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Abstract

Advances in technology have deeply changed the way how securities are traded. The
introduction of new technologies has enabled exchanges to automate the majority of
their trading operations, leading on one side to a considerable cost reductions and on
the other side offering a full set of new possibilities for market participants. In parallel
to this automation, also brokers, hedge funds, proprietary trading firms, and other mar-
ket participants have profitted from these new technology approaches for automating a
variety of tasks, from optimization of order execution to whole trading strategies. In
particular, with this progressive market automation a large amount of data becomes
available, representing a unique laboratory where to discover new stylized facts and
where to test new financial theories proposed in literature. This possibility has opened
new challenges finalized to exploit this information for quantitative research and trading
purposes, with a particular focus in market microstructure.

For example, it is commonly accepted that market price moves during the execution of
a trade - in average it increases for a buy order and vice versa it decreases for a sell order.
This phenomenon, coined as market impact, is clearly a question of great relevance when
studying the price formation process and it has also become a major practical issue for
brokers, market makers and institutional investors in the design of their optimal trading
strategies. Indeed, in order to know whether a trade will be profitable, it is essential to
monitor transactions costs, which are directly related to market impact. Measuring and
modelling market impact has therefore become a central question of interest both for
finance researchers and practitioners with ongoing effort to generate trading model ideas
and cost modelling improvements that help with portfolio construction techniques.

In this research strand, one of the most surprising stylized facts is that the market
impact of a so called metaorder - a long sequence of orders executed sequentially in the
same direction and originated by the same trading decision - is approximately described
by a square-root law of the order size, and not linearly as one may have naively expected.
In general, public transaction data are not sufficient to perform market impact analysis
since from the available information it is not possible to clearly identify the metaorders.
This is why much of the work in both the academic and the industrial communities has
been done using proprietary datasets. However, from these datasets focusing singularly
on a single financial institution at the time it follows that i) the results are specific of
the strategy and execution style of the institution, ii) it is not possible to have insights
on how the metaorders executed from several institutions interact. For these reasons,
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one of the principal aims of this thesis is to investigate the interaction effects on market
impact using a data-driven approach based on a rich dataset of metaorders originated
by an heterogeneous set of investors in the U.S. equity market. The thesis is organized
as follows.

Chapter 1 provides an overview of the most relevant contributions in this thesis.

Chapter 2 introduces the themes and research questions that we address for a gen-
eral audience. A reader already familiar with the concepts related to the market impact
and more in general with the market microstructure field could skip this part.

Chapter 3 presents the ANcerno dataset used through this thesis for the several
empirical analysis. It is represented by a rich dataset of heterogeneous institutional
investors metaorders traded in the U.S. equity market. We describe some summary
statistics of these metaorders introducing the parameters used to characterize their ex-
ecution.

Chapter 4 describes the first empirical study meant to validate a recent model of
market impact based on a dynamical theory of liquidity. We find that the theoretical
predictions, based on reaction-diffusion equations in a multiple-time scales framework,
are remarkably well borne out by data: a transition from a linear to a square root market
impact is observed, as predicted by the theory.

Chapter 5 is devoted to the study of how the square-root law emerges from the inter-
action between different agents executing metaorders on the same asset. The crowding
effects on market impact are investigated and special care is devoted to construct sta-
tistical models, which calibrated on data allow us to reproduce very well the different
regimes of the empirical market impact curves.

Chapter 6 is focused to shed light on what happens to the price dynamics after the
metaorder execution. This is coined as price relaxation and we use several approaches in
such a way to clarify the role of the order flow correlation on how the price relaxes after
the end of the metaorder both at the intraday and at the multi-day levels. We find that
relaxation takes place as soon as the metaorder ends and it continues in the following
days with no apparent saturation at any predictable plateau.

Chapter 7 concerns the trading cost associated with the execution of a metaorder
which allows to define a natural dimensionless invariant in agreement with the trading
invariance principle recently postulated in financial literature. From our empirical ev-
idences it emerges that the trading invariance can be justified from the validity of the
square-root law for market impact and from the proportionality between spread and
volatility.
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Appendix A is devoted to underline that market impact should not be miscontrued
as volatility. In particular, the square-root market impact has nothing to do with price
diffusion, i.e. that typical price changes grow as the square-root of time. We therefore
rationalise empirical findings on market impact and volatility by introducing a simple
scaling argument in agreement with data.

Chapters 4 through 7 and Appendix A contain the original contributions of this
thesis. Each of them is self-contained and in principle can be read separately.
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Chapter 1

Outline of the thesis

This thesis presents a selection of studies on the market impact of metaorders - a large
orders splitted and executed incrementally in the same direction by the same investor -
providing empirical evidences and theoretical models from several viewpoints. In partic-
ular, we explore the market impact taking into consideration that market participants
have a wide spectrum of reaction timescales and interact reciprocally trading contem-
poraneously the same asset. Our data-driven analysis is based on a large dataset of
metaorders issued by an heterogeneous set of institutional investors in the U.S. equity
market and provided by ANcerno Ltd. (formerly the Abel Noser Corporation). The
large number and the heterogeneity of the metaorders traded by several financial insti-
tutions allows precise measurements of market impact in different conditions and with
a reduced uncertainty.

Our results are interesting from two rather different points of views. One is that they
represent a significant improvement in the understanding of the determinants of market
impact which is the main component of trading costs for institutional investors and at
the same time it constitutes an important aspect for the stability of financial markets.
The second aspect is that we are entering an era where the availability of large datasets
allow more and more to test accurately theories concerning economical and financial
issues with standards comparable to those of natural sciences.

In this chapter we summarize the main contributions presented in Chapters 4 through
7 and relate them to the existing literature.

1.1 Market impact of metaorders

It is commonly acknowledged fact that market price moves during the execution of an
order - in average it goes up for a buy trade and it goes down for a sell order. This
phenomena, known as market impact1, is crucial in studying the price formation process
as well as the optimal execution and transaction cost analysis related problems. Indeed,
in order to know whether a trading strategy will be profitable, it is essential to monitor

1It is also known as price impact.
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transaction costs linked to the market impact. Although the subject importance, there
are few research articles pertaining to the empirical estimation of market impact for
metaorders, mostly due to the fact that metaorder information is not publicly available.
In fact, metaorders have started being recorded in a systematic way only recently and
the majority of the database are proprietary, then not readily accessible to academic
researchers.

Nevertheless, at the heart of all the empirical and theoretical studies of metaorder
impact lies a very simple question: How does the market impact depend on the size Q
of the executed metaorder? To answer this question the market impact for a metaorder
with Q shares executed in a time interval [ts, te] is quantified by the conditional average

I(Q) = E[ε · (s(te)− s(ts))|Q] (1.1)

where ε = ±1 is the sign (buy/sell) and s(t) is the rescaled price given by the logarithm
of the average market price S(t) at time t normalized by the daily volatility σd, i.e.
s(t) = log(S(t))/σd. Although it may appear intuitive, many models in the theoretical
economics predict a market impact I(Q) linear in function of Q [1]. However, there is a
growing empirical evidence that the market impact is concave and well described by a
square-root law, i.e.

I(Q) = Y ×
(
Q

Vd

)δ
(1.2)

with δ an exponent in the interval 0.4 − 0.7, Y a numerical prefactor of order one
called Y -ratio, and Vd the total daily traded volume [2, 4, 5, 9, 12, 46, 50, 82]. Note that
the square-root law Q depends on the volume fraction φ = Q/Vd and it results to be
surprisingly universal across different financial products (equities, futures, bitcoin, and
options), time periods, market microstructure (small ticks vs. large ticks), underlying
trading strategies, and execution styles.

The non-addivitiy of the square-root law implies a natural question concerning the
interaction between metaorders executed simultaneously on the same asset. More pre-
cisely, one may wonder whether the simultaneous impact of several metaorders could
substantially alter the square-root law or conversely whether the square-root law might
itself result from the interaction of different metaorders. To the best of our knowledge
this is an open question since earlier empirical analyses are mostly based on proprietary
data from single financial institutions. It follows that there is little insight in litera-
ture about interaction effects between metaorders simultaneously executed by several
market participants on the same asset. In fact, financial markets are the arena of a
collective hide-and-seek game between heterogeneous market agents which are trading
over a broad range of timescales and for multiple purposes. For this reason in this thesis
we present several studies which for the first time break down market impact taking
into account multi-timescales and multi-agents interaction effects. The results discussed
confirm the validity of the square-root law but put also in evidence the possible and
relevant deviations from it as a consequence of these interactions.
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1.1.1 Effect of multiple timescales on market impact

In the recent literature, so called latent limit order book (LLOB) models [2, 7, 82] have
proven to be a fruitful framework to theoretically address the question of the market
impact of metaorders. The latent limit order book is an ideal and not measurable order
book where all the traders intentions - the latent and the visible ones - are considered:
this hypothesis is supported by market data, which put in evidence that only a very
small fraction of the daily volume traded on the market is instantly available in the
real order book [2]. In fact, the vast majority of the daily traded volume progressively
reveals itself as trading proceeds: liquidity is then a dynamical process which takes into
account that traders tend to hide their intentions as long as they can, since they have
no incentive in giving away private information too soon by adding orders to the real
limit order book.

In the LLOB models the liquidity dynamics is based on a continuous mean field
setting where each agent acts randomly and independently from all the others: each
trader can then deposit new orders, remove the old ones and change their mind with a
diffusive term. This is formally described by a set of reaction-diffusion equations where
assuming finite cancellation and deposition rates allows to capture the multi-timescales
of the liquidity dynamics [7, 69]. In fact, in view of the way financial markets operate
it is natural to consider agents displaying a broad spectrum of timescales, from low
frequency institutional investors (slow agents) to high frequency traders (fast agents).
In this multi-timescales set-up it is then predicted a crossover between a linear market
impact regime and a square-root regime in function of the metaorder volume: the high
frequency liquidity dominates the total market activity while its low frequency counter-
part contributes to shape the concavity of the market impact.

Our contribution. In Chapter 4 we test empirically for the first time the multi-
timescales LLOB dynamical theory of liquidity which makes specific predictions about
the shape of the market impact: a crossover from a linear in volume behaviour for small
volumes to a square-root behaviour for large volumes [7, 69]. Allowing at least two
characteristic timescales for the liquidity (fast and slow) we find that the data supports
this crossover described by

I(Q) ∝
√
QF (η) (1.3)

with η the participation rate - the ratio between the quantity traded Q and the volume
traded by the market during the execution duration T = te − ts - and F(η) a scaling
function given by

F(η) ≈
{√

η/π for η � η? ”small participation rate regime”

c for η � η? ”large participation rate regime”
(1.4)

with c = 0.4 and η? ≈ 3.15×10−3 (see Figure 1.1 and refer to the Chapter 4 for details).
From Eq. (1.3) it follows that the market impact I(Q) is linear in Q for small Q at fixed
T , and crosses over for intermediate Q to a square root regime

√
Q independently from

the execution duration T . Whereas a linear regime for small Q was already reported by
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Figure 1.1: Empirical scaling function F(η) estimated by dividing the data into evenly
populated bins of constant participation rate η and computing the conditional expec-
tation of ε(s(te) − s(ts))/

√
φ for each bin in participation rate, i.e. F(η) = E[ε(s(te) −

s(ts))/
√
φ|η]. The data (blue points) interpolates between a

√
η behaviour observed at

small participation rates and an asymptotically constant regime ≈ 0.4 for large η, i.e.
for η & η? with η? ≈ 3.15× 10−3, in agreement with the prediction (black solid line) of
a multi-timescales LLOB model with fast and slow agents (see Section 4.6 for details).

Zarinelli et al. [10], the scaling analysis provided by Eq. (1.3) has not been attempted
before. In fact, deviations from a pure square-root were observed in [10] where the
authors fitted the data with a logarithmic function log(a + bQ), which indeed behaves
linearly for small arguments. Furthermore, the fact that market impact in the square-
root regime chiefly depends on Q but not on T is compatible with the results of [10],
but contradicts many earlier theories that assign the

√
Q dependence to the duration

T of the metaorder, as discussed for example in [14, 36, 95]. This point is discussed in
detail in Appendix A where we argue that market impact should not be misconstrued
as volatility: in particular, the square root law has nothing to do with price diffusion,
i.e. that typical price changes grow as the square root of T . We rationalise empirical
findings on market impact and volatility by introducing a simple scaling argument in
agreement with data.

1.1.2 Multi-agents interaction on market impact

Metaorder information is not publicly available, and earlier analyses mostly based on
proprietary data from single financial institutions give little insight about the simulta-
neous execution of metaorders on the same asset from different investors, which we call
co-impact. Indeed, even if investors individually decide about their metaorders, they
might do so based on the same trading signal. Prices can thus be affected by multi-
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agents interaction effects such as crowding and a natural question comes out: What is
the right way to model the total market impact of simultaneous metaorders executed on
the same asset and on the same day?

Our contribution. In order to answer to this question we present in Chapter 5
one of the first studies breaking down market impact of metaorders executed on the
same asset by different investors (co-impact), and taking into account crowding effects.
We discuss the limits of the validity of the square-root law on the daily level finding
that the market impact of simultaneous daily metaorders is proportional to the square
root of their net order flow. Although this is in agreement with the intuition that the
market does not distinguish the different individual metaorders, we also found that both
the number of investors simultaneously trading on a stock and the crowdedness of their
trade (measured by the correlation between their metaorder signs) are important factors
determining the market impact of a given metaorder.

10−6 10−4 10−2 100

φ

10−4

10−3

10−2

10−1

100

I
(φ

)/
Y

Linear

Square Root
0.05 ≤ ρε ≤ 1.00

0.00 ≤ |ρε| ≤ 0.05

Figure 1.2: Empirical evidence of crowding effects on market impact: comparison
between calibrated sign-correlated models (colored lines) and empirical data (colored
points) splitted in two samples respectively with crowded (blue points) and not crowded
(red points) metaorders. The crowdedness is measured through the sign-correlation es-
timator ρε and the theoretical curves are calculated through numerical simulations as
explained in Section 5.5: as evident in figure the calibrated sign-correlated models re-
produce well the deviations from the square-root law (black solid line) with both a linear
regime and a constant price impact when the order size φ→ 0.

In such a way to have insights on co-impact let us consider the following example:
imagine that simultaneously to the considered buy metaorder (with volume fraction
φ > 0), another metaorder with the same sign and volume fraction φm > 0 is also
traded. Since the square-root law applies for the combined metaorders (as confirmed
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from data), the observed impact should read

I(φ+ φm) ∝
√
φ+ φm. (1.5)

It follows that the observed market impact tends to an intercept value
√
φm when

φ→ 0, behaves linearly when φ� φm and as a square root
√
φ when φ� φm. From this

simple but pragmatic example we then based the construction of a theoretical frame-
work to understand when a single investor will observe a square-root impact, and when
crowding effects will lead to deviations from such a behavior. In fact, considering in the
models the sign-correlation between metaorders we are able to reproduce very well the
different regimes of the empirical market impact curves in function of the volume frac-
tion φ as evident from Figure 1.2. It emerges that any intercept in the empirical market
impact curve can be interpreted as a non zero correlation with the rest of the market and
therefore as a crowdedness metric. Conversely, when the number of metaorders is suffi-
ciently large and the investor is not crowded with the market, then a pure square-root
law is recovered.

1.2 Price impact relaxation

After understanding the market impact of a metaorder, another natural question comes
out: What happen to the price dynamics when a metaorder is completely executed? This
question is still a matter of debate, although on general grounds, one expects intuitively
that the price impact starts to relax from its peak value (quantified by the square-root
law). However, from the empirical data it emerges that the order flow associated to
the execution of a metaorder tends to be autocorrelated in time since the same trading
decision to buy or sell might still be valid on the next day, week or month. It follows
that the price dynamics seen after completion of a metaorder can be characterized by
an apparent plateau2 reflecting both its own decaying impact and the impact dynamics
of correlated metaorders as well.

In this regard, Farmer et al. [15] argue from fair pricing and no arbitrage arguments
that the asymptotic value of the price impact should be a fraction of the peak value, in
such a way that the average price paid by the buyer or seller is equal to the long-term
value. For a square-root market impact it is predicted that the permanent impact is
equal to 2/3 of the peak value.

However, as far as empirical data is concerned, the situation is rather confusing, also
because the determination of the time when the relaxation terminates is not unique.
Some papers, determining permanent impact shortly after the end of the metaorder,
report results compatible with the 2/3 value predicted by Farmer et al. theory [5, 8, 10,
11,88], although Gomes et al. [11] describe a more complex picture, where informed and
unformed orders lead to a very different impact relaxation pattern. In the former case,
the impact seems to relax towards the predicted 2/3 value, while in the latter case, price
impact appears to relax all the way to zero. Brokmann et al. [12], on the other hand,

2It is also defined permanent impact.
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Figure 1.3: (Left panel) Empirical autocorrelation of the net daily order flow imbalance
as a function of the lag τ (measured in days) and computed averaging over all stocks in
the ANcerno dataset. This autocorrelation persists over many days, in agreement with
the fact that the same trading decision to buy or sell might still be valid on the next day,
week or month: we fit it with an exponentially truncated power law g(τ) = aτ−γe−bτ

with a = 0.24 ± 0.04, b = 0.038 ± 0.002 (corresponding to 1/b ' 26 days), and fixing
γ = 0.56 as discussed in Section 6.5. (Right panel) Price impact relaxation G(τ)/G(0)
over multiple days (blue solid line) estimated from the propagator kernel G(τ) defined by
the deconvolution method described in Section 6.5. The fit of G(τ)/G(0) is represented by
the cyan solid line and corresponds to the exponentially truncated modified propagator
model Im(τ) = I∞ + (1 − I∞)Iprop(τ)e−bτ with b = 0.038 (fixed in agreement with
the left panel), an asymptotic decay level I∞ ≈ 0.42 ± 0.01 and the propagator model
Iprop(τ) = (1 + τ)1−β − τ1−β where β = (1− γ)/2 = 0.22. The error bars on the graph
are (i) bootstrap errors (blue region) and (ii) cumulated regression errors (grey region)
(see Section 6.5 for details).

underline the importance of metaorders split over many successive days, as this may
strongly bias upwards the apparent plateau value. After accounting for the metaorder
autocorrelation, Brokmann et al. [12] conclude that the price impact decays as a power-
law over several days, with no clear asymptotic value, in agreement also with the work
of Bacry et al. [9].

Our contribution. In Chapter 6 we revisit the price impact relaxation issue both
at the intraday as well as at multiple days level using the ANcerno database. We find
that the price relaxation takes place as soon as the metaorder ends and it continues in
the following days with no apparent saturation at the plateau value predicted by the
Farmer et al. theory [15]. Furthermore, we note that the overnight contribution to the
impact decay is negligible in agreement with the idea that it takes place in volume time
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rather than in physical time. However, due to a significant autocorrelation between the
daily net order flow (see left panel in Figure 1.3), a careful deconvolution of the observed
impact must be performed in such a way to describe the price impact decay over multiple
days (see Section 6.5 for details). It follows that the price impact relaxation is described
by an exponentially truncated modified propagator model (see right panel in Figure 1.3)
with a power-law behavior at short time scales and a non-zero asymptotic value I∞ at
long time scales (∼ 50 days) equal to ≈ 1/3 of the peak impact. Our results match
qualitatively those of Brokmann et al. [12] obtained on a smaller set of proprietary
metaorders executed by Capital Fund Management (CFM).

1.3 Trading invariance principle

Understanding the dynamics of financial markets is of obvious importance for the finan-
cial industry, but also for decision makers, central bankers, and regulators. It is also a
formidable intellectual challenge that has attracted the interest of Benoit Mandelbrot
who was the first to introduce the idea of scaling [64], a concept that in fact blossomed
in statistical physics before getting acceptance in economics and finance (for a review,
see [65]): scaling laws are relations between quantities, in which they typically appear
in terms of power. In the last twenty years, many interesting scaling laws have been
reported, from the square-root law to others concerning different aspects of price and
volatility dynamics: one particular question that has been the focus of many studies is
the relation between volatility and trading activity, measured as the number of trades
and/or the volume traded [59,112–116].

Revisiting these results, Kyle and Obizhaeva (KO) recently proposed an inspiring
hypothesis, coined as the trading invariance principle [51, 52]. This principle supports
the existence of a universal invariant quantity Iko expressed in dollars, independent of the
asset and constant over time, which represents the average cost of a bet, i.e. a trading idea
typically executed in the market as a sequence of many trades over several days. More
in detail, the KO trading invariance principle predict that the quantity Iko = W/N3/2,
where W is the exchanged risk (volatility × volume × price) and N is the number of
bets, is invariant. This invariance implies the scaling W ∼ N3/2 coined as 3/2-law and
which can be interpreted with different degree of universality: no universality (the 3/2-
law holds for some financial instruments only), weak universality (the 3/2-law holds but
with a non-universal value of Iko), and strong universality (the 3/2-law holds and Iko is
constant across assets and time) [57].

In the recent literature the KO trading invariance principle has been empirically in-
vestigated at single-trade level rather than at the bet level mainly as a consequence of
the fact that identifying a bet in the market is not a straightforward task3. Although
empirical data at single-trade level revealed that while the 3/2-law is very robust, it
emerges that the Iko is not invariant as it is asset and time dependent [51,55–58]. How-
ever, since single transactions are typically not the same as single bets, to the best of

3In [52] Kyle and Obizhaeva tackled this problem exploiting a proprietary dataset of portfolio tran-
sitions.
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Figure 1.4: Empirical evidence of the scaling 3/2-law from the mean daily exchanged
risk 〈W〉N conditional on the daily number N of metaorders per asset for different
market capitalisations (top left panel), economic sectors (top right panel), and time
periods (bottom left panel). The insets show the slopes obtained from linear regression
of the data, firstly averaged with respect to N and secondly log-transformed. The
bottom right panel shows a plot of 〈W〉N as function of N for a subset of 10 stocks
chosen randomly from a pool of around three thousand U.S. stocks: the two insets
represent respectively the empirical distribution of the slopes and of the y-intercept
obtained from linear regression of a larger sub-sample of 200 stocks randomly chosen,
firstly averaged with respect to N and secondly log-transformed considering each stock
separately. Although the 3/2-law works well it is evident that Iko is asset dependent and
then not invariant (see Section 7.3 for details).

18



our knowledge the testing of the KO trading invariance principle at the bet level is still
missing. This is in fact the aim of the Chapter 7.

Our contribution. In Chapter 7 we revisit the KO trading invariance hypothesis
[51,52] by empirically investigating the large dataset of metaorders provided by ANcerno.
As suggested by Kyle and Obizhaeva metaorders can be considered a proxy of bets.
Focusing at the daily level we find that the 3/2-law betweenW and N works surprisingly
well and it is robust against changes of year, market capitalisation, economical sector,
and assets as evident from the several panels in Figure 1.4. However, our empirical
analysis clearly shows that the quantity Iko is not invariant for a wide range of assets
(see bottom right panel in Figure 1.4) and we argue in favour of a weak universality
degree. Since a very high correlation between Iko and the average total trading cost C
(spread and market impact) per metaorder is measured we then propose a new invariant
defined as the ratio I = Iko/C finding a large decrease in variance as evident from
Figure 1.5. Finally, we exhibit the microstructural origin of the small dispersion of the
new invariant I which is mainly driven by (i) the scaling of the spread with the volatility
per transaction, (ii) the near invariance of the distribution of metaorder size and of the
volume and number fractions of metaorders across stocks.
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Figure 1.5: Empirical distributions in log-log scale of the KO invariant Iko = W/N3/2,
of the daily average metaorder total trading cost C, and of the dimensionless invariant
I = Iko/C: note that renormalizing the KO invariant Iko by the average metaorder total
trading cost C implies a large decrease in variance as evident in figure. For details on
the computation of the involved observables see Section 7.4.
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Chapter 2

Introduction

In the last years, the availability of high-quality data have considerably revolutioned the
investigation of financial markets. The information that can be extracted from these data
allows to have new insights on how financial markets works and it is at the basis of the
market microstructure field. As the name suggests, the market microstructure concerns
the details of how specific trading mechanisms affect the price formation for financial
securities providing insight into the emergence of complex phenomena that have been
widely reported but poorly understood in the financial literature [28–30]. In this view,
the understanding of this phenomenology is of obvious importance for many practical
purposes, for instance, the quantifying of market impact1, the reduction of execution
costs, the design of trading strategies, the organisation of markets and the lowering of
financial risks [32,34].

As this growing data-driven research strand comprises many diverse subfields, uniting
researchers from various disciplines including economics, mathematics, physics, econo-
metrics and data science as well as financial practitioners and regulators, a comprehen-
sive overview is beyond the scope of this chapter. Instead we provide a comprehensible
introduction to the topics that are most relevant to this thesis.

2.1 Limit order book

Financial markets allow different sources of information to be processed and transformed
into a single number: the price. They are complex systems where many agents, called
traders, act with the purpose of maximizing their profits. In modern electronic markets,
it is common that traders interact through a limit order book (LOB) in a continuous
double auction. Continuous is referred to time, meaning that at any moment market
participants can take an action on the limit order book, while double auction refers to
the fact that the limit order book is divided into two sides: the buyers on the bid side
and the sellers on the ask side, as shown in Figure 2.1. The highest buy order is the best
bid while the lowest sell order is the best ask and their difference is called the bid-ask

1It is also known as price impact.
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spread. The mid-price is defined as the mid-point between the best bid and the best ask
and the discretization of the price axis is quantified by the tick size.

Figure 2.1: A sketch of the limit order book - in blue the bid side and in red the ask side
- with the arrows indicating the main quantities defined in the main text. For example
the figure shows a canceled limit order on the bid side and a market and limit orders on
the ask side.

From the operational point of view, each trader can post an order that will be
characterized by three key quantities: the sign (buy or sell), the number of shares, and
the price at which to trade it. The actions that can be done in the limit order book are
of three types:

� Market order which implies an immediate transaction at the best available opposite
price.

� Limit order which allows the trader to secure the price at which its order will be
executed, but not the time.

� Cancellation order which allows to change a previous taken position inside the
limit order book removing the order.

All these three types of orders are very important to describe the dynamics of the limit
order book [32,34] and obviously the decision whether to post a market or a limit order
is mainly dictated by the need that the trader has to have the deal done. In fact bid
orders show market interest in buying while the ask orders show market interest for
participants who are willing to sell but necessarily at a price higher than the best bid.
If a participant wants to buy (sell) now, then they need to hit the ask (bid) and to pay
a high (low) price. If a participant wants to buy (sell) but is more patient, they may
choose to join those on the bid (ask) and to wait for someone to hit them at a low (high),
and therefore a better price. It follows that the dynamics of the limit order book is the
result of a fine tuning between the behavior of liquidity providers and liquidity takers.
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Historically, the task of supplying liquidity by permanently maintaining limit orders
in the LOB was assumed by designated market-makers who, in exchange of this service,
kept the spread: they offered to buy at a price lower than their sell price, leading to a
profit on each transaction with an unchanged mid-price. All other actors are forced to
interact with a market-maker were liquidity takers. In reality, the idea of market-maker
profiting on each transaction is limited by the challenge represented by the adverse
selection: if an informed trader has an accurate prediction about the future price of
an asset initially not available to the market-makers, then he can profit by entering a
transaction with them. To reduce this information mismatch, the market-maker seeks to
process any new piece of public information as soon as possible re-adjusting accordingly
the offered quotes. In nowadays electronic trading systems, anyone can be a market-
maker with its own strategy: they are usually high frequency traders who react in a
much faster way with respect to the low frequency traders creating a multi-time scales
liquidity in the limit order book [34].

