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Abstract

In this thesis we address the problem of the rate of growth of quantum

invariants, speci�cally the Turaev-Viro invariants of compact manifolds

and the related Yokota invariants for embedded graphs. We prove the

recent volume conjecture proposed by Chen and Yang in two interesting

families of hyperbolic manifolds. Furthermore we propose a similar con-

jecture for the growth of a certain quantum invariant of planar graphs,

and prove it in a large family of examples.

This new conjecture naturally leads to the problem of �nding the

supremum of the volume function among all proper hyperbolic polyhedra

with a �xed 1-skeleton; we prove that the supremum is always achieved

at the recti�cation of the 1-skeleton.
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Chapter 1

Introduction

The Jones polynomial is an invariant of knots and links introduced in [24];
it quickly generated a strong interest and, thanks to insights of Witten [55],
led to the construction of the colored Jones polynomials of knots and links
[41], of the Reshetikhin-Turaev invariants of 3-manifolds [42] (and the related
Turaev-Viro invariants [50]), and invariants of embedded graphs [28] and [56],
among other things.

A major question about the invariants originated from the Jones polyno-
mials has been the amount of information that they contain, especially with
respect to their asymptotic behavior. An important motivating question in
their study has been the Kashaev volume conjecture [25]:

Conjecture 1.1. Let K ⊆ S3 be a hyperbolic knot, and JKn the sequence of
its colored Jones polynomials. Then,

lim
n→∞

2π

n
log
∣∣∣JKn (eπi/n)

∣∣∣ = Vol(S3\K)

where Vol(S3\K) is the volume of the unique hyperbolic structure of S3\K.

This conjecture has been veri�ed for knots with few crossings [37] [38] [40],
still only in a �nite number of examples.

As we mentioned, the colored Jones polynomials can be �enhanced� to give
invariants of closed 3-manifolds (the Reshetikhin-Turaev invariants) or com-
pact 3-manifolds (the Turaev-Viro invariants). These invariants are closely
related (see Proposition 3.14), but for the purpose of this thesis we are going
to concentrate on the Turaev-Viro invariants.

The Turaev-Viro invariants (see Section 3.4) take as input:

� an integer r ≥ 2 called the level ;
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4 CHAPTER 1. INTRODUCTION

� a complex number q ∈ C that is either a primitive 2r-th root of unity or
a primitive r-th root of unity if r is odd;

� a compact orientable manifold M

and give as output a real number TVr(M, q). The most natural choice for q is
the �rst root of unity q = eπi/r. This case, called unitary, is the most studied
and the analog of the Volume Conjecture has been an open problem for a long
time.

Conjecture 1.2 (The Witten expansion conjecture for Turaev-Viro invariants
[55]). Let M be a closed manifold, r ≥ 2 and q = eπi/r. Then

TVr(M, q) ∼r→∞
∣∣∣∣∫
A
e2πiCS(A)r(h1

A−h
0
A)e−2πi(

2IA+h0
A

8
)τM (A)

1
2

∣∣∣∣2 .
This conjecture is known for a few cases, most notably lens spaces [23] and

an in�nite family of Dehn surgeries on the �gure eight knot [10], [9]. For a
complete discussion of the known results about the Witten expansion conjec-
ture, see the discussion in the introduction of [10]. The speci�c terms involved
in the conjecture are not important for the purpose of this thesis, however it
is important to notice two di�erences between the Volume Conjecture and the
Witten expansion conjecture:

1. the growth of TVr is polynomial (since the integrand is polynomial in r);

2. the growth of TVr does not involve the hyperbolic volume (indeed, it
only involves topological invariants).

The fact that the growth of TVr in this case is at most polynomial is easy
and has been known for a long time.

In stark contrast to the Witten expansion conjecture, Chen and Yang in
[12] noticed that if we instead choose q = e2πi/r (notice that this is only allowed
when r is odd) the growth of TVr is in line with the Volume conjecture, and
they proposed the following.

The Turaev-Viro Volume Conjecture. LetM be a hyperbolic 3-manifold,
either closed, with cusps, or compact with geodesic boundary. Then as r varies
along the odd natural numbers,

lim
r→∞

2π

r
log
(
TVr

(
M, e

2πi
r

))
= Vol(M) (1.1)

Thus in this case the growth of TVr is expected to be exponential and
determined by the hyperbolic volume. As a matter of fact Chen and Yang
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provide numerical evidence that this behavior is observed for any choice of
root of unity which is not unitary. The conjecture has since been proven for
the complements of the �gure eight knot and the Borromean links [19] and for
all integral (hyperbolic) Dehn surgeries on the �gure eight knot [39].

The colored Jones polynomials can be also extended to de�ne invariants of
colored embedded graphs Γ ⊆M , called the Yokota invariants Yr(M,Γ, col, q).
In this general case a satisfying conjecture about the asymptotic growth of the
Yokota invariant is not yet available; however an elegant formulation is possible
for the case where Γ is a planar 3-connected graph.

Conjecture 1.3 (The Volume Conjecture for polyhedra). Let P be a proper
hyperbolic polyhedron with dihedral angles α1, . . . , αm at the edges e1, . . . , em,
and 1-skeleton Γ. Let colr be a sequence of r-admissible colorings colr(ei) of
the edges e1, . . . , em of Γ such that

2π lim
r→+∞

colr(ei)

r
= π − αi.

Then
lim

r→+∞

π

r
log
∣∣∣Yr(S3,Γ, col, e2πi/r)

∣∣∣ = Vol(P ).

This conjecture appeared in [16] [52] [29] in slightly di�erent versions; here
we propose a uni�ed statement.

In this thesis we explore the asymptotics of these quantum invariants and
their relation to the hyperbolic volume. The �rst main result is the fact that
the Turaev-Viro Volume Conjecture holds for a large family of hyperbolic
manifolds.

The following theorem is proved in a joint work with R. Detcherry, E.
Kalfagianni and T. Yang:

Theorem 1.4. [7] The Turaev-Viro Volume Conjecture holds for the comple-
ments of all Fundamental Shadow Links.

Fundamental shadow links are links in #gS1 × S2 whose complement are
always hyperbolic; furthermore they are universal, in the sense that every
closed oriented 3-manifold is obtained from one of their complements via Dehn
�lling. The fact that the Volume Conjecture holds for these manifolds has a
few implications regarding other open problems in low dimensional topology,
see [7, Section 6].

Regarding the Yokota invariant we introduce here a related invariant that
is, in some sense, an analog for graphs to the Turaev-Viro invariants. This
invariant, that we denote by TVr(Γ, q), is de�ned for any graph Γ ⊆ S3 (not
necessarily trivalent).

We formulate the following volume conjecture regarding its growth.
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Conjecture 1.5 (The Maximum Volume Conjecture). [5] Let Γ ⊆ S3 be a
3-connected planar graph. Then

lim
r→+∞

π

r
log
(
TVr(Γ, e

2πi
r )
)

= sup
P

Vol(P )

where P varies among all proper generalized hyperbolic polyhedra (see De�ni-
tion 2.7) with Γ as a 1-skeleton, and r ranges across all odd natural numbers.

The main feature of the Maximum Volume conjecture is that it does not
involve any angles or colors, as in Conjecture 1.3, and instead it only sees the
�global� geometry of a graph Γ ⊆ S3.

The Maximum Volume conjecture naturally leads to the question of what
is the largest volume that can be attained by proper generalized hyperbolic
polyhedra with a �xed 1-skeleton. In the case of the tetrahedron, the answer is
v8 (the volume of the ideal right-angled octahedron) as proved in [51]. As we
discuss in Chapter 5, this question is complicated by the fact that the space
of polyhedra that we consider is very large: it includes polyhedra with obtuse
angles and with any kind (real, ideal, hyperideal) of vertices, which precludes
the use of powerful results like Andreev's theorem [1] and the Bao-Bonahon
theorem [2].

In Chapter 5 we prove the following theorem, answering this question.

Theorem 1.6 (The Maximum Volume Theorem). [6] For any 3-connected
planar graph Γ,

sup
P

Vol(P ) = Vol(Γ)

where P varies among all proper generalized hyperbolic polyhedra with 1-skeleton
Γ and Γ is the recti�cation of Γ.

The recti�cation of a graph is de�ned in De�nition 2.25; for now it su�ces to
say that Γ is a �nite volume polyhedron that can be easily computed (together
with its volume) from Γ.

Theorem 1.6 is proven by deforming a polyhedron while increasing its vol-
ume, and carefully studying the possible degenerations.

Finally in Chapter 6 we prove the Maximum Volume Conjecture for a large
family of graphs.

Theorem 1.7. [5] The Maximum Volume Conjecture is veri�ed for any planar
graph obtained from the tetrahedron by applying any sequence of the following
two moves:

� blowing up a trivalent vertex (see Figure 1.1) or

� triangulating a triangular face (see Figure 1.2).
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−→

Figure 1.1: Truncating a vertex

−→

Figure 1.2: Triangulating a face

Theorem 1.6 is instrumental in calculating supP Vol(P ) for the graphs in-
volved.

As a corollary of Theorem 1.7, we prove the volume conjecture for a dif-
ferent family of hyperbolic manifolds (see Theorem 6.18). These manifolds
are obtained by gluing ideal right-angled octahedra, but are di�erent from the
Fundamental Shadow Link complements.

The main tool in evaluating the growth of the Turaev-Viro invariant (both
in Theorem 1.4 and Theorem 1.7) is a sharp upper bound on the asymptotic
growth of the 6j-symbol.

