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Abstract

In this thesis we investigate some aspects of the dramatic consequences of super-

symmetry breaking on string vacua. In particular, we focus on the issue of vacuum

stability in ten-dimensional string models with broken, or without, supersymmetry,

whose perturbative spectra are free of tachyons. After introducing the models at

stake in Chapter 2, we introduce their low-energy effective description in Chapter 3,

presenting a number of vacuum solutions to the classical equations of motion. In

Chapter 4 we analyze their classical stability, studying linearized field fluctuations,

and in Chapter 5 we turn to the issue of quantum stability. In Chapter 6 we frame

the resulting instabilities in terms brane dynamics, studying brane interactions and

back-reacted geometries. In Chapter 7 we propose a holographic correspondence

connecting bulk instabilities with dual renormalization group flows, and we explore

a potential concrete scenario involving world-volume gauge theories. Finally, in

Chapter 8 we turn to cosmology, deriving generalized no-go results for warped flux

compactifications and building a brane-world scenario along the lines of a recent

proposal, providing a string embedding of constructions of this type. In Chapter 9 we

provide a summary and collect some concluding remarks.
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1Introduction

The issue of supersymmetry breaking in string theory is of vital importance, on

both a technical and conceptual level. On a foundational level, many of the richest

and most illuminating lessons appear obscured by a lack of solid, comprehensive

formulations and of befitting means to explore these issues in depth. As a result,

unifying guiding principles to oversee our efforts have been elusive, albeit a variety of

successful complementary frameworks [1–5] hint at a unique, if tantalizing, consis-

tent structure [6]. Despite these shortcomings, string theory has surely provided a

remarkable breadth of new ideas and perspectives to theoretical physics, and one can

argue that its relevance as a framework has thus been established to a large extent,

notwithstanding its eventual vindication as a realistic description of our universe.

On a more phenomenological level, the absence of low-energy supersymmetry and

the extensive variety of mechanisms to break it, an consequently the wide range of

relevant energy scales, points to a deeper conundrum, whose resolution would con-

ceivably involve qualitatively novel insights. However, the paradigm of spontaneous

symmetry breaking in gauge theories has proven pivotal in model building, both

in particle physics and condensed matter physics, and thus it is natural to envision

spontaneous supersymmetry breaking as an elegant resolution of these bewildering

issues. Yet, in the context of string theory this phenomenon could in principle occur

around the string scale, perhaps even naturally so, and while the resulting dramatic

consequences have been investigated for a long time, the ultimate fate of these settings

appears still largely not under control.

All in all, a deeper understanding of the subtle issues of supersymmetry breaking

in string theory is paramount to progress toward a more complete picture of its

underlying foundational principles and more realistic phenomenological models.

While approaches based on string world-sheets would appear to offer a more funda-

mental perspective, the resulting analyses are typically met by gravitational tadpoles,
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which signal an incongruous starting point of the perturbative expansion and whose

resummation entails a number of technical and conceptual subtleties [7–10]. On the

other hand, low-energy effective theories appear more tractable in this respect, but

connecting the resulting lessons to the underlying microscopic physics tends to be

more intricate. In this respect, a tempting analogy would compare current knowledge

to the coastline of an unexplored island, whose internal regions remain unscathed by

any attempt to further explore them.

Nevertheless, this thesis is motivated by an attempt to shed some light on these

remarkably subtle issues. Indeed, as we shall discuss, low-energy effective theories,

accompanied by some intuition drawn from well-understood supersymmetric settings,

appears to provide the tools necessary to elucidate matters, at least to some extent. A

detailed analysis of the resulting models, and in particular of their classical solutions

and the corresponding instabilities, suggests that fundamental branes play a crucial

rôle in unveiling the microscopic physics at stake. Both the relevant space-time field

configurations and their (classical and quantum) instabilities dovetail with a brane-

based interpretation, whereby controlled flux compactifications arise as near-horizon

limits within back-reacted geometries, strongly-warped regions arise as confines of

the space-time “carved out” by the branes in the presence of runaway tendencies,

and instabilities arise from brane interactions. In addition to provide a vantage point

to build intuition from, the rich dynamics of fundamental branes offers potentially

fruitful avenues of quantitative investigation via world-volume gauge theories and

holographic approaches. Furthermore, settings of this type naturally accomodate

cosmological brane-world scenarios alongside the simpler bulk cosmologies that have

been analyzed, and the resulting models offer a novel and intriguing perspective

on the long-standing problem of dark energy in string theory. Indeed, many of the

controversies regarding the ideas that have been put forth in this respect [11–15]

point to a common origin, namely an attempt to impose static configurations on

systems naturally driven toward dynamics. As a result, uncontrolled back-reactions

and instabilities can arise, and elucidating the aftermath of their manifestation has

proven challenging.

While in supersymmetric settings the lack of a selection principle generates
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seemingly unfathomable “landscapes” of available models, in the absence of super-

symmetry the requirement for their very consistency has been questioned, leading to

the formulation of a number of criteria and proposals collectively dubbed “swamp-

land conjectures” [16, 17]. Among the most ubiquitous stands the weak gravity

conjecture [18], which appears to entail far-reaching implications concerning the

nature of quantum-gravitational theories in general. In this thesis we shall approach

matters from a complementary viewpoint, but, as we shall discuss, the emerging

lessons resonate with the results of “bottom-up” programs of this type. Altogether,

the indications that we have garnered appear to portray an enticing, if still embryonic,

picture of dynamics as a fruitful as a selection mechanism for more realistic models

and as a rich area of to investigate on a more foundational level, and to this end a

deeper understanding of high-energy supersymmetry breaking would constitute an

invaluable asset to string theory insofar as we grasp it at present.

S Y N O P S I S

The material presented in this thesis is organized as follows.

We shall begin in Chapter 2 with an overview of the formalism of vacuum

amplitudes in string theory, and the construction of three ten-dimensional string

models with broken supersymmetry. These comprise two orientifold models, the

USp(32) model of [19] and the U(32) model of [20, 21], and the SO(16)× SO(16)

heterotic model of [22, 23], and their perturbative spectra feature no tachyons. Despite

this remarkable property, these models also exhibit gravitational tadpoles, whose low-

energy imprint includes an exponential potential which entails runaway tendencies.

The remainder of this thesis is focused on investigating the consequences of this

feature, and whether interesting phenomenological scenarios can arise as a result.

In Chapter 3 we shall describe a family of effective theories which describes the

low-energy physics of the string models that we have introduced in Chapter 2, and

we present a number of solutions to the corresponding equations of motion. In order

to balance the runaway effects of the dilaton potential, the resulting field profiles

can be warped [24, 25] or involve large fluxes [26]. In particular, we shall present in



4 Chapter 1. Introduction

detail the Dudas-Mourad solutions of [24], which comprise static solutions that are

dynamically compactified on a warped interval, and ten-dimensional cosmological

solutions. We shall also present general Freund-Rubin flux compactifications, among

which the AdS× S solutions found in [26] and their generalizations [25]. While dS

solutions of this type are not allowed in the actual string models at stake, whenever

the model parameters allow them they are always unstable. On the other hand, AdS

solutions of this type are always parametrically under control for large fluxes.

In Chapter 4 we shall present a detailed analysis of the classical stability of the

Dudas-Mourad solutions of [24] and of the AdS× S solutions of [26]. To this end, we

shall derive the linearized equations of motion for field perturbations, and obtain

criteria for the stability of modes. In the case of the Dudas-Mourad solutions, we shall

recast the equations of motion in terms of Schrödinger-like problems, and writing the

corresponding Hamiltonians in terms of ladder operators. In this fashion, we shall

prove that these solutions are stable at the classical level, but in the cosmological case

an intriguing instability of the homogeneous tensor mode emerges [27], and we offer

as an enticing, if speculative, explanation a potential tendency of space-time toward

spontaneous compactification. On the other hand, perturbations of the AdS× S

solutions can be analyzed according to Kaluza-Klein theory, and the scalar sector

contains unstable modes. [27] for a finite number of internal angular momenta. We

shall conclude discussing how to remove them with suitable freely-acting projections

on the internal spheres, or by modifying the internal manifold.

In Chapter 5 we shall turn to the non-perturbative instabilities of the AdS com-

pactifications discussed in Chapter 3, in which a charged membranes nucleate [25]

reducing the flux in the space-time inside of them. We shall compute the decay

rate associated to this process, and frame it in terms of fundamental branes via

consistency conditions that we shall derive and discuss. In the actual string models

that we shall consider, there ought to nucleate D1-branes in the orientifold models

and NS5-branes in the heterotic model, but more general models can accomodate

“exotic” branes [28–32] whose tensions scales differently with the string coupling.

In Chapter 6 we shall further develop the brane picture presented in Chapter 5,

starting from the Lorentzian expansion that bubbles undergo after nucleation. The

potential that drives the expansion encodes a renormalization charge-to-tension ratio
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that is consistent with the weak gravity conjecture. Moreover, as we shall discuss, the

same renormalized ratio affects the dispersion relation of world-volume deformations.

Then we shall turn to the gravitational back-reaction of the branes, studying the

resulting near-horizon and asymptotic geometries. In the near-horizon limit we

shall recover AdS× S throats, while the asymptotic region features a “pinch-off”

singularity at a finite distance, mirroring the considerations of [24]. Our findings

support a picture of instabilities as the result of brane interactions, and in order to

shed light on the non-extremal case we shall discuss their gravitational back-reaction

and derive interaction potentials in some controlled regimes. The case of N1 D1-

branes interacting with uncharged N8 8-branes in the orientifold models is particularly

noteworthy in this respect, since it appears calculable in three complementary regimes:

N1 � N8, N1 � N8 and N1 , N8 = O(1). We shall compare the respective results

finding qualitative agreement, despite the absence of supersymmetry.

In Chapter 7 we shall motivate a holographic correspondence between meta-

stable AdS (false) vacua and dual (renormalization group) RG flows. Specifically, the

correspondence relates the nucleation of vacuum bubbles in the bulk to a relevant

deformation in the dual CFT, and the resulting RG flow mirrors the irreversible

expansion of bubbles. In order to provide evidence for our proposal, we shall compute

the holographic entanglement entropy in the case of a three-dimensional bulk, and

we shall discuss a variety of c-functions whose behavior appears to agree with our

expectations. Then, in order to address more complicated bubble configurations,

we shall describe and apply the framework of holographic integral geometry [33].

To conclude, we shall discuss some potential “top-down” scenarios in which our

construction could potentially be verified quantitatively from both sides of the

correspondence.

In Chapter 8 we shall return to the issue of dS cosmology, considering warped

flux compactifications and extending the no-go result discussed in Chapter 2. In

particular, we shall obtain an expression for the space-time cosmological constant in

terms of the model parameters, and derive from it a no-go result that generalizes that

of [34]. We shall also include the contribution of localized sources and discuss how our

findings connect with recent swampland conjectures [17]. Finally, we shall propose a

string-theoretic embedding of the brane-world scenarios recently revisited in [35–37],



6 Chapter 1. Introduction

studying the effective gravitational dynamics on the world-volume of nucleated

branes. The resulting models describe dS cosmologies coupled to matter and (non-

)Abelian gauge fields, and we shall discuss a mechanism to generate stochastically

massive particles of arbitrarily small masses via open strings stretching between

expanding branes.

P U B L I C AT I O N S

The material that I shall present in this thesis is based on the following three published

articles:

• R. Antonelli, I. Basile,

“Brane annihilation in non-supersymmetric strings”, In: Journal of High Energy

Physics, 1911 (2019): 021.

• R. Antonelli, I. Basile, A. Bombini,

“AdS Vacuum Bubbles, Holography and Dual RG flows”, In: Classical and

Quantum Gravity, 36.4 (2019): 045004.

• I. Basile, J. Mourad, A. Sagnotti,

“On Classical Stability with Broken Supersymmetry”, In: Journal of High En-

ergy Physics, 1901 (2019): 174.

In addition, I have published an article in collaboration with R. Antonelli and E.

Hatefi:

• R. Antonelli, I. Basile, E. Hatefi,

“On All-Order Higher-Point Dp−Dp Effective Actions.”, Journal of Cosmology

and Astroparticle Physics, 2019.10 (2019): 041–041.

In this article we have presented a novel computation of a scattering amplitude

in type II superstrings, and we have derived a technique to systematically build

expansions in powers of α′ to the effect of connecting them to their respective effective

couplings.
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Some of the material presented in this thesis has not been published before, and

in particular Chapter 8 is based on a collaboration with S. Lanza, and a preprint

is currently in preparation. Finally, some unrelated results that I shall outline in

Chapter 9 are based on a collaboration with A. Platania, and a preprint is currently in

preparation.





2String models with broken supersymmetry

In this chapter we introduce the string models with broken supersymmetry that we

shall investigate in the remainder of this thesis. To this end, we begin in Section 1

with a review of one-loop vacuum amplitudes in string theory, starting from the

supersymmetric ten-dimensional models. Then, in Section 2 we introduce orien-

tifold models, or “open descendants”, within the formalism of vacuum amplitudes,

focusing on the USp(32) model [19] and the U(32) model [20, 21]. While the latter

features a non-supersymmetric perturbative spectrum without tachyons, the former

is particularly intriguing, since it realizes supersymmetry non-linearly in the open

sector [38–41]. Finally, in Section 3 we move on to heterotic models, constructing the

non-supersymmetric SO(16)× SO(16) projection [22, 23]. The material presented in

this chapter is largely based on [42]. For a more recent review, see [43].

1 VA C U U M A M P L I T U D E S

Vacuum amplitudes probe some of the most basic aspects of quantum systems. In the

functional formulation, they can be computed evaluating the effective action Γ on

vacuum configurations. While in the absence of supersymmetry or integrability exact

results are generally out of reach, their one-loop approximation only depends on the

perturbative excitations around a classical vacuum. In terms of the corresponding

mass operator M2, one can write integrals over Schwinger parameters of the form

Γ = − Vol

2 (4π)
D
2

∫ ∞

Λ−2

dt

t
D
2 +1

STr
(

e−tM2
)

, (2.1)

where Vol is the volume of (Euclidean) D-dimensional space-time, and the supertrace

Str sums over signed polarizations, i.e. with a minus sign for fermions. The UV

divergence associated to small values of the world-line proper time t is regularized by
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the cut-off scale Λ.

Due to modular invariance1, one-loop vacuum amplitudes in string theory can

be recast as integrals over the moduli space of Riemann surfaces with vanishing

Euler characteristic, and the corresponding integrands can be interpreted as partition

functions of the world-sheet conformal field theory. Specifically, in the case of a torus

with modular parameter q ≡ e2πiτ, in the RNS light-cone formalism one ought to

consider2 (combinations of) the four basic traces

Z(−−)(τ) ≡ TrNS qL0 =
∏∞

m=1

(
1 + qm− 1

2

)8

q
1
2 ∏∞

n=1 (1− qn)8 ,

Z(+−)(τ) ≡ TrR qL0 = 16 ∏∞
m=1 (1 + qm)8

∏∞
n=1 (1− qn)8 ,

Z(−+)(τ) ≡ TrNS

(
(−1)F qL0

)
=

∏∞
m=1

(
1− qm− 1

2

)8

q
1
2 ∏∞

n=1 (1− qn)8 ,

Z(++)(τ) ≡ TrR

(
(−1)F qL0

)
= 0 ,

(2.2)

which arise from the four spin structures depicted in figure 2.1. The latter two

correspond to “twisted” boundary conditions for the world-sheet fermions, and are

implemented inserting the fermion parity operator (−1)F. While Z(++) vanishes, its

structure contains non-trivial information about perturbative states, and its modular

properties are needed in order to build consistent models.

The modular properties of the traces in eq. (2.2) can be highlighted recasting them

in terms of the Dedekind η function

η(τ) ≡ q
1

24

∞

∏
n=1

(1− qn) , (2.3)

which transforms according to

η(τ + 1) = e
iπ
12 η(τ) , η

(
− 1

τ

)
= (−iτ)

1
2 η(τ) (2.4)

1We remark that, in this context, modular invariance arises as the residual gauge invariance left
after fixing world-sheet diffeomorphisms and Weyl rescalings. Hence, violations of modular invariance
would result in gauge anomalies.

2We work in ten space-time dimensions, since non-critical string perturbation theory entails a number
of challenges.
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F I G U R E 2 . 1 : inequivalent spin structures on the torus, specified by
a choice of periodic (−) or anti-periodic (+) conditions along each

independent cycle.

under the action of the generators

T : τ → τ + 1 , S : τ → − 1
τ

(2.5)

of the modular group on the torus, and the Jacobi ϑ functions. The latter afford both

the series representation [44]

ϑ

[
α

β

]
(z|τ) ≡ ∑

n∈Z

q
1
2 (n+α)2

e2πi(n+α)(z−β) (2.6)

and the infinite product representation

ϑ

[
α

β

]
(z|τ) = e2πiα(z−β) q

α2
2

∞

∏
n=1

(1− qn)

×
(

1 + qn+α− 1
2 e2πi(z−β)

) (
1 + qn−α− 1

2 e−2πi(z−β)
)

,

(2.7)

and they transform under the action of T and S according to

ϑ

[
α

β

]
(z|τ + 1) = e−iπα(α+1) ϑ

[
α

β− α− 1
2

]
(z|τ) ,

ϑ

[
α

β

](
z
τ

∣∣∣∣− 1
τ

)
= (−iτ)

1
2 e−2πiαβ+ iπz2

τ ϑ

[
−β

α

]
(z|τ) .

(2.8)
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Therefore, both the Dedekind η function and the Jacobi ϑ functions are modular forms

of weight 1
2 . In particular, we shall make use of ϑ functions evaluated at z = 0 and

α , β ∈ {0 , 1
2}, which are commonly termed Jacobi constants3. Using these ingredients,

one can recast the traces in eq. (2.2) in the form

Z(−−)(τ) =
ϑ4
[

0
0

]
(0|τ)

η12(τ)
, Z(+−)(τ) =

ϑ4
[

0
1
2

]
(0|τ)

η12(τ)
,

Z(−+)(τ) =
ϑ4
[

1
2
0

]
(0|τ)

η12(τ)
, Z(++)(τ) =

ϑ4
[ 1

2
1
2

]
(0|τ)

η12(τ)
,

(2.9)

and, in order to obtain the corresponding (level-matched) torus amplitudes, one is to

integrate products of left-moving holomorphic and right-moving anti-holomorphic

contributions over the fundamental domain F with respect to the modular invariant

measure d2τ
Im(τ)2 . The absence of the UV region from the fundamental domain betrays a

striking departure from standard field-theoretic results, and arises from the gauge-

fixing procedure in the Polyakov functional integral.

All in all, modular invariance is required by consistency, and the resulting ampli-

tudes are constrained to the extent that the perturbative spectra of consistent models

are fully determined. In order to elucidate their properties, it is quite convenient to

introduce the characters of the level-one affine so(2n) algebra

O2n ≡
ϑn
[

0
0

]
(0|τ) + ϑn

[
0
1
2

]
(0|τ)

2ηn(τ)
,

V2n ≡
ϑn
[

0
0

]
(0|τ)− ϑn

[
0
1
2

]
(0|τ)

2ηn(τ)
,

S2n ≡
ϑn
[

1
2
0

]
(0|τ) + i−n ϑn

[ 1
2
1
2

]
(0|τ)

2ηn(τ)
,

C2n ≡
ϑn
[

1
2
0

]
(0|τ)− i−n ϑn

[ 1
2
1
2

]
(0|τ)

2ηn(τ)
,

(2.10)

which comprise contributions from states pertaining to the four conjugacy classes of

SO(2n). Furthermore, they also inherit the modular properties from ϑ and η functions,

3Non-vanishing values of the argument z of Jacobi ϑ functions are nonetheless useful in string theory.
They are involved, for instance, in the study of string perturbation theory on more general backgrounds
and D-brane scattering.
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reducing the problem of building consistent models to matters of linear algebra4.

While n = 4 in the present case, the general expressions can also encompass heterotic

models, whose right-moving sector is built from 26-dimensional bosonic strings. As

we have anticipated, these expressions ought to be taken in a formal sense: if one were

to consider their actual value, one would find for instance the numerical equivalence

S8 = C8, while the two corresponding sectors of the Hilbert space are distinguished

by the chirality of space-time fermionic excitations. Moreover, a remarkable identity

proved by Jacobi [44] implies that

V8 = S8 = C8 . (2.11)

This peculiar identity was referred to by Jacobi as aequatio identica satis abstrusa, but in

the context of superstrings its meaning becomes apparent: it states that string models

built using an SO(8) vector and a SO(8) Majorana-Weyl spinor, which constitute

the degrees of freedom of a ten-dimensional supersymmetric Yang-Mills multiplet,

contain equal numbers of bosonic and fermionic excited states at all levels. In other

words, it is a manifestation of space-time supersymmetry in these models.

1.1 Modular invariant closed-string models

Altogether, only four torus amplitudes built out of the so(8) characters of eq. (2.10)

satisfy the constraints of modular invariance and spin-statistics5. They correspond to

type IIA and type IIB superstrings,

TIIA : (V8 − C8) (V8 − S8) ,

TIIB : (V8 − S8) (V8 − S8) ,
(2.12)

4We remark that different combinations of characters reflect different projections at the level of the
Hilbert space.

5In the present context, spin-statistics amounts to positive (resp. negative) contributions from
space-time bosons (resp. fermions).
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which are supersymmetric, and to two non-supersymmetric models, termed type 0A

and type 0B,

T0A : O8 O8 + V8 V8 + S8 C8 + C8 S8 ,

T0B : O8 O8 + V8 V8 + S8 S8 + C8 C8 ,
(2.13)

where we have refrained from writing the volume prefactor and the integration

measure ∫
F

d2τ

τ6
2

1

|η(τ)|16 , τ2 ≡ Im(τ) (2.14)

for clarity. We shall henceforth use this convenient notation. Let us remark that

the form of (2.12) translates the chiral nature of the type IIB superstring into its

world-sheet left-right symmetry6.

2 O R I E N T I F O L D M O D E L S

The approach that we have outlined in the preceding section can be extended to open

strings, albeit with one proviso. Namely, one ought to include all Riemann surfaces

with vanishing Euler characteristic, including the Klein bottle, the annulus and the

Möbius strip.

To begin with, the orientifold projection dictates that the contribution of the torus

amplitude be halved and added to (half of) the Klein bottle amplitude K. Since the

resulting amplitude would entail gauge anomalies due to the Ramond-Ramond (R-R)

tadpole, one ought to include the annulus amplitude A and Möbius strip amplitude

M, which comprise the contributions of the open sector and signal the presence of

D-branes. The corresponding modular parameters are built from the covering tori of

the fundamental polygons, depicted in fig. 2.2, while the Möbius strip amplitude

involves “hatted” characters that differ from the ordinary one by a phase7. so that in

6Despite this fact the type IIB superstring, as well as all five supersymmetric models, is actually
anomaly-free owing to the Green-Schwarz mechanism [45]. This remarkable result was a considerable
step forward in the development of string theory.

7The “hatted” characters appear since the modular paramater of the covering torus of the Möbius
strip is not real, and they ensure that states contribute with integer degeneracies.
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F I G U R E 2 . 2 : The string world-sheet topologies (excluding the torus)
which contribute to the one-loop vacuum amplitude, and the cor-
responding fundamental polygons. From the point of view of open
strings, they can be associated to boundary conditions with boundaries
or cross-caps. The corresponding space-time picture involves D-branes

or orientifold planes. Taken from [42].

the case of the type I superstring

K =
1
2

∫ ∞

0

dτ2

τ6
2

(V8 − S8)(2iτ2)

η8(2iτ2)
,

A =
N2

2

∫ ∞

0

dτ2

τ6
2

(V8 − S8)
(

iτ2
2

)
η8
(

iτ2
2

) ,

M =
ε N
2

∫ ∞

0

dτ2

τ6
2

(
V̂8 − Ŝ8

)(
iτ2
2 + 1

2

)
η̂8
(

iτ2
2 + 1

2

) ,

(2.15)

where the sign ε is a reflection coefficient and N is the number of Chan-Paton factors.

At the level of the closed spectrum, the projection symmetrizes the NS-NS sector,

so that the massless closed spectrum rearranges into the minimal ten-dimensional

N = (1, 0) supergravity multiplet, but anti-symmetrizes the R-R sector, while the

massless open spectrum comprises a super Yang-Mills multiplet. It is instructive

to recast the “loop channel” amplitudes of eq. (2.15) in the “tree-channel” using a

modular transformation. The resulting amplitudes describe tree-level exchange of
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closed-string states, and read

K̃ =
25

2

∫ ∞

0
d`

(V8 − S8)(i`)
η8(i`)

,

Ã =
2−5 N2

2

∫ ∞

0
d`

(V8 − S8)(i`)
η8(i`)

,

M̃ =
2 ε N

2

∫ ∞

0
d`

(
V̂8 − Ŝ8

)(
i`+ 1

2

)
η̂8
(
i`+ 1

2

) .

(2.16)

The UV divergences of the loop-channel amplitudes are translated into IR divergences,

which are associated to the `→ ∞ regime of the integration region. Physically they

describe the exchange of zero-momentum massless modes, either in the NS-NS sector

or in the R-R sector, and the corresponding coefficients can vanish on account of the

tadpole cancellation condition

25

2
+

2−5 N2

2
+

2 ε N
2

=
2−5

2
(N + 32 ε) = 0 . (2.17)

Let us stress that these conditions apply both to the NS–NS sector, where they grant

the absence of a dilaton tadpole, and to the R-R sector, where they grant R-charge

neutrality and thus anomaly cancellation via the Green-Schwarz mechanism. The

unique solution to eq. (2.17) is N = 32 and ε = −1, i.e. the SO(32) type I superstring.

The corresponding space-time interpretation involves 32 D9-branes8 and an O9−-

plane, which has negative tension and charge.

2.1 The Sugimoto model: brane supersymmetry breaking

On the other hand, introducing an O9+-plane with positive tension and charge one

can preserve the R-R tadpole cancellation while generating a non-vanishing dilaton

tadpole, thus breaking supersymmetry at the string scale. At the level of vacuum

amplitudes, this is reflected in a sign change in the Möbius strip amplitude, so that

now
8Since the D9-branes are on top of the O9−-plane, counting conventions can differ based on whether

one includes “image” branes.
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MBSB =
ε N
2

∫ ∞

0

dτ2

τ6
2

(
V̂8 + Ŝ8

)(
iτ2
2 + 1

2

)
η̂8
(

iτ2
2 + 1

2

) . (2.18)

The resulting tree-channel amplitudes are given by

M̃BSB =
2 ε N

2

∫ ∞

0
d`

(
V̂8 + Ŝ8

)(
i`+ 1

2

)
η̂8
(
i`+ 1

2

) , (2.19)

from which the R-R tadpole condition now requires that ε = 1 and N = 32, i.e. a

USp(32) gauge group. However, one is now left with a NS-NS tadpole, and thus at

low energies runaway exponential potential of the type

T
∫

d10x
√
−gS e−φ (2.20)

emerges in the string frame, while its Einstein-frame counterpart is

T
∫

d10x
√
−g eγφ , γ =

3
2

. (2.21)

Exponential potentials of the type of eq. (2.21) are smoking guns of string-scale

supersymmetry breaking, and we shall address their effect on the resulting low-

energy physics in following chapters. Notice also that the fermions are in the anti-

symmetric representation of USp(32), which is reducible. The corresponding singlet

is a very important ingredient: it is the Goldstino that is to accompany the breaking of

supersymmetry, while the closed spectrum is supersymmetric to lowest order and

contains a ten-dimensional gravitino. The relevant low-energy interactions manifest

an expected structure à la Volkov-Akulov [46], but a complete understanding of the

super-Higgs mechanism in this ten-dimensional context remains elusive.

All in all, a supersymmetric closed sector is coupled to a non-supersymmmetric

open sector, which lives on 32 D9-branes where supersymmetry is non-linearly

realized9 [46, 56, 57] in a manner reminiscent of the Volkov-Akulov model, and due to

the runaway potential of eq. (2.20) the effective space-time equations of motion do not

9The original works can be found in [47–54]. For reviews, see [42, 43, 55].
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admit Minkowski solutions. The resulting model is a special case of more general D9-

D9 branes systems, which were studied in [19], and the aforementioned phenomenon

of “brane supersymmetry breaking” (BSB) was investigated in detail in [38–41]. On

the phenomenological side, the peculiar behavior of BSB also appears to provide

a rationale for the low-` lack of power in the Cosmic Microwave Background [43,

58–60].

While the presence of a dilaton tadpole is instrumental in breaking supersymmetry

in a natural fashion, in its presence string theory back-reacts dramatically10 on the

original Minkowski vacuum, whose detailed fate appears, at present, largely out of

computational control. Let us remark that these difficulties are not restricted to this

type of scenarios. Indeed, while a variety of supersymmetry-breaking mechanisms

have been investigated, they are all fraught with conceptual and technical obstacles,

and primarily with the generic presence of instabilities, which we shall address in

detail in Chapter 4 and Chapter 5.

2.2 The type 0′B string

Let us now describe another instance of orientifold projection which leads to non-

tachyonic perturbative spectra. Starting from the type 0B model11, described by (2.13).

There are a number of available projections, encoded in different choices of the Klein

bottle amplitude. Here we focus on

K0′B :
1
2
(−O8 + V8 + S8 − C8) , (2.22)

which, in contrast to the more standard projection defined by the combination

O8 + V8 − S8 − C8, implements anti-symmetrization in the O8 and C8 sectors. This

purges tachyons from the spectrum, and thus the resulting model, termed type “0′B”,

is particularly intriguing. The corresponding tree-channel amplitude is given by

K̃0′B : − 26

2
C8 . (2.23)

10In principle, one could address these phenomena by systematic vacuum redefinitions [7–10], but
carrying out the program at high orders appears prohibitive.

11The corresponding orientifold projections of the type 0A model were also investigated. See [42], and
references therein.
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In order to complete the projection one is to specify the contributions of the open

sector, consistently with anomaly cancellation. Let us consider a family of solution

that involves two Chan-Paton charges, and is described by [21]

A0′B : n n V8 −
n2 + n2

2
C8 ,

M0′B :
n + n

2
Ĉ8 .

(2.24)

This construction is a special case of a more general four-charge solution [21], and

involves complex “eigencharges” n , n with corresponding unitary gauge groups.

Moreover, while we kept the two charges formally distinct, consistency demands

n = n, while the tadpole conditions fix n = 32, and the resulting model has a U(32)

gauge group12. As in the case of the USp(32) model, this model admits a space-time

description in terms of orientifold planes, now with vanishing tension, and the low-

energy physics of both non-supersymmetric orientifold models can be captured by

effective actions that we shall discuss in Chapter 3. In addition to orientifold models,

the low-energy description can also encompass the non-supersymmetric heterotic

model, which we shall now discuss in detail, with a simple replacement of numerical

coefficients in the action.

3 H E T E R O T I C S T R I N G S

Heterotic strings are remarkable hybrids of the bosonic string and superstrings,

whose existence rests on the fact that the right-moving sector and the left-moving

sector are decoupled. Indeed, their right-moving sector can be built using the 26-

dimensional bosonic string13, while their left-moving sector is built using the ten-

dimensional superstring. In order for these costructions to admit a sensible space-time

interpretation, 16 of the 26 dimensions pertaining to the right-moving sector are

compactified on a torus defined by a lattice Λ, of which there are only two consistent

choices, namely the weight lattices of SO(32) and E8 × E8. These groups play the

12Strictly speaking, the anomalous U(1) factor carried by the corresponding gauge vector disappears
from the low-lying spectrum, thus effectively reducing the group to SU(32).

13One can alternatively build heterotic right-moving sectors using ten-dimensional strings with
auxiliary fermions.
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rôle of gauge groups of the two corresponding supersymmetric heterotic models,

aptly dubbed “HO” and “HE” respectively. Their perturbative spectra are concisely

captured by the torus amplitudes

THO : (V8 − S8) (O32 + S32) ,

THE : (V8 − S8) (O16 + S16)
2

,
(2.25)

which feature so(16) and so(32) characters in the right-moving sector. As in the

case of type II superstrings, these two models can be related by T-duality, which

in this context acts as a projection onto states with even fermion number in the

right-moving (“internal”) sector. However, a slightly different projection yields the

non-supersymmetric heterotic string of [22, 23], which we shall now describe.

3.1 The non-supersymmetric heterotic model

Let us consider a projection of the HE theory onto the states with even total fermion

number. At the level of one-loop amplitudes, one is to halve the original torus

amplitude and add terms obtained changing the signs in front of the S characters,

yielding the two “untwisted” contributions

T(++) :
1
2
(V8 − S8) (O16 + S16)

2
,

T(+−) :
1
2
(V8 + S8) (O16 − S16)

2
.

(2.26)

The constraint of modular invariance under S, which is lacking at this stage, further

leads to the addition of the image of T+− under S, namely

T(−+) :
1
2
(O8 − C8) (V16 + C16)

2
. (2.27)

The addition of T−+ now spoils invariance under T transformations, which is restored

adding

T(−−) : − 1
2
(O8 + C8) (V16 − C16)

2
. (2.28)

All in all, the torus amplitude arising from this projection of the HE theory yields a

theory with a manifest SO(16)× SO(16) gauge group, and whose torus amplitude
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finally reads

TSO(16)×SO(16) : O8 (V16 C16 + C16 V16)

+ V8 (O16 O16 + S16 S16)

− S8 (O16 S16 + S16 O16)

− C8 (V16 V16 + C16 C16) .

(2.29)

The massless states originating from the V8 terms comprise the gravitational sector,

constructed out of the bosonic oscillators, as well as a (120, 1)⊕ (1, 120) multiplet

of SO(16)× SO(16), i.e. in the adjoint representation of its Lie algebra, while the

S8 terms provide spinors in the (1, 128)⊕ (128, 1) representation. Furthermore, the

C8 terms correspond to right-handed (16, 16) spinors. The terms in the first line

of eq. (2.29) do not contribute at the massless level, due to level matching and the

absence of massless states in the corresponding right-moving sector. In particular,

this entails the absence of tachyons from this string model, but the vacuum energy

does not vanish14, since it is not protected by supersymmetry. Indeed, its value can be

computed integrating eq. (2.29), and, since the resulting string-scale vacuum energy

couples with the gravitational sector in a universal fashion15, its presence also entails

a dilaton tadpole, and thus a runaway exponential potential for the dilaton. In the

Einstein frame, it takes the form

T
∫

d10x
√
−g eγφ , γ =

5
2

, (2.30)

and thus the effect of the dilaton tadpoles on the low-energy physics of both the

orientifold models of Section 2 and the SO(16) × SO(16) heterotic model can be

accounted for with the same type of exponential dilaton potential. In Chapter 3 we

shall investigate in detail the consequences of dilaton tadpoles on space-time.

14In some orbifold models, it is possible to obtain suppressed or vanishing leading contributions to
the cosmological constant [61–63].

15At the level of the space-time effective action, the vacuum energy contributes to the string-frame
cosmological constant. In the Einstein frame, it corresponds to a runaway exponential potential for the
dilaton.





3Non-supersymmetric vacuum solutions

In this chapter we investigate the low-energy physics of the string models that we

have described in Chapter 2, namely the non-supersymmetric SO(16) × SO(16)

heterotic model [22, 23], whose first quantum correction generates a dilaton potential,

and two orientifold models, the non-supersymmetric U(32) type 0′B model [20, 21]

and the USp(32) model [19] with “Brane Supersymmetry Breaking” (BSB) [38–41],

where a similar potential reflects the tension unbalance present in the vacuum. To

begin with, in Section 1 we discuss the low-energy effective action that we shall

consider. Then we proceed to discuss some classes of solutions of the equations of

motion. Specifically, in Section 2 we present the Dudas-Mourad solutions of [24],

which comprise nine-dimensional static compactifications on warped intervals and

ten-dimensional cosmological solutions. In Section 3 we introduce fluxes, which lead

to parametrically controlled Freund-Rubin [64] compactifications [25, 26], and we

show that, while the string models at stake admit only AdS solutions of this type, in a

more general class of effective theories dS solutions always feature an instability of

the radion mode. Furthermore, compactifications with multiple internal factors yield

multi-flux landscapes, and we show that a two-flux example can accomodate scale

separation, albeit not in the desired sense.