Figure 2.2: Snapshot of the limit order book before and after the execution of a buy
market order with a volume of 1000 shares. At each price level, a bar stands for a limit
order and its width represents the volume that will be traded. To note that the mid
point price S(t)→ S(t+ 1) moves up after the execution of a market order.

2.1.1 A concrete example

Let us take a concrete example to illustrate how the continuous double auction works.
Figure 2.2 shows a snapshot of the limit order book before and after the execution of
a buy market order. As shown in the figure, there are 100 shares available at the best
ask at time t. If the market order is only for buying 100 shares, it will be fully executed
with a trade price of 10.54 dollars consuming the volume at the best ask. However, if
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the market order is for buying 1000 shares, the case will be different. In particular, the
market order will be executed partly at the price of 10.54 dollars for 100 shares. To fulfill
the demand of 1000 shares, the market order will continue being executed at the price
of 10.55 dollars for 500 shares and at the price of 10.56 dollars for the remaining 400
shares. Consequently, this large market order changes the ask price from 10.54 dollars
at time t to 10.56 dollars at time t+ 1. Such a price change due to a trade is termed as
the price impact and it is an all-too familiar issue for traders who need to buy or to sell
large quantities of an asset since the impact of their earlier trades makes on average the
price of their subsequent trades worse (see Section 2.3 for more details).

The previous example illustrates the extra cost which can incur during a buy (sell)
order due to the scarcity of supply (demand). Although this effect is often insignificant
for small trades, it becomes relevant when a trader wishes to execute large volumes: the
impact of their orders is noticeable and must be taken into account as an additional
cost. It has been measured that the instantaneous volume displayed on the limit order
book is approximately 0.1% of the total daily traded volume [2] and this is a coherent
with the fact that market participants want to release as little information as possible
about their intentions, at least until they have a fair confidence that their orders will
be executed in a reasonable amount of time. This implies that when a trader seeks to
execute a large transaction it must be sliced and diced in such a way to be executed
incrementally.

2.2 Slice and dice: the origin of a metaorder

It is common practice that a large portion of transactions are executed by algorithms on
electronic trading platforms. This shift from floor trading to largely automated trading
on electronic markets has led to an increase in frequency and volume of transactions.
Most large market participants, such as investment banks, hedge funds, and proprietary
trading firms develop sophisticated algorithms to take advantage of the possible arbitrage
opportunities and to profit from them due to the large volume of trades that they make.
In this view, these market participants are faced with several high-level tasks such as to
make trading strategy decisions as for example which asset to trade and when, whether
to buy or to sell, at which price and so on.

When an asset manager takes the decision to buy or to sell some quantity Q of a
given asset it would be ideal to buy or to sell it immediately at the best available price.
However, for the range of volume typically executed by large financial institutions, there
is rarely enough available volume at the best price to absorb the required quantity at
all once. For this main reason, it is usual to slice and dice the full quantity Q into
smaller pieces, called child orders, which are executed sequentially using both market
and limit orders over a period which might spans several minutes to several days. This
sequence of transactions executed in the same direction (buy/sell) and belonging to the
same trading decision is called a metaorder. In practice, the trading activity associated
to the execution of a metaorder is articulated in two parts:

� At the investment-decision stage the trader determines the direction (buy/sell), the
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number of shares Q and the time duration T over which to execute the metaorder.
These decisions are usually based on some belief of the asset manager about the
future price of the asset.

� The execution stage, during which trades are conducted to obtain the required
quantity at the best possible price within the prefixed time window T . This step is
sometimes delegated to a broker, who seeks to achieve specified execution targets by
performing incremental execution of the metaorder in small chunks (see Appendix.
2.A for an introduction to some common trading execution algorithms).

In this way investors try to minimize their information leakage to the other market
participants and at the same time to manage the execution costs induced by the market
impact. However, note that to find statistical regularities for the execution costs of
a metaorder require to think in statistical terms. In fact, breaking up a metaorder
and executing it sequentially means that each scenario is different and the empirical
derivation of an operational formula for the market impact is an exercise of averaging
over many metaorders. This remark is at the basis of the formal market impact definition
introduced in the following section.

2.3 Market impact and the square-root law

On average buy trades push up the price and vice versa sell trades push it down. This
statistical effect is quantified by the market impact which describes how much price
dynamics is influenced by the order flow of a metaorder.

More precisely, for a metaorder with Q shares executed in a time interval [ts, te] the
market impact is quantified by the conditional average

I(Q) := E[ε · (s(te)− s(ts))|Q] (2.1)

where ε = ±1 is the sign (buy/sell) and s(t) is the rescaled price given by the logarithm of
the average market price S(t) at time t normalized by the daily volatility σd, i.e. s(t) :=
log(S(t))/σd. Naively, it might seem intuitive that the market impact of a metaorder
should scale linearly with its size. This is in fact in agreement with the prediction of the
seminal microstructure model proposed by Kyle in 1985 [1]. However, the last decades
have witnessed mounting empirical evidence invalidating this linear impact framework
(see for example Figure 2.3) and revealing a concave and approximately square root
scaling, i.e.

I(Q) = Y ×
(
Q

Vd

)δ
(2.2)

with δ an exponent in the interval 0.4− 0.7, Y a numerical prefactor of order one called
Y -ratio , and Vd the total daily traded volume [2,4,5,9,12,46,50,82]. This non-additive
scaling, coined as the square-root law, asserts that after a trade of volume Q/2, the
next half-one Q/2 will have less impact on the price change (∼ 40 % of the first Q/2).
Since it has been empirically tested for several markets and instruments as for example
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Figure 2.3: Market impact measured using metaorders executed by Capital Fund Man-
agement (CFM) on futures market during the time period from 2007 to 2010 (reproduced
from Ref. [2]). The market impact I(Q) is represented in function of the ratio Q/Vd on
doubly logarithmic axes. The black curve is for large-tick futures and the grey one is for
small-tick futures. For comparison, it is also shown a dash-dotted line of slope δ = 1/2
corresponding to a square-root impact and a dotted line with slope δ = 1 corresponding
to a linear impact.

stocks [4, 5, 12, 50, 88], future contracts [2], options [13], bitcoin [89], and it seems to
not depend on the geographical zone or time period [82] a spree of theoretical research
activity started in such a way to understand its origin. In the next section we recall
some of these most relevant theoretical frameworks developed in the literature.

2.4 Some theoretical models for market impact

One of the principal motivations of this thesis is to test fundamental theories for market
impact that we describe in the following. For more details we refer the reader to the
original papers.

2.4.1 Kyle model

In the classical financial literature one of the central model for the market impact is
represented by the Kyle model [1] which describes in presence of information asymme-
try how this information is incorporated into price. In particular, the theory takes in
consideration a single period equilibrium2 between three types of market participants,
each representing a well-identified trading behaviour: an informed trader competes with
a market-maker who provides liquidity for every trade in presence of noise traders sub-
mitting a random trade volume. At the beginning of the trade period all market par-

2In its original work [1] Kyle describes also the multiple periods and the continuous time variants.
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ticipants trade in an asset with an initial price S0 and a final normal liquidation price
SF ∼ N (S0,Σ0) with mean S0 and variance Σ0. From the available private information
the informed trader knows exactly the liquidation price SF that the asset will have at the
end of the period and then chooses to buy (ε = +1) or to sell (ε = −1) a trade volume
Q in such a way to optimize her expected profit. At the same time the noise traders
submit a normal trade volume Vnoise ∼ N (0,ΣV ) with mean zero and variance ΣV . The
market maker observes then a total net order flow ∆V = εQ + Vnoise which is matched
with her own inventory through a rule-based clearing price Ŝ. However, knowing that
there is an informed trader who wants to trade as much as possible to exploit her infor-
mational advantage, the market maker protects herself by setting a clearing price that
is increasing in the total net order flow ∆V . In particular, assuming that

1. the market maker, supposed competitive, realizes in average a null profit and

2. the strategy of the informed trader is optimal with respect to the pricing rule of
the market maker,

Kyle shows the existence of a unique market equilibrium if the pricing rule for the clearing
price Ŝ is linear, i.e.

Ŝ = S0 + λkyle(εQ+ Vnoise︸ ︷︷ ︸
∆V

). (2.3)

In Eq. (2.3) the Kyle’s coefficient λkyle = 1
2

√
Σ0

Σ2
V

measures the market illiquidity, i.e.

larger the coefficient, the more a given volume impacts the price and the more expensive
is the trading activity. From this linear clearing price rule it follows that the profit
maximisation for the informed trader is given by

Q̂ = argmaxQE[π] (2.4)

where
π = εQ× (SF − S0 − λkyle(εQ+ Vnoise)). (2.5)

Since the expected value of the random trade noise Vnoise is zero, one has E[∆V ] = εQ.
This leads from Eq. (2.4) to a quadratic maximization problem with solution

Q̂ =
SF − S0

2λkyle
= (SF − S0)

√
Σ2
V

Σ0
(2.6)

which implies that in such a way to maximize her profit the informed trader should
trade a quantity Q̂ proportional to the mispricing SF −S0 and that is greater when it is
possible to hide her demand in the noise traders liquidity (measured by ΣV ). It follows
that the informed trader performs on average a profit equal to

E[π] =
(SF − S0)2

2

√
Σ2
V

Σ0
(2.7)
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at the expense of the noise traders which are loosing their money.
In summary, the Kyle model shows that the total order flow impacts the price because

of its expected information content and in the particular case of Gaussian distributed
trading volumes the market impact scales linearly with the informed trader’s volume,
i.e. I(Q) ∝ Q. Although this prediction is in clear contrast with the empirical data
(as discussed for example in the previous section), the Kyle model is often cited as the
foundation of the field of market microstructure and it is considered as a starting point
for more realistic models.

2.4.2 Fair pricing theory

In the fair pricing theory of Farmer, Gerig, Lillo & Waelbroeck (FGLW) [15] a martingale
hypothesis and a fair pricing condition are combined to derive the relationship between
the distribution of the metaorder size and the shape of the market impact. In analogy
to the Kyle approach [1] the market ecology is represented by three types of agent:
informed traders, daily traders, and market makers. Informed traders are rational and
long-term institutional investors who buy or sell orders following a common information
signal α drawn from an exogenously distributions p(α). The daily traders follows their
private information signal to generate an order flow which is aggregated to the informed
one and executed incrementally over time through equally sized lots by taking liquidity
supplied by profit maximizing and competitive market makers. The main purpose of
the fair pricing theory is then to understand the way how order splitting of a metaorder
in n slices of equal size κ at times t = 1, · · · , n affects the shape of the market impact
assuming that the beginning and the end of a metaorder can be detected by all the
market participants.

To this aim the fair pricing theory of FGLW firstly imposes the martingale condition
for the transaction price S̃t during the lifetime of the metaorder, i.e.

Pt(S̃t+1 − S̃t) + (1− Pt)(St+1 − S̃t) = 0 (2.8)

where Pt is the probability that the metaorder continues beyond t executions while
(1−Pt) is the probability that the metaorder stops. The likelihood that the metaorder
will persist depends on the order size distribution p(n) and on the number of executions
t that are already done. S̃t and S̃t+1 represents the prices before and after the execution
of the (t+ 1)-th slice and St+1 is the post-trade price in the case that the metaorder is
fully executed in t slices. From the martingale condition expressed in Eq. (2.8) it follows
that

R̃t
Rt

=
1− Pt
Pt

(2.9)

where R̃t = S̃t+1−S̃t and Rt = S̃t−St+1 are respectively the incremental price responses
to the continuation and to the completion of the metaorder. However, another condition
is required to derive the values of R̃t and Rt at each auction t and therefore, to describe
the shape of the market impact.
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This second condition is given by the fair pricing assumption which states that the
post-trade price Sn+1 is equal to the average execution price

Sn+1 =
1

n

n∑
i=1

S̃i. (2.10)

At this point and as shown in the original work of FGLW [15] the combination of the
martingale hypothesis together to the fair pricing assumption allows to form a system of
equations that can be solved respect to R̃t and Rt in such a way to describe the market
impact in terms of the probabilities Pt. In the special case of a Pareto distribution of
order size, i.e.

p(n) ∼ n−(γ+1)

ξ(γ)
(2.11)

where ξ(γ) is the Riemann zeta function, the fair pricing theory predicts that:

1. In the limit of large t, the market impact3 increases asymptotically as

It ∼
{
tγ−1 for γ 6= 1

log(t+ 1) for γ = 1.
(2.12)

2. For γ 6= 1 the permanent impact - the persistence of a shift in the price after the
metaorder is fully executed - behaves asymptotically for large time t as

I∞ ∼
1

γ
tγ−1. (2.13)

Combining the previous two results it emerges that the ratio of the permanent impact
to the peak market impact is equal to

I∞
It
∼ 1

γ
. (2.14)

According to [15] there is a considerable evidence that for most equity markets the
metaorder size is distributed in the limit of large size as p(Q > v) ∼ v−γ with γ ≈ 3/2.
This implies that the price reversion after the completion of a metaorder should converge
to a permanent impact equal to 2/3 of the peak market impact.

In summary, the fair pricing theory of FGLW predicts that if the metaorder size is
distributed as a power law with exponent γ, then the market impact function behaves as
Qδ respect to the metaorder’s volume Q with δ = γ−1: to note that this corresponds to
the empirical square-root law (δ = 1/2) if γ = 3/2. However, it is found empirically that
the relation between the market impact exponent δ and the power-law exponent γ for
the distribution of metaorder sizes does not hold universally [82, 89]. Furthermore, the
fair pricing theory of FGLW suggests that the market impact decays instantaneously to

3The authors also call it the peak market impact.
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its asymptotic permanent value after the metaorder conclusion, whereas empirical data
reveals that this behaviour is not routinely observed in real markets. Instead, market
impact undergoes an initially steep decay, then relaxes very slowly over a period that
can span several days to an asymptotic permanent value which is still matter of debate
(see Chapter 6 for more details on this topic).

2.4.3 Latent limit order book approach

The limit order book is at the heart of the financial markets behaviour. However, since
most of the trading activity is not declared until the very end without appearing inside
the LOB, Tóth et al. [2] introduced the idea of the latent limit order book (LLOB) in
such a way to take into account all the trading intentions, the latent and the visible ones.
In a pragmatic way, such latent limit order book can be seen as a proxy for the supply
and demand at the intra-day time scale. In fact, Donier et al. [7] proposed a LLOB
model based on a set of reaction-diffusion equations through which the dynamics of the
latent bid and ask volume densities are described. It is then shown that under quite
general conditions the shape of the latent order book becomes exactly linear around the
mid-price and the market impact is square-root on the volume of the metaorder, i.e.
I(Q) ∝ √Q (see Chapter 4 for more details on this approach).

2.5 Transaction costs

The relevance of the market impact modelling is strictly related to the one of the Trans-
action Cost Analysis which has become a central issue in the financial industry. In fact,
transaction costs are widely recognized as a large determinant for the invesment perfor-
mance. They not only affect the realized results of an active investment strategy, but
they also control how rapidly assets can be converted into cash if it should be the case.
Such costs generally fall into two categories:

� Direct cost are represented by the commissions and brokerage fees which are ex-
plicitly stated and easily measured. Although they are important and should be
minimized, they are not the focus of this thesis.

� Indirect costs are the ones that are not explicitly stated and are related to the
market microstructure. For example, these costs are represented by the bid-ask
spread and by the impact costs. For large trades, the most important component
of these costs is the impact of the trader’s own actions on the market which is a
consequence of the finite liquidity in financial market. Given its statistical nature
it only appears after a careful averaging since otherwise it is invisible to the naked
eye and it actually represents the lion’s share for transaction cost analysis.

To have an order of magnitude let us assume that an asset manager trades 1% of the
daily traded volume Vd of a stock characterized by a 2% daily volatility σd. From the
square-root law it emerges that the unitary impact cost C = 2/3 × σd × Q3/2/Vd is
about 15 basis point, i.e. one order of magnitude larger than direct and spread costs
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which are of the order of 1 basis point. From this example it emerges that modeling and
understanding impact is a crucial element to take into consideration if we want to design
efficient trading strategies in competitive financial markets. When evaluating investment
strategies, the analysis of transactions costs is at risk of being overly simplified, leading
to potentially erroneous conclusions about a manager’s trading acumen and ultimately
suboptimal investment allocation decisions.

Appendix

2.A Trading algorithms

In practice it is a difficult task to execute manually and efficiently a large order over a
long time period. Therefore, this is usually done through the use of execution algorithms
usually built-in-house by asset managers or proposed as a service by brokers. Some
common execution schedules used by practitioner are:

� The time-weighted average price (TWAP) benchmark which aims to obtain an
average execution price for the metaorder that is as close as possible to the time-
weighted average price present in the market during a fixed time period.

� The volume-weighted average price (VWAP) benchmark which aims to achieve
an average execution price for the metaorder that is as close as possible to the
volume-weighted average price available during a specified period. It implies that
the transaction volumes of the metaorder are higher (lower) during the period of
high (low) averaged activity.

� The percentage of volume (POV) for which the volumes of the transaction stays
in a narrow band with a width of the order of a few percents around a constant
chosen as a fixed fraction of the estimated daily volume.

Obviously, it is possible to devise more sophisticated algorithms but in any case all of
them slice large orders into small pieces that will be executed sequentially.
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Chapter 3

ANcerno dataset

In the present era technology advance has considerably changed the way securities are
traded in financial markets. For the vast majority of developed markets, the algorithmic
trading plays a relevant role where sophisticated computer programs automatically make
trading decisions and handle the order submission. At the same time this modernisation
process provides an incredible large amount of data which can be analysed and used
for trading research purposes. In fact, institutional investors are careful to record in
a systematic way their trades execution and to use them to estimate how much their
strategies incur in trading costs implied by market impact. It follows that a better
understanding of market impact should lead to a competitive advantage reducing trading
costs and consequently improving assets allocation.

However, the empirical investigation of the market impact requires a clear identifica-
tion of the sequence and time stamping of each child orders belonging to the same trading
decision. A priori these informations are not available in public trade data, which are
typically anonymized and then useless for an explicit metaorder identification. Finding
a representative dataset of institutional metaorders is never an easy task and in general,
the solution is represented by a proprietary trading/broker firm data which contains the
informations relative to the placement and execution times, price and number of shares
for each metaorder. In our case, the research presented in this thesis is based on the
exploitation of the large and heterogeneous ANcerno database which is described in this
chapter.

3.1 Data and definitions

Our analysis relies on the database made available by ANcerno Ltd. (formerly the
Abel Noser Corporation) which is a widely recognised consulting firm that works with
institutional investors to monitor their equity trading costs1. The database contains
trade-level data gathered on metaorder executions from the main investment funds and
brokerage firms in the U.S. equity market. Previous academic studies that use ANcerno

1See www.ancerno.com for more details

31



data include for example [10,43–45,47–49].
We define a metaorder as a series of successive orders performed by a single investor

through a single broker within a single day, on a given stock and in a given direction
(buy/sell). The structure of the database provides the information necessary for an
explicit metaorder identification represented respectively by

� the total number of shares Q,

� the trade direction ε = ±1 (buy/sell),

� the time of the first placed order ts (placement time) and the corresponding market
price S(ts),

� the time of the last trade te (execution time) and the corresponding market price
S(te).

It follows that each metaorder is characterised by a broker label, a stock symbol, the total
number of shares Q and the times at the start ts and at the end te of its execution with
sign ε = ±1. The main advantage of this dataset is represented by a clear identification
of metaorders relative to the trading activity of diversified institutional investors also if
the motivations of the transactions are unknown. In fact the dataset is heterogeneous,
containing large institutional orders issued for different purposes and it spans several
years from 1999 to 2015: in our case we consider a sufficiently large sub-sample limited
to the time period from January 2007 to June 2010 for a total of 880 trading days. To
remove possibly erroneous data we follow the procedure introduced in [10]:

� Filter 1: We select the stocks which belong to the Russell 3000 index discarding
metaorders executed on highly illiquid stocks.

� Filter 2: We select metaorders ending before 4:01 p.m.

� Filter 3: We select metaorders whose duration T = te − ts is longer than 2 mins.

� Filter 4: We select metaorders whose participation rate (the ratio between their
quantity and the volume traded by the market between ts and te) is smaller than
30%.

The extracted sample is represented by ∼ 8 million of metaorders distributed quite
uniformly across time periods, market capitalisations and economical sectors. These fil-
tered metaorders are around the 5% of the total reported market volume independently
of the year and of the stock capitalisation2. For comparison we report in Table 3.1 the
approximate number of metaorders previously used in literature to empirically investi-
gate market impact: it is evident that our sample is more than one order of magnitude
larger than the typical size investigated so far, excluding the work done in [10] where the
authors used the ANcerno dataset. The exploitation of a large sample is quite important

2Without the above filters, this number would rise to about 10%.
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Authors Publication year Number of metaorders Institution

Almgren et al. [4] 2005 700,000 Citigroup
Engle et al. [50] 2008 230,000 Morgan Stanley
Moro et al. [5] 2009 150,000 Inferred
Tóth et al. [2] 2011 500,000 CFM

Bershova and Rakhlin [8] 2013 300,000 Alliance Bernstein LP
Waelbroeck and Gomes [11] 2013 130,000 Various

Mastromatteo et al. [82] 2014 1,000,000 CFM
Brokmann et al. [12] 2014 1,600,000 CFM

Bacry et al. [9] 2014 400,000 Képler Chevreux
Zarinelli et al. [10] 2015 7,000,000 ANcerno

Tóth et al. [13] 2018 450, 000 CFM
Said et al [88] 2018 1,500,000 BNP Paribas

Table 3.1: The table reports the approximate number of metaorders used in previous
studies by several authors together with the corresponding trading institution providing
the metaorders.

since market impact measures are very noisy and then larger datasets are ideal to reduce
statistical uncertainty and to remove spurious bias effects. Moreover the heterogeneity
of financial institutions and brokers in the ANcerno dataset guarantees that our results
are not specific to a single execution strategy and limited to a single market participant.

In Figure 3.1, the time series of the metaorders executed on MSFT in the time period
from June to July 2009 shows that a significant number of metaorders are active in the
same day. In most trading days for a given asset the vast majority of metaorders are
executed with the same direction (buy/sell). Unfortunately, from the available informa-
tion in the dataset it is not possible to know the conditions and characteristics of the
metaorder execution. For example we do not know if the metaorders were executed for
cash reasons or were informed trades as for example for the dataset used in [11]. Simi-
larly, we do not have information relative to the execution trading algorithm used by the
broker and if the trading size was conditioned on movement of the price during execution
of the metaorder. Anyway we believe that this weakness of the ANcerno dataset does
not change the conclusions discussed in the following chapters of this thesis.

3.2 Descriptive statistics

In this section we introduce the main observables used to describe metaorder execution
and we discuss some of their summary statistics. To this aim we follow the common
practice to measure time in volume unit where time is moved forward according to the
volume traded in the market. For a trading day, let V (t) the total volume traded by
whole the market from the opening to the physical time t. We define then the volume
time as v(t) := V (t)/V (tc) where tc is the daily closing time and V (tc) = Vd is the volume
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Figure 3.1: Time series of metaorders active on the U.S. equity market for MSFT in
the period from June to July 2009. Buy (sell) metaorders are depicted in blue (red).
The tickness of the line is proportional to the metaorder participation rate η. More
metaorders in the same time interval implies darker colors. Each horizontal lines repre-
sents a fixed trading day and as evident there is almost always an active metaorder from
our database, which is of course only a subset of the number of orders executed in the
market.

traded in whole day by the market. It is easily seen that independently of the total daily
volume, the volume time defined in that way equals to 0 at the market opening and to
1 at the market close.

In this metric the statistical properties of a metaorder of Q shares executed over a
time interval [ts, te] can be described by the following three observables: the participation
rate η, the volume duration D, and the unsigned order size φ. The participation rate η
is defined as the ratio between the number of shares Q traded by the metaorder and the
whole market volume during the execution interval [ts, te]

η =
Q

V (te)− V (ts)
. (3.1)

The duration D expressed in volume time is equal to

D =
V (te)− V (ts)

Vd
, (3.2)

while the unsigned daily fraction is defined as the ratio between the metaorder unsigned
volume Q and the volume Vd traded by the market in the whole day, i.e.

φ =
Q

Vd
= η ×D. (3.3)
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Since all the metaorders are limited to a single trading day, by construction all these
parameters are limited between 0 and 1.
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Figure 3.2: Estimation of the probability density function for the participation rate η
(top left), volume duration D (top right), and unsigned daily fraction φ (bottom left).
Note that all the panels are in log-log scale. The top panels also show the best fit with a
power-law function in the region bounded by the vertical dashed lines. The bottom right
panel shows the logarithm of the estimated joint probability density function p(D, η) in
double logarithmic scale of the duration D and of the participation rate η.

The salient statistical properties of respectively the participation rate η, the duration
D and the order size φ, are illustrated in Figure 3.2. Firstly we find that the participation
rate η and the duration D are both well approximated by truncated power-law distri-
butions over several orders of magnitude. The estimated probability density function of
the participation rate η is shown in log-log scale in the top left panel of Figure 3.2. A
power-law fit in the region 10−4 ≤ η ≤ 10−1, i.e. over three orders of magnitude gives
a best fit exponent a = −0.882 ± 0.001. The top right panel of Figure 3.2 shows the
estimated probability density function of the duration D of a metaorder. A power-law
fit in the region bounded by vertical dashed lines (0.01 ≤ D ≤ 0.5) gives a power-law
exponent a = −0.964 ± 0.002. These power laws are very heavy-tailed, meaning that
there is substantial variability in both the participation rate and the duration. Note
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that in both cases the variability is intrinsically bounded, and therefore the power law
is automatically truncated: in fact by definition η ≤ 1 and D ≤ 1. In addition, for
p(D) there is a small bump on the right extreme of the distribution corresponding to
metaorders executed during the whole trading day. Note that the deviation from a power
law for small D is a consequence of our Filter 3 retaining only metaorders lasting at least
2 min, which in volume time corresponds in average to 2/390 ' 0.005. The bottom left
panel shows the probability density function of the unsigned daily fraction φ. In this
case the distribution is less fat-tailed, and clearly not power-law. This is potentially an
important result, as the predictions of some theories for market impact depend on this,
and have generally assumed power-law behavior [14, 15]. Furthermore, the distribution
of the order size φ is invariant respect to the metaorder direction (not shown). Finally,
the bottom right panel of Figure 3.2 shows the logarithm of the estimated joint proba-
bility density function p(D, η) in double logarithmic scale. We measure a very low linear
correlation (-0.08) between the two variables, the main contribution coming from the
extreme regions, i.e. very large η implies very small D and vice versa. In other words,
as expected, very aggressive metaorders are typically short and long metaorders more
often have a small participation rate. All these results are in agreement with what found
by Zarinelli et al. in [10].

