ta bl )
P —nP=tim— [ F—aPaT < tim 2PE0T)
oNO [|IT][(z +Bg) Jz4B, o\ mawy
which readily implies (T(z), ) > % Thus, we arrive at 7€ p~1(G;) = T L p~1(Gy), and
then, recalling (5.13), we obtain (5.7). Via (5.12) we also get

- C
IT = TE[[(CT),) < CL" BT/, \ Go) + 1T (™ (BT, \ G)) < WE(T’ 0,1,7),

and hence we arrive at the claim (5.8). Finally, taking into account the bound (5.1) from the
vertical separation lemma and a radial truncation argument, we can assume that the oscillation
bound in (5.9) holds. O

Remark 5.6. Clearly, the bound Lip( /) < A in Lemma 5.3 implies the bound for D f
in the operator norm

ID f(x)&] < Al¢] forall £ € Spanm and £"-a.e. x € Bf/z.
For the Hilbert—Schmidt norm of D f in the sense of (2.2) we infer

(5.16) esssup|Df| < V/nA.

Br/2

6. Comparison with harmonic functions and excess decay

Our main estimates, which will eventually imply regularity, are contained in the following
proposition.

Proposition 6.1 (Excess improvement). There exists a positive constant Cyx depending
only on n and m, and further for every t € (0, 16] a constant g1 € (0, 1], depending only on n,
m and t, with the following property: whenever we have 0 € sptT and Assumption 4.1 holds
for T on CF up to € < €1, then there exists an n-plane 7D in H with

1
(6.1) I7D — 7| < CLE(T. 0, r, m)%/ 40" < 5
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such that, for Tyj» := T L CT ,, we have

r/2
(6.2) E(T,/5,0,tr,7V) < CL®E(T, 0,1, 7)
Cll’ldﬁ)

(6.3) CH NsptTy, C CH,,. whenever |w — | < C+E(T,0,r, )1/ 20m)

The proof follows once more the arguments of [34]. However, we will also involve some
technical adaptions of the arguments, which are inspired by [8,33]; in particular, we will avoid
the mollification procedure performed in [34], and we will show that global W!-?-estimates
can substitute the global CL2 estimates used in [34].

Proof of Proposition 6.1. We fix t € (0, 5 6] and work under the assumptions of the
proposition, where the number &1 € (0, 1] with &7 < g¢ will only be fixed at the very end of
our reasoning. Throughout this proof we will always abbreviate

E:=E(T.0,r,7),

and we record that by (4.4) we have E < ¢; < 1. Moreover, we can and do assume E > 0, as
otherwise 7 = 7 holds | T|-a.e. on C} and the claims are tr1v1ally true for 7 = 7.

Step 1: Lipschitz approximation. We denote by f: Br , —> (Span 7)* the Lipschitz
function of Lemma 5.3 corresponding to the choices

1
(6.4) §:=— and A:=E%<1.
20n

We will widely work with the currents
(6.5) T8 = m[Graph f] and S := m[Graphh],

where the harmonic function #:B} — (Span 7)+ and the radius o € (r/4,r/2] will only
eventually be constructed. We will make frequent use of the following two conventions: We
will understand that the orienting n-vectors T¢and S, respectively, are extended to all of C” /2
and C7, constant in the directions from (Span )7 (so, we can also consider them as functions
of a variable which runs in B;T/z or BY). Moreover, when R is any of the currents 7', T¢, §,
we will often abbreviate R, := RL CJ and 0R; := o(RL C7).

Now we first observe that with the preceding choices (5.8) reads
(6.6) IT¢ = T|(CF,) < Cr"E! 2,

By (2.29), (5.16), the area formula of (2.3), and the representation formula (2.11), we have

I

r/2

> C
IDf|?de" < C/ |T¢ — 7|?],(DF)d£" = E(%)"E(Tg,o, r/2,m).

B

Relying on the alternative form (2.16) of the excess, on (6.6), and on (p™ )47, /2 = (p” )ﬂ /20
we moreover find

n n
(%) E(T%,0,r/2, 1) < (g) E(T,0,7/2,7) + Cr"E'"28 < ¢pnE1-28,

9 The specific bound for | — 7| will be used conveniently in Proposition 6.3.
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where the last inequality is a consequence of (4.2). Combining the last two estimates, we arrive
at

6.7) / IDf|?dg” < Cr"E™%.
/2
Step 2: Harmonic approximation of f. ldentifying balls in R” with balls in Span 7, let

h € C(BZ, (Span 7)) be the harmonic function coinciding with f on oB] given by Theo-
rem 3.3. Thanks to (3.10) and (3.11) it satisfies

C
(6.8) sup|DA|? < —/ IDh|?dE" for0 < n <o,
B (o —n)" JBz
2
6.9) sup [Dh — Dh(0)[2 < ct—n/ IDA|? d£™,
B~ r Bg

2tr

In addition, (3.9) in combination with (6.7) gives
(6.10) f IDAh|2de” < Cr"E'28,
BZ
Since o0 < r, we can use (3.12) in combination with (5.16) and (6.4) to find

(6.11) / |DAh|? d£” < Co” sup|D f|? < Cr"E®?
B B

for 1 < p < oo, where C depends only on n and p.

Step 3: Admissibility of the graph currents. At this stage let us affirm that the definitions
in (6.5) do indeed define integral currents 7% and S in C ;’/2 and C7, respectively. Indeed, as f
is globally Lipschitz, Graph f has finite #”-measure, and 7¢ = [Graph f] is a well-defined
integer-rectifiable current with finite mass; compare Section 2.4. Moreover, as pushforward
commutes with the boundary operator, we have the equality

(6.12) 0Ty = 0(mFy[B]]) = mFy[B]] for0<n<r/2,

from which we read off that also BT,,g and in particular 07¢ = BTrg/2 has finite mass. This
shows T¢ e I, (%), but the same reasoning does not straightforwardly work for S; for % is
only locally, but not globally Lipschitz on BY. We will overcome this point in the following by
a technical extra argument, and as a side benefit we will establish the equality

(6.13) 0S, = mF4d[BY],

which follows in essence from the coincidence of /2 and f on the boundary of BY .