1 T H E L O W - E N E R G Y D E S C R I P T I O N

Let us now present the effective (super)gravity theories related to the string models at

stake. For the sake of generality, we shall often work with a family of D-dimensional

effective gravitational theories, where the bosonic fields include a dilaton φ and a

(p + 2)-form field strength Hp+2 = dBp+1. Using the “mostly-plus” metric signature,

the (Einstein-frame) effective actions



24 Chapter 3. Non-supersymmetric vacuum solutions

S =
1

2κ2
D

∫
dDx

√
−g

(
R− 4

D− 2
(∂φ)2 −V(φ)− f (φ)

2(p + 2)!
H2

p+2

)
(3.1)

encompass all relevant cases1, and whenever needed we specialize them according to

V(φ) = T eγφ , f (φ) = eαφ , (3.2)

which capture the lowest-order contributions in the string coupling for positive2 γ

and T. In the orientifold models, the dilaton potential arises from the non-vanishing

NS-NS tadpole at (projective-)disk level, while in the heterotic model it arises from

the torus amplitude. The massless spectrum of the corresponding string models also

includes Yang-Mills fields, whose contribution to the action takes the form

Sgauge = −
1

2κ2
D

∫
dDx

√
−g
(

w(φ)

4
TrFMN FMN

)
(3.3)

with w(φ) an exponential, but we shall not consider them. Although AdS compactifi-

cations supported by non-abelian gauge fields, akin to those discussed in Section 3,

were studied in [26], their perturbative corners appear to forego the dependence on

the non-abelian gauge flux. On the other hand, an AdS3 × S7 solution of the heterotic

model with no counterpart without non-abelian gauge flux was also found [26], but it

is also available in the supersymmetric case.

The (bosonic) low-energy dynamics of both the USp(32) BSB model and the U(32)

type 0′B model is encoded in the Einstein-frame parameters

D = 10 , p = 1 , γ =
3
2

, α = 1 , (3.4)

1This effective field theory can also describe non-critical strings [65, 66], since the Weyl anomaly can
be saturated by the contribution of an exponential dilaton potential.

2The case γ = 0, which at any rate does not arise in string perturbation theory, would not complicate
matters further.
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whose string-frame counterpart stems from the effective action3 [46]

Sorientifold =
1

2κ2
10

∫
d10x

√
−gS

(
e−2φ

[
R + 4 (∂φ)2

]
− T e−φ − 1

12
F2

3

)
. (3.5)

The e−φ factor echoes the (projective-)disk origin of the exponential potential for the

dilaton, and the coefficient T is given by

T = 2κ2
10 × 64 TD9 =

16
π2 α′

(3.6)

in the BSB model, reflecting the cumulative contribution of 16 D9-branes and the

orientifold plane [19], while in the type 0′B model T is half of this value.

On the other hand, the SO(16)× SO(16) heterotic model of [22] is described by

D = 10 , p = 1 , γ =
5
2

, α = −1 , (3.7)

corresponding to the string-frame effective action

Sheterotic =
1

2κ2
10

∫
d10x

√
−gS

(
e−2φ

[
R + 4 (∂φ)2 − 1

12
H2

3

]
− T

)
, (3.8)

which contains the Kalb-Ramond field strength H3 and the one-loop cosmological

constant T, which was estimated in [22]. One can equivalently dualize the Kalb-

Ramond form and work with the Einstein-frame parameters

D = 10 , p = 5 , γ =
5
2

, α = 1 . (3.9)

One may wonder whether the effective actions of eq. (3.1) can be reliable, since the

dilaton potential contains one less power of α′ with respect to the other terms. The

AdS landscapes that we shall present in Section 3 contain weakly coupled regimes,

where curvature corrections and string loop corrections are expected to be under

control, but their existence rests on large fluxes. While in the orientifold models

the vacua are supported by R-R fluxes, and thus a world-sheet formulation appears

subtle, the simpler nature of the NS-NS fluxes in the heterotic model is balanced by

3In eq. (3.5) we have used the notation F3 = dC2 in order to stress the Ramond-Ramond (RR) origin
of the field strength.
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the quantum origin of the dilaton tadpole4. On the other hand, the solutions discussed

in Section 2 do not involve fluxes, but their perturbative corners do not extend to the

whole space-time.

The equations of motion stemming from the action in eq. (3.1) are

RMN = T̃MN ,

2 φ −V ′(φ)− f ′(φ)
2(p + 2)!

H2
p+2 = 0 ,

d ? ( f (φ) Hp+2) = 0 ,

(3.10)

where the trace-reversed stress-energy tensor

T̃MN ≡ TMN −
1

D− 2
TA

A gMN (3.11)

is defined in terms of the standard stress-energy tensor TMN , and with our conventions

TMN ≡ −
δSmatter

δgMN . (3.12)

From the effective action of eq. (3.1), one obtains

T̃MN =
4

D− 2
∂Mφ ∂Nφ +

f (φ)
2(p + 1)!

(
H2

p+2

)
MN

+
gMN

D− 2

(
V − p + 1

2(p + 2)!
f (φ) H2

p+2

)
,

(3.13)

where
(

H2
p+2

)
MN
≡ HMA1...Ap+1 HN

A1...Ap+1 . In the following sections, we shall make

use of eqs. (3.10) and (3.13) to obtain a number of solutions, both with and without

fluxes.

2 S O L U T I O N S W I T H O U T F L U X

Let us now describe in detail the Dudas-Mourad solutions of [24]. They comprise

static solutions with nine-dimensional Poincaré symmetry5, where one dimension is

4At any rate, it is worth noting that world-sheet conformal field theories on AdS3 backgrounds have
been related to WZW models, which can afford α′-exact algebraic descriptions [67].

5For a similar analysis of a T-dual version of the USp(32) model, see [68].
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compactified on an interval, and ten-dimensional cosmological solutions.

2.1 Static Dudas-Mourad solutions

Due to the presence of the dilaton potential, the maximal possible symmetry available

to static solutions is nine-dimensional Poincaré symmetry, and therefore the most

general solution of this type is a warped product of nine-dimensional Minkowski

space-time, parametrized by coordinates xµ, and a one-dimensional internal space,

parametrized by a coordinate y. As we shall discuss in Chapter 6, in the absence

of fluxes the resulting equations of motion can be recast in terms of an integrable

Toda-like dynamical system, and the resulting Einstein-frame solution reads

ds2
orientifold =

∣∣αO y2∣∣ 1
18 e−

αOy2

8 dx2
1,8 + e−

3
2 Φ0
∣∣αO y2∣∣− 1

2 e−
9αOy2

8 dy2 ,

φ =
3
4

αO y2 +
1
3

log
∣∣αO y2∣∣+ Φ0

(3.14)

for the orientifold models, where here and in the remainder of this thesis

dx2
1,p ≡ ηµν dxµ dxν (3.15)

is the (p + 1)-dimensional Minkowski metric. The absolute values in eq. (3.14) imply

that the geometry is described by the coordinate patch in which y ∈ (0, ∞). The

corresponding Einstein-frame solution of the heterotic model reads

ds2
heterotic = (sinh |

√
αH y|)

1
12 (cosh |

√
αH y|)−

1
3 dx2

1,8

+ e−
5
2 Φ0 (sinh |

√
αH y|)−

5
4 (cosh |

√
αH y|)−5 dy2 ,

φ =
1
2

log sinh |
√

αH y|+ 2 log cosh |
√

αH y|+ Φ0 .

(3.16)

In eqs. (3.14) and (3.16) the scales αO,H ≡ T
2 , while Φ0 is an arbitrary integration

constant. As we shall explain in Chapter 6, the internal spaces parametrized by y are

actually intervals of finite length, and the geometry contains a weakly coupled region

in the middle of the parametrically wide interval for gs ≡ eΦ0 � 1. Moreover, the

isometry group appears to be connected to the presence of uncharged 8-branes [25].
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It is convenient to recast the two solutions in terms of conformally flat metrics, so

that one is led to consider expressions of the type

ds2 = e2Ω(z) (dx2
1,8 + dz2) ,

φ = φ(z) ,
(3.17)

In detail, for the orientifold models the coordinate z is obtained integrating the

relation

dz =
∣∣αO y2∣∣− 5

18 e−
3
4 Φ0 e−

αOy2

2 dy , (3.18)

while

e2Ω(z) =
∣∣αO y2∣∣ 1

18 e−
αOy2

8 . (3.19)

On the other hand, for the heterotic model

dz = e−
5
4 Φ0 (sinh |

√
αH y|)−

2
3 (cosh |

√
αH y|)−

7
3 dy , (3.20)

and the corresponding conformal factor reads

e2Ω(z) = (sinh |
√

αH y|)
1
12 (cosh |

√
αH y|)−

1
3 . (3.21)

Notice that one is confronted with an interval whose finite length is proportional to

1√gs αO,H
in the two cases, but which hosts a pair of curvature singularities at its two

ends, with a local string coupling eφ that is weak at the former and strong at the latter.

Moreover, the parameters αO,H are proportional to the dilaton tadpoles, and therefore

as one approaches the supersymmetric case the internal length diverges6.

2.2 Cosmological Dudas-Mourad solutions

The cosmological counterparts of the static solutions of eqs. (3.14) and (3.16) can be

obtained via the analytic continuation y → it, and consequently under z → iη in

6The supersymmetry-breaking tadpoles cannot be sent to zero in a smooth fashion. However, it is
instructive to treat them as parameters, in order to highlight their rôle.
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conformally flat coordinates. For the orientifold models, one thus finds

ds2
orientifold =

∣∣αO t2∣∣ 1
18 e

αOt2

8 dx2 − e−
3
2 Φ0
∣∣αO t2∣∣− 1

2 e
9αOt2

8 dt2 ,

φ = − 3
4

αO t2 +
1
3

log
∣∣αO t2∣∣+ Φ0 ,

(3.22)

where the parametric time t takes values in (0, ∞), as usual for a decelerating

cosmology with an initial singularity. The corresponding solution of the heterotic

model reads

ds2
heterotic = (sin |

√
αH t|)

1
12 (cos |

√
αH t|)−

1
3 dx2

− e−
5
2 Φ0 (sin |

√
αH t|)−

5
4 (cos |

√
αH t|)−5 dt2 ,

φ =
1
2

log sin |
√

αH t|+ 2 log cos |
√

αH t|+ Φ0 ,

(3.23)

where now 0 <
√

αH t < π
2 . Both cosmologies have a nine-dimensional Euclidean

symmetry, and in both cases, as shown in [69], the dilaton is forced to emerge from

the initial singularity climbing up the potential. In this fashion it reaches an upper

bound before it begins its descent, and thus the local string coupling is bounded and

parametrically suppressed for gs � 1.

As in the preceding section, it is convenient to recast these expressions in conformal

time according to

ds2 = e2Ω(η)
(
dx2 − dη2) ,

φ = φ(η) ,
(3.24)

and for the orientifold models the conformal time η is obtained integrating the

relation

dη =
∣∣αO t2∣∣− 5

18 e−
3
4 Φ0 e

αOt2

2 dt , (3.25)

while the conformal factor reads

e2Ω(η) =
∣∣αO t2∣∣ 1

18 e
αOt2

8 . (3.26)

On the other hand, for the heterotic model

dη = (sin |
√

αH t|)−
2
3 (cos |

√
αH t|)−

7
3 e−

5
4 Φ0 dt , (3.27)
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and

e2Ω(η) = (sin |
√

αH t|)
1

12 (cos |
√

αH t|)−
1
3 . (3.28)

In both models one can choose the range of η to be (0, ∞), with the initial singularity

at the origin, but in this case the future singularity is not reached in a finite proper

time. Moreover, while string loops are in principle under control for gs � 1, curvature

corrections are expected to be relevant at the initial singularity [70].

3 F L U X C O M PA C T I F I C AT I O N S

While the Dudas-Mourad solutions that we have discussed in the preceding section

feature the maximal amount of symmetry available in the string models at stake, they

are fraught with regions where the low-energy effective theory of eq. (3.1) is expected

to be unreliable. In order to address this issue, in this section we turn on form fluxes,

and study Freund-Rubin compactifications. While the parameters of eq. (3.4) and (3.9)

allow only for AdS solutions, it is instructive to investigate the general case in detail.

To this effect, we remark that the results presented in the following sections apply to

general V(φ) and f (φ), up to the replacement

γ → V ′(φ0)

V(φ0)
, α → f ′(φ0)

f (φ0)
, (3.29)

since the dilaton is stabilized to a constant value φ0.

3.1 Freund-Rubin solutions

Since a priori both electric and magnetic fluxes may be turned on, let us fix the

convention that α > 0 in the frame where the field strength Hp+2 is a (p + 2)-form.

With this convention, the dilaton equation of motion implies that a Freund-Rubin

solution7 of the form Xp+2 ×Mq can only exist with an electric flux. Here Xp+2 is

Lorentzian and maximally symmetric with curvature radius L, whileMq is a compact

7The Laplacian spectrum of the internal spaceMq can have some bearing on perturbative stability.
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Einstein space with curvature radius R. The corresponding ansatz takes the form

ds2 = L2 ds2
Xp+2

+ R2 ds2
Mq

,

Hp+2 = c VolXp+2 ,

φ = φ0 ,

(3.30)

where ds2
Xp+2

is the unit-radius space-time metric and VolXp+2 denotes the canonical

volume form on Xp+2 with radius L. The dilaton is stabilized to a constant value by

the electric form flux on internal space8,

n =
1

Ωq

∫
Mq

f ? Hp+2 = c f Rq , (3.31)

whose presence balances the runaway tendency of the dilaton potential. Here Ωq

denotes the volume of the unit-radius internal manifold. Writing the Ricci tensor

Rµν = σX
p + 1

L2 gµν ,

Rij = σM
q− 1

R2 gij

(3.32)

in terms of σX , σM ∈ {−1 , 0 , 1}, the geometry exists if and only if

σM = 1 , α > 0 , q > 1 , σX

(
(q− 1)

γ

α
− 1
)
< 0 , (3.33)

and using eq. (3.2) the values of the string coupling gs = eφ0 and the curvature radii

L , R are given by

c =
n

gα
s Rq ,

g(q−1)γ−α
s =

(
(q− 1)(D− 2)(
1 + γ

α (p + 1)
)

T

)q
2γT
αn2 ,

R2 (q−1)γ−α
γ =

(
α + (p + 1) γ

(q− 1)(D− 2)

) α+γ
γ
(

T
α

) α
γ n2

2γ
,

L2 = − σX R2
(

p + 1
q− 1

· (p + 1) γ + α

(q− 1) γ− α

)
≡ R2

A
.

(3.34)

8The flux n in eq. (3.31) is normalized for later convenience, albeit it is not dimensionless nor an
integer.
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From eq. (3.34) one can observe that the ratio of the curvature radii is a constant

independent on n but is not necessarily unity, in contrast with the case of the super-

symmetric AdS5 × S5 solution of type IIB supergravity. Furthermore, in the actual

string models the existence conditions imply σX = −1, i.e. an AdSp+2 ×Mq solution.

These solutions exhibit a number of interesting features. To begin with, they only

exist in the presence of the dilaton potential, and indeed they have no counterpart in

the supersymmetric case for p 6= 3. Moreover, the dilaton is constant, but in contrast to

the supersymmetric AdS5 × S5 solution its value is not a free parameter. Instead, the

solution is entirely fixed by the flux parameter n. Finally, in the case of AdS the large-n

limit always corresponds to a perturbative regime where both the string coupling and

the curvatures are parametrically small, thus suggesting that the solution reliably

captures the dynamics of string theory for its special values of p and q. As a final

remark, let us stress that only one sign of α can support a vacuum with electric flux

threading the internal manifold. However, models with the opposite sign admit

vacua with magnetic flux, which can be included in our general solution dualizing

the form field, and thus also inverting the sign of α. No solutions of this type exist if

α = 0, which is the case relevant to the back-reaction of D3-branes in the type 0′B

model. Indeed, earlier attempts in this respect [71–73] were met by non-homogeneous

deviations from AdS5, which are suppressed, but not uniformly so, in large-n limit9.

3.2 No-go for de Sitter compactifications: first hints

From the general Freund-Rubin solution one can observe that dS Freund-Rubin

compactifications exist only whenever10

(q− 1)
γ

α
− 1 < 0 . (3.35)

However, this requirement also implies the existence of perturbative instabilities.

This can be verified studying fluctuations of the (p + 2)-dimensional metric, denoted

9Analogous results in tachyonic type 0 strings were obtained in [74].
10The same result was derived in [75].
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by d̃s
2
p+2(x), and of the radion ψ(x), writing

ds2 = e−
2q
p ψ(x) d̃s

2
p+2(x) + R2

0 e2ψ(x) ds2
Mq

(3.36)

with R0 an arbitrary reference radius, thus selecting the (p + 2)-dimensional Einstein

frame. The corresponding effective potential for the dilaton and radion fields

V(φ, ψ) = V(φ) e−
2q
p ψ − q(q− 1)

R2
0

e−
2(D−2)

p ψ +
n2

2R2q
0

e−
q(p+1)

p ψ

f (φ)

≡ VT + VM + Vn

(3.37)

reproduces the Freund-Rubin solution when extremized11, and identifies three contri-

butions: the first arises from the dilaton tadpole, the second arises from the curvature

of the internal space, and the third arises from the flux. Since each contribution is

exponential in both φ and ψ, extremizing V one can express VM and Vn in terms of

VT, so that

V =
p

D− 2

(
1− (q− 1)

γ

α

)
VT , (3.38)

which is indeed positive whenever eq. (3.35) holds. Moreover, the same procedure

also shows that the determinant of the corresponding Hessian matrix is proportional

to (q− 1) γ
α − 1, so that de Sitter solutions always entail an instability. This constitutes

a special case of the general no-go results that we shall present in Chapter 8.

3.3 In orientifold models: AdS3 ×M7 solutions

For later convenience, let us present the explicit solution in the case of the two

orientifold models. Since α = 1 in this case, they admit AdS3 ×M7 solutions

with electric flux, and in particularM7 = S7 ought to correspond to near-horizon

geometries of D1-brane stacks, according to the microscopic picture that we shall

discuss in Chapter 5 and Chapter 6. On the other hand, while D5-branes are also

present in the perturbative spectra of these models [76], they appear to behave

11Notice that, in order to derive eq. (3.37) substituting the ansatz of eq. (3.36) in the action, the flux
contribution is to be expressed in the magnetic frame, since the correct equations of motion arise varying
φ and Bp+1 independently, while the electric-frame ansatz relates them.
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differently in this respect, since no corresponding AdS7 × S3 vacuum exists12. Using

the values in eq. (3.4), one finds

gs = 3× 2
7
4 T−

3
4 n−

1
4 ,

R = 3−
1
4 × 2−

5
16 T

1
16 n

3
16 ,

L2 =
R2

6
.

(3.39)

Since every parameter in this AdS3 ×M7 solution is proportional to a power of n,

one can use the scalings

gs ∝ n−
1
4 , R ∝ n

3
16 (3.40)

to quickly derive some of the results that we shall present in Chapter 5.

3.4 In the heterotic model: AdS7 ×M3 solutions

The case of the heterotic model is somewhat subtler, since the physical parameters of

eq. (3.7) only allow for solutions with magnetic flux,

n =
1

Ω3

∫
M3

H3 . (3.41)

The corresponding microscopic picture, which we shall discuss in Chapter 5 and

Chapter 6, would involve NS5-branes, while the dual electric solution, which would

be associated to fundamental heterotic strings, is absent. Dualities of the strong/weak

type could possibly shed light on the fate of these fundamental strings, but their

current understanding in the non-supersymmetric context is limited13.

In the present case the Kalb-Ramond form lives on the internal space, so that

dualizing it one can recast the solution in the form of eq. (3.34), using the values in

12This is easily seen dualizing the three-form in the orientifold action (3.4), which inverts the sign of α,
in turn violating the condition of eq. (3.33).

13Despite conceptual and technical issues, non-supersymmetric dualities connecting the heterotic
model to open strings have been explored in [77, 78].
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eq. (3.9) for the parameters. The resulting AdS7 ×M3 solution is described by

gs = 5
1
4 T−

1
2 n−

1
2 ,

R = 5−
5

16 T
1
8 n

5
8 ,

L2 = 12 R2 ,

(3.42)

so that the relevant scalings are

gs ∝ n−
1
2 , R ∝ n

5
8 . (3.43)

3.5 Compactifications with more factors

As a natural generalization of the Freund-Rubin solutions that we have described in

the preceding section, one can consider flux compactifications on products of Einstein

spaces. The resulting multi-flux landscapes appear considerably more complicated to

approach analytically, but can feature regimes where some of the internal curvatures

are parametrically smaller than the other factors, including space-time [79].

Heterotic AdS4 ×M3 ×N3 solutions

As a minimal example of a multi-flux landscape, let us consider a product of two

internal Einstein manifolds of equal dimensions, so that there are only two cycles

that can be threaded by a flux. Specifically we focus on the heterotic model, since

multi-flux landscape of this type involve equations of motion that cannot be solved in

closed form for generic values of the parameters. Letting L , R1 , R2 be the curvature

radii of the AdS4 and of the internal spacesM3 , N3 respectively, VolM3 , VolN3 the

corresponding volume forms, and letting

H3 =
n1

R3
1

VolM3 +
n2

R3
2

VolN3 (3.44)
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in the magnetic frame, the equations of motion simplify to

5 V =

(
n2

1

R6
1
+

n2
2

R6
2

)
f ,

6
L2 = V ,

4
R2

1
= −V +

n2
1

R6
1

f ,

4
R2

2
= −V +

n2
2

R6
2

f ,

(3.45)

and imply that space-time is indeed AdS4. Moreover, letting n1 � n2 achieves the

partial scale separation
√

α′ � L , R1 � R2. Indeed, solving the first equation with

respect to φ and substituting the result in the other equations, the resulting system can

be solved asymptotically. To this end, taking the ratio of the last two equation gives

R2
2

R2
1
=

4 n2
1

n2
2

R6
2

R6
1
− 1

4− n2
1

n2
2

R6
2

R6
1

, (3.46)

so that
R2

2

R2
1
∼ 4

1
3

(
n2

n1

) 2
3

− 5
4

, (3.47)

where we retained the subleading term in order to substitute the result in eq. (3.45).

Doing so finally yields

gs ∼ 4× 3−
3
4 n−

1
2

1 ,

L ∼ 3
7
8 × 2−

1
2 n

5
8
1 ,

R1 ∼ 3
7
16 × 4−

3
4 n

5
8
1 ,

R2 ∼ 3
7
16 × 4−

7
12 n

7
24
1 n

1
3
2 ,

(3.48)

where we have expressed the results in units of T for clarity. However, the resulting

scale separation does not reduce the effective space-time dimension at low energies,

which appears to resonate with the results of [79] and with recent conjectures regarding

scale separation in the absence of supersymmetry [80, 81]14.

As a final remark, it is worth noting that the stability properties of multi-flux

landscapes appear qualitatively different from the those of single-flux landscapes.

This issue has been addressed in [83] in the context of models with no exponential

14For recent results on the issue of scale separation in supersymmetric AdS compactifications, see [82].
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dilaton potentials.

Heterotic AdS5 ×H2 ×M3 solutions

To conclude let us observe that the single-flux Freund-Rubin solutions that we have

described in Section 3.1 apply to any product of Einstein manifolds, provided that the

curvature radii be suitably tuned. As an example, the AdS7 factor in the heterotic

solution can be interchanged with AdS5 ×H2, where H2 is a compact Einstein

hyperbolic manifold, e.g. a torus with positive genus, or more generally a quotient of

the hyperbolic plane by a suitable discrete group. The solution exists provided the

curvature radii L5 , L2 of the two spaces satisfy

4
L2

5
=

1
L2

2
, (3.49)

so that the AdS5 ×H2 factor retains the Einstein property.





4Classical stability: perturbative analysis

In this chapter we investigate in detail the classical stability of the solutions that

we have described in the preceding chapter, presenting the results of [27]. To this

end, we derive the linearized equations of motion for field fluctuations around each

background, and we study the resulting conditions for stability. In Section 1 we

study fluctuations around the Dudas-Mourad solutions, starting from the static

case, and subsequently applying our results to the cosmological case in Section 2.

Intriguingly, in this case a logarithmic instability of the homogeneous tensor mode

suggests a tendency toward dynamical compactification1. Then, in Section 3 we

proceed to the AdS× S solutions2, deriving the linearized equations of motion and

comparing the resulting masses to the Breitenlohner-Freedman bounds. While the

AdS compactifications that we have obtained in the preceding chapter allow for

general Einstein internal spaces, choosing the sphere simplifies the analysis of tensor

and vector perturbations. Moreover, as we shall argue in Chapter 6, the case of

AdS× S appears to relate to near-horizon geometries sourced by brane stacks.

1 S TA B I L I T Y O F S TAT I C D U D A S - M O U R A D S O L U T I O N S

Let us begin deriving the linearized equations of motion for the static Dudas-Mourad

solutions that we have presented in the preceding chapter. The equations of interest

are now
2 φ −V ′(φ) = 0 ,

RMN +
1
2

∂Mφ ∂Nφ +
1
8

gMN V = 0 ,
(4.1)

1An analogous idea in the context of higher-dimensional dS space-times was put forth in [84].
2A family of non-supersymmetric AdS7 solutions of the type IIA superstring was recently studied

in [85], and its stability properties were investigated in [86].
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and the corresponding perturbed fields take the form

ds2 = e2Ω(z) (ηMN + hMN(x, z)) dxM dxN ,

φ = φ(z) + ϕ(x, z) .
(4.2)

As a result, the perturbed Ricci curvature can be extracted from

R(1)
MN = 8∇M∇NΩ + (ηMN + hMN)∇A∇AΩ

− 8
(
∇MΩ∇NΩ− (ηMN + hMN)∇AΩ∇AΩ

)
+

1
2

((
29 + ∂2

z
)

hMN −∇M (∇ · h)N −∇N (∇ · h)M +∇M∇NhA
A

)
,

(4.3)

an expression valid up to first order in the perturbations. Here and henceforth

29 denotes the d’Alembert operator pertaining to Minkowski slices, while in the

following we shall denote derivatives ∂z with respect to z by f ′ ≡ ∂z f (except for the

dilaton potential V). In addition, covariant derivatives do not involve Ω, and thus

refer to ηMN + hMN , which is also used to raise and lower indices. Up to first order

the metric equations of motion thus read

R(1)
MN +

1
2

∂Mφ ∂Nφ +
1
2

∂Mφ ∂N ϕ +
1
2

∂M ϕ ∂Nφ

+
1
8

e2Ω ((ηMN + hMN)V + ηMN V ′ ϕ
)
= 0 ,

(4.4)

and combining this result with the dilaton equation of motion in eq. (4.1) yields the

unperturbed equations of motion

Ω′′ + 8
(
Ω′
)2

+
1
8

e2Ω V = 0 ,

9 Ω′′ +
1
8

e2Ω V +
1
2
(
φ′
)2

= 0 ,

φ′′ + 8 Ω′ φ′ − e2Ω V ′ = 0 ,

(4.5)

where V and V ′ shall henceforth denote the potential and its derivative computed on

the classical vacuum. Notice that the first two equations can be equivalently recast in

the form
72
(
Ω′
)2 − 1

2
(
φ′
)2

+ e2Ω V = 0 ,

8
(

Ω′′ −
(
Ω′
)2
)
+

1
2
(
φ′
)2

= 0 ,
(4.6)
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and that the equation of motion for φ is a consequence of these.

All in all, eq. (4.3) finally leads to

− 1
8

e2Ω ηµν V ′ ϕ = − 4 Ω′
(

∂µhν9 + ∂νhµ9 − h′µν

)
− ηµν

[ (
Ω′′ + 8

(
Ω′
)2
)

h99

+ Ω′
(

∂αhα9 − 1
2
(
h′αα − h′99

)) ]
+

1
2

[
29 hµν + h′′µν − ∂µ

(
∂αhα

ν + h′ν9
)

− ∂ν

(
∂αhα

µ + h′µ9

) ]
− 1

2
∂µ∂ν (hα

α + h99) ,

− 1
2

φ′ ∂µ ϕ = − 4 Ω′ ∂µh99

+
1
2
(
29 hµ9 − ∂µ∂αhα

9 − ∂αh′αµ + ∂µh′αα

)
,

− φ′ ϕ′ − 1
8

e2Ω (V h99 + V ′ ϕ
)
= − 4 Ω′ h′99 −Ω′

(
∂αhα

9 −
1
2
(
h′αα − h′99

))
+

1
2
(
29 h99 − 2 ∂αh′α9 + h′′αα

)
,

(4.7)

while the perturbed dilaton equation of motion reads

29 ϕ + ϕ′′ + 8 Ω′ ϕ′ + φ′
(

1
2

h′αα −
1
2

h′99 − ∂αhα
9 − 8 Ω′ h99

)
− φ′′ h99 − e2Ω V ′′ ϕ = 0 .

(4.8)

Starting from eqs. (4.7) and (4.8) we shall now proceed separating perturbations into

tensor, vector and scalar modes.

1.1 Tensor and vector perturbations

Tensor perturbations are simpler to study, and to this end one only allows a transverse

trace-less hµν. After a Fourier transform with respect to x one is thus led to

h′′µν + 8 Ω′ h′µν + m2 hµν = 0 , (4.9)

where m2 ≡ − pµ pν ηµν, which defines a Schrödinger-like problem along the lines

of eq. (4.25), with b = 0 and a = 8 Ω′. Hence, with Dirichlet or Neumann boundary
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conditions the argument of Section 1.2 applies, and one obtains a discrete spectrum

of masses. Moreover, one can verify that there is a normalizable mode with hµν

independent of z, which signals that at low energies gravity is effectively nine-

dimensional3.

Vector perturbations entail some mixings, since in this case they originate from

transverse hµ9 and from the trace-less combination

hµν = ∂µΛν + ∂νΛµ , (4.10)

so that

∂µΛµ = 0 . (4.11)

The relevant vector combination

Cµ = hµ9 −Λ′µ (4.12)

satisfies the two equations

(
pµ Cν + pν Cµ

)′
+ 8 Ω′

(
pµ Cν + pν Cµ

)
= 0 ,

m2 Cµ = 0 ,
(4.13)

the first of which is clearly solved by

Cµ = C(0)
µ e−8Ω , (4.14)

with a constant C(0)
µ . In analogy with the preceding discussion, one might be tempted

to identify a massless vector. However, one can verify that, contrary to the case of

tensors, this is not associated to a normalizable zero mode. The result is consistent

with standard expectations from Kaluza-Klein theory, since the internal manifold has

no translational isometry.

3The same conclusion can be reached computing the effective nine-dimensional Newton constant [24].
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1.2 Scalar perturbations

The scalar perturbations are defined by4

hµν = ηµν eip·x A(z) , hµ9 = ipµ D(z) eip·x , h99 = eip·x C(z) , (4.15)

with p · x ≡ pµ xν ηµν, so that the Einstein equations become altogether the four

scalars A, C, D and φ obey the linearized equations

− 1
8

e2Ω V ′ ϕ = −Ω′
(

m2 D− 1
2
(
17 A′ − C′

))
+

1
2
(
m2 A + A′′

)
− C

(
Ω′′ + 8

(
Ω′
)2
)

,

−φ′ ϕ′ − 1
8

e2Ω (V C + V ′ ϕ
)
= −Ω′

(
m2 D− 9

2
(

A′ − C′
))

+
1
2
(
m2 (C− 2 D′

)
+ 9 A′′

)
,

7 A + C− 2 D′ − 16 Ω′ D = 0 ,

4 Ω′ C− 4 A′ − 1
2

φ′ ϕ = 0 .

(4.16)

Notice that some of the metric equations, the third one and the fourth one above, are

constraints, and that there is actually another constraint that obtains combining the

first and the last so as to remove A′′. Moreover, the dilaton equation of motion is a

consequence of these.

The system, however, has a residual local gauge invariance, a diffeomorphism of

the type

z′ = z + ε(x, z) , (4.17)

which is available in the presence of a single internal dimension and implies

dz = dz′
(

1− dε

dz′

)
− dxµ ∂µε . (4.18)

4We reserve the symbol B to scalar perturbations of the form field, which we shall introduce in
Section 3.



44 Chapter 4. Classical stability: perturbative analysis

Taking into account the original form of the metric, which in terms of the scalar

perturbations of eq. (4.15) reads

ds2 = e2Ω ((1 + A) dx2
1,8 + 2 dz dxµ ∂µD + (1 + C) dz2) , (4.19)

one can thus identify the transformations

A → A− 2 Ω′ ε ,

C → C− 2 Ω′ ε− 2 ε′ ,

D → D− ε ,

ϕ → −φ′ ε .

(4.20)

Notice that D behaves as a Stückelberg field, and can be gauged away, leaving only

one scalar degree of freedom after taking into account the constraints, as expected

from Kaluza-Klein theory. After gauging away D the third equation of eq. (4.16)

implies that

C = −7 A , (4.21)

while the third equation of eq. (4.16) implies that

ϕ = − 8
φ′
(

A′ + 7 Ω′ A
)

. (4.22)

Substituting these expressions in the first equation of eq. (4.16) finally leads to a

second–order eigenvalue equation for m2:

A′′ +
(

24 Ω′ − 2
φ′

e2Ω V ′
)

A′ +
(

m2 − 7
4

e2Ω V − 14 e2Ω Ω′
V ′

φ′

)
A = 0 . (4.23)

There is nothing else, since differentiating the fourth equation of eq. (4.16) and using

eq. (4.6) gives

−φ′ ϕ′ = −8 A′′ − 120 Ω′ A′ + 8 e2Ω V ′

φ′
A′ + 7 e2Ω

(
V + 8 Ω′

V ′

φ′

)
A . (4.24)
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Taking this result into account, one can verify that the second equation of eq. (4.16)

also leads to eq. (4.23), whose properties we now turn to discuss.

The issue at stake is the stability of the solution, which in this case reflects itself

in the sign of m2: a negative value would signal a tachyonic instability in the nine-

dimensional Minkowski space, and one can show that the solution corresponding the

lowest-order level potentials is stable, in both the orientifold and heterotic models. To

this end, let us recall that a generic second-order equation of the type

f ′′(z) + a(z) f ′(z) +
(
m2 − b(z)

)
f (z) = 0 (4.25)

can be turned into a Schrödinger-like form via the transformation

f (z) = Ψ(z) e−
1
2

∫
adz . (4.26)

One is thus led to

Ψ′′ +
(

m2 − b− a′

2
− a2

4

)
Ψ = 0 , (4.27)

and tracing the preceding steps one can see that Ψ ∈ L2. Eq. (4.27) can be conveniently

discussed connecting it to a more familiar problem of the type

Ĥ Ψ = m2 Ψ , Ĥ ≡ b +A†A , (4.28)

with

A ≡ − d
dz

+
a
2

, A† ≡ d
dz

+
a
2

. (4.29)

Once these relations are supplemented with Dirichlet or Neumann conditions at each

end in z, one can conclude that in all these cases the operator

A†A ≥ 0 . (4.30)

All in all, positive b then implies positive values of m2, and this condition is indeed

realized for the static Dudas-Mourad solutions, since

b =
7
4

e2Ω
(

V + 8 Ω′
V ′

φ′

)
, (4.31)
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and the corresponding V ∝ e
3
2 φ, so that

b =
7
4

e2Ω V
(

1 + 12
Ω′

φ′

)
. (4.32)

The ratio of derivatives can be computed in terms of the y coordinate using the

expressions that we have presented in the preceding chapter, yielding

b =
7 e2Ω V

1 + 9
4 αO y2

≥ 0 . (4.33)

For the heterotic model V ∝ e
5
2 φ, so that

b =
7
4

ε2Ω V
(

1 + 20
Ω′

φ′

)
. (4.34)

Making use of the explicit solutions that we have presented in the preceding chapter,

one thus finds

b =
8
3

e2Ω V
1− 1

2 tanh2 (
√

αH y)

1 + 4 tanh2 (
√

αH y)
≥ 0 , (4.35)

which is again non negative, so that both nine-dimensional Dudas-Mourad solutions

are perturbatively stable solutions of the respective Einstein-dilaton systems for all

allowed choices of boundary conditions at the ends of the interval. The presence

of regions where curvature or string loop corrections are expected to be relevant,

however, makes the lessons of these results less evident for String Theory.

As a final comment, let us mention that one can repeat the calculations that we

have presented in D dimensions without further difficulties, and one finds

b = 2 (D− 3) e2Ω
(

V
D− 2

+
D− 2

8
Ω′

V ′

φ′

)
≥ 0 , (4.36)

so that the resulting solutions are perturbatively stable in any dimension.
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2 S TA B I L I T Y O F C O S M O L O G I C A L D U D A S - M O U R A D S O -

L U T I O N S

Let us now turn to the issue of perturbative stability of the Dudas-Mourad cosmologi-

cal solutions that we have presented in the preceding chapter. The following analysis

is largely analogous to the one of the preceding section, and we shall begin discussing

tensor perturbations, which reveal an interesting feature in the homogeneous case.