3.3 Possible measurements bias

In general it is rare to have access to a rich and detailed dataset as the one provided by
ANcerno. It is then necessary to work with incomplete and imprecise data which can
implies artifacts and biases. In such a way to obtain reproducible and understandable
results, it is common practice to take in mind the following possible erroneous effects:

1. Conditioning bias: Larger the size Q of a metaorder, more probably it is generated
from a stronger prediction signal. Therefore, in this case it is possible that market
impact may not reveal any structural correlation with the order flow while may be
due to short-term predictability.

2. Prediction bias: Traders who follow strong short-term price prediction signals may
choose to execute their metaorders particularly quickly, to make more profit from
their signal. Therefore, the strength of a prediction signal may itself influence the
subsequent impact path, in particular when the prediction horizon is comparable
to the execution horizon.

3. Implementation bias: In general it is reasonable to suppose that both the volume
Q and the execution horizon T are fixed before a metaorder’s execution starts.
However, it is possible in reality that some asset manager may adjust these values
during the execution over multiples days. For example, it can happen that a buy
metaorder is only executed if the price goes down, and abandoned if the price goes
up.
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4. Issuer bias: Another possible bias may occur if a trader submits several consec-
utive and dependent metaorders successively. If such metaorders are positively
correlated and occur close to one another in a time window, the impact of the first
metaorder will be different to the impact of the subsequent metaorders.

5. Synchronization bias: The impact of a metaorder can change accordingly to whether
or not other traders are seeking to execute similar metaorders at the same time.
This can occur if different traders prediction signals are similar and correlated, or
if they trade based on the same piece of information.

In general, most of them can be avoided when one has access to proprietary trading data
containing detailed information on the execution metaorder. However, also for even less-
ideal dataset these biases can statistically average out if the sample is sufficiently large.
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Chapter 4

Crossover from linear to square
root market impact

4.1 Introduction

In the literature, there are two different ways to modeling financial markets which greatly
differ in their underlying assumptions. The first method, mostly advocated by financial
mathematicians and economists, consists in postulating several global principles such as
the martingale condition for market prices1 and no arbitrage rules or perfect competition
between market participants. One then seeks for a theory consistent with these axioms.
While this method has a remarkable success it is also thouroughly insatisfactory since
it fails to predict how economic agents behave such that price efficiency or no arbitrage
is enforced. Hence, interest has shifted towards theories that put the emphasis on mi-
croscopic decision rules and focused on the consequences of the collective behaviour of
the economic agents. In this second method, all events of the order book dynamics,
represented by the setting and cancellation of limit orders and the triggering of market
orders, occur according to a certain probabilistic rule, which may or may not depend on
the past history. Due to their generality and simplicity the interest in these microscopic
models has considerably increased in recent years.

In this research strand reaction-diffusion models have taken growing importance for
the order book modeling starting from the highly stylized model proposed by Bak et
al. [17, 74]. In a financial context it is supposed that two species of particles A and B
represent the orders respectively on the ask and on the bid sides. These orders diffuse
on the one dimensional grid of prices and when they meet they annihilate according to
the rule A+B → Ø - a transaction at the mid-price occurs. The boundary between the
A-rich region and the B-rich region corresponds to the mid-price St. Although in the
preliminar reaction-diffusion models prices are sub-diffusive and market efficiency is not
assured, recent research has shown that reaction-diffusion models combined with the idea
of latent order book - an ideal and not measurable book where all the intentions of the

1The martingale condition implies that the conditional expectation of the future price, given the
prior values, is equal to the present value.
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traders are kept - allow to explain one of the misterious riddles in quantitative finance:
the square-root law of metaorders [2,7]. This idea opens the door to the development of
a physics inspired latent limit order book (LLOB) model for the coarse-grained dynamics
of latent liquidity [2, 7] which naturally explains why the impact of metaorders grows
like the square-root of its size in a certain regime of parameters [7]. In a nutshell, the
LLOB model predicts a linearly growing equilibrium liquidity profile, which implies a
square-root impact law even in the absence of any reaction of the liquidity providers to
the incoming metaorder. But this LLOB model also suggests that for a given execution
time T , the very small Q regime should revert to a linear behaviour: the theory in fact
predicts the detailed shape of the crossover between a linear to a square-root impact
regime.

In the present era financial markets sputter enormous amounts of data that can be
used to test scientific theories at levels of precision comparable to those achieved in phys-
ical sciences (see [91] for a recent example). In this light the aim of the present chapter
is to test for the first time the detailed theoretical predictions of the crossover from a
linear to a square-root impact using the large ANcerno database of metaorders, executed
on the U.S. equity market and issued by a diversified set of institutional investors. We
find that the crossover between linear and square-root impact is well described by the
LLOB theory, albeit the transaction volume at the crossover point is much smaller than
the predicted one. In fact, we argue that this can be accounted for by the coexistence of
slow and fast agents in financial markets. Fast agents contribute to the total transac-
tion volume but are unable to offer resistance against the execution of large metaorders.
Therefore, only slow agents are able to dampen market impact and only their contri-
bution is relevant for shaping up the square-root law. We recall how the LLOB model
can be augmented to account for multiple agent frequencies, and compute the impact
crossover function within this extended framework, resulting in a remarkably good fit of
the data.

4.2 Dynamics of the latent limit order book

In this section we recall the LLOB model introduced in Donier et al. [7] since the theoret-
ical part of our work leverages on it. This model provides a micro-structural explanation
of the square-root law taking present its insensitivity to the high frequency dynamics
which suggests that its interpretation should lie in some general properties of the low
frequency, large scale dynamics of liquidity. The basic assumption underlying the argu-
ments is the existence of a slowly evolving latent order book storing the volume that
market participants would be willing to trade at any given price level [2]. In other words,
this latent order book is where the true liquidity of the market lies, at variance with the
real limit order book (LOB) where only a very small fraction of this liquidity - which
evolves on very fast time scales - is revealed. This hypothesis is motivated by financial
market data, which demonstrates that a tiny fraction of the daily volume traded on mar-
ket is instantly available in the real order book. In fact, the publicly displayed liquidity
at any given time is usually very small - typically on the order of 10−2 of the total daily
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transaction volume in stock markets. This is coherent with the fact that financial mar-
kets are the arena of a collective hide-and-seek game between buyers and sellers, resulting
in a somewhat paradoxical situation where the total quantity that markets participants
intend to trade is very large (0.5% of the total market capitalisation changes hands every
day in stock markets) while most of this liquidity remains hidden, or latent. In fact,
traders tend to hide their intentions as long as they can, as they have no incentive in
giving away private information too soon by adding orders to the real order book: the
actual decision to trade at a certain price in the future could be itself latent. This is
the main reason why the vast majority of the daily traded volume progressively reveals
itself as trading proceeds or in other words that liquidity is a dynamical process [34].

In the LLOB model it is assumed that each market participant trades randomly
and independently intention on the latent order book in the same spirit of the zero-
intelligence model used for the real order book by Smith et al. [75]. In this setup the
fundamental quantities of interest are the average buy density ϕB(x, t) and the average
sell density ϕA(x, t) of latent orders around the price x at time t. As argued in [2, 7],
the coarse-grained dynamics of the latent liquidity close to the current mid-price St is
described by the following system of coupled continuous reaction-diffusion equations:

∂tϕA(x, t) = −Vt∂xϕA(x, t) +D∂xxϕA(x, t)−νϕA(x, t) +λΘ(St−x)−RA,B(x, t), (4.1)

∂tϕB(x, t) = −Vt∂xϕB(x, t) +D∂xxϕB(x, t)︸ ︷︷ ︸
Drift-Diffusion

− νϕB(x, t)︸ ︷︷ ︸
Cancellation

+λΘ(x− St)︸ ︷︷ ︸
Deposition

−RA,B(x, t)︸ ︷︷ ︸
Reaction

, (4.2)

where the different terms in the right hand sides of Eqs. 4.2 and 4.1 represents respec-
tively

� Drift-Diffusion: market participants can change their mind along time moving
their intentions on the x-axis price. The drift term Vt∂x represents a time depen-
dent collective motion originated by an exogeneous source as for example a new
piece of information. The diffusion term D∂xx describes instead the independent
random motion of the trader latent orders that are thought as zero-intelligence
agents [75].

� Cancellation: agents might remove completely or only partially trade intentions
from the latent order book. This is modeled by the parameter ν which is assumed
to be independent of the price level x and it corresponds to a memory time scale2

equal to ν−1.

� Deposition: the appearance of new buy/sell intentions is modeled by λΘ(x)
where λ is the rain intensity of new orders and Θ(x) is the Heaviside function,
i.e. Θ(x > 0) = 1 and Θ(x < 0) = 0; note that unlike the cancellation term, the
deposition intensity is independent on the density of the latent order book.

2In order of magnitude, it is a reasonable to suppose that the latent order book has a memory time
scale from several hours to several days [2]. The original LLOB model considers only slow actors, i.e.
institutional investors, neglecting the contribution of the high frequency traders.
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� Reaction: when two orders meet at the same price x they annihilate according
to the reaction A+B → Ø with an intensity proportional to a reaction rate k and
to the product of the buy and sell densities, i.e. RA,B(x, t) = kϕA(x, t)ϕB(x, t). In
the following we assume the limit k →∞ for which buy and sell orders annihilate
instantaneously when they are at the same price. This corresponds to a latent
order book without any overlap and with a transaction price St well defined by
the condition

ϕA(St, t)− ϕB(St, t) = 0. (4.3)

Although the dynamics of the latent densities ϕA(x, t) and ϕB(x, t) are not trivial as a
consequence of the non-linearity introduced by the reaction term RA,B(x, t), the combi-
nation

ϕ(x, t) = ϕB(x, t)− ϕA(x, t) (4.4)

satisfies the following differential equation independent from the reaction term

∂tϕ(x, t) = −Vt∂xϕ(x, t) +D∂xxϕ(x, t)− νϕ(x, t) + λ sign(St − x) (4.5)

and it allows to recover the bid and the ask densities respectively as follows

ϕA(x, t) = −ϕ(x, t)Θ(x− St), (4.6)

ϕB(x, t) = ϕ(x, t)Θ(St − x). (4.7)

Removing the drift term in Eq. (4.5) through the change of variable y = x − Ŝt with
Ŝt =

∫ t
0 Vτ dτ the dynamics of the latent density ϕ(x, t) is described by

∂tϕ(y, t) = D∂yyϕ(y, t)− νϕ(y, t) + λ sign(St − Ŝt − y). (4.8)

Note that the change of variable y = x − Ŝt is a mathematical trick which allows to
work in the reference frame of the fundamental price Ŝt where only the endogeneous
price changes are relevants: in other words, the deterministic evolution of the LLOB is
treated independently from the random dynamics of the price.

From Eq. (4.8) we can then investigate the price dynamics yt = St − Ŝt during the
execution of a metaorder imposing the following boundary conditions

ϕ(yt, t) = 0 ∀t, (4.9)

lim|y|→∞ϕ(y, t) 6=∞, (4.10)

ϕ(y, t = 0) = −ϕ(−y, t = 0), (4.11)

with ϕ(y, t = 0) the initial symmetric state of the latent order book.
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4.3 Insight on the stationary state

In an initial symmetric latent order book, i.e. ϕ(y, t = 0) = −ϕ(−y, t = 0) and St=0 =
Ŝt=0, by symmetry it follows that St = Ŝt for all times t > 0. The stationary solution
ϕst(y) is then given by setting ∂tϕ

st(y, t) = 0 in Eq. (4.8)

D∂yyϕst(y)− νϕst(y) = λ (4.12)

which implies

ϕst(y) = −λ
ν

sign(y)(1− e−γ|y|) (4.13)

with γ :=
√
ν/D the inverse of the typical length scale below which the latent order

book is locally linear, i.e.

ϕst(y) ≈ −λγ
ν
y = −Ly. (4.14)

The coefficient L := λ/
√
νD in Eq. (4.14) is interpretable as a measure of the latent

liquidity in the market and it enters in the definition of the total transaction rate J (the
flux of orders through the origin) given by

J := D|∂yϕst(y)|y=0= DL. (4.15)

4.4 Square root impact within the latent linear order book

Let us discuss now how the square-root law comes out in the infinite memory limit,
namely for ν, λ→ 0 with L ∼ λν−1/2 constant, when a metaorder with trading intensity
rate m(t) and duration T is executed in an inital locally linear latent order book ϕ(y, t =

0) = ϕst(y) 3. In this setup a metaorder with volume Q =
∫ T

0 m(τ)dτ is modeled by an
extra term at the mid-price, i.e.

∂tϕ(y, t) = D∂yyϕ(y, t) +m(t)δ(y − yt). (4.16)

The price dynamics is then derived solving Eq. (4.16) with the boundary condition

lim
y→∞

∂yϕ(y, t) = −L (4.17)

which is equivalent to assume that far from the mid-price the latent order book refill at
a constant rate. Moving to the Fourier space Eq. (4.16) can be rewritten as

∂tϕ̃(k, t) = −Dk2ϕ̃(k, t) +m(t)eikyt (4.18)

where setting ϕ̃(k, t) := F̃ (k, t)e−Dk
2t we obtain that

F̃ (k, t) = F̃ (k, 0) +

∫ t

dτ m(τ)eDk
2τ+ikyτ . (4.19)

3It is assumed that the metaorder is small enough in such a way to not change the market model
parameters D, ν and λ.
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Antitransforming it back gives

ϕ(y, t) = −Ly +

∫ t

0
dτ

m(τ)√
4πD(t− τ)

e
− (y−yτ )2

4D(t−τ) (4.20)

and imposing ϕ(yt, t) = 0 we obtain the following self-consistent relation for the trans-
action price

yt =
1

L

∫ t

0
dτ

m(τ)√
4πD(t− τ)

e
− (yt−yτ )2

4D(t−τ) . (4.21)

Although, in general Eq. (4.21) can be solved only numerically some insights on its
solution can be derived analytically in the case of a metaorder executed with a constant
trading rate m0 = Q/T . In fact, taking present that the argument of the exponential
term in Eq. (4.21) can be rewritten as follows

(yt − yτ )2

4D(t− τ)
=

1

4D(t− τ)

( 1

L

∫ t

0
du

m0√
4πD(t− u)

e
− (yt−yu)2

4D(t−u) +

−
∫ τ

0
dτ

m0√
4πD(τ − u)

e
− (yτ−yu)2

4D(τ−u)

)2
∝
(m0

DL
)2

=
(m0

J

)2
(4.22)

it emerges that the behaviour of the market impact I := yT depends on the participation
rate η = m0/J . For this reason let us focus in Eq. (4.21) on the two limit regimes
respectively with small (η � 1) and large (η � 1) participation rates before to discuss
its numerical solution.

4.4.1 Small participation rate regime

In the limit of small participation rate η � 1 Eq. (4.22) justifies the use of the following

approximation e
− (yt−yτ )2

4D(t−τ) ≈ 1 in Eq. (4.21). This implies that

yt =
1

L

∫ t

0
dτ

m0√
4πD(t− τ)

=
m0

L

√
t

πD =

√
Dm0Qt
πJ2

(4.23)

which exactly boils down to the linear propagator model proposed in [18], i.e.

yt =

∫ t

0
dτ G(t− τ)m0 (4.24)

with the propagator equal to G(t− τ) ∼ (t− τ)−1/2.

4.4.2 Large participation rate regime

In the limit of large participation rate η � 1 we can solve Eq. (4.21) through the
combination of the variable change u = t− τ and of the saddle point approximation. In
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fact, in the limit of u → 0 the exponential term in Eq. (4.21) goes to zero faster than
everything and since yt = yt−u + ẏt u+ o(u) it follows that

yt =
1

L

∫ t

0
du

m0√
4πDu

e−
(yt−yt−u)2

4Du ≈ 1

L

∫ ∞
0

du
m0√
4πDu

e−
ẏ2
t u

4D =
m0

Lẏt
√
π

∫ ∞
0

dv
e−v√
v

=
m0

Lẏt
.

(4.25)

Note that in the second passage we extended the integral up to infinity, i.e.
∫ t

0 du · · · →∫∞
0 du · · · - which is a good approximation taking present that the exponential term is

around zero - in such a way to recover the definition of the Γ function. Since yt must be
an increasing function on time it follows from Eq. (4.25) that

1

2
∂ty

2
t = ytẏt =

m0

L (4.26)

which implies that

yt =

√
2Dm0t

J
. (4.27)

4.4.3 Numerical solution

In general Eq. (4.21) can be solved only numerically. In the case of a constant trading
intensity rate m0 = Q/T it follows that the price impact I := yT is described by

I(Q) =

√
DQ
J
F(η) , (4.28)

with η = Q/(JT ) the participation rate and F(η) a scaling function (see Figure 4.1)
represented by

F(η) ≈
{√

η/π for η � 1 small participation rate regime√
2 for η � 1 large participation rate regime.

(4.29)

It emerges that in the LLOB model the market impact I(Q) is predicted to be linear in
Q for small Q at fixed T , and crosses over to a square root for large Q. Furthermore,
in the square root regime the market impact is predicted to be independent from the
execution time T .

4.5 Empirical analysis

We now turn to the ANcerno database to see how well Eq. (4.28) is supported empirically.
Our sample covers a total of 880 trading days, from January 2007 to June 2010, and
we follow the cleaning procedure introduced in [10] to remove possible spurious effects.
The sample is represented by around 8 million metaorders uniformly distributed in time
and market capitalization4. Each metaorder in the database is characterised by a broker

4The sample represents around the 5% of the total market volume
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Figure 4.1: (Black solid line) Dependence on the participation rate η of the scaling
function F(η) (see Eq. (4.28)) computed in the case of a constant trading intensity
m0 = Q/T . The curve interpolates between a

√
η dependence observed at small partici-

pation rate η (orange solid line) and an asymptotlically constant regime '
√

2 for large
participation rate η (red dashed line).

label, a stock symbol, the total number of traded shares Q, the sign ε = ±1 (buy/sell),
the start-time ts and the end-time te of its execution. In line with the definition given
above, and following [10], the participation rate is measured as η = Q/VT where VT =
V (te)− V (ts) is the total volume traded in the market during the metaorder execution.
In order to compare different stocks with very different daily volumes, we measure Q
in units of the corresponding daily volume Vd, and introduce the volume fraction φ :=
Q/Vd, which in the model notation is equal to Q/JTd, with Td = 1 day. We will also
measure execution in relative volume time and redefine the execution time as D :=
(V (te)− V (ts))/Vd. Finally, we introduce rescaled log-prices as st := (log St)/σd, where
σd = (Shigh − Slow)/Sopen is the daily volatility estimated from the daily high, low and
open prices.

The average price impact I(Q) for a given executed volume Q, as studied in most
previous studies [9, 10,35,89], is defined as:

I(Q) = E[ε · (send − sstart)|Q] (4.30)

where sstart = sts , send = ste are, respectively, the rescaled logarithmic mid-price at the
start and at the end of the metaorder.

In order to test directly Eq. (4.28), we estimate the scaling function F(η) by dividing
the data into evenly populated bins of constant participation rate η and computing
the conditional expectation of ε(send − sstart)/

√
φ for each bin in participation rate.
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According to the LLOB model this expectation is equal to
√
D/σ2

dF(η). Here and in

the following, error bars are determined as standard errors.
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Figure 4.2: Empirically determined scaling function F(η) vs. participation rate η. The
data (blue points) interpolates between a

√
η behaviour observed at small participation

rates and an asymptotically constant regime ≈ 0.4 for large η, i.e. for η & η? with
η? ≈ 3.15× 10−3. Black line: prediction of the LLOB model, with an adjusted crossover
η? := Js/Jf allowing for the existence of two categories of agents (fast and slow). The
data points are obtained by restricting to metaorders with sufficient large order size, i.e.
φ & 10−5.

The results are shown in Figure 4.2 and are, up to a rescaling of both the axis,
remarkably well accounted for by the LLOB function F(η) (illustrated in Figure 4.1),
that describes the crossover between a linear-in-Q regime for small participation rates η,
and a T -independent,

√
Q regime at large η. Whereas a linear regime for small Q’s was

already reported in [10, 41], the scaling analysis provided here has not been attempted
before. In fact, deviations from a pure square-root were observed in [10] where the
authors fitted the data with a logarithmic function ln(a + bQ), which indeed behaves
linearly for small arguments. The fact that impact in

√
Q regime chiefly depends on Q

but not on T is compatible with the results of [10], but contradicts theories that assigns
the
√
Q dependence to duration of the metaorder, as in [14, 36, 95]. In Appendix A we

discuss in details this independence to the duration T arguing that the market impact
should not be confused with price diffusion, i.e. that typical price changes grow as the
square root of T . Furthermore, directly regressing the impact as

√
φT−β in the η > η?

regime yields β = −0.04± 0.02, confirming the near independence of the market impact
on the execution time T ; while in the η < η? regime the regression as φT−β yields
β = 0.45± 0.05, in close agreement with the LLOB prediction β = 1/2.

However, whereas the crossover between the two regimes should occur around η? = 1
within the original LLOB model (see Figure 4.1), empirical data points towards a much
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smaller value η? ∼ 10−3. This is actually consistent with the fact that all the empirical
evidence for the square-root law reported in the literature concern moderate participation
rates (typically in the range 10−3 − 10−1, see e.g. [4, 12, 38, 41]) but never in a regime
where the volume of the metaorder becomes larger than that of the rest of the market,
as would be requested within the LLOB specification. Note that in our sample, 70% of
the metaorders are such that η > η?.

4.6 Fast and slow latent order books

In order to account for this large discrepancy in the value of η?, we shall consider the
extended LLOB model recently proposed by Benzaquen et al. [69] to include agents
with different time horizons, as it is clearly the case in financial markets. In the simplest
case of a bi-modal distribution of agents (fast and slow), the LLOB formalism can be
generalized to describe two latent order book densities, respectively ϕs(y, t) for the slow
liquidity and ϕf(y, t) for the fast liquidity – for example provided by high frequency
traders. The corresponding dynamical equations then read [69]:

∂tϕ◦(y, t) = D◦∂yyϕ◦(y, t)− ν◦ϕ◦(y, t) + λ◦sign(yt) +m◦(t)δ(y − yt) , (4.31)

where ◦ = s, f and ms(t) (resp. mf(t)) is the fraction of the metaorder absorbed by the
slow (resp. fast) traders, with ms(t) + mf(t) = m0. To note that we allow the activity
rate of the two categories of agents to be different through the coefficients D◦, ν◦ and
λ◦. The interesting limits for our purpose are:

� Js � Jf and m0 � Jf , where J◦ = λ◦
√
D◦/ν◦. These inequalities mean that (i)

the total transaction rate J = Js + Jf ≈ Jf is dominated by fast traders and (ii)
the flux corresponding to the metaorder is small compared to the total transaction
rate of the market, as with most metaorders executed in liquid markets.

� νsT � 1 and νfT � 1. As shown in [69] this implies that slow, persistent agents
are able to resist to the impact of the metaorder, whereas fast agents are playing
the role of transparent intermediaries, only lubricating the high-frequency activity
of markets.

This double-frequency model can be solved exactly in some limits. One should dis-
tinguish two cases, depending on whether the execution time T is larger or smaller than
a certain T † := ν−1

f η?−2Ds/Df , where η? := Js/Jf . For T > T †, the scaling result
Eq. (4.28) is simply modified as:

I(Q) =

√
DsQ

Js
F
(
η

η?

)
. (4.32)

For T < T †, this result is further multiplied by
√
T/T †, with a shifted crossover point

η? → η?T †/T . If we assume that T † is small enough for all data points (which needs to
be checked a posteriori), then the prediction of the double-frequency model, Eq. (4.32),
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is precisely the same as the one of the standard LLOB model, Eq. (4.28), up to a rescal-
ing of the x-axis by η?, and of the y-axis by a ratio

√
DsJ/DJs. Figure 4.2 shows that

the LLOB scaling prediction indeed reproduces the data very well, which allows a direct
determination of η? ≈ Js/J ≈ 3.15×10−3. In other words, we find that most of the daily
liquidity is provided by fast agents, whereas the resistance to a metaorder relies on a
small fraction of slow agents. We have checked that neither the quality of the fit nor the
value of η? are significantly different in the period 2007-2008 and 2009-2010 as evident
in Figure 4.3. We have also investigated the dependence of η? on market capitalization
and volatility (see panels in Figure 4.4). We find that low volatility/large capitalization
stocks are characterized by a larger value of η? than high volatility/mid-small capital-
ization stocks, suggesting, perhaps counter-intuitively, that the low frequency activity is
comparatively more important in low volatility/large capitalization stocks.
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Figure 4.3: Empirically determined scaling function F(η) vs. participation rate η for
metaorders in the period 2007-2008 (blue dots) and in the period 2009-2010 (red dots).
The data (blue and red points) interpolates between a

√
η behaviour observed at small

participation rates and an asymptotically constant regime ≈ 0.4 for large η, i.e. for
η & η? with η? ≈ 3.15 × 10−3 independent of the selected time period. Black line:
prediction of the fast and slow latent order books model as discussed in the main text.
The data points are obtained by restricting to metaorders with sufficient large order size,
i.e. φ & 10−5.

The plateau value for η > η?, on the other hand, leads to
√
DsJ/DJs = 0.4/

√
2,

leading to
√
Ds/D ' 10−2. Since

√
D should be close to the price volatility [7], we find

that, consistently with its interpretation, the slow liquidity moves much more slowly
than the price itself. These estimates in turn lead to T † ≈ 45 ν−1

f , or ∼ 45 seconds for
ν−1

f = 1 second. Since the median execution time of the metaorders in our sample is 35

48



10−5 10−4 10−3 10−2 10−1 100

η

10−2

10−1

100

101

E[
ε
·(
s e

n
d
−
s s

ta
rt

)/
√
φ
|η

]

High volatility

Low volatility

y = 0.4
√
η

10−5 10−4 10−3 10−2 10−1 100

η

10−2

10−1

100

101

E[
ε
·(
s e

n
d
−
s s

ta
rt

)/
√
φ
|η

]

Large cap

Mid cap

Small cap

y = 0.4
√
η

Figure 4.4: (Left panel) Empirically determined scaling function F(η) vs. participation
rate η for metaorders executed on stocks with high volatility (grey dots) and small volatil-
ity (cyan dots). (Right panel) Empirically determined scaling function F(η) vs. partic-
ipation rate η for metaorders with large (blue dots), mid (green dots), and small (red
dots) capitalizations. In both the panels the data points are obtained by restricting to
metaorders with sufficient large order size, i.e. φ & 10−5. Note that low volatility/large
capitalization stocks are characterized by a larger value of η? than high volatility/mid-
small capitalization stocks.

minutes, we conclude that most metaorders in our sample are indeed longer than T †.
Still, a bi-modal distribution of trading frequencies is certainly an oversimplification.