Indeed, the area formula (2.3), the estimate J,(DH) < [DH|" < C(1 + |Dh|"), and the
L"-integrability of D/ from (6.11) imply #” (Graph &) < oo, and thus S = S, = m[Graph A]
is well-defined and integer-rectifiable with finite mass. Next, for every given k > 0 we consider
a smooth cut-off function ¢, on BY, which is identically 1 on B} _, identically 0 in a neighbor-
hood of 0BZ and with |Dg, | < 2«k~!. Considering &, := gh+(1—@,) f as a global Lipschitz
map on B, the current W, = m[Graph &, ] € L,(H) is well-defined with oW, = m F4o[B]].
In order to justify (6.13), it now suffices to show lim, o[|S — Wi [[(CF) = 0, since then

0S = lim OW, = m F40[BZ]
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follows. We now record |Dh| < |Dh| + |D f| + 2k ~1|h — f| and observe that W, coincides
with S on C7_, . Thus, by the area formula (2.3) we conclude

IS= W€ =C [ s+ pfmaLt w o [l g1,
BT[ T

o \BG—« BG\BG

11 12

In order to estimate /, we use polar coordinates:

I, < C/c—”/ k( max |h(sx)— f(sx)") d#" ().
oBT s€lo—k,o]

However, the function s + h(sx) — f(sx) vanishes for s = k, thus via 1-dimensional integra-

tion and Holder’s inequality we achieve

max ]|h(sx) — f(sx)|" < k"1 /0 [DA(sx) — D f(sx)|" ds.

s€lo—k,o —K

We therefore conclude
12§C/ IDf —Dh|"d£" < ClI;.
BZ\BZ_«

Clearly, /7 converges to 0 when we send « to 0, hence we can conclude the convergence
lime\ o[]S — Wil[(CF) = 0, and the claim (6.13) follows.
Step 4: Construction of a comparison current. In spite of (6.13) we will need to modify
the boundary of S in order to properly use it as a comparison current for the minimality of 7.
This is now achieved by the following choice of a good radius ¢ and the homotopy construction
of Lemma A.3. We set
0 :=min{geN:q>E)

and r(i) := 7 + ié fori €{0,1,2,..., Q). Clearly, we then have E=3¥ < 0 < 2E~3% and

C=rO=rM)=r@ = =r(Q-D =r(0) =5,
and we can find some ip € {0,1,2,...,Q — 1} with
1
(6.14) 178 = TICT 010\ i) = 5175 = TICT\ €

Furthermore, slicing as in (2.7)” we deduce that 97}, has finite mass for £!-a.e. n € (0,7/2)
and that we have

r/2
/0 10T [I(3 \ Graph f)d£' () < [IT|(C], \ Graph f).

In particular, we can fix a radius o with M(075) < oo,

r(io) + r(io + 1)
2

<o =r(o+1),

) Indeed, relying also on (4.1) we here use (2.7) with the slicing map ¥ = —|p™| and consequently with
the slices o(T L {¢ > —n}) = 0Ty.
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and

2 T
T, 36\ Graph f) = s ITIC, \ Graph )

Taking into account (r(ig + 1) — r(ig))/2 = r/(8Q) > rE3 /16, the last inequality implies

16E—30
»

(6.15) 075 [ (FC\ Graph f) <

IT|[(spt ;2 \ Graph f).
Now, on the one hand, (4.2) gives
IT N (spt Tr2) = (P T II(BF)5) = man(r/2)",
and, on the other hand, we have from (6.5) and (6.6)
(6.16) I TII(sptTy/2 \ Graph f) < | T — m[Graph f][[(C]},) < CIE' /",
where the constant C; depends only on n and m. Assuming the smallness condition
(6.17) C1E'™% < mw,2™"

(this requirement and similar ones will be justified at the end of the proof), we thus find that
the intersection (spt7;./) N Graph f contains at least one point zg. In particular, we have
q"(z9) = f(p™(z0)), and from (5.1) and (5.9) we get

sup |q" — f op™| < sup |q" —q" (z0)| + sup|f — f(p" (z0))| < CrEVE™.
sptoT o spt Ty /2 Br/2

Consequently, 07} satisfies (A.3) (with K equal to the right-hand side of the last estimate), and
we can apply Lemma A.3 (with 0T, in place of T and the corresponding restriction of f) to
obtain an n-dimensional current V' € I, (H) with

(6.18) sptV C (p™) ' (@BZ)

such that we have
oV = BTU — Fﬂ(pﬂ)#aTg

and
M(V) < CrEY@M (1 4 Lip(f))" 0T, |(3 \ Graph f).

By (4.2) we have (p™)y0T, = 0(p™)3To = mo[B7], and in view of (6.12), (6.13) the above
formula for oV yields

(6.19) oV =0T, —0T§ = 0Ty — 0S,.

Moreover, taking into account Lip(f) < 1 and inequalities (6.15) and (6.16), the estimate for
M(V') simplifies to

(6.20) M(V) < CPnEH1/@n=58 _ c np1+55,

Step 5: Excess estimates. At this stage we ultimately start the main line of our estimates.
Abbreviating

X;:f |T — S|2d||T|| and Y:=/ 1S — SO)2d||T]|
Ccz %

2tr
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we clearly have (because 2tr < r/4 < o)
(6.21) / T —SO)d|T| < 2X +2Y.
2tr

To control X we use that the orientations 7 and S satisfy |T| = |§ | = 1 and consequently
51T = S|>+(S.T) = 1. Allin all, we thus find

M(T,) - M(S) = [

Cﬂ[%ﬁ —SP2+ (S, 1)]d|T| —f(:ﬂ(ﬁ,ﬁ)dllSll

1 Ll .
- —/ 7 = SPAIT] = (S5 - To)(S).
2 Jez

Then, using (6.18) and (6.19), we can compare 7" with T+ S; — Tz + V to find
M(T5) — M(Sg) < M(V).

Now, using in turn the preceding two estimates, (2.14) for the current 7§ — Ty 4+ V (which by
(6.19) has zero boundary), and (6.20), we arrive at

(6.22) IX < M(V) + (So = To)(S)
= MV) — (TE =Ty + V) () + (S5 — To)(S)
< IM(V) = (T§ = To) (1) + (So — To)(S)
= 2M(V) + (T§ — To)(S — ) + (So — T£)(S)
< Cr"E 1 X, + X5,
where we have set
Xy = (TE—T,)(S—n) and Xz := (Sy — TE)(S).

Since 0 < r(ip + 1), from (6.14) we have

1
IT8 = TICF\ ) = I = TI(CT))

and by the choice of Q and (6.6) we deduce

(6.23) 178 = T|(CT \ Cy,y) < CrEIFS.

r(io
We now involve (2.27), the elliptic estimate (6.8) (with n = r(ip)), (6.10), and

r E38
— ] > >
o —rlio) = 80 = 16r°

where the last inequalities result from the above choices of 7 (ip) and Q. In this way we deduce

= C
(6.24) sup |S — |?> < C sup |Dh|? < —/ |Dh|? dg™
Clior BZi) (0 —r(io))" JBz

< CE1—28—3}18 < C2E35
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with a constant C,, which depends only on n and m. Here, in the last step we exploited that
1 —28 —3né > 35, which in turn is easily verified for the choice of § from (6.4). From (6.23),
(6.24) and (6.6) we get

(625) [X1| = 20 T#=TI(CE\C0 ) +ITE=TI(C,,) sup |S—x| = CrmEF?,
7(1'0)
Keeping in mind that 7¢ = m[Graph f] and S := m[Graph ], we now rewrite X,
with the help of the area formula (2.3), (2.10) and (2.13). Then we compute and estimate

the integrand in an orthonormal basis mq, 72, ..., m, of Spanm, using the computations of
Section 2.5 (see in particular (2.22) and (2.24)). In this way we obtain

(626) Xo = (Sg — TE)(S) = mH#" (Graph h) — m/ (S,Te)dge"
CZNGraph f

= m /B . [J,, (DH)? — (1/:\1 (DH)m,L\I (DF)m)] D)
dgn

=m /l;g[(Dh,Dh —Df)+ > (IDAIF. [DAIT — [Df]g)} o)

k=2
For the first term in the last integrand, (2.25) gives
1

J.(DH)

For the second term, we use (2.19), (2.24) in form of the estimate

(Dh,Dh —Df) < (Dh,Dh — D f) 4+ C min{|Dh|?, 1}|Dh||Dh — D f|.