2.1 Tensor perturbations: an intriguing instability

The issue at stake, here and in the following sections, is whether solutions determined

by arbitrary initial conditions provided some time after the initial singularity can

grow in the future evolution of the universe. This can be ascertained rather simply at

large times, which translate into large values of the conformal time η, where many

expressions simplify. Moreover, for finite values of η the geometry is regular, and

the coefficients in eq. (4.37) are bounded, so that the solutions are also not singular.

However, a growth of order O(1) is relevant for perturbations, and therefore we shall

begin with the late-time asymptotics and then, at the end of the section, we shall also

approach the problem globally.

In the ten-dimensional orientifold and heterotic models of interest, performing

spatial Fourier transforms and proceeding as in the preceding section, one can show

that tensor perturbations evolve according to

h′′ij + 8 Ω′ h′ij + k2 hij = 0 , (4.37)

where “primes” denote derivatives with respect to the conformal time η. Let us begin

observing that, for all exponential potentials

V = T eγφ (4.38)

with γ ≥ 3
2 , and therefore for the potentials pertaining to the orientifold models,

which have γ = 3
2 and are “critical” in the sense of [69], but also for the heterotic
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model, which has γE = 5
2 and is “super-critical” in the sense of [69], the solutions of

the background equations

Ω′′ + 8
(
Ω′
)2 − 1

8
e2Ω V = 0 ,

9 Ω′′ − 1
8

e2Ω V +
1
2
(
φ′
)2

= 0 ,

φ′′ + 8 Ω′ φ′ + γ e2Ω V = 0

(4.39)

are dominated, for large values of η, by

φ ∼ − 3
2

log (
√

αH η) , Ω ∼ 1
8

log (
√

αH η) . (4.40)

In the picture of [69], in this region the scalar field has overcome the turning point

and is descending the potential, so that the supergravity approximation is expected

to be reliable, but the potential contribution is manifestly negligible only in the

“super-critical” case, where e2Ω V decays faster than 1
η2 for large η. However, the

result also applies for γ = 3
2 , which marks the onset of the “climbing behavior”. This

can be appreciated retaining subleading terms, which results in

φ ∼ − 3
2

log (
√

αO η)− 5
6

log log (
√

αO η) ,

Ω ∼ 1
8

log (
√

αO η) +
1
8

log log (
√

αO η) ,
(4.41)

so that the potential decays as

e2Ω V ∼ T
2 αO η2 log (

√
αO η)

, (4.42)

which is faster than 1
η2 . Notice that a similar behavior, but with the scalar climbing up

the potential, also emerges for small values of η, for which

φ ∼ 3
2

log (
√

αO,H η) , Ω ∼ 1
8

log (
√

αO,H η) (4.43)

for all γ ≥ 3
2 , and thus in all orientifold and heterotic models of interest. However,

these expressions are less compelling, since they concern the onset of the climbing

phase. The potential is manifestly subleading for small values of η, but curvature

corrections, which are expected to be relevant in this region, are not taken into account.
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In conclusion, for γ ≥ 3
2 and for large values of η eq. (4.40) holds and eq. (4.37), which

describes tensor perturbations, therefore approaches

h′′ij +
1
η

h′ij ∼ − k2 hij . (4.44)

Consequently, for k 6= 0

hij ∼ Aij J0 (kη) + Bij Y0 (kη) , (4.45)

and the oscillations are damped for large times, so that no instabilities arise.

On the other hand, an intriguing behavior emerges for k = 0. In this case the

solution of eq. (4.44) implies that

hij ∼ Aij + Bij log
(

η

η0

)
, (4.46)

and therefore spatially homogeneous tensor perturbations experience in general a

logarithmic growth. This result indicates that homogeneity is preserved while isotropy

is generally violated in the ten-dimensional “climbing-scalar” cosmologies [69] that

emerge in string theory with broken supersymmetry. One can actually get a global

picture of the phenomenon: the linearized equation of motion for k = 0 can be solved

in terms of the parametric time t, and one finds

hij = Aij + Bij log (
√

αO t) (4.47)

for the orientifold models, while

hij = Aij + Bij log tan (
√

αH t) (4.48)

for the heterotic model. These results are qualitatively similar, if one takes into account

the limited range of t in the heterotic model, and typical behaviors are displayed in

fig. 4.1.

The general lesson is that perturbations acquire O(1) variations toward the end of

the climbing phase, where curvature corrections do not dominate the scene anymore,

thus providing support to the present analysis. This result points naturally to an
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F I G U R E 4 . 1 : the scale factor eΩ (red, dotted), the unstable homoge-
neous tensor mode (blue) and the dilaton φ (green, dashed) as functions

of the parametric time
√

αO t.

awaited tendency toward lower-dimensional space-times, albeit without a selection

criterion for the resulting dimension5. While perturbation theory is at most a clue

to this effect, the resulting picture appears enticing, and moreover the dynamics

becomes potentially richer and more stable in lower dimensions, where other branes

that become space-filling can inject an inflationary phase devoid of this type of

instability [27].

2.2 Scalar perturbations

Scalar perturbations exhibit a very different behavior in the presence of the exponential

potentials of eq. (4.38) with γ ≥ 3
2 . Our starting point is now the analytic continuation

of eq. (4.23) with respect to z→ i η, which reads

A′′ +
(

24 Ω′ + 2 e2Ω V ′

φ′

)
A′ +

(
k2 +

7
4

e2Ω V + 14 e2Ω Ω′
V ′

φ′

)
A = 0 . (4.49)

5This result resonates at least with some previous investigations [87, 88] of matrix models related to
the type IIB superstring [89].
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As in eq. (4.37), we have also replaced m2 with − k2, which originates from a spatial

Fourier transform, and “primes” denote again derivatives with respect to the confor-

mal time η. As we have stressed in the preceding section, the potential is subdominant

in eq. (4.49) for γ ≥ 3
2 , which leads to the asymptotic behaviors of eq. (4.43) during

the climbing phase, and of eq. (4.40) during the descending phase. As a result, during

the latter eq. (4.49) reduces to

A′′ +
3
η

A + k2 A = 0 , (4.50)

whose general solution takes the form

A = A1
J1 (kη)

η
+ A2

Y1 (kη)

η
, (4.51)

with A1, A2 constants. For k 6= 0 the amplitude always decays proportionally to η−
3
2 ,

while for k = 0 the two independent solutions of eq. (4.49) are dominated by

A = A3 +
A4

η2 , (4.52)

with A3, A4 constants. Therefore, scalar perturbations do not grow in time, even

for the homogeneous mode with k = 0, for γ ≥ 3
2 , and thus, in particular, for

the orientifold models and for the heterotic model. Similar results can be obtained

studying the perturbative stability of linear dilaton backgrounds, both in the static

case and in the cosmological case [27].

3 S TA B I L I T Y O F AdS F L U X C O M PA C T I F I C AT I O N S

In this section we discuss the perturbative stability of the AdS flux compatifications

that we have presented in the preceding chapter. In order to simplify the analysis of

tensor and vector perturbations, we shall work with internal spheres, but the results

regarding scalar perturbations are independent of this choice6, insofar as the internal

space is Einstein. In the following we shall work in the duality frames where p = 1,

6The stability analysis of scalar perturbations can also be carried out in general dimensions and
for general parameters without additional difficulties, but we have not found such generalizations
particularly instructive in the context of this thesis.
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which is the electric frame in the orientifold models, for which α = 1, and the magnetic

frame in the heterotic model, for which α = −1. Let us begin from the orientifold

models, writing the perturbations

gMN = g(0)MN + hMN , φ = φ0 + ϕ , BMN = B(0)
MN +

e−αφ0

c
bMN , (4.53)

where the background metric is split as

ds2
(0) = L2 λµν dxµ dxν + R2 γij dyi dyj , (4.54)

and linearizing the resulting equations of motion. We shall also make use of the

convenient relations

[∇µ ,∇ν]Vρ =
1
L2

(
λνρVµ − λµρVν

)
,

[∇i ,∇j]Vk = −
1

R2

(
γjkVi − γikVj

)
,

(4.55)

valid for maximally symmetric spaces. The linearized equations of motion for the

form field are7

210 bµν −∇µ∇MbMν −∇ν∇MbµM +
2
L2 bµν

+ 4R+
O εµνρ

(
α∇ρφ−∇ihi

ρ − 1
2
∇ρλ · h +

1
2
∇ργ · h

)
= 0 ,

210 bµi −∇µ∇MbMi −∇i∇MbµM + 2R−O bµi + 4R+
O εαβµ∇αhβ

i = 0 ,

210 bij −∇i∇MbMj −∇j∇MbiM −
10
R2 bij = 0 ,

(4.56)

where, here and in the following, the ten-dimensional d’Alembert operator

210 = 2+∇2 (4.57)

is split in terms of the AdS and sphere contributions, and we have defined

R±O ≡
1
L2 ±

3
R2

(4.58)

7Here and in the following ε denotes the Levi-Civita tensor, which includes the metric determinant
prefactor.
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for convenience. Similarly, the linearized equation of motion for the dilaton is

210 ϕ−V ′′0 ϕ + 2R+
O

(
α2 ϕ− α λ · h

)
− α

2
εµνρ∇µbνρ = 0 . (4.59)

Finally, the linearized Einstein equations rest on the linearized Ricci tensor

R(1)
MN = R(0)

MN +
1
2

(
2 hMN −∇M (∇ · h)N −∇N (∇ · h)M +∇M∇NhA

A

)
+

1
2

R(0) A
M hAN +

1
2

R(0) A
N hAM − R(0) A

M
B

N hAB ,
(4.60)

and read

210 hµν +
2
L2 hµν −∇µ (∇ · h)ν −∇ν (∇ · h)µ +∇µ∇ν (λ · h + γ · h)

+ λµν

(
− 5α

2
R+

O ϕ− 3R−O λ · h− 3
4

εαβγ∇αbβγ

)
= 0 ,

210 hµi + 2R+
O hµi −∇µ (∇ · h)i −∇i (∇ · h)µ +∇µ∇i (λ · h + γ · h)

+
1
2

εαβ
µ

(
∇ibαβ +∇αbβi +∇βbiα

)
= 0 ,

210 hij −
2

R2 hij −∇i (∇ · h)j −∇j (∇ · h)i +∇i∇j (λ · h + γ · h)

+ γij

(
2

R2 γ · h +R+
O

(
3α

2
ϕ− λ · h

)
− 1

4
εαβγ∇αbβγ

)
= 0 ,

(4.61)

where λ · h and γ · h denote the partial traces of the metric perturbation with respect

to AdS and the internal sphere. In all cases and models, the perturbations depend on

the AdS coordinates xµ and on the sphere coordinates yi, and they will be expanded in

terms of the corresponding spherical harmonics8, whose structure is briefly reviewed

in Appendix A. For instance, expanding internal scalars with respect to Sn spherical

harmonics will always result in expressions of the type

hµν(x, y) = ∑
`

hµν , I1...I`(x)Y I1...I`
(n) (y) , (4.62)

where Ii = 1, . . . , n and hµν, I1 ...I`(x) is totally symmetric and trace-less in the Euclidean

Ii labels. However, the eigenvalues of the internal Laplace operator ∇2 will only

depend on `. Hence, for the sake of brevity, we shall leave the internal labels implicit,

although in some cases we shall refer to their ranges when counting multiplicities.

For tensors in internal space there are some additional complications. For example,

8Choosing a different internal space would require knowledge of its (tensor) Laplacian spectrum.
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expanding mixed metric components one obtains expressions of the type

hµi(x, y) = ∑
`

hµJ , I1...I`(x)Y I1 ...I` , J
(n) i (y) , (4.63)

where hµJ, I1 ...I`(x) corresponds to a “hooked” Young tableau of mixed symmetry and

` ≥ 1, as explained in Appendix A. Here the Y(n) i are vector spherical harmonics,

and we shall drop all internal labels, for brevity, also for the internal tensors that we

shall consider.

In the heterotic model the linearized equations of motion for the form field read

210 bij −∇i∇MbMj −∇j∇MbiM −
2

R2 bij

+ 4R+
H εijk

(
α∇kφ−∇αhα

k − 1
2
∇kγ · h +

1
2
∇kλ · h

)
= 0 ,

210 biµ −∇i∇MbMµ −∇µ∇MbiM + 2R−H biµ + 4R+
H εkli∇khl

µ = 0 ,

210 bµν −∇µ∇MbMν −∇ν∇MbµM +
10
L2 bµν = 0 ,

(4.64)

where now

R±H ≡
3
L2 ±

1
R2 , (4.65)

while the linearized equation of motion for the dilaton is

210 ϕ−V ′′0 ϕ− 2R+
H

(
α2 ϕ− α γ · h

)
− α

2
εijk∇ibjk = 0 . (4.66)

Finally, the linearized Einstein equations rest on eq. (4.60) and read

210 hij −
2

R2 hij −∇i (∇ · h)j −∇j (∇ · h)i +∇i∇j (λ · h + γ · h)

+ γij

(
5α

2
R+

H ϕ− 3R−H γ · h− 1
4

εklm∇kblm

)
+

1
2

εkl
i
(
∇jbkl +∇kbl j +∇lbjk

)
+ (i↔ j) = 0 ,

210 hiµ − 2R+
H hiµ −∇i (∇ · h)µ −∇µ (∇ · h)i +∇i∇µ (λ · h + γ · h)

+
1
2

εkl
i
(
∇µbkl +∇kblµ +∇lbµk

)
= 0 ,

210 hµν +
2
L2 hµν −∇µ (∇ · h)ν −∇ν (∇ · h)µ +∇µ∇ν (λ · h + γ · h)

+ λµν

(
− 2

L2 λ · h−R+
H

(
3α

2
ϕ− γ · h

)
− 1

4
εijk∇ibjk

)
= 0 .

(4.67)
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In order to simplify the linearized equations of motion for tensor, vector and scalar

perturbations it is convenient to introduce (minus) the eigenvalues of the scalar

Laplacian on the unit Sn,

Λn ≡ ` (`+ n− 1) , ` ∈ {0 , 1 , 2 , . . . } , (4.68)

as well as the two parameters

σ3 ≡ 1 + 3
L2

R2 =
3
2

, τ3 ≡ L2 V ′′0 =
9
2

(4.69)

for the orientifold models, and

σ7 ≡ 3 +
L2

R2 = 15 , τ7 ≡ L2 V ′′0 = 75 (4.70)

for the heterotic model. These parameters are related to the first and second derivatives

of the dilaton tadpole potential evaluated on the background solutions, and thus we

shall explore the stability of these solutions varying their values. While in principle

including curvature corrections or string loop corrections would modify the values in

eqs. (4.69) and (4.70), one could expect that the differences would be subleading in

the regime of validity of the present analysis, which corresponds to large fluxes.

3.1 An aside: an equation relevant for scalar perturbations

Before proceeding to study tensor, vector and scalar perturbations, let us derive a

useful result. Let us consider an equation of the form

λµν A +∇µ∇νB = 0 , (4.71)

or similarly

γij A +∇i∇jB = 0 , (4.72)

which will appear recurrently in the analysis of scalar perturbations. Referring for

definiteness to the first form, we shall prove that this type of equation implies that A
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and B must both vanish, provided that A and B satisfy suitable boundary conditions9.

To begin with, one can take the trace, and if the AdS space is of dimension d this gives

d A +2 B = 0 . (4.73)

Then one can take the divergence, obtaining finally

A +2 B +
1− d

L2 B = 0 . (4.74)

Subtracting from this eq. (4.73) one finds

A +
1
L2 B = 0 , (4.75)

and consequently eq. (4.71) can be recast in the form

∇µ∇νB =
1
L2 λµν B . (4.76)

If B vanishes A has to vanish as well, and thus we shall assume that B > 0 without

loss of generality, since eq. (4.76) is linear in B. Then, letting C = log B results in

∇µ∇νC +∇µC∇νC =
1
L2 λµν . (4.77)

Redefining the background metric by a coordinate transformation, one can remove

the first term, but the resulting equation is inconsistent, since ∇µC∇νC defines a

matrix that is clearly of lower rank than the metric λµν. Hence B = 0 and therefore, a

fortiori, A = 0.

3.2 Tensor and vector perturbations in AdS

Let us now move on to study tensor and vector perturbations, starting from the

orientifold models. Following standard practice, we classify them referring to their

behavior under the isometry group SO(2, 2)× SO(8) of the AdS3 × S7 background.

In this fashion, the possible unstable modes violate the Breitenlohner-Freedman

9For instance, both A and B must decay at infinity.
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(BF) bounds, which depend on the nature of the fields involved and correspond, in

general, to finite negative values of (properly defined) squared AdS masses. Indeed,

as reviewed in Appendix B, care must be exercised in order to identify the proper

masses to which the bounds apply, since in general they differ from the eigenvalues

of the corresponding AdS d’Alembert operator. In particular, aside from the case of

scalars, massless field equations always exhibit gauge invariance.

Tensor perturbations

Let us begin considering tensor perturbations, which result from transverse trace-less

hµν, with all other perturbations vanishing. The corresponding equations of motion

(
2− Λ7 (σ3 − 1)

3L2

)
hµν +

2
L2 hµν = 0 , (4.78)

where we have replaced the internal radius R with the AdS radius L using eq. (4.69),

is obtained expanding the perturbations in spherical harmonics using the results

summarized in Appendix A. These harmonics are eigenfunctions of the internal

Laplacian in eq. (4.57). In order to properly interpret this result, however, it is crucial

to observe that the massless tensor equation in AdS is the one determined by gauge

invariance. In fact, the linearized Ricci tensor determined by eq. (4.60) is not invariant

under linearized diffeomorphisms of the AdS background, since

δξ Rµν =
2
L2

(
∇µξν +∇νξµ

)
. (4.79)

However, the fluxes that are present endow, consistently, the stress-energy tensor

with a similar behavior, and ` = 0 in eq. (4.78) corresponds precisely to massless

modes. Thus, as expected from Kaluza-Klein theory, eq. (4.78) describes a massless

field for ` = 0, and an infinite tower of massive ones for ` > 0. These perturbations

are all consistent with the BF bound, and therefore no instabilities are present in this

sector.

There are also (space-time) scalar excitations resulting from the trace-less part of

hij that is also divergence-less, which is a tensor with respect to the internal rotation
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group and thus ` ≥ 2. According to the results in Appendix A, they satisfy

(
L2 2− Λ7 (σ3 − 1)

3

)
hij = 0 , (4.80)

so that their squared masses are all positive. Finally, there are massive bij perturba-

tions, which are divergence-less and satisfy

(
L2 2− (Λ7 + 8) (σ3 − 1)

3

)
bij = 0 , (4.81)

where again ` ≥ 2.

The corresponding tensor perturbations in the heterotic model, satisfy

(
L2 2−Λ3 (σ7 − 3)

)
hµν +

2
L2 hµν = 0 , (4.82)

which, for ` = 0, describes a massless field, accompanied by a tower of Kaluza-Klein

fields for higher `. Hence, once again there are no instabilities in this sector.

Analogously to the case of the orientifold models, there are massive (space-time)

scalar excitations resulting from the trace-less part of hij that is also divergence-less,

which satisfy (
L2 2−Λ3 (σ7 − 3)

)
hij = 0 , (4.83)

so that the results in Appendix A imply that again no instabilities are present. There

are also no instabilities arising from transverse bµν excitations, which satisfy

(
L2 2−Λ3 (σ7 − 3) + 10

)
bµν = 0 , (4.84)

so that the lowest ones, corresponding to ` = 0, are massless.
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Vector perturbations

The analysis of vector perturbations is slightly more involved, due to mixings between

hµi and bµi induced by fluxes. The relevant equations are

210 bµi + 2R−O bµi + 4R+
O εαβµ∇αhβ

i = 0 ,

210 hµi + 2R+
O hµi +

1
2

εαβ
µ

(
∇αbβi +∇βbiα

)
= 0 ,

(4.85)

where hµi and bµi are divergence-less in both indices. It is now possible to write

bµi = εαβµ∇αFβ
i , (4.86)

but this does not determine Fβ
i uniquely, since the redefinitions

Fβ
i → Fβ

i +∇βwi (4.87)

do not affect bµi. The divergence-less bµi of interest, in particular, corresponds to a Fβ
i

that is divergence-less in its internal index i, and divergence-less Λi do not affect this

condition. One is thus led to the system10

(
L2 2− Λ7 + 5

3
(σ3 − 1) + 2

)
Fi

µ + 4 σ3 hi
µ = 0 ,(

L2 2− Λ7 + 5
3

(σ3 − 1)− 2
)

hi
µ +

Λ7 + 5
3

(σ3 − 1) Fi
µ = 0 .

(4.88)

Due to the redundancy expressed by eq. (4.87), the system in eq. (4.88) could in

principle accommodate a source term of the type ∇µ Λ̃i. However, its contribution

can be absorbed by a redefinition according to eq. (4.87), and thus we shall henceforth

neglect it. Similar arguments apply to the ensuing analysis of scalar perturbations.

The eigenvalues of the resulting mass matrix11, here and henceforth expressed in

10In all these expressions that refer to vector perturbations ` ≥ 1, as described in Appendix A.
11We use the convention in which the mass matrixM2 appears alongside the d’Alembert operator in

the combination 2−M2.
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units of 1
L2 , are thus

Λ7 + 5
3

(σ3 − 1)± 2

√
Λ7 + 5

3
(σ3 − 1) σ3 + 1 . (4.89)

In order to refer to the BF bound discussed in Appendix B, one should add 2 to these

expressions and compare the result with zero. All in all, there are no modes below the

BF bound in this sector, and thus no instabilities. The vector modes lie above it for

` > 1 for σ3 > 1, while they are massless for ` = 1 and all allowed values of σ3 > 1,

and also, for all `, in the singular case where σ3 = 1, which would translate into a

seven-sphere of infinite radius. For ` = 1 there are 28 massless vectors corresponding

to one of the eigenvalues above. Indeed, according to the results in Appendix A

they build up a second-rank anti-symmetric tensor in the internal vector indices,

and therefore an adjoint multiplet of SO(8) vectors. This counting is consistent with

Kaluza-Klein theory and reflects the internal symmetry of S7, although the massless

vectors originate from mixed contributions of the metric and the two-form field in the

present case.

The above considerations extend to the heterotic model, for which we let

biµ = εijk∇jFµ
k , (4.90)

which is transverse in internal space. The resulting system reads(
L2 2− (`+ 1)2 (σ7 − 3) + 6

)
Fµ

i + 4 σ7 hµ
i = 0 ,(

L2 2− (`+ 1)2 (σ7 − 3)− 6
)

hµ
i + (`+ 1)2 (σ7 − 3) Fµ

i = 0 ,
(4.91)

and the eigenvalues of the corresponding mass matrix are given by

(`+ 1)2 (σ7 − 3)± 2
√
(`+ 1)2 (σ7 − 3) σ7 + 9 . (4.92)

In order to refer to the BF bound in Appendix B one should add 6 to these expressions

and compare the result with −4. Hence, there are no modes below the BF bound in

this sector. The vector modes are massive for ` > 1 in the region σ7 > 3, while they

become massless for ` = 1 and all allowed values of σ7 > 3, and for all values of `
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in the singular limit σ7 = 3, which would correspond to a three-sphere of infinite

radius. All in all, for ` = 1 there are 6 massless vectors arising from one of the two

eigenvalues above, and according to the results in Appendix A they build up an

second-rank anti-symmetric tensor in the internal vector indices, and therefore an

adjoint multiplet of SO(4) vectors. The counting is consistent with Kaluza-Klein

theory and with the internal symmetry of S3, although the massless vectors originate

once again from mixed contributions of the metric and the two-form field. In light of

these results, one could expect that choosing a different internal space with non-trivial

isometries would not result in instabilities of tensor or vector modes, since tensors are

decoupled and the gauge invariance arising from Kaluza-Klein arguments underpins

massless modes.

3.3 Scalar perturbations in AdS

Let us now discuss scalar perturbations. Since there are seven independent such

perturbations in the present cases, the analysis of the resulting systems is more

involved with respect to the case of tensor and vector perturbations. While the results

in this section can be obtained using a suitable gauge fixing of the metric, we shall

proceed along the lines of [27], where algebraic constraints arise from the Einstein

equations.

Scalar perturbations in the orientifold models

Let us now focus on scalar perturbations in the orientifold models. To begin with, bµν

contributes to scalar perturbations, as one can verify letting

bµν = εµνρ∇ρB , (4.93)

an expression that satisfies identically

∇µbµν = 0 . (4.94)
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On the other hand, they do not arise from bµi and bij, since the corresponding

contributions would be pure gauge. On the other hand, scalar metric perturbations

can be parametrized as

hµν = λµν A ,

hµi = R2∇µ∇iD ,

hij = γij C ,

(4.95)

up to a diffemorphism with independent parameters along AdS3 and S7 directions.

The linearized equations of motion for bµν yield

210 B + 4R+
O

(
α ϕ− R2∇2D− 3

2
A +

7
2

C
)
= 0 , (4.96)

where∇2 denotes the internal background Laplacian, according to the decomposition

of eq. (4.57). Expanding with respect to spherical harmonics, so that ∇2 → − Λ7
R2 ,

eq. (4.96) becomes (an AdS derivative of12)

(
2− Λ7

R2

)
B + 4R+

O

(
α ϕ + Λ7 D− 3

2
A +

7
2

C
)
= 0 . (4.97)

Notice that a redefinition B → B + δB(y), where δB(y) depends only on internal

coordinates, would not affect bµν in eq. (4.93). As a result, while eqs. (4.96) and (4.97)

could in principle contain a source term, this can be eliminated taking this redundancy

into account. Similar considerations apply for the heterotic model.

In a similar fashion, the linearized equation of motion for the dilaton becomes

(
2− Λ7

R2 −V ′′0

)
ϕ + 2R+

O

(
α2 ϕ− 3 α A

)
+ α2 B = 0 , (4.98)

12The overall derivative can be removed on account of suitable boundary conditions.
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where the last term can be eliminated using eq. (4.97). Analogously, the linearized

Einstein equations take the form

λµν

[(
2− Λ7

R2 −
4
L2

)
A +R+

O

(
7α

2
ϕ + 21 C + 6 Λ7 D

)
− 3 Λ7

2 R2 B
]

+∇µ∇ν (A + 7 C + 2 Λ7 D) = 0 ,

∇µ∇i (12 D− B + 2 A + 6 C) = 0 ,

γij

[(
2− Λ7 + 9

R2 − 7
L2

)
C− Λ7

2

(
4R+

O D− 1
R2 B

)
− α

2
R+

O ϕ

]
+∇i∇j

(
3 A + 5 C− 2 R2 2 D

)
= 0 .

(4.99)

Although these equations have an unfamiliar form, we have shown in Section 3.1

that the terms involving gradients must vanish separately. For ` = 0 nothing depends

on internal coordinates, the terms involving ∇µ∇i and ∇i∇j become empty and D

also disappears. In this case one is thus led to the simplified system

(
L2 2− 4− 3 σ3

)
A +

7α

2
σ3 ϕ = 0 ,(

L2 2− τ3 − 2 α2 σ3
)

ϕ + 2 α σ3 A = 0 ,

L2 2 B− 8 σ3 A + 4 α σ3 ϕ = 0 ,

(4.100)

to be supplemented by the linear relation

A = −7 C , (4.101)

and the last column of the resulting mass matrix vanishes, so that there is a vanishing

eigenvalue whose eigenvector is proportional to B. This perturbation is however

pure gauge, since eq. (4.93) implies that the corresponding field strength vanishes

identically. Leaving it aside, one can work with the reduced mass matrix determined

by the other two equations, whose eigenvalues are

(
α2 +

3
2

)
σ3 +

τ3

2
+ 2± 1

2

√
∆ , (4.102)

where the discriminant

∆ ≡ 4α4 σ2
3 + 16 α2

(
σ3 +

τ3

4
− 1
)

σ3 + (3 σ3 − τ3 + 4)2 . (4.103)
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There are regions of instability as one varies the parameters σ3, τ3 of eq. (4.69), but

for the actual orientifold models, where (β , σ3 , τ3) =
(
1 , 3

2 , 9
2

)
, the two eigenvalues

evaluate to 12 and 4, and thus lie well above the BF bound. To reiterate, there are no

unstable scalar modes for the orientifold models in the ` = 0 sector for the internal

S7. In view of the ensuing discussion, let us add that the stability persists for convex

potentials, with τ3 > 0, independently of σ3.

For ` 6= 0 the system becomes more complicated, since it now includes the two

algebraic constraints

A + 7 C + 2 Λ7 D = 0 ,

2 A− B + 6 C + 12 D = 0 ,
(4.104)

and the five dynamical equations

(
2− Λ7

R2 −
4
L2

)
A +R+

O

(
7α

2
ϕ− 3 A

)
− 3 Λ7

2 R2 B = 0 ,(
2− Λ7

R2

)
B + 4R+

O (α ϕ− 2 A) = 0 ,(
2− Λ7 + 9

R2 − 7
L2

)
C− Λ7

2

(
4R+

O D− 1
R2 B

)
− α

2
R+

O ϕ = 0 ,

2 D− 3
2R2 A− 5

2R2 C = 0 ,(
2− Λ7

R2 −V ′′0

)
ϕ +

α Λ7

R2 B− 2R+
O

(
α2 ϕ− α A

)
= 0 .

(4.105)

Let us first observe that this set of seven equations for the five unknowns

(A , B, C, D, ϕ) is consistent: one can indeed verify that the algebraic constraints

of eq. (4.104) are identically satisfied by the system in eq. (4.105). One can thus

concentrate on the equations relating A, ϕ and B, which do not involve the other

fields and read

(
L2 2− Λ7

3
(σ3 − 1)− 4− 3 σ3

)
A +

7α

2
σ3 ϕ− Λ7

2
(σ3 − 1) B = 0 ,(

L2 2− Λ7

3
(σ3 − 1)− τ3 − 2 α2 σ3

)
ϕ + 2 α σ3 A− α Λ7

3
(σ3 − 1) B = 0 ,(

L2 2− Λ7

3
(σ3 − 1)

)
B− 8 σ3 A + 4 α σ3 ϕ = 0 ,

(4.106)

to then determine C and D via the algebraic constraints. The mass matrix of interest is
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now 3× 3, and in all cases one is to compare its eigenvalues with the Breitenlohner–

Freedman (BF) bound for scalar perturbations, which in this AdS3 × S7 case

m2 L2 ≥ −1 . (4.107)

One is thus led, in agreement with [90]13, to the simple results

(
` (`+ 6)

6
+ 4 ,

(`+ 6) (`+ 12)
6

,
` (`− 6)

6

)
(4.108)

for the seven-sphere, and thus the BF bound is violated by the third eigenvalue

for ` = 2 , 3 , 4, as displayed in fig. 4.2. Decreasing the value of α could remove the

problem for ` = 4, but the instability would still be present for ` = 2 , 3. On the other

hand, increasing the value of α instabilities would appear also for higher values14 of `.

F I G U R E 4 . 2 : violations of the scalar BF bound in the orientifold
models. The dangerous eigenvalue is displayed in units of 1

L2 , and
the BF bound is −1 in this case. Notice the peculiar behavior, already
spotted in [90], whereby the squared masses decrease initially, rather

than increasing, as ` increases between 1 and 3.

One could now wonder whether there exist regions within the parameter space

spanned by σ3 and τ3 where the violation does not occur. We did find them, for all

13For an earlier analysis in general dimensions, see [91]. A subsequent analysis for two internal sphere
factors was performed in [92].

14For recent results on unstable modes of non-vanishing angular momentum in AdS compactifications,
see [93].
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dangerous values of `, for values of σ3 that are close to one, and therefore for negative

V0, and for positive τ3, i.e. for potentials that are convex close to the background

configuration. These results are displayed in figs. 4.3 and 4.4.

F I G U R E 4 . 3 : comparison between the lowest eigenvalue m2 L2 and
the BF bound, which is−1 in this case. There are regions of stability for
values of σ3 close to 1, which correspond to R2

L2 > 9 and negative values
of V0. The example displayed here refers to ` = 3, which corresponds
to the minimum in fig. 4.2, and the peak identifies the tree-level values

σ3 = 3
2 , τ3 = 9

2 .

Scalar perturbations in the heterotic model

Let us now move on to the stability analysis of scalar perturbations the heterotic

model. Proceeding as in the preceding section, we let

bij = εijk∇kB , (4.109)

a choice that also identically satisfies

∇ibij = 0 . (4.110)
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F I G U R E 4 . 4 : a different view. Comparison between the lowest
eigenvalue of m2 L2 and the BF bound, which is −1 in this case, as
functions of ` and σ3, for τ3 = 9

2 . There are regions of stability for
values of σ3 close to 1, which correspond to large values for the ratio

R2

L2 and to negative values of V0.

In addition, let us parametrize scalar metric perturbations as

hµν = λµν A ,

hµi = L2∇µ∇iD ,

hij = γij C ,

(4.111)

along the lines of the preceding section. For scalar perturbations one arrives again at

seven equations for five unknowns, and one can verify that the system is consistent.

All in all, one can thus work with C, ϕ and B, restricting the attention to

(
L2 2−Λ3 (σ7 − 3)− 5 σ7 − 12

)
C +

5α

2
σ7 ϕ− 3 Λ3

2
(σ7 − 3) B = 0 ,(

L2 2−Λ3 (σ7 − 3)− τ7 − 2 α2 σ7
)

ϕ + 6 α σ7 C + α Λ3 (σ7 − 3) B = 0 ,(
L2 2−Λ3 (σ7 − 3)

)
B− 8 σ7 C + 4 α σ7 ϕ = 0 ,

(4.112)
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here expressed in terms of the two variables σ7 and τ7 of eq. (4.70), to then determine

A and D algebraically. For ` = 0 B again decouples, and the eigenvalues of the

corresponding reduced mass matrix are

(
α2 +

5
2

)
σ7 +

τ7

2
+ 6± 1

2

√
∆ , (4.113)

with

∆ ≡
(

4α4 + 40α2 + 25
)

σ2
7 + 4

(
α2 − 5

2

)
(τ7 − 12) σ7 + (τ7 − 12)2 . (4.114)

In particular, in the heterotic model they read 24
(

4±
√

6
)
> 0. We can now move

on to the ` 6= 0 case, where the three scalars (C , φ, B) all contribute, so that one

is led to a 3× 3 mass matrix. In most of the parameter space, two eigenvalues are

not problematic, but there is one dangerous eigenvalue, depicted in fig. 4.5, which

corresponds to ` = 1 and k = 0 in the expression

64 + 12 Λ3 − 16
√

34 + 15 Λ3 cos
(

δ− 2π k
3

)
, (4.115)

where

δ ≡ arg

(
152− 45 Λ3 + 3 i

√
3 (5 Λ3 + 3)

(
(5 Λ3 + 14)2 + 4

))
. (4.116)

Still, there is again a stability region for values of σ7 that are close to 12, for

negative V0, and typically for positive τ7, i.e. for potentials that are convex close to the

background configuration. These results are displayed in figs. 4.6 and 4.7.

3.4 Removing the unstable modes

Since the number of unstable modes is finite, one can try to eliminate the unstable

modes present, in the orientifold models, for ` = 2, 3, 4 by projections in the internal

S7, which can be embedded in C4 constraining its four complex coordinates Zi to
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F I G U R E 4 . 5 : violations of the BF bound in the heterotic model. The
dangerous eigenvalue is displayed in units of 1

L2 , and the BF bound is
−9 in this case.

satisfy
4

∑
i=1

Zi Zi = R2 . (4.117)

According to the results in Appendix A, scalar spherical harmonics of order ` corre-

spond to harmonic polynomials of degree ` in the Zi and their complex conjugates, so

that the issue is how to project out the dangerous ones. The three-sphere, which can

be embedded in C2 demanding that

2

∑
i=1

Zi Zi = R2 , (4.118)

provides an instructive simpler case. Indeed, one can associate each point on S3 to a

unit quaternion, represented by the matrix

Q =

 Z1 i Z2

i Z2 Z1

 (4.119)

on which the SU(2) rotations

Rk = e
iπ
4 σk , R8

k = I (4.120)
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F I G U R E 4 . 6 : comparison between the lowest eigenvalue m2 L2 and
the BF bound, which is −9 in this case. There are regions of stability
for values of σ7 close to 3, which correspond to R2

L2 > 9, and to negative
values of V0. The example displayed here refers to ` = 1, which
corresponds to the minimum in fig. 4.5, and the peak identifies the

tree-level values σ7 = 15, τ7 = 75.

act freely. One can verify that these rotations, when composed in all possible ways,

build the symmetry group of the cube in the three-dimensional Euclidean space

associated to the three generators σi
2 . One can also show that these operations suffice

to eliminate all harmonic polynomials of degrees ` ≤ 4, while leaving no fixed

sub-varieties15 on account of their free action on quaternions by left multiplication.