Theorem 1.8. [7] For any r, and any r-admissible 6-tuple n1, n2, n3, n4, n5, n6,
we have

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3

n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6 v8 +O

(
log(r)

r

)
.

Furthermore, the proof of Theorem 1.7 relies on an interesting application
of the Fourier transform for the Yokota invariant, �rst introduced by Barrett
[3].





Chapter 2

Three-manifolds and hyperbolic

geometry

In this chapter we lay the topological and geometric groundwork for the rest of
the thesis. In Section 2.1 we discuss knots, links and 3-manifolds, introducing
the combinatorial presentation needed to de�ne the colored Jones polynomials
and the Reshetikhin-Turaev invariants. In Section 2.2 we talk about hyperbolic
geometry, with a particular emphasis on hyperbolic polyhedra and the tools
needed to state and prove the Maximum Volume Theorem 1.6. Finally in
Section 2.3 we focus on the topic of hyperbolic 3-manifolds.

The material in Sections 2.1 and 2.3 is standard and is covered for example
in [32]. The material in Section 2.2 is partly new; references for known results
are given, as appropriate, in the text.

2.1 Dehn surgery and Kirby calculus

Throughout the thesis, M will be a compact, oriented, smooth 3-manifold; it
could have boundary. Recall that a link L ⊆ M is a closed submanifold of
dimension 1 disjoint from ∂M ; topologically it is just a disjoint union of copies
of S1. If the link is connected we call it a knot. Two links are considered
equivalent if there is an ambient isotopy of M sending one to the other.

De�nition 2.1. A framing for a knot L is a trivialization of its normal bundle.
A framed knot is a knot together with a framing; a framed link is a link with
a framing for each component.

Once again, two framed links are equivalent if there is an ambient isotopy
sending one to the other together with their framings.

In dimension 3 there are a few di�erent points of view to see framed knots
and links.

9



10 CHAPTER 2. 3-MANIFOLDS AND HYPERBOLIC GEOMETRY

� First of all, if K is a knot and ν is a section of the normal bundle, we can
extend it to a trivialization by choosing a Riemannian structure on M
and taking the orthogonal to ν. Up to isotopy the choice of Riemannian
structure is inconsequential; therefore, a framing of K is the same as a
nowhere vanishing vector �eld normal to K.

� If we push slightly K in the direction of this vector �eld, we obtain
a parallel copy of K; this parallel copy determines the framing as well,
therefore we could view a framed knot as a knot K together with a choice
of a parallel copy of K.

� Furthermore, K and its parallel copy co-bound an annulus S1 × [0, ε];
therefore we could think of framed knots as the image of embeddings of
S1 × [0, ε] in M .

� Another point of view comes from the fact that a trivialization of the
normal bundle of K �xes a di�eomorphism of a regular neighborhood
of K with S1 × D2; therefore, we could think of a framed knot as an
embedding of S1 ×D2 → S3. It is important to be careful that in this
case the framed knot is the whole embedding, and not just its image in
S3.

If K is a framed knot in S3, we de�ne the self-linking number lk(K) to be
the linking number of K and its parallel. Notice that we need an orientation
on K to de�ne the linking number: we can choose either one as long as we
choose the same orientation on the parallel, and the result does not depend on
the choice.

Similarly, if L = L1 ∪ · · · ∪ Lk is a framed oriented link the symbol lk(L)
stands for the linking matrix of L; this is the matrix whose component i, j is
lk(Li, Lj) if i 6= j and lk(Li) if i = j.

It is convenient to encode framed links into diagrams D ⊆ S2, as is usually
done for links; in this case by convention we take the normal vector �eld to be
tangent (equivalently, orthogonal) to the plane of the diagram (in other words,
the parallel to each component lies on one side of it, without ever crossing it).
Notice that a framing which �wraps around� a component of the link, may be
described with a �kink� in the diagram (see Figure 2.1).

A framed link can have many di�erent diagrams, however any two such
diagrams are related to one another by a �nite sequence of isotopies of S2

and Reidemeister moves of type 2 and 3. This fact can be exploited to de�ne
invariants of framed links from diagrams.

Consider now a framed knot K in S3, given by an embedding of H :=
S1×D2 ⊆ S3. The exterior of K is EK := S3\H̊ which is a compact manifold
whose boundary is identi�ed with S1×S1 by the embedding S1×S1 = ∂H ⊆
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−→

Figure 2.1: The framing (blue) for a knot (black), through an isotopy

←→

Figure 2.2: Reidemeister 2 move

←→

Figure 2.3: Reidemeister 3 move

S3. We can now ��ll� this boundary component of EK by gluing in a solid
torus S1×D2 via the map φ : ∂(S1×D2)→ ∂EK that sends (x, y) ∈ S1×S1

to (y, x), with the identi�cation of ∂EK to S1 × S1 mentioned above. The
result of the gluing is a closed manifold S3

K that we call the Dehn surgery on
K. Gluing component by component we can de�ne the Dehn surgery on a
framed link L, denoted with S3

L. More in general, given a manifold M with a
toric boundary component T and a di�eomorphism φ : T → S1 × S1 we can
de�ne as above the Dehn �lling of the component T of ∂M by gluing a solid
torus S1 ×D2 via φ.

The following result, due independently to Lickorish and Wallace, states
that this construction can be used to obtain any 3-manifold (see for example
[32, Theorem 11.3.15]).
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Figure 2.4: Handle slide between two di�erent components of L

Theorem 2.2. Let M be a closed connected oriented 3-manifold. Then there
exists a framed link L ⊆ S3 such that M ∼= S3

L.

There are always many di�erent ways to realize the same manifold M via
di�erent (i.e. non isotopic) framed links in S3. However it is possible to give,
similarly to Reidemeister moves, a complete set of moves (the Kirby moves
[27]) relating two links giving the same manifold.

Theorem 2.3. Let L1, L2 ⊆ S3 be two framed links giving the same 3-manifold
M under Dehn surgery. Then it is possible to change L1 into L2 via a �nite
sequence of

� isotopies of framed links;

� adding and removing unknots with framing ±1 that are unlinked from
anything else;

� handle slides (see Figure 2.4);

We are going to use this result in the next chapter to de�ne an invariant of
3-manifolds starting from an invariant of framed links.

2.2 Hyperbolic geometry

In this section we lay the necessary background of hyperbolic geometry needed
to state the various volume conjectures and to state and prove the Maximum
Volume Theorem 1.6. Although the de�nition and many of the results hold in
any dimension, we are going to concentrate ourselves on the case of dimension
3.
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The Beltrami-Klein model of hyperbolic space

Let R3,1 be the 4-dimensional Minkowski space; that is to say, the vector space
R4 with the scalar product of signature (3, 1) given by 〈x, y〉 = −x0y0 +x1y1 +
x2y2 + x3y3.

De�ne the upper hyperboloid as

I =
{
x ∈ R3,1 such that 〈x, x〉 = −1 and x0 > 0

}
.

One can check that I is a smooth simply connected manifold, and the
restriction of 〈·, ·〉 to TI gives a Riemannian structure on I that is complete
and has sectional curvature constantly equal to −1. We call any manifold
isometric to I the hyperbolic space of dimension 3 and we denote it with H3.
Furthermore we say that I is the hyperboloid model for H3.

In I, geodesic k-planes correspond to intersections of k + 1-planes in R3,1

with I. Furthermore, if two points x, y ∈ I have distance d, we have

cosh(d) = −〈x, y〉. (2.1)

Consider now the projection π : R3,1 → RP3. The image of I under this
projection is equal to the image of {x ∈ R3,1 such that 〈x, x〉 < 0}, and in the
standard a�ne chart R3 ⊆ RP3 given by (x1, x2, x3) → [1, x1, x2, x3] the set
π(I) is the open unit ball B = {(x1, x2, x3) such that x2

1 + x2
2 + x2

3 < 1}. Of
course π induces a di�eomorphism between I and B ⊆ R3 ⊆ RP3; if we push
forward the Riemannian metric of I via π, we obtain a Riemannian metric on
B that makes it isometric to I, therefore B is a model of hyperbolic space that
we call the Beltrami-Klein model (sometimes also referred to as the projective
model). From now on we are going to only consider the Beltrami-Klein model
of hyperbolic space, therefore we are simply going to call it H3 instead of B.

The Beltrami-Klein model of hyperbolic space is somewhat less employed
than other models, like the disc model or the half-space model. This is mainly
because the Beltrami-Klein model is not conformal (i.e. it is not di�eomorphic
to the Euclidean space via an angle-preserving map) and because the metric
tensor is slightly more complicated. However, it also presents a few useful
properties. First of all, geodesic k-planes are intersections of projective planes
in RP3 with B; when seen in the standard a�ne chart described above, this
means that hyperbolic lines, planes etc. are the same as Euclidean lines, planes
etc. in B.

Furthermore, the embedding B ⊆ R3 ⊆ RP3 allows us to talk about points
of H3 that are at in�nity and even beyond in�nity.

De�nition 2.4. We say that a point p ∈ H3 is real, a point p ∈ ∂H3 ⊆ RP3 is
ideal, and a point q ∈ RP3\H3 is hyperideal.
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Ideal points correspond to the (positive) light-cone {〈x, x〉 = 0} ⊆ R3,1,
while hyperideal points correspond to points on the quadric {〈x, x〉 = 1} ⊆
R3,1, which is a Lorentzian manifold called de Sitter space.