DA |/Tn(DH) < € min{[DA*. 1},
and the fact that |D f| is bounded via (5.16) and (6.4). In this way we establish

n

> ([DhIE. DA — [DFIF) < € > min{|DA*, 1}[|DA* + D f ]
k=2 k=2

< C min{|Dh|*, 1}[|DA|* + |DA|" + D f*].

Jn(DH)

When we indeed control the terms on the right-hand side of (6.26) as just described and use
Young’s inequality, we arrive at

(6.27) X, < m/ (Dh,Dh —D f)dZ"
BZ

+ c/ min{|Dk|?, 1}[|D f|* + |Dh|* + |Dh|"] d£".
B

Since / is harmonic and & — f vanish at OB7, the first integral in (6.27) vanishes. For the other
one we split the domain of integration, we exploit that supgz [D f| < VnE? < /n holds by
(5.16) and (6.4), and we find

(6.28) X, <C [[E” +E>] / IDh|? dL"
B3 N{|Dh|<E?*}

+/ [IDA? + |Dh|"]d:€”].
BZN{|Dh|>E5>}
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The next step is based on (2.29), on the fact that J,(DH) is bounded on {|Di| < 1}, on the
inequality
EM[ITILCT] = (p™)TIIL BT = mL" LB,

and on the definitions of X and E. Indeed, these ingredients leave us with the estimate

(6.29) IDh|2dE" < c[ IS — 7|2 de”
BZ N{|Dh|<E%*} BZ

< c/ 15— 2P d|T|
Ccr

sc[ [ F-3pary+ [ 17 -xpair]
Cx Cr
<C[X+r"E],

where C depends only on n and m. Furthermore, when we notice 2 + 1/§ > n and use (6.11)
with p =2 + 1/6, we find

(6.30) [IDA|? + |DA|"]dg" < 2E_8/ IDh|ZY/8 qgn
BZ

< CrnEH-z?.

/Bgm{|nh|>E82}

With the help of (6.29) and (6.30) we can control the right-hand side of (6.28). Observing also
E28 < ES < E25? (since E < 1 and § < 1), we come out with

(6.31) X> < CE?’[X + r"E].

Collecting the estimates (6.22), (6.25), and (6.31) and observing also E5 < ES < E282, we
have in total 5
X < GE* [X + r"E],

where the constant C3 depends only on n and m. Imposing the smallness assumption

1
(6.32) CiE? < >

we can absorb one term, and as the final estimate for X, we can conclude even

(6.33) X < 2C3r"E1 287,

Next we will derive an estimate for Y, which will be based on the following refined
variant of (6.24). Indeed, we apply (2.28) and recall from Section 2.5 that £ > [{]] is linear
and |[£]T| = |£|. Then we have

S = S(0)| < |( + [DAIT) — ( + [DAIT (0))] + C[|DA(0)[* + |Dh[?]
= |Dh — Dh(0)| + C[|Dh(0)> + |Dh|?]
on BZ. Taking into account also (6.9) and (6.8) (with n = ¢/2; notice 0 — /2 > r/8), we see
(o2

sup |S — S(0)> < C[ sup Dk — Dh(0)|? + sup |Dh*]

Cgr r B21: r Bcr/2

.L,2 2 n 1 2 n 2
gc[r—n/Bgmm de +(r—n/Bg|Dh| s )]
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Recalling (6.29), (6.30), (6.33), we see that the right-hand side is controlled by
/ |Dh|?d£™ < Cr"E,
BZ

and hence we come out with

(6.34) sup |S — S(0)> < C[z?E + E?|.

2tr

From (2.16) and (4.2) we now read off
(6.35) ITI(CE;,) = r" (E + mw, 20)"),

and then, via (6.34), (6.35), and the inequalities ¢ < 1 and E < 1, we infer

(6.36) Y = / 1S — S©O)2d|T|
2tr

< Cr"(E + t")[t?E + E?] < Cr"[t"T2E + E?].

Collecting (6.21), (6.33), and (6.36), we arrive at

637) [ 17 =SOPAIT) = crm[e e + 1)

2tr

Step 6: Tilting of planes and cylinders; conclusion. Next we turn to our claim (6.3),
which follows via Lemma 5.2 from a suitable smallness assumption. Indeed, we consider an
arbitrary n-plane @ with

|w_ o 7T| < C*El/(ZOn)’

where C, will be fixed below. When we assume

(6.38) E<A32" and C,EVCOM < %
n

Lemma 5.2 is applicable and immediately gives (6.3).
Turning to the claims (6.1) and (6.2), we now set

7MW = §(0).

As in the sequel we will fix Cyx larger than the quantity «/C; from (6.24) above, this estimate
gives the control

(6.39) I7® — x| < CLE¥/2 = ¢, E3¢Oom < ¢, g1/Com)

In addition, (6.38) implies CE/@0n) < % and thus (6.1) is established. Furthermore, (6.39)
shows that the already proved claim (6.3) is applicable for @ = W, By (6.3) with this choice
and by (6.37) we then have

(tr)"E(Ty/2,0,tr, 7M) < / T - SOPd|T| < Cr"[t"+2 + E¥°E.

2tr
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Now we finally fix Cy larger than /C5 and twice the constant in the last estimate, which both
depend only on n and m. Then we obtain (6.2) by postulation of the smallness condition

(6.40) E28% < (n+2,

To conclude the proof of Proposition 6.1 we finally choose &1 € (0, g9] small enough that the
condition E < 81 implies the previously assumed conditions (6.17), (6.32), (6.38), and (6.40).
Recalling § = 20 , we see that this choice can be achieved in such a way that 1 depends only
on n, m, and t. The proof of Proposition 6.1 is now complete. O

We next observe that in the situation of Proposition 6.1, Assumption 4.1 automatically
carries over from scale r to the smaller scale tr. More precisely, we have:

Lemma 6.2. Consider t € (0, %] and the corresponding number €1 from Proposi-
tion 6.1. If 0 € spt T and Assumption 4.1 holds for T on CT up to ¢ < €1, then the assumption

also holds with the same multiplicity m for T,/ == T L C;T/z on Cfr(l) up to e.