One would naturally expect octonions of unit norm to play a similar rôle for S7, but

we have just taken a cursory look at this more complicated construction. Alternatively,

and more simply, one could consider the transformations generated by the Ri in

eq. (4.120) acting simultaneously on complementary pairs of (Zi , Zj) coordinates.

This would suffice to eliminate all unwanted spherical harmonics, but unfortunately

it would also generate fixed sub-varieties. In the heterotic case one could eliminate

the bad eigenvalue by a Z2 antipodal projection in the internal sphere S3, which can

be identified with the SU(2) group manifold. This operation has no fixed points,

and reduces the internal space to the SO(3) group manifold, without affecting the

15Projections that leave a sub-variety fixed could entail subtleties related to twisted states that become
massless.
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F I G U R E 4 . 7 : a different view. Comparison between the lowest
eigenvalue m2 L2 and the BF bound, which is −9 in this case, as
functions of ` and σ7, for τ7 = 75. There are regions of stability for
values of σ3 below 12, which correspond to relatively large values for

the ratio R2

L2 and to negative values of V0.

massless vectors with ` = 1 that we have identified. Alternatively, one could resort to

the symmetry group of the sphere related to the action on unit quaternions that we

have described for the orientifold vacua. However, non–perturbative instabilities

would be in principle relevant to the story in this case, and we shall analyze them in

detail in Chapter 5. Curvature corrections and string loop corrections would also

deserve a closer look, since they could drive the potential to a nearby stability domain,

providing an interesting alternative for these AdS× S solutions.

Let us conclude with a few remarks. To begin with, a suitable choice of internal

manifold could rid the AdS flux compactifications of perturbative instabilities alto-

gether, but in general the study of tensor and vector perturbations would become

more involved. Moreover, in case the instabilities that we have discusses were not

present, one would need to take into account the fluctuations of the remaining degrees

of freedom of the low-energy effective theory, which include non-abelian gauge fields

that couple to the gravitational sector. At any rate, one would eventually also have

to exclude non-perturbative instabilities, the analysis of which is the subject of the

following chapter.
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4 A S Y M M E T R Y O F T H E M A S S M AT R I C E S

To conclude this chapter, let us briefly address the issue of (a)symmetry for the mass

matrices that we have discussed in the preceding sections. It is apparent that the

mass matrices that we have obtained from the linearized equations of motions is not

symmetric, but they should be diagonalizable and have real eigenvalues nonetheless,

since they arise from the fluctuations of a dissipation-less system. Indeed, one can

show that

1. The asymmetry in the mass matrices is due to the non-canonical normalization

of kinetic terms.

2. Despite their asymmetry, the mass matrices are in fact similar to a symmetric

matrix and is therefore diagonalizable, with real eigenvalues.

To this end, let us consider a quadratic theory of scalar fields {φi}i, described by a

generic action of the form

S =
1
2

∫
dDx

√
−g

(
∑

i
Ai (∂φi)

2 + ∑
i , j

Mij φi φj

)
(4.121)

where the positive coefficients Ai encode non-canonical normalizations. The mass

matrixMEOM resulting from the equations of motion

2 φi + ∑
j

(
Mij

Ai

)
φj = 0 (4.122)

is not symmetric in general. On the other hand, writing the action in terms of the

canonically normalized fields

χi ≡
√

Ai φi (4.123)

yields the symmetric mass matrix

Msym
ij ≡

Mij√
Ai Aj

, (4.124)
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since M itself can be taken to be symmetric without loss of generality. The two

matrices are related by

Msym
ij =

√
Ai

Aj
MEOM

ij , (4.125)

which is indeed a similarity transformation, since

Msym = PMEOM P−1 , Pij ≡
√

Ai δij . (4.126)

Therefore, computingMsym directly from the quadratic action leads to identical

results, although numerical diagonalization algorithms are typically more suited to

symmetric matrices.

4.1 Constraints in the quadratic Lagrangian

As we have discussed, the case of scalar metric perturbations leads to linear algebraic

constraints, which appear in the linearized equations of motion but would be absent

from the quadratic Lagrangian. Since linear algebraic constraints that can be solved

projecting the scalars {φi}i onto independent scalars {χa}a according to an expression

of the form

φi = Qa
i χa , (4.127)

one obtains in general different mass matrices depending on the order in which kinetic

normalization, the above projection and the Euler-Lagrange equations are derived.

Specifically, in the preceding sections we did not normalize the fields canonically, and

thus we divided by the Ai factors before the projection, resulting in

M = (QTQ)−1(QT A−1MQ) , (4.128)

where A ≡ diag({Ai}i).





5Quantum stability: bubbles and flux tunneling

In this chapter we carry on the analysis of instabilities of the AdS× S flux com-

pactifications that we have introduced in Chapter 3, presenting the results of [25].

Specifically, we address in detail their non-perturbative instabilities, which manifest

themselves as (charged) vacuum bubbles at the semi-classical level, and we compute

the corresponding decay rates. We find that this tunneling process reduces the flux

number n, thus driving the vacua toward stronger couplings and higher curvatures,

albeit at a rate that is exponentially suppressed in n. We also recast these effects in

terms of branes1, drawing upon the analogy with the supersymmetric case where BPS

brane stacks generate supersymmetric near-horizon AdS throats. While NS5-branes in

the heterotic model appear more difficult to deal with in this respect, in the orientifold

models D1-brane stacks provide a natural canditate for a microscopic description of

these flux vacua and of their instabilities. Indeed, non-supersymmetric analogues of

AdS5 × S5 vacua in type 0 strings, where tachyon condensation breaks conformal

invariance of the dual gauge theory, were described in terms of D3-branes in [74].

In the non-tachyonic type 0′B orientifold model this rôle is played by the dilaton

potential, which generates a running of the gauge coupling [71–73]. As a result, the

near-horizon geometry is modified, and one recovers AdS5 × S5 only in the limit2

of infinitely many D3-branes, when the supersymmetry-breaking dilaton potential

ought to become negligible. In contrast, D1-branes and NS5-branes should underlie

the AdS3 × S7 and AdS7 × S3 solutions found in [26]3. This might appear somewhat

surprising, since Dp-brane stacks in type II superstrings do not exhibit near-horizon

geometries of this type for p 6= 3, but dress them instead with singular warp factors.

1For a recent investigation along these lines in the context of the (massive) type IIA superstring,
see [86].

2It is worth noting that this large-N limit is not uniform, since factors of 1
N are accompanied by

factors that diverge in the near-horizon limit. In principle, a resummation of 1
N corrections could cure

this problem.
3One could expect that solutions with different internal spaces, discussed in Chapter 3, arise from

near-horizon throats of brane stacks placed on conical singularities [94].
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Correspondingly, the dual gauge theory is non-conformal [95]. While the emergence

of a conformal dual involving D1-branes and NS5-branes in non-supersymmetric

cases would be an enticing scenario, it is first necessary to establish whether brane

descriptions of the AdS× S solutions hold ground in these models. In this chapter we

provide some evidence to this effect, and in Chapter 6 we address this issue in more

detail. In particular, matching the gravitational decay rates that we shall compute in

Section 2.2 to the results of the respective brane instanton computations, in Section 2.4

we find consistency conditions that single out fundamental branes as the localized

sources that mediate flux tunneling in the settings at stake.

We begin in Section 1 with brief overview of flux tunneling. Then, in Section 2 we

study it in the context of the AdS× S solutions that we have described in Chapter 3,

and we present the computation of the resulting semi-classical decay rate within

their low-energy description. In Section 2.3 we introduce the microscopic picture,

studying probe D1-branes and NS5-branes in the AdS throat, which we develop

in Section 2.4 deriving consistency conditions from decay rates. We conclude in

Section 2.5 presenting explicit expressions for the decay rates in the orientifold models

and in the heterotic model.

1 F L U X T U N N E L I N G

Introducing charged localized sources of codimension one (“membranes”) in gravita-

tional systems with Abelian gauge (form) fields, a novel decay mechanism arises for

meta-stable flux vacua [96, 97], whereby charged membranes nucleate in space-time,

sourcing vacuum bubbles that expand carrying away flux. In the semi-classical limit,

the resulting process can be analyzed via instanton computations [98–100], albeit the

resulting (Euclidean) equations of motion are modified by the contribution due to

membranes4 [101], which arises from actions of the form

Smembrane = −
∫
W

dp+1x
√
−j∗g τp + µp

∫
W

Bp+1 (5.1)

4We shall not discuss the Gibbons-Hawking-York boundary term, which is to be included at any rate
to consistently formulate the variational problem.
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for (p + 2)-dimensional space-times supported by flux configurations of a (p + 1)-

form field Bp+1, where j describes the embedding of the world-volumeW in space-

time and, in general, the tension τp can depend on the bulk scalar fields, if any.

Typically one expects that maximally symmetric instanton configurations dominate

the decay rate associated to processes of this type, and in practical terms one is thus

faced with a shooting problem where, in addition to the initial conditions of the

(Euclidean) fields, one is to determine the nucleation radius of the bubble5.

1.1 Small steps and giant leaps: the thin-wall approximation

Since flux numbers are typically quantized, even simple toy models result in rather

rich landscapes of geometries supported by fluxes [103], and it has been argued [83,

102, 104] that flux tunneling in multi-flux landscapes is dominated by “giant leaps”,

where a sizable fraction of the initial flux is discharged, while in single-flux landscape

“small steps” dominate, and thus the thin-wall approximation is expected to cap-

ture the correct leading-order physics. Therefore, we shall focus on the latter case,

since the AdS× S solutions discussed in Chapter 3 are supported by a single flux

parameter n, and we shall consider thin-wall bubbles with charge δn� n. Within this

approximation, one can neglect the back-reaction of the membrane and the resulting

space-time geometry is obtained gluing the initial and final states along the bubble

wall, which expands at the speed of light6.

1.2 Bubbles of nothing

In addition to flux tunneling, bubbles of nothing [105] provide oft-controlled decay

channels, whose existence in the absence of supersymmetry appears quite generic [106,

107]7. Although one expects that extreme “giant leaps”, which discharge almost all of

the initial flux, lie outside of the semi-classical regime, it is conceivable that the limit in

which all of the initial flux is discharged corresponds to a bubble of nothing. Indeed,

some evidence to this effect was presented in [108], and, at least in the case of AdS

5For a detailed exposition of the resulting (distributional) differential equations, see [102].
6In Chapter 7 we shall discuss the geometrical perspective in more detail.
7We shall further elaborate on these matters in Chapter 8, framing them in a cosmological context.
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landscapes, holographic arguments also provide some hints in this direction [109], as

we shall discuss in more detail in Chapter 7.

2 B U B B L E S A N D B R A N E S I N AdS C O M PA C T I F I C AT I O N S

Let us now move on to study flux tunneling in the AdS× S solutions that we have

described in Chapter 3. These solutions feature perturbative instabilities carrying

internal angular momenta [27, 90], but we shall not concern ourselves with their effects,

since we shall impose unbroken spherical symmetry at the outset. Alternatively, as we

have mentioned, one could replace the internal sphere with an Einstein manifold, if

any, whose Laplacian spectrum does not contain unstable modes, or with an orbifold

that projects them out. This can be simply achieved with an antipodal Z2 projection in

the heterotic model, while an analogous operation in the orientifold models appears

more elusive [27], albeit a microscopic interpretation in terms of fundamental branes

appears more subtle in this case. However, as we shall see in the following, even in the

absence of classical instabilities the AdS× S solutions would be at best meta-stable,

since they undergo flux tunneling.

2.1 Vacuum energy within dimensional reduction

In order to appreciate this, it is instructive to perform a dimensional reduction over

the sphere following [101], retaining the dependence on a dynamical radion field ψ in

a similar vein to our analysis of dS instabilities in Chapter 3. The ansatz

ds2 = e−
2q
p ψ(x) d̃s

2
p+2(x) + e2ψ(x) R2

0 dΩ2
q , (5.2)

where R0 is an arbitrary reference radius, is warped in order to select the (p + 2)-

dimensional Einstein frame, described by d̃s
2
p+2. Indeed, placing the dilaton and the

form field on shell results in the dimensionally reduced action

Sp+2 =
1

2κ2
p+2

∫
dp+2x

√
−g̃

(
R̃− 2Λ̃

)
, (5.3)
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where the (p + 2)-dimensional Newton’s constant is

1
κ2

p+2
=

ΩqRq
0

κ2
D

, (5.4)

while the “physical” cosmological constant Λ = − p(p+1)
2L2 , associated to the frame

used in the preceding section, is related to Λ̃ according to

Λ̃ = Λ e−
2q
p ψ , (5.5)

which is a constant when the radion is on-shell, and

eψ =
R
R0

∝ n
γ

(q−1)γ−α . (5.6)

Let us remark that the dimensionally reduced action of eq. (5.3) does not necessarily

capture a sensible low-energy regime, since in the present settings there is no scale

separation between space-time and the internal sphere. Moreover, as we have

discussed in Chapter 4, in general one cannot neglect the instabilities arising from

fluctuations with non-vanishing angular momentum. On the other hand, the resulting

vacuum energy (density)

Ẽ0 =
2Λ̃

2κ2
p+2

= −
p(p + 1)ΩqRq

0

2κ2
D L2

(
R
R0

)− 2q
p

∝ − n
− 2(D−2)

p(q−1− α
γ )

(5.7)

is actually sufficient to dictate whether n increases or decreases upon flux tunneling.

In particular, the two signs present in eq. (5.7) and the requirement that flux tunneling

decreases the vacuum energy imply that this process drives the (false) vacua to

lower values of n, eventually reaching outside of the perturbative regime where the

semi-classical analysis is expected to be reliable.

2.2 Decay rates: gravitational computation

Let us now compute the decay rate associated to flux tunneling in the semi-classical

regime. To this end, standard instanton methods [98–100] provide most needed tools,
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but in the present case one is confined to the thin-wall approximation, which entails a

flux variation8 δn� n, and the tension τ of the resulting bubble, which cannot be

computed within the formalism, rests on the tension of the corresponding membrane

and on its back-reaction9. However, the probe limit, in which the membrane does

not affect the radion potential due to changing n, identifies the tension of the bubble

with that of the membrane, and it can be systematically improved upon [83] adding

corrections to this equality.

In order to proceed, we work within the dimensionally-reduced theory in AdSp+2,

using coordinates such that the relevant instanton is described by the Euclidean metric

ds2
E = dξ2 + ρ2(ξ) dΩ2

p+1 , (5.8)

so that the Euclidean on-shell (bulk) action takes the form

SE = 2 Ωp+1

∫
dξ ρ(ξ)p+1

(
Ẽ0 −

p(p + 1)
2κ2

p+2 ρ(ξ)2

)
, (5.9)

with the vacuum energy Ẽ0, along with the associated curvature radius L̃, defined

piece-wise by its values inside and outside of the bubble. Then, the energy constraint

(ρ′)2 = 1−
2κ2

p+2

p(p + 1)
Ẽ0 ρ2 = 1 +

ρ2

L̃2
, (5.10)

which stems from the Euclidean equations of motion, allows one to change variables

in eq. (5.9), obtaining

SE = −
2p(p + 1)Ωp+1

2κ2
p+2

∫
dρ ρp−1

√
1 +

ρ2

L̃2
. (5.11)

This expression defines the (volume term of the) exponent B ≡ Sinst − Svac in the

semi-classical formula for the decay rate (per unit volume),

Γ
Vol
∼ (det)× e−B , B = Barea + Bvol , (5.12)

8On the other hand, as we have mentioned, the extreme case δn = n would correspond to the
production of a bubble of nothing [105].

9It is common to identify the tension of the bubble with the ADM tension of a brane soliton
solution [101]. In our case this presents some challenges, as we shall discuss in Chapter 6.



2. Bubbles and branes in AdS compactifications 81

in the standard fashion [98, 99]. The thin-wall bubble is a (p + 1)-sphere of radius

ρ̃, over which the action has to be extremized, and therefore the area term of the

exponent B reads

Barea ∼ τ̃ Ωp+1 ρ̃ p+1 , (5.13)

where the tension τ̃ = τ e−(p+1) q
p ψ is measured in the (p + 2)-dimensional Einstein

frame. On the other hand, in the thin-wall approximation the volume term becomes

Bvol =
2p(p + 1)Ωp+1

2κ2
p+2

∫ ρ̃

0
dρ ρp−1

[√
1 +

ρ2

L̃2
vac
−
√

1 +
ρ2

L̃2
inst

]

∼ − ε Ṽol(ρ̃) ,

(5.14)

where the energy spacing

ε ∼ dẼ0

dn
δn ∝ n

− 2(D−2)
p(q−1− α

γ )
−1

δn (5.15)

and the volume Ṽol(ρ̃) enclosed by the bubble is computed in the (p+ 2)-dimensional

Einstein frame,

Ṽol(ρ̃) = L̃p+2 Ωp+1 V
(

ρ̃

L̃

)
,

V(x) ≡ xp+2

p + 2 2F1

(
1
2

,
p + 2

2
;

p + 4
2

;−x2
)

,

x ≡ ρ̃

L̃
.

(5.16)

All in all, the thin-wall exponent10

B ∼ τ Ωp+1 Lp+1
(

xp+1 − (p + 1)β V(x)
)

, β ≡ ε L̃
(p + 1)τ̃

(5.17)

attains a local maximum at x = 1√
β2−1

for β > 1. On the other hand, for β ≤ 1

the exponent is unbounded, since B → ∞ as x → ∞, and thus the decay rate is

completely suppressed. Hence, it is crucial to study the large-flux scaling of β, which

plays a role akin to an extremality parameter for the bubble. In particular, if β scales

with a negative power of n nucleation is suppressed, whereas if it scales with a

positive power of n the extremized exponent B approaches zero, thus invalidating

the semi-classical computation. Therefore, the only scenario in which nucleation is

10Notice that eq. (5.17) takes the form of an effective action for a (p + 1)-brane in AdS electrically
coupled to Hp+2. This observation is the basis for the microscopic picture that we shall present shortly.
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both allowed and semi-classical at large n is when β > 1 and is flux-independent.

Physically, the bubble is super-extremal and has an n-independent charge-to-tension

ratio. Since

β = v0
Ωq δn
2κ2

Dτ
g−

α
2

s , (5.18)

where the flux-independent constant

v0 ≡

√
2(D− 2)γ

(p + 1)((q− 1)γ− α)
, (5.19)

this implies the scaling11

τ = T g−
α
2

s , (5.20)

where T is flux-independent and α denotes the coupling between the dilaton and the

form field in the notation introduced in Chapter 3. In Section 2.4 we shall verify that

this is precisely the scaling expected from Dp-branes and NS5-branes.

2.3 Bubbles as branes

Let us now proceed to describe a microscopic picture, studying probe branes in

the AdS× S geometry and matching the semi-classical decay rate of eq. 5.17 to

a (Euclidean) world-volume action. While a more complete description to this

effect would involve non-Abelian world-volume actions coupled to the complicated

dynamics driven by the dilaton potential, one can start from the simpler setting of

brane instantons and probe branes moving in the AdS× S geometry. This allows

one to retain computational control in the large-n limit, while partially capturing

the unstable dynamics at play. When framed in this fashion, instabilities suggest

that the non-supersymmetric models at stake are typically driven to time-dependent

configurations12, in the spirit of the considerations of [27].

We begin our analysis considering the dynamics of a p-brane moving in the

AdSp+2 × Sq geometry of eq. (3.34). In order to make contact with D-branes in the

11Notice that in the gravitational picture the charge of the membrane does not appear. Indeed, its
contribution arises from the volume term of eq. (5.14) in the thin-wall approximation.

12Indeed, as we have discussed in Chapter 2, cosmological solutions of non-supersymmetric models
display interesting features [27, 43, 58–60].
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orientifold models and NS5-branes in the heterotic model, let us consider a generic

string-frame world-volume action of the form

Sp = − Tp

∫
dp+1ζ

√
−j∗gS e−σφ + µp

∫
Bp+1 , (5.21)

specified by an embedding j of the brane in space-time, which translates into the

D-dimensional and (p + 2)-dimensional Einstein-frame expressions

Sp = − Tp

∫
dp+1ζ

√
−j∗g e

(
2(p+1)

D−2 −σ
)

φ
+ µp

∫
Bp+1

= − Tp

∫
dp+1ζ

√
−j∗ g̃ e

(
2(p+1)

D−2 −σ
)

φ−(p+1) q
p ψ

+ µp

∫
Bp+1 .

(5.22)

Since the dilaton is constant in the AdS× S backgrounds that we consider, from

eq. (5.22) one can read off the effective tension

τp = Tp g
2(p+1)

D−2 −σ
s . (5.23)

While in this action Tp and µp are independent of the background, for the sake of

generality we shall not assume that in non-supersymmetric models Tp = µp, albeit

this equality is supported by the results of [76].

2.4 Microscopic branes from semi-classical consistency

In this section we reproduce the decay rate that we have obtained in Section 2.2 with

a brane instanton computation13. Since flux tunneling preserves the symmetry of

the internal manifold, the Euclidean branes are uniformly distributed over it, and

are spherical in the Wick-rotated AdS geometry. The Euclidean p-brane action of

eq. (5.22), written in the D-dimensional Einstein frame, then reads

SE
p = τp Area− µp c Vol

= τp Ωp+1 Lp+1
(

xp+1 − (p + 1) βp V(x)
)

,
(5.24)

13For more details, we refer the reader to [96, 97, 110, 111].
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where v0 is defined in eq. (5.19), and

βp ≡ v0
µp

Tp
g

σ− 2(p+1)
D−2 −

α
2

s . (5.25)

This result matches in form the thin-wall expression in eq. (5.17), up to the identifica-

tions of the tensions τ, τp and the parameters β, βp. As we have argued in Section 2.2,

the former is expected to be justified in the thin-wall approximation. Furthermore,

according to the considerations that have led us to eq. (5.20), it is again reasonable to

assume that βp does not scale with the flux, which fixes the exponent σ to

σ =
2(p + 1)

D− 2
+

α

2
. (5.26)

This is the value that we shall use in the following. Notice that for Dp-branes

in ten dimensions, where α = 3−p
2 , this choice gives the correct result σ = 1, in

particular for D1-branes in the orientifold models. Similarly, for NS5-branes in ten

dimensions, eq. (5.26) also gives the correct result σ = 2. This pattern persists even

for the more “exotic” branes of [28–32], and it would be interesting to explore this

direction further. Notice that in terms of the string-frame value αS, eq. (5.26) takes the

simple form

σ = 1 +
αS

2
. (5.27)

Moreover, from eqs. (5.23) and (5.26) one finds that

τp = Tp g−
α
2

s (5.28)

scales with the flux with the same power as τ, as can be seen from eq. (5.20). Since

the flux dependence of the decay rates computed extremizing eqs. (5.17) and (5.24)

is determined by the respective tensions τ and τp, they also scale with the same

power of n. Together with eq. (5.27), this provides evidence for the fact that, in the

present setting, vacuum bubbles can be identified with fundamental branes, namely

Dp-branes in the orientifold models and NS5-branes in the heterotic model.



2. Bubbles and branes in AdS compactifications 85

Requiring furthermore that the decay rates computed extremizing eqs. (5.17)

and (5.24) coincide, one is led to β = βp, which implies

µp =
Ωq δn
2κ2

D
= δ

(
1

2κ2
D

∫
Sq

f ? Hp+2

)
, (5.29)

where δ denotes the variation across the bubble wall, as expected for electrically

coupled objects.

2.5 Decay rates: extremization

Extremizing the Euclidean action of eq. (5.24) over the nucleation radius, one obtains

the final result for the semi-classical tunneling exponent

SE
p = Tp Lp+1 g−

α
2

s Ωp+1 Bp

(
v0

µp

Tp

)
∝ n

(p+1)γ+α
(q−1)γ−α ,

(5.30)

where we have introduced

Bp(β) ≡ 1

(β2 − 1)
p+1

2

− p + 1
2

β
∫ 1

β2−1

0

u
p
2

√
1 + u

du . (5.31)

This expression includes a complicated flux-independent pre-factor, but it always

scales with a positive power of n, consistently with the semi-classical limit. For the

sake of completeness, let us provide the explicit result for non-supersymmetric string

models, where the microscopic picture goes beyond the world-volume actions of

eq. (5.21). Notice that we do not assume that µp = Tp in the non-supersymmetric

setting, for the sake of generality. However, as we have already remarked in eq. (5.17),

the tunneling process is allowed also in this case. This occurs because v0 > 1, and

thus also β > 1, in the supersymmetry-breaking backgrounds that we consider, since

using eq. (5.19) one finds

(v0)orientifold =

√
3
2

(5.32)
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for the orientifold models, while

(v0)heterotic =

√
5
3

(5.33)

for the heterotic model. For D1-branes in the orientifold models, eq. (5.30) yields

SE
1 =

T1 L2
√

gs
Ω2 B1

(√
3
2

µ1

T1

)

=
π

9
√

2
B1

(√
3
2

µ1

T1

)
T1
√

T
√

n ,

(5.34)

and SE
1 ≈ 0.1 T1

√
T
√

n if µ1 = T1. For the heterotic model, using eq. (5.30) the

Euclidean action of NS5-branes evaluates to

SE
5 =

T5 L6
√

gs
Ω6 B5

(√
5
3

µ5

T5

)

=
9216 π3

125
B5

(√
5
3

µ5

T5

)
T5 T n4 ,

(5.35)

and SE
5 ≈ 565.5 T5 T n4 if µ5 = T5. In the presence of large fluxes the tunneling

instability is thus far milder in the heterotic model.

To conclude, the results in this chapter provide evidence to the effect that the

non-supersymmetric AdS flux compactifications that we have described in Chapter 3

are non-perturbatively unstable, and the flux tunneling process that they undergo

can be described in terms of (stacks of) fundamental branes, namely D1-branes for

the AdS3 × S7 solutions of the orientifold models, and NS5-branes for the AdS7 × S3

solutions of the heterotic model. In the following chapter we shall expand upon this

picture, studying the Lorentzian evolution of the branes after a tunneling event occurs

and relating the resulting dynamics to interactions between branes and to the weak

gravity conjecture [18]. In addition, we shall recover the relevant AdS× S solutions as

near-horizon geometries of the full the gravitational back-reaction of the branes, thus

further supporting the idea that these solutions are built up from stacks of parallel

fundamental branes.
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In this chapter we elaborate in detail on the microscopic picture of non-perturbative

instabilities of the AdS× S solutions that we have introduced in the preceding

chapter. The results that we have described hitherto suggest that the adsts geometries

at stake can be built up from stacks of parallel fundamental branes, an enticing

picture that could, at least in principle, shed light on the high-energy regime of the

settings at hand. In particular, our proposal can potentially open a computational

window beyond the semi-classical regime, perhaps providing also a simpler realization

of AdS3/CFT2 duality1. Moreover, in principle one could investigate these non-

perturbative instabilities recasting them as holographic RG flows in a putative dual

gauge theory [109]. In order to further ground this proposal, in Section 1 we study the

Lorentzian evolution of the expanding branes after a nucleation event takes place,

identifying the relevant dynamics and comparing it to the supersymmetric case, and

the resulting interaction potentials imply a version of the weak gravity conjecture

for extended objects [16]. Then, in Section 2 we investigate the gravitational back-

reaction of stacks of parallel branes within the low-energy effective theory described in

Chapter 3, deriving a reduced dynamical system that captures the relevant dynamics

and recovering an attractive near-horizon AdS× S throat. In order to provide a more

intuitive understanding of this result, we compare the asymptotic behavior of the

fields to the corresponding ones for D3-branes in the type IIB superstring and for the

four-dimensional Reissner-Nordström black hole. The latter represents a particularly

instructive model, where one can identify the physical origin of singular perturbations.

However, away from the stack the resulting space-time exhibits a space-like singularity

at a finite transverse geodesic distance [25], as in2 [24], which hints at the idea that, in

the presence of dilaton tadpoles, any breaking of ten-dimensional Poincaré invariance

is accompanied by a finite-distance “pinch-off” singularity determined by the residual

1The alternative case of AdS7 could be studied, in principle, via M5-brane stacks.
2Indeed, our results suggest that the solutions of [24], which are not fluxed, correspond to 8-branes.
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symmetry. Physically, this corresponds to the fact that branes are not isolated objects

in these settings, since in the case of the orientifold models non-supersymmetric

projections bring along additional (anti-)D-branes that interact with them. In the

heterotic model, this rôle is played at leading order by the one-loop vacuum energy.

Finally, in Section 2.4 and Section 3 we extend our considerations to the case of

non-extremal branes, focusing on the uncharged of D8-branes in the orientifold

models in order to compare probe-brane computations with the corresponding string

amplitudes.

1 T H E A F T E R M AT H O F T U N N E L I N G

After a nucleation event takes place, the dynamics is encoded in the Lorentzian

evolution of the bubble. Its counterpart in the microscopic brane picture is the

separation of pairs of branes and anti-branes, which should then lead to brane-flux

annihilation3, with negatively charged branes absorbed by the stack and positively

charged ones expelled out of the AdS× S near-horizon throat. In order to explore this

perspective, we now study probe (anti-)branes moving in the AdS× S geometry. To

this end, it is convenient to work in Poincaré coordinates, where the D-dimensional

Einstein-frame metric reads

ds2 =
L2

z2

(
dz2 + dx2

1,p

)
+ R2 dΩ2

q , dx2
1,p ≡ ηµν dxµdxν , (6.1)

embedding the world-volume of the brane according to the parametrization

j : xµ = ζµ , z = Z(ζ) , θi = Θi(ζ) . (6.2)

Furthermore, when the brane is placed at a specific point in the internal sphere4,

Θi(ζ) = θi
0, the Wess-Zumino term gives the volume enclosed by the brane in AdS.

As a result, the action that we have introduced in the preceding chapter evaluates to

Sp = −τp

∫
dp+1ζ

(
L
Z

)p+1 [√
1 + ηµν ∂µZ ∂νZ− c L

p + 1
µp

τp

]
(6.3)

3For a discussion of this type of phenomenon in Calabi-Yau compactifications, see [11].
4One can verify that this ansatz is consistent with the equations of motion for linearized perturbations.
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in the notation of Chapter 3, so that rigid, static branes are subject to the poten-

tial

Vprobe(Z) = τp

(
L
Z

)p+1
[

1− c L g
α
2
s

p + 1
µp

Tp

]

= τp

(
L
Z

)p+1 [
1− v0

µp

Tp

]
.

(6.4)

The potential in eq. (6.4) indicates how rigid probe branes are affected by the AdS× S

geometry, depending on the value of v0. In particular, if v0
|µp|
Tp

> 1 positively charged

branes are driven towards small Z and thus exit the throat, while negatively charged

ones are driven in the opposite direction.

Small deformations δZ of the brane around the rigid configuration at constant Z

satisfy the linearized equations of motion

− ∂µ∂µδZ ∼ p + 1
Z

(
1− v0

µp

Tp

)
− (p + 1)(p + 2)

Z2

(
1− v0

µp

Tp

)
δZ , (6.5)

where the constant first term on the right-hand side originates from the potential of

eq. (6.4) and affects rigid displacements, which behave as

δZ
Z
∼ p + 1

2

(
1− v0

µp

Tp

)(
t
Z

)2
(6.6)

for small times t
Z � 1. On the other hand, for non-zero modes δZ ∝ eik0·x−iω0t one

finds the approximate dispersion relation

ω2
0 = k2

0 +
(p + 1)(p + 2)

Z2

(
1− v0

µp

Tp

)
, (6.7)

which holds in the same limit, so that Z remains approximately constant. In terms of

the proper, red-shifted frequency ωz =
√

gtt ω0 and wave-vector kz =
√

gtt k0 for

deformations of Z in AdS, eq. (6.7) becomes

ω2
z = k2

z +
(p + 1)(p + 2)

L2

(
1− v0

µp

Tp

)
. (6.8)

The dispersion relation of eq. (6.8) displays a potential long-wavelength instability
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toward deformations of positively charged branes, which can drive them to grow in

time, depending on the values of v0 and the charge-to-tension ratio µp
Tp

. Comparing

with eqs. (6.4) and (6.6), one can see that this instability toward “corrugation” is

present if and only if the branes are also repelled by the stack.

To conclude our analysis of probe-brane dynamics in the AdS× S throat, let us

also consider small deformations δΘ in the internal sphere. They evolve according to

the linearized equations of motion

− ∂µ∂µδΘ = 0 , (6.9)

so that these modes are stable at the linearized level.

1.1 Weak gravity from supersymmetry breaking

In the ten-dimensional orientifold models, in which the corresponding branes are

D1-branes, v0 =
√

3
2 , so that even extremal D1-branes with5 µp = Tp are crucially

repelled by the stack, and are driven to exit the throat toward Z → 0. On the other

hand D1-branes, which have negative µp, are always driven towards Z → +∞,

leading to annihilation with the stack. This dynamics is the counterpart of flux

tunneling in the probe-brane framework, and eq. (5.19) suggests that while the

supersymmetry-breaking dilaton potential allows for AdS vacua of this type, it is

also the ingredient that allows BPS branes to be repelled. Physically, D1-branes are

mutually BPS, but they interact with the D9-branes that fill space-time. This resonates

with the fact that, as we have argued in Section 2.2, the large-n limit ought to suppress

instabilities, since in this regime the interaction with D9-branes is expected to be

negligible [71, 72]. Furthermore, the dispersion relation of eq. (6.8) highlights an

additional instability toward long-wavelength deformations of the branes, of the

order of the AdS curvature radius. Similarly, in the heterotic model v0 =
√

5
3 , so that

negatively charged NS5-branes are also attracted by the stack, while positively charged

ones are repelled and unstable towards sufficiently long-wavelength deformations,

5As we have anticipated, verifying the charge-tension equality in the non-supersymmetric case
presents some challenges. We shall elaborate upon this issue in Section 2.3.
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and the corresponding physical interpretation would involve interactions mediated

by the quantum-corrected vacuum energy.

Moreover, the appearance of v0 > 1 in front of the charge-to-tension ratio µp
Tp

is suggestive of a dressed extremality parameter, which can be thought of, e.g., as

an effective enhancement of the charge-to-tension ratio due to both dimensional

reduction and supersymmetry breaking. This behavior resonates with considerations

stemming from the weak gravity conjecture [18], since the presence of branes which are

(effectively) lighter than their charge would usually imply a decay channel for extremal

or near-extremal objects. While non-perturbative instabilities of non-supersymmetric

AdS due to brane nucleation have been thoroughly discussed in the literature [16,

110, 111], we stress that in the present case this phenomenon arises from fundamental

branes interacting in the absence of supersymmetry. Therefore, one may envision

reproducing this result from a string amplitude computation, at least for D1-branes in

the orientifold models, but since the relevant annulus amplitude vanishes [76] the

leading contribution would involve “pants” amplitudes and is considerably more

complicated6. On the other hand, in the non-extremal case one has access to both a

probe-brane setting, which involves the gravitational back-reaction of D8-branes, and

to a string amplitude computation, and we shall pursue this direction in Section 2.4.

As a final comment, let us observe that in the heterotic model one can also compute

the potential for probe fundamental strings, extended along one of the directions

longitudinal to the world-volume of the NS5-branes7. However, since the Kalb-

Ramond form B2 pull-backs to zero on the string world-sheet, the result is determined

solely by the Nambu-Goto action, leading to an attractive potential.

2 G R AV I TAT I O N A L B A C K - R E A C T I O N

In this section we study the background geometry sourced by a stack of branes in the

class of low-energy effective theories that we have described in Chapter 3. The dilaton

potential brings along considerable challenges in this respect, both conceptual and

6The systematics of computations of this type in the bosonic case were developed in [112].
7The corresponding objects in the orientifold models would be probe D5-branes, which however

would wrap vanishing cycles in the internal spheres, leading to an uncontrolled computation.
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technical. To begin with, there is no maximally symmetric vacuum that could act as a

background, and thus in the presence of branes there is no asymptotic infinity of this

type8. We find, instead, that the geometry away from the branes “pinches off” at a

finite geodesic distance, and exhibits a curvature singularity where φ→ +∞. This

resonates with the findings of [24], and indeed we do reconstruct the solutions therein

in the case p = 8. These results suggest that, due to their interactions with the dilaton

potential, branes cannot be described as isolated objects in these models, reflecting the

probe-brane analysis of Section 1. Consequently, identifying a sensible background

string coupling or sensible asymptotic charges, such as the brane tension, appears

considerably more difficult with respect to the supersymmetric case.