Finally, for our purpose the most useful property of the Beltrami-Klein
model is that we can de�ne a duality in H3 from the duality of RP3. Explicitly,
letM be a k-dimensional plane (for 0 ≤ k ≤ 2) in RP3. Then π−1(M) is going

to be a k+1 dimensional subspace of R3,1. Take its orthogonal
(
π−1(M)

)⊥
with

respect to 〈·, ·〉, and de�ne M⊥ = π
(
π−1(M)⊥

)
which is a 2− k dimensional

plane.

Some property of the duality:

� (M⊥)⊥ = M ;

� M ∩H3 6= ∅ implies M⊥ ∩H3 = ∅;

� if M ∈ RP3\H3 is a point, take the cone tangent to ∂H3 with vertex
M . Then M⊥ is the plane in RP3 that intersects ∂H3 at the points of
tangency.

� if p1, p2 are points connected by a line M , then M⊥ = p⊥1 ∩ p⊥2 ;

� if p ∈ ∂H3, then p⊥ is the plane tangent to ∂H3 in p;

� if p is a point at in�nity of R3 ⊆ RP3, then p⊥ is an equatorial plane (i.e.
a plane containing 0 ∈ R3);

� if p1, p2 are connected by a line intersecting H3, p⊥1 and p⊥2 do not inter-
sect in H3.

De�nition 2.5. If v ∈ RP3\H3 is a hyperideal point, we call Πv := v⊥ ∩ H3

the polar plane of v. The hyperbolic half space of H3 that is on the other side
of v is denoted with Hv.

Hyperbolic polyhedra

De�nition 2.6. A projective polyhedron in RP3 is a non-degenerate convex
polyhedron in some a�ne chart of RP3. Alternatively, it is the closure of a
connected component of the complement of �nitely many planes in RP3 that
does not contain any projective line.

Up to isometry of H3 we can assume that any given projective polyhedron
is contained in the standard a�ne chart.

De�nition 2.7. We introduce the following de�nitions.
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Πv

v

Πv′

v′

v

Figure 2.5: A proper (left) and almost proper (right) truncation.

� We say that a projective polyhedron P ⊆ R3 ⊆ RP3 is a generalized
hyperbolic polyhedron if each edge of P intersects H3 ([45, De�nition
4.7]).

� A vertex of a generalized hyperbolic polyhedron is real if it lies in H3,
ideal if it lies in ∂H3 and hyperideal otherwise.

� A generalized hyperbolic polyhedron P is proper if for each hyperideal
vertex v of P the interior of the polar half space Hv contains all the
other real vertices of P (see Figure 2.5, left). We say that it is almost
proper if it is not proper but still for each hyperideal vertex v of P , the
polar half space Hv contains all the other real vertices of P ; we call a
vertex v belonging to some Πv′ an almost proper vertex (see Figure 2.5,

right), and
−→
vv′ an almost proper edge (by contrast, the other vertices

and edges are proper).

� We de�ne the truncation of a generalized hyperbolic polyhedron P at a
hyperideal vertex v to be the intersection of P with Hv; similarly the
truncation of P is the truncation at every hyperideal vertex, that is to
say P ∩ (∩v hyperidealHv). We say that the volume of P is the volume
of its truncation; in the same spirit, the length of an edge of P is the
length of its subsegment contained in the truncation. Notice that the
volume of a non-empty generalized hyperbolic polyhedron could be 0 if
the truncation is empty; likewise the length of some of its edges could
be 0.

In the remainder of the paper we simply say proper polyhedra (or almost
proper polyhedra) for proper (respectively, almost proper) generalized hyper-
bolic polyhedra. We are mostly interested in proper polyhedra; almost proper
polyhedra can arise as limits of proper polyhedra, and they will be studied
carefully in the proof of Theorem 1.6.

When it has positive volume, the truncation of a generalized hyperbolic
polyhedron P is itself a polyhedron; some of its faces are the truncation of
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−→

Figure 2.6: Removing the truncation faces recovers the original polyhedron.

the faces of P , while the others are the intersection of P with some truncating
plane; we call such faces truncation faces. Notice that distinct truncation faces
are disjoint (even more, the planes containing them are disjoint) [2, Lemma
4]. If an edge of the truncation of P is not the intersection of an edge of P
with the truncating half-spaces, then we say that the edge is arising from the
truncation. Every edge that arises from truncation is an edge of a truncation
faces. The converse is true for proper polyhedra but not necessarily for almost
proper ones: it could happen that an entire edge of P lies in a truncation
plane, and we do not consider this to be an edge arising from the truncation.

Remark 2.8. For proper or almost proper polyhedra the dihedral angles at
the edges arising from the truncation are π

2 .

Remark 2.9. An important feature of the truncation of a proper polyhedron
P is that it determines P (once we know which faces of P are the truncation
faces), since it is enough to remove the truncation faces to undo the truncation
(see Figure 2.6). This also holds for almost proper polyhedra (see Figure 2.8
in Section 5). In particular this will allow us to use many standard techniques
to study them, such as the Schlä�i formula (see Theorem 2.36).

We are always going to consider face marked polyhedra; this means that
each face of a polyhedron is uniquely determined, and therefore they never
have any symmetry.

Remark 2.10. If Γ is the 1-skeleton of a projective polyhedron, then it is
3-connected (that is to say, it cannot be disconnected by removing two ver-
tices). Conversely, any 3-connected planar graph is the 1-skeleton of a proper
polyhedron [46]. If a planar graph is 3-connected, then it admits a unique em-
bedding in S2 (up to isotopies of S2 and re�ection) [21, Corollary 3.4]. Hence
when in the following we consider a planar graph Γ, it is always going to be
3-connected and embedded in S2. In particular, it will make sense to talk
about the faces of Γ and the dual of Γ, denoted with Γ∗. The graph Γ∗ is
the 1-skeleton of the cellular decomposition of S2 dual to that of Γ. Notice
that if Γ is the 1-skeleton of a polyhedron P , then Γ∗ is the 1-skeleton of the
polyhedron whose vertices are dual to the faces of P , hence Γ is 3-connected
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if and only if Γ∗ is.

De�nition 2.11. Let Γ be a planar 3-connected graph; the space of all the
face-marked proper polyhedra with 1-skeleton Γ considered up to isometry (i.e.
projective transformations preserving the unit sphere) is denoted with AΓ.

Remark 2.12. It is important not to mix up the 1-skeleton of a projective
polyhedron with the 1-skeleton of its truncation. In what follows, whenever
we refer to 1-skeleta we always refer to those of projective polyhedra (and not
their truncation) unless speci�ed.

Whether a vertex of a polyhedron is real, ideal or hyperideal can be read
directly from the dihedral angles.

Lemma 2.13. Let P be a generalized hyperbolic polyhedron, v a vertex of
P and θ1, . . . , θk the dihedral angles of the edges incident to v. Then v is
hyperideal if and only if θ1, . . . , θk are the angles of a hyperbolic k-gon; v is
ideal if and only if θ1, . . . , θk are the angles of a Euclidean k-gon; v ∈ H3 if
and only if θ1, . . . , θk are the angles of a spherical k-gon. Equivalently,

� v is hyperideal if and only if
∑

i θi < (k − 2)π;

� v is ideal if and only if
∑

i θi = (k − 2)π;

� v ∈ H3 if and only if
∑

i θi > (k − 2)π.

For a proof of this Lemma see for example [2, Proposition 5].

Finally in the proof of the main theorem we will need a way to deform a
almost proper polyhedron to be proper. We will rely on the following easy
lemma.

Lemma 2.14. Let v ∈ RP3\H3 and w ∈ Hv. If Ψ is a translation of R3 or a
homothety centered in 0 such that Ψ(v) is contained in the tangent cone of v
to ∂H3, then if Ψ(w) ∈ H3 it is also contained in the interior of HΨ(v).

Notice that in particular this lemma says that if w is an almost proper
vertex of a polyhedron P , then Ψ(w) is a proper vertex of Ψ(P ).

Proof. The plane ΠΨ(v) is disjoint from Hv (see Figure 2.7), and certainly
Ψ(w) ∈ Hv.

The Bao-Bonahon existence and uniqueness theorem

A special class of proper polyhedra is that of the hyperideal polyhedra, i.e.
generalized hyperbolic polyhedra with no real vertices. Since there are no real
vertices, hyperideal polyhedra are automatically proper. In [2], Bao and Bona-
hon gave a complete description of the space of angles of hyperideal polyhedra.
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v

Ψz(v)

Figure 2.7: Pushing P towards H3 pushes its dual plane away from the center

Theorem 2.15. Let Γ be a 3-connected planar graph with edges e1, . . . , ek.
There exists a hyperideal polyhedron P with 1-skeleton Γ and dihedral angles
θ1, . . . , θk ∈ (0, π) at the edges e1, . . . , ek if and only if the following conditions
are satis�ed:

� for any closed curve γ ⊆ S2 passing transversely through distinct edges
ei1 , . . . , eih of Γ exactly once, we have

∑h
j=1 θij ≤ (h− 2)π with equality

possible only if ei1 , . . . , eih share a vertex;

� for any arc γ ⊆ S2 with endpoints in two di�erent faces sharing a ver-
tex, and passing transversely through the distinct edges ei1 , . . . , eih of Γ

exactly once, we have
∑h

j=1 θij < (h − 1)π unless the edges ei1 , . . . , eih
share a vertex.

Moreover, if P exists it is unique up to isometry.