Proof. Since we require the same assumptions as for Proposition 6.1, the assertions of
the proposition can be employed. By (6.1) the choice w = 7 in (6.3) is admissible and we
have in particular Cf,fl) NsptT,/, CC f/z' This inclusion implies

1) [€))
@Ty2) L €% = @T) L (CF,nCE")

and thus (4.1) carries over to 7/, on Cfr( Y, By the same inclusion also (4.3) carries over, and
(4.4) is preserved in view of (6.2).
Turning to (4.2), we involve the bound

|n(1) —n| < min{C*E(T,O, r, n)l/(zo"), %

(which comes from (6.1)) and the following continuity argument. We first connect® 70 .= 7
and 7D by n-planes 7 in H with 0 < ¢ < 1 such that [0,1] > An(H).z — 7@ isa
continuous curve and such that |7® — 7| < |z — x| forall 7 € [O 1]. In particular, (6.3)
is applicable when @ is chosen as any of the 7*), and we have Cr. “n spt Ty, C C7,, and
(7® 1)y =1- 1|7r(’) 7|?> > 0forall ¢ € [0,1]. In connection with (4.1) the last inclusion
implies (97;/,) L C7, = = 0, and the constancy theorem gives

(1) (1)
(6.41) 0" )Ty L CE) = m® [BE]

for certain integers m® where m©® equals m. We now write 7 = AJ_; 7; and introduce
pr € Lip(‘J-C) by p¥(z) := (7, z) and ¢ € Lip,(H) by ¢(z) := (zr —|z])+. Since ¢ vanishes

outside Cfr , equation (6.41) implies
) ()
64 T(twor™) N dGEop™y) = mO [T (0 A\ 057

i=1 i=1

8) The existence of suitable 77 (*) can be checked formally with the help of Lemma 2.1. Indeed, when we
write 7 = /\J_; 7; with orthonormal 7;, and when £: Span = — (Span 7)1 with Graph £ = Span 7 denotes
the linear map of the lemma, we can set 7¢) := A"_, [r; 4 t£(sr;)] and get the n-planes 7 := 7@ /|7 ®)| for
0 < ¢ < 1. It can be checked that this choice of the 7 *) connects 7 and () continuously and such that |n(t) — 7|
is increasing.
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Here, by Lemma 2.2 the Lipschitz functions ¢ o p™ “ and pF op” “ depend continuously on ¢
(with respect to pointwise convergence in Lip(JH)), and they have uniformly bounded Lipschitz
constants. Therefore, the continuity axiom and the definition of mass imply that the left-hand
side of (6.42) as a whole depends continuously on ¢. On the right-hand side of (6.42) we rewrite
with the help of (2.9)

B ( /\dp,) 2@, )[Bgfl)(rr—IZI)dfn(Z)-

i=1

Here, the last expression is continuous in ¢ (the integral is in fact #-independent) and positive for
all ¢ € [0, 1]. Allin all, we can conclude from (6.42) that the integers m® depend continuously
ont € [0, 1], and consequently we have m® = m© = m. Hence, (6.41) with r = 1 shows
that (4.2) holds also for T}/, on the smaller scale Tr, with the same multiplicity m. O

With the help of Lemma 6.2 we can iterate Proposition 6.1 in order to obtain the following
decay properties of the excess.

Proposition 6.3 (Excess decay). Forevery a € (0, 1) there exists a constant e, € (0, 1],
depending only on n, m and o, with the following property. If we have z € sptT and Assump-
tion 4.1 holds for T on z + CF up to & < &3, then, for all o € (0, r], there is an n-plane w,(z)
with |mo(z) —m| < l such that: the requirements (4.1), (4.2), and (4.3) of Assumption 4.1 hold
also for Tyj» :=T L (z+C} 2) onz+ Cng @ , and for some constant C, which depends only
onn, m, and o, we have

(6:43) E(T,z,0,7) < CE(T, z,r, )3/ @,
20
(6.44) E(T} /5.2, 0, 7,(2)) < C(Q) E(T.z.r 7).
,
Proof. For ease of notation we assume z = 0, and we abbreviate E := E(7,0,r, )
and \
P=Gon

We will use Proposition 6.1 with a fixed t € (0, 5 6] such that Cx7? < 2% holds for the
constant Cy of the proposition, and when we refer to (6.2) in the following we will understand
that correspondingly Ci7? has been replaced by 2% on its right-hand side. We record that
this choice of t fixes also the ¢; of Proposition 6.1, depending only on n, m, and . We
will now prove — working with some &, € (0, 1] to be chosen later depending only on the
momentarily fixed quantities — the existence of a sequence (n¥ ));ien of n-planes in H such
that, understanding 7© = 7, the following four claims hold for all i € N:

(6.45) 7@ — 7=D| < ¢, 2Be(-DEB

(-1 Cx 5
(6.46) C:?r NsptT,/, C Cgr,-r whenever |w — 7| < mE ,
(647) E(Tr/27 0’ -L'ir, 7-[(1)) E TZ(ZI.E’

(6.48) Assumption 4.1 holds for 7./, on CZ(;) up to &.



132 Ambrosio, De Lellis and Schmidt, Mass-minimizing currents in Hilbert spaces

Indeed, we will construct the 7 inductively. Keeping & < &> < &, in mind, we first observe
that Proposition 6.1 can be applied and gives a 7D such that (6.45) and (6.47) hold fori = 1.
We will see at the end of the proof that we can assume

1

EB < El/(20n)
1 — 2B« - ’

(6.49)
and then also the case i = 1 of (6.46) follows from (6.3) in Proposition 6.1, and Lemma 6.2
yields (6.48) fori = 1. Now let us assume that we have found n(l), n(z), R 7 ®) up to some
k € N such that (6.45)—(6.48) hold true fori = 1,2, ..., k. We will then show the existence
of an n-plane 7 *+1 such that the same claims are also valid for i = k —|— 1. To this end we
first exploit (6.48) for i = k, and we apply Proposition 6.1 to 7./, on C . The proposition
then gives an n-plane 7 ®+1  for which, also using (6.47) fori = k, we have

|n(k+1) — n(k)| < C«E(T} /2,0, rkr,n(k))/3 < C*rzﬁ“kEﬂ,

and this is just (6.45) fori = k + 1. Using (6.45) fori = 1,2,...,k,k + 1 and summing the
corresponding geometric series, we now observe that

Cy

l—zﬂEﬂ fori =1.2.....k.k+1.
— T

(6.50) 7@ — 7| <
In order to deal with (6.46) we consider an n-plane @w with |@ — | < C,E# /(1 — 28%). By
(6.50) we also infer

2C
7 ) * B
|w | —_ 1 _ Tzﬂa .

This estimate together with (6.48) fori = k — 1 (or with the hypotheses of the proposition, in
the case k = 1) will enable us to apply Lemma 5.2 for 7,./, L C7, k 1/2> OICE We assume
2C* ﬂ 'C2

6.51 - EP < —
©.51) 1 —12Be" — 12n

and E < 152",
As (6.51) will be satisfied by our later choice of &5, the conclusion of Lemma 5.2 (with 72 in
place of 7) indeed gives

(k—=1) (k)
(6.52) Chyi, Nspt(Tra LCRZ, ) CCT il

thk=lr/2
Now we exploit the inductive assumption (6.46) for i = k. Decreasing the cylinder on the

left-hand side and increasing the one on the right-hand side, this gives in particular

7 &=D

Cg_;'_]r ﬂ Spt Tr/2 (@ Crk_lr/z.