Despite these challenges, one can gain some insight studying the asymptotic

geometry near the branes, where an AdS× S throat develops, and near the outer

singularity, where the geometry pinches off. In Section 2.2 we shall argue that the

AdS× S solutions discussed in Chapter 3 can arise as near-horizon “cores” of the full

geometry, investigating an attractor-like behavior of radial perturbations which is

characteristic of extremal objects and arises after a partial fine-tuning, reminiscent of

the BPS conditions on asymptotic charges in supersymmetric cases. This feature is

reflected by the presence of free parameters in the asymptotic geometry away from

the branes, which we construct in Section 2.3.

2.1 Reduced dynamical system: extremal case

Let us begin imposing SO(1, p)× SO(q) symmetry, so that the metric is characterized

by two dynamical functions v(r) , b(r) of a transverse radial coordinate r. Specifically,

without loss of generality we shall consider the ansatz

ds2 = e
2

p+1 v− 2q
p b dx2

1,p + e2v− 2q
p b dr2 + e2b R2

0 dΩ2
q ,

φ = φ(r) ,

Hp+2 =
n

f (φ)(R0 eb)q Volp+2 , Volp+2 = e2v− q
p (p+2)b dp+1x ∧ dr ,

(6.10)

8Even if one were to envision a pathological Minkowski solution with “φ = −∞” as a degenerate
background (for instance, by introducing a cutoff), no asymptotically flat solution with φ → −∞ can be
found.
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where R0 is an arbitrary reference radius and the form field automatically solves its

field equations. This gauge choice simplifies the equations of motion, which can be

recast in terms of a constrained Toda-like system [73, 74]. Indeed, substituting the

ansatz of eq. (6.10) in the field equations and taking suitable linear combinations, the

resulting system can be derived by the “reduced” action

Sred =
∫

dr
[

4
D− 2

(
φ′
)2 − p

p + 1
(
v′
)2

+
q(D− 2)

p
(
b′
)2 − U

]
, (6.11)

where the potential is given by

U = − T eγφ+2v− 2q
p b − n2

2R2q
0

e−αφ+2v− 2q(p+1)
p b +

q(q− 1)
R2

0
e2v− 2(D−2)

p b , (6.12)

and the equations of motion are supplemented by the zero-energy constraint

4
D− 2

(
φ′
)2 − p

p + 1
(
v′
)2

+
q(D− 2)

p
(
b′
)2

+ U = 0 . (6.13)

For the reader’s convenience, let us present collect general results concerning

warped products. Let us consider a multiple warped product described by a metric of

the type

ds2 = d̃s
2
(x) + ∑

I
e2aI(x) d̂s

2
(I) , (6.14)

where the dimensions of the I-th internal space is denoted by qI . The Ricci tensor is

then block-diagonal, and its space-time components read

Rµν = R̃µν −∑
I

qI
(
∇µ∇µaI + (∇µaI)(∇µaI)

)
, (6.15)

while its internal components in the I-th internal space read

R(I)
ij = R̂(I)

ij − e2aI(x)

(
∆ aI + ∑

J
qJ (∂

µaJ)
(
∂µaI

))
ĝ(I)

ij , (6.16)

where ∆ denotes the Laplacian operator associated to space-time and we have kept the

notation signature-independent for the sake of generality. Using eqs. (6.15) and (6.16)
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we have derived the field equations that led to the Toda-like system of eqs. (6.11)

and (6.13), and we have also used them to derive some results in Chapter 8 concerning

warped flux compactifications.

2.2 AdS× S throat as a near-horizon geometry

Let us now apply the results in the preceding section to recast the AdS× S solutions

discussed in Chapter 3 as a near-horizon limit of the geometry described by eqs. (6.11)

and (6.13). To begin with, one can verify that the AdS× S solution now takes the

form9

φ = φ0 ,

ev =
L

p + 1

(
R
R0

)− q
p 1
−r

,

eb =
R
R0

,

(6.17)

where we have chosen negative values r < 0. This choice places the core at r → −∞,

with the horizon infinitely far away, while the outer singularity lies either at some

finite r = r0 or emerges as10 r → +∞. The metric of eq. (6.10) can then be recast as

AdS× S in Poincaré coordinates rescaling x by a constant and substituting

r 7→ − zp+1

p + 1
. (6.18)

In supersymmetric cases, infinitely long AdS throats behave as attractors going

toward the horizon from infinity, under the condition on asymptotic parameters that

specifies extremality. Therefore we proceed by analogy, studying linearized radial

perturbations δφ , δv , δb around eq. (6.17) and comparing them to cases where the full

geometry is known. To this end, notice that the potential of eq. (6.12) is factorized,

U(φ, v, b) ≡ e2v Û(φ, b) , (6.19)

so that perturbations δv of v do not mix with perturbations δφ , δb of φ and b at the

linearized level. In addition, since the background values of φ and b are constant in r,

9Up to the sign of r and rescalings of R0, this realization of AdS× S with given L and R is unique.
10In either case we shall find that the geodesic distance is finite.
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the constraint obtained linearizing eq. (6.13) involves only v, and reads

2p
p + 1

v′ δv′ = ∂vU
∣∣∣∣
AdS×S

δv = 2 U
∣∣∣∣
AdS×S

δv =
2p

(p + 1)r2 δv , (6.20)

so that

δv ∼ const.× (−r)−1 . (6.21)

Thus, the constraint of eq. (6.21) retains only one mode ∼ (−r)λ0 with respect to the

linearized equation of motion for δv, with exponent λ0 = −1.

On the other hand, φ and b perturbations can be studied using the canonically

normalized fields

χ ≡
(√

8
D− 2

δφ ,

√
2q(D− 2)

p
δb

)
, (6.22)

in terms of which one finds

χ′′ ∼ − 1
r2 H0 χ , (6.23)

where the Hessian

Hab ≡
∂2U

∂χa∂χb

∣∣∣∣
AdS×S

≡ 1
r2 (H0)ab , (H0)ab = O

(
r0) . (6.24)

The substitution t = log(−r) then results in the autonomous system

(
d2

dt2 −
d
dt

)
χ = −H0 χ , (6.25)

so that the modes scale as χ ∝ (−r)λi , where the λi are the eigenvalues of the block

matrix 1 −H0

1 0

 . (6.26)

In turn, these are given by

λ
(±)
1 , 2 =

1±
√

1− 4 h1 , 2

2
,

h1 , 2 ≡
tr(H0)±

√
tr(H0)− 4 det(H0)

2
,

(6.27)
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where the trace and determinant of H0 are given by

tr(H0) = −
α
(
γ (α + γ)(D− 2)2 − 16

)
+ 16 γ (p + 1) (q− 1)

8 (p + 1) ((q− 1) γ− α)
,

det(H0) =
α γ (D− 2)2 ((p + 1) γ + α)

4 (p + 1)2 ((q− 1) γ− α)
.

(6.28)

In the case of the orientifold models, one obtains the eigenvalues

1±
√

13
2

,
1±
√

5
2

, (6.29)

while in the heterotic model one obtains the eigenvalues

± 2

√
2
3

, 1± 2

√
2
3

. (6.30)

All in all, in both cases one finds three negative eigenvalues and two positive ones,

signaling the presence of three attractive directions as r → −∞. The remaining

unstable modes should physically correspond to deformations that break extremality,

resulting in a truncation of the AdS× S throat and in the emergence of an event

horizon at a finite distance, and it should be possible to remove them with a suitable

tuning of the boundary conditions at the outer singularity. In the following section we

shall argue for this interpretation of unstable modes in the throat.

Comparison with known solutions

In order to highlight the physical origin of the unstable modes, let us consider

the Reissner-Nordström black hole in four dimensions, whose metric in isotropic

coordinates takes the form

ds2
RN = − g(ρ)2

f (ρ)2 dt2 + f (ρ)2 (dρ2 + ρ2 dΩ2
2
)

, (6.31)

where

f (ρ) ≡ 1 +
m
ρ
+

m2

4ρ2 −
e2

4ρ2 ,

g(ρ) ≡ 1− m2

4ρ2 +
e2

4ρ2 .
(6.32)
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The extremal solution, for which m = e, develops an infinitely long AdS2 × S2 throat

in the near-horizon limit ρ → 0, and radial perturbations of the type

ds2
pert = −

4ρ2

m2 e2 δa(ρ) dt2 +
m2

4ρ2 e2 δb(ρ) (dρ2 + ρ2 dΩ2
2
)

(6.33)

solve the linearized equations of motion with power-law modes ∼ ρλRN , with

eigenvalues

λRN = −2 , 1 , 0 . (6.34)

The zero-mode reflects invariance under shifts of δa, while the unstable mode reflects

a breaking of extremality. Indeed, writing m ≡ e (1+ ε) the ρ
m � 1 , ε� 1 asymptotics

of the red-shift gtt take the schematic form

(gtt)RN

(gtt)AdS2×S2
∼ regular + ε

(
− 1

ρ2 +
3

mρ
+ regular

)
+ o(ε) , (6.35)

so that for ε = 0 only a regular series in positive powers of ρ remains. Geometrically,

near extremality an approximate AdS× S throat exists for some finite length, after

which it is truncated by a singularity corresponding to the event horizon. As ε

decreases, this horizon recedes and the throat lengthens, with the length in log ρ

growing as − log ε. This is highlighted numerically in the plot of fig. 6.1.

A similar analysis for BPS D3-branes in type IIB supergravity [113] yields the

eigenvalues −8 , −4 , −2 , 4 , 0 , 0, suggesting again that breaking extremality gener-

ates unstable directions, and that a fine-tuning at infinity removes them leaving only

the attractive ones. Notice that the zero-modes correspond to constant rescalings of

xµ, which is pure gauge, and to shifts of the asymptotic value of the dilaton.

2.3 The pinch-off singularity

Let us now proceed to address the asymptotic geometry away from the core. Since the

dynamical system at hand is not integrable in general11, we lack a complete solution of

the equations of motion stemming from eq. (6.11), and therefore we shall assume that

11In the supersymmetric case the contribution arising from the dilaton tadpole is absent, and the
resulting system is integrable. Moreover, for p = 8 , q = 0 the system is also integrable, since only the
dilaton tadpole contributes.
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2×
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F I G U R E 6 . 1 : a plot of the ratio of the Reissner-Nordström red-shift
factor to the one of the corresponding AdS2 × S2, for various values
of the extremality parameter ε ≡ m

e − 1. Only values outside of the
event horizon are depicted. As extremality is approached, the horizon
recedes to infinity and the geometry develops an approximate AdS× S

throat, marked by (gtt)RN ≈ (gtt)AdS2×S2 , whose length in units of
log ρ grows asymptotically linearly in − log ε.

the dilaton potential overwhelms the other terms of eq. (6.12) for large (positive) r, to

then verify it a posteriori. In this fashion, one can identify the asymptotic equations of

motion

φ′′ ∼ γ(D− 2)
8

T eγφ+2v− 2q
p b ,

v′′ ∼ − p + 1
p

T eγφ+2v− 2q
p b ,

b′′ ∼ − 1
D− 2

T eγφ+2v− 2q
p b ,

(6.36)

whose solutions

φ ∼ γ(D− 2)
8

y + φ1r + φ0 ,

v ∼ − p + 1
p

y + v1r + v0 ,

b ∼ − 1
D− 2

y + b1r + b0

(6.37)

are parametrized by the constants φ1,0 , v1,0 , b1,0 and a function y(r) which is not

asymptotically linear (without loss of generality, up to shifts in φ1, v1, b1). Rescaling x

and redefining R0 in eq. (6.10) one can set e.g. b0 = v0 = 0. The equations of motion
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and the constraint then reduce to

y′′ ∼ T̂ eΩ y+L r ,

1
2

Ω
(
y′
)2

+ L y′ ∼ T̂ eΩ y+L r −M ,
(6.38)

where12

T̂ ≡ T eγφ0+2v0− 2q
p b0 ,

Ω ≡ D− 2
8

γ2 − 2(D− 1)
D− 2

,

L ≡ γ φ1 + 2 v1 −
2q
p

b1 ,

M ≡ 4
D− 2

φ2
1 −

p
p + 1

v2
1 +

q(D− 2)
p

b2
1 .

(6.39)

The two additional exponentials in eq. (6.12), associated to flux and internal curvature

contributions, are both asymptotically ∼ exp (Ωn,c y + Ln,c r), with corresponding

constant coefficients Ωn,c and Ln,c. Thus, if y grows super-linearly the differences

Ω−Ωn,c determine whether the dilaton potential dominates the asymptotics. On the

other hand, if y is sub-linear the dominant balance is controlled by the differences

L− Ln,c. In the ensuing discussion we shall consider the former case13, since it is

consistent with earlier results [24], and, in order to study the system in eq. (6.38),

it is convenient to distinguish the two cases Ω = 0 and Ω 6= 0. Moreover, we

have convinced ourselves that the tadpole-dominated system of eq. (6.36) is actually

integrable, and its solutions behave indeed in this fashion. As a final remark, us

observe that, on account of eq. (6.37), the warp exponents of the longitudinal sector

dx2
p+1 and the sphere sector R0 dΩ2

q are asymptotically equal,

2
p + 1

v− 2q
p

b ∼ 2b . (6.40)

This is to be expected, since if one takes a solution with q = 0 and replaces

dx2
p+1 → dx2

p′+1 + R2
0 dΩ2

p−p′ (6.41)

12Notice that Ω = D−2
8
(
γ2 − γ2

c
)
, where the critical value γc defined in [27] marks the onset of the

“climbing” phenomenon described in [69, 70, 114, 115] use different notations.
13The sub-linear case is controlled by the parameters φ1 , v1 , b1, which can be tuned as long as the

constraint is satisfied. In particular, the differences L− Ln,c do not contain v1.
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for some p′ < p and large R0, and then makes use of the freedom to rescale R0 shifting

b by a constant (which does not affect the leading asymptotics), one obtains another

asymptotic solution with lower p′ < p, whose warp factors are both equal to the one

of the original solution.

Pinch-off in the orientifold models

In the orientifold models Ω = 0, since the exponent γ = γc attains its “critical”

value [27] in the sense of [69]. The system in eq. (6.38) then yields

y ∼ T̂
L2 eL r , M = 0 , L > 0 ,

y ∼ T̂
2

r2 , M = T̂ , L = 0 .

(6.42)

These conditions are compatible, since the quadratic form M has signature (+,−,+)

and thus the equation M = T̂ > 0 defines a one-sheeted hyperboloid that intersects

any plane, including {L = 0}. The same is also true for the cone {M = 0}.

In both solutions the singularity arises at finite geodesic distance

Rc ≡
∫ ∞

dr ev− q
p b < ∞ , (6.43)

since at large r the warp factor

v− q
p

b ∼ − D− 1
D− 2

y . (6.44)

In the limiting case L = 0, where the solution is quadratic in r, due to the discussion

in the preceding section this asymptotic behavior is consistent, up to the replacement

of dx2
9 with dx2

2 + R2
0 dΩ2

7, with the full solution found in [24], whose singular structure

is also reconstructed in our analysis for p = 8, q = 0, L = 0. The existence of

a closed-form solution in this case rests on the integrability of the corresponding

Toda-like system, since neither the flux nor the internal curvature are present.
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Pinch-off in the heterotic model

In the heterotic model Ω = 4, and therefore one can define

Y ≡ y +
L
Ω

r , (6.45)

removing the L r terms from the equations. One is then left with the first-order

equation

1
2

Y′2 − T̂
Ω

eΩ Y = E , (6.46)

which implies the second-order equation of motion, where the “energy”

E ≡ M
2Ω
− L2

2Ω3 . (6.47)

The solutions of eq. (6.46) depend on the sign of E, and one can verify that, if

r → +∞, Y grows at most linearly. On the other hand, super-linear solutions develop

a singularity at a finite radius r = r0, and they all take the form

Y ∼ − 2
Ω

log (r0 − r) , (6.48)

which is actually the exact solution of eq. (6.46) for E = 0. The geodesic distance to

the singularity

Rc ≡
∫ r0

dr ev− q
p b < ∞ (6.49)

is again finite, since from eqs. (6.44) and (6.48)

v− q
p

b ∼ 2
Ω

D− 1
D− 2

log (r0 − r) =
9

16
log (r0 − r) . (6.50)

In terms of the geodesic radial coordinate ρc < Rc, the asymptotics14 are

φ ∼ − 4
5

log (Rc − ρc) ,

ds2 ∼ (Rc − ρc)
2
25
(
dx2

6 + R2
0 dΩ2

3
)
+ dρ2 .

(6.51)

14More precisely, the asymptotics for the metric in eq. (6.51) refer to the exponents in the warp factors,
which are related to v and b. Subleading terms could lead to additional prefactors in the metric.
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While these results are at most qualitative in this asymptotic region, since curvature

corrections and string loop corrections are expected to be relevant, they again hint at a

physical picture whereby space-time pinches off at finite distance in the presence of

(exponential) dilaton potentals, while branes dictate the symmetries of the geometry,

as depicted in Figure 6.2. In this context, the nine-dimensional Dudas-Mourad

solutions correspond to (necessarily uncharged) 8-branes15. This picture highlights

the difficulties encountered in defining tension and flux as asymptotic charges, but

analogous quantities might appear as parameters in the sub-leading portion of the

solution, of which there are indeed two. They ought to be matched with the AdS× S

core, and we are currently pursuing this direction, which however appears to entail

complicated non-linear numerics. We shall elaborate on this issue in Section 2.4. For

the time being let us recall that the results of [76] suggest that a that an analysis based

on string perturbation theory [76] suggests that at least the D1-branes that we consider

are extremal, albeit the presence of dilaton tadpoles makes this lesson less clear.

As a final comment, let us add that cosmological counterparts, if any, of these

solutions, whose behavior appears milder, can be expected to play a rôle when

the dynamics of pinch-off singularities are taken into account, and they could be

connected to the hints of spontaneous compactification discussed in Chapter 4. Indeed,

as already stressed in [27], the general lesson is that non-supersymmetric settings

are dynamically driven towards time-dependent configurations, and this additional

potential instability might be mitigated to an arbitrarily large extent studying the

dynamics deep inside the AdS throat, the deeper the more any effect of an asymptotic

collapse is red-shifted.

2.4 Black branes: back-reaction

Let us conclude our discussion on back-reactions extending machinery that we have

developed in Section 2.1 to the case of non-extremal branes. Including a “blackening”

factor entails the presence of an additional dynamical function, and thus after gauge-

fixing radial diffeomorphisms one is left with four dynamical functions (including the

15In particular, on account of the analysis that we described in the preceding chapter, it is reasonable
to expect that in the orientifold models the Dudas-Mourad solution corresponds to D8-branes.
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φ→ ∞

∫ √
grrdr

AdSp+2 × Sq

φ = φ0

Sq

F I G U R E 6 . 2 : a schematic depiction of the expected structure of the
complete geometry sourced by the branes, displaying only geodesic
radial distance and the Sq radius. The geometry interpolates between

the AdS× S throat and the pinch-off singularity (dashed circle).

dilaton). Specifically, in order to arrive at a generalization of the Toda-like system of

eqs. (6.11) and (6.13), the correct ansatz takes the form

ds2
D = e2(a(r)+pb(r)+qc(r)) dr2 − e2a(r) dt2 + e2b(r) dx2

p + e2c(r) R2
0 dΩ2

q ,

φ = φ(r) ,

Hp+2 =
n

f (φ)(R0 ec)q Volp+2 , Volp+2 = e2a+2pb+qc dr ∧ dt ∧ dpx .

(6.52)

Then, one can verify that the resulting reduced equations of motion can be derived

from the Toda-like action

Sred =
∫

dr
[

4
D− 2

(
φ′
)2

+ q(q− 1)
(
a′2 − b′2

)
+

p(D− 2)
q

(
c′
)2 − U

]
(6.53)

where the effective potential now reads

U = − T eγφ+2a+2qb− 2p
q c − n2

2R2q
0

e−αφ−2(q−1)a+ 2p(q−1)
q c +

q(q− 1)
R2

0
e2(q−1)b , (6.54)

and the equations of motion are to be supplemented by the zero-energy constraint

4
D− 2

(
φ′
)2

+ q(q− 1)
(
a′
)2 − q(q− 1)

(
b′
)2

+
p(D− 2)

q
(
c′
)2

+ U = 0 . (6.55)
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Changing variables in eq. 6.52 in order to match the ansatz of eq. 6.10, and substituting

the resulting expressions in eqs. (6.53) and (6.55), one recovers the Toda-like system

that describes extremal branes. Hence, the generalized system that we have derived

can in principle describe the back-reaction of non-extremal branes, which ought to

exhibit Rindler geometries in the near-horizon limit. On the other hand, one can verify

that the tadpole-dominated asymptotic system reproduces the behavior of eq. (6.37),

thus suggesting that the pinch-off singularities described in the preceding sections are

generic and do not depend on the gravitational imprint of the sources that are present

in space-time, rather only on the residual symmetry left unbroken.

3 B L A C K B R A N E S : D Y N A M I C S

Let us now extend the considerations of Section 1 to the non-extremal case, studying

potentials between non-extremal brane stacks and between stacks of different types

and dimensions. While probe-brane computations are rather simple to perform using

the back-reacted geometries that we described in the preceding section, they pertain

to regimes in which the number of p-branes Np in one stack is much larger than the

number of q-branes Nq in the other stack. However, with respect to the extremal case,

the leading contribution to the string amplitude for brane scattering corresponds to

the annulus, which is non-vanishing and does not entail the complications due to

orientifold projections, anti-branes and Riemann surfaces of higher Euler characteristic.

This setting therefore offers the opportunity to compare probe computations with

string amplitude computations. Specifically, we shall consider the uncharged 8-

branes in the orientifold models, since their back-reacted geometry is described

by the static Dudas-Mourad solution16 [24] that we have described in Chapter 3.

Furthermore, the other globally known back-reacted geometry in this setting pertains

to extremal D1-branes, and 8-branes are the only probes (of different dimension)

whose potential can be reliably computed in this case, since they can wrap the

internal S7 in the near-horizon AdS3 × S7 throat. On the other hand, while probe

16The generalization to non-extremal p-branes of different dimensions would entail solving non-
integrable systems, whose correct boundary conditions are not well-understood hitherto. Moreover, a
reliable probe-brane regime would exclude the pinch-off asymptotic region, thereby requiring numerical
computations.



3. Black branes: dynamics 105

computations in the heterotic model can be performed with no further difficulties,

their stringy interpretation appears more subtle, since it would involve NS5-branes or

non-supersymmetric dualities. Nevertheless, probe-brane calculations in this setting

yield attractive potentials for 8-branes and fundamental strings, as in the orientifold

models, while NS5-branes are repelled. In addition, in some cases the potential scales

with a positive power of gs. Otherwise, the instability appears to be still under control,

since probes would reach the strong-coupling regions in a parametrically large time

for gs � 1.

3.1 Brane probes in the Dudas-Mourad geometry

Let us consider a stack of Np probe Dp-branes, with p ≤ 8, embedded in the Dudas-

Mourad geometry parallel to the 8-branes17, at a position y in the notation of Chapter 3.

We work in units where αO = 1 for clarity. This setting appears to be under control as

long as the geodesic coordinate

r ≡ 1
√

gs

∫ y

0

du

u
1
3

e−
3
8 u2

(6.56)

is far away from its endpoints r = 0, r = Rc. Such an overlap regime exists provided

that gs ≡ eΦ0 � 1, and thus both curvature corrections and string loop corrections are

expected to be under control.

Writing the metric as

ds2
10 = e2A(y) dx2

9 + e2B(y) dy2 (6.57)

the DBI action evaluates to

Sp = −Np Tp

∫
dp+1x e(p+1)A(y)−Φ(y)

≡ −Np Tp

∫
dp+1x Vp8 ,

(6.58)

where the probe potential per unit tension

17While the number N8 of 8-branes does not appear explicit in the solution, there is a single free
parameter gs ≡ eΦ0 , which one could expect to be determined by N8 analogously to the extremal case,
with gs � 1 for N8 � 1.



106 Chapter 6. Brane dynamics: probes and back-reaction

Vp8 = gs
p−3

4 y
2
9 (p−2) e

p−5
8 y2 (6.59)

displays a non-trivial dependence on p, and is depicted in figs. 6.3 and 6.4. In

particular, if the potential drives probes toward y → ∞ it is repulsive, since the

corresponding pinch-off singularity derived in the preceding sections agrees with the

Dudas-Mourad geometry in this regime. All in all, for p < 3 probes are repelled by

the 8-branes, while for p > 4 they are attracted to the 8-branes. The cases p = 3 , 4

feature unstable equilibria18 which appear to be within the controlled regime, but the

large-separation behavior, to be compared to a string amplitude computation, appears

repulsive. As we have anticipated, the analogous computation for branes probing the

back-reacted geometry sourced by other non-extremal branes appears considerably

more challenging. This is due to the fact that even if the reduced dynamical system

derived in the preceding sections were solved numerically in a reliable regime, the

asymptotic boundary conditions corresponding to uncharged branes are not yet

understood. While this is the case also for extremal branes, one can make progress

observing that in the probe regime the scale of the dimensions transverse to the

extremal stack should be large enough to ensure that the near-horizon limit is reliable.

The exponential term in eq. (6.59) is actually universal, since repeating the above

probe-brane computation for the generic pinch-off singularity of eq. (6.42) in the

orientifold models19 yields the same result, with the potential at large separation

repulsive for p < 5 and attractive for p > 5, while the case p = 5 requires subleading,

presumably power-like, terms in the metric. However, we do not expect these cases to

provide reliable insights, since the pinch-off singularity lies beyond the controlled

regime.

In order to verify that this construction is at least parametrically under control,

one ought to verify that the probe-brane stack remains in the controlled region for

parametrically large times. To this end, let us consider the reduced dynamical system

that describes motion along y, with the initial conditions y(0) = y0 , ẏ(0) = 0. The

18Notice that, in the absence of fluxes, brane polarization [11, 116] would not suffice to stabilize these
equilibria.

19As we have discussed in Section 2.4, the leading-order behavior of the pinch-off singularity is
expected to be applicable to the non-extremal case, since it is dominated by the dilaton potential.
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corresponding Lagrangian reads

Lred = −Tp Np Vp8

√
1− e2(B−A) ẏ2 , (6.60)

and, since the corresponding Hamiltonian

Hred =
Tp Np Vp8√

1− e2(B−A) ẏ2
= Tp Np Vp8(y0) (6.61)

is conserved, solving the equation of motion by quadrature gives

t =
∫ y

y0

eB(u)−A(u)√
1−

(
Vp8(u)
Vp8(y0)

)2
du = g−

3
4

s

∫ y

y0

e−
u2
2

u
5
9

√
1−

(
u
y0

) 4
9 (p−2)

e
p−5

4 (u2−y2
0)

, (6.62)

which is indeed parametrically large in string units.

3.2 String amplitude computation

Let us now compare the probe-brane result of eq. (6.59) with a string amplitude

computation. As we have anticipated, in the non-extremal case the relevant amplitude

for the leading-order interaction between stacks of Np Dp-branes and Nq Dq-branes20,

with p < q for definiteness, is provided by the annulus amplitude, whose transverse-

channel integrand in the present cases takes the form [76]

Ãpq ∝ Np Nq
(
V8−q+p Oq−p −O8−q+p Vq−p

)
, (6.63)

where the characters are evaluated at q = e−2π` and we have omitted the overall

unimportant positive normalization, which encodes the tensions and depends on

whether both stacks consist of non-extremal branes or one stack consists of extremal

branes. In suitable units for the transverse separation r bewtween the two stacks, the

potential Vpq takes the form

Vpq ∝ −Np Nq

∫ ∞

0

d`

`
9−q

2

Ãpq

η8−q+p

(
2η

ϑ2

) q−p
2

e−
r2
` . (6.64)

20The ensuing string amplitude computation is expected to be reliable as long as Np and Nq are O(1),
complementary to the probe regimes Np � Nq and Np � Nq.
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For large r, the integral is dominated by the large ` region, where the integrand

asymptotes to q−
1
3 Ãpq, where

Ãpq ∝ V8−q+p Oq−p −O8−q+p Vq−p

∼ 2 (4− q + p) q
1
3 ,

(6.65)

so that the overall sign of the potential is the sign of q− p− 4. Thus, for large r and

q < 7 one finds

Vpq ∝ (q− p− 4)
Np Nq

r7−q , (6.66)

which is repulsive for p < q− 4 and attractive for p > q− 4. While the integral

of eq. (6.64) diverges for q ≥ 7, a distributional computation for q = 7 , 8 yields

a finite force stemming from potentials that behave as (p− 3) log(r) and (p− 4) r

respectively. Therefore, the only case that can be compared with a reliable probe-brane

computation is q = 8, where the potential behaves as (p− 4) r and is thus repulsive

for p < 4 and attractive for p > 4, consistently with the results in the preceding

section.

3.3 Probe 8-branes in AdS× S throats

To conclude, let us thus consider N8 8-branes embedded in the near-horizon AdS3× S7

geometries sourced by N1 � N8 extremal D1-branes in the orientifold models and, for

the sake of completeness, by N5 � N8 NS5-branes in the heterotic model. Other than

the interaction potential bewteen two extremal stacks, which we have computed in

Section 1, this is the only case where a probe-brane potential can be reliably computed,

since the 8-branes can wrap the internal spheres without collapsing in a vanishing

cycle, leaving only one dimension across which to separate from the stack. Moreover,

this is the only case where computations can be performed in the opposite regime

N1 , N5 � N8, as we have described in Section 3.1. Since the 8-branes are uncharged,
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the respective potentials V81 , V85 arise from the DBI contribution only, and one finds

V81 = N8 N1 T8 R7
(

L
Z

)2

,

V85 = N8 N5 T8 R3
(

L
Z

)6

,

(6.67)

where we have omitted the a priori unknown (and unimportant) scaling with gs.

These potentials are thus attractive, which may appear in contradiction with the

results in the preceding sections, where both D1-branes and NS5-branes are repelled

by the 8-branes. However, let us observe that, since the 8-branes wrap the internal

spheres, in the large-separation regime they ought to behave as uncharged 1-branes

and 5-branes respectively, consistently with an attractive interaction. Furthermore,

when expressed in terms of the geodesic coordinate r = L log
(Z

L

)
, the potentials of

eq. (6.67) decay exponentially in r.

All in all, the results in this chapter further support the idea that brane dynamics

plays a crucial rôle in elucidating the fate of string models with broken supersymmetry.

Whenever available, microscopic information such as the scaling of the tensions of

fundamental branes and the string amplitude computation of eq. (6.64) appear to be

consistent with the low-energy effective theory introduced in Chapter 3. The resulting

picture builds an intuitive understanding of the high-energy behavior of the settings

at stake, and points to some avenues to more quantitative results in this respect. In

particular, the interpretation of the AdS3 × S7 solution introduced in Chapter 3 as

the near-horizon limit of the back-reacted geometry sourced by D1-branes, which

subsequently nucleate and are repelled by each other, suggests that an holographic

approach could expose some intriguing lessons. This shall be the focus of the following

chapter, in which we propose a dual interpretation of non-perturbative instabilities in

meta-stable AdS3 (false) vacua.
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F I G U R E 6 . 3 : probe potentials for gs = 1 and p ≤ 8. For p < 3 the
probe stack is repelled by the 8-branes, while for p > 4 it is attracted to
the 8-branes. A string amplitude computation yields a qualitatively
similar behavior, despite the string-scale breaking of supersymmetry.
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F I G U R E 6 . 4 : probe potentials for gs = 1 and p ≤ 8, plotted as
functions of the geodesic coordinate along the compact direction.





7Holography: bubbles and RG flows

In this chapter we describe in detail a holographic approach to non-perturbative insta-

bilities of meta-stable AdS (false) vacua, presenting the results of [109] and connecting

them to the discussions in the preceding chapters. Alongside (non-)perturbative

dualities, which are best understood in supersymmetric scenarios, holography has

established itself as one of the main available tools to obtain insights in quantum

gravity, at least in (asymptotically) AdS geometries [4, 117, 118]. In particular, remark-

able progress has been achieved in black-hole thermodynamics, which is amenable

to both semi-classical [119] and holographic analyses [120–122]. The holographic

properties of black holes are encoded in thermal states of the corresponding boundary

theories, and (entanglement) entropy computations provide a useful tool to study

them [123–125]. All in all, black holes constitute a prototypical example of a quantum-

gravitational phenomenon. Similarly, vacuum decay processes [96, 97, 100] comprise

a different class of scenarios where genuine quantum-gravitational effects drive the

physics. Much as for black holes, the semi-classical description of vacuum decay has

been thoroughly dissected in the literature [16, 126–128], and is currently an active

topic of research, but its holographic properties have been only explored to a lesser

extent1. The issue has been investigated in connection with the walls of vacuum

bubbles [134–136], but in this chapter we would like to explore the links with the

boundary of AdS, which suggests a qualitatively different picture. Moreover, since

vacuum decay processes also play an important rôle in identifying a “swampland”

and its relation to UV completions of gravity, it is conceivable that probing them

beyond the semi-classical level could provide new gateways to the intricacies of the

field [137].

Therefore, motivated also by the brane constructions that we have discussed

1For recent results, which have appeared during the development of [109], see [129, 130]. See also [131,
132] for other works on the structure of the vacuum in the presence of bubbles. For a field-theoretical
discussion of instanton contributions to entanglement entropy, see [133].
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in Chapter 5 and Chapter 6, in this chapter we propose a first step to bridge the

gap between holographic methods, which typically address stable, often exclusively

stationary states, and aspects of the standard semi-classical techniques used to study

vacuum decay, focusing in particular on the development of vacuum bubbles that

mediate transitions between classical vacua. Here we consider them in the simplest

case of interest, namely AdS geometries in three space-time dimensions, which

according to the results described in the preceding chapters arise, for instance,

from D1-brane stacks in the USp(32) and U(32) orientifold models. For the sake of

clarity we shall keep the ensuing discussion quite general, with few references to the

string-theoretic settings that we have in mind.

Altogether, we shall present evidence that, holographically, vacuum bubbles

behave much like RG flows of the boundary theory, and appear to provide, in some

sense, a set of building blocks for such flows, as we shall discuss later on. The

motivation for considering this interpretation relies on two facts:

• Vacuum decay has an irreversible direction, from AdS radius L− to L+ < L−,

i.e. the (negative) cosmological constant must increase in absolute value [96, 97].

• The (holographic) central charge, in an AdS3 vacuum, is proportional to the

AdS3 radius, in particular

c =
3L

2G3
(7.1)

in three dimensions [138], where G3 is the three-dimensional Newton constant.

This suggests that vacuum decay be accompanied by a decrease of the central

charge c, along the lines of the Zamolodchikov c-theorem [139]. Our choice of

working in three space-time dimensions is indeed motivated by the fact that,

while gravity becomes more tractable [140, 141], the central charge encodes key

information on the boundary theory [142–144].

In order to put this idea on firmer grounds, it will be useful to study the behavior

of the entanglement entropy of any subregion of the deformed boundary theory,

since this quantity provides a probe for its quantum-mechanical properties. If this

framework gives a correct description of the problem, important lessons are potentially

in store regarding the swampland program and the stability of non-supersymmetric



1. Construction of the bulk geometry 115

AdS “vacua”. Moreover, powerful standard techniques that apply to the boundary

description could conceivably shed light on the analysis of vacuum instabilities

beyond the semi-classical regime. In particular, the world-volume gauge theories

associated to the low-energy dynamics of D1-branes would provide a quantitative

connection to the orientifold models that we have discussed in Chapter 2.