In particular, this theorem says that dihedral angles uniquely determine a
hyperideal polyhedron, and the space of angles of hyperideal polyhedra with
�xed 1-skeleton is a convex subset of Rk.

The space of proper polyhedra AΓ

Let Γ be a 3-connected planar graph, and denote with AΓ the set of isometry
classes of face-marked proper polyhedra with 1-skeleton Γ.

The �rst result about AΓ that we need is an explicit description.
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Proposition 2.16. The set AΓ is naturally a smooth manifold.

Proof. Montcoquiol proved in [35] that face-marked Euclidean polyhedra in R3

with 1-skeleton Γ form a smooth submanifold of ((RP3)∗)F , with F the number
of faces of Γ. Since proper polyhedra are in natural 1-1 correspondence with
an open subset of Euclidean polyhedra, they are also a smooth submanifold
of ((RP3)∗)F . To conclude we notice that the action of the isometries of H3

on this space of polyhedra is free and proper, so that the quotient AΓ is a
manifold as well.

Consider the dihedral angle map Θ : AΓ → R# of edges assigning to each
polyhedron the tuple of dihedral angles of its edges. This is clearly a smooth
map; it is also a local di�eomorphism at any polyhedron with no ideal vertices.

Theorem 2.17. [35, Theorem 19],[54, Theorem 1.1] If P is a compact hy-
perbolic polyhedron (i.e. P has only real vertices), the dihedral angles are local
coordinates for AΓ around P .

Corollary 2.18. If P is a proper polyhedron with no ideal vertices, the dihedral
angles are local coordinates for AΓ around P .

Proof. Take P 0 the truncation of P , and denote with Γ0 its 1-skeleton. Since
P 0 is compact the dihedral angles are local coordinates for AΓ0 around P 0;
the dihedral angles of P 0 are either π

2 (at the edges lying on truncation faces)
or those of P (at the remaining edges). Then the dihedral angles of P form a
local set of coordinates for the subset of AΓ0 of polyhedra with right angles at
the edges arising from truncation, and any polyhedron in this subset is going
to be the truncation of a proper polyhedron in AΓ close to P .

De�nition 2.19. The closure of AΓ, denoted with AΓ, is the topological
closure of the space of proper polyhedra with 1-skeleton Γ (as a subset of
((RP3)∗)F ), quotiented by isometries. As customary the boundary of AΓ is
AΓ\AΓ and is denoted with ∂AΓ. We make no claim that AΓ is a manifold;
even if it were, its boundary as a manifold would not necessarily be ∂AΓ.

We will also need local coordinates for certain parts of ∂AΓ; this is provided
by the following corollary.

Corollary 2.20. If P is an almost proper polyhedron with 1-skeleton Γ and no
ideal vertices, it lies in the closure of AΓ. Moreover, if ~θ = (θ1, . . . , θe) are the

dihedral angles of the proper edges of P , and
−→
θ′ = (θ′1, . . . , θ

′
e) is close enough

to ~θ, then there is a unique almost proper polyhedron with 1-skeleton Γ close

to P in AΓ with the same almost proper vertices and with angles
−→
θ′ .
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Πv

v

−→

v

Figure 2.8: Removing a truncation face to recover an almost proper polyhedron

Proof. To show the fact that P ∈ AΓ we need to exhibit a family of proper

polyhedra with 1-skeleton Γ converging to P in (RP3)
∗F
. To do this apply an

isometry so that 0 ∈ P , and consider Φλ : R3 → R3 the multiplication by λ.
Then for λ ∈ (1 − ε, 1] the polyhedron Φλ(P ) is proper by Lemma 2.14, has
1-skeleton Γ and converges to P as λ→ 1. To see that Φλ(P ) is proper notice
that for every hyperideal vertex v, Φλ(v) is contained in the tangent cone of v
to ∂H3, and we can conclude by applying Lemma 2.14.

To show the second assertion, reorder the indices so that θ1, . . . , θl are the
angles of the proper edges that are contained in some truncation plane. Then
P0, the truncation of P , is compact, has 1-skeleton Γ0 and dihedral angles
θ1 − π

2 , . . . , θl − π
2 , θl+1, . . . , θe,

π
2 , . . . ,

π
2 . By Theorem 2.17, if θ′1, . . . , θ

′
e are

su�ciently close to θ1, . . . , θe there is a unique Q0 (up to isometry) close to P0

with 1-skeleton Γ0 and angles θ′1 − π
2 , . . . , θ

′
l − π

2 , θ
′
l+1, . . . , θ

′
e,
π
2 , . . . ,

π
2 . Some

faces of Q0 correspond to truncation faces of P0; if we glue to Q0 the convex
hull of a truncation face and its dual point, we undo the truncation (see Figure
2.8). Notice that the angles at the edges that are glued are either θ′i− π

2 + π
2 = θ′i

if i ≤ l, or π
2 + π

2 otherwise (hence the edge in this case disappears).

If we undo every truncation in this manner, we obtain an almost proper
polyhedron Q with 1-skeleton Γ and angles θ′1, . . . , θ

′
e. To see that Q is close to

P notice that Q0 is close to P0, which means that all the faces of Q0 are close
to the corresponding faces of P0; but the faces of P and Q depend continuously
on the faces of P0 and Q0.

Convergence of polyhedra

As we have seen in Subsection 2.2, a proper polyhedron P is naturally an

element of
(
(RP3)∗

)F
where F is the number of faces of P . Therefore when

we say that a sequence Pn of polyhedra with 1-skeleton Γ converges to P ∈(
(RP3)∗

)F
(or has P as an accumulation point) we mean in the topology of(

(RP3)∗
)F

. Since RP3 is compact, any such sequence Pn has an accumulation

point P ∈
(
(RP3)∗

)F
. Each component of Pn is a plane in RP3, and Pn selects
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one of the two hyperspaces on either side of it. Therefore if Pn → P then
P can still be interpreted as a convex intersection of half-spaces, however it
could stop being a projective polyhedron if it is contained in a plane or not
contained in an a�ne chart.

Analogously, we will consider sequences of k-gons An ⊆ H2, which are

naturally elements of
(
(RP2)∗

)k
; when we say that they converge to a polygon

A, we mean in the topology of this space, with the same considerations we
made for polyhedra.

If the limit point P is a projective polyhedron, each of its vertices is a limit
of some vertices of Pn, similarly every line containing an edge of P is the limit
of some lines containing edges of Pn and every plane containing a face of P is
the limit of some planes containing a face of Pn respectively. However some
vertices of Pn could converge to points of P which are not vertices; similarly
some edge of Pn could collapse to a point or converge to a segment which is
not an edge, and a face of Pn could collapse to an edge or a point.

Furthermore in some degenerate cases, even though Pn converges to P ,
some of its vertices do not converge; for example, if vn lies on three faces of
Pn that become coplanar, the sequence vn could have accumulation points
anywhere on the limit face. Throughout the paper we are almost always going
to be concerned with sequences of polyhedra with angles which are decreasing
and bounded away from 0; in this case the situation is somewhat nicer.

Notation: throughout the rest of the paper we consider sequences of poly-
hedra Pn with the same 1-skeleton Γ. Their boundary will always be equipped
with a �xed isomorphism to the pair (S2,Γ); because of Remark 2.10, there is
essentially a unique way to do this, so it will be not explicitly de�ned. If we
consider a sequence of vertices vn ∈ Pn we always assume that each vn is the
vertex of Pn corresponding to a �xed vertex v of Γ; the same with a sequence
of edges or faces.

Lemma 2.21. Let Pn be a sequence of proper or almost proper polyhedra with
1-skeleton Γ and with angles bounded away from 0 and π, and converging to
the projective polyhedron P . If Π1

n 6= Π2
n are planes containing faces of Pn

converging to the planes Π1,Π2 containing faces F 1, F 2 of P , then Π1 6= Π2.

Proof. Suppose by contradiction that Π1 = Π2. If Πn
1 and Πn

2 share an edge of
Pn this would imply that the dihedral angle at this edge would either converge
to π or 0 which is a contradiction. If instead Πn

1 and Πn
2 do not share an edge

in Pn, still there must be some other Πn
3 containing a face of Pn such that Πn

1

and Πn
3 must share an edge and Πn

3 → Π1; otherwise, if every plane containing
a face adjacent to Πn

1 converged to a plane di�erent from Π1, then P would
not be convex.
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−→

Figure 2.9: An edge collapsing to a vertex.

Corollary 2.22. With the same hypotheses of Lemma 2.21, if vn is a sequence
of vertices of Pn, then it cannot converge to (or have an accumulation point
in) an internal point of a face of P . Similarly, any accumulation point of a
sequence of edges en of Pn cannot intersect the interior of any face of P .

Proof. If vn converged to (or had an accumulation point in) an internal point
of a face of P , then all faces of Pn containing vn would become coplanar in the
limit, contradicting Lemma 2.21.

Consider now a sequence of edges en: following the same reasoning, if
en converged (or has an accumulation point) to an edge that intersected the
interior of a face of P , the two faces of Pn containing en would become coplanar
in the limit.

Corollary 2.23. If vn converges to an internal point of an edge, then the
accumulation points of all edges that have vn as endpoints must be contained
in that edge as well.

Suppose that Pn satis�es all the hypotheses of Lemma 2.21, that Pn → P
with P a generalized hyperbolic polyhedron with 1-skeleton Γ′ and additionally
that all vertices of Pn converge. Then the limit induces a simplicial map
φ : Γ→ Γ̃′ where Γ̃′ is obtained from Γ′ by adding bivalent vertices to some of
its edges. The map φ sends

� each vertex of Γ to its limit in Γ̃′;

� each edge of Γ linearly to the convex hull of the image of its endpoints
(the convex hull is contained in Γ̃′ by Corollary 2.22).