By the last inclusion, (6.52) simplifies to
3)
Crwk+1r N Spt Tr/2 C C;rrk-i-lr’
so that we have obtained (6.46) fori = k + 1. By (6.50) we can take w = 7®+1D and thus

we have as a particular case

(6.53) crl ) NsptT,, € €

&)
thr/2°
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Next we come back to the above application of Proposition 6.1 and we observe that it also
yields

&)
kr/2°

E(T,,L.C 0, 7kt 1, JT(k+1)) < IZ“E(T,/Z, 0, 7%r, 7 ®)).

By (6.53) the left-hand side of the last estimate simplifies to E(7; /5,0, th+1y, n(k+1)), and
thus, using (6.47) for i = k on the right-hand side, we get (6.47) also fori = k + 1. Similarly,
Lemme}( 6.12 together with (6.48) for i = k tells us that Assumption 4.1 holds for 7./, L fk(];)/ )
on ka("‘_'l—r) up to &, and by (6.53) this turns out to be the same as (6.48) fori = k + 1.

In summary, we have obtained all claims for i = k + 1, the induction in k is complete,
and (6.45)—(6.48) are now available for all i € N.

Now we are ready to establish the claims of the proposition. For a given ¢ € (0, r] we fix
some i € Ny with

(6.54) ity < 0= rir,

and we estimate via (6.47)

. . . , 20
E(T,/Z,O,Q,n(’)) <t "E(T;/2.0, tir, 70y < 2% < t_"_z‘x(g) E.
r
Here, 7 is fixed, depending only on n, m, and «, and thus we have obtained (6.44) with
mo(0) = 7O With this choice of mo(0) the claimed validity of (4.1), (4.2), and (4.3) for
T,/> on ng © is immediate from (6.48). Moreover, via (6.50) and the assumption (6.51)
above, we get

: C
(6.55) 7@ — x| < S

~ 1 — 2B

IA

1
2 b
which proves the stated control on |, (0) — 7|. Turning to the inequality (6.43), we first record

that it is easily verified (with constant t=") for tr < ¢ < r. For o < tr we fix as before some
i € N with (6.54), and we first deduce from (4.2), (2.16), and (6.46) with @ = m that

2G=D
gi—lyp -

1
ITICE) < mone” + 50"E(T.0,0.7), €%, NsptT € C
Using the preceding observations along with (6.55) and (6.47), we deduce

E(T.0.0.m) = 207" / 7 =20 DRAIT) + |00 — =2 TI(C]) ]
o

<20" / 7 — DR AT, )
cr,
C?

mEzﬂ [men + E(T, 0, o, ﬂ)]

+

2mw, C?

—on i—1,. _(i—1) — *
< 2T E(Tr/2707r r,mw ) + (1 _IZﬂ&)Z

1
E28 + ZE(T, 0,0,7)
28 , 1
E* + JE(T.0.0.7).

and absorbing the last term, we get (6.43) also in the remaining cases. To conclude the proof
it suffices to take &, € (0, &1] small enough that E < &, implies the previously exploited
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smallness conditions (6.49) and (6.51). Recalling the choices made at the beginning of the
proof (in connection with (6.49) note specifically 8 = 3/(40n) > 1/(20n)), such an &, can be
chosen, depending only on n, m, and «. m)

Proof of Theorem 4.2. Highlighting their dependence on «, we write €3 and C, for
the constants of Proposition 6.3. Then we choose

Ex 1= min{eo, 27" (C1712V)20n/3, 2_’1“’"2;1/2}’

where g¢ is the constant of Lemma 5.1 and y the one of Lemma 5.5. In the situation of
Theorem 4.2 we can then apply Lemma 5.3 with A = 1, and we write f: B} 12 (Span )+
for the Lipschitz function of the lemma with Lip( ) < 1. Moreover, observing first

E(T.z.r/2,7) <2"E(T.0,r.7) < min{(C; 57)**"/? e3.1)2} forall z € C),,
we can apply Proposition 6.3 with o = % on the cylinders z 4+ C 7/2 to get

(6.56) E(T,z,0,7) < Cl/zE(T,Z,r/Z,n)3/(2°”) <y,
(6.57)  E(TL(z+C5p).2.0.7(2) < Cl/ng(T,z, r/2,7) < cl/zggz;l/z

forall z € spt T,/ and 0 < ¢ < r/2. Here, the 77,(z) are the n-planes given by Proposition 6.3,
and we have once more abbreviated T,/ := T L C;T/z' We now make use of the fact that
spt T}/, is compact by the discussion at the very end of Section 2.4. It follows that p™ (spt T;./2)
is closed, and this together with (4.2) ensures B;T/i C p”(sptT/2). As E(T, z, 0, ) remains
unchanged when one adds a vector from (Span )= to z, the bound (6.56) implies that the set
G from Lemma 5.5 is all of Bf/z, and then (5.7) gives
T;/» = m[Graph f7].

For every given o € (0, 1) we next fix ry, € (0,r/2] small enough that Cy /5™ e5.1/2 < €2;¢
holds. Coming back to (6.57), we then infer

E(T L (Z + C;r/4)9zar0h ﬁra(z)) E 82;(17

and hence — as (4.1), (4.2), (4.3) are already guaranteed by the preceding application of Propo-

sition 6.3 — Assumption 4.1 holds for T | (z + C;’/4) on z + C;Z"‘ & up to &2, for all

z € sptT,/, = Graph f. We can therefore apply Proposition 6.3 again, and decreasing the
domain of integration on the left-hand side from a cylinder to a ball, we deduce

—n 7 2 0\
(6.58) 0 T = 7P AIT] = Ca(£) " e20
F(x)+B, Ta
forall x € Bf/z and all o < re/2 < r/4 with some n-planes 7, (x) such that |y (x) — 7| < %
By Lemma 2.1 we can find linear maps £, (x): Spanw — (Span 7)+ with
Graph{,(x) = Spanmy(x) and [p(x)] < 1.
As earlier we write F and L, (x) for the graph mappings of f and £, (x), respectively, and we

observe u
/\i=1 Lg(x)ﬂi

o) = ()
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(compare, for instance, the proof of Lemma 2.1 for the identification of the right sign). In the
next step we exploit that |[D f'| and J, (L, (x)) are bounded by a dimensional constant, and we
make use of the equalities

I =[x =IDSI5| = €5,
IDf —£o(x)| = [[Df — £e()IT| = [[DSIT — [lo(D)IT|

in the terminology of Section 2.5. Employing also (2.22) and (2.10), £"-a.e. on B
estimate, with a dimensional constant,

T

r/2> We can

Df lox) [
iy 2<C -
IDf —Lo(x)]* < Tn(Lo(x))  Jn(Lo(x))
1 1 2 Df ZQ(X)

]

<C —

B [ Jn(Lo(x))  Jn(DF)
S| DI le()IF

<C _

- ,2) 1,DF) ~ Ty(Lo(x))
Ni=1(DF)7; _ Ni=1 Lo(x)i
Jn(DF) In(Lo(x))

= C|T o F — mo(x)|*.