One should consider instead, as in [69], a continuous distribution of frequencies (see
Appendix 4.A.1 for a brief discussion on this point). Several empirical facts about the
dynamics of financial markets (see e.g. [27,34,79]) actually suggest that such a distribu-
tion is a power-law. The numerical solution and the fitting procedur of such a general
model is beyond the scope of the present chapter, but the simplified analysis in [69]
suggests that the LLOB scaling function should be approximately valid, with a crossover
value η? that decreases as a power-law of D. Intuitively, the critical participation rate
η? should be larger for small metaorder duration D, since there are less traders that
can be considered fast on such short time scales and more traders that are slower than
D. This intuition is indeed confirmed by the main panel of Figure 4.5 where we show
the rescaled data as a function of η, for metaoders longer and shorter than the median
execution time D̄ ≈ 0.09. The crossover participation rate η? for small durations is
found to be 10 times larger for large durations. In the inset of Figure 4.5, we show the
D-dependence of η?, obtained by fitting the rescaled data by F(η/η?) using five bins of
D containing the same number of data points (∼ 1.4× 106), suggesting η? ∼ 1/

√
D.
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It would be very interesting to use this result to map out the frequency distribution
of the hidden liquidity, but this requires going beyond the approximate solution of [69].
We leave this for a future investigation. Another important feature that should be
properly accounted for in a more detailed analysis is the co-impact effect discussed in
Chapter 5, due to different metaorders executed during the same time period. But in
a first approximation the sign correlation between metaorders simply lead in the LLOB
framework to an effective increase of the order size φ.
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Figure 4.5: (Main panel) Empirically determined scaling function F(η) vs. participation
rate η for metaorders with duration D larger (blue dots) or smaller (green dots) than
the median sample duration D̄ ≈ 0.09. Note that the crossover value η? is ∼ 10 times
larger in the latter case. Note that the asymptotic value of F(η) (and hence the impact
for a given Q) is approximately independent of D, as predicted by the LLOB theory.
Both empirical curves are obtained using metaorders with sufficient large order size,
i.e. φ & 10−5. (Inset) Plot of the crossover participation rate η? as a function of the
execution duration D, revealing an approximate 1/

√
D behaviour.

4.7 Conclusions

In this chapter, we have used a very large data set of orders executed in the U.S. equity
market to quantitatively test for the first time a recently proposed dynamical theory
of liquidity that makes specific predictions about the shape of the market impact: a
crossover from a linear (in volume) behaviour for small volumes to a square-root be-
haviour for intermediate volumes is predicted. The data unambiguously suggests the
existence of such a crossover, and once again confirms the square-root law which, as
emphasized on several previous occasions, is remarkably independent of the execution
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time – contradicting many early theories [14, 36, 95]. We have shown how the data
points towards the existence of multiple time scales in the dynamics of liquidity, with its
high frequency component dominating the total market activity and its low frequency
component contributing to the concavity of the impact function: for a complementary
viewpoint, see [40]. Our results are interesting from two rather different points of views.
One is that they represent a significant improvement in our understanding of the de-
terminants of market impact which is both the main component of trading costs for
institutional investors and an important aspect of the stability of financial markets. The
second aspect is that we are entering an era where economic and financial data becomes
of such quality that theoretical ideas can be tested with standards comparable to those
of natural sciences.

Appendix

4.A Beyond the infinite memory limit order book

In the original LLOB model [7] the authors focused on the infinite memory limit, namely
ν, λ → 0 while keeping L ∼ λν−1/2 constant, such that the latent order book becomes
exactly linear in the proximity of the mid-price. This particular limit allows a sim-
pler mathematical analysis of the market impact associated with the execution of a
metaorder. However, since financial markets are characterized by agents with a broad
spectrum of timescales, from low frequency institutional investors to high frequency
traders, it is opportune to take in consideration the effects of non-vanishing cancellation
ν and deposition λ rates for the dynamic of the latent order book [69]. This means that
the latent order book dynamic is described by

∂tϕ(y, t) = D∂yyϕ(y, t)− νϕ(y, t) + λ sign(St − y) (4.33)

whose solution can be computed as

ϕ(y, t) = (Gν ? ϕst)(y, t) +

∫ ∞
−∞

dξ

∫ ∞
0

dτ Gν(y − ξ, ξ − τ)h(ξ, τ) (4.34)

where h(ξ, τ) = λ sign(St − ξ) is the source term, ϕst(y) is the initial stationary state of
the latent order book and Gν(y, t) = e−νtG(y, t) is the diffusion kernel with

G(y, t) = Θ(t)
e−

y2

4Dt√
4πDt

(4.35)

and Θ(t) the Heaviside function. Assuming that a metaorder with intensity rate m(t)
and duration T is executed, the source term in Eq. (4.34) becomes h(y, t) = m(t)δ(y −
St) + λ sign(St − y). Performing the first integral in Eq. (4.34) we obtain

ϕ(y, t) = ϕst(y)e−νt+
∫ min(t,T )

0
dτ m(τ)Gν(y−Sτ , t−τ)−λ

∫ t

0
dτ erf

[
y − Sτ√
4D(t− τ)

]
e−ν(t−τ).

(4.36)
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Unfortunately Eq. (4.36) is not analytically tractable in the general case, but different
interesting limit cases can be investigated assuming a constant trading intensity rate
m0 = Q/T . In particular, one may consider the following cases:

1. Small participation rate (m0 � J) vs. large participation rate (m0 � J).

2. Fast execution (νT � 1) vs. slow execution (νT � 1).

3. Small metaorder volumes Q � Qlin (for which the linear approximation of the
stationary book is appropriate) vs. large volumes Q � Qlin (for which the linear
approximation is no longer valid) with Qlin = Jν−1.

α z0
t z1

t

m0 � J m0

L
√
πD

√
t
(√

π
2 − 2√

π

)
t

m0 � J
√

2m0
L

√
t −1

3

√
J

2m0
t

Table 4.1: Price tajectories for small (m0 � J) and large (m0 � J) participation rate
regimes (see Eq. (4.37)).

In these limit cases the solution of the mid-price can be derived from Eq. (4.36) expanding
yt up to first order in

√
ν as

yt = α[z0
t +
√
νz1

t + o(ν)], (4.37)

where z0
t and z1

t denote respectively the zero and the first order contributions. Table 4.1
gathers the results for fast execution (νT � 1) and small metaorder volumes (Q� Qlin)
while the price trajectory for slow execution (νT � 1) and/or large metaorder volumes
(Q� Qlin) simply reads

yt =
m0ν

λ
t. (4.38)

For a detailed derivation of these results we refer to the calculations discussed in [69].

4.A.1 Multi-timescales latent order book

The double-frequency framework previously discussed represents the starting point for
a more realistic modelisation based on a continuous range of cancellation and deposition
rates. For this extension it is necessary to solve an infinite system of equations indexed
by the cancellation rate ν, i.e.

∂tϕν(y, t) = Dν∂yyϕν(y, t)− νϕν(y, t) + λνsign(yν(t)− y) +mν(t)δ(y − yν(t)) (4.39)

where ϕν(y, t) describes the contribution to the latent order book of agents with a typical
cancellation frequency ν and deposition rate λν = Lν

√
νDν . This system of equations

must be then solved imposing the following boundary conditions∫ ∞
0

dνρ(ν)mν(t) = m(t), (4.40)
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yν(t) = yt, (4.41)

with ρ(ν) the distribution of cancellation rates and m(t) the trading intensity rate of the
metaorder. The interested reader can find in [69] the case based on the assumption of a
power-law distribution of frequency.
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Chapter 5

Co-impact: crowding effects in
institutional trading activity

5.1 Introduction

The market impact of trades, i.e. the change in price conditioned on signed trade size,
is a key quantity characterizing market liquidity and price dynamics [19, 34]. Besides
being of paramount interest for any economic theory of price formation, impact is a
major source of transaction costs, which often makes the difference between a trading
strategy that is profitable, and one that is not. Hence the interest in this topic is not
purely academic in nature.

One of the most surprising empirical finding in the last 25 years is the fact that
the impact of a metaorder of total size Q, executed incrementally over time, increases
approximately as the square root of Q, and not linearly in Q, as one may have naively
expected and as indeed predicted by the now-classic Kyle model [1]. Since impact is non-
additive, a natural question concerns the interaction of different metaorders executed
simultaneously – possibly with different signs and sizes. In particular, one may wonder
whether the simultaneous impact of different metaorders could substantially alter the
square-root law or conversely whether the square-root law might itself result from the
interaction of different metaorders.

Metaorder information is, however, not publicly available, and earlier analyses were
mostly based on (often proprietary) data from single financial institutions. These studies
give little insight about effects due to the simultaneous execution of metaorders from
different investors, which we will call co-impact hereafter. Indeed, even if investors
individually decide about their metaorders, they might do so based on the same trading
signal. Prices can thus be affected by emergent effects such as crowding. What is the
right way to model the total market impact of simultaneous metaorders on the same
asset on the same day? In order to answer this question, we will use a rich dataset
concerning the execution of metaorders issued by a heterogeneous set of investors.

This chapter is organized as follows. In Section 5.2 we briefly recall the ANcerno
dataset that we used empirically. In Section 5.3 we discuss the limits of the validity
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of the square-root law on the daily level. In Section 5.4 we find that the market im-
pact of simultaneous daily metaorders is proportional to the square root of their net
order flow: this means that the market does not distinguish the different individual
metaorders. We then construct a theoretical framework to understand the impact of
correlated metaorders in Section 5.5. This allows us to understand when a single asset
manager will observe a square root impact law, and when crowding effects will lead to
deviations from such a behaviour. We also compare in Section 5.5 the results of our
simple mathematical model with empirical data, with very satisfactory results. Finally
Section 5.6 concludes.

5.2 Data and definitions

Our analysis relies on a rich and heterogeneous database made available by ANcerno, a
leading transaction-cost analysis provider1. One of the principal advantages of working
with such institutional data is that one can simultaneously analyze the trading of many
heterogeneous investors executing large orders on the same day and on the same asset.
The main caveat though is that one has little knowledge about the motives and style
behind the observed portfolio transitions. For example a given metaorder can be part of
a longer execution over multiple days. Another possibility is that the final investor may
decide to stop a metaorder execution midway if prices move unfavourably. Such effects
can potentially bias our results, but we believe that they do not change the qualitative
conclusions below.

In the following we will define as a metaorder a series of jointly reported executions
performed by a single investor, through a single broker within a single day, on a given
stock and in a given direction (buy/sell). However, contrarily to the version of the
database used in [10], available labels do not allow us to relate different metaorders
executed on behalf of the same final investor by the same or different brokers during
the same day. These should ideally be counted as a single metaorder. We will comment
later on the biases induced by such a lack of information. Thus each metaorder is
characterized by a broker label, the stock symbol, the total volume of the metaorder |Q|
and its sign ε = ±1, and the start time ts and the end time te of the execution2.

Our dataset includes the period January 2007 – June 2010 for a total of 880 trading
days. Following the filtering procedure introduced in [10] (see Chapter 3 for details) we
retain around ∼ 8 million metaorders representing around the 5 % of the total reported
market volume independently of the year and of the stock capitalization. Without the
filters, this number would rise to about 10%. Although we believe that the 90% of missing
volume is not noise, the ANcerno database is representative of the full set of metaorders.
In fact, many of the results discussed are quantitatively similar to those observed on much
smaller datasets, such as the CFM database of executed metaorders. In particular, we
checked that the results discussed in the present chapter are still valid independently of

1See Chapter 3 for more details on the ANcerno dataset.
2In this chapter we refer with Q to the signed metaorder volume which implies that ε = sign(Q) = ±1

(buy/sell).
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the use of Filter 3 and Filter 4 introduced in [10]. A particularly important statistic
for the following analyses is the number N of simultaneous metaorders in the database,
executed on the same stock during the same day. The probability distribution p(N)
is shown in the left panel Figure 5.1, indicating that N is broadly distributed with an
average close to 5.

The right panel of Figure 5.1 shows the probability distribution of the absolute
value of the volume fraction φ of the metaorders. This variable plays a key role in
the following and is defined as φ := Q/Vd where Vd is the total volume traded during
that day. The figure shows that the volume fraction distribution is independent of the
metaorder direction (buy or sell) and is also very broad.
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Figure 5.1: (Left panel) Empirical probability distribution of the number N of daily
metaorders per asset. (Right panel) Empirical probability distribution of the absolute
value of the volume fraction φ per metaorder, separately for signs ε = sign(φ) = ±1, i.e.
buy/sell.

5.3 The domain of validity of the square-root law

We will quantify market impact in terms of the rescaled log-price s = log(S)/σd, where
S is the market mid-price, which we normalize by the daily volatility of the asset defined
as σd = (Shigh−Slow)/Sopen based on the daily high, low and open prices. In this chapter
we will define impact as the expected change of s between the open and the close of the
day. This choice will avoid an elaborate analysis of when precisely each metaorder starts
and ends, how they overlap and which reference prices to take in each case3. When a
metaorder of total volume Q is executed, its impact will be defined as

I(φ) := E[sclose − sopen|φ], (5.1)

3To note that in this chapter we consider for each metaorder the daily price change independently
of its execution duration T = te − ts
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for a given metaorder signed volume fraction φ.
Empirically, impact is found to be an odd function of φ, displaying a concave behavior

in |φ|. It is well described by the square root law [2,4, 5, 9, 12,46,50,82]

I(φ) = Y × φ•δ, (5.2)

where here and throughout the chapter we will denote the sign-power operation by
x•δ := sign(x) × |x|δ. The dimensionless coefficient Y (called the Y-ratio) is of order
unity and the exponent δ is in the range 0.4–0.7. It is interesting to note that in Eq. (5.2)
only the volume fraction φ matters, the time taken to complete execution or the presence
of other active metaorders is not directly relevant (remember that the volatility of the
instrument has been subsumed in the definition of the rescaled price s). This formula
is surprisingly universal across financial products, market venues, time periods and the
strategies used for execution.
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Figure 5.2: Market impact curve I(φ) = E[sclose−sopen|φ] as a function of the metaorder
size ratio φ = Q/Vd computed using the filtered metaorders from the ANcerno dataset in
the period from January 2007 – June 2010. We also show the simple fit I(φ) = A

√
φ+B,

with A = 0.28 and B = 2.97∗10−6, which captures some – but not all – of the discrepancy
with the square root law at small φ.

We first check this empirical result on our dataset. In Figure 5.2 we show the market
impact curve obtained by dividing the data into evenly populated bins according to the
volume fraction φ and computing the conditional expectation of impact for each bin.
Here and in the following of the chapter, error bars are determined as standard errors.
Note that in all the following empirical plots the price impact curves are normalized by
their Y-ratio and we will abuse the notation I(φ) in order to denote the symmetrized
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measure I(φ) = E[ε · (sclose − sopen)||φ|], with ε = sign(φ), due to the antisymmetric
nature of I(φ).

While the square-root law holds relatively well when 10−3 . φ . 10−1, three other
regimes seem to be present:

1. For very small volume fractions up to φ . 10−4, impact appears to saturate to a
finite, positive value.

2. In the intermediate regime 10−4 . φ . 10−3, impact is closer to a linear function,
although the data is very noisy.

3. In the large φ regime φ & 10−1, impact seems to saturate, or even to decrease with
increasing φ.

These results are robust across time periods and market capitalizations, and consis-
tent with Ref. [10], where regimes 2. and 3. were also clearly observed. In the following,
we will discard altogether the last, large φ regime, which is most likely affected by condi-
tioning effects (for example buying more when the price moves down and less when the
price moves up). We will on the other hand seek to understand the other three regimes
within a consistent mathematical framework.

Intuitively, the breakdown of the square-root law for small φ comes from the fact
that the signs of the metaorders in our dataset are correlated – particularly so because
some metaorders are originating from the same final investor. Let us illustrate the effect
of correlations on a simplistic example: imagine that simultaneously to the considered
buy metaorder (with volume fraction φ > 0), another metaorder with the same sign and
volume fraction φm > 0 is also traded. Assuming that the square-root law applies for the
combined metaorder (a hypothesis that we will confirm on data), the observed impact
should read

I(φ+ φm) = Y ×
√
φ+ φm. (5.3)

This tends to the value Y
√
φm when φ → 0, behaves linearly when φ � φm and as a

square root when φ � φm. We show in Figure 5.2 that this simple fit captures some,
but not all, of the discrepancy with the square-root law at small φ. In particular the
intermediate linear region is not well accounted for. We will develop in the following a
mathematical model that reproduces all these effects.

A way to minimize the effect of correlations is to restrict to days/assets where there
is a unique metaorder in the dataset (N = 1). As shown in Figure 5.3, impact in this
case is almost perfectly fitted by a square-root law. Figure 5.3, also shows that as N
increases, significant departures from the square root law can be observed for small φ, as
suggested by our simple model Eq. (5.3). An alert reader may however object that the
ANcerno database represents a small fraction (∼ 5%) of the total volume. Even when
a single metaorder is reported, many other metaorders are likely to be simultaneously
present in the market. So why does one observe a square-root law at all, even for single
metaorders? The solution to precisely this paradox is one of the main messages of this
chapter.
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Figure 5.3: Empirical evidence on the effect of the number of metaorders N on the daily
price impact curves IN (φ) normalized by the prefactor Y-ratio: significant departures
from the square root law can be observed for small φ increasing the number N of daily
metaorders per asset.

5.4 How do impacts add up?

In the previous section we showed that the number of metaorders in the market strongly
influences how price impact behaves, but we have yet to provide insight into why this
is the case. As a first step, we want to determine an explicit functional form of the
aggregated market impact of N simultaneous metaorders. As we have emphasized,
impact is non-linear, so aggregation is a priori non-trivial. Should one add the square
root impact of each metaorder, or should one first add the signed volume fractions
before taking the square root? Since orders are anonymous and indistinguishable, the
second procedure looks more plausible. This is what we test now. Consider the average
aggregate impact conditioned to the co-execution of N metaorders:

I(ϕN ) = E[sclose − sopen|ϕN ], (5.4)

where ϕN := (φ1, · · · , φN ). We make the following parametric ansatz for this quantity:

I(ϕN ) = Y ×
(

N∑
i=1

φ•αi

)•δ/α
, (5.5)

where, again, x•α is the signed power of x. By construction this formula is invariant
under the permutation of metaorders, as it should be since they are indistiguishable.
Y and δ set, respectively, the scale and the exponent of the impact function. The free
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parameter α interpolates between the case when impacts add up (α = δ) and when only
the net traded volume is relevant (α = 1).

Figure 5.4 shows the quality of the fit obtained by least squares regressions of Eq. (5.5)
for a grid of (α, δ) pairs. We find that the coefficient of determination r2(α, δ) of the fit
is maximized close to the point α = 1.0 and δ = 0.5, which suggests that the aggregated
price impact I(ϕN ) of N metaorders at the daily scale only depends on the total net
order flow, i.e.4

I(ϕN ) ≈ Y × Φ•1/2, (5.6)

where Φ =
∑N

i=1 φi. In other words, the market only reacts to the net order flow, not
to the way in which this order flow is distributed across investors.
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Figure 5.4: The computed coefficient of determination r2(α, δ) of the least squares regres-
sions of Eq. (5.5) for a grid of (α, δ) pairs. The coefficient of determination is maximized
(r2 = 0.0035) in the vicinity of the point α = 1.0 and δ = 0.5.

One can now plot I(Φ) as a function of Φ for various N , see Figure 5.5. One clearly
sees that provided Φ is not too small, impact is independent of N and crosses over
from linear to square root behavior as Φ increases. The linear behavior is in fact more
pronounced at smaller values of N . We now turn to a theoretical analysis that will allow
us to quantify more precisely the co-impact problem, and how the square-root law can
survive at large N .

4We have in fact tested that the assumption α = 1 is also favoured for a general, non parametric
shape for the impact function I(Φ).
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Figure 5.5: Global market impact I(Φ) = E[I(ϕN )|∑N
i=1 φi = Φ] normalized by the pref-

actor Y as a function of the net order flow Φ for various buckets in N and symmetrized
as explained in Section 5.3. The inset shows the normalization Y for the different curves:
the dependence on N is a consequence of the sampling which is removed considering the
multiplicative factor 〈σd/

√
Vd〉N given by the conditional average for a fixed range of N ,

i.e. Y × 〈σd/
√
Vd〉N ' 4.25× 10−6 (not shown).

5.5 Correlated metaorders and co-impact

5.5.1 The mathematical problem

Even if an asset manager knows the average impact formula Eq. (5.6), this may not be
sufficient to estimate his actual impact which depends strongly on the presence of other
contemporaneous metaorders.

Suppose the manager k wants to execute a volume fraction φk = φ. If all the other
N−1 metaorders were known, the daily price impact would be given by the global impact
function I(Φ) determined in the previous section, with Φ = φk+

∑N
i 6=k φi. However, this

information is obviously not available to the manager k. His best estimate of the average
impact given N is the conditional expectation

IN (φ) = E[I(Φ)|φk = φ] = E
[
I
(
φk +

N∑
i 6=k

φi

)∣∣∣φk = φ
]

(5.7)

over the conditional distribution P (ϕN |φk = φ) of the metaorders. Since the number
of metaorders is in general not known either, the expected individual market impact is
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given by

I(φ) = Y ×
∑
N

p(N)

∫ +∞

−∞
dφ1 . . . dφNP (ϕN |φk = φ)

(
φk +

N∑
i 6=k

φi

)•1/2
, (5.8)

where we have used Eq. (5.6). In such a way to compute IN (φ) and I(φ) we need to
know the joint probability density function P (ϕN ) := P (φ1, . . . , φN ), which is in general
a complicated and high-dimensional object. Then to create a tractable model that can
be calibrated on data, we must make some reasonable assumption on the dependence
structure of the φi. In the next subsection we investigate the simple case where the φi
are all independent, and then turn to an empirical characterization of the correlations
between metaorders. We finally provide the results of our empirically inspired model
and compare them with the empirical market impact curves.

5.5.2 Independent metaorders

The simplest assumption about the form of P (ϕN ) is that metaorder volumes are i.i.d.,
meaning

P (ϕN ) =

N∏
i=1

p(φi). (5.9)

Assuming for simplicity that each φi is a Gaussian random variable with zero mean
and variance Σ2

N , where the lower index indicates an explicit dependence on N . Thus
N − 1 simultaneous metaorders generate a Gaussian noise contribution of amplitude
ΣN

√
N − 1 on top of φk = φ. In Appendix 5.A.1 we show analytically that:

� For small metaorders the noise term dominates, leading to

IN (φ) ∝ φ when φ� φ∗N := ΣN

√
N − 1.

� For large metaorders the N − 1 other simultaneous metaorders can be neglected
and thus

IN (φ) ∝
√
φ when φ� φ∗N .

In Appendix 5.A.1 we show that the above results remain valid in the limit of large N
independently of the shape of the volume distribution provided its variance is finite.

The full analytical solutions for different N values, but fixed ΣN = Σ, are shown
in the left panel of Figure 5.6. One clearly sees the cross-over from a linear behavior
at small φ to a square root at larger φ. However, one expects ΣN to decrease with N ,
simply because as the number of metaorders increases, the volume fraction represented
by each of them must decrease5. As shown in the right panel of Figure 5.6, this is
the case empirically since for N & 10, ΣN indeed decays as N−1 (as also suggested

5For example, the variance of a flat Dirichlet random variable (X1, ..., XN ) ∼ Dir(N) describing
fractions is V[Xi|N ] = (N − 1)/(N2(N + 1)) ∼ N−2.
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Figure 5.6: (Left panel) Market impact curves IN (φ)/Y for i.i.d. Gaussian metaorders
for different N ∈ {2, 10, 30, 60} and fixed ΣN = Σ = 0.8% computed from empirical
data. The transition from the square root to the linear regime takes place for φ∗N '
Σ
√
N − 1. (Right panel) Empirically estimated φ∗N as a function of the number N of

daily metaorders per asset. This is obtained by computing the empirical order size’s
standard deviation ΣN =

√
V[φ|N ] conditioned to N . The dashed red line shows the

case in which ΣN ∼ 1/N for each N : in the inset we report the standard deviation ΣN

of the order size φ as a function of the number N of daily metaorders per asset.

by Figure 5.7 below). Hence, for large N , the crossover value φ∗N decreases with N
as N−1/2. This explains why the square root law can at all be observed when a large
number of metaorders are present. If these metaorders are independent, their net impact
on the price averages out, leaving the considered metaorder as if it was alone in a random
flow, as assumed in theoretical models [2, 82]. We now turn to the effect of correlations
between metaorders.

5.5.3 Metaorder correlations

In order to build a sensible model of P (ϕN ) we consider separately the size distribution
and the size cross-correlations. From the right panel of Figure 5.1 we observe that the
marginals p(φi) are to a good approximation independent of the direction, buy or sell,
and moderately fat tailed. The latter observation suggests that the total net order flow
Φ =

∑N
i=1 φi is not dominated by a single metaorder. A way to quantify this is through
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and simulating i.i.d. |φi| (red star symbols) extracted from the empirical distribution
illustrated in the right panel of Figure 5.1.

the Herfindahl index (or inverse participation ratio) ζ, defined as:

ζ :=

∑N
i=1 φ

2
i(∑N

i=1|φi|
)2 . (5.10)

This quantity is of order 1/N if all metaorders are of comparable size, and of order 1 if one
metaorder dominates. In Figure 5.7 we show the dependence of E[ζ|N ] as a function ofN ,
which clearly decays with N . It also compares very well to the result obtained assuming
the absolute volume fractions |φi| to be independent, identically distributed variables,
drawn according to the empirical distribution shown in Figure 5.1. We therefore conclude
that:

� Metaorders in the ANcerno database are typically of comparable relative sizes φ.

� Absolute volume correlations do not play a major role, and we will neglect them
henceforth.