Notice that Γ̃′ is not always 3-connected, however it is still 2-connected
since it cannot be disconnected by removing a single vertex.

Lemma 2.24. The map φ : Γ→ Γ̃′ factors through a graph Γ̂, isomorphic to
Γ̃′ and obtained from Γ via a �nite sequence of the following moves:

(i) an edge of Γ collapses to a vertex (see Figure 2.9);

(ii) a face of Γ collapses to an edge (see Figure 2.10).
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−→

Figure 2.10: A face collapsing to an edge.

Proof. Let Λv ⊆ Γ be the subset Λv := φ−1(v) for any v vertex of Γ̃′.

The map φ satis�es the following properties:

� φ is a surjective simplicial map between 2-connected planar graphs;

� for every v vertex of Γ̃′, the set Λv is connected;

� if a cycle λ is contained in Λv, then all vertices in one of the two com-
ponents of the sphere bounded by λ must be in Λv.

The fact that φ is surjective, simplicial and between 2-connected planar
graphs is obvious; let us prove that Λv is connected.

First notice that if w1, w2 ∈ Λv lie on the same face of Γ, they are in
the same connected component of Λv (even if they are not vertices of Γ).
This is because the face must correspond to a convex face of Pn, and if two
di�erent vertices of a sequence of convex polygons coincide in the limit, then by
convexity one of the two paths connecting them (on either side of the boundary
of the polygon) must coincide in the limit as well.

Take now generic w1, w2 ∈ Λv: they determine points wn1 , w
n
2 ∈ Pn. Pick

any converging sequence of planes Πn containing wn1 , w
n
2 and cut Pn along

Πn; for n big enough the planes can be chosen so that the 1-skeleta of the
resulting polyhedra do not change with n (since they depend on the edges of
Pn that are intersected by Πn). This gives a sequence of polyhedra Rn with
wn1 and wn2 collapsing to the same point as n → ∞; moreover now wn1 and
wn2 share a face Fn ⊆ Πn. Then there is a sequence zn1 , . . . , z

n
k of vertices of

Rn that all converge to v; each zni shares an edge with zni−1 and zni+1. The
points zn1 , . . . , z

n
k can also be naturally viewed as points in the 1-skeleton of

Pn: notice that zi shares a face with zi+1 in Γ, therefore they are all in the
same connected component of Λv. Similarly w1 lies on the same face of z1 and
w2 lies on the same face of zk, and we obtain that w1 and w2 are in the same
connected component of Λv.

Finally, let λ be a cycle contained in Λv, and K1,K2 the two connected
components of S2 bounded by λ. If v1 ∈ Γ ∩K1 and v2 ∈ Γ ∩K2 and neither
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of them was in Λv, then Γ̃′ could be disconnected by removing v. To see this,
notice that φ(v1) 6= φ(v2) and take any path γ connecting φ(v1) to φ(v2). We
wish to prove that γ must contain v, and to do so we show that there is a path
from v1 to v2 contained in φ−1(γ) (such a path has to cross λ ⊆ Λv, hence
v ∈ γ). Take the edge e of γ containing φ(v1), and lift it to any edge ẽ of Γ. If
v1 /∈ ẽ, it can connected to one of its endpoint via a path contained in Λφ(v1)

since this is connected. We can keep lifting the path γ to a path contained in
φ−1(γ), one edge at a time, gluing endpoints with a path contained in φ−1(γ)
when necessary.

To see this, notice that φ(v1) 6= φ(v2) and any path γ connecting φ(v1) to
φ(v2) must pass through v, since it would lift to a path contained in φ−1(γ)
connecting v1 to v2 which has to pass through λ. This contradicts the fact
that Γ̃′ is 2-connected.

We now prove that any map φ : Γ1 → Γ2 satisfying the previous 3 properties
must factor through a graph Γ̃ obtained via edge or face collapses as in the
thesis of the Lemma. Let n be the number of vertices of Γ1 and m the number
of vertices of Γ2, and proceed by induction on n−m.

If n−m = 0 then Γ1 is isomorphic to Γ2 and there is nothing to prove.

For the inductive step, we have n > m which implies there is a w such
that Λw contains more than one vertex; we have by hypothesis that Λw is a
connected subgraph of Γ1.

If Λw has a leaf, then φ factors through the graph obtained from Γ1 by
contracting the two vertices of this leaf. If Λw contains a cycle λ, then all
vertices in one of the two components of the plane bounded by λ must be
in Λw. In particular Λw contains a cycle that bounds a face, and φ factors
through the graph obtained from collapsing this face to an edge.

In either case, the new graph has fewer vertices than Γ1 and the induced φ
has the same 3 properties. We can then conclude by induction.

The recti�cation of a polyhedron

De�nition 2.25. We say that a projective polyhedron Γ is a recti�cation of
a 3-connected planar graph Γ if the 1-skeleton of Γ is equal to Γ and all the
edges of Γ are tangent to ∂H3.

Remark 2.26. Notice that, by de�nition, Γ is not a generalized hyperbolic
polyhedron, since none of its edges intersectH3. However as we will see it is still
possible to give a de�nition of the volume of Γ as for any proper polyhedron.

Remark 2.27. A recti�cation of Γ gives a circle packing in ∂H3 = S2 with
tangency graph Γ∗. To see this, take the circles arising from the intersection
of Γ with ∂H3; it is immediate to see that they are a circle packing and that
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their tangency graph is Γ∗, since each circle corresponds to a face of Γ and two
circles are tangent if and only if their faces share an edge.

From this we could quickly prove the existence and uniqueness of the recti-
�cation by invoking the Koebe-Thurston Theorem [47, Corollary 13.6.2] about
the existence and uniqueness of circle packings; however Thurston's proof of
this theorem requires implicitly the existence and uniqueness of the recti�ca-
tion. Therefore, we are going to prove this separately in Proposition 2.29, with
essentially the same proof given in [47].

Remark 2.28. If two planes of RP3 intersect in a line tangent to ∂H3, then
their hyperbolic dihedral angle is 0; furthermore two distinct planes which
intersect in H3 have dihedral angle 0 if and only if they intersect in a line
tangent to ∂H3. Therefore, a projective polyhedron is a recti�cation of Γ if
and only if its 1-skeleton is Γ, all its edges intersect H3 and all its dihedral
angles are 0.

The polyhedron Γ is not a generalized hyperbolic polyhedron, since its edges
do not intersect H3. However its truncation can be de�ned in the same way as
before, and it can be described very explicitly. Consider two vertices v, v′ of
Γ connected by an edge vv′ tangent to ∂H3. The planes Πv and Πv′ intersect
at the point of tangency, and the truncation of Γ is going to have an ideal,
4-valent vertex with only right angles at that point. This can be repeated for
every edge of Γ to see that its truncation has only right angles, and only ideal
4-valent vertices. Some of its faces come from faces of Γ, while the others from
its vertices. Notice that because of this, even though Γ is not a generalized
hyperbolic polyhedron, its truncation is an ideal �nite volume right-angled
hyperbolic polyhedron and therefore Γ has a well de�ned hyperbolic volume.

This explicit description of the truncation of Γ quickly leads to the existence
and uniqueness of the recti�cation.

Proposition 2.29. For any 3-connected planar graph Γ, the recti�cation Γ
exists and is unique up to isometry.

Proof. Consider the planar graph obtained by taking a vertex for each edge of
Γ, where two vertices are joined by an edge if and only if the corresponding
edges share an angle (i.e. they share a vertex and they lie on the same face)
in Γ. This graph is 4−valent, and by Theorem 2.15 it is the 1-skeleton of a
unique (up to isometry) right-angled ideal polyhedron P ; this is going to be
the truncation of Γ. Some faces of P correspond to vertices of Γ, while the
others correspond to its faces. Then, the faces of P corresponding to faces of Γ
bound the recti�cation Γ of Γ, and we can reconstruct uniquely Γ from Γ.

Remark 2.30. Notice that from the polyhedron P constructed in the proof
of Proposition 2.29 it is immediate to see that the recti�cation of Γ and of
its dual Γ∗ have the same truncation (and in particular the same volume): if
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Figure 2.11: The recti�cation of a tetrahedron (left) and its truncation (right),
the ideal right-angled octahedron. The gray faces arise from the truncation of
the top and bottom vertices.

Figure 2.12: The pentagonal pyramid (left, thick blue) with the truncation
faces (in gray); on the right, its truncation, the pentagonal antiprism.

we took the faces of P corresponding to vertices of Γ, these would bound the
recti�cation of Γ∗.

Example 2.31. The truncation of the recti�cation of the tetrahedral graph
(Figure 2.11) is the right-angled hyperbolic ideal octahedron, whose volume is
v8
∼= 3.66. As we noted in the introduction, it is proven in [51, Theorem 4.2]

that indeed the supremum of volumes of proper hyperbolic tetrahedra is equal
to v8.

Example 2.32. The truncation of the recti�cation of the n-gonal pyramid is
the n-gonal antiprism. Its volume is given by the formula [47]:

2n
(

Λ
(π

4
+

π

2n

)
+ Λ

(π
4
− π

2n

))
.
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Remark 2.33. As we noted the truncation of Γ is an ideal right-angled hy-
perbolic polyhedron; its volume can be calculated with a computer (see [53]
for a table with many computed volumes).