To begin with, in Section 1 we describe in detail the geometry that results from

bubble nucleation, introducing the coordinate systems that we shall employ. In Sec-

tion 2 we present the computation of the holographic entanglement entropy associated

to a bubble, referring to the results in Appendix C, and in Section 3 we introduce

a number of c-functions connected to the entanglement entropy, the null-energy

condition and the trace anomaly. Then, in order to extend our results to the case of

off-centered bubbles, in Section 4 we describe the powerful formalism o (holographic)

integral geometry [33], and we apply it to the present setting. Finally, in Section 5

we collect some remarks on a holographic interpretation of non-supersymmetric

brane dynamics, and we specialize our considerations to the case of D1-branes in

the USp(32) and U(32) orientifold models, connecting the following results to the

ones described in the preceding chapters. In particular, these settings could provide a

firmer basis for further developments non-supersymmetric in brane dynamics and

holography which are qualitatively different from orbifolds of their well-understood

supersymmetric counterparts.

1 C O N S T R U C T I O N O F T H E B U L K G E O M E T R Y

In this section we present the geometry which models the decay process that we shall

consider. It describes, in the semi-classical limit, the expansion of a bubble of AdS

geometry, nucleated by tunneling inside a meta-stable AdS of higher vacuum energy.

Physically, such a situation can be realized, in the simplest setting, in a gravitational

theory with a minimally coupled scalar Φ subject to an asymmetric double well

potential [100, 127] of the form

L = R − 1
2
(∂Φ)2 −Vwell(Φ) , (7.2)
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but, as we have described in Chapter 5, settings of this type can be concretely realized

by fundamental branes in non-supersymmetric string models. In the following we

shall not need a precise construction, since we shall focus on model-independent

features, but let us stress that more explicit “top-down” constructions should provide

better control of the holographic dictionary in this context. In order to isolate the

relevant physics in the most tractable scenario, we shall work in three space-time

dimensions, while resorting to the thin-wall approximation. Furthermore, we shall

focus on nucleation at vanishing initial radius2, occurring at the center of a global

chart of an original AdS+3 space-time. The generalization to arbitrary initial radius and

dimension is straightforward and does not appear to affect our analysis qualitatively,

while off-centered nucleation is discussed later. On the other hand, according to the

discussions in Chapter 5 the thin-wall approximation ought to reliably describe the

dominant decay channels in the settings that we have in mind [102].

Let us consider two AdS3 (false) vacua, dubbed AdS+3 and AdS−3 , of radii L+ > L−

respectively, connected by a tunneling process

AdS+3 → AdS−3 (7.3)

mediated by the nucleation of a bubble. Working in the thin-wall approximation, we

realize the metric corresponding to the decay process gluing the two AdS3 geometries

over a null surface, which represents the bubble trajectory as depicted in fig. 7.1.

It is most convenient to work in a coordinate chart3 such that the metric reads

ds2
± = −

(
1 +

r2

L2
±

)
dη2(

1 + η2

L2
±

)2 +
dr2

1 + r2

L2
±

+ r2 dφ2
(7.4)

for both the initial and final AdS3 geometries. In the thin-wall approximation the

bubble is described, in the AdS±3 charts respectively, by the radial null surfaces

ds2
± = 0 ⇒ r = η . (7.5)

2While our preceding results show that AdS-scale nucleation radii are favored, from a phenomenolog-
ical perspective one may expect tunneling to favor microscopic initial radii [100], since bubble nucleation
is a genuinely quantum-gravitational event. At any rate, the qualitative picture is not affected by this
approximation, which we expect to be instructive.

3This chart is related to the (t, r, φ) global coordinates via the transformation η = L± tan
(

t
L±

)
. It

does not cover the full geometry, but it does cover the entirety of the collapse.
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F I G U R E 7 . 1 : a Penrose-like diagram of the geometry describing the
decay process.

Gluing along the bubble4, the complete metric can be written in the compact form

ds2 = −
(

1 +
r2

L2
eff

)
dη2(

1 + η2

L2
eff

)2 +
dr2

1 + r2

L2
eff

+ r2 dφ2 , (7.6)

where Leff denotes an “effective curvature radius”, defined by

Leff(η, r) ≡


L+ , r > η

L− , r < η

. (7.7)

It is worth noting that Leff can be written as a step function with argument r− η.

This may lead one to expect that doing away with the thin-wall approximation could

amount to a “smoothing” of Leff, perhaps as a function of an invariant quantity, which

we shall indeed identify in the following section. This gluing procedure agrees with

the standard Israel junction conditions for null hypersurfaces [145–147]. Indeed, the

continuity condition for the (degenerate) induced metric h on the bubble reduces to

eq. (7.13), while the transverse curvature exhibits a discontinuity proportional to h,

which can be ascribed to the bubble stress-energy tensor [147]. In detail, following the

notation of [147], in the global (η, r, φ) chart the bubble (where η = r) is described by

φ, generated by the integral flow of the tangent space-like vector eφ, and by the null

4We remark that this can be done with no issues, since the bubble is null. Equivalently, the equations
for the bubble trajectory, seen from both sides, take the same form, which motivates this choice of time
coordinate.
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coordinate λ ≡ η + r, generated by the integral flow of the null vector eλ. In addition,

the transverse null vector N is chosen such that

eφ · eλ = eφ · N = 0 , N2 = e2
λ = 0 , N · eλ = −1 . (7.8)

Explicitly,

eλ ≡
√

f±(r)
2

(
∂η + ∂r

)
, eφ ≡

1
r

∂φ , N ≡
√

f±(r)
2

(
∂η − ∂r

) (7.9)

on either side of the bubble, where f±(r) ≡ 1+ r2

L2
±

. The resulting transverse curvature

Cab ≡ − gµν Nµ eρ
a ∇ρ eν

b , a , b ∈ {λ , φ} , (7.10)

is then

Cλλ = Cλφ = 0 , Cφφ =
1
r

√
f±(r)

2
. (7.11)

Hence, Cab is indeed proportional to the (degenerate) induced metric hab = g(ea, eb)

on the bubble.

While this coordinate system is convenient to describe the geometry, due to the

simplicity of the gluing conditions, the same results can be reproduced in another

global coordinate system, denoted by (τ, ρ, φ), in which the AdS±3 metrics read

ds2
± = L2

±

(
− cosh2 ρ± dτ2

± + dρ2
± + sinh2 ρ± dφ2

±

)
. (7.12)

This turns the gluing condition into

L+ sinh ρ+ = L− sinh ρ− , (7.13)

which induces a discontinuity ρ that must be taken into account. There is also a

corresponding discontinuity in τ. We shall make use of this coordinate system to

compute the entanglement entropy in Section 2.

Let us observe the SO(2, 2) isometry group of AdS3 is broken by the metric of

eq. (7.6) to the subgroup SO(1, 2) that keeps the nucleation event fixed, and under

which the bubble wall and the two AdS±3 regions are all invariant.
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1.1 Thick walls and conformal structure

The metric described in the preceding section has a boundary with a ill-formed

conformal structure, since the two semi-infinite cylinders corresponding to the (con-

formal structures of the) boundaries of AdS±3 are separated by a ring-like “conformal

singularity”, which builds up when the bubble reaches infinity. While this might

seem an artifact of the thin-wall approximation, we have reasons to believe that this is

not the case. In general, a “thick-wall” bubble could be realized via a smooth metric

with the same isometry group5 as a thin-wall bubble, which is the SO(1, 2) subgroup

of SO(2, 2) that keeps the nucleation center fixed. Up to diffeomorphisms, the only

invariant of this subgroup is

ξ2 ≡ log |cosh ρ cos τ| , (7.14)

which generalizes the flat-space-time r2 − t2, so that any candidate “smoothed” Leff

can only depend on ξ2 and, possibly, on a discrete choice of angular sectors6 for τ. We

have convinced ourselves that, independently of the smooth behavior of the effective

radius, the boundary value of Leff is still given by a step function, namely

lim
ρ→∞

Leff(τ, ρ) =


L+ , τ < π

2

L− , τ > π
2

. (7.15)

In geometric terms, all “layers” of the thick bubble can reach the boundary at the same

time, and thus produce again a conformal singularity, separating the two conformal

structures. This is schematically depicted in the Penrose-like diagram of fig. 7.2. We

remark that this structure is indeed imposed by symmetry, since it originates from

a suitable Wick rotation of an SO(3)-invariant instanton. This is consistent with an

intuitive picture in which each “layer” moves in a uniformly accelerated fashion, is

asymptotically null and the slower ones start out closer to the boundary.

5Actually, the nucleation event cannot itself have such a symmetry, which can only hold for sufficiently
large bubble well after nucleation. This is not an issue for what concerns the conformal structure of the
boundary.

6For instance, single-bubble tunneling can be implemented letting Leff = L+ for τ < 0, a smooth
function of ξ2 for 0 < τ < π

2 , and L− for τ > π
2 .
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F I G U R E 7 . 2 : a cross-section of a Penrose-like diagram for AdS space-
time with selected level sets of ξ2, representing potential layers of a
thick bubble. A choice of angular sector for τ eliminates the periodicity.

To conclude this section, let us briefly address the issue of gravitational collapse.

It was shown [100, 148] that AdS thick-wall bubbles nucleating inside Minkowski

false vacua induce a “big crunch” due to a singular evolution of the scalar field Φ(ξ).

However, the issue is subtler in the present case, since the proof in [148] rests on

the existence of global Cauchy surfaces, which AdS does not accommodate. To wit,

the initial-value problem in global AdS is ill-defined unless it is supplemented with

appropriate boundary conditions. However, the SO(1, D− 1) symmetry assumed

in [100] and in the present discussion does not allow any plausible choice of boundary

conditions. For instance, Dirichlet conditions for Φ(ξ) at the conformal singularity

constrain it to be constant, since all slices of constant ξ converge there7. Regardless

of how boundary conditions affect the issue at stake, we remark that the present

discussion concerns primarily the expansion of the bubble, rather than the fate of

AdS−3 .

7An analogous constraint holds for boundary conditions involving a finite number of derivatives.
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2 T H E H O L O G R A P H I C E N TA N G L E M E N T E N T R O P Y

In general terms, holographic dualities relate a gravitational theory to a non-

gravitational one, typically a quantum field theory in a fixed background space-time,

in such a way that, whenever one side of the duality is strongly coupled, the other is

weakly coupled and the two theories describe the same physics [4, 117, 118, 149].

The identification of the two theories then takes the form of a link between the bulk

action and the boundary generating functional. This prescription for holography

has been employed to derive a number of important checks. Some of these have led

to the Ryu-Takayanagi formula [123–125], which relates entanglement entropy in

the boundary theory and geometric quantities in the bulk, in a generalization of the

Bekenstein-Hawking formula for black holes. In detail, the entanglement entropy of

region A on the boundary is given by the extremal area of surfaces in (space-like

slices of) the bulk whose boundary is ∂A ,

Sent(A ) = inf
∂A= ∂A

Area(A)
4GN

. (7.16)

The Ryu-Takayanagi formula is decorated by various corrections, arising for instance

from higher curvature terms in the effective action for the bulk theory. In light of its

geometric simplicity, we shall take the Ryu-Takayanagi formula as a starting point and

investigate the entanglement entropy of the boundary theory during the growth of

the vacuum bubble. To this end, we shall study the variational problem of finding the

geodesic between two boundary points in the bubble geometry described in Section 1.

2.1 The entanglement entropy of the bubble geometry

In accordance with the Ryu-Takayanagi formula, the entanglement entropy of a

boundary interval A = AA of size 2θA is related to the (regularized) length of the

shortest curve between its endpoints. The condition of extremality for a curve in the

bubble geometry corresponds to it being composed, inside and outside the bubble,
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of segments of hyperbolic lines (in the relevant hyperbolic plane H2), joining with

no kink at the bubble wall. This no-kink condition is more precisely stated as the

requirement that the slope d`
dφ , where d` ≡ (1 + r2

L2
eff
)−

1
2 dr is the differential radial

geodesic distance, be continuous across the bubble wall8. Explicitly, it follows from

the (distributional) geodesic equation, which in the present case can be integrated to

dr
ds

=

√√√√(1 +
r2

L2
eff

)(
E− J2

r2

)
, (7.17)

where E and J are integration constants and s an affine parameter, so that

d`
dφ

=

(
1 +

r2

L2
eff

)− 1
2 r2

J
dr
ds

=
r2

J

√
E− J2

r2
(7.18)

is indeed continuous at the bubble wall. To explain it in a more intuitive fashion,

“zooming in” on the intersection of the geodesic with the bubble and sending L± →

∞, one recovers the regular Euclidean plane, consistently with the absence of a kink.

Let us distinguish two possible phases for the extremal curve:

• The vacuum phase, simply given by the hyperbolic line in H2
− between two

symmetric endpoints A and A, which only exists if

cos θA > cos θ
par
A ≡ tanh

(
rbubble

L−

)
. (7.19)

• The injection phase, where the curve injects into the bubble at a point B at an

angle θB from the center of the interval, follows a line in H2
+ until it reaches the

symmetric point B, then exits the bubble and follows a line to A. The angle θB is

fixed by the no-kink condition.

In Appendix C we shall derive both the no-kink condition, written as an equation

suitable to analize numerically, and the length of the corresponding geodesics using

hyperbolic geometry. Then, for each value of θA we have first solved the no-kink

equation for the injection phase numerically, and use the results to compare the lengths

8The absence of a kink translates graphically into the condition that the geodesic segments be tangent
in a conformal model, such as the “twofold Poincaré disk” that we have depicted in fig. 7.4. Equivalently,
the angles formed with a ray of the circle, measured in the inner and outer hyperbolic planes, coincide.
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of the two phases in order to determine the minimal one. The result is depicted in

fig. 7.3.
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F I G U R E 7 . 3 : finite part of the geodesic length for the two phases
plotted against boundary interval size. We have chosen a cosmological

constant ratio of 1
2 as an example.

We have found that the length of the injecting curve drops below that of the

vacuum curve at a critical angle θcrit
A < θ

par
A , marking a phase transition beyond which

the penetrating geodesic is favored, as depicted in fig. 7.4.

F I G U R E 7 . 4 : minimal curves for increasing θA in a twofold Poincaré
disk model. The two equal-length geodesics at the injection phase
transition are depicted. Notably, the transition occurs before the

vacuum geodesic becomes tangent to the bubble.

In the following section we shall discuss how the resulting (finite part of the)

entanglement entropy behaves as the bubble expands, and how the corresponding

c-function provides a probe for the putative RG flow at place. One may wonder
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whether our proposal conflicts with the dynamical nature of an expanding bubble,

which would suggest a dual interpretation in terms of a time-dependent state in the

boundary theory. However, let us remark that in the present setting time evolution

affects only the radius of the bubble, and can therefore be traded for an AdS dilation.

In turn, dilatons can be associated to coarse-graining in the dual theory, and indeed in

the absence of bubbles the geometry would be invariant. In this sense, a more complete

statement is that our proposal can co-exist with a time-dependent interpretation, which

involves a single boundary theory instead of a flow connecting different boundary

theories.

3 D U A L R G F L O W S A N D c- F U N C T I O N S

In this section we introduce our holographic picture of vacuum decay via bubble

nucleation. As we have previously mentioned, the entanglement structure induced

by the bubble via the Ryu-Takayanagi prescription hints at some process which

reduces the effective number of degrees of freedom on the boundary. Moreover,

this process is necessarily irreversible, since bubble nucleation only occurs in the

direction of decreasing vacuum energy9. These features point to an holographic

interpretation of non-perturbative10 vacuum decay in terms of an RG flow. We

can now follow a number of standard procedures to construct c-functions which

appear to capture this type of scenario [150–155]. However, let us remark that in the

present setting the resulting c-functions are evaluated on the RG flow directly, and

we have no constructions of their “off-shell’ counterparts, if any, at present, while in

supersymmetric cases they are typically built from a superpotential for scalars dual to

gauge couplings. In the following we shall work in global coordinates, since Poincaré

coordinates, which do not cover the whole of AdS, are problematic in the presence

of a centered, axially symmetric bubble. The holographic RG framework is usually

described in Poincaré coordinates, a feature which impacts the nature of the dual RG

flow in the boundary theory in a non-trivial fashion. We shall return to this issue in

9In contrast, dS false vacua can also undergo “up-tunneling”, due to the finite total entropy (semi-
classically) associated to dS.

10We emphasize that the original vacuum ought to be strictly meta-stable, namely stable against small
fluctuations.
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more detail in Section 4.1, explaining how our framework incorporates the Poincaré

holographic RG picture as a limiting case. For the time being, we shall describe three

types of holographic c-functions: one following from the entanglement entropy in the

following section, one following from the null-energy condition in Section 3.2, and

one from the holographic trace anomaly in Section 3.3.

3.1 c-functions from entanglement entropy

As we have outlined in the preceding discussion, one can use the entanglement

entropy computed in Section 2.1 to construct a c-function. Given a fixed spatial

slice, taken out of the preferred foliation induced by the isometries of the bubble,

the dependence of the entanglement entropy on the interval length ` will be affected

by the bubble only for sufficiently large `, as we have explained in Section 2.1. This,

along with the fact that we are working in global coordinates where the conformal

boundary of a spatial slice has the topology of a circle, suggests that ` is not the most

relevant quantity to construct a c-function. Indeed, our aim is to relate the bubble

expansion to an RG flow, and the interval length at a fixed time does not appear

suitable in this respect, since a canonical definition of a boundary length scale at

infinity appears problematic in global coordinates. This is to be contrasted with the

Poincaré holographic RG, where intervals result from a stereographic projection onto

the line, and therefore the rescaling of interval lengths is reminiscent a coarse-graining

procedure. Instead, the relevant scales in the bulk are, the coordinates r , η which are

related via eq. (7.5). This means that, at fixed time η = η∗, the bubble radius R ≡ η∗

appears as the only relevant scale from the perspective of the boundary, and motivates

the choice of fixing an interval A of half-angle θA, and considering

cA (R) ≡ 3 θ
dSent(θ ; R)

dθ

∣∣∣∣
θ=θA

. (7.20)

The proposal of eq. (7.20) mirrors the standard Cardy-Calabrese formula [143, 144],

and provides an example of a c-function constructed out of the entanglement pattern of

the system, although not necessarily the only one. The aforementioned identification

of the bubble radius with an RG scale is the first step toward the proposed framework
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in which vacuum bubbles are associated to dual RG flows. Furthermore, one can

recast the dependence on R of eq. (7.20) in terms of the interval half-angle θ in the

following fashion: instead of fixing A , given the bubble radius R one can take the

critical interval size θcrit
A which marks the onset of the injection phase. This defines a

correspondence θ(R) which may be employed to recast the flow in terms of angular

sizes. The most natural choices for A would be either half of the boundary, so that the

corresponding entanglement entropy is immediately sensitive to the bubble upon

nucleation in a smooth fashion, or the whole boundary11, which interestingly yields a

step function: before the bubble arrives at the boundary cbdry = c+, while afterwards

its value jumps to cbdry = c−, where c± are the central charges associated to L±.

The presence of the bubble does not influence the boundary until the very instant it

touches it, at the end of the expansion. Notably, this happens in a finite coordinate time

ttot = L+
π
2 (or “η = ∞”) in the AdS+3 patch outside the bubble, which conceivably

leaves open the possibility of multi-bubble events that could modify the boundary

theory in different ways.

3.2 c-functions from the null energy condition

When seeking holographic c-functions, another option is to apply the standard

prescription [151–153, 156–161] in global coordinates. This involves a procedure

analogous to the one typically carried out in the Poincaré patch, which defines c-

functions in terms of the exponential warp factors that appear in asymptotically

AdS metrics. Indeed, our choice of writing the metric as in eq. (7.6) conveniently

defines a bulk c-function in terms of the effective radius Leff(η, r) given by eq. (7.7),

extending the dictionary of eq. (7.1). An important difference with respect to the

scenario outlined above, however, is that the resulting c-function is time-dependent.

Physically, this can be ascribed to the dynamical nature of the geometry, although the

actual functional dependence can be recast in terms of the combination r− η only,

consistently with the discussion in Section 2. Indeed, once again one obtains a step

11More precisely, one should take the limit as θA → π
2
−, since the full boundary has vanishing

entanglement entropy.
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F I G U R E 7 . 5 : finite part of the entanglement entropy vs bubble radius,
for various angular sizes θA. Notice the smooth behavior of the curve
for θA = π

2 , which corresponds to half of the boundary. This would
translate into a smooth interpolating description for the dual RG flow.

function

ceff(η, r) ≡


c+ , r > η

c− , r < η

. (7.21)

One can readily verify that, when suitably extended beyond the collapse12, these

c-functions approach cbdry as r → +∞, a reassuring consistency check, while their

discontinuous nature can presumably be ascribed to the thin-wall approximation.

The same cannot be said for the c-function defined by cbdry, whose discontinuity is

seemingly linked to the conformal singularity of the bubble geometry. Notice that

the monotonic behavior of the c-function of eq. (7.21) may appear compromised by

the discontinuous nature of the geometry that we consider. However, the thin-wall

regime is only an ideal limit of a smooth function, which interpolates between L±

and hence between c±. The monotonic behavior of holographic c-functions reflects in

general the null energy condition [151–153] and, as we shall explain in Section 4.1, the

12This can be done, for instance, gluing two coordinate charts, each of which would cover one of the
AdS±3 .
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computation can be reproduced for horocyclic bubbles, since it reduces to the case of a

domain wall in Poincaré coordinates. A similar computation can be carried out in

global coordinates, employing a “smoothing” of the singular metric of eq. (7.6) of the

form

ds2 = −
(

1 +
r2

L2

)
dη2(

1 + η2

L2

)2 +
dr2

1 + r2

L2

+ r2dφ2 , (7.22)

where now L(η, r) is a smooth function of η and r. While this ansatz can be expected

to have the correct form in the thin-wall regime, it would be interesting to investigate

whether the exact Coleman-de Luccia instanton dictates a different one in more

general cases.

On account of eq. (7.22), two null energy condition (NEC) bounds

Tµν kµ
± kν
± ≥ 0 , with k± ≡

1 + η2

L2√
1 + r2

L2

∂η ±
√

1 +
r2

L2 ∂r , (7.23)

yield, using the Einstein equations,

η2

1 + η2

L2

∂rL ≥ r2

1 + r2

L2

∣∣∂η L
∣∣ . (7.24)

These bounds further imply

∂rL ≥ 0 , (7.25)

so that r can be interpreted as a holographic RG scale and

c ≡ 3L
2G3

(7.26)

is a c-function. Indeed, a constant L saturates both NEC bounds.

3.3 The holographic trace anomaly

As a final remark concerning other c-function constructions, and in order to provide

further evidence for our proposal, let us briefly comment on an additional way to

explore how the central charge of the boundary theory is affected by the bubble,

namely via the (holographic) trace anomaly. Two-dimensional quantum field theories
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on a curved space-time with Ricci scalar R2 generally loose a classical conformal

symmetry. In our case, this breaking reflects itself in an anomalous trace of the

boundary stress-energy tensor,

〈Tµ
µ〉 = −

c
12

R2 . (7.27)

In Poincaré coordinates, the holographic computation of this anomaly has been

carried out in [158]. Due to the dynamical nature of our setting, it is not clear a priori

whether the same procedure applies, but one can expect that the time dependence

would deform the anomaly in a manner compatible with replacing

c → cbdry . (7.28)

However, the standard prescription to compute the (expectation value of the) stress-

energy tensor should still apply insofar as holography is valid, since we are assuming

the Ryu-Takayanagi conjecture to begin with. While the computation, which still

presents some subtleties, can be simplified focusing on the trace directly, we would

like to stress that the trace-less part of this vacuum expectation value should provide

quantitative information on how an off-centered bubble affects the boundary theory.

This issue will be the subject of a future investigation. In computing the trace anomaly,

one can attempt to generalize the procedure followed in [162], whereby the boundary

curvature in eq. (7.27) is recovered via the bulk extrinsic curvature. To this end, let us

first emphasize that the general formula for the trace anomaly of the boundary theory,

〈Tµ
µ〉 = −

1
8πG

(Θ + Θc.t.) , (7.29)

derived in [162], will only hold in the present case if a term corresponding to the

bubble stress-energy tensor is added to the classical action. This is needed in order

that the bubble geometry and other field profiles satisfy the bulk equations of motion,

and it also cancels the bulk contribution to the variation with respect to the boundary

metric13 γµν. Once this is done, it appears that the procedure can be extended to the

present case. To begin with, one needs to modify the counterterm, which in AdS3 is

13Specifically, only its conformal class matters.



130 Chapter 7. Holography: bubbles and RG flows

2
L . If 〈Tµν〉 is to be finite when evaluated on all classical solutions, we expect that a

correct counterterm, which in any case ought to reproduce 2
Leff

in the bubble geometry,

should be expressed as a suitable function of the scalar potential. Then, writing a

generic metric deformation in the form

ds2 = − f (η, r) γηη dη2 +
dr2

f (η, r)
+ r2 γφφ dφ2 +

2r2

Leff
γηφ dη dφ , (7.30)

where f (η, r) ≡ 1 + r2

L2
eff

, one can verify that it coincides with the one derived in

Fefferman-Graham [163, 164] coordinates14, where the AdS radius jumps from L+ to

L− after a finite time, provided that one extends the coordinate system to include

times after the bubble has reached the boundary. In fact, letting n be the unit vector

normal to the (regularized) boundary and htr be the associated transverse metric, the

bulk expression for the extrinsic curvature,

Θ = hµν
tr ΓA

µν nA = − 1
2

√
f (η, r) gµν ∂r gµν , (7.31)

gives the same result when evaluated in a Fefferman-Graham patch, since depending

on whether the bubble has arrived at the boundary f (η, r) ∼ r2

L2
±

. This result also

shows that the boundary deformation γ is the correct counterpart of the Fefferman-

Graham one, as one may infer from the large-r asymptotics. Indeed, going back

from η to the standard global time coordinate t, the transformed γtt , γtφ comprise,

alongside γφφ, the deformation parameters which correspond to the (conformal class

of the) boundary metric

ds2
bdry = − γtt dt2 + γφφ L2

± dφ2 + 2 L± γtφ dt dφ , (7.32)

which dominates in eq. (7.30) for large r, since

ds2 ∼ r2

L2
±

ds2
bdry , (7.33)

again depending on whether the bubble has arrived at the boundary.

Furthermore, one can verify that any smooth deviation from Leff, which can

14The conventions used in Section 3.2 of [162] rescale γ by a factor r2. In our convention, γ has a finite
limiting value at the boundary.
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also be defined for a thick bubble, does not contribute to the boundary asymptotics,

consistently with the fact that, even outside the thin-wall approximation, the conformal

structure of the boundary presents a singularity. To put it more simply, the boundary

always sees the whole bubble arriving at the same instant. Hence, the trace anomaly

〈Tµ
µ〉 = −

cbdry

12
R2 (7.34)

indeed reflects the replacement of eq. (7.28) and the counterterm Θc.t. =
2

Leff
.

In summary, the above analysis shows that the deformation γµν correctly corre-

sponds to the Fefferman-Graham one, and the expectation of a step-like c-function

from the trace anomaly is reproduced, alongside the absence of contributions due to

deviations from a thin bubble. In addition, the framework that we employed can be

readily extended to generic (multi-)bubble configurations. Thus one may conclude

that, in some sense, the holographic entanglement entropy provides a better probe of

the physics, since it can detect the arrival of the bubble in a smooth fashion.

4 I N T E G R A L G E O M E T R Y A N D O F F - C E N T E R E D B U B B L E S

A natural question concerns the holographic interpretation of the site of the nucleation

event and, in particular, how off-centered bubbles modify the RG flow. For the purpose

of performing SO(1, 2) hyperbolic translations to investigate this issue, we find it

convenient to reformulate the correspondence in the formalism of holographic integral

geometry [33]15, which we review in Appendix C, which in the three-dimensional

case is particularly fruitful.

Let us begin with a brief review of integral geometry in the hyperbolic plane,

since it concerns the specific case of AdS3/CFT2. A more comprehensive review can

be found in [33]. In the present context the main object of interest is the topological

space of “lines” in an asymptotically H2 bulk spatial slice, namely the set of extremal

curves between two boundary points, which constitutes the kinematic space K2. It is

a two-dimensional surface that has a natural symplectic (or equivalently Lorentzian)

structure, the Crofton form, induced from the (finite part of the) length L of curves in

15For an earlier work on RG flows and integral geometry, albeit in a different setting, see [165].
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K2 via

ω(u, v) ≡ ∂2L(u, v)
∂u∂v

du ∧ dv = 4G3
∂2Sent(u, v)

∂u∂v
du ∧ dv , (7.35)

where G3 is the three-dimensional Newton constant and u, v are angular coordinates

of the endpoints on the S1 boundary. The last equality holds assuming the Ryu-

Takayanagi formula, and the Crofton form ω also affords an information-theoretic

interpretation in terms of mutual conditional information [33]. In addition, one may

define an induced Lorentzian metric

ds2
K2
≡ ∂2L

∂u∂v
du dv . (7.36)

In the case of an AdS3 vacuum, indeed composed of H2 slices, the Crofton form

reduces to

ω0(u, v) =
L

2 sin2( u−v
2 )

du ∧ dv , (7.37)

which is actually the only SO(1, 2)-invariant 2-form on kinematic space up to rescal-

ings. Indeed, ω0 = voldS2 is the volume form on two-dimensional de Sitter space-

time16, and K(0)
2 is naturally endowed with the Lorentzian structure of dS2. For a

general deformed metric that is still asymptotically H2
+ in any constant-time slice,

one finds that the corresponding kinematic space is dS+2 asymptotically, in the limit

of large (absolute) de Sitter time t, while the central region of small |t| is modified.

In the kinematic picture, which acts as an intermediary, vacuum bubbles translate

into deviations of ω from voldS2 , which are localized around the throat and expand

symmetrically in the dS2 past and future as bulk time progresses, establishing in its

interior the new dS−2 , of different radius, associated to H2
−.

The relevance of the above construction comes from a classical theorem of Crofton,

which states that the length L[γ] of any (not necessarily geodesic) bulk curve γ can be

computed in terms of an area in K2, namely

16Some intuition on this stems from the embedding of H2 in R1,2 as a two-sheeted hyperboloid, where
hyperbolic lines arise from intersections with time-like planes through the origin. Such planes are in a
one-to-one correspondence with their unit space-like normal vectors, which lie in the dS2 one-sheeted
hyperboloid.
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L[γ] = 1
4

∫
K2

ω(κ) nγ, κ (7.38)

where nγ, κ is the (signed) intersection number of the curves γ and κ. Hence, excluding

shadow effects [166, 167], which are absent in this case, the bulk geometry can

be completely reconstructed from the Crofton form, which therefore provides an

amount of information equivalent to the full entanglement entropy. Motivated by this

remarkable result, we shall henceforth consider ω
4G3

instead of Sent, since the former is

insensitive to the cutoff and contains no divergent part. Indeed, an SO(1, 2) isometry

translating the bubble behaves unwieldily in the presence of divergent terms: it

deforms the cutoff surface which is then to be brought back to its original location.

Equivalently, the finite part of Sent is not an SO(1, 2) scalar, since the extraction of the

finite part is not an invariant procedure. Instead, ω is a finite and covariant two-form.

In particular, the ratio17 to the vacuum dS+2 volume form, defined by

ω(u, v) = Ω(u, v) voldS+2
, (7.39)

is a finite scalar field on K2. Therefore, one may exploit this fact to study off-centered

bubbles applying SL(2, R) → SO(1, 2) transformations to data and conclusions

already obtained in the case of a centred bubble, which is displayed in fig. 7.6. In the

present setting, these transformations appear in the triplicate role of asymptotic bulk

isometries, kinematic symplectomorphisms, and conformal maps restricted to the

boundary.

For centered bubbles, Ω only depends on the combination θA = u−v
2 , the boundary

interval half-size18, and not on the coordinate φ = u+v
2 of the boundary center.

Ω(θA) displays an external δ-function wall corresponding to the injection phase

transition that we have described in Section 2.1. Outside the wall Ω = 1, the constant

value pertaining to the original vacuum, while inside the wall one finds a smooth

dependence approaching the constant value associated to the new vacuum, which is

related to the ratio of the cosmological constants, as highlighted in fig. 7.6.
17This is possible only because ω is a form of top rank in the present case.
18In the language of dS2 geometry, θA is diffeomorphic to dS2 time in closed slicing, and φ is the

coordinate on the slice.
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F I G U R E 7 . 6 : the relative Crofton factor Ω for a centered bubble as
a function of interval size, for increasing values of the bubble radius
(dark to light). A cosmological constant ratio of 1

2 has been chosen as
an example, which leads to the limiting values Ω+ = 1, Ω− = 1

2 . The
δ-function wall at the injection phase transition is not depicted.

Shifting the bubble corresponds to a boost in dS2, which induces a mixing between

the θA and φ coordinates or, more suggestively, between boundary momenta and

positions, a feature which we shall discuss in the following section. The δ-function

wall in Ω is deformed into an ellipse in dS2. Intuitively, when the bubble is off-

centered, boundary intervals closer to it will begin to be affected at smaller sizes, as

displayed fig. 7.8. Hence, the deformed entanglement pattern on the boundary ought

to encode this effect in some spatial localization, and ought to evolve under the flow

in a manner reminiscent of the corresponding bulk bubble expansion.

4.1 Off-centered renormalization

When the symmetries of the bubble geometry are taken into account, it becomes

impossible to match the growth of a centered bubble to a standard holographic renor-

malization procedure, which is typically implemented as a sequence of decimations

and rescalings within a Poincaré chart [151–153]. Poincaré rescalings do not map to an

isometry of a centered bubble, which instead has an SO(2) subgroup of rotational

isometries. We propose that, instead, the precise prescription for a centered bubble is a

renormalization procedure that respects this rotational symmetry, and is schematically

implemented as a decimation and rescaling of the angular φ coordinate. Since the

radius of the boundary circle shrinks under such an RG flow, and would naively
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vanish in an infinite RG time, this ought to be counteracted by a preemptive blowup

of the circle in the original, undeformed CFT+. As a result, one should explore

simultaneous limits of initial blowup and total RG flow time. We conjecture that

theories with a holographic bulk dual do not degenerate under this limit and approach

a non-trivial infrared CFT−, which would reflect the existence of a stable final AdS−

classical vacuum in the bulk. However, let us stress that in the string-theoretic settings

that we have in mind no AdS is completely stable, except for the supersymmetric

cases, but their instabilities are suppressed in a suitable large-N limit. At a result,

the dual RG trajectories ought to approach the corresponding fixed points, enter

a walking regime, and then flow away. In addition, if one imagines to extend the

proposed “bubbleography” correspondence to cases in which tunneling to bubbles

of nothing [105] can occur, the preceding discussion implies that such scenarios

would conceivably lead to trivial endpoints of the dual RG flow: in this context, the

expansion would leave behind an AdS geometry of vanishing radius. Indeed, as we

have discussed in Chapter 5, within meta-stable flux landscapes bubbles of nothing

can arise as limits in which all of the original flux is discharged [108]. For previous

discussions on the holographic interpretation of bubbles of nothing, see [168–170].

At any rate, a “central” renormalization procedure respecting the rotational sym-

metry would allow one to define a renormalization step for off-centered bubbles

simply as the “central” RG step conjugated by the SO(1, 2) isometry that shifts the

bubble, as depicted in fig. 7.7. Analogously, bubble nucleation should again corre-

spond to a relevant deformation, up to the same SO(1, 2) conjugation. Equivalently,

there ought to be a boundary picture in which the deformation is space-dependent19,

and the RG flow proceeds also partially in position space. In addition, one may

conceive multiple bubble nucleations occurring within the time frame of a single

expansion. This should allow for the construction of a larger and diverse family of

deformations and RG flows from CFT+ to CFT−, since the characteristic step-like

behavior of c-functions provides a natural building block for a variety of scenarios.

19A simpler instance can be realized in a theory with a space-dependent running cutoff scale Λ(x).
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F I G U R E 7 . 7 : a schematic depiction of a family of relevant deforma-
tions followed by the respective RG flows, all connected by SL(2, R)

transformations.

Recovering Poincaré flows

A bubble translated infinitely far away from the origin, with its radius R suitably

rescaled in such a way that the wall remains at a finite distance from the origin20, is a

limiting case of particular interest. This is actually, in a sense, the most likely scenario,

since tunneling is favored by the exponentially large bulk volume fraction that lies far

away from the origin for large cutoff. In the limit, the bubble wall becomes a traveling

horocycle, and the corresponding dual RG flow reflects the standard holographic

RG procedure in Poincaré coordinates. Indeed, the horocyclic bubble at each time is

precisely a curve of constant z in a Poincaré chart.

To conclude this discussion, let us present a computation of a holographic cor-

relator in Poincaré coordinates, since the resulting expressions simplify to a large

extent, using two patches glued along the Minkowski slices {z± = z∗±}, with z∗+
L+

=
z∗−
L− .