Sign correlations, on the other hand, do play an important role in determining the
impact of simultaneous metaorders. The empirical average sign correlation of metaorders
simultaneously executed on the same asset is defined as

Cε(N) :=
E[εiεj |N ]− E[εi|N ]2

E[ε2i |N ]− E[εi|N ]2
, (5.11)
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Figure 5.8: Empirical average sign correlation Cε(N) as a function of the number N of
daily metaorders: the dashed red line represents the plateau value Cε ≈ 0.025 at large
N , which, we believe, is a reasonable proxy for the correlation of orders submitted by
different asset managers.

where E[· · · |N ] is the average over all days and assets such that exactly N metaorders
were executed. Figure 5.8 shows the dependence of Cε on N . We clearly see that
on average the daily metaorders executed on the same asset are positively correlated.
Furthermore, Cε(N) is seen to decrease as N increases. This is likely due to the fact
that there are multiple concurrent metaorders submitted by the same manager, an effect
that becomes less prominent as N increases. The plateau value Cε ≈ 0.025 at large N is,
we believe, a reasonable proxy for the correlation of orders submitted by different asset
managers.

5.5.4 Market impact with correlated metaorders

A natural model would be to consider the φi’s as exchangeable multivariate Gaus-
sian variables of zero mean, variance Σ2

N and cross-correlation coefficient Cφ(N). Ap-
pendix 5.A.2 shows that the qualitative behavior for independent metaorders remains
the same when Cφ(N) > 0. Specifically, one finds that the average impact IN (φ) can be
obtained by making the substitution

φ→ φ[1 + (N − 1)Cφ(N)] (5.12)

in the expression of IN (φ) for independent Gaussians. This is expected, as (N−1)Cφ(N)
gives the effective number of additional volume-weighted metaorders correlated to the
original one. By the same token though, IN (φ) still vanishes linearly for small φ, whereas
empirical data suggests a positive intercept when φ→ 0.

As an alternative model that emphasizes sign-correlations, let us assume that the
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joint distribution of the φi’s can be written as

P (ϕN ) = P(εN )
N∏
i=1

p(|φi|), (5.13)

meaning that metaorder sizes are independent, while the signs are possibly correlated.
This specific form is motivated by the observation that the size of a metaorder is mainly
related to the assets under management of the corresponding financial institution, while
the sign is related to the trading signal. One can expect that different investors use
correlated information sources, while the size of the trades is idiosyncratic.

We further assume that there is a unique common factor determining the sign of the
metaorders. In other words, the statistical model for the signs is the following:

P(εi = +1|ε̃) =
1

2
(1 + γεε̃); P(εi = −1|ε̃) =

1

2
(1− γεε̃), (5.14)

where ε̃ is the hidden sign factor, such that P(ε̃ = ±1) = 1/2, and γε is the sign correlation
between each sign εi and the hidden sign factor ε̃. A simple calculation leads to

Cε(N) = P(εi = εj)− P(εi = −εj) = γ2
ε (5.15)

where we omitted the γε’s explicit dependence on N implied by the sign correlation
Cε(N). Contrarily to the Gaussian case, we have not been able to obtain analytical for-
mulas, but instead relied on numerical simulations to obtain IN (φ) for different combi-
nations of Cε(N) and N , reported in Figure 5.9. Results for unsigned volumes generated
from a half-normal distribution calibrated on data are shown in Figure 5.9. We observe
that the individual price impact IN (φ) converges to a positive constant IN (0) > 0 when
φ→ 0, despite IN (0) = 0 for a Gaussian model. For intermediate φ, IN (φ) is linear and
it crosses over at larger φ to a square root. For fixed N the intercept value increases
with the sign correlation Cε, see the right panel of Figure 5.9. The intuition is that
conditioned to the fact that I buy, and independently of the size of my trade, the order
flow of other actors will be biased towards buy as well, and I will suffer from the impact
of their trades. In fact, subtracting the non-zero intercept of IN (φ) leads to impact
curves that look almost identical to those of Figure 5.6, i.e. a linear region for small φ
followed by a square root region beyond a crossover value φ∗N ∼ ΣN

√
N − 1. Since for

large N φ∗N → 0, one simply expects a square-root law, shifted by the intercept IN (0).

5.5.5 Empirical calibration of the model

With the aim to compare the model prediction with empirical data, we propose a cal-
ibration method described in Appendix 5.A.4. This is based on the assumption that
metaorder signs are independent random variables sampled from a half-Gaussian cali-
brated on empirical data. The metaorder sign correlation structure can be estimated by
introducing a realized sign correlation

ρε :=
2

N(N − 1)

∑
1≤i<j≤N

εiεj , (5.16)

66



10−4 10−3 10−2 10−1 100

φ

10−3

10−2

10−1

100

I N
(φ

)/
Y

Linear

Square Root
Cε = 0.01, N = 5

Cε = 0.01, N = 10

Cε = 0.01, N = 30

Cε = 0.01, N = 100

10−5 10−4 10−3 10−2 10−1 100

φ

10−3

10−2

10−1

100

I N
(φ

)/
Y

Linear

Square Root
Cε = 0.01, N = 5

Cε = 0.05, N = 5

Cε = 0.10, N = 5

Cε = 0.50, N = 5

10−3 10−2 10−1 100

Cε

10−4
10−3
10−2
10−1

100

IN (0)/Y

Figure 5.9: Market impact curves IN (φ)/Y computed for the correlated signs model,
where volumes are drawn according to a half-normal distribution with E[|φi|] = Σ

√
2/π

and Σ = 0.8% is set equal to its empirical value averaged over N . (Left panel) Numerical
simulations for fixed sign correlation Cε = 0.01 but varying number of metaorders N ∈
{5, 10, 30, 100}. (Right panel) Numerical simulations for fixed number of metaorders
N = 5 but with varying sign correlation Cε ∈ {0.01, 0.05, 0.1, 0.5}: as shown in the inset
the intercept IN (0)/Y decreases linearly with the sign correlation for Cε → 0. Note that
the individual price impact IN (φ) values converges to a positive constant when φ → 0.
For intermediate φ, IN (φ) is linear and crosses-over at larger φ to a square root.

which is then used to estimate the sign correlation Cε(N) of Eq. (5.15). Once the model
is calibrated, we use numerical simulations to compute the expected market impact I(φ),
see Appendix 5.A.4 for the precise details of the procedure.

Figure 5.10 shows that imposing correlation only between the signs leads to a very
good prediction of the empirical curves, justifying the adoption of the sign correlated
model. All the features of the empirical impact curves are qualitatively well reproduced,
in line with Figure 5.2. This includes the clear deviations from the square root law for
φ ≤ 10−3 with both a linear regime and a constant price impact I0 when φ→ 0.

5.6 Conclusions

It is a commonly acknowledged fact that market prices move during the execution of a
trade – they increase (on average) for a buy order and decrease (on average) for a sell
order. This is, loosely stated, the phenomenon known as market impact. In this chapter
we have presented one of the first studies breaking down market impact of metaorders
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Figure 5.10: Comparison between calibrated sign-correlated model (colored lines) and
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respectively with ρε ≥ 0.05 and 0 ≤ |ρε|≤ 0.05. The theoretical curves are calculated
through numerical simulations as explained in the main text (see Appendix 5.A.4 for all
the details of the procedure).

executed by different investors, and taking into account interaction/correlation effects.
We investigated how to aggregate the impact of individual actors in order to best explain
the daily price moves. The large number and heterogeneity of the metaorders traded by
financial institutions allows precise measurements of price impact in different conditions
with reduced uncertainty. We found that both the number of actors simultaneously
trading on a stock and the crowdedness of their trade (measured by the correlation of
metaorder signs) are important factors determining the impact of a given metaorder.

Our main conclusions are as follows:

� The market chiefly reacts to the total net order flow of ongoing metaorders, the
functional form being well approximated by a square root at least in a range of
volume fraction φ. As expected in anonymous markets, impact is insensitive to
the way order flow is distributed across different investors.

� The number N of executed metaorders and their mutual sign correlations Cε are
relevant parameters when an investor wants to precisely estimate the market im-
pact of their own metaorders.

� Using a simple heuristic model calibrated on data, we are able to reproduce to a
good level of precision the different regimes of the empirical market impact curves,
as a function of φ, N and Cε.
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� When the number of metaorders is not large, and when Cε > 0, a small investor
will observe linear impact with a non-zero intercept I0, crossing over to a square-
root law at larger φ. The intercept I0 grows with Cε and can be interpreted as the
average impact of all other metaorders.

� When the number of metaorders is very large and the investor has no correlation
with their average sign, they should expect on a given day a square root impact
randomly shifted upwards or downwards by I0. Averaged over all days, a pure
square-root law emerges, which explains why such behavior has been reported in
many empirical papers.

On the last point, we believe that our study sheds light on an apparent paradox: How
can a non-linear impact law survive in the presence of a large number of simultaneously
executed metaorders? As we have seen, the reason is that for a metaorder uncorrelated
with the rest of the market, the impacts of other metaorders cancel out on average.
Conversely, any intercept of the impact law can be interpreted as a non-zero correlation
with the rest of the market. Given the importance of the subject, our results present
several interesting applications. Our aggregated price impact model should be of interest
both to practitioners trying to monitor and reduce their trading costs, and also to
regulators that seek to improve the stability of markets.

Appendix

5.A From the bare to the market impact function

The expected individual market impact of a metaorder with signed volume φ is estimated
by

I(φ) =
∑
N

p(N)IN (φ) (5.17)

where p(N) is the probability distribution of the daily number N of metaorders per asset
and

IN (φ) = E[I(ϕN )|φk = φ] =

∫ ∞
−∞

dφ1 · · · dφNP (ϕN |φk = φ)

φk +
N∑
i 6=k

φi

•1/2 (5.18)

is the market impact computed from the bare impact function I(ϕN ) := (
∑N

i=1 φi)
•1/2

with fixed N . Assuming that p(N) is kwown a priori the market impact IN (φ) is given
from the expectation in Eq. (5.18) done over the conditional probability distribution
P (ϕN |φk = φ) of the volume metaorders. However, in such a way to do analytical
computation it is necessary to assume reasonable hypothesis for the joint distribution
function P (ϕN ) := P (φ1, · · · , φN ).

For this reason, we start considering the case of i.i.d. metaorders and we firstly
show analytically how the transition from the square root to a linear market impact

69



is possible in the i.i.d. Gaussian framework. Secondly, we generalize these results in
the limit of large N for any symmetric volume distribution which sastifies the Central
Limit Theorem assumptions. Thirdly, we show that the same results continue to be valid
introducing correlation between the signed volumes in a Gaussian framework. For last,
we describe how to compute numerically the market impact in Eq. (5.18) in the case of
metaorder signs correlated and i.i.d. unsigned volumes.

5.A.1 Market impact with i.i.d. metaorders

In the case of i.i.d. signed metaorders, the conditional joint distribution factorizes as

P (ϕN |φk = φ) =
N∏
i 6=k

p(φi); (5.19)

this implies that the price impact IN (φ) of a single metaorder φk = φ out of N is given
by

IN (φ) =

∫ ∞
−∞

dφm
1

2π

∫ ∞
−∞

dλe−iλφm p̂(λ)N−1︸ ︷︷ ︸
p(φm)

(φ+φm)•1/2 =

∫ ∞
−∞

dφmp(φm)(φ+φm)•1/2

(5.20)
where φm =

∑N
i 6=k φi is the net order flow executed simultaneously to the metaorder

φk and p̂(λ) = E[eiλφi ] is the characteristic function of the signed volume distribution
p(φi). Although the introduction of the characteristic function p̂(λ) in Eq. (5.20) will be
a convenient way to exploit the convergence of the net order flow distribution p(φm) as
discussed in the following, the computation of the market impact IN (φ) in a analytical
closed form is possible only in the Gaussian case.

Independent Gaussian metaorders

In the Gaussian case, i.e. p(φi) ∼ N (0,Σ2
N ) with Σ2

N = V[φi|N ], we can go further

analytically in Eq. (5.20) since p̂(λ) = e−λ
2Σ2

N/2. In fact the integral representation of
the price impact

IN (φ) =
1

ΣN

√
2π(N − 1)

∫ ∞
−∞

dφme
−φ2

m/(2Σ2
N (N−1))(φ+ φm)•1/2 =

=
1

ΣN

√
2π(N − 1)

∫ ∞
0

dx
√
x
[
e−(x−φ)2/(2Σ2

N (N−1)) − e−(x+φ)2/(2Σ2
N (N−1))

]
(5.21)

can be expressed in the following analytical way

IN (φ) =
Γ(1/4)

2
√
π

φ

(2(N − 1)Σ2
N )1/4

e
− φ2

2(N−1)Σ2
N 1F1

(
5

4
,
3

2
,

φ2

2(N − 1)Σ2
N

)
(5.22)
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where Γ(z) =
∫∞

0 xz−1e−xdx is the Gamma function and

1F1

(
5

4
,
3

2
, z

)
=

Γ(3
2)

Γ(5
4)

∞∑
j=0

Γ(5
4 + j)

Γ(3
2 + j)

zj

j!
(5.23)

is the Kummer confluent hypergeometric function with z = φ2

(2(N−1)Σ2
N )

[84].
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Figure 5.11: Rescaled market impact function y(φ̃) = IN (φ)/((N −1)Σ2
N )1/4 in function

of the dimensionless parameter φ̃ := φ/(
√
N − 1ΣN ) with IN (φ) given by Eq. (5.22):

the vertical dashed red line represents the transition from the linear impact (left side)
to the square root one (right side).

The price impact IN (φ) in Eq. (5.22) is shown in the left panel of Figure 5.6 for
different N and the parameter ΣN fixed. If the metaorder volume φ is smaller than
the sum of the other N − 1 metaorders, i.e. φ � φm, then price impact is linear.
Instead, when our metaorder dominates, i.e. φ� φm, the price impact follows a square
root function. The transition from the linear to the square root regime takes place
around φ∗N ' ΣN

√
N − 1, where ΣN

√
N − 1 is naturally interpreted as a measure for

the market noise, in agreement with the change of the functional shape of the rescaled
market impact function y(φ̃) = IN (φ)/((N − 1)Σ2

N )1/4 represented in Figure 5.11 in
function of the adimensional parameter φ̃ := φ/(

√
N − 1ΣN ). To note furthermore that

the linear regime comes out immediately from the expansion of IN (φ) in Eq. (5.22)
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around φ = 0 as follows

IN (φ) =
1

ΣN

√
2π(N − 1)

∫ ∞
0

dx
√
xe−x

2/(2Σ2
N (N−1))

[
e−(φ2−2xφ)/(2Σ2

N (N−1))+

− e−(φ2+2xφ)/(2Σ2
N (N−1))

]
'

'
√

2

π

φ

(Σ2
N (N − 1))3/2

∫ ∞
0

dxx3/2e−x
2/(2Σ2

N (N−1)) = 23/4 Γ(5/4)

(π2Σ2
N (N − 1))1/4

φ. (5.24)

Remark 1. It follows that for i.i.d. Gaussian metaorders the slope of the linear price
impact region decreases with N (as shown explicitly in Eq. (5.24)) and the crossover to
the square root region happens in φ∗N obtained by solving

ξ
φ∗N

(Σ2
N (N − 1))1/4

' (φ∗N )1/2, (5.25)

i.e. φ∗N ' ξ−1ΣN

√
N − 1 with ξ = 23/4Γ(5/4)/

√
π.

Limit of large N for generally distributed independent metaorders

The previous conclusions discussed in the i.i.d. Gaussian framework are also valid for
other i.i.d. volume distributions as discussed in this Appendix: in fact, we can generalize
them in the limit of large N for any symmetric volume distribution p(φi) which sastifies
the Central Limit Theorem assumptions.

In the limit of large N , for which the Central Limit Theorem applies if certain
conditions (discussed below) on p(φi) are sastisfied, the symmetric volume distribution
p(φm) introduced in Eq. (5.20) converges to a stable law Gα described by a characteristic
function

p̂(λ) = E[eiλφm ] = e−c|λ|
α

(5.26)

where c ∈ (0,∞) is the scale parameter and α ∈ (0, 2] is the stability exponent. In other
words we say that the volume distribution p(φi) belongs to the domain of attraction of
the stable distribution Gα if there exist constants am ∈ R, bm > 0 such that

b−1
m (φm − am)→ Gα, (5.27)

i.e. the renormalized and recentred sum φm =
∑N

i 6=k φi converges in distribution to
Gα. The Central Limit Theorem gives the conditions such that this convergence in
distribution to a stable law Gα is guaranted:

� p(φm) converges to a Gaussian distribution (α = 2 in Eq. (5.26)) if and only if∫
|φi|≤x

φ2
i p(φi)dφi (5.28)
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is a slowly varying function L(x), i.e. limx→∞L(tx)/L(x) = 1 for all t > 0; then it
follows that if Σ2

N = V[φi|N ] <∞

((N − 1)1/2ΣN )−1φm −→ N (0, 1), (5.29)

while if V[φi|N ] =∞

((N − 1)1/2L1)−1φm −→ N (0, 1) (5.30)

with L1 a slowly varying function and N (0, 1) a Gaussian distribution with mean
zero and variance 1.

� p(φm) converges to a Lévy distribution (for some α < 2 in Eq. (5.26)) if and only
if∫ −x
−∞

p(φi)dφi =
c1 + o(1)

xα
L(x), 1−

∫ x

−∞
p(φi)dφi =

c2 + o(1)

xα
L(x), x→∞

(5.31)
where L(x) is a slowly varying function and c1, c2 are non-negative constants such
that c1 + c2 > 0; then it follows that

((N − 1)1/αL2)−1φm −→ L(c, α) (5.32)

with L2 a slowly varying function and L(c, α) a Lévy distribution with scale pa-
rameter c ∈ (0,∞) and stability exponent α ∈ (0, 2).

Remark 2. It follows immediately that for any volume distributions p(φi) belonging to
the domain of attraction of the normal law, i.e. satisfying the condition in Eq. (5.28), the
price impact IN (φ) in the limit of large N is described by Eq. (5.22) and the transition
from a linear to a square root price impact discussed in the Remark 1 continue to be
valid: to note that in the case of V[φi|N ] = ∞ it is sufficient to substitute ΣN in
Eq. (5.25) with the appropriate slowly varying function L1.

Moreover we can show that the transition from a linear to a square root regime is
still present for volume distributions p(φi) belonging to the domain of attraction of the
Lévy distribution, i.e. that sastify the condition in Eq. (5.31) with α < 2 and then
p(φm) → L(c(N − 1)1/α, α). In fact, expanding to first order the bare impact function
I(φ, φm) = (φ+ φm)•1/2 around φ = 0 in Eq. (5.20)

IN (φ) ' φ

2

∫ ∞
−∞

dφmp(φm)|φm|−1/2=
φ

4π

∫ ∞
−∞

dλp̂(λ)

∫ ∞
−∞

dφme
−iλφm |φm|−1/2, (5.33)

introducing the characteristic function of the net order flow φm given by

p̂(λ) = e−c(N−1)1/α|λ|α (5.34)

for large N and taking present that the last integral in Eq. (5.33) is a known Fourier
transform ∫ +∞

−∞
dφme

−iλφm |φm|−1/2=

√
2π

|λ|1/2 (5.35)
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we obtain a linear price impact

IN (φ) ' φ

2
√

2π

∫ +∞

−∞
p̂(λ)|λ|−1/2dλ. (5.36)

Though it is not possible to analytically compute the last integral, its behavior for large
N is known using the saddle point approximation or Perron’s method: since all the
conditions of the theorem at page 105 of Ref. [85] are satisfied, one can approximate the
integral in Eq. (5.36) as follows∫ +∞

−∞
p̂(λ)|λ|−1/2dλ ∼ Γ

(
1

2α

)
1

αc1/(2α)(N − 1)1/(2α)
. (5.37)

Remark 3. In the limit of large N it is then possible to show analytically that for volume
distributions p(φi) belonging to the domain of attraction of the Lévy distribution the
price impact is characterized by a linear regime described by

IN (φ) ' 1

2
√

2π
Γ

(
1

2α

)
φ

α[c(N − 1)]1/(2α)
, (5.38)

followed by a transition to a square root one around φ∗N ' (c(N − 1))1/α.

5.A.2 Market impact with correlated Gaussian metaorders

With the aim to introduce correlations between the metaorder volumesϕN = (φ1, · · · , φN )
in the Gaussian framework it is useful to define the following joint probability distribu-
tion

P (ϕN ) =
1

ZN
exp

−AN
2

N∑
i=1

φ2i +
BN
N

N∑
i<j

φiφj + µ

N∑
i=1

φi

 , (5.39)

where ZN is a normalization function, AN and BN are parameters depending on N and
µ is an external field.

Calibration from data: means and correlations

The first step to calibrate P (ϕN ) in Eq. (5.39) is to express the model parameters
AN , BN and µ in terms of observable quantities, namely E[φiφj |N ] and E[φi|N ]. Due
to the presence of an interaction term, the computation of ZN requires the use of a
Hubbard-Stratonovich transformation (valid only for BN > 0):

exp

BN
2N

N∑
i,j

φiφj

 =

∫ ∞
−∞

dy√
2π/NBN

exp

(
−NBNy

2

2
+BN

N∑
i=1

φiy

)
. (5.40)

This allows us to rewrite the probability distribution in Eq. (5.39) as

P (ϕN ) =
1

ZN

√
NBN

2π

∫ ∞
−∞

dy
N∏
i=1

exp

[
−1

2

(
AN +

BN
N

)
φ2
i + (µ+BNy)φi −

NBN
2

y2

]
.

(5.41)
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The partition function then reads

ZN =

 2π(
AN + BN

N

)
N/2√ ANN +BN

ANN +BN (N − 1)
exp

[
N2µ2

2(ANN +BN (N − 1))

]
(5.42)

valid only for BN < AN+BN/N . Eq. (5.42) can be used to derive the following relations:

∂ logZN
∂µ

= NE[φi|N ], (5.43)

∂ logZN
∂AN

= −N
2
E[φ2

i |N ], (5.44)

∂ logZN
∂BN

=

(
N − 1

2

)
E[φiφj |N ] with (i 6= j) (5.45)

which assuming symmetric volumes (E[φi|N ] = 0, i.e. µ = 0) are equivalent to

E[φ2
i |N ] =

AN + 2BN/N −BN
(AN +BN/N −BN )(AN +BN/N)

(5.46)

and

E[φiφj |N ] =
BN/N

(AN +BN/N −BN )(AN +BN/N)
. (5.47)

Furthermore, combining Eqs. (5.46) and (5.47) we can derive the volume correlation

Cφ(N) =
E[φiφj |N ]− E[φi|N ]2

E[φ2
i |N ]− E[φi|N ]2

=
E[φiφj |N ]

E[φ2
i |N ]

=
BN/N

AN + 2BN/N −BN
. (5.48)

Vice versa, from Eqs. (5.46) and (5.48) we can obtain for the model parameters

AN =
1− 2Cφ(N) +NCφ(N)

(1− Cφ(N))(1− Cφ(N) +NCφ(N))E[φ2
i |N ]

(5.49)

and

BN =
NCφ(N)

(1− Cφ(N))(1− Cφ(N) +NCφ(N))E[φ2
i |N ]

, (5.50)

which are useful to fit the Gaussian model to data. We will use Eq. (5.49) and Eq. (5.50)
to estimate respectively AN and BN , replacing correlations and expectations by their
empirical natural counterpart. The properties of this kind of estimators, belonging to
the GMM (Generalized Method of Moments) is for instance discussed in Ref. [73].

5.A.3 Analytical computation of market impact

To compute analytically the market impact function IN (φ) from Eq. (5.18) in the Gaus-
sian correlated framework we adopt the following strategy
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1. firstly we factorize the joint probability distribution P (ϕN ) in Eq. (5.39) with a non-
null external field µ 6= 0;

2. secondly we use the trick of the previous point to compute the market impact IN (φ)
in presence of an effective field µ̃ induced by the correlation of the net order flow
φm =

∑N
i 6=k φi with the known metaorder of size φ.

Step 1. The joint probability distribution in Eq. (5.39) can be written in the following
matrix form

P (ϕN ) =
1

ZN
exp

(
−1

2
ϕTNMϕN + µTϕN

)
, (5.51)

where

� M is a NxN real and symmetric matrix with the elements on the principal diagonal
equal to AN and the ones elsewhere equal to −BN/N ,

� µ is a N-dimensional vector with all the elements equal to the scalar µ 6= 0.

Through the orthogonal transformation ϕ̃N = OϕN which diagonalizes the matrix M,
i.e. OTMO = diag(λ1, · · · , λN ), the joint probability distribution P (ϕN ) factorizes as

P (ϕ̃N ) =
1

ZN

N∏
m=2

exp

[
−λ2

2
φ̃2
m

]
exp

[
−1

2
λ1φ̃

2
1 + µ

√
Nφ̃1

]
(5.52)

where the N eigenvalues of the matrix M

λ1 = AN − (N − 1)
BN
N

=
1

E[φ2
i |N ](1− Cφ(N) +NCφ(N))

(5.53)

and

λ2 = λ3 = · · · = λN = AN +
BN
N

=
1

E[φ2
i |N ](1− Cφ(N))

(5.54)

allow us to rewrite the partition function as

ZN =

√
2π

λ1

[√
2π

λ2

]N−1

exp

[
Nµ2

2λ1

]
. (5.55)

In particular, it emerges that the first component of ϕ̃N = OϕN is equal to

φ̃1 =
1√
N

N∑
i=1

φi, (5.56)

which put in evidence that the orthogonal basis change ϕN → ϕ̃N is a useful trick to
compute the market impact in the context of correlated Gaussian metaorders.
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Step 2. To calculate the market impact IN (φ) defined in Eq. (5.18) with N overall
correlated Gaussian metaorders and in absence of an external field it is necessary to
explicit the conditional probability distribution

P (ϕN |φk = φ) =
P (φ1, · · · , φ, · · · , φN )

p(φ)
(5.57)

where P (φ1, · · · , φ, · · · , φN ) is given by Eq. (5.39) setting µ = 0 while the marginal one
is equal to

p(φ) =
1√

2πλ̃1/(λ1λ2)
exp

[
−φ

2

2

λ1λ2

λ̃1

]
, (5.58)

with λ1 and λ2 respectively given by Eqs. (5.53) and (5.54) and

λ̃1 = AN −
N − 2

N
BN =

1

E[φ2
i |N ][1− Cφ(N) +NCφ(N)][1− Cφ(N)]

. (5.59)

It follows that the conditional probability distribution is equal to

P (ϕN |φk = φ) =
exp

[
− (N−1)B2

Nφ
2

2N2λ̃1

]
(2π/λ̃1)1/2(2π/λ2)

N−2
2︸ ︷︷ ︸

Θ−1
N (φ)

× exp

−AN2
N∑
i 6=k

φ2
i +

BN
N

N∑
i<j
i,j 6=k

φiφj +
φBN
N︸ ︷︷ ︸
µ̃

N∑
i 6=k

φi


(5.60)

where it emerges that the conditioning to the metaorder with volume φk = φ is equivalent
to the introduction of an effective field µ̃ proportional to φ. This implies that the price
impact in Eq. (5.18) is given solving the following conditional expectation

IN (φ) = E[I(ϕN )|φk = φ] =

=

∫ ∞
−∞

N∏
i 6=k

dφi
P (φ1, · · · , φ, · · · , φN )

p(φ)

φ+

N∑
i 6=k

φi

•1/2 =

=
1

ΘN (φ)

∫ ∞
−∞

N∏
i 6=k

dφi exp

−AN2
N∑
i 6=k

φ2
i +

BN
N

N∑
i<j
i,j 6=k

φiφj + µ̃
N∑
i 6=k

φi

×

×

φ+

N∑
i 6=k

φi

•1/2 =

=
1

ΘN (φ)

∫ ∞
−∞

N∏
i 6=k

dφi exp
[
−ϕ∗TM∗ϕ∗ + µ̃ϕ∗

]φ+
N∑
i 6=k

φi

•1/2 . (5.61)

Herein
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� ϕ∗ = {φi}i 6=ki=1,···,N is a vector that contains the N−1 unknown metaorders volumes
simultaneously executed with the one known φk = φ,

� M∗ is a (N−1)×(N−1) symmetric and real matrix with AN on the principal diag-
onal and −BN/N elsewhere: it is easy to check that its eigenvalues are respectively
λ∗1 = λ̃1 as in Eq. (5.59) and λ∗m = λ2 as in Eq. (5.54) for m = 2, · · · , N − 1.