To �nish we prove that even though the recti�cation of Γ is not a generalized
hyperbolic polyhedron, nevertheless it is a limit of hyperideal (hence, proper)
hyperbolic polyhedra.

Lemma 2.34. There exists a continuous family of proper polyhedra Pε with
1-skeleton Γ that converges to (a polyhedron in the isometry class of) Γ as
ε→ 0.

Proof. Take Pε to be in the unique isometry class of polyhedra with 1-skeleton
Γ and all angles equal to ε; this can be done for any ε < π

k (where k is the
maximum valence among vertices of Γ) by Theorem 2.15.

Since Pε is de�ned only up to isometry, we need to �x an isometry class to
establish the convergence. To do so we need a preliminary lemma of planar
hyperbolic geometry.

Lemma 2.35. If θn1 , . . . , θ
n
k are angles of a hyperbolic k-gon An, for n ∈ N,

and as n → ∞ we have θni → θi with
∑

i θi < (k − 2)π then up to a suitable
choice of isometry class of each An, every accumulation point of An (with
the convergence described in Section 2.2) is a hyperbolic polygon (possibly with
ideal vertices); furthermore there is always at least one accumulation point.

Proof. Suppose �rst that An is a triangle and vn1 , v
n
2 , v

n
3 are its vertices. Up to

isometry we can suppose that for all n the vertices vn1 and vn2 lie on the line
(−1, 1)× {0} ⊆ H2 ⊆ R2 and vn3 lies on the line {0} ×R. Then as n→∞, up
to a subsequence if necessary, vni → vi ∈ H2.

Pass to a subsequence such that vn1 , v
n
2 , v

n
3 converge to v1, v2, v3. If the vi's

are distinct, then An converges to the triangle with vertices v1, v2, v3. If vi = vj
we assume i = 1, j = 2 and v3 6= v1 (all other cases are identical). However
this would mean that the internal angle of An at vn2 must have the same limit
as the external angle of An at vn1 . This implies that the limit of the sum of
angles of An is π, contradicting the hypothesis on the angles.

Suppose now that An is an n-gon, and triangulate it (with the same com-
binatorial triangulation for all n). One of the triangles must satisfy the hy-
potheses of the lemma, and thus we can choose an isometry class for each n so
that in any subsequence, this triangle converges to a non degenerate triangle;
of course then if Ank converges to some A, then A must be non-degenerate
since it contains a non-degenerate triangle.

Now pick a vertex v of Γ; up to isometry we can make it so that the
corresponding vertex vε ∈ Pε is independent of ε. Then any subsequence of
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Aε := Pε ∩ Πvε satis�es the hypotheses of Lemma 2.35, and we can choose a
representative of Pε so that (in this subsequence) Aε converges to some A of
positive area.

Each plane containing a face of Pε is naturally an element of (RP3)∗, hence
up to taking a subsequence each face of Pε converges to a subset of a plane:
the set of all limit planes will delimit a convex set P ∗. To show that P ∗ is a
polyhedron, we need to prove that it is non-degenerate: this is because it must
contain the cone from v to A.

As we noted previously every vertex of P ∗ must be a limit of vertices of
Pε; likewise every edge of P ∗ is a limit of edges of Pε. However a priori many
vertices of Pε could converge to the same vertex, and likewise with the edges.
Furthermore, the angles of P ∗ could be di�erent than the limit of the angles
of Pε. We now show however that in this speci�c case none of this happens.

Notice that each edge eε of Pε has its dihedral angle converging to 0, hence
the faces Π1

ε and Π2
ε determining e must either coincide in the limit (which

would contradict the fact that P ∗ is non-degenerate) or must converge to two
faces Π1 and Π2 intersecting in an edge tangent to ∂H3. Therefore, every edge
of P ∗ is tangent to ∂H3 and P ∗ is the recti�cation of its 1-skeleton. If there
are no two vertices of Pε converging to the same vertex of P ∗ then of course
the 1-skeleton of P ∗ is Γ and we have concluded. Suppose then that many
vertices of Pε converge to a vertex w of P ∗: since each vertex of Pε is outside
H3 and each edge intersects H3, w must lie on the sphere at in�nity. Then P ∗

is a non-degenerate projective polyhedron such that:

� each of its edges is tangent to ∂H3;

� some of its vertices are in ∂H3.

However such a polyhedron does not exist. Therefore P ∗ = Γ.

Suppose now that Pε has a di�erent subsequence converging to some other
P̃ ∗. The same argument implies that this subsequence converges to Γ, hence
Pε → Γ.

The Schlä�i formula and volume

The fundamental tool to study the volume of proper polyhedra is the Schlä�i
formula (see for example [33, Chapter: The Schlä�i di�erential equality]).
Remember that the volume of a proper polyhedron is equal to the hyperbolic
volume of its truncation.

Theorem 2.36. If Pt is a smooth family of proper or almost proper polyhe-
dra without ideal vertices with the same 1-skeleton, same set of almost proper
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vertices, dihedral angles θt1, . . . , θ
t
n and edge lengths lt1, . . . , l

t
n, then

∂Vol(Pt)

∂t
∣∣
t=t0

= −1

2

∑
i

lt0i
∂θti
∂t
∣∣
t=t0

Remark 2.37. Usually this result is stated for compact hyperbolic polyhedra
(i.e. with no hyperideal vertices), however it is straightforward to generalize
it to proper or almost proper polyhedra without ideal vertices (it can also
be generalized to the case with ideal vertices; however this case carries some
technical di�culties and we will not need it). This is because a path of proper
or almost proper polyhedra Pt induces a path of truncated polyhedra P 0

t ;
the length of an edge in Pt is the same (by de�nition) as the length of the
corresponding edge in the truncation, and the derivatives of all angles are the
same, since an angle of P 0

t is either the same as the corresponding angle of Pt,
di�ers by a constant, or is constantly π

2 and thus does not contribute to the
sum.

However the Schlä�i formula de�nitely does not hold for generalized hyper-
bolic polyhedra, as the truncation angles could vary.

In particular, the Schlä�i formula implies that if all the angles are decreas-
ing, the volume is increasing.

We recall a well known fact about the convergence of volumes.

Lemma 2.38. If Pn ⊆ H3, n ∈ N is a sequence of compact hyperbolic polyhe-
dra, and Pn converges to the compact convex set P as n → +∞ (as elements

of ((RP3)
∗
)
F
), then Vol(Pn)→ Vol(P ).

Proof. Suppose �rst that P has non-empty interior (i.e. it is a polyhedron).
Up to isometry, we can assume that 0 is in the interior of P (therefore, 0 ∈ Pn
for n big enough). Consider the map Φ0

λ : R3 → R3 given by multiplication by
λ. View Pn and P as subsets of H3 ⊆ R3. Since Pn → P , there exists an εn
such that Φ1−εn(Pn) ⊆ P with εn → 0 as n→∞, because P has non-empty in-
terior. By modifying εi for i ≤ n appropriately, we can assume that Φ1−εn(Pn)
contains every Φ1−εi(Pi) for i < n (since Pn is convex for every n). Therefore
the sequence Φ1−εn(Pn) is an increasing sequence of compact (convex) poly-
hedra that converges to P ; the monotone convergence theorem then tells us
that Vol (Φ1−εi(Pi)) → Vol(P ). Since εi → 0 then Vol (Φ1−εi(Pi)) − Vol(Pi)
converges to 0, which concludes the proof.

If instead P has volume 0, then for any ε > 0, there is an n big enough
that Pn is contained in an ε neighborhood of P for any n > n, which implies
that Vol(Pn)→ Vol(P ) = 0.

Notice that in general it is not true that if Pn is a sequence of compact
hyperbolic polyhedra that converges to a (non-degenerate) �nite-volume P ,



30 CHAPTER 2. 3-MANIFOLDS AND HYPERBOLIC GEOMETRY

then Vol(Pn)→ Vol(P ). To see a counterexample, take a tetrahedron Tα with
3 real vertices and a hyperideal vertex, with sum of angles at the hyperideal
vertex equal to α < π. Glue two copies of Tα along the truncation face to obtain
a compact prism Pα, and let α → π. Then Vol(Pα) = 2Vol(Tα) → 2Vol(Tπ)
but Pα converges to a tetrahedron (where one copy of Tα gets pushed to
in�nity), and thus Vol(Pπ) = Vol(Tπ).

However, if Pn converges to a �nite-volume polyhedron P and the con-
vergence is nice enough, then the result still holds; this is the content of the
following lemma.

Lemma 2.39. Suppose Pn is a sequence of compact polyhedra (i.e. all their
vertices are real) with 1-skeleton Γ such that Pn → P with P a �nite volume
(possibly degenerate) convex subset of H3 and such that if vn1 , v

n
2 are vertices

of Pn that converge to the same point in P , then the distance between vn1 and
vn2 converges to 0. Then Vol(Pn)→ Vol(P ).

Proof. If P is a point on ∂H3 then every edge length of Pn goes to 0 by
assumption; this implies that Pn is contained in an ε-neighborhood of one of
its vertices, hence its volume goes to 0. Suppose then that P contains a point
p ∈ H3.

Take any subsequence Pnk of Pn; up to a subsequence Pnkj we can assume

that every vertex of Pnkj converges. If we prove that Vol
(
Pnkj

)
→ Vol(P ) we

conclude the proof; therefore we can assume that every vertex of Pn converges.