Jn(DF)  Jn(Lo(x))
2

2
=C

When we use the last estimate, (2.11), the area formula (2.3) (where the Jacobian is estimated
from below by 1), and the inclusion F(x + Bg/z) C F(x) + B, in (6.58), we find”

_ 5 0 20
o[ s - tewPazr =ccu(2)
x+B7,, Ta
forall x € BY 12 and o € (0, rq/2]. From the last estimate it is straightforward to conclude that

for every fixed x € BT 12 the sequence ({5, (X))ken is a Cauchy sequence which converges
to some £(x) with error bound [{,—«, (x) —£(x)| < C 27k 5o that we get

—n 2 n ~ Q 2a
0 Df — )P dL" = Co )
x+BJ Ta
forall x € Bf 12 and o € (0, ro /4], with yet another constant C'a, which depends only on n, m,

and «. For every Lebesgue point x of D f the corresponding Lebesgue value is £(x), thus £ is
a representative of D f, and for all x, X € Bf/z with 0 # |X — x| < ry/4 we have

2 ~\ 12 n
on(|% — x[/2)" Jxts gn [IDf —£(x)|* + [Df —£(D)[*]d£

[X—x1/2
2n+1
= —
wp|X — x|" |:»/x+B

2n+2

- Ca(|)’5_x|)2a.

Wp I

o)~ P = — = [

IDf —£(x)|?dL" + f
X+B~

[X—x|

IDf —E(i)|2d$"]

T
[x—x|

This proves that the representative £ of D f* is a-Holder continuous on B 12 forall @ € (0, 1),
and now it is easy to check that f* is Fréchet differentiable at every x € BT /2 with derivative
D f(x) = £(x). This ends the proof of Theorem 4.2. |

9 Note that here the linear map £,(x) is understood as constant in the integration variable.
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7. Partial regularity

In this section we prove Theorem 1.2. We begin with the following lemma, that eventu-
ally will be applied with u = ||T'|| and ® equal to the spherical n-dimensional density of jt.

Lemma 7.1. Consider a finite, non-negative Borel measure p in H, a relatively open
subset T of spt u, and an upper semicontinuous function ® : I' — [0,00). If one has ® € N
U-a.e., then the set

D = {Z el':0(z) e Nand ® = O(z) pu-a.e. in a neighborhood ofz}

isdense inT.

Proof. LetT := ©1(N), fix zo € I" and r > 0, and observe that (z9 + B,) N T has
positive measure and is in particular not empty. Next consider a minimum point wg for the
restriction of © to (zg +B,) NT. Clearly, this minimum point exists, because there are finitely
many integers less than ®(zg). Then we have

O(wp) < O(z) forallz € (zo +B,)NT

and, by the upper semicontinuity of ©, we get © = ©(wjg) on (wo + B,+) N T for some r’ > 0.
Therefore, we have wg € D and, as zg and r are arbitrary, this proves the density of D. O

Proof of Theorem 1.2.  Applying the previous lemma with u = ||T|, ' = Q NsptT,
and ® = O"(||T|,-), we know that the set D of points z € N spt T such that ®(z) € N
and ® = O(z) KH"-a.e. in a neighborhood of z is dense. Let now ¢ > 0. Consider the set D,
of points z € Dy such that z + B} + BrL” is at positive distance from H \ €2, and such that
the following conditions hold:

(7.1) ©=m |T|-ae onz+BT +B", / |T —7|*d||T| < er®,
z+BF +Bi#™

(72)  ITI(z + B3, + B3 \ B;7)) < swnr”,
(7.3)  (m—Dour™ <||IT|(z +BF +BF") < (m + Dwur”,

for some m € N, some r > 0, and some n-plane 7. From the definitions of D; and
D5 and from Proposition B.2 we infer that every point in D; has a neighborhood N with
IT]|(N\ Dz) = 0. Hence we know that also D5 is dense in & N spt 7.

Let z € D5 and m, r, m be chosen according to (7.1), (7.2), (7.3). Moreover, set
U := z + B” + B;**. We claim that T := T LU fulfills, possibly with opposite orienta-
tion, the assumptions of the e-regularity Theorem 4.2, provided that we choose ¢ sufficiently
small depending only on n and m (notice that since we are working inside D; we can neglect
the dependence on m). In order to prove the claim, we show first by contradiction that

(7.4) UNsptT Cz+B} +B;j%.

If w € UNsptT satisfies [q"(w — z)| > r/2, then the ball w + B, 4 is contained in
z+BY, + (Bj-r” \Bj-/ﬁ), hence (7.2) yields || T||(w +B,/4) < ew™r". This contradicts (2.18)
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if ¢ < 47", From (7.4) and the assumption (97) L Q = 0 we obtain that 7 has no boundary in
the cylinder z + CJ. Then, the constancy theorem gives

P*)g(TL(z + CJF)) =m'[z +BJ] for some integer m’,

and (7.3) together with (2.16) yields |m'| = m, ife < 1.

Therefore, either 7 or —T satisfies the four conditions listed in Assumption 4.1. More-
over, a simple retraction argument shows that 7 (and —T as well) is locally minimizing in
z + CJ. Indeed, consider R € I,,(J) with 0R = 0 and spt R C z + C/, and let us prove that
M(T) < M(T + R). First, possibly using a retraction of the cylinder on U, we can assume
that spt R C U. Then, recalling that U has positive distance from 3 \ 2, we can use the local
minimality of 7" in €2 to compare 7" with 7 + R and get

M(T) < M(T + R) < M(T + R) + ||T||(3\ U).

Subtracting || T||(% \ U) from both sides, we arrive at M(T) < M(T + R) as claimed.
Finally, notice that possibly choosing r slightly smaller, we can retain the same properties
above of T and have also T € I, (H). Choosing also & < g4 in our construction of T, we can
therefore apply Theorem 4.2 to obtain that U consists of regular points of T only, and the same
holds for 7'. Since z € D5 is arbitrary, this proves that Reg T" is dense. |

A. Cartesian products and homotopy construction

In the following we will be concerned with Cartesian products of currents, which arise by
a slight variant of the cone construction as presented in [5, Definition 10.1] (compare also with
the classical construction in [22]), and we will work in the Hilbert space R x J (with inner
product ((t1,z1), (t2, 22)) := t1t2 + (21, z2)). In this regard we use the isometric embeddings

ip:H — R x3J givenbyis(z) := (¢, z),

and for a Lipschitz function y: R x H{ — R we write D; y for its partial derivative with respect
to the first variable. Given any o-finite Borel measure 1 on J this derivative exists (£'®u)-
a.e. in R x 3 and is bounded by Lip(y). Consequently, for £!-a.e. t € R the composition
(D x) o, is defined p-almost-everywhere. This last observation, applied with y = v; and
i = ||T||, makes the following definition well-posed:

Lemma A.1 (Cartesian products). Consider an (n — 1)-current T € My _1(H). Then
the specification

[0.11x )0 /\ dyi) = Z( i1 / (i) (oDews N\ awr)azt o
7
Jor (¢, ¥) € Lip, (R x H) x Lip(R x H)" defines a metric functional T with
(A.1) [0 1] x T| <n(E'L[0. 1) ® |IT].

Moreover:
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o If T € Np—1(H) is normal, then [0,1] x T € N, (R x H) is a normal n-dimensional
current with

(A2) 3([0.1] x T) = (i)yT — (i0)sT — [0, 1] x @T).
« If T is (integer-)rectifiable, then also [0, 1] x T is an (integer-)rectifiable current.