As mentioned before, to solve Eq. (5.61) it is useful to use the trick described in Step
1: we apply in Eq. (5.61) the orthogonal transformation φ̃∗ = Hϕ∗ that diagonalizes
the matrix M∗ (i.e. HTM∗H = diag(λ̃1, · · · , λ̃N−1)) and since the determinant of the
Jacobian matrix associated to this transformation is equal to one, we obtain that

IN (φ) =
1

ΘN (φ)

∫ ∞
−∞

N∏
m=2

dφ̃∗m exp

[
−λ2

2
(φ̃∗m)2

]
×

×
∫ ∞
−∞

dφ̃∗1 exp

[
−1

2
λ̃1(φ̃∗1)2 + µ̃

√
N − 1φ̃∗1

]
(φ+

√
N − 1φ̃∗1)•1/2; (5.62)

then integrating in φ̃∗m for m = 2, · · · , N − 1, completing the square in the argument of
the exp[−1

2 λ̃1(φ̃∗1)2 + µ̃
√
N − 1φ̃∗1] and doing the variable change x = φ+

√
N − 1φ̃∗1 we

derive the following final expression

IN (φ) =
1√

2π(N − 1)/λ̃1

∫ ∞
0

dx
√
x

(
exp

[
− λ̃1

2(N − 1)
(x− φ(1 + (N − 1)Cφ(N)))2

]
+

− exp

[
− λ̃1

2(N − 1)
(x+ φ(1 + (N − 1)Cφ(N)))2

])
. (5.63)

Remark 4. From Eq. (5.63) it follows that the price impact IN (φ) in the correlated
Gaussian framework is equivalent to the one computed in the independent Gaussian case
(see Eqs. (5.21) and (5.22)) substituting

φ −→ φ[1 + (N − 1)Cφ(N)] (5.64)

and
Σ2
N −→ 1/λ̃1. (5.65)

5.A.4 Market impact with correlated signs and i.i.d. unsigned volumes

In Section 5.5.4 we have presented a general model in which the metaorder signs εi = ±1
are correlated while the unsigned volumes |φi| are i.i.d. and described by a generic
distribution p(|φi|) defined on the finite positive support (0, 1). This means that the
joint probability distribution is factorizable as

P (ϕN ) = P(εN )

N∏
i=1

p(|φi|). (5.66)
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In this theoretical setup we are not able to compute analytically the market impact
IN (φ) and we will use numerical simulations. To this aim we introduce a latent discrete
variable ε̃ in order to simulate N correlated signs with the following statistical model

P(εi|ε̃) =
1

2
(1 + γεεiε̃) (5.67)

where γε can be estimated from data by averaging the realized sign correlation ρε ap-
pearing in Eq. (5.16), i.e.

E[ρε|N ] = γ2
ε . (5.68)

For clarity we explicitly omit the γε’s dependence on N . Thus to simulate the model we
fix εk = +1, we draw a hidden factor ε̃ from

P(ε̃|εk = +1) =
1

2
(1 + γεε̃) (5.69)

and then we sample N − 1 other correlated signs {εi}i 6=ki=1,···,N with probability

P(εi|ε̃) =
1

2
(1 + γεεiε̃) . (5.70)

Numerical computation of market impact

We summarize the main steps for the numerical calibration of the market impact IN (φ)
from data. Given the number N of metaorders per stock/day pair and fixing |φk|= φ > 0:

1. We compute the average sign correlation Cε(N) = E[ρε|N ] as to obtain γε through
Eq. (5.68).

2. After fixing the direction εk = +1 we simulate N − 1 correlated signs using
Eq. (5.70).

3. We sample N−1 random variables |φi| from an half-normal distribution with mean
ΣN

√
2/π and standard deviation ΣN

√
1− 2/π where ΣN represents the empirical

standard deviation of signed volumes.

4. We compute numerically the market impact IN (φ) = E[I(ϕN )|εk = +1, |φk|= φ]

where I(ϕN ) =
(∑N

i=1 φi

)•1/2
and φi = εi|φi|, as defined in Eq. (5.6).

5. Finally, we compute I(φ) averaging IN (φ) over the empirical distribution p(N)
shown in the left panel of Figure 5.1.
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Chapter 6

Slow decay of impact in equity
markets

6.1 Introduction

It is now well documented that a series of buy (sell) trades, originating from the same
institution, pushes on average the price upwards (downwards), by a quantity proportional
to the square root of the total volume Q of the buy trades – see e.g. [2, 5, 9, 10, 12,
13, 37, 38, 50, 82]. What happens when such a series of trades belonging to the same
trading decision is completed? One expects that once the extra buy (sell) pressure
subsides, impact will revert somewhat. There is however no consensus on the detailed
behaviour of such impact decay. The long-run asymptotic price after the metaorder is
expected to depend on the information on which trading is based, so it is customary to
decompose the observed impact into a reaction impact, that is a mechanical property of
markets, unrelated to information, and a prediction impact that depends on the quality
of information contained in the trade [34].

From a modeling point of view, several hypotheses have been put forward. In the
stylized, fair pricing theory of Farmer, Gerig, Lillo & Waelbroeck (FGLW) [15], an
equilibrium condition is derived between liquidity providers and a broker aggregating
informed metaorders from several funds, in which the average price payed during the
execution is equal to the price at the end of the reversion phase. If metaorder size
distribution is power law with tail exponent 3/2, the observed impact is predicted to
decay towards a plateau value whose height is 2/3 of the peak impact, i.e. the impact
reached exactly when the metaorder execution is completed. Within the latent order
book model [2,7], reaction impact is expected to decay as a power-law of time, reaching
a (small) asymptotic value after times corresponding to the memory time of the market
[69]. A similar behaviour is predicted by the propagator model [18]. Note that while
the latent order book model predicts that the permanent reaction impact is linear in
Q [69] (in agreement with no-arbitrage arguments [25, 87]), the FGLW theory implies
that permanent impact scales as the peak impact, i.e. as

√
Q.

As far as empirical data is concerned, the situation is rather confusing, mostly because
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the determination of the time when the relaxation terminates is not unique. Some
papers, determining permanent impact shortly after the end of the metaorder, have
reported results compatible with the FGLW 2/3 factor [5, 8, 10,11,88], although Gomes
& Waelbroeck [11] note that the impact of uninformed trades appears to relax to zero.
Brokmann et al. [12], on the other hand, underline the importance of metaorders split
over many successive days, as this may strongly bias upwards the apparent plateau value.
After accounting for both metaorder correlations and prediction impact, Brokmann et
al. [12] conclude that impact decays as a power-law over several days, with no clear
asymptotic value. The work of Bacry et al. [9] leads to qualitatively similar conclusions.

In the present chapter, we revisit this issue using the ANcerno database with a
closer focus on impact decay. Extending the time horizon beyond that considered in
[10], we establish unambiguously that impact decays below the 2/3 plateau, which is
observed as average value of the impact at the end of the same day of the metaorder
execution. Specifically, we find that the overnight contribution to impact decay is small,
in agreement with the idea that the decay takes place in volume time rather than in
calendar time. After accounting for metaorder temporal correlations, impact decay is
well fitted by a power-law for intraday time scales and an exponentially truncated power-
law for multiday horizons, extrapolating to a plateau value ≈ 1/3 of the peak impact
beyond several weeks. For such long time lags, however, market noise becomes dominant
and makes it difficult to conclude on the asymptotic value of impact, which is a proxy
for the (long time) information content of the trades in the ANcerno database.

6.2 Data and definitions

We use the heterogeneous dataset provided by ANcerno (for a details see Chapter 3).
Its structure allows the identification of metaorders relative to the trading activity of a
diversified pool of anonymized institutional investors. It follows that each metaorder is
characterized by a stock symbol, the total volume Q (in number of shares) and the times
at the start ts and at the end te of its execution with sign ε = ±1 (buy/sell). Our sample
covers for a total of 880 trading days, from January 2007 to June 2010 and we select
only stocks in the Russell 3000 index. The cleaning procedure introduced in Ref. [10] is
applied to remove possible spurious data. In this way the available sample is represented
by around 8 million metaorders distributed quite uniformly in time and across market
capitalizations representing around 5% of the total daily market volume.

Let us briefly recall the main observables useful to describe the metaorder execution
and the price relaxation, namely the participation rate η and the duration D measured
in volume time. The participation rate η is defined as the ratio between the number
of shares Q traded by the metaorder and the whole market volume traded during the
execution time interval [ts, te]

η =
Q

V (te)− V (ts)
, (6.1)

where V (t) is the cumulative volume transacted in the market between the start of the
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trading day and time t. The metaorder duration in volume time D is expressed as

D =
V (te)− V (ts)

Vd
, (6.2)

where Vd is the total daily market volume. The unsigned daily fraction φ = Q/Vd is
then given by

φ = η ×D. (6.3)

For a description of the metaorder statistics the interested reader can find details in the
Chapter 3.

To investigate the price relaxation process for t > te we introduce the following
main definitions of market impact. Let us suppose that an asset manager decides to
buy or to sell a metaorder of Q shares sending it at time t = ts to a broker or to an
execution algorithm where it is executed sequentially in smaller orders on market until
to completion at time t = te. The market impact is then defined in terms of the rescaled
log-price s(t) := (log S(t))/σd, where S(t) is the average market mid-price at time t and
σd = (Shigh − Slow)/Sopen is a noisy estimator of the daily volatility, estimated from the
daily high, low and open prices. Given the rescaled average market mid-price at the
start of the metaorder sstart = s(ts) and at the end of its execution, send = s(te), we
quantify its Start-to-End price impact ISE with the following antisymmetric expectation

ISE(φ) = E[ε · (send − sstart)|φ] (6.4)

where ε = ±1 is the direction of the metaorder (buy/sell). In practice, we compute the
market impact curve ISE(φ) by dividing the data into evenly populated bins according
to the volume fraction φ and computing the conditional expectation of impact for each
bin [9, 10, 41]. Henceforth, error bars are determined as standard errors. Similarly, we
will define the Start-to-Close impact ISC by replacing in Eq. (6.5) the end price s(te) by
the close log-price of the day sclose = s(tc), i.e.

ISC(φ) = E[ε · (sclose − sstart)|φ]. (6.5)

6.3 Intraday impact and post-trade reversion

In Figure 6.1, we show the Start-to-End impact ISE and Start-to-Close impact ISC as
a function of the daily volume fraction φ. Clearly, ISE behaves as a square root of the
volume fraction φ in an intermediate regime 10−3 . φ . 10−1, as reported in many
previous studies [2, 5, 9, 10, 12, 13, 37, 38, 50, 82]. For smaller volume fractions, impact
is closer to linear [10] – see Chapter 4 for a discussion of this effect. The Start-to-
Close impact, measured using exactly the same metaorders, is below the Start-to-End
impact (ISC < ISE), showing that some post-trade reversion has taken place between
the metaorder completion time te and the market close time tc.

The ratio between these two impact curves is plotted in Figure 6.1 (right panel).
Interestingly, the mean value over all φ is found to be 0.66 ± 0.04, in close agreement
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Figure 6.1: (Left panel) Start-to-End impact ISE and Start-to-Close impact ISC as
a function of the daily volume fraction φ. We also show the square-root impact law
I(φ) ∝ √φ (plain line) and a linear impact law (dotted line). The slope of ISC appears
to be larger than that of ISE as a consequence of a stronger impact decay contribution for
smaller φ’s. (Right panel) The ratio ISC(φ)/ISE(φ), computed in each volume fraction
bin φ. Its average over all φ is = 0.66± 0.04. The empirical distribution of the ratio is
presented in the inset. Note that for φ & 10−3, this ratio increases with φ. In both the
panels the error bars are standard errors.

with the 2/3 ratio predicted by FGLW, thus confirming previous empirical findings
[5, 8, 10, 11, 88]. However, a closer look at the plot reveals that the ratio systematically
increases as φ increases. Since larger metaorders (i.e. large φ) tend to take longer to
execute, one expects the End-to-Close time TEC = tc − te to decrease as φ increases.
Therefore impact decay between the end of the metaorder and the end of the day should
be, on average, larger for small order size φ.

In order to validate this hypothesis, we now characterize the intraday price reversion
by computing the ratio R(z) = ISC/ISE as a function of the variable z = VEC/VSE ,
where VEC = V (tc) − V (te) and VSE = V (te) − V (ts) are respectively the total market
volume executed in the time intervals TEC and TSE (similar results – not shown – are
obtained as a function of z′ = TEC/T , where T = te−ts is the metaorder execution time).
The results are shown in Figure 6.2 (left panel). One clearly sees that impact decays
continuously as z increases, and is in fact well fitted by the prediction of the propagator
model [18,34], namely Iprop(z) = (1 + z)1−β − z1−β with β = 0.22 1. Interestingly, if one
restricts to a smaller interval z ∈ [0, 2], as in [10, 88], one finds that the decay appears
to saturate around the 2/3 value (see inset in Figure 6.2), but zooming out leaves no

1To note, β is the decay exponent of the propagator, G(t) ∼ t−β , see e.g. [34].
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Figure 6.2: (Left panel) Price relaxation R(z) over two consecutive days. Blue points:
impact decay within the same day of the metaorder’s execution, i.e. R(z) = ISC/ISE
as a function of z = VEC/VSE , in a semi-log scale. Red points: impact decay using
the close of the next day, i.e. R(z) = ζ ISC2/ISE as a function of z = VEC2/VSE ,
with ζ = 0.80. Both sets of points are well fitted by the prediction of the propagator
model: Iprop(z) = (1 + z)1−β − z1−β with β = 0.22. Inset: same day impact decay,
in a linear-linear plot restricted to z ∈ [0, 2], suggesting relaxation towards a 2/3 value
(horizontal line). The error bars are standard errors. (Right panel) Average of Start-to-
next day Close ISC2 , conditioned to different values of ISC . The regression lines yield
ISC2 = 0.83 ISC .

doubt that impact is in fact decaying to smaller values. In Appendix 6.A more insights
on the intraday price relaxation are discussed.

6.4 Next day reversion

Quite interestingly, impact decays much in the same way over the next day: in the same
figure (left panel in Figure 6.2) we plot R(z) ' ISC2/ISE as a function of z = VEC2/VSE ,
where C2 refers to the close of the next day and VEC2 = VEC + Vd (i.e. the overnight
does not contribute to TEC2). Provided one applies a factor ζ ≈ 4/5 that accounts for
the autocorrelation of metaorders (see next section, and left panel in Figure 6.3)2, the
next day impact decay nicely falls in the continuation of the intraday decay, and is also
well accounted for by the very same scaling function Iprop(z).

Figure 6.2 (right panel) provides complementary information: we show the average

2More precisely, we have set ζ = 1/(1 +C(1)), where C(τ) is the autocorrelation function plotted in
Figure 6.3 (left panel).
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of ISC2 conditioned to different values of ISC , which clearly demonstrates that these
two quantities are proportional and related to the same decay mechanism. It implies in
particular that the impact measured at the end of the next day would still behave as a
square root of the volume of the executed metaorder.

6.5 Impact decay over multiple days

Having established that impact decay occurs both intraday and during the next day,
it is tempting to conjecture that impact will continue to decay on longer time scales.
However, the empirical investigation of such a decay faces several hurdles. First, as the
time lag increases, the amount of noise induced by overall market moves becomes larger
and larger (in fact as σd

√
τ , where τ is the number of days). Second, metaorders are

often executed over several days, leading to long range autocorrelations of the order
flow. This effect, investigated considering metaorders from the same fund [34], is here
investigated by considering a very heterogeneous set of funds and illustrated in the left
panel of Figure 6.3. We find that metaorder signs autocorrelation is well fitted by an
exponentially truncated power law with a time scale of ≈ 26 days and an exponent γ
fixed by the propagator model constraint γ = 1 − 2β. Intuitively, these correlations
may mask the decay of impact, as trades in the same direction during the following
days tend to counterbalance impact reversion, leading to an apparent increase of impact
(see Figure 6.3, right panel, inset). This contribution should be somehow removed to
estimate the natural decay of impact.

A possible way to overcome the latter problem is to apply a deconvolution method
introduced by Brokmann et al. [12]. We will study our metaorder database at the daily
time scale with the same angle: for each day τ = {1, · · · , 880} and asset we computed
the net daily traded volume Φ(τ) =

∑N
i=1 εiφi where N is the number of metaorders in

the database, for a given asset and a given day τ . As discussed in Chapter 5, the impact
of a set of different metaorders, all executed the same day and on the same asset, is well
described by an extended square-root law where all metaorders are bundled together:

I(Φ) = Y × σd × Φ•1/2, (6.6)

where we use the signed power notation x•1/2 := sign(x)×
√
|x|.

The return of the asset between the last day close and the close of each day τ is
denoted r(τ). The method used in Ref. [12] amounts to assuming a quasi-linear model,
i.e.

r(τ) = βcapm(τ) rM(τ) + σd

L∑
`=0

G(`) Φ̃•1/2(τ − `) + ξ(τ), (6.7)

where G(`) are coefficients, L is a certain horizon (taken to be L = 50 days), ξ is a
noise term and βcapm(τ) rM(τ) is the systematic component that takes into account the
market drift: βcapm(τ) is the beta of the traded stock computed on the period from
τ − 20 to τ + 20 and rM(τ) the daily close-close return of the market (here the Russell
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Figure 6.3: (Left panel) Empirical autocorrelation of the signed square-root volume
imbalance Φ•1/2, as a function of the lag τ , averaged over all stocks. This autocorrelation
persists over many days, as it is fitted as an exponentially truncated power law g(τ) =
aτ−γe−bτ with a = 0.24 ± 0.04 and b = 0.038 ± 0.002 (corresponding to 1/b ' 26
days). The value of the exponent γ is fixed to 1 − 2β = 0.56, as dictated by the
propagator model [18]. (Right panel) Normalized impact kernel G(τ)/G(0) estimated
using Eq. (6.8) for τ ∈ [1, 50] days. The fit corresponds to the exponentially truncated
modified propagator model Im(τ) with b = 0.038 (see left panel), which provides an
asymptotic decay level I∞ ≈ 0.42± 0.01. The error bars on the graph are (i) bootstrap
errors (blue region) and (ii) cumulated regression errors (grey region). Inset: normalized
response function R(τ)/R(0) as a function of τ (see definition in Eq. (6.10)).

3000 index). Finally, Φ̃•1/2(τ) = Φ•1/2(τ)− βcapm(τ)〈Φ•1/2(τ)〉stocks, where we subtract
βcapm times the cross-sectional average of the expected impact3.

Pooling all the stocks together4, a least-square regression allows us to determine the
coefficients G(`), from which we reconstruct the reactional impact kernel G(τ) as

G(τ) =
τ∑
`=0

G(`). (6.8)

The kernel G(τ) is a proxy of the impact of an isolated metaorder. If the metaorder was
uniformed, G(τ) would describe the mechanical reaction of the market to such a trade.
Any non-zero asymptotic value of G(τ →∞) would either reveal that metaorders are on
average informed, or that even random trades have positive permanent impact on prices
(as in Ref. [69]).

3Note that in the quasi-linear model described by Eq. (6.7) we use Φ̃• instead of Φ• in such a way to
remove the cross-sectional market impact contribution given by βcapm(τ)〈Φ•1/2(τ)〉stocks: for consistency
we introduce the intercept βcapm(τ) rM(τ) on the right side of Eq. (6.7).

4We have checked that different subsamples of the full sample lead to similar results (for example,
slicing the pool of stocks according to their market capitalisation, see Figure 6.4).
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To estimate error bars, we generated 200 bootstrap samples using all 1500 stocks,
and ran the linear regression Eq. (6.7) on each of them. The average result is shown in
Figure 6.3 (right panel), together with error bars coming from the least-square regression
and from the bootstrap procedure. From this graph, we see that the estimated impact
kernel G(τ) slowly decays in a time window comparable with the one over which we
measure a persistent autocorrelation (as shown in the left panel of Figure 6.3). We
have fitted the empirically determined, normalized impact kernel Im(τ) := G(τ)/G(0)
using an ad-hoc modified propagator kernel, that accounts for a final exponential decay
towards an asymptotic value I∞:

Im(τ) := I∞ + (1− I∞)Iprop(τ)e−bτ , (6.9)

where b is a parameter fixed by the corresponding decay of the flow autocorrelation, see
Figure 6.3 (left panel). Keeping the same shape for Iprop(τ) as the one describing the
short-term decay of impact (i.e. fixing β = 0.22), the one-parameter fit gives I∞ ≈ 0.42.
Leaving b free in a 2-parameter fit leads to very similar values: b = 0.03 ± 0.01 and
I∞ = 0.39 ± 0.05. However, setting b = 0 and leaving β free leads to β = 0.15 ± 0.04
and a zero asymptotic value I∞ = 0.0± 0.19.

Although the error bars are already large for τ = 50, the fit seems to favor a non-
zero asymptotic value I∞ ≈ 1/2. Since the impact has on average already decayed
to approximately 2/3 of its peak value at the end of the trading day, this value of
I∞ suggests a long time asymptotic plateau at 2/3 × 1/2 ≈ 1/3 of the peak value,
significantly below the 2/3 value predicted by FGLW (see also Figure 6.2). This can be
taken as a measure of the information content of the trades in the ANcerno database.
Since we have no knowledge about the intensity of the trading signal which triggered the
metaorders, we cannot subtract the alpha component from the observed returns, as was
done in Ref. [12], where after removing the alpha of the manager and the contribution
of correlated trades, impact was found to decay to ≈ 0.15 of its initial value after 15
days. Adding to the regressors of Eq. (6.7) past values of (r − βcapmrM), as a proxy for
mean-reversion and/or trending signals that investors commonly use, we find a slightly
larger plateau (≈ 0.54) when b is kept at the value 0.038. This reveals how noisy the
data is, because one would have expected a decrease of I∞ when including more alpha
signal in the regression. However, we do observe mean reversion on short time scales
and momentum beyond, as expected.

Finally, we also show in Figure 6.3 (right panel, inset) the full response function
R(τ), defined as [18]:

R(τ) :=
〈 τ∑
τ ′=0

r̃(`+ τ ′)Φ̃•1/2(`)
〉
`
, (6.10)

where r̃(τ) := r(τ) − βcapm(τ) rM(τ) and the average operation 〈· · ·〉` is done over all
the days `. This quantity elicits an apparent evolution of impact, without accounting
for metaorder autocorrelations. Such autocorrelations are strong enough to make R(τ)
increase as a function of τ (see [18,34] for comparable results). This plot illustrates how
the autocorrelation of order flow can strongly bias the estimation of impact decay and
its asymptotic value (see [12] for a similar discussion).
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Figure 6.4: (Left panel) Empirical autocorrelation of the signed square root volume
imbalance Φ•1/2, as a function of the lag τ , averaged over all stocks in a given market
capitalisation tranche. Each function is fitted as an exponentially truncated power law
g(τ) = aτ−γe−bτ with γ = 1 − 2β = 0.56 (fixing β = 0.22). The parameters a and
b are very close in the three cases. (Right panel) Normalized decay kernel G(τ)/G(0)
estimated using Eq. (6.8) for τ ∈ [1, 50] days, again using all stocks in a given market
cap tranche. The fit corresponds to the exponentially truncated modified propagator
model Im(τ) with b = 0.038, which provides an asymptotic decay level I∞ ≈ 0.44 (large
cap), I∞ ≈ 0.61 (mid cap) and I∞ ≈ 0.35 (small cap), all within the grey region of right
panel in Figure 6.3. The error bars in the right panels are bootstrap errors.

6.6 Conclusions

In this chapter we presented an empirical study of the impact relaxation of metaorders
executed by institutional investors in the U.S. equity market. We have shown that
relaxation takes place as soon as the metaorder ends, and continues the following day
with no apparent saturation at the plateau value corresponding to the fair pricing FGLW
theory [15]. For example, the impact measured at the next-day close is, on average,
around 4/5 of the impact at the end of the day when the metaorder is executed. The
decay of impact is described by a power-law function at short time scales, while it
appears to converge to a non-zero asymptotic value at long time scales (∼ 50 days),
equal to 1/2 of the impact at the end of the first day, which is ≈ 1/3 of the peak
impact. Due to a significant, multiday correlation of the sign of executed metaorders, a
careful deconvolution of the observed impact must be performed to extract the reaction
impact contribution (where, possibly, some information contribution remains). Once this
is done, our results match qualitatively those of Ref. [12], obtained on a smaller set of
metaorders executed by a single manager (CFM). In particular, we find no support for
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the prediction of Farmer et al. [15], that the permanent impact equal to 2/3 of the peak
impact.

Executing a quantity Q moves the price, on average, as I(Q) = Y σd

√
Q/Vd, where Y

is a certain numerical constant [2,5,9,10,12,13,37,38,50,82]. Assuming that this impact
is fully transient and decays back to zero at long times, the corresponding average cost of
trading is 2/3 I(Q). If the investor predicts a certain price variation ∆, his/her optimal
trade size is given by the following maximization problem:

Q∗ = argmax

[
∆Q− 2

3
QI(Q)

]
⇒ I(Q∗) = ∆. (6.11)

The last equation means that the investor should trade until his/her average impact
pushes the price up to the predicted level ∆, but not beyond. For truly informed
investors, there should be no decay of impact at all, since the price has been pushed
to its correctly predicted value. For uninformed investors, on the other hand, impact
should decay back to zero. Averaging over all metaorders of size Q, one should therefore
expect an apparent permanent impact given by:

I∞(Q) = f(Q)× I(Q) + (1− f(Q))× IR(Q), (6.12)

where f(Q) is the fraction of metaorders of volume Q that are truly informed and
IR(Q) is the permanent, reactional part of impact – expected to be zero only if markets
were truly efficient. A precise empirical determination of the size dependence of IR(Q)
would be extremely interesting. However, this seems to be out of reach: not only would
it require a large data set of metaorders reputed to be information-less (such as the
portfolio transition trades of Ref. [11]), but also the error on the long-term asymptotic
value of IR(Q) is bound to be very large, as Figure 6.3 shows. At this stage, it is thus
difficult to confirm or infirm the validity of the theoretical arguments that predict a
linear-in-Q dependence of IR(Q) [25,69,87].