It su�ces to prove the lemma for tetrahedra. Indeed we can triangulate Pn
by taking the cone over an interior point pn converging to p, and by further
triangulating each pyramid in a �xed combinatorial way. Each tetrahedron in
the triangulation converges to a (maybe degenerate) tetrahedron in a triangu-
lation of P , hence if the volume of each tetrahedron converges to the volume
of its limit, then the volume of Pn must converge to the volume of P .

So let Pn be a tetrahedron converging to a (possibly degenerate) tetra-
hedron T . If T is compact we can apply Lemma 2.38 to conclude. If T is
non-degenerate and has ideal points, we can for the sake of simplicity further
triangulate so that T only has one ideal vertex v. Then if we truncate Pn and
T along a horosphere centered in v we obtain a sequence of compact sets with
volumes close to those of Pn converging to a compact set with volume close to
that of T , which concludes the proof.

If instead T is degenerate and has ideal vertices, we distinguish 2 cases.
If no two vertices of Pn converge to the same point, then we can apply the
same reasoning as the previous case by cutting along appropriate horospheres.
Otherwise, we need to show that Vol(Pn)→ 0. There are (at least) two vertices
of Pn converging to the same vertex of T , and by assumption their distance goes
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to 0. This means that for n big enough, Pn is contained in an ε-neighborhood
of one of its faces. Since Pn has bounded surface area, Vol(Pn)→ 0.

2.3 Hyperbolic 3-manifolds

The material in this section is standard and can be found for example in [32]
or [47].

De�nition 2.40. A hyperbolic 3-manifold is a connected smooth 3-manifold
with a complete Riemannian structure with sectional curvature everywhere−1.
In other words, a hyperbolic 3-manifold is a Riemannian manifold isometric
to the quotient of H3 by a free, discrete group of isometries.

Since the works of Thurston [47], it has been clear that hyperbolic 3-
manifolds are central to the study of topology in dimension 3. The result which
forms the basis for this interconnectedness between geometry and topology in
dimension 3 is the Mostow Rigidity Theorem.

Theorem 2.41 (Mostow Rigidity Theorem). Let M1,M2 be two �nite volume
hyperbolic 3-manifolds, and φ : π1(M1)→ π1(M2) be an isomorphism between
their fundamental groups. Then there is an isometry Φ : M1 → M2 such that
Φ induces φ on fundamental groups.

The Mostow rigidity theorem has far reaching consequences; for the purpose
of this thesis, the most salient is the fact that if M is a 3-manifold with a
hyperbolic structure, then Vol(M) is a well-de�ned topological invariant of
M .

More mundanely, since if a smooth 3-manifold admits a �nite volume hy-
perbolic structure then this is essentially unique, we also say ��nite volume
hyperbolic 3-manifold� to mean �smooth manifold admitting a �nite volume
hyperbolic structure�. Likewise, if L ⊆M is a link, we say that it is hyperbolic
if M\L admits a �nite volume hyperbolic structure.

Theorem 2.42 (Thick-thin decomposition). Let M be a �nite volume ori-
entable hyperbolic 3-manifold; then M is di�eomorphic to the interior of a
compact 3-manifold with only toric boundary components.

Theorem 2.43 (Thurston's hyperbolic Dehn �lling Theorem). Let M be a
�nite volume orientable hyperbolic 3-manifold which is the interior of M . Let
T be a boundary component ofM ; then for all but a �nite number of choices for
φ : T → S1 × S1, the manifold obtained by Dehn �lling T with φ is hyperbolic
with �nite volume.

There is a plethora of interesting examples of hyperbolic 3-manifolds; in-
deed, �most� interesting 3-manifolds are hyperbolic, in some sense. Here we
describe the family of hyperbolic manifolds which will be featured in Theorem
1.4, the Fundamental Shadow Links.
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Figure 2.13: The building block

Figure 2.14: The link in the boundary of the handlebody

The building block for these links is a 3-ball with 4 disks on its boundary,
and 6 arcs connecting them, as in Figure 2.13. If we take c building blocks
B1, . . . , Bc and glue them together along the disks, in such a way that each
endpoint of each arc is glued to some other endpoint (possibly of the same
arc), we obtain a (possibly non-orientable) handlebody H of genus c+ 1 with
a link in its boundary, such as in Figure 2.14. By taking the orientable double
of this handlebody (by picking the orientable double cover H̃ and quotienting
∂H̃ by the deck involution), we obtain a link inside Mc := #c+1(S1 × S2).
We call a link obtained in such a way a Fundamental Shadow Link (FSL for
short).

The most important features of these links are that their quantum invari-
ants (see Lemma 3.13) and geometry are well understood:

Lemma 2.44. [17, Proposition 3.33] If L ⊆Mc is a fundamental shadow link,
then Mc \ L is hyperbolic of volume 2cv8.



Chapter 3

Quantum invariants

In this chapter we introduce the quantum invariants we study: the colored
Jones polynomial in Section 3.1, the Kau�man skein bracket for trivalent
graphs in 3.2, the Reshetikhin-Turaev invariants in Section 3.3, the Turaev-
Viro invariants in Section 3.4 and �nally the Yokota invariant in Section 3.5.
An introduction to some of these topics can be found in Chapters 3, 13 and
14 of [31] or in [26]. This chapter contains almost no original material; we
mostly follow the aforementioned textbooks with only mild generalizations or
reformulations.

3.1 The Kau�man skein module

Let M be a compact, oriented 3-dimensional manifold, and take A to be a
variable.

De�nition 3.1. The skein module ofM , denoted with S(M), is the Z[A,A−1]-
module spanned by all framed links in M up to isotopy, quotiented by the
following two relations:

� = A +A−1 (Kau�man 1)

� = (−A2 −A−2) (Kau�man 2)

The skein module of M behaves well with respect to embeddings between
manifolds; that is to say, if f : M → N is an embedding, then there is an
induced map f∗ : S(M)→ S(N).

33
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Figure 3.1: The cube [−1, 1]× [0, 1]× [0, 1] with 6 marked segments in the top
and bottom face.

The study of the skein module of manifolds is a fruitful and interesting �eld;
however for the purpose of this thesis only a few easy examples are needed,
starting with M = S3 and M = S1 ×D2.

Lemma 3.2. 1. The skein module of S3 is 1-dimensional and spanned by
the empty link;

2. The skein module of S1×D2 is isomorphic to the module of polynomials
Z[A,A−1][x], where xi is the framed link given by i parallel copies of
S1 × [−ε, ε] ⊆ S1 ×D2.

In particular, the fact that S3 is one dimensional and spanned by the empty
set permits to de�ne the Kau�man bracket of a link (or even linear combina-
tions thereof), by taking 〈L〉K to be the unique element of Z[A,A−1] such that
L = 〈L〉K∅ as elements of S(S3).

There is also a relative version of the skein module. Let M be a manifold
with boundary ∂M containing some disjoint segments I1, . . . , I2n. We de�ne
the skein module of (M,∂M, I) as the module generated by framed links and
framed embedded arcs L such that L ∩ ∂M = I, quotiented by the Kau�man
relations above. Notice that if I contains 2n segments, then L must contain
exactly n arcs. If ∂M is connected, then the skein module only depends on
the number of segments, hence we simply denote it with S(M, 2n).

Consider M = [−1, 1] × [−1, 1] × [−1, 1] with n segments contained in
{−1}×{0}× [0, 1] and the same n segments contained in {1}×{0}× [0, 1] (i.e.
they are the same subset of [0, 1], as in Figure 3.1). We can take M1,M2 to be
two copies ofM and stack them on top of each other, gluing 1× [0, 1]× [0, 1] of
M1 to −1× [0, 1]× [0, 1] ofM2, and rescaling the �rst coordinate to once again



3.1. THE KAUFFMAN SKEIN MODULE 35

1 e1 en−1

Figure 3.2: The basis of Tn

obtain [−1, 1]× [0, 1]× [0, 1]. This gives a smooth map φ : M1tM2 →M that
induces a product in S(M, 2n); it is immediate to see that this turns the skein
module in an algebra Tn usually called the Temperley-Lieb algebra. A basis
1, e1, . . . , en−1 for Tn as an algebra is given by Figure 3.2; the identity element
is the �rst tangle on the left.

Lemma 3.3. The Jones-Wenzl idempotent f (n), de�ned inductively by the
following formula

n = n− 1 +
A2n−2 −A−2n+2

A2n −A−2n
n− 1

n− 1

(3.1)

has the following properties:

� f (n)f (n) = f (n);

� f (n)ei = eif
(n) = 0;

� f (n) − 1 is in the algebra generated by e1, . . . , en−1.

The Jones-Wenzl idempotent is a linear combination of diagrams; however,
in practice it is helpful to think of it as if it was a single diagram. When we do
this, we draw it as in the left hand side of (3.1), with a single strand instead
of n, and a label next to the square to signify that we are considering f (n).

We can de�ne an additional map on S(M, 2n) by gluing the top of the
cylinder to its bottom to obtain S1×D2; a skein element γ of S(M, 2n) is sent
to a skein element tr(γ) ∈ S(S1 ×D2) which we call the trace of γ.