Proof. Clearly, [0, 1] x T is linear in ¢ and each ¥; and is thus a metric functional.
To prove (A.1) we consider (¢, ¥) € Lip, (R x H) x Lip(R x F)" with Lip(y;) < 1 for all
i €{1,2,...,n}. Then from the definitions of the Cartesian product, the pushforward, and the
mass, combined with the Lipschitz bound Lip(y; o if) < 1, we readily deduce

n 1
. oi 1y — 1 '
Q.11 7 Aaw)|=n || [Jweitariozio=n [ oo eir

By multilinearity and again by the definition of mass this implies (A.1) and in particular
M([0,1] x T) < oo.

If T is a normal current, following the proof of [5, Proposition 10.2] one can show that
[0, 1] x T satisfies the continuity axiom and the formula (A.2). Indeed, we will not discuss
the adaption of the respective arguments, as the required changes'?’ are mostly notational ones.
By applying (A.1) with 0T in place of T we obtain M([[0, 1] x 0T') < oo; then (A.2) allows
to conclude M(0([[0, 1] x T')) < oo. As the locality axiom is easily verified, we thus have
[0,1] x T € N, (R x H).

Finally, for T € R, —1(H) we denote by (St, 0T, T) a corresponding triplet as in Sec-
tion 2.4 with countably (n — 1)-rectifiable S7, and we write T = /\:’;11 T; with Borel func-
tions 7;: St — JH. As candidates for the multiplicity and the orientation of [0, 1] x T" we
consider ¥: [0, 1] x S — (0, 00) with ¥/ (¢, z) := 07 (z) and 7: [0, 1] x ST — A, (R x H) with
w(t,z) ;= (1,0)A /\;:11 (0, T; (z)). We moreover fix (¢, ¥) € Lip, (R xH) xLip(R x H)", and
we recall that the inner product of n-vectors is given by the determinant in (2.1); by Laplace
expansion of this determinant we then get

< /\ plo:11xsz Vi(t,z),t(t, Z)>

i=1

n n n—1
= (1Y DI RST ). (1,0)>< A DOISST Y ) A (O Ti(z»}

j=1 =l =1
1F]
=Y (=1)/7'Dyy; (z,z)< /\ D% (i 0ir)(2). f(z)}
j=1 i=1
i#j

for all (¢,z) € [0, 1] x Sz. We multiply this equality with ¢(z, z) and ¥ (¢,z) = 07 (z) and
integrate with respect to #” 1 in z. Using additionally the representation (2.9) for the (n — 1)-

10)Indeed, t does now denote an extra variable instead of a radial one, and the partial functions ¢ o i; and
¥ oy replace ¢y and ;. Otherwise the main difference is that S(¢g dg) vanishes in [5, Proposition 10.2], while
in our setup the corresponding term ((io)y) 7 (¢ /\7—1 d;) remains on the right-hand side of (A.2).
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current 7', we infer

n
A} (p</\D[0’1]XST1ﬂi,‘E>Z9dJ€n_1
t}XSt

i=1

=Y (=17t /S (¢ 0ir)(Dey; Oit)< /\ D°" (¥ oi,),f“>erd3€"—‘
j=1 T i=1
i#]

= >0 G (Do A\ av)
j=1

i=1

i#]
for all # € [0,1]. Now we integrate the resulting equality also in 7, on the left-hand side we
involve the coarea formula [6, Theorem 9.4] with area factor 1 on the countably n-rectifiable
set [0, 1] x Sz, and on the right-hand side we exploit the definition of [0, 1] x 7. We then find

n

/[O . ¢</\D[O’1]X57wi,r>ﬁd&l€” = (0.1 T)(¢ /\ dvi).

i=1 i=1

All in all, we have thus shown that [0, 1] x T is the current which is induced by the triplet
([0, 1] x ST, 9, 7) in the sense of (2.9). By [5, Theorem 9.1] this current is rectifiable.

Finally, for T € I,,—; () the multiplicity 67 can be chosen N-valued. Consequently,
the above function ¥ is N-valued, and in conclusion we get [0, 1] x T € I,(R x X) in this
situation. ]

Remark A.2. The following two observations concern the rectifiability part of the pre-
ceding argument. They are scarcely relevant for our purposes, but may still be worth pointing
out:

* For rectifiable currents 7" one can actually improve the estimate (A.1) — by similar argu-
ments as above and the representation of mass in (2.11) — to the equality

[0, 1] x 7| = (£'L[0. 1) ® |IT].

This situation may be compared to [22, 2.10.45, 3.2.23].

* The rectifiability of [0, 1] x 7 can alternatively be proved by the following shorter and
more elementary reasoning provided that 7" is normal and rectifiable: By definition 7 is
concentrated on a countably (n—1)-rectifiable set S, and then (A.1) implies that [0, 1] xT
is concentrated on the countably n-rectifiable set [0, 1] x S. By [5, Theorem 3.9]'" this
property already implies the rectifiability of [0, 1] x T'.

We now consider the pushforward Hy([[0, 1] x T') under a homotopy H': [0, 1] x H — .
We remark that for H(¢,z) = tz + (1 — t)zo this pushforward becomes a cone over T with
vertex zo € I, and we get back the original cone construction of [5, Definition 10.1] as a
special case. However, in the following we will make a different choice of H, which will lead
to a proof of the following lemma.

D The application of this theorem relies on the fact that [0, 1] x T is normal by the preceding reasoning.
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Lemma A.3 (Homotopy retraction on a graph). Consider a current T € N, —1 () with
OT = 0, an n-plane v in K, and a Lipschitz function f:p™ (spt T) — (Span )L. If we have

(A3) K := sup|q” — f op™| < oo,
sptT

then there exists another current V€ N, (30) with spt V. C (p™) " (p™ (spt T')) and
(Ad) OV =T —F(")yT, M(V) <nK(l+Lip(f)"""|T(H \ Graph f).
Additionally, if T is (integer-)rectifiable, then also V can be chosen (integer-)rectifiable.
Proof. We set
V= Hy([0,1] x T),

where [0, 1] x T is defined in Lemma A.1, and where H: [0, 1] x spt T — K is the Lipschitz
homotopy given by
H(t,z):=tz+ (1 —t)F(p" (2)).

Then the image of H is contained in (p™)~'(p”(spt 7)), and the claimed inclusion of the
support of V' follows at once. From the interchangeability of 0 and Hy, equation (A.2), and
0T = 0 we moreover deduce that V' is normal with

aV = Hﬁa([[(), 1] xT)=(H oip)yT — (H oig)yT =T — Fﬁ(pﬂ)ﬁT.