Appendix

6.A More insights on the intraday price relaxation

After a buy (sell) metaorder, the order flow is on average biased towards buy orders
(sell orders). On general grounds, it is natural to expect that the price dynamics of a
metaorder reflects both its own impact and the one related to the order flow given by
other metaorders executed by different market participants (or not). As discussed in
Chapter 5, metaorders executed in the same time period and on the same asset tend to
have similar signs, i.e. trading decisions are crowded since likely generated by similar
trading signals. In fact, introducing the sign polarization parameter m(εi) ∈ [−1, 1]
defined for each metaorder as follows

m(εi) :=
εi

N − 1

N∑
k 6=i

εk, (6.13)
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with N the daily number of metaorders per asset, we find that the metaorders are
characterized by a positive average sign polarization E[m(εi)] = 0.07 (see the inset of
the left panel in Figure 6.5).
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Figure 6.5: (Left panel) Empirical histogram of the sign polarization parameter m(εi)
(see Eq. (6.13)): in the inset the conditional average of m(εi) respect to N is repre-
sented. (Right panel) Empirical Start-to-End market impact curves ISE(φ) computed
conditioning to several buckets of the polarization parameter m(εi): for a metaorder
positively correlated with the intraday net order sign imbalance, i.e. m(εi) ≥ 0.1, the
market impact is well described by a square-root law in the range 10−5 . φ . 10−1.

It emerges that the Start-to-End price impact ISE(φ) is statistically higher and
well approximated by a square-root law when the executed metaorder is correlated in
sign with the net order sign imbalance

∑
k 6=i εk given by the N − 1 other simultaneous

metaorders (see right panel of Figure 6.5). On the other hand, we find that this sign
correlation implies a not-null plateau value for the intraday price decay as shown in the
left panel of Figure 6.6 where conditioning to the m(εi) we obtain different price relax-
ation curves with distinct asymptotic values: if the metaorder is negatively correlated
with the net order flow, i.e. m(εi) ≤ −0.1, then its decay goes to zero in less than one
day while if it is positively correlated, i.e. m(εi) ≥ 0.1, we observe a permanent impact
with a plateau around to the 2/3 of the peak impact. For these several regimes the
propagator model, i.e. Iprop(z) = (1 + z)1−β − z1−β with z = VCE/VSE , reproduces well
the price relaxation curve with a β parameter opportunely fitted: to note that we find
β ' 0.5 in the case of m(εi) ≤ −0.1. This is still valid conditioning the price decay
to the participation rate η as shown in the right panel of Figure 6.6. In particular, we
observe that the price relaxation is more pronounced for metaorders with large partic-
ipation rate η: a possible explanation is that metaorders with lower participation rate
revert more slowly as a consequence of the fact that the reversion process depends on the
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Figure 6.6: (Left panel) Intraday price relaxation curves in function of the ratio
z = VEC/VSE conditioned to the sign polarization parameter m(εi) defined in Eq. (6.13).
(Right panel) Intraday price relaxation curves for different buckets in participation rate
η. In both the panels the dashed lines represent respectively the best fit with the prop-
agator model Iprop(z) for each sub-sample while the horizontal dashed line represents
the 2/3-plateau predicted by the FGLW theory [15]. To note that an higher (lower) sign
polarization m(εi) or participation rate η implies an higher (lower) asymptotic plateau
for the price relaxation.

metaorder’s detection by others market participants. In fact, the beginning or the end
of a low participation rate metaorder is more difficult to detect, and it should require
more time for a given level of certainty, giving a more sluggish reaction to completion of
the metaorder.
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Chapter 7

Are trading invariants really
invariant? Trading costs matter

7.1 Introduction

Finding universal scaling laws between trading variables is highly valuable to make
progress in our understanding of financial markets and market microstructure. Indeed,
statistical physics has taught us that scaling laws between physical variables most often
reflect the dynamics of complex scale-invariant systems, by that giving precious insights
about the mechanisms underlying the phenomena at hand. Benoit Mandelbrot was the
first to propose the idea of scaling in a financial and economic context [64], and ever
since many have capitalised on his ideas, for a review see [65]. Relevant to this study,
examples of universal laws between trading variables include the square root impact law
of metaorders [2] or the relation between spread and volatility per trade [61]. Recently,
Kyle and Obizhaeva posited an intriguing trading invariance principle that must be
valid for a bet, theoretically defined as a sequence of orders with a fixed direction (buy
or sell) belonging to a single trading idea [51, 52]. This principle supports the existence
of a universal invariant quantity Iko – expressed in dollars, independent of the asset and
constant over time – which represents the average cost of a single bet. In particular,
taking the share price S (in dollars per share), the square daily volatility σ2

d (in %2

per day), the total daily amount traded with bets V (shares per day) and the average
unsigned volume of an individual bet Q (in shares) as relevant variables, dimensional
analysis (see e.g. [66, 67]) suggests a relation of the form:

SQ

Iko
= f

(
σ2

d

Q

V

)
, (7.1)

where f(·) is a dimensionless function. Invoking the Modigliani-Miller capital structure
irrelevance principle, which notably states that capital restructuring should always keep
the product S × σd while not affecting other variables, yields f(x) ∼ x−1/2 (see [51, 62]
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and Appendix 7.A). From Eq. (7.1) follows, up to a numerical factor, the 3/2-law:

Iko =
σdSQ

3/2

V 1/2
:=
W
N3/2

, (7.2)

whereW := σdSV measures the total dollar amount of risk traded per day (also referred
to as total exchanged risk or trading activity) while N := V/Q represents the number
of daily bets for a given financial instrument1. The above equation can be tested at
different levels. First, Iko is a random variable associated to each day and stock. The
original (strong form of) trading invariance states that Iko has invariant distribution to
stock and time. A weaker, and more easily testable, form states that only the mean value
of Iko is invariant. Clearly, if this second form is violated (as shown empirically below),
a fortiori the stronger form is violated. In other words, the 3/2-law can be interpreted
with different degrees of universality2 as discussed in [57]:

� No universality : the scaling relationW ∼ N3/2 holds for some contracts and some
time intervals τ over whichW and N are computed. Than if the scaling law holds,
the prefactor Iko has a non-universal value dependent on the financial instrument
and/or on τ .

� Weak universality : the 3/2-law holds for all contracts and some (possibly all) time
intervals τ , but with a non-universal value of Iko.

� Strong universality : the 3/2-law holds for all contracts and all time intervals τ ,
with a universal value of Iko, independent of τ and of the contract type.

Let us stress that identifying an elementary bet in the market is not a straightforward
task. Theoretically, a bet is defined as a trading idea typically executed in the market
as many trades over several days. As suggested by Kyle and Obizhaeva in their original
work [52], metaorders, i.e. a bundle of orders corresponding to a single trading decision
typically traded incrementally through a sequence of child orders, can be considered a
proxy of these bets3. Beyond the subtleties in the bet ’s definition, there has been in the
past few years empirical evidence that the scaling law discussed above matches patterns
in financial data, at least approximately. The 3/2-law was empirically confirmed by Kyle
and Obizhaeva using portfolio transition data related to rebalancing decisions made by
institutional investors and executed by brokers [52]. Andersen et al. [56] reformulated
suitably the trading invariance hypothesis at the single-trade level and showed that the
equivalent version of Eq. (7.1) in such a setting holds remarkably well using public
trade-by-trade data relative to the E-mini S&P 500 futures contracts. Benzaquen et
al. [57] substantially extended these empirical results showing that the 3/2-law holds
very precisely across 12 futures contracts and 300 single U.S. stocks, and across a wide

1See Appendix 7.A for more details on the derivation of the 3/2 scaling law.
2Note that here we only explore the daily level, time does not mean the same thing as in [57] where

the authors varied the time intervals over which the variables were computed.
3In the following we will make use of such an approximation and use the words metaorder instead

of bet.

93



range of time scales. Amongst others, Bowe et al. [55] examined market microstructure
invariance relationships for equity markets using a subset of 25 equities from the FTSE
100 stocks traded on the London Stock Exchange, and Pohl et al. [58] provided additional
empirical evidence that the intriguing 3/2-law holds on trades data from the NASDAQ
stock exchange.

Notwithstanding, empirical data at the single transaction scale – see in particular [57]
– revealed that while the 3/2-law is very robust, the invariant Iko is actually quite far
from invariant, as it varies from one asset to the other and across time, thus in favour of
the weak universality degree. Note that this is consistent with the idea that a universal
invariant with dollar units would be quite incongruous, given that the value of the
dollar is itself stochastically time-dependent4. Benzaquen et al. [57] showed that a more
suitable candidate for an invariant was actually the dimensionless I = Iko/C where C
denotes the spread trading costs.

Yet, single transactions are typically not the same as single bets. Large and medium
sized orders are typically split in multiple transactions and traded incrementally over
long periods of time. Public market data do not allow to infer the trading decision and to
link different transactions to a single execution5. In order to test the trading invariance
hypothesis at the metaorder level and its relation with trading costs, it is necessary to
have a dataset of market-wide (i.e. not from a single institution) metaorders.

This is precisely the aim of the present chapter, which leverages on a heterogeneous
dataset of metaorders extracted from the ANcerno database6. Although from a pre-
liminary research Kyle and Fong found that proxies for bets in ANcerno data have size
patterns consistent with the proposed invariance hypothesis [51–54], to our knowledge
such a thorough analysis at the metaorder level for a wide range of assets is still lacking.

Our main finding is that, while the scaling law W ∼ N3/2 works surprisingly well
independently of the chosen asset, the quantity Iko is not invariant, as pointed out in [57]
at the trade-by-trade level. In other words, for a given asset the 3/2-law (Eq. (7.2)) holds,
but the invariance principle implying that Iko is the same for all assets does not. We show
that the latter quantity is strongly correlated with transaction costs, including spread
and impact costs. This leads us to introduce new invariants, obtained by dividing Iko

by the trading costs, and which appear to fluctuate very little across stocks. Finally we
show that the observed small dispersion of the new invariants can be connected with
three microstructural properties: (i) the linear relation between spread and volatility
per transaction; (ii) the near invariance of the metaorder size distribution, and (iii) of
the total volume and number fractions of the metaorders across different stocks.

4Note that Kyle and Obizhaeva commented on how to modify their invariance principle in an in-
ternational context. In particular they suggested that “invariance relationships can also be applied to
an international context in which markets have different currencies or different real exchange rates” by
scaling to “the nominal cost of financial services calculated from the productivity-adjusted wages of
finance professionals in the local currency of the given market during the given time period” [51].

5In fact, for example, Kyle and Obizhaeva tackled this problem investigating a proprietary dataset
of portfolio transitions [52].

6In Ref. [52] the authors claim that the ANcerno database includes more orders than the dataset of
portfolio transitions they used in their work.
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The chapter is organised as follows. In Section 7.2 we describe the dataset collecting
trading decisions of institutional investors operating in the U.S. equity market. In Section
7.3 we show that the 3/2-law holds surprisingly well at the daily level independently of
the time period, of the market capitalisation and of the economic sector. In Section 7.4
we compute the invariant Iko and we argue in favour of weak universality. We propose a
more natural definition for a trading invariant that accounts both for the spread and the
market impact costs and we exhibit the microstructural origin of its small dispersion.
Some conclusions and open questions are presented in Section 7.5.

7.2 Data

Our analysis relies on a database made available by ANcerno, a leading transaction-cost
analysis provider. Our dataset counts heterogeneous institutional investors placing large
buy or sell orders executed by a broker as a succession of smaller orders belonging to the
same trading decision of a single investor (for more details see Chapter 3). Our sample
includes the period January 2007 – June 2010 for a total of 880 trading days. Only
metaorders completed within at most a single trading day are held. Further, we select
stocks belonging to the Russell 3000 index, thereby retaining ∼ 8 million metaorders
distributed quite uniformly in time and representing ∼ 5% of the total reported market
volume, regardless of market capitalisation (large, mid and small) and economical sectors
(basic materials, communications, consumer cyclical and non-cyclical, energy, financial,
industrial, technology and utilities). As can be seen in [10,35,41], which use very similar
filtering of the dataset, the distribution of metaorder duration, traded volume, and
participation rate are very heterogeneous, spanning several orders of magnitude. When
considering the number N of metaorders traded in a day for a stock, the left panel of
Figure 7.8 in Appendix 7.C shows a quite heterogeneous distribution with on average
approximately 5 metaorders executed per day in each asset.

7.3 The 3/2-law

Here we investigate the trading invariance hypothesis at the daily level. The daily
timescale choice avoids an elaborate analysis of when precisely each metaorder starts and
ends, thereby averaging out all the non-trivial problems related to the daily simultaneous
metaorders executed on the same asset.

7.3.1 Exchanged risk

From the metaorders executed on the same stock during the same day we compute
the total exchanged volume in dollars:

∑N
i=1 SiQi, where N is the number of daily

metaorders per asset in the ANcerno database, Qi and Si are respectively the number of
shares and the volume weighted average price of the i-th available metaorder. We then
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define the total daily exchanged ANcerno risk per asset as:

W :=

N∑
i=1

Wi , with Wi := σdQiSi , (7.3)

and where σd denotes the daily volatility per asset, computed as σd = (Shigh−Slow)/Sopen

from the high, low, and open daily prices only7. The statistical properties of the
metaorders, in terms of their associated risk Wi and of their total daily number N
per asset are discussed in Appendix 7.C. It is found that the empirical distributions
of the traded risks Wi and W span almost eight orders of magnitude. This is impor-
tant because a careful testing of the scaling relation predicted by the trading invariance
hypothesis requires a large variability of the considered variables. Thus the ANcerno
database is ideal for this testing exercise.

7.3.2 Empirical evidence

We introduce the mean daily exchanged risk 〈W〉N conditional to the number of metaorders
N . This is empirically estimated by the quantity:

〈W〉N :=

∑
`:N(`)=NW(`)∑
`:N(`)=N 1

, (7.4)

where for each day ` the total daily exchanged risk is given by W(`) :=
∑N(`)

i=1 W
(`)
i with

N (`) the number of daily metaorder per asset and W(`)
i := σ

(`)
d Q

(`)
i S

(`)
i . To test the 3/2-

law we bin the data (one observation per stock per day) depending on N and we plot
it against 〈W〉N in log-log scale. We consider different subsets of stocks, depending on
market capitalisation, economical sector, investigated period, and we perform the linear
regression of log〈W〉N versus logN .

As shown in the first three panels of Figure 7.1 the scaling 〈W〉N ∼ N3/2 holds
well independently of the conditioning to market capitalisation, economical sector, and
time period. The insets show the estimated exponent which is always quite close to
3/2. Slight deviations may have different origins but can mostly be attributed to the
heterogeneous sample’s composition in terms of stocks for each bucket in N . The 3/2-law
is also valid for individual stocks, as shown in the bottom right panel of Figure 7.1, where
data from 10 randomly chosen stocks are displayed. We perform the above regression
on a larger sub-sample of 200 stocks randomly chosen and the histogram of the slopes
(exponents), shown in the bottom left inset, is well centered around the 3/2-value. This
shows that the 3/2-exponent works very well in describing the scaling relation between
〈W〉N ∼ N3/2 and N .

7We checked that the results discussed in this chapter are still valid using other definitions of the
daily volatility and of the price in analogy to what done for example in [52]. Specifically, the results
are still valid when computing σd with the Rogers-Satchell volatility estimator [60] or as the monthly
averaged daily volatility, i.e. σ̄d =

∑25
`=1 σd,` and/or defining the price Si as the closing price of the day

before the metaorder’s execution.
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Figure 7.1: Mean daily exchanged risk 〈W〉N conditional on the daily number N of
metaorders per asset for different market capitalisation (top left panel), the economical
sector (top right panel), and the time period (bottom left panel). The insets show the
slopes obtained from linear regression of the data, firstly averaged with respect to N and
secondly log-transformed. The bottom right panel shows a plot of 〈W〉N as function of
N for a subset of 10 stocks chosen randomly from the pool of around three thousand
U.S. stocks: the two insets represent respectively the empirical distribution of the slopes
and of the y-intercept, i.e. 〈Iko〉 = 〈W〉N/N3/2, obtained from linear regression of a
larger sub-sample of 200 stocks randomly chosen, firstly averaged with respect to N and
secondly log-transformed considering each stock separately.

The bottom right inset in the bottom right panel of Figure 7.1 shows the histogram
of the intercept 〈Iko〉 obtained from the regression logW = log 〈Iko〉 + β logN done for
individual stocks and using the binned data as shown in the main panel. It is evident that
there is a very large dispersion (note that the abscissa is in log scale), which indicates
that Iko in Eq. (7.2) is not constant across different stocks. More empirical insights on
the origin of the 3/2-law are presented in Appendix 7.B.
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7.4 The trading invariant

The conjecture that the quantity 〈Iko〉 = 〈W〉N/N3/2 is invariant across different con-
tracts is clearly rejected by the empirical analysis performed in the previous section.
Indeed, the quantity 〈Iko〉 varies by at least one order of magnitude across different
stocks. This result goes against the strong universality version of the trading invariance
hypothesis which states that both the average value 〈Iko〉 and the full probability dis-
tribution of Iko = W/N3/2 should be invariant across products. Dimensionally Iko is a
cost (i.e. it is measured in dollars) and indeed the trading invariance hypothesis posits
that the cost of a metaorder is invariant. Using the identification of metaorders and bets
we can use the ANcerno dataset to estimate the trading cost, including a spread and a
market impact component. Below, we show that Iko and the trading costs are highly
correlated, and therefore we propose new invariants based on their ratio.

7.4.1 Trading costs and trading invariants

Trading costs are typically divided into fees/commissions, spread, and market impact.
For large orders, like those investigated here, fees/commissions typically account for
a very small fraction and therefore we will neglect them. We shall however take into
consideration both the spread cost (as was done at the single-trade level in [57]) and
the market impact cost as computed from the well established square-root law (see
e.g. [4, 10, 12, 35, 41, 46, 50]). We thus define the average daily metaorder’s trading cost
as:

C = Cspd+Cimp = Yspd×
1

N

N∑
i=1

SQi+Yimp×
1

N

N∑
i=1

σdQiSi

√
Qi
Vd

= Yspd×C0
spd+Yimp×C0

imp ,

(7.5)
with S the average daily spread8, Vd the total daily market volume, and Yspd, Yimp

two constants to be determined. The factor Yspd depends, among other things, on the
fraction of trades of the metaorder executed with market orders, whereas Yimp only
weakly depends on the execution algorithm and is typically estimated to be very close
to unity [2, 10, 34]. Thus, while Cimp is a quite faithful estimation of the impact cost of
the metaorders in a day and stock, Cspd is an upper bound, reached if all the considered
metaorders are executed with market orders.

The empirical properties of Cspd and Cimp and the relative importance of the two
terms as a function of the metaorder size are illustrated in Appendix 7.C. As expected,
at the single metaorder level, spread cost is dominant for small metaorders, while market
impact cost is dominant for large ones. At the aggregated level, the average daily market
impact cost Cimp accounts on average for approximately half of the total daily trading
average cost.

To determine Yspd and Yimp we perform an ordinary least square regression of the KO
invariant Iko with respect to the daily average cost C defined for each asset by Eq. (7.5).

8The daily spread is not provided in the ANcerno dataset: we computed it as the time average spread
across the day using public available market data.
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Figure 7.2: (Left panel) Empirical distributions of the KO invariant Iko = W/N3/2, of
the daily average metaorder’s total trading cost C (using Yspd = 3.5 and Yimp = 1.5
in Eq. (7.5)), and of the dimensionless invariant I = Iko/C. (Right panel) Empirical
distributions in log-log scale of the KO invariant Iko rescaled respectively by the total
daily average cost C, by the spread cost Cspd and by the market impact cost Cimp.

We obtain Yspd ' 3.5± 0.2, Yimp ' 1.5± 0.1 and a coefficient of determination r2 ' 0.8.
These results show that the original KO invariant is indeed strongly correlated with the
trading cost. Since these costs have no a priori reason to be universal, this explains why
Iko is not invariant.

Guided by such results and by the fact that a market microstructure invariant, if any,
should be dimensionless, we define new invariants by dividing the original KO invariant
Iko by the cost of trading. Therefore, we consider three different specifications, namely:

I :=
Iko

C , Ispd :=
Iko

Cspd

, Iimp :=
Iko

Cimp

. (7.6)

The left panel of Figure 7.2 shows the empirical distribution of the original KO
invariant Iko together with that of I, and of the total trading cost C. It is visually
quite clear that rescaling by the cost dramatically reduces the dispersion, and that the
distribution of Iko is very similar to that of C, despite some deviation for small value. The
right panel compares the distribution of I with that of the other two new invariants. A
quantitative comparison is provided in Table 7.1, which reports the mean, the standard
deviation, the coefficient of variation9 (CV) of Iko and of the three new invariants. It is
clear that, due to the correlation between Iko and C, the new invariants Ispd and Iimp

have a much smaller CV than Iko. Since the distributions have clear fat tails, we also

9The coefficient of variation (CV) is the ratio of standard deviation and mean, an indicator of
distribution peakedness.
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implemented the Gini coefficient, as done in [58]. The table indicates that also in this
case the new invariants are much more peaked than Iko.

Table 7.1: Statistics of the different invariants, namely the original KO invariant Iko

(left), and the three new ones rescaled by cost (right). CV stands for coefficient of
variation.

Iko · 103 ($) I Ispd Iimp

mean 6.33 2.20 4.70 7.8
st. dev. 11 1.84 3.11 12.2

CV 1.74 0.84 0.66 1.56
Gini Coefficient 0.77 0.33 0.39 0.65

7.4.2 Origin of the small dispersion of the new invariants

Here we investigate the origin of the small dispersion of the new invariants. Let us
first consider only the market impact cost normalisation and rewrite Iimp with the ap-
proximation of Si ' S for all the metaorders executed in a day and on the same stock
as:

Iimp =
N
∑N

i=1 σdSiQi

YimpN3/2(σd
∑N

i=1 SiQi
√
Qi/Vd)

=
1

Yimp
√
υ

[Q]3/2

[Q 3/2]
=

1

Yimpm
√
υ
, (7.7)

where υ := V/Vd with V :=
∑N

i=1Qi the total ANcerno metaorder volume, [·] a daily

average operation per stock, i.e. [x] := 1
N

∑N
i=1 xi, and m > 1 the normalised 3/2-

th moment of the number of shares of a metaorder, which depends on the shape of
the distribution of metaorder size. We have checked that m as well as υ are, to a
first approximation, independent of the stock (see left and central panels in Figure 7.3)
indicating that the distribution of metaorder size is, to a large degree, universal and
that the ANcerno database is representative of the trading across all stocks. These
observations explains why Iimp is also, to a large degree, stock independent.

For the total cost normalisation, our understanding of the invariance property relies
on the following empirical fact. The average spread is proportional to the volatility per
trade, that is S = c Sσd/

√
Nd, where Nd is the total number of daily transactions per

asset and c is a stock independent numerical constant, see [34, 61]. Indeed, the above
arguments taken together show that the dimensionless quantity I can be written as:

I =
1

Yspdc
√
n+ Yimpm

√
υ
, (7.8)

where n := N/Nd is found to be stock independent (see right panel in Figure 7.3).
Therefore I is also stock independent. Finally, the fact that the CV of I is less than
both that of Ispd and Iimp suggests that KO’s invariant is commensurate to the total
cost of trading, including both the spread cost and the impact cost.
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Figure 7.3: Empirical distributions of the ratios m = [Q3/2]/[Q]3/2 (left panel), υ = V/Vd

(central panel) and n = N/Nd (right panel), all three computed at the daily level for
each asset: we randomly group the stocks in equally sized samples and for each of them
we compute the empirical distribution respectively of m, υ and n finding that they are,
to a first approximation, stock independent.

7.5 Conclusions

In this chapter we empirically investigated the market microstructure invariance hypoth-
esis recently proposed by Kyle and Obizhaeva [51, 52]. Their conjecture is that the
expected dollar cost of executing a bet is constant across assets and time. The ANcerno
dataset provides a unique laboratory to test this intriguing hypothesis through its avail-
able metaorders which can be treated as a proxy for bets, i.e. a decision to buy or sell
a quantity of institutional size generated by a specific trading idea. Let us summarise
what achieved in this chapter:

� Using metaorders issued for around three thousand stocks, we showed that, at the
daily timescale interval, the 3/2-law between exchanged risk W and number of
metaorders N is observed independently of the year, the economical sector and
the market capitalisation.

� The trading invariant Iko = W/N3/2 proposed by Kyle and Obizhaeva is non-
universal: both its average value 〈Iko〉 and its distribution clearly depend on the
considered stocks, in favour of a weak universality interpretation. Furthermore,
this quantity has dollar units which makes its hypothesised invariance rather im-
plausible.

� On the basis of dimensional and empirical arguments, we propose a dimensionless
invariant defined as a ratio of Iko and of the metaorder’s total cost, which includes
both spread and market impact costs. We find a variance reduction of more than
50%, qualitatively traceable to the proportionality between spread and volatility
per trade, and the near invariance of the distributions of metaorder size, of the
volume fraction and number fraction of metaorders across stocks.
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Our empirical analysis has allowed to show that the trading invariance hypothesis
holds at the metaorder level in a strong sense provided one considers the exchanged
risk and the total trading cost of the metaorders. This is in the spirit of Kyle and
Obizhaeva’s arguments, but takes into account the fact that transaction costs are both
asset and epoch dependent. As anticipated in [57], our results strongly suggest that
trading invariance is a consequence of the validity of the square-root law for market
impact as well as to the proportionality between spread and volatility as discussed in
[57,61,63]. More generally, we interpret it as a result of the endogeneisation of costs in the
trading decision of market participants. This is an alternative explanation with respect
to the one invoking the Modigliani-Miller theorem and proposed by Kyle and Obizhaeva.
It would actually be quite interesting to investigate other markets such as bond, currency
or futures markets, for which the Modigliani-Miller theorem is totally irrelevant, while
trading invariance still holds – at least at the level of single trades [56,57]. Finally, note
that differences in market structure across countries, such as execution mechanisms, fees
and regulations could also challenge the validity of the results presented here.

Appendix

7.A Trading invariance principle: dimensional analysis +
leverage neutrality

Let us describe the guide lines for the derivation of the trading invariance principle
stated in the work of Kyle and Obizhaeva [51]. From a general point of view Kyle and
Obizhaeva (KO) develop their conjecture applying dimensional analysis combined with
the leverage neutrality principle related to the Modigliani-Miller theorem [62].