De�nition 3.4. Let K ⊆ S3 be a framed knot, realized by an embedding
i : S1 × D2 → S3, and take n ∈ N+. We de�ne the n-th colored Jones
polynomial of K (denoted with JKn ) to be the Kau�man bracket of the image
of f (n) under the composition i∗ ◦ tr. If L is a link, and each component is
colored with col = (n1, . . . , nk) we de�ne J

L
col by embedding the corresponding

Jones-Wenzl idempotent in each component.
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a

c b
−→

a

c b

Figure 3.3: Inserting Jones-Wenzl idempotents along a vertex

3.2 The Kau�man bracket of trivalent graphs

The colored Jones polynomial could be calculated, in principle, directly from
the de�nition, expanding the Jones-Wenzl idempotent as a linear combina-
tion of diagrams and calculating the Kau�man bracket of the resulting links.
However this approach is very cumbersome, and leads to a satisfying result
only in a handful of cases. Fortunately there are ways to compute the Jones
polynomial exploiting some of the properties of the Jones-Wenzl idempotent;
to carry out these calculation however we need a way to extend the de�nition
of the Jones polynomial.

De�nition 3.5. A framed graph Γ ⊆ S3 is a graph in S3 together with a
2-dimensional oriented thickening, considered up to isotopy. More precisely,
a framed graph Γ is a pair G,F with G an embedded graph in S3 and F an
embedded orientable surface containing G as a deformation retract.

In this subsection we only consider trivalent framed graphs, that is to say
only framed graphs where each vertex lies on exactly 3 edges (notice that
circular component are allowed, as they have no vertices). We will study more
general graphs in Subsection 3.5.

De�nition 3.6. We say that a triple (a, b, c) of non-negative integers is ad-
missible if

� a+ b+ c is even;

� a 6 b+ c, b 6 a+ c and c 6 a+ b (the triangular inequality).

We call a map {edges of Γ} → N a coloring of Γ; we say that it is admissible
if the triple surrounding each vertex is admissible.

Let Γ ⊆ S3 be a trivalent framed graph and col an admissible coloring of
Γ. We can associate to (Γ, col) a linear combination of framed links in S3

as follows: every edge e gets replaced by col(e) parallel strands and every
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Figure 3.4: A Theta graph

vertex gets replaced as in Figure 3.3 (notice that since col is admissible, this
substitution can always be done uniquely). This associates to (Γ, col) a linear
combination of links L ∈ S(S3). Then the Kau�man bracket 〈Γ, col〉K is
de�ned as the Kau�man bracket of L. If col is not admissible, by convention
we say that 〈Γ, col〉K = 0. For the remainder of the thesis we are going to use
the variable q = A2, so that 〈·〉K ∈ Z[q1/2, q−1/2]. If L is a colored framed link,
we think of it as a framed graph with no vertices, and of course JLcol = 〈L, col〉K .

From now on we are going to be interested only in the Kau�man bracket
evaluated at a root of unity; we �x r ≥ 3 odd and q ∈ C∗ a primitive r-th root
of unity.

The quantum integer {n} is de�ned as qn− q−n, and the quantum factorial

{n}! is ∏n
i=1{i}. Sometimes we will write [n] for {n}{1} for short, and similarly

[n]! for
∏n
i=1[i]. Furthermore, we denote with Ir the set of even numbers

{0, 2, . . . , r − 3}.
Remark 3.7. The choice of even numbers in the de�nition of Ir corresponds to
using the SO(3) Reshetikhin-Turaev invariants rather than the SU(2) version.

We say that a triple (a, b, c) is r-admissible if (a, b, c) is admissible and

� a, b, c ≤ r − 2;

� a+ b+ c ≤ 2r − 4.

We say that a coloring of Γ is r-admissible if the triple at every edge is r-
admissible.

We can obtain the following simple formulas for the Kau�man bracket by
induction on the colors.

� If U is the trivial knot colored with n, then 〈Γ, n〉K = ∆n := (−1)n[n+1].

� If Θ is the Theta graph depicted in Figure 3.4, colored with the r-
admissible triple a, b, c, we have

Θ(a, b, c) = (−1)
a+b+c

2
[a+b+c

2 + 1]![a+b−c
2 ]![a−b+c2 ]![−a+b+c

2 ]!

[a]![b]![c]!
(3.2)
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n4

n6 n5

n2

n1

n3

Figure 3.5: An admissible coloring for a tetrahedron

When a vertex v of Γ is colored by an r-admissible triple a, b, c, for con-
venience we write Θ(v) instead of Θ(a, b, c). For convenience we also de�ne
∆(a, b, c) = Θ(a, b, c)−1/2 and ∆(v) analogously. Notice that the number in-
side the square root is real; by convention we take the positive square root
of a positive number, and the square root with positive imaginary part of a
negative number.

The bracket 〈·〉K we just de�ned is sometimes called the Kau�man bracket
in the Kau�man normalization. In the remainder of the thesis we will prefer
to deal with the unitary normalization instead.

De�nition 3.8. The Kau�man bracket with the unitary normalization, de-
noted simply by 〈·〉, is de�ned by

〈Γ, col〉 =

( ∏
v vertex of Γ

∆(v)

)
〈Γ, col〉K

It is possible to show by induction on the colors that in this normalization
the tetrahedron of Figure 3.5 colored with the r-admissible tuple (n1, . . . , n6)
is equal to the 6j-symbol given by

∣∣∣∣n1 n2 n3

n4 n5 n6

∣∣∣∣ =

4∏
i=1

∆(vi)

MinQj∑
z=MaxTi

(−1)z[z + 1]!∏4
i=1[z − Ti]!

∏3
j=1[Qj − z]!

(3.3)

where:

� v1 = (n1, n2, n3), v2 = (n1, n5, n6), v3 = (n2, n4, n6), v4 = (n3, n4, n5);

� T1 = n1+n2+n3
2 , T2 = n1+n5+n6

2 , T3 = n2+n4+n6
2 and T4 = n3+n4+n5

2 ;

� Q1 = n1+n2+n4+n5
2 , Q2 = n1+n3+n4+n6

2 and Q3 = n2+n3+n5+n6
2 .
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Remark 3.9. Notice that if z ≥ r−1, then the summand in (3.3) correspond-
ing to z is equal to 0.

Proposition 3.10. The Kau�man bracket is the unique map

〈·〉 : {colored trivalent framed graphs in S3} → C

satisfying the following properties:

1. If Γ is the planar circle with no vertices colored with n, then 〈Γ〉 = ∆n;

2. If Γ is a Theta graph (see Figure 3.4) colored with the r-admissible triple
a, b, c then 〈Γ〉 = 1;

3. If Γ is a tetrahedron colored with the r-admissible 6-tuple (n1, . . . , n6)
then 〈Γ〉 is the 6j-symbol;

4. The fusion rule:

〈 b

a

〉
=
∑
i∈Ir

∆i

〈
b

a

i
b

a

〉
(3.4)

5. If Γ has a bridge (that is to say, an edge that disconnects the graph if
removed) colored with i 6= 0, then 〈Γ〉 = 0;

6. If at some vertex of Γ the colors do not form an r-admissible triple, then
〈Γ〉 = 0;

7. If Γ is colored with an r-admissible coloring such that the color of a non-
circular edge e is equal to 0, then 〈Γ〉 = 1√

∆a∆b
〈Γ′〉 where Γ′ is Γ with

e removed, and a, b are the colors of the edges that share a vertex with
e (notice that since the coloring is r-admissible, two edges sharing the
same vertex with e will have the same color);

8. The framing change:

〈
a

cb

〉
= (−1)

b+c−a
2 q

b(b+2)+c(c+2)−a(a+2)
4

〈
a

c b
〉

9. If Γ is the distant union of Γ1 and Γ2, then 〈Γ〉 = 〈Γ1〉〈Γ2〉.
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−→

Figure 3.6: Adding two vertices to remove a crossing

−−−−→

Figure 3.7: Applying the fusion rule to all edges incident to a face to obtain a
bridge

Proof. The fact that the Kau�man bracket satis�es the listed properties can
be found in [26, Summarized in Chapter 9] (notice that [26] uses the Kau�man
normalization; however going from one to the other is immediate). The fact
that these properties determine the bracket uniquely comes from the fact that
they are enough to calculate the bracket of any colored framed graph. To
see this, take a framed colored graph (Γ, col) in S3, and take a diagram for it.
First we show that 〈Γ, col〉 can be calculated as a linear combination of colored
planar graphs. Then we show that the bracket of colored planar graphs can
be computed from the trivial knot, the Theta graph and the tetrahedron.

To see this consider a crossing of Γ; apply a fusion rule to the two strands
to obtain a picture as in Figure 3.6; then the crossing can be undone using
rule 8.

Consider now Γ, col a planar colored graph with n vertices, and �x a planar
diagram for it. By Property 9 we can assume that Γ is connected. Let k be
the minimum number of edges of a face of Γ. We show that Γ, col can be
calculated by induction on n. If n = 0 then Γ is a trivial knot and Property
1 gives its value. Suppose now that we can calculate 〈Γ, col〉 using Properties
1-9 for any i < n. If k = 1 there is a bridge; if it is colored with a 6= 0 then
〈Γ, col〉 = 0, otherwise the bridge can be eliminated to remove two vertices,
and 〈Γ, col〉 can be computed as the bracket of a graph with n− 2 vertices. If
k > 1 we can take a minimal face and apply the fusion rule iteratively to all
edges incident to the face (see Figure 3.7 for the case of k = 4). This creates
a bridge which is removed as before, and Γ is split into two disjoint graphs;
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U U+ U−

Figure 3.8: The framed trivial knots U,U+, U−.

the �rst has n− k vertices and the second (the one that contains the minimal
face) has 2k − 2 vertices. However since k is the minimal number of edges on
a face of Γ we must have either n ≥ 2k, n = 