Specifically, let us consider a spectator free scalar field φ of mass m, which ought to

be dual to some scalar operator O in the boundary theory, probing a d-dimensional

thin-wall bubble geometry, and let us compute the two-point correlator of O holo-

graphically. While the ensuing computation is Euclidean21, and thus not qualitatively

20This limit is certainly sensible, since for bubbles in AdS the radius R becomes infinite in a finite
coordinate time t, and can thus be made arbitrarily large with a small time translation. This is displayed
in the bottom-right numerical plot of fig. 7.8.

21For a Lorentzian computation, and a discussion of its connection to eternal inflation, see [171].
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F I G U R E 7 . 8 : the δ-function wall in the Crofton factor Ω, the locus of
the injection phase transition (blue), depicted in K2 using the (θA, φ)
chart, which is conformal for dS2. In all cases ρ+ = 0.5, L+/L− = 0.5.
Upper left: for a centered bubble. Upper right: after an SO(1, 2) boost
with β = 0.8, which introduces a dependence on φ. Bottom left: after
a β = 0.999 boost, the walls converge to the marked lightcone (red).

Bottom right: again β = 0.999, but with a suitable rescaling of ρ−.

different from standard holographic RG computations, the position z∗± of the thin-wall

bubble is arbitrary on symmetry grounds, and therefore one can analyze how the

resulting correlator flows varying it. Since the physical nucleation radius of the bubble

is parametrically large in the semi-classical limit, this picture is expected to describe at

least a sizeable fraction of the corresponding RG flow. To begin with, one can verify

that matching the values and the derivatives

φ+(p, z∗+) = φ−(p, z∗−) ,(√
gz+z+ ∂z+φ+

)
z+=z∗+

=
(√

gz−z− ∂z−φ−
)

z−=z∗−
,

(7.40)

on account of the relevant gluing of tangent spaces, implies that the on-shell action is,

as usual, given by the boundary term

Son-shell
E =

1
2

∫ dd−1 p
(2π)d−1

(
L+

ε

)d−2

φ+(−p, ε) (∂z+φ+(p, z+))z+=ε . (7.41)
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The equation of motion can be solved in both patches in terms of modified Bessel

functions. Imposing regularity at the center of AdSd+1, the general solution

φ+(p, z+) = a+p z
d−1

2
+ Kν+(pz+) + b+p z

d−1
2

+ Iν+(pz+) ,

φ−(p, z−) = a−p z
d−1

2
− Kν−(pz−) ,

(7.42)

where ν± ≡
√

m2 L2
± + (d−1)2

4 , is fixed by the two matching conditions and the

Dirichlet boundary condition

φ+(p, ε) = ϕε(p) (7.43)

imposed at the regularized boundary z+ = ε. These three conditions result in a linear

system, and substituting the result in the on-shell action yields

Son-shell
E =

1
2

∫ dd−1 p
(2π)d−1

Ld−2
+

εd−1 ϕε(−p) ϕε(p) (pε) DK,+(pε)

×
1− DI,+(pε) Iν+ (pε)

DK,+(pε)Kν+ (pε)
F

1− Iν+ (pε)

Kν+ (pε)
F

,
(7.44)

where we have defined

DK,±(z) ≡
d
dz

log
(

z
d−1

2 Kν±(z)
)

,

DI,±(z) ≡
d
dz

log
(

z
d−1

2 Iν±(z)
)

,

F ≡ Kν+(pz∗+)
Iν+(pz∗+)

DK,+(pz∗+)− DK,−(pz∗−)
DI,+(pz∗+)− DK,−(pz∗−)

(7.45)

for convenience. Finally, we expect that using suitably normalized sources

ϕ(p) ≡ εν+− d−1
2 ϕε(p) (7.46)

the continuum limit pε → 0 exists22, since the theory flows to a CFT. Indeed,

the leading-order terms yield the standard result, corresponding to the UV CFT+,

accompanied by a finite correction, proportional to F . For large pz∗± the correction is

exponentially suppressed and corresponds to the bubble far away from the boundary,

22Apart from the usual divergent contact terms.
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while for small pz∗± it produces the correlator of the IR CFT−, with L− replacing L+

up to a finite wave-function renormalization.

In the fraction appearing in the second line of eq. (7.44) each coefficient of F tends

to zero in the continuum limit, and thus making use of the expansions

Iν(z)
z→0∼ 1

Γ(1 + ν)

( z
2

)ν
,

Kν(z)
z→0∼


Γ(ν)

2

( z
2

)−ν − Γ(1−ν)
2 ν

( z
2

)ν , ν /∈N

Γ(ν)
2

( z
2

)−ν − (−1)ν

Γ(1+ν)

( z
2

)ν log
( z

2

)
, ν ∈N

,
(7.47)

valid for ν > 0, the correlator evaluated in the UV CFT+ reads

〈O(p)O(q)〉+ = − Ld−2
+ (pz∗+)

2ν+ ×


21−2ν+ Γ(1−ν+)

Γ(ν+)
, ν+ /∈N

(−1)ν+22(1−ν+)

Γ(ν+)2 log (pz∗+) , ν+ ∈N

, (7.48)

in terms of the RG scale z∗+, where we have suppressed the momentum-conserving

δ-function (2π)d−1 δ(d−1)(p + q) while evaluating the integrand of eq. (7.44) yields

the correction

Ld−2
+

(
z∗+
ε

)2ν+ Iν+(pε)

Kν+(pε)
(pε) (DK,+(pε)− DI,+(pε))F

ε→0→ − Ld−2
+ (pz∗+)

2ν+ 22(1−ν+)

Γ(ν+)2 F
(7.49)

in both massless and massive cases, where we have suppressed the δ-function for

clarity. All in all, one obtains the relative deviation

δ〈O(p)O(q)〉z∗+
〈O(p)O(q)〉+

= F
(

pz∗+ ;
L−
L+

)
×


2
π sin ν+π , ν+ /∈N

(−1)ν+

log(pz∗+)
, ν+ ∈N

, (7.50)

where we have once again suppressed the δ-functions and we have highlighted the

dependence on the RG scale. Neglecting contact terms, for large pz∗+, which corre-

sponds to the bubble far away from the boundary, the correction decays exponentially,

while for small pz∗+, which corresponds to the bubble close to the boundary, the

correlator reconstructs the one pertaining to the IR CFT−, namely eq. (7.48) upon

replacing L+ with L−, and in the massive case
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5 B R A N E D Y N A M I C S : H O L O G R A P H I C P E R S P E C T I V E

The identification of the relevant deformation of the original CFT+ corresponding

to the nucleation event remains an important open problem. Explicit “top-down”

realizations of the scenario that we have discussed in this chapter should be relevant

in order to address it, since they typically bring along a more transparent description

of the corresponding holographic duals. This could also provide an additional handle

to perform more in-depth analyses of the RG flow studying, for instance, the scaling

of correlation functions in the spirit of the preceding section. In principle, one could

expect that such a relevant deformation be related to the decay width (per unit volume)

associated to the tunneling process, which can be computed via standard techniques

in the semi-classical limit [98–100] as we have discussed in Chapter 5. Indeed, in the

classical limit tunneling is completely suppressed, and the starting point of the flow

ought to approach the original CFT+, which remains fixed. In addition, the study of

correlation functions and of the stress-energy tensor in the presence of off-centered

and multi-bubble configurations could provide further insights: since bubbles entail

deformations of the metric regardless of their origin, we are tempted to speculate

that a sizeable contribution to the corresponding relevant deformation arises from

the boundary stress-energy tensor. This picture resonates with recent results on TT

deformations [172, 173] dual to hard-cutoff AdS3 geometries [174–176], but in explicit

“top-down” constructions involving non-supersymmetric string models, such as the

ones described in Chapter 2, one expect additional contributions to arise from fluxes.

The emergence of an AdS geometry in models of this type suggests that a dual

CFT description should in principle arise from non-supersymmetric brane dynamics,

and that it ought to encode gravitational instabilities in a holographic fashion. In

particular, the perturbative instabilities explored in [27, 90] and in Chapter 4 should

correspond to operators with complex anomalous dimension [91, 177], so that a

holographic description may be able to ascertain whether their presence persists for

small values of n. On the other hand, the putative CFT deformations corresponding

to non-perturbative instabilities should be “heavy”, since their effect is suppressed in



5. Brane dynamics: holographic perspective 141

the large-n limit. Starting from the brane picture that we have developed in the pre-

ceding chapters, one can expect that the CFT duals to the AdS flux compactifications

described in Chapter 3 be related to a gauge theory living on the world-volume of the

corresponding brane stacks. In particular, considering N parallel D1-branes in the

orientifold models, so that the flux n ∝ N, this would translate into a realization of the

AdS3/CFT2 duality in a non-supersymmetric setting. The associated central charge,

determined by the Brown-Henneaux formula [138], would be

c =
3L

2G3
=

12π Ω7

κ2
10

L R7 ∝ N
3
2 . (7.51)

This grows more slowly than N2, the classical number of degrees of freedom present

in the gauge theory23. This suggests that such a two-dimensional CFT arises as a

non-trivial infra-red fixed point of a world-volume gauge theory which ought to

be strongly-coupled, at least at large N, since the effective number of degrees of

freedom is parametrically smaller with respect to the classical scaling. Indeed, the

corresponding ’t Hooft coupling gs N ∝ N
3
4 � 1. Within this picture, perturbative

instabilities can be expected to arise from world-volume deformations, described by

world-volume scalar fields. Moreover, the brane-flux annihilation scenario described

in the preceding chapters suggests that the non-perturbative instabilities should reflect

the expulsion of branes from the point of view of the stack, so that in the language of

the dual gauge theory the gauge group would break according to [111, 178]

U(N) → U(N − δN)×U(δN) ,

USp(2N) → USp(2N − 2δN)×USp(2δN)
(7.52)

in the two orientifold models24. However, this breaking would not arise from a

Higgsing, since the initial expectation value attained by scalars would be driven to

evolve by instabilities. Therefore, “Higgsing” via the separation of a small number of

branes from the stack constitutes a natural candidate for the relevant deformation of

the CFT, since it is not protected and may in principle grow in the infra-red. This

23More precisely, in general it is the order of the classical number of degrees of freedom for large N.
24Here we assume that the gauge group be unbroken in the vacuum. If not, the breaking pattern is

modified accordingly.
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is consistent with the considerations in [179], where the world-volume theory of a

spherical brane contains a classically marginal coupling proportional to 1
N , and it

gives rise to a “Fubini instanton” that implements the mechanism. Characterizing

precisely the relevant deformation, if any, dual to the flux tunneling process would in

principle allow one to test the “bubble/RG” proposal of [109] that we shall describe

in the following, and more importantly it would shed some light on the behavior

of the system at small N, at least in the case of D1-branes where the dual gauge

theory would be two-dimensional. In particular, the in USp(32) orientifold model the

relevant gauge theory would arise as a projection of a supersymmetric one, thereby

potentially allowing it to retain some properties of the parent theory [180–186, 197].

We intend to pursue this possibility in a future work, but for the time being let us

collect a few considerations about this gauge theory.

To begin with, the background in which the branes are placed ought to correspond

to the flux-less limit of the back-reacted geometry that we have described in Chapter 6.

However, in the absence of supersymmetry the resulting geometry appears out

of reach, and in particular there is no Minkowski solution to take its place as in

supersymmetric cases. On the other hand, introducing N8 � 1 8-branes sourcing the

static Dudas-Mourad geometry discussed in Chapter 3, one can expect that placing

N � N8 D1-branes in the controlled region described in Chapter 6 would result

in a back-reaction dominated by them, at least locally, and the force exerted by the

branes should affect the system only on parametrically large time scales. If this

construction is reliable, a decoupling argument along the lines of [4] should result in a

two-dimensional world-volume gauge theory on flat space-time, whose perturbative

spectrum has been described in [19]. At low energies, the corresponding effective

action SD1 is expected to arise from a projection of the parent type IIB U(2N) gauge

theory, at least for large N [180] where the influence of the supersymmetry-breaking

sources ought to be subleading in some respects. Thus schematically25

SE
D1 =

1
g2

YM
Tr
∫

d2ζ

(
(∂+A−)

2 + ∂+Xi [D− , Xi] +
1
2
[
Xi , Xj

] [
Xi , Xj

]
+ ψ+ [D− , ψ+] + ψ− ∂+ψ− + ψ− Γi [Xi , ψ+] + λA

− ∂+ λA
−

) (7.53)

25For analogous considerations on the type I superstring, see [187].
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in the (Euclidean) light-cone gauge A+ = 0. In contrast to the supersymmet-

ric cases, the scalars Xi which comprise a vector of the transverse rotation group

SO(8) are in the anti-symmetric representation of USp(2N), while the adjoint is

symmetric and the world-volume fermion ψ+ (resp. ψ−) is in the symmetric (resp.

anti-symmetric) representation and is a SO(8) spinor. The λA
− are bifundamental

fermions of USp(2N)×USp(2N f ) with N f = 16 “flavors”, and arise from (massless

modes of) open strings stretching between the D1-branes and the D9-branes. Conve-

niently, in the light-cone gauge ghosts are decoupled in two dimensions [188], and the

gauge field can be integrated out exactly leading to a non-local effective action. At

any rate, the theory is expected to flow to a strongly-coupled regime in the IR. Indeed,

while in the absence of supersymmetry the couplings are expected to renormalize

in a complicated fashion, the one-loop β function of the gauge coupling depends

only on the (perturbative) matter content. In order to compute it, let us recall that the

corresponding four-dimensional expression

β4d = b1
g3

YM
16π2

(7.54)

arises from the (dimension-independent) a4 coefficient in the heat-kernel expansion of

the one-loop functional determinant [189], which in the two-dimensional case would

contribute to the bare coupling g0 according to

1
g2

0
=

1
g2

YM
− b1

4π

1
2Λ2

UV
. (7.55)

The resulting two-dimensional one-loop β function of the dimensionless coupling

gYM ≡ ĝ ΛUV is then

β̂2d = − ĝ +
b1

4π
ĝ3 , (7.56)

with [190, 191]

b1 =
25 N + 2 N f − 15

3
(7.57)

and therefore the gauge coupling eventually flows to a strongly-coupled region, which

could exhibit confinement or screening [192]. On the other hand, the IR behavior of

the gauge coupling should reflect the radial perturbations for the dilaton described in
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Chapter 6, and in particular power-like perturbations φ ∝ (−r)−λ to the fixed point

would translate into

β̂IR = (2 λ− 1) (ĝ− ĝ∗) (7.58)

on account of the Poincaré scale-setting

− (p + 1) r 7→ zp+1 7→ µ−(p+1) . (7.59)

While this scenario appears daunting, integrating out the gauge field yields an

effective action with scalar and fermion couplings that are at most quartic, and thus

potentially amenable to large-N Hubbard-Stratonovich techniques [193, 194] and

non-Abelian bosonization [195]26. At the one-loop level, choosing a “geometric”

background in which Xk = gYM
iΩ√
2N

xk belongs to the (symplectic-trace) singlet, the

resulting quadratic action for fluctuations δXi ≡ δXa
i ta, decomposed in an orthogonal

basis {ta} of the space of (imaginary) anti-symmetric matrices, takes the form

S(2)
D1 =

∫
d2ζ

(
∂+δXa

i ∂−δXa
i +

1
2

δXa
i
(

M2)ab
ij δXb

j

)
, (7.60)

where the fermionic terms decouple because Tr (ψ− [Ω , ψ+]) = 0 splits into (van-

ishing) inner products of the anti-symmetric matrix ψ− and the symmetric matrices

Ω ψ+ , ψ+ Ω. The (negative semidefinite) mass matrix

(
M2)ab

ij = − g2
YM
N
(
xi xj + x2 δij

)
ωab , ωab ≡ Tr ([Ω , ta] [Ω , tb]) (7.61)

arises from the quartic potential of eq. (7.53), and one is thus led to the one-loop

effective potential

V(1)
D1 =

1
2

Tr
∫ d2 p

(2π)2 log
(

p2 + M2) . (7.62)

Since ω has 4 and 0 as eigenvalues, letting µ4 denote the multiplicity of the former,

which scales at most as N2, reflecting typical tree-level scalings, one obtains

V(1)
D1 =

µ4

8π

∫ Λ2
UV

Λ2
IR

ds
[

log
(

s− 8 g2
YMx2

N

)
+ 7 log

(
s− 4 g2

YMx2

N

)]
(7.63)

26For recent results on bosonization in the three-dimensional case, see [196].
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up to constant zero-mode contributions, and the Wick rotation prescribes a deforma-

tion of the integration contour. The perturbative regime translates into the condition

ĝ2x2 � N, so that

V(1)
D1 ∼ −

9µ4

π

g2
YMx2

N
log
(

ΛUV

ΛIR

)
(7.64)

shows a repulsive behavior. This result is consistent with our preceding considera-

tions, according to which subleading 1
N corrections would then encode the relevant

deformation that we seek, while, as expected, for N = 1 the (gauge singlet) scalars

decouple, and thus their effective potential receives no corrections even beyond the

one-loop level. As a final remark, let us mention that one could conceive compact-

ifications on Einstein manifolds with non-trivial lower-dimensional cycles, which

undergo semi-classically identical flux tunneling processes. In this case, wrapped

branes could generate baryon-like Pfaffian operators [11, 178] in the gauge theory,

which are additional candidates for relevant deformations dual to non-perturbative

instabilities. However, one may anticipate that this setting could bring along subtleties

due to the Myers effect [11, 116].

To conclude, we can comment on some potential implications. At present, vacuum

stability in quantum gravity poses significant theoretical challenges, even at the semi-

classical level. Hence, classifying criteria for stability appears of primary importance,

and some properties that stable (classical) vacua should possess have already surfaced,

a prime example being the weak gravity conjecture [18]. As explained in [16, 127, 128],

it appears that if such a stability criterion holds, nucleation events should continue

to occur at least until a supersymmetric AdS classical vacuum is reached. This is

because, in the supersymmetric case, stability prevents tunneling, and only domain

walls can be present [198–201]. In the RG picture that we have presented the stable

IR endpoint of the flow would then be supersymmetric, which resonates with the

phenomenon of emergent supersymmetry in some condensed matter systems27. It

would be interesting to explore whether the framework that we have described in this

chapter can be used as a tool to address vacuum stability in more intricate contexts

from the perspective of better-understood RG flows, which can then be approached

with powerful analytic and numerical techniques.

27See e.g. [202] or, for a modern review, [203], and references therein.
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In this chapter we complete the discussion on dS flux compactifications that we

have introduced in Chapter 3, where we have shown that Freund-Rubin de Sitter

compactifications are either ruled out or unstable in low-energy effective theories with

exponential potentials. While the results of our analysis resonate with the ones of [75],

one could wonder whether similar conditions hold for more general dS settings,

e.g. for fluxes threading cycles of complicated internal manifolds. To this end, in

Section 1 we examine general warped flux compactifications, along the lines of [204],

and we obtain conditions that fix the (sign of the) resulting cosmological constant in

terms of the parameters of the model, generalizing the results of [34] to models with

exponential potentials. Then, in Section 2 we include the contribution of localized

sources, which leads to a generalized expression for the cosmological constant. The

resulting sign cannot be fixed a priori in the entire space of parameters, but one can

derive sufficient conditions that exclude dS solutions for certain ranges of parameters.

In Section 3 we discuss how our results connect to recent swampland conjectures [17],

showing that the ratio |∇V|
V is bounded whenever V > 0. Finally, in Section 4 we

review a recent proposal [35–37] which rests on the observation that branes nucleating

amidst AdS → AdS transitions host dS geometries on their world-volume.

The issue of dS configurations in string theory has proven to be remarkably

challenging, to the extent that the most well-studied constructions [12] have been

subject to thorough scrutiny and discussion. We shall not attempt to provide a

comprehensive account of this extensive subject and its state of affairs, since our focus

in the present case lies in higher-dimensional approaches [13–15, 205–207] and, in

particular, in the search for new solutions [208–211]. Specifically, the issue at stake is

whether the ingredients provided by string-scale supersymmetry breaking can allow

for dS compactifications. While a number of parallels between lower-dimensional

anti-brane uplifts and the ten-dimensional BSB scenario discussed in Chapter 2
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appear encouraging to this effect, as we shall see shortly the presence of exponential

potentials does not ameliorate the situation, insofar as (warped) flux compactifications

are concerned. On the other hand, as we shall explain in Section 4, the very presence

of exponential potentials allows for intriguing brane-world scenarios within the AdS

landscapes discussed in Chapter 3, whose non-perturbative instabilities, addressed in

Chapter 5, play a crucial rôle in this respect.

1 WA R P E D F L U X C O M PA C T I F I C AT I O N S : N O - G O R E S U LT S

In order to address the problem of dS solutions to low-energy effective theories with

exponential potentials, let us consider a compactification of the D-dimensional theory

discussed in Chapter 3 on a dY-dimensional closed manifold Y parametrized by

coordinates yi, while the dX-dimensional space-time is parametrized by coordinates

xµ. Excluding the Freund-Rubin compactifications, which we have already described

in 3, in the models of interest the space-time dimension does not match the rank

of the form field strength, and thus there cannot be any electric flux. Since at any

rate one can dualize the relevant forms, we shall henceforth work in the magnetic

frame, which in our convention involves a q-form field strength with the coupling

f (φ) = e−αφ to the dilaton, and we shall seek configurations where Hq is supported

on Y, and where each field only depends on the yi. Writing the metric

ds2 = e2bu(y) d̂s
2
(x) + e2u(y) d̃s

2
(y) , (8.1)

with b = − dY
dX−2 in order to select the dX-dimensional Einstein frame, one finds that

sufficiently well-behaved functions f (y) satisfy

∫
Y

ddY y
√

g̃ e2bu(y) 2D f (y) = 0 ,∫
Y

ddY y
√

g̃ ∆Y f (y) = 0 ,
(8.2)
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where 2D and ∆Y denote the D-dimensional d’Alembert operator and the Laplacian

operator on Y respectively. Furthermore, let us define

IV ≡
∫

Y
ddY y

√
g̃ e2bu(y) V > 0 ,

IH ≡
∫

Y
ddY y

√
g̃ e2bu(y) f

q!
H2

q > 0
(8.3)

for convenience. Using these relations, integrating the equation of motion for the

dilaton yields

IH =
2γ

α
IV , (8.4)

while employing the formula for warped products discussed in Chapter 5, the

space-time Ricci tensor takes the form

Rµν = R̂µν − b e−2u
(

∆Yu− 2(D− 2)
dX − 2

|∇u|2
)

gµν

= R̂µν −
dY

2(D− 2)
e−2bu ∆Y

(
e−

2(D−2)
dX−2 u

)
.

(8.5)

Hence, assuming a maximally symmetric space-time with R̂µν = 2Λ
dX−2 ĝµν, integrating

the space-time Einstein equations finally yields

vol(Y)Λ =
dX − 2

2(D− 2)

(
IV −

q− 1
2
IH

)
=

dX − 2
2(D− 2)

(
1− (q− 1)

γ

α

)
IV ,

(8.6)

where vol(Y) ≡
∫

Y

√
g̃ is the (unwarped) volume of Y. This result1 shows that the

existence condition for de Sitter Freund-Rubin compactifications actually extends to

general warped flux compactifications as well, thus excluding this class of solutions

for the string models that we have studied in the preceding chapters.

1As we have anticipated, eq. (8.6) can be thought of as a generalization of the no-go results of [34] to
models with exponential potentials.
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2 I N C L U D I N G L O C A L I Z E D S O U R C E S

Let us now add localized sources to the warped compactifications, in the spirit

of [204]. For the sake of generality, let us consider a localized source with an (m + 1)-

dimensional world-volume. We shall describe its dynamics in terms of an effective

action of the form
Sloc = −

∫
W

dm+1ζ
√
−j∗g τ(φ)

= −
∫

dDx
√
−g τ(φ) δW ,

(8.7)

where j : ζ 7→ X(ζ) denotes the space-time embedding of the (m + 1)-dimensional

world-volumeW parametrized by coordinates ζa,

δW ≡
∫
W

dm+1ζ

(√
−j∗g
√−g

)
δ(D) (x− X(ζ)) , (8.8)

and we have omitted Wess-Zumino terms, since they would not contribute to

the relevant equations of motion2. In addition, we shall assume that the tension

τ(φ) = Tm e−σφ is exponential in the dilaton. In terms of a projector Π, defined by

(j∗g)ab δ(j∗g)ab = ΠMN δgMN , (8.9)

the associated (trace-reversed) stress-energy tensor reads

T̃loc
MN =

(
− 1

2
ΠMN +

m + 1
2(D− 2)

gMN

)
τ(φ) δW . (8.10)

In the static gauge the coordinates xM =
(
xa , xi) are divided in longitudinal and

transverse directions relative to the world-volume, and the embedding is written

as XM(ζ) =
(
ζa , xi

0
)
, where x0 specifies the position of the source in the transverse

space. In this gauge, (j∗g)ab = gab and thus ΠMN = gab δa
M δb

N .

In order for the theory to admit solutions where space-time is maximally sym-

metric, we shall further assume that m + 1 ≥ dX, and that the localized source fills
2We have neglected the equation of motion of the form field, since it is not involved in the derivation

of the no-go result.
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space-time. Then, integrating the equation of motion for the dilaton then yields

γ IV −
α

2
IH − σ Tm Iloc = 0 , (8.11)

where

Iloc ≡
2κ2

D
Tm

∫
ddY y

√
g̃ e2bu(y) τ δW > 0 , (8.12)

while integrating the space-time Einstein equations in the static gauge finally

yields

vol(Y)Λ =
dX − 2

2(D− 2)

(
IV −

q− 1
2
IH −

D−m− 3
2

Tm Iloc

)
=

dX − 2
2(D− 2)

[ (
1− (q− 1)

γ

α

)
IV

+

(
(q− 1)

σ

α
− D−m− 3

2

)
Tm Iloc

]
.

(8.13)

Adding multiple localized sources amounts to summing their contributions3, and

the possible values of Tm and σ within a given model allow one to derive sufficient

conditions that exclude de Sitter solutions. Namely, recasting eq. (8.13) in terms of

any combination of the integrals IV , IH and Iloc and requiring that their coefficients

be non-positive is sufficient to exclude dS solutions.

3 R E L AT I O N S T O S WA M P L A N D C O N J E C T U R E S

Let us now comment on whether our results support the recent conjectures concerning

the existence of dS solutions in string theory [17]. Extending the arguments of

Chapter 3 to the effect that dS Freund-Rubin compactifications are unstable in the

dilaton-radion sector, let us recall the corresponding (magnetic-frame) effective

potential, whose relevant features are highlighted in fig. 8.1 (resp. fig. 8.2) for the

orientifold models (resp. for the heterotic model), reads

V(φ, ψ) = V(φ) e−
2q
p ψ − q(q− 1)

R2 e−
2(D−2)

p ψ +
n2

2R2q f (φ) e−
q(p+1)

p ψ , (8.14)

3At any rate, since Y is compact, charged sources are to satisfy a tadpole condition, which one ought
to take into account.
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where we have shifted the radion in order to place its on-shell value to zero, and we

have replaced R0 → R accordingly. Then, introducing the canonically-normalized

radion ρ, defined by

− q
p

ψ ≡
√

q
2 p (D− 2)

ρ , (8.15)

the ratio of interest takes the form

|∇V|
V =

√(
∂φV

)2
+
(
∂ρV

)2

V , (8.16)

while shifting φ one can also do away with the remaining parametric dependence on

the dimensionless combination ν ≡ n T
q−1

2 . Altogether, the resulting ratios depend

only on φ and ρ, and we have minimized them numerically imposing the constraint4

V > 0, finding approximately 2 (resp. 2.5) for the orientifold models (resp. the

heterotic model). This result resonates with the dS swampland conjecture of [17],

showing that in this case dS solutions are behind an O(1) “barrier” in the sense of

eq. (8.16).
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F I G U R E 8 . 1 : plots of the sign of the potential of eq. (8.14) in units
of T, with its minimum marked, and of the signature of its Hessian
matrix in the orientifold models. Left: regions where the potential is
positive (orange) and negative (blue), for n = 103. Right: region where

its Hessian matrix is positive-definite (green).

The above considerations can be extended to the more general warped flux

compactifications that we have discussed in Section 1. In this case, in terms of the

4The constraint V > 0 can also be recast in terms of φ and ρ only, with no parametric dependence left.
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F I G U R E 8 . 2 : plots of the sign of the potential of eq. (8.14) in units
of T, with its minimum marked, and of the signature of its Hessian
matrix in the heterotic model. Left: regions where the potential is
positive (orange) and negative (blue), for n = 10. Right: region where

its Hessian matrix is positive-definite (green).

canonically-normalized dilaton and radion fields5 φ , ρ, the effective potential is given

by

V(φ, ρ) = IV e2kρ −
∫

Y
ddY y

√
−g̃ e2bu(y)RMq e

2k(D−2)
dY

ρ
+

1
2
IH e2k(dX−1)ρ , (8.17)

where we have introduced

k ≡
√

dY

2 (dX − 2) (D− 2)
(8.18)

in order to canonically normalize ρ. Using the integrals defined in eq. (8.3), one can

recast the potential of eq. (8.17) in terms of its derivatives according to

V =
dY(dX − 1)
α(D− 2)

∂φV +
dY

2k(D− 2)
∂ρV +

dX − 2
D− 2

(
1− (dY − 1)

γ

α

)
IV e2kρ , (8.19)

and, since dY ≥ q in order to allow for magnetic fluxes, one finds that

dY(dX − 1)
α(D− 2)

∂φV +
dY

2k(D− 2)
∂ρV ≥ V (8.20)

5Notice that, in order to canonically normalize the radion, one needs to rescale the field ψ(x) that we
have introduced in Chapter 3.
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holds off-shell whenever the no-go result discussed in Section 1 applies. Then,

applying the Cauchy-Schwartz inequality one arrives at

√(
∂φV

)2
+
(
∂ρV

)2 ≥
√

2 α (D− 2)√
dY

(
2 dY (dX − 1)2 + α2 (D− 2) (dX − 2)

) V , (8.21)

which whenever V > 0 provides a lower bound for the ratio of eq. (8.16).

4 B R A N E - W O R L D D E S I T T E R C O S M O L O G Y

According to the proposal of [35–37], a thin-wall bubble nucleating between two

AdSp+2 space-times hosts a dSp+1 geometry on its wall6. Here we make use of the

results in Chapter 5 and Chapter 6 to propose an embedding of scenarios of this type

in string theory. Specifically, nucleation of D1-branes in the AdS3 × S7 solution and

of NS5-branes in the AdS7 × S3 solution lead to a dS2 geometry and a dS6 geometry

respectively7.

In the notation of Chapter 5, let us consider the landscape of AdSp+2 space-times

with curvature radii L̃, expressed in the (p + 2)-dimensional Einstein frame, specified

by large flux numbers n. The equations of motion for a spherical brane (stack) of

charge δn � n that describe its expansion after nucleation involve the extrinsic

curvature Θ of the world-volume, and stem from the Israel junction conditions [145,

146]

κ2
p+2 δ (Θ (j∗g)ab −Θab) = τ̃p (j∗g)ab , (8.22)

where δ denotes the discontinuity across the brane and τ̃p is the (dressed) tension

written in the (p + 2)-dimensional Einstein frame. Writing the induced metric j∗g on

the brane, which is continuous, according to

ds2
brane = − dt2 + a(t)2 dΩ2

p , (8.23)

6For some earlier works along these lines, see [212–216].
7The analogous phenomenon in the case of D3-branes in the type 0′B model appears more elusive,

since the corresponding bulk geometry is not AdS5 × S5, and its large-flux behavior is not uniform [71–
73].
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the junctions conditions read

δ

√
1
L̃2

+
1 + ȧ2

a2 =
κ2

p+2 τ̃p

p
. (8.24)

In the thin-wall limit δn� n eq. (8.24) reduces to

√
1
L̃2

+
1 + ȧ2

a2 =
p

2κ2
p+2 τ̃p

δ

(
1
L̃2

)
=

ε

(p + 1) τ̃p
=

β

L̃
,

(8.25)

where ε is the energy (density) carried by the brane and β > 1 is the extremality

parameter that we have discussed in Chapter 5. At the time of nucleation ȧ = 0, and

a(0) = ρ̃ gives the correct nucleation radius, while the time evolution of the scale

factor a is described by the Friedmann equation

(
ȧ
a

)2

= − 1
a2 +

β2 − 1
L̃2

, (8.26)

whence a = 1
H cosh(H t) identifies the Hubble parameter

H =
1
ρ̃
=

√
β2 − 1

L̃
∝ n−

γ(1+ q
p )

(q−1)γ−α . (8.27)

While the extremality parameter β in the string models at stake is not close to unity,

as in the near-extremal cases studied in [35–37], the AdS curvature is nevertheless

parametrically small for large n, and therefore the curvature of the dS wall is also

parametrically small.

Furthermore, it has been shown that the Einstein gravity propagating in the bulk

induces, at large distances, lower-dimensional Einstein equations on the brane [36],

in a fashion reminiscent of Randall-Sundrum constructions [217–221]8. In order to

elucidate this issue in the present case, where the branes deviate from extremality by

the O(1) factor v0, let us compare the on-shell action for the expanding brane, which

8Despite some similarities, it is worth stressing that the present context is qualitatively different from
scenarios of the Randall-Sundrum type.
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takes the form

Sp = (β− 1) τ̃
∫

dp+1ζ

(
L̃
Z

)p+1

(8.28)

in the Poincaré coordinates that we have employed in Chapter 6, with the corre-

sponding Einstein-Hilbert action

S(EH)
p =

1
2κ2

p+1

∫
dp+1ζ

(
L̃
Z

)p+1 (
Rp+1 − 2Λp+1

)
, (8.29)

since the resulting effective gravitational theory on the world-volume ought to

reconstruct general covariance [213]9. Since for dSp+1

Rp+1 − 2Λp+1 = 2p H2 , (8.30)

using eq. (8.27) and the defining relations

β ≡ ε L̃
(p + 1)τ̃

,

ε ≡ δẼ0 =
p(p + 1)
κ2

p+2 L̃3
δL̃ ,

(8.31)

introduced in Chapter 5, one finds the world-volume Newton constant

κ2
p+1 = β (β + 1)

κ2
p+2

δL̃
∝ n1−

γ(1+ q
p )

(q−1)γ−α , (8.32)

which indeed reproduces the results of [36, 215] in the near-extremal limit β → 1.

While for the orientifold models p = 1, and thus there would be no associated

Planck mass M1−p
Pl = κ2

p+1, in the heterotic model p = 5 and β =
√

5
3 for extremal

NS5-branes, and thus the vacuum energy (density) in units of the (p + 1)-dimensional

Planck mass is given by

(
Ep+1

Mp+1
Pl

)
heterotic

=
25

18π

√
5
3

√
1 +

√
5
3
(
κ10 T2) (T n)2

√
T δn

, (8.33)

which is parametrically small for large n.