To get the mass estimate in (A.4) we first notice Lip(H o i;) < 1 4 Lip(f) for ¢t € [0, 1].
Moreover, we have

Lip(H(-.2)) = |z = F(p" (2))| = |q" (2) = f(p"(2))| forallz € sptT,

which implies that |D;(y o H)| < |q¥ — f o p”| holds (£'®||T|)-a.e. on [0, 1] x spt T for
every fixed y € Lip(3H) with Lip(y) < 1. Next we employ the definitions of pushforward,
product, and mass together with the preceding observations in the following estimate'? for
(¢, ¥) € Lip,(H) x Lip(H)"™ with Lip(y;) < 1 foralli € {1,2,...,n}:

‘V(go /n\ dwi)‘ = ‘([[o, 1] % T)((g o H) /n\ d(yi o H))’
i=1

i=1
n 1
=y
j=17°

T((<p o Hoir)(D(Wj o H) oif) ,-/:\1 d(y; o H o i,))'d;ﬁl(t)

i#]j
S
<L) Y [ oo Houl Dy o )i dIT] a0
j=1 0 Jspt

1
Sn(1+Lip(f))”‘1/0 / oo Hoilla™ = f op"dITI 4£' ().
spt

12) The compositions with H and H o i, in this estimate are only defined on [0, 1] x spt T and spt T, re-
spectively. However, by the locality statement in [5, Theorem 3.5] this is sufficient to keep all relevant expressions
well-defined.
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As " — f o p” vanishes on Graph f and is elsewhere controlled by (A.3), we finally get

‘V(go Aav)

i=1

< nK(1 + Lip(f))""! / o H|d(Z'®||T]).
[0,1]x(spt T \Graph f)

‘We have thus shown
IV < nK(1 +Lip(/)" " Hy((£"L[0.1) ® (T || (spt T \ Graph f))).

and in particular the total mass estimate in (A.4) follows.

Finally, the remaining claim about conservation of (integer-)rectifiability follows from
the fact that this property is preserved under both the product construction of Lemma A.1 and
the pushforward operation. m|

B. Monotonicity formula and density results

In this appendix, we denote by C1(J,H) the space of Fréchet differentiable maps
®: H — I such that the derivative D® is continuous from J{ to the space of linear maps
in J endowed with the operator norm. We write Id for the identity map in I, and we use the
notation

divz O(z) := tracei,(z)(DdD(z)),

where the right-hand side is defined in (2.6).

Proposition B.1 (First variation). Let Q C H be open, let T € 1,,(H) be locally
minimizing in Q, and consider ® € C (I, H), with support at a positive distance from H \ Q,
such that D® is bounded. Then we have

(B.1) /}Cdivf, ®d|T| = 0.

Proof. Given L : H{ — X linear and continuous, we denote by J,, (L, f) the n-dimen-
sional Jacobian in (2.4) with the n-plane 7 given by T. We write ¥, := Id 4+ ¢® and notice
that, for & small enough, W, is injective; in addition, the area formula and the local minimality
of T give

M(T) < M((¥,);T) = /% 1, (DW,. ) d| T].

Using (2.5) (and the rule for the derivative of the square root), we can differentiate with respect
to € to obtain (B.1). O

Proof of (2.17). Forz € Q and 0 < 1 < o < dist(z, 02) we will show that

17Nz +By) _ [Tz + Bo)
nn - ol '

We can assume, without loss of generality, ||T||(z + 0B;) = ||T'||(z + 0Bs) = 0. Under this
extra assumption, an easy approximation argument shows that (B.1) still holds for all vector
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fields @ of the form ®(w) = y(|lw — z|)(w — z), with y : [0,00) — [0, c0) Lipschitz, with
support in [0, dist(z, dR2)), whose derivative y'(¢) has at most jump discontinuities at t = 7
and ¢ = 0. Now we specifically insert in (B.1) the vector field

®(w) := [min{n™", |[w —z| ™"} — 0_"]+(w —2),

whose support is the closure of z + Bs. Then, the claim follows at once, when we use
dive. ® =n[n™ —0 "]onz + By anddivyz ® > —no™" on (z + Bo) \ (z + By). m

Proposition B.2. Consider T € I,(H). Then, for ||T ||-a.e. z € H there hold

(B.2) lim r—"/ T — T(2)]2d||T| = 0,
Y z+B,
(B.3) lim || 72| = ©(|T|l.2)#" L Span T (z),
r\0
where I; ,(w) := (w —z)/r, Ty, := (I7,7)4T and the latter convergence is understood in

duality with bounded continuous functions with bounded support.

Proof. Let us first reduce the proof to the case when 7 = Fy[6] for some Lipschitz map
F:R" - Hand § € LY (R"), with & € NU{0} £*-a.e.in R” and F bi-Lipschitz on §~1(N).
Indeed, thanks to [5, Theorem 4.5], we can write any integer-rectifiable 7" with finite mass as
an M-convergent series of currents 7; of this form with pairwise disjoint measure-theoretic
supports S;. Since for any i it holds

T =T§ H"-ae.onS;, @*"(ZHTJ-H,Z) =0 H"-ae.onS;
J#i

(for the second statement, see for instance [22, 2.10.18 (2)]), we see that both (B.2) and (B.3)
for T at #"-a.e. point of S; follow from (B.2) and (B.3) for ;.

So, let us assume 7' = Fy[f] for some Lipschitz map F : R" — I and some
6 € LY(R") such that # € N U {0} holds £"-a.e. in R” and such that F is bi-Lipschitz
on #~1(N). We denote by eq,...,e, the canonical basis of R”. Using the area formula
[6, Theorem 5.1], one can check by a straightforward computation that (B.2) holds at a point
z = F(x), with T(z) equal to the normalization of A\”_; DF(x)e;, provided that we have
O**(|T|.z) < oo and that x € §~1(N) satisfies

(B.4) IDF —DF(x)|d|[€]]l = 0.

1
1 TG 75 oy
Here, DF exists £"-a.e. on R” by the Rademacher theorem [9, Theorem 5.11.1], (B.4) holds
for ||[6]]|-a.e. x € R", and all in all the preceding conditions are satisfied for || T||-a.e. z € K;
thus, we arrive at the claim about (B.2).
In connection with (B.3), we consider z = F(x) with x € 67 1(N) such that F is
classically Fréchet-differentiable at x with Span T(z) equal to the image of D F'(x) and with

rh\r:% r /HB’;[U,,(DF) —Iu(DF(x))| + |6 — 6(x)|] d£" = 0.
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When we set Fr(y) := (F(x +ry)— F(x))/r and 0,(y) := 0(x +ry), then F(y) converges
to DF(x)y locally uniformly in y € R”, on the level of the Jacobians J, (D F;) converges to
J,(DF(x)) in LllOC (R™), and also 6, converges to 6(x) in LlloC (R"™). Furthermore, we have

(Iz,r)ﬂT = (Fr)ﬂ[[er]],

and with the help of the preceding convergences we conclude

lim d||T.
r\o/;{§0 177,

= lim /R o(F,)In(DF,)6, d2"
— 6(0)In(DF(x)) /R G(DF(x)y) 42" ()

= 0(x) _ pdH”
Span T'(z)

for every bounded continuous function ¢: H — R with bounded support. As a side benefit of
this convergence we also get ©" (||T||, z) = lim,\o||7%,[|(B1)/wn = 6(x). Similar as above,
the assumed conditions on z = F(x) hold true for £"-a.e. x € #~!(N) and thus for || T ||-a.e.
z € JH, so that we arrive at the claim regarding (B.3). m|
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