Their idea to invoke dimensional analysis follows from the intuitive argument that a
meaningful relation between quantities involving some dimensions should not be affected
by the units in which these dimensions are measured. In their theoretical framework of
the trading invariance principle it is assumed that the relevant dimensions are represented
by time T, shares S, and money U. Based on these dimensions, Kyle and Obizhaeva
turn to the idea of dimensional analysis from which the validity of a considered relation
should not depend on whether we measure time in seconds or minutes, shares in single
shares or in packages of hundred shares, and money in Dollars or in Dollars-cents. From
a formal point of view, this means that a function g(·) relating a quantity of interest Y
to a set of explanatory variables X1, · · · , Xn

Y = g(X1, · · · , Xn) (7.9)

is dimensional invariant if it is invariant under the rescaling of the involved dimensions
(in this case represented by T, S, and U). In the trading invariance framework the
quantity of interest is the arrival rate of bet for a given stock given by

� N = N t+τ
t , the number of bet within a time interval [t, t+τ ] and with dimensional

unit equals to [N ] = T−1.
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On the other side the explanatory variables which can determine the number of bets N
in a given time interval [t, t+ τ ] are

� the traded volume of the stock V = V t+τ
t during the time interval [t, t+τ ], measured

in units of shares per time [V ] = S/T;

� the average price of the stock S = St+τt in the time interval [t, t+ τ ], measured in
units of money per share [S] = U/S;

� the square variance of the stock σ2 = (σ2)t+τt in the time interval [t, t + τ ], with
dimensional unit equals to [σ2] = T−1.

From these assumptions Kyle and Obizhaeva postulate that the number of bets N per
time interval τ can be fully explained from the following four dimensional quantities -
the price S per share (in dollars), the square volatility σ2 (in %2 per time interval τ), the
total amount traded with bets V (shares per time interval τ), and the average cost of
a single bet Iko representing the trading invariant cost (in dollars) - through a function
h(·), i.e.

N = σ2 h

(
SV

σ2Iko

)
, (7.10)

where the four explanatory variables above are combined taking into account the invari-
ance relations pertaining their physical dimensions S, T, and U. However, to determine
the shape of the unknown function h(·) Kyle and Obizhaeva introduce the leverage
neutrality principle [68] which captures the intuition of the Modigliani-Miller theorem
stating that a firm mix of equity and risk free debt securities does not affect the value
of a firm. Defining the leverage quantity as

L =
total assets

equity
(7.11)

it follows that multiplying L by a factor A > 1 is equivalent to paying out (1 − A−1)
of the equity as cash-dividends; on the other side, multiplying L by a factor 0 < A < 1
corresponds to raising new capital in order to increase the firm equity by a factor A−1.
Then from this leverage neutrality principle it emerges that varying the leverage L by a
factor A

� S changes by a factor A−1 and

� σ2 changes by a factor A2.

For example, setting A = 2 corresponds to paying out half of the equity as dividends
so that each share yields a dividend of (1 − A−1)S = S/2. The stock price is thus
multiplied by A−1 = 1/2 while the volatility σ is multiplied by A = 2, and the remaining
quantities are not affected by changing the leverage, in accordance with the insight of
the Modigliani-Miller theorem. The economic reason is that the value of the assets of
the corresponding company and hence the associated risk does not change: in other
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words the capital restructuring between debt and equity should keep the product σ × S
constant without affecting the other variables.

Applying the leverage neutrality principle to Eq. (7.10), which implies its invariance
with respect to the scale transformation S → A−1S and σ2 → σ2A2, Kyle and Obizhaeva
demonstrate through the Vaschy-Buckingham π-theorem (see [117] for reference) that
h(x) ∼ x2/3 in Eq. (7.10), or equivalently f(x) ∼ x−1/2 in Eq. (7.1). From this result it
follows finally the 3/2-law which states that the KO trading invariant cost is given by

Iko =
σSQ3/2

V 1/2
=
W
N3/2

, (7.12)

with W = σSV the total risk exchanged with bets and Q = V/N the average size of a
bet executed on a time interval τ . Note that in this chapter we investigated the trading
invariance principle at the daily time scale fixing τ=1 day and σ = σd.

Figure 7.4: Scatter plot of 〈logW〉 vs. 〈logN〉 for twelve different future contracts
spanning over three years, from January 2012 to December 2014, and sorted by spread
over tick values from cold (large ticks) to warm colours (small ticks) (figure reproduced
from [57]). To test the trading invariance hypothesis the authors firstly average over
all days the logarithm of the considered quantities for each fixed τ = 1 minute bin and
secondly take the average over each these bins. The inset shows the slopes obtained
from linear regression of logW vs. logN , which are all clustered around 3/2 confirming
therefore the 3/2-law at the intraday time scale.

At this point let us review the recent empirical evidences discussed in literature of
the trading invariance principle and then of the 3/2-law. Firstly, the 3/2-law was em-
pirically confirmed by Kyle and Obizhaeva using portfolio transition data [52]. Portfolio
transitions correspond to rebalancing decisions by institutional investors and executed
by brokers. However, these trades only reflect part of the market activity, and it is
furthermore not obvious that these portfolio transitions can be associated with bets. To
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overcome this issue Andersen et al. [56] reformulated the KO trading invariance principle
in a way that can be tested on public trade level data. Their analysis on the E-mini S&P
500 futures contracts showed that the 3/2-law holds remarkably well at the single-trade
level. In this context, Q denotes the average volume of trades and N is the total number
of trades executed within a time interval τ (fixed to 1 minute in their analysis).

Figure 7.5: Centred rolling average with window size=100 of the scatter plot of 〈logW〉
vs. 〈logN〉 for a random subset of twelve different stocks chosen from a pool of three
hundred U.S. stocks and sorted by spread over tick values from cold (large ticks) to
warm colour (small ticks) (figure reproduced from [57]). The empirical analysis is done
considering τ = 5 minutes bins using trades and quotes data from January 2012 to
December 2012, extracted from the primary market of each stock (NYSE/NASDAQ).
The inset shows the slopes obtained from linear regression of log W vs. logN , which are
clearly clustered around the 3/2 value.

Benzaquen et al. [57] address the same question by investigating twelve additional
futures contracts as well as three hundred U.S. stocks. Aiming to confirm that β = 3/2
in the scaling W ∼ Nβ, where W is the total exchanged risk through trades executed
in the time interval τ , they estimate β singularly for each stock (see Figure 7.4) and
future (see Figure 7.5) across a wide range of time scales τ , finding that in average
β = 1.54 ± 0.11. Moreover, they show that the distribution of the trading invariant
Iko depends significantly on the studied asset and thus conclude that the 3/2-law holds
only with weak universality. As an additional contribution, the authors reveal that the
inclusion of the average spread cost per trade is beneficial in the sense that their proposed
invariant is almost constant for different assets.
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Figure 7.6: Empirical cumulative distribution of the traded metaorder’s risk Wi =
σdQi Si without (left panel) and with (right panel) rescaling by the square root of the
daily number N of metaorders per asset. The colored vertical lines represent the loca-
tion of the average for each sample conditional on N . To note that also if the empirical
distribution is not an invariant function of N , we observe that 〈Wi/

√
N〉N ' const., as

evident from the vertical lines in the right panel, which is at the origin of the measured
3/2-law. Furthermore, as shown in the inset the variance 〈W2

i 〉N −〈W2
i 〉N scales linearly

with N , i.e. 〈W2
i 〉N − 〈W2

i 〉N ≈ 〈Wi〉2N ∼ N .

7.B The 3/2-law under the microscope

One may rightfully wonder whether it is possible to understand the 3/2-law from the
statistical properties of the metaorders. For this purpose we start by investigating the
individual metaorder’s risk Wi distribution properties as a function of N . We find that
when rescaling the metaorder’s risk Wi by the square root of the number N of daily
metaorders per asset one obtains a conditional cumulative distribution P(Wi/

√
N |N)

dependent on N but with a mean 〈Wi/
√
N〉N invariant on N (see Figure 7.6)10. It

emerges then that the conditional average metaorder risk Wi can be predicted from the
number N of daily metaorders per asset since 〈Wi〉N scales as Nγ with γ ' 0.5, that is
〈Wi〉N ∼

√
N 11. It immediately follows that combining this empirical result and the

linearity property of the mean, one recovers the 3/2-law 〈W〉N ∼ N3/2, since:

〈W〉N = 〈
N∑
i=1

Wi〉N =
N∑
i=1

〈Wi〉N = N 〈Wi〉N ∼ N
√
N = N3/2. (7.13)

To explain the scaling 〈Wi〉N ∼
√
N through the product 〈σd〉N × 〈QiSi〉N we need to

check for the correlation between the daily volatility σd and the volume in dollars QiSi of
a metaorder, which is found to be 〈C(σd, QiSi)〉 ≈ 3×10−2, where the average 〈·〉 is done

10Here 〈·〉 denotes the average over all days and stocks present in the sample.
11In analogy, the variance 〈W2

i 〉N−〈W2
i 〉N scales linearly with N , i.e. 〈W2

i 〉N−〈W2
i 〉N ≈ 〈Wi〉2N ∼ N .
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Figure 7.7: (Top left panel) Empirical distribution of the scaling exponent ν computed
for each stock regressing σd ∼ Nν : in average 〈ν〉 = 0.25 as shown by the dashed black
line. (Top right panel) Empirical distribution of the scaling exponent δ computed for
each stock regressing QiSi ∼ N δ: in average 〈δ〉 = 0.20 as shown by the dashed black
line. (Bottom left panel) Empirical distribution of the scaling exponent γ computed for
each stock regressing Wi ∼ Nγ : in average 〈γ〉 = 0.5 as shown by the dashed black
line. (Bottom right panel) Signature scatter plot (coloured by density of data) of the
coefficients ν + δ and γ respectively estimated conditioning to each stock.

over all the days and stocks. For each stock we regress Wi ∼ Nγ , σd ∼ Nν , QiSi ∼ N δ,
and we obtain from the empirical distributions of the exponents in Figure 7.7 that their
average values read 〈γ〉 = 0.5, 〈ν〉 = 0.25 and 〈δ〉 = 0.20, thus 〈γ〉 6= 〈ν〉+ 〈δ〉. However,
by looking at the scatter plot of the estimated exponent γ as function of the sum ν + δ
computed separately for each stock (see bottom right panel in Figure 7.7) one observes
a clear linear relation.

A possible and intuitive explanation of the non null measured correlation between
σd and QiSi is that metaorders add up to volume, generate market impact and thus
increase price volatility. In this way trading volume increases due to both an increase in
the number of metaorders and in their sizes, and so does volatility from the increased
market impact as discussed for example in [59]. Note that this reasoning is valid even if
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the metaorders only account for a certain percentage of the total daily market volume
V =

∑N
i=1Qi = υVd with υ adjusting for the partial view of the ANcerno sample in

terms of volume, and for the non-bet traded by intermediaries: from our dataset we
measure in average 〈υ〉 ≈ 5× 10−2.

7.C Statistics of exchanged risks and trading costs

Here we describe some statistics of the metaorders executed from the main investments
funds and brokerage firms gathered by ANcerno. The empirical probability distribution
of the number of metaorders N per asset, of the risk Wi exchanged by a metaorder
and of the total daily traded risk W per asset are illustrated in Figure 7.8. It emerges
that both the number of daily metaorders N and the risk measures typically vary over
several orders of magnitude. In particular, as evident from the left panel in Figure
7.8, there is a significant number of metaorders active every day, since in average ∼ 5
metaorders are executed per day for each asset. Furthermore, as shown in the right panel
of Figure 7.8, both the single metaorder’s risk Wi and the total daily exchanged risk W
vary over almost eight decades. Note that these statistical properties are approximately
independent from the time period and from the economical sector of the asset exchanged
through metaorders.
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Figure 7.8: (Left panel) Empirical probability distribution of the daily number N of
metaorders per asset: N is broadly distributed over two decades with an average close to
5. (Right panel) Empirical probability distributions of the exchanged risk per metaorder,
i.e Wi = σdQiSi, and of the total daily risk per day/assets, i.e W =

∑N
i=1Wi.

In terms of the trading cost statistics we find that, for a single metaorder with
unsigned volume Q, the spread cost cspd = S ×Q is dominant for small volumes, while
the market impact cost cimp = σd × SQ×

√
Q/Vd takes over for large volumes (see left

panel of Figure 7.9). Furthermore, as shown in the right panel of Figure 7.9, the average
daily market impact cost Cimp accounts on average for ≈ 1/2 of the total daily trading
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average cost C = Cspd + Cimp, computed using Yspd = 3.5 and Yimp = 1.5 in Eq. (7.5).
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Figure 7.9: (Left panel) Averaged spread and market impact cost ratios given respec-
tively by cspd/c and cimp/c - with cspd = S ×Q (spread cost), cimp = σd×SQ×

√
Q/Vd

(market impact cost) and c = cspd + cimp (total cost per metaorder) - as function of the
metaorder’s order size Q/Vd: to note that for a metaorder with small (large) order size
the spread (market impact) cost is dominant. (Right panel) Empirical distributions of
the Cspd/C and Cimp/C ratios which give us an idea of the order of magnitude of the
different contributions to the total daily average cost per metaorder C = Cspd + Cimp

(computed from Eq. (7.5) fixing Yspd = 3.5 and Yimp=1.5): the dashed vertical lines
represent the location of the mean values equal respectively to 〈Cspd/C〉 = 0.49 and
〈Cimp/C〉 = 0.51.
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Conclusions

It is widely recognized that trading costs cause a significant drag on fund performance
reducing the profit of a trading strategy. In particular, for large institutional investors
these trading costs are mainly represented by the market impact - the mechanism through
which trades move prices. One of the most surprising empirical findings is that the mar-
ket impact of a so-called metaorder, i.e. a long sequence of orders executed incrementally
in the same direction by the same investor, is approximately described by a square-root
law. Given the not linear nature of this statistical law, prices can be affected by emergent
effects related to the interaction between different investors following the same trading
signal and using similar portfolio allocation strategies. For this reason the principal aim
of this thesis is to investigate the market impact with a data-driven approach based on
the ANcerno dataset which contains metaorders executed by an heterogeneous set of
investors in the U.S. equity market.

In Chapter 4 we quantitatively test for the first time the dynamical theory of liquidity
proposed in [69]. In perfect agreement with this theoretical framework, we find that the
price change conditioned to the incremental execution of an order is characterized by a
crossover in volume from a linear to a square-root regime. Taking into consideration the
interaction of market participants having a wide spectrum of reaction time scales allows
us to reproduce quantitatively and accurately the observed crossover from a linear to a
square-root impact. Furthermore, we find that the square-root regime is independent
from the execution duration of the metaorder, in agreement also with the findings dis-
cussed in Appendix A where we argue that market impact should not be misconstrued
as volatility.

In Chapter 5 we shed light on an apparent paradox: How can a non-linear impact
law survive in the presence of a large number of simultaneously executed metaorders?
We answer this question introducing and investigating the co-impact, which is the term
introduced to describe the market impact taking in consideration the crowding effects
between metaorders simultaneously executed on the same asset. We find that the market
chiefly reacts to the net order flow of ongoing metaorders, without individually distin-
guishing them. The joint co-impact of multiple contemporaneous metaorders depends
on the total number of metaorders and their mutual sign correlation. Using a simple
heuristic model calibrated on data, we reproduce very well the different regimes of the
empirical market impact curves as a function of the volume fraction φ: square-root for
large φ, linear for intermediate φ, and a finite intercept I0 when φ→ 0. The value of the
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intercept I0 grows with the sign correlation coefficient. For an uncorrelated metaorder
with the rest of the market, the impacts of other metaorders cancel out on average. On
the contrary, any intercept of the impact law can be interpreted as a non-zero correlation
with the rest of the market.

In Chapter 6 we investigate what happens to the price when the metaorder execution
is completed. We find that price relaxation takes place as soon as the metaorder ends.
While at the end of the same execution day it is on average ≈ 2/3 of the peak impact,
the decay continues the next days, following a power-law function at short time scales,
and apparently converges to a non-zero asymptotic value at long time scales (∼ 50 days)
equal to ≈ 1/2 of the impact at the end of the first day. Due to a significant, multiday
correlation of the sign of executed metaorders, we find that a careful deconvolution of
the observed impact must be performed to extract the estimated impact decay of an
isolated metaorder.

In Chapter 7 we revisit the trading invariance hypothesis recently proposed by Kyle
and Obizhaeva [51,52] identifying their bets with the ANcerno metaorders. The trading
invariance hypothesis predicts that the quantity Iko := W/N3/2, where W is the ex-
changed risk (volatility x volume x price) and N is the number of bets, is invariant. We
find that the 3/2- scaling between W and N works well and it is robust against changes
of year, market capitalisation and economic sector. However, our analysis clearly shows
that Iko is not invariant and that it is highly correlated with the total trading cost
(spread and market impact) of the metaorder. We then propose new invariants defined
as a ratio of Iko and costs finding a large decrease in variance reconducible to the scaling
of the spread with the volatility per transaction, the near invariance of the distribution
of metaorder size and of the number fractions of metaorders across stocks. Based on
the observed empirical results we argue that the trading invariance is a consequence of
the validity of the square-root law for market impact as well as to the proportionality
between spread and volatility.

In conclusion, this thesis presents a selection of studies related to the market impact
of metaorders executed in the U.S. equity market. We would like to point out that the
reason why large orders have smaller than expected (concave) market impact is far from
being trivial. A lot of efforts in the literature are devoted to understand to what extent
the size of the metaorder allows to predict the price change that they are going to induce,
and yet there is no overall consensus with respect to the precise reasons leading to this
behavior. From our side, we push the boundaries of the problem in several directions and
with different approaches. At this point it would be interesting to investigate the validity
of our results in other markets such as fixed income, currency or future markets. Finally,
we want to stress that given the importance of the discussed topics, this manuscript is
of interest to academicians that investigate price formation mechanism, to practitioners
trying to monitor and reduce their trading costs, and also to regulators that seek to
improve the stability of markets.
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Appendix A

Impact is not just volatility

The notion of market impact is subtle and sometimes misinterpreted. Here we argue that
impact should not be misconstrued as volatility. In particular, the so-called square-root
impact law, which states that impact grows as the square-root of traded volume, has
nothing to do with price diffusion, i.e. that typical price changes grow as the square-root
of time.

The importance of market impact is strictly related to the one of the Transaction
Cost Analysis which has become a very relevant issue in the Asset Management industry.
Transaction costs account for a substantial part of the profits or losses of any investment
strategy. When executing an order to buy or to sell, investors and trading firms have to
worry about several sources of costs. Some costs are easy to identify and quantify, like
market fees or spread costs. Much more subtle, but dominant for large portfolios, are
impact costs. Intuitively, market impact describes the fact that, on average, buy orders
tend to push the price up and sell orders tend to drag the price down. All the subtlety,
however, lies in the words on average. Clearly, while our putative investor is executing
his/her buy order, many things can happen: other investors may simultaneously buy or
sell, market-makers/high frequency traders may unload their inventories, or some news
may become available, pushing the price up or down. While some of these events may be
directly related to his/her buy order, most of them result in a price move unbeknownst
to our investor.

For a large enough number of executed orders, these random price moves average
to zero. But for any given order executed within a time T , the price will randomly
move up or down by an amount ∼ σd

√
T , where σd is the volatility. The impact of an

order, on the other hand, is the part of the price move that survives upon averaging.
Not surprisingly, this impact is much smaller than σd

√
T for small order sizes – see

below for more precise statements. This definition of impact should be further refined
to distinguish between the reactional (or mechanical) impact, that would exist even for
trades without any information content, and the prediction related impact that reveals
the information content of the trade, see [34]. The latter component is usually very
small for medium to long term investors, since information (if any) is supposed to affect
investment time scales much longer than the execution time T (typically several weeks
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or months compared to T ∼ a few days at most1.
One interesting question concerns the dependence of the reactional impact I(Q,T )

on the size Q and duration T of the executed order. A now commonly accepted result
is the so-called square-root law (see e.g. [2,5,9,10,12,13,37,38,50,82]) which states that
in normal trading conditions

I(Q,T ) ≈ Y σd

√
Q

Vd
, (A.1)

where Y is a constant of order unity, σd and Vd are, respectively, the daily volatility and
daily volume corresponding to the traded asset. In fact, a more accurate description was
proposed theoretically in [7, 69], where this square-root dependence becomes linear for
small Q; more precisely:

I(Q,T ) = σd

√
Q

Vd
F(ψ), ψ :=

Q

VdT
, (A.2)

where T is expressed in days such that VdT is the total volume executed during T . The
scaling function F(ψ) is monotonic and behaves as

√
ψ for ψ → 0 and as a constant

Y for ψ → ∞. Therefore, I(Q,T ) is linear in Q for small Q at fixed T , and crosses
over to a square-root for large Q 2. This prediction appears to describe empirical data
surprisingly well as discussed in Chapter 4.

Such a functional form for the reactional impact has two immediate consequences.
One is that for Q � VdT (i.e. when the volume of the whole order Q is much smaller
than the market volume during time T ), reactional impact is much smaller than the
typical price moves: I(Q,T ) � σd

√
T . In other words, the average impact (and there-

fore the associated impact cost) incurred by our investor is very small compared to the
uncertainty on the price move during execution. Large trading firms with active invest-
ment strategies will however be mostly sensitive to the former (as the latter averages to
zero), whereas once-off investors will want to minimise uncertainty, for fear of an adverse
price move while their order is executed. The latter concern is at the heart of the famous
Almgren-Chriss formalism [26].

The second, somewhat surprising consequence is that in the square-root regime,
reactional impact depends only weakly on the execution time T – whereas of course the
typical price changes increase as

√
T . Now, this

√
T dependence was recently argued

to be the mechanism at the heart of the square-root impact law [39]. The argument,
in a nutshell, is that typical investors are essentially sensitive to price uncertainty, so
perceived costs behave as σd

√
T . But if their order of size Q is executed at a constant rate

m0, the time needed to complete the order is T = Q/m0. Hence apparent impact behaves
as σd

√
Q/m0, i.e. a square-root dependence on Q. We believe that this argument is

1Most trades in the ANcerno database discussed below appear to belong to medium or long term
investors.

2Note that, as discussed in [34], this behaviour is not expected to hold in extreme trading conditions,
for example when φ is large and T is small. If latent liquidity has no time to reveal itself in the order
book, convex impact or even runaway situations can ensue – see for example [40].
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Figure A.1: Market impact curves I(Q,T ) = E[ε · (send − sstart)|Q,T ] (left panel) and
price uncertainty measured by V[ε · (send − sstart)|Q,T ] (right panel) as a function of
the relative metaorder size Q/Vd for different buckets of order duration T : for both the
panels and with an abuse of notation the log-prices (sstart, send) are rescaled by the daily
volatility σd per stock while the order size is given by the ratio between the number of
shares Q and the daily total market volume Vd per stock. As shown in the inset of the
right panel, the plateau value increases linearly with the duration T , as expected for a
random walk.

very misleading, and fails at explaining why reactional impact (i.e. the average of price
moves, and not its root-mean-square) behaves as

√
Q 3.

The difference between these two quantities is shown in Figure A.1, based on the
ANcerno database (for full details see Chapter 3). In the left panel, we show the average
log-price difference between the start and the end of the order execution, conditioned
to the order size Q, and for different order durations T (different colors). One clearly
sees the crossover between a T -dependent, steeper than square-root regime for small
Q/Vd and a T -independent, square-root regime for larger Q/Vd, as already reported
in [10, 35, 41, 42]. Note that over 80% of the empirical data lies in the square-root
regime.

In the right panel, we show the variance of price differences, again conditioned to
the order fraction and for different order durations. For small Q, this variance is nearly
independent of the order size Q but linearly increases with T as expected (see inset).
For larger Q, the variance acquires some dependence on Q/Vd, specially for small T . In
order to rationalize these findings, let us postulate that the log-price change ∆s between
the start and the end of the execution of an order of duration T is given by the sum of

3More generally, the average overhead in costs due to impact C can be directly related to I(Q,T ) via

the relation C =
∫ T

0
dt Q̇(t)I(Q(t), t), where Q(t) is the quantity executed by the investor at each time

t ≤ T . On the other hand, the idiosyncratic price moves ∼ σd

√
Q/m0 only relate to execution risk, and

are not directly linked to the average cost C paid by investors, for they average out after a sufficiently
large number of investment decisions are executed.
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an impact contribution and a volatility contribution, i.e.

∆s = send − sstart = ε · I(Q,T )× (1 + αω) + σd

√
Tξ, (A.3)

where s◦ = logS◦ with ◦ = start, end 4, ε = ±1 depending on the sign of the order (buy
or sell), α is a certain fitting parameter, ω, ξ are two independent random variables with
zero mean and unit variance and T is, as above, measured as a fraction of the trading
day. From this ansatz, it follows that

E[ε ·∆s|Q,T ] = I(Q,T ), (A.4)

as it should be of course, and

V[ε ·∆s|Q,T ] = σ2
dT
(
1 + α2ψF2(ψ)

)
. (A.5)

This prediction is plotted in the right panel of Figure A.1, with α as the only fitting
parameter (α ≈ 10−1). Taken together, our ansatz and the two panels of Figure A.1
confirm that:

1. The square-root impact law for E[ε ·∆s|Q,T ] is completely unrelated to the scaling
of the volatility as

√
T .

2. The square-root impact law and its fluctuations (parameterized by α) allows one
to understand the systematic increase of volatility in the presence of a locally large
order (large ψ).

3. As expected, price uncertainty (measured by V[ε · ∆s|Q,T ]) largely exceeds the
average reactional impact contribution: compare the square of the y-axis of the
left panel with the y-axis of the right panel. This means, as emphasized in [39], that
impact has a poor explanatory power compared to volatility. If an asset manager
represents 1% of the market volume, he or she contributes to 5% of the volatility,
which gives a coefficient of determination r2 for the impact term of ≈ 2.5× 10−3.

In conclusion, we want to point out in this appendix some basic facts about market
impact that are sometimes misinterpreted, with Ref. [39] as a case in point. We argue
that impact should not be misconstrued as volatility and in particular, the so-called
square-root impact law, which states that impact grows as the square-root of traded
volume, has nothing to do with price diffusion, i.e. that typical price changes grow
as the square-root of time. We rationalise empirical findings on impact and volatility
by introducing a simple scaling argument which is in agreement with data. It follows
that, even when execution risk is relevant for some investors (and at the core of the
Almgren-Chriss formalism [26]), price variance should certainly not be misconstrued as
price impact.

4Note that we are not rescaling the log-prices (sstart, send) by the daily volatility σd as done in the
chapters of this thesis. This allows to put in evidence the explicit dependence on the daily volatility σd

of the log-price change ∆s as shown in Eq. (A.3).
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