9For a recent discussion in the context of entanglement islands, see [222].
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4.1 Massive particles

It has been shown in [36, 37] that one can include radiation and matter densities in

the Friedmann equation of eq. (8.26) introducing black holes and “string clouds”

respectively. While the former case appears problematic [223–225], on account of the

considerations of Chapter 6, one can nevertheless reproduce the effect of introducing

string clouds using probe open strings stretching between branes in AdS. In order to

compute the mass mstr of the point particle induced by an open string ending on a

brane in more general settings, let us consider a bulk geometry with the symmetries

corresponding to a flat (codimension-1) brane, with transverse geodesic coordinate ξ,

and thus a metric of the type

ds2 = dξ2 + Ω(ξ)2 γµν(x) dxµ dxν . (8.34)

Let us further consider a string with tension T stretched along ξ, attached to the

brane at ξ = ξb, with longitudinal coordinates xµ(τ) in terms of the world-line of the

induced particle. A suitable embedding with world-sheet coordinates (τ , σ) then

takes the form
Xµ = Xµ(τ, σ) , Xµ(τ, σb) ≡ xµ(τ) ,

ξ = ξ(σ) , ξ(σb) ≡ ξb ,
(8.35)

with Neumann boundary conditions on the Xµ, so that the induced metric determi-

nant on the world-sheet yields the Nambu-Goto action

SNG = − T
∫

dτ dσ Ω
√

Ω2
(
Ẋ · X′

)2 − (ξ ′2 + Ω2 X′2) Ẋ2 , (8.36)

where Ẋ2 ≡ γµν(X) Ẋµ Ẋν and we have assumed that Ω > 0 and ξ ′ > 0, since both ξ

and σ parametrize the string stretching in the transverse direction. In turn, this implies

that σb < σf , where ξ(σf ) ≡ ξ f corresponds to the (conformal) boundary where

Ω(σf ) = 0. Then, varying the action and integrating by parts gives the boundary term

δSNG = − T
∫

dτ Ω δξ
√
−Ẋ2

∣∣∣∣σf

σb

, (8.37)
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up to terms that vanish on shell10. Since the variation δξ f = 0, one can fix Xµ =

Xµ(τ, σb) = xµ(τ), and the resulting on-shell variation

δSNG = δ

(
− T

∫
dτ
∫ ξ f

ξb

dξ Ω(ξ)
√
−ẋ2

)
(8.38)

ought to be identified with the variation of the particle action

Sparticle = −mstring

∫
dτ Ω(ξb)

√
−ẋ2 , (8.39)

which one can also obtain evaluating eq. (8.36) for a rigid string. Hence,

mstring =
T

Ω(ξb)

∫ ξ f

ξb

dξ Ω(ξ) , (8.40)

and for AdS, for which Ω(ξ) ∝ e−
ξ
L , eq. (8.40) reduces to mstring = T L, thus reproduc-

ing the results of [36, 37]. More generally, requiring that ∂mstring
∂ξb

= 0 gives the condition

Ω′(ξb) = −
mstring

T Ω(ξb), i.e. the space-time is AdS if the mass remains constant as

the brane expands. Moreover, if the string stretches between ξb and the position ξb′

of another brane, the endpoints of integration change, and if ξb ∼ ξb′ one recovers

the flat-space-time result mstring ∼ T δξ. While for fundamental strings stretching

between D1-branes the resulting masses would be large, and would thus bring one

outside the regime of validity of the present analysis, successive nucleation events

would allow for arbitrarily light strings stretched between nearby branes, although

the probability of such events is highly suppressed in the semi-classical limit. The

resulting probability distribution of particle masses is correspondingly heavily skewed

toward large values.

4.2 de Sitter foliations from nothing

As a final comment, let us remark that the nucleation of bubbles of nothing [105]

offers another enticing possibility to construct dS configurations [106]. While, to

10Let us remark that, as usual, initial and final configurations are fixed in order that the Euler-Lagrange
equations hold.



4. Brane-world de Sitter cosmology 159

our knowledge, realizations of this type of scenario in string theory have been

investigated breaking supersymmetry in lower-dimensional settings [226]11, recent

results indicate that within the relevant context the nucleation of bubbles of nothing

is quite generic [107]. In particular, the supersymmetry-breaking Zk orbifold of

the type IIB AdS5 × S5 solution, described in [226], appears to provide a calculable

large-N regime and a dual interpretation in terms of the corresponding orbifold of

N = 4 supersymmetric Yang-Mills theory in four dimensions, which is a U(N)k

gauge theory that is expected to retain some of the properties of the parent theory [71,

180–186]. For what concerns the AdS× S solutions discussed in Chapter 3, on the

other hand, some evidence suggests that the decay rate per unit volume associated to

the nucleation of bubble of nothing is subleading with respect to flux tunneling in

single-flux landscapes [102], and thus in the AdS× S solutions of interest on account

of the results presented in Chapter 5.

11Some lower-dimensional toy models offer flux landscapes where more explicit results can be
obtained [102, 108, 227].





9Conclusions

We can now summarize the main points that we have discussed in this thesis,

collecting our considerations and results.

To begin with, in Chapter 2 we have presented a brief overview of three ten-

dimensional string models with broken supersymmetry and their construction in

terms of vacuum amplitudes. These comprise two orientifold models, the USp(32)

model of [19] and the U(32) model of [20, 21], and the SO(16)× SO(16) heterotic

model of [22, 23], and their perturbative spectra feature no tachyons. On the other

hand, the perturbative expansion of these models around flat space-time involves

gravitational tadpoles, whose back-reaction appears dramatic and is, at present, not

completely under control.

In Chapter 3 we have described a family of effective theories which describes their

low-energy physics. In particular, their actions contain exponential potentials for the

dilaton, whose presence tends to drive the dynamics toward runaway. In order to

counteract this behavior, the resulting classical solutions that have been found entail

warped space-time geometries [24, 25] or compactifications supported by fluxes [26].

We have described in detail the Dudas-Mourad solutions of [24], which comprise

nine-dimensional static solutions and ten-dimensional cosmological solutions, and

general Freund-Rubin flux compactifications, which include the AdS× S solutions

found in [26] and their generalizations studied in [25]. Whenever dS solutions of this

type are allowed, they always contain instabilities in the dilaton-radion sector, but

in the string models that we have introduced in Chapter 2 they do not arise.

In Chapter 4 we have studied in detail the classical stability of the solutions

discussed in Chapter 3, deriving the linearized equations of motion for field per-

turbations. In particular, in the case of the Dudas-Mourad solutions we have recast

the resulting equations as Schrödinger-like problems, whose Hamiltonians can be

decomposed in terms of creation and annihilation operators. We have found that
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these solutions are stable at the classical level, with the exception of an intriguing

logarithmic growth of the homogeneous tensor mode in the cosmological case [27],

which we are tempted to interpret as a tendency of space-time toward spontaneous

compactification. However, let us remark that from the perspective of the underlying

string models these solutions entail sizeable curvature corrections or string-loop

corrections, thus potentially compromising some of these lessons. this issue does

not appear to affect the AdS× S solutions, which for large fluxes are expected to be

under control globally, but their Kaluza-Klein spectra contain unstable modes in the

(space-time) scalar sector [27] for a finite number of internal angular momenta. One

can then attempt to remove them with suitable freely-acting projections on the internal

spheres, or choosing a different internal manifold altogether, and for the heterotic

model one can achieve this with an antipodal Z2 projection on the internal S3.

In Chapter 5 we have focused on some non-perturbative instabilities of the AdS

compactifications discussed in Chapter 3, which undergo flux tunneling [25] gradually

discharging space-time. This process is exponentially unlikely for large fluxes, and it

entails the nucleation of charged bubbles which then expand, reaching the (conformal)

boundary in a finite time. Motivated by the qualitative properties of these bubbles, we

have developed a picture involving fundamental branes, matching bulk gravitational

computations to brane instanton computations of decay rates and deriving consistency

conditions. In particular, we have found that the (oppositely charged pairs of) branes

that mediate flux tunneling ought to be D1-branes in the orientifold models and

NS5-branes in the heterotic model, but our results apply also to “exotic” branes [28–

32] whose tensions scales according to different powers of the string coupling.

In Chapter 6 we have kept developing the brane picture presented in Chapter 5,

studying the Lorentzian evolution undergone by branes after nucleation. In the

non-supersymmetric models described in Chapter 2, rigid fundamental branes are

subject to a non-trivial potential which encodes an enhanced charge-to-tension ratio

that is greater than its bare counterpart, thus verifying the weak gravity conjecture

in these settings. In addition to their expansion, positively charged branes are driven

toward long-wavelength world-volume deformations, while negatively charged

branes are not affected by instabilities of this type. Moreover, in order to further

develop the connection between the AdS× S solutions discussed in Chapter 3 and the
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corresponding branes, we have investigated in detail the full back-reacted geometries

sources by the latter, which feature AdS× S as attractive near-horizon throats and

strongly-coupled regions where, classically, space-time “pinches off” at a finite

transverse geodesic distance. This result generalizes the analogous behavior of

the static solutions of [24], which is indeed reproduces for 8-branes and appears

to depend only on the residual symmetry left unbroken by the branes. Therefore,

the forces exerted on nucleated brane stacks afford an interpretation as the force

between two stacks in the probe-brane regime in which one contains significantly

more branes than the other. Finally, we turned to the non-extremal case, deriving

a system of dynamical equations for the back-reaction of non-extremal branes and

studying their dynamics in some probe-brane regimes, namely Dp-branes probing the

static Dudas-Mourad geometry in the orientifold models and, in a complementary

regime, 8-branes probing the AdS3 × S7 throat sourced by D1-branes. We have

compared the resulting interaction potentials to a string amplitude computation,

finding qualitative agreement whenever both results are reliable.

In Chapter 7 we have developed a holographic proposal that relates, in general

terms, non-perturbative instabilities of meta-stable AdS false vacua and dual RG

flows. In this picture, nucleation of vacuum bubbles in the bulk ought to trigger

corresponding relevant deformations in the dual CFT, and the expansion of bubbles

ought to drive the RG flow toward the IR. In order to support this proposal, we

have computed the entanglement entropy in three-dimensional thin-wall settings,

and we have built a number of c-functions with holographic methods: one from the

Cardy-Calabrese relation [143, 144], one from the null-energy condition and one

from the trace anomaly. In addition, we have applied the framework of holographic

integral geometry [33] to address off-centered bubbles. Finally, we have outlined a

concrete scenario in which our proposal could potentially be studied quantitatively,

placing the D1-branes of the orientifold models in a weakly-coupled region of the

static Dudas-Mourad geometry, resulting in a non-supersymmetric gauge theory in

flat space-time. This theory ought to flow to a strongly fixed point coupled in the IR,

and a one-loop computation appears consistent with this picture, which we would

like to investigate making use of large-N techniques.

In Chapter 8 we turned to dS cosmology, generalizing the no-go result that
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we have described in Chapter 3 to more general warped flux compactifications.

We have derived an expression for the space-time cosmological constant in these

settings, which underlies an extended no-go result that we have connected to recent

conjectures about dS solutions and the swampland [17]. Furthermore, we have added

localized sources in the effective theories at stake, deriving their contributions to

the cosmological constant and, therefore, to the no-go result, which takes a more

complicated form in this case. Finally, we have focused on brane-world constructions,

applying the proposal recently revisited in [35–37] to the non-supersymmetric string

models discussed in Chapter 2. Extending the results valid for near-extremal branes

to our settings, where the effective charge-to-tension ratio is enhanced by an O(1)

factor, we have built an effective dS geometry on the world-volume of fundamental

branes which appears to be parametrically under control. Taking into account back-

reactions ought to lead to the Einstein equations on the world-volume [36, 37] at low

energies, and thus the complete effective field theory would involve gravity coupled

to (non-)Abelian gauge fields and matter. Moreover, models of this type appear

to accomodate massive particles of arbitrarily small, if unlikely, masses via open

strings stretching between expanding branes. We would like to further explore these

enticing constructions, and the two-dimensional case, which pertains to D1-branes in

the orientifold models, appears to provide a simpler toy model in this respect. On

the other hand, a detailed description the six-dimensional case, which pertains to

NS5-branes in the heterotic model, appears more puzzling in the absence of a deeper

understanding of non-supersymmetric dualities.

O U T L O O K

The results that we have discussed in this thesis suggest a tantalizing, if still elusive,

picture of the rich dynamics that underpins supersymmetry breaking in string theory.

Even on a fundamental level, the back-reaction of the gravitational degrees of freedom

intrinsic to string theory appears dramatic to such an extent that bona fide vacua

seem either completely absent or necessarily strongly coupled. As a result, any

effective static space-times that we have investigated show a tendency to end in a
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singularity at a finite distance, and their existence appear to rest on the presence of

localized sources that act as a symmetry-breaking compass. Hence, the oft-fruitful

paradigm of studying a system via its effect on probe sources has proven all the

more necessary in this context, and in particular, as we have described, it holds

some potentially intriguing lessons to be unveiled: from a theoretical perspective,

the rich dynamics of non-supersymmetric branes hints at a deeper connection with

the microscopic interactions of open strings, and thus with holography, that could

lead to further quantitative progress on the ultimate fate of non-supersymmetric

string “vacua”. On the other hand, from a phenomenological perspective, the very

same dynamics appear to be able to accomodate naturally interesting cosmological

models with a number of desired features. Indeed, the simplest configurations lead to

higher-dimensional cosmologies, modified power spectra and points to a tendency

toward spontaneous compactification, while more elaborate constructions lead to

lower-dimensional dS brane-world scenarios. All in all, it seems clear that, among the

long-standing issues with supersymmetry breaking, instabilities often arise from an

attempt to force naturally dynamical systems into static configurations, while the

most coveted phenomenology reflects the accelerated expansion of our universe.

Therefore, embracing instabilities as a starting point in this respect could help to shed

some light on these issues, which are of primary interest both for applications to

fundamental physics, but also of foundational value for a deeper understanding of

string theory on a foundational level.

U N R E L AT E D P R O J E C T S

During the course of my PhD studies, I have been part of a number of projects

unrelated to the material presented in this thesis. In particular, I have been involved in

a more detailed investigation of the back-reacted geometries sources by non-extremal

branes in the presence of exponential dilaton potentials in collaboration with R.

Antonelli. In addition, I have obtained some results in collaboration with A. Platania

on all-order curvature corrections in string cosmology.

Specifically, within a mini-superspace framework applied to low-energy effective



166 Chapter 9. Conclusions

actions of string theory in d + 1 dimensions, (perturbative) α′-corrections are deter-

mined by a single function of the Hubble parameter σ̇ on T-duality grounds [228–231].

The resulting action can then be written as an asymptotic series of the form

Γstring ∼
Vold

16πGN

∫
dt

1
n

e−Φ

(
− Φ̇2 + d n2

∞

∑
m=1

am

(
σ̇

n

)2m
)

, (9.1)

up to integration by parts and terms that vanish on-shell. The coefficients am are

related to the coefficients cm of [229–231] according to am = 8 (−1)m cm, in units where

α′ = 1. Since the above expression is expected to encode at least all perturbative

α′-corrections, we have applied functional RG techniques to extract flow equations for

their coefficients that are in principle correct to all orders. Then, within a leading-

order ε-expansion around two space-time dimensions, we have obtained an exact

solution to the flow equations that exhibits an interacting UV fixed point, two relevant

deformations and a consistent weakly-coupled IR regime, where the effective action

takes the form

Γstring =
Vold

16πGIR

∫
dt n e−Φ

[
Λ− Φ̇2

n2 +
σ̇2

n2 +
8

3π
GIR Λ L

(
σ̇2

n2 Λ

)]
, (9.2)

where Λ is one of the two relevant deformations, alongside the Newton constant, and

L(s) ≡ −1− 23
12

s +
(

3
2
+ s
)

log
(

1 +
s
2

)
+ (1 + s)

3
2

√
2
s

arctanh
(√

s
2 (1 + s)

)
.

(9.3)

Starting from this action one can study the resulting effective cosmologies, which

for α′ Λ = O(1) is expected to modify qualitatively the initial singularity at the

string-scale.



ATensor spherical harmonics: a primer

In this appendix we review some results that were needed for our stability analysis in

Chapter 4, starting from an ambient Euclidean space. In Section 1 we build scalar

spherical harmonics, and in Section 2 we extend our considerations to tensors of

higher rank. The results agree with the constructions presented in [232, 233]1.

1 S C A L A R S P H E R I C A L H A R M O N I C S

Let Y1, . . . Yn+1 be Cartesian coordinates of Rn+1, so that the unit sphere Sn is described

by the constraint

δI J Y I Y J = r2 (A.1)

on the radial coordinate r, solved by spherical coordinates yi according to

Y I = r Ŷ I(y) . (A.2)

The scalar spherical harmonics on Sn can be conveniently constructed starting

from harmonic polynomials of degree ` in the embedding Euclidean space Rn+1. A

harmonic polynomial of degree ` takes the form

H`
(n)(Y) = αI1...I` Y I1 . . . Y I` , (A.3)

and is therefore determined by a completely symmetric and trace-less tensor αI1...I` of

rank `, as can be clearly seen applying to it the Euclidean Laplacian

∇2
n+1 =

n+1

∑
I=1

∂2

∂Y2
I

. (A.4)

1For a more recent analysis in the case of the five-sphere, see [234].



168 Appendix A. Tensor spherical harmonics: a primer

The scalar spherical harmonics Y I1...I`
(n) are then defined restricting the H`

(n)(Y) to the

unit sphere Sn, or equivalently as

H`
(n)(Ŷ(y)) = r` αI1 ...I` Y

I1 ...I`
(n) (y) . (A.5)

As a result, the Euclidean metric can be recast as

ds2
n+1 = dr2 + r2 dΩ2

n , (A.6)

and the scalar Laplacian decomposes according to

0 = ∇2
n+1H`

(n)(Y) =
1
rn

∂

∂r

(
rn

∂H`
(n)(Y)

∂r

)
+

1
r2 ∇

2
Sn H`

(n)(Y) , (A.7)

where
∂H`

(n)(Y)

∂r
=

`

r
H`

(n)(Y)
(A.8)

for the homogeneous polynomials H`
(n)(Y). All in all

∇2
Sn Y I1 ...I`

(n) = − ` (`+ n− 1)Y I1 ...I`
(n) , (A.9)

and the degeneracy of the scalar spherical harmonics for any given ` is the number of

independent components of a corresponding completely symmetric and trace-less

tensor, namely
(n + 2`− 1) (n + `− 2)!

`! (n− 1)!
. (A.10)

2 S P H E R I C A L H A R M O N I C S O F H I G H E R R A N K

In discussing more general tensor harmonics, it is convenient to notice that, in the

coordinate system of eq. (A.6), the non-vanishing Christoffel symbols Γ̃K
I J for the
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ambient Euclidean space read

Γ̃r
ij = − r gij , Γ̃i

jr =
1
r

δ
j
i , Γ̃k

ij = Γk
ij , (A.11)

where the labels i, j, k refer, as above, to the n-sphere, whose Christoffel symbols are

denoted by Γk
ij.

The construction extends nicely to tensor spherical harmonics, which can be

defined starting from generalized harmonic polynomials, with one proviso. The

relation in eq. (A.2) and its differentials imply that the actual spherical components of

tensors carry additional factors of r, one for each covariant tensor index, with respect

to those naïvely inherited from the Cartesian coordinates of the Euclidean ambient

space, as we shall now see in detail. To begin with, vector spherical harmonics arise

from one-forms in ambient space, built from harmonic polynomials of the type

H`
(n) J(Y) = αI1 ...I` , J Y I1 . . . Y I` , (A.12)

where the coefficients αI1 ...I` , J are completely symmetric and trace-less in any pair of

the first ` indices. They are also subject to the condition

Y J H`
(n) J(Y) = 0 , (A.13)

since the radial component, which does not pertain to the sphere Sn, ought to vanish.

This implies that the complete symmetrization of the coefficients vanishes identically,

α(I1...I` , J) = 0 , (A.14)

and on account of the symmetry in the first ` indices. As a result, H`
n , J(Y) is thus

transverse in the ambient space,

∂J H`
(n) J(Y) = 0 . (A.15)
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Moreover, any Euclidean vector V such that VI Y I = 0 couples with differentials

according to the general rule inherited from eq. (A.2),

VI dY I = VI r dŶ I , (A.16)

so that the actual sphere components, which are associated to dŶ I , include an

additional power of r, and the vector spherical harmonics Y I1 ...I` , J
(n) i are thus obtained

from

r`+1 Y I1...I` , J
(n) i αI1...I` , J dyi = r H`

(n) J(Y) dŶ J . (A.17)

Therefore,

∇r∇r

(
r H`

(n) J(Y)
)
=

(
∂

∂r
− 1

r

)2 (
r H`

(n) J(Y)
)
=

` (`− 1)
r

H`
(n) J(Y) , (A.18)

while the remaining contributions to the Laplacian give

1
r2 ∇

2
Sn

(
r H`

(n) J(Y)
)
+

n (`+ 1)− n− 1
r

(
r H`

(n) J(Y)
)

, (A.19)

taking into account the Christoffel symbols in eq. (A.11). Since the total Euclidean

Laplacian vanishes by construction, adding eqs. (A.18) and (A.19) finally results

in

∇2
Sn Y I1...I` , J

(n) i = − (` (`+ n− 1)− 1)Y I1 ...I` , J
(n) i , (A.20)

with ` ≥ 1.

In a similar fashion, the spherical harmonics Y I1...I` , J1...Jp

(n) i1 ...ip
, corresponding to generic

higher-rank transverse tensors which are also trace-less in any pair of symmetric I-

indices, can be described starting from harmonic polynomials of the type H`
(n) J1...Jp

(Y),

and satisfy

∇2
Sn Y I1 ...I` , J1 ...Jp

(n) i1...ip
= − (` (`+ n− 1)− p)Y I1 ...I` , J1 ...Jp

(n) i1...ip
, (A.21)
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with ` ≥ p.

In Young tableaux language, the scalar harmonics correspond to trace-less single-

row diagrams of the type

I1 I2 . . . Il , (A.22)

while the independent vectors associated to vector harmonics correspond to two-row

trace-less hooked diagrams of the type

I1 I2 . . . Il

J
, (A.23)

as we have explained. Similarly, the independent tensor perturbations of the metric in

the internal space correspond to trace-less diagrams of the type

I1 I2 . . . Il

J1 J2

, (A.24)

while the independent perturbations associated to a (p + 1)-form gauge field in the

internal space correspond, in general, to multi-row diagrams of the type

I1 I2 . . . Il

J1

...

Jp+1

. (A.25)

The degeneracies of these representations can be related to the corresponding Young

tableaux, as in [235]. The structure of the various types of harmonics, which are

genuinely different for large enough values of n, reflects nicely the generic absence of

mixings between different classes of perturbations.





BBreitenlohner-Freedman bounds

In this appendix we collect some Breitenlohner-Freedman (BF) bounds [236] that

play a crucial rôle in the stability analysis of AdS flux compactifications that we have

presented in Chapter 4. We shall begin deriving the BF bound for a free scalar field in

AdSd in Section 1, and then we shall extend the results to form fields in Section 2.

In Section 3 we derive the BF bound for a spin-2 field, and finally in Section 4 we

conclude with an alternative derivation of the scalar BF bound based on energy

considerations, which mirrors the treatment in [236].

1 T H E B F B O U N D F O R A S C A L A R F I E L D

Let us begin studying a free massive scalar field ϕ. To this end, it is convenient to

work in conformally flat Poincaré coordinates, so that the AdSd metric takes the form

ds2 = L2 gMN dxM dxN =
L2

z2

(
dz2 + dx2

1, d−2
)

, (B.1)

where (µ , ν = 0 , . . . , d− 2). The non-vanishing Christoffel symbols are then

Γz
zz = −

1
z

, Γµ
νz = −

1
z

δ
µ
ν , Γz

µν =
1
z

ηµν . (B.2)

In this coordinate system the scalar Klein-Gordon equation for field modes ϕk(x, z) ≡

eik·x ϕk(z) of mass m takes the form

ϕ′′k +
2− d

z
ϕ′k −

(
k2 +

m2 L2

z2

)
ϕk = 0 , (B.3)

where “primes” denote derivatives with respect to z. Letting now

ϕk(z) = z
d
2−1 Ψk(z) (B.4)
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reduces the field equation to the Schrödinger-like form

(
− d2

dz2 +
4 m2 L2 + d (d− 2)

4z2

)
Ψk = − k2 Ψk , (B.5)

so that the operator acting on Ψ can be recast in the form A†A, where

A = − d
dz

+
a
z

, A† =
d
dz

+
a
z

(B.6)

and (
a +

1
2

)2

= m2 L2 +
(d− 1)2

4
. (B.7)

Requiring that − k2 > 0, i.e. the absence of tachyonic excitations, and thus of modes

potentially growing in time, in the Minkowski sections at constant z, translates into

the condition that a be real, and hence into the BF bound for a scalar field,

m2 L2 ≥ − (d− 1)2

4
. (B.8)

As a final remark, let is recall that eq. (B.3) is solved by

ϕk(z) = const.× z
d−1

2 Kν(kz) , ν ≡

√
m2 L2 +

(d− 1)2

4
, (B.9)

where we have imposed regularity in the bulk of AdS. We shall make use of this

result in Section 4.

2 T H E B F B O U N D F O R F O R M F I E L D S

One can treat the case of a massive vector in a similar fashion, starting from the

massive Proca equation, which implies the divergence-less condition

A′z + ∂µ Aµ +
2− d

z
Az = 0 (B.10)
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in Poincaré coordinates, and the resulting equations of motion

L2 2 AM +
(
d− 1−m2 L2) AM = 0 (B.11)

for Fourier modes translate into

A′′z +
2− d

z
A′z −

(
k2 +

2− d + m2 L2

z2

)
Az = 0 ,

A′′µ +
4− d

z
A′µ −

(
k2 +

m2 L2

z2

)
Aµ −

2
z

∂µ Az = 0 .
(B.12)

Changing variable as we have done in the preceding section for a scalar field, one can

see that the first equation of eq. (B.12) leads to the condition

(
a +

1
2

)2

= m2 L2 +
(d− 3)2

4
, (B.13)

from which one can infer the BF bound for a vector field,

m2 L2 ≥ − (d− 3)2

4
. (B.14)

Let us stress that this bound refers to the mass term in the Lagrangian, since we have

subtracted the contribution arising from commutators of covariant derivatives, which

is also present in the massless case. The second equation of eq. (B.12) is apparently

more complicated, since it contains Az as a source. However, one can simplify it

separating the longitudinal and transverse portions of Aµ. The former can be related

to Az via eq. (B.10), and one is lead again to the first equation of eq. (B.12). The latter

satisfies the same equation as the scalar field, up to the replacement d → d− 2. All

in all, one is thus led again to the BF bound of eq. (B.14).

This result can be generalized in a straightforward fashion to the case of massive

(p + 1)-form fields Bp+1, starting from their equations of motion

(
L2 2+ (p + 1) (d− p− 1)−m2 L2) BM1 ...Mp+1 = 0 . (B.15)
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Extending the preceding discussion, one can thus conclude that the BF bounds for

(p + 1)-form fields are

m2 L2 ≥ − (d− 3− 2p)2

4
, (B.16)

a result that applies insofar as1 d > p + 2. Notice that this relation, which refers again

to the mass term in the Lagrangian, is invariant under the “massive duality” [237]

between (p + 1)-form fields and (d− p− 2)-form fields.

3 T H E B F B O U N D F O R A S P I N - 2 F I E L D

As a final example, let us consider a spin-2 field hMN . The corresponding equations of

motion stem from the quadratic Einstein-Hilbert Lagrangian

L(2)
EH =

(
1
8

(
hA

A

)2
− 1

4
h · h

)
R + hMA hA

N RMN − 1
2

hA
A hMN RMN

− 1
4
∇M hAB∇M hAB +

1
4
∇MhA

A∇MhB
B

− 1
2
(∇ · h)M ∇

MhA
A +

1
2
∇MhAB∇BhAM

(B.17)

supplemented by the Fierz-Pauli mass term, or equivalently from the Fierz-Pauli

equations in curved space-time. These imply the transverse and trace-less conditions,

leaving a massive wave equation of the form

(
2−

(
M(s)

AdS

)2
−m2

)
hMN = 0 , (B.18)

where the effective “gravitational mass” for spin-s fields is given by [238]

(
M(s)

AdS

)2
≡ (s− 2)(d− 1) + (s− 1)(s− 4)

L2 . (B.19)

1At any rate, for d ≤ p + 2 the form field would have no local degrees of freedom.
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The action of the 2 operator on hMN , which we shall write in units of L for conve-

nience, is given by

2 hMN = z2 h′′MN + z2 ∂µ∂µhMN + z (6− d) h′MN + 2 (2− d) hMN

− d δz
(M hN)z + 2 ηMN hzz + 2 δz

M δz
N ηAB hAB ,

(B.20)

where we imposed the transverse and trace-less conditions, and from eq. (B.18) one

can separate the equations for the components hµν , hµz , hzz and obtain the corre-

sponding bounds. The most stringent of these bounds is

m2 L2 ≥ − (d− 1)2

4
, (B.21)

which reproduces the results in [238]2 and actually holds for higher-spin fields in

general.

4 A D E R I VAT I O N B A S E D O N E N E R G Y

Let us conclude this appendix presenting a physical argument for the scalar BF bound

based on energy considerations. In order to obtain a variational problem that admits

solutions with finite, conserved energy, following [236] let us introduce the improved

stress-energy tensor3

T̂MN ≡ TMN +
h
2
(gMN 2−∇M∇N − RMN) ϕ2 , (B.22)

which is divergence-less for every h and, for a particular choice of h, allows for

finite-energy wave-packets and boundary conditions with vanishing flux at the AdS

(conformal) boundary. Indeed, the associated improved Hamiltonian

Ĥ =
∫

dd−2x dz z2−d T̂00 , (B.23)

2The analysis of [238] extends to higher-spin fields as well.
3At first glance, this procedure may appear only adequate for the scalar case, due to issues related

to gauge invariance. However, let us remark that in this context fields are massive. At any rate, the
massless cases where this construction is invalid trivially satisfy the corresponding BF bounds.
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when evaluated on shell, contains two contributions to the boundary term, since

the improvement ∆TMN gives the divergence of an anti-symmetric tensor4 upon

contraction with a Killing vector ξM. Specifically,

ξM ∆TMN =
h
2
∇M

(
ξ[M∇N]ϕ

2 − ϕ2∇MξN

)
, (B.24)

and the resulting boundary term, which we shall write in units of L for convenience,

reads
1
2

∫
dd−2x z2−d

[
ϕ ϕ′ − 2h

(
ϕ ϕ′ +

1
z

ϕ2
)]

z=ε

, (B.25)

where {z = ε} denotes the regularized boundary. Evaluating this boundary term on

the expression of eq. (B.9), the total divergence is proportional to

(
d− 1

2
− (d + 1) h

)
K2

ν(kz) + (1− 2 h) kz Kν(kz)K′ν(kz)

=

(
d− 1

2
− (d + 1) h− ν (1− 2 h) +O

(
z2ν
))

K2
ν(kz) ,

(B.26)

and the leading term, which is the only singular one as z→ 0, vanishes for

h =
d− 1− 2 ν

2 (d + 1− 2 ν)
. (B.27)

Let us now see how the flux is modified. Since we have shown that the on-shell

improved Hamiltonian Ĥ differs by the canonical one by the subtraction of its

divergent boundary term and, at most, an additive constant, the flux across the

boundary is given by

dĤ
dt

=
1
2

∫
dd−2x z2−d (ϕ̇ ϕ′ − ϕ ϕ̇′

) ∣∣∣∣
z=ε

, (B.28)

which on-shell can satisfy the no-flux condition only when ν is imaginary, and it does

so for a discrete set of imaginary frequencies ω = i γ with a limit point at γ = 0. More

precisely, finite-energy wave packets, needed to prevent the infra-red divergence

4The anti-symmetric tensor on the right-hand side of eq. (B.24) arises from the Killing equation and
its associated integrability condition.
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typical of plane waves, are to contain frequencies ωn = i γn with discrete ratios

γ1 = e
πn12
|ν| γ2 , n12 ∈ Z , (B.29)

which have a limit point corresponding to γ = 0. On account of eq. (B.9), the

condition that ν be imaginary yields indeed the BF bound for a scalar field. The

same conclusion can be derived writing directly the equation that encodes global

energy conservation, or studying the boundary conditions for which the Schrödinger

operator of eq. (B.5) is Hermitian.





CGeodesics for thin-wall bubbles

In this appendix we shall discuss in detail the computation of geodesic in (constant-

time slices of) the bulk geometry that describes a thin-wall bubble expanding in AdS3

after nucleation, presenting the results of [109]. We have made use of the results of this

appendix in Chapter 7, where we have associated geodesics length with holographic

entanglement entropies within the framework of (holographic) integral geometry. We

begin in Section 1 recasting the “no-kink” condition that determines the angle θB,

discussed in Chapter 7, in the language of hyperbolic geometry, and we derive an

expression for the geodesic length as a function of θB in Section 2.

1 T H E N O - K I N K C O N D I T I O N

In order to provide a visual representation of the geometry of constant-time1 AdS3

slices in the presence of the bubble, which consists of two hyperbolic planes H2
± of

different curvature radii suitably glued along a circle, we employ a conformal model

constructed from two superimposed and glued Poincaré disks, relatively scaled in

such a way that the circles along which the gluing is performed have the same size,

as depicted in fig. C.1. In the same figure, we have marked a candidate polygonal

curve for the injection-phase geodesic, discussed in Chapter 7, between boundary

points A and A. To find an actual geodesic it is necessary to determine the point B

such that the no-kink condition is satisfied and, since the model is conformal, the

kink also disappears visually. Rotating the model such that there is symmetry about

the vertical axis, let us define θA (resp. θB) as the angle that the segment OA (resp.

OB), respectively, make with the vertical axis. Then, 2θA is the (angular) size of the

boundary interval, which we regard as a given parameter.

1The relevant Penrose-like diagram is depicted in Chapter 7.
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A Ā

B B̄

outer disk
bdry

inner disk
bdry

bubble
wall

O

F I G U R E C . 1 : the twofold Poincaré model with a candidate injection-
phase polygonal curve.

The no-kink condition is then equivalent to the statement that the angles that the

hyperbolic line segments AB and BB make with the bubble radius through B, which

we name αout, αin respectively, be equal.

Let us now consider the inner disk in fig. C.1. Let C be the intersection between

BB and the radius that bisects the B̂OB angle or, equivalently, ÂOA, as one can verify

via a symmetry argument. Since θB = B̂OC, noting that αin = ĈBO and that ÔCB is

right one finds, from the trigonometry of hyperbolic right triangles, that

cosh ρ− = cot αin cot θB , (C.1)

where ρ− is the geodesic radius of the bubble divided by L−. Equivalently, the

circumference of the bubble is 2π L− sinh ρ−.

For what concerns the outer disk, let us first show an identity for “omega triangles”,

namely hyperbolic triangles with exactly one ideal vertex. Let us consider an obtuse

omega triangle with reference to fig. C.2. Then, the length of the segment PQ is given

by
PQ
L

= cosh−1 csc γ− cosh−1 csc β , (C.2)

where L is the radius of the corresponding hyperbolic plane. This readily follows

from dropping the perpendicular from Q to the opposite side and making use of the

formula for the angle of parallelism.

β

γ

P

Q

F I G U R E C . 2 : an obtuse omega triangle, whose angles determine the
length of the segment PQ according to eq. (C.2).
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Let us now turn to the entire outer H2
+, including the portion that has to be excised

for the gluing in fig. C.1, and let us consider the obtuse omega triangle OBA in this

plane. One may observe that the obtuse angle ÔBA is supplementary to αout, and that

ÂOB = θA − θB. Therefore, using eq. (C.2) one finds

ρ+ = cosh−1 csc(θA − θB)− cosh−1 csc αout , (C.3)

where, as in the preceding case, ρ+ L+ is the geodesic radius of the bubble, now

measured in the original H2
+ as if the interior H2

− region were not present. More

specifically, ρ± are related by the gluing condition that we have discussed in Chapter 7,

and are therefore not independent. Indeed,

L+ sinh ρ+ = L− sinh ρ− = r . (C.4)

Imposing the no-kink condition αin = αout from eqs. (C.3) and (C.1) then yields the

transcendental equation

√
1 + (cosh ρ− tan θB)2 = cosh

(
cosh−1 csc(θA − θB)− ρ−

)
(C.5)

for θB, which we have solved numerically alongside the constraint |αin , out| < π
2 .

We find that there is exactly one solution for θB in this range for all values of the

parameters.

2 T H E G E O D E S I C L E N G T H

In order to compute the length of the geodesic, it is convenient to employ to an

hyperboloid model in place of the disk model of fig. (C.1). Namely, let us embed H2
±

as the locus {XµXµ = −1 , X0 > 0} in R1,2, so that the geodesic distance between two

points P and Q, in terms of their embedded images Pµ, Qµ, is given by

d(P, Q) = L± cosh−1(PµQµ

)
. (C.6)
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Since the length is divergent for points on the boundary, we regularize it placing A

on a cutoff surface at a large, but finite, geodesic distance2 Λ from the origin of H2
−.

The length of the segments AB, BB and BA can be computed using eq. (C.6), and the

resulting total, which determines the entanglement entropy, is

L− 2 L+ Λ = 2 L+ log (cosh ρ+ − sinh ρ+ cos (θB − θA))

+ L− cosh−1
(

cosh2 ρ− − sinh2 ρ− cos (2θB)
)

+O
(

Λ−1
)

.

(C.7)

Once θB has been determined from the no-kink condition, one can insert it into

eq. (C.7) to obtain a numerical estimate of the (finite part of the) length, and thus of

the entanglement entropy according to the Ryu-Takayanagi formula.

2Let us observe that Λ is exponential in a cutoff on the global coordinate r, and this it can be identified
with the usual UV cutoff employed in holography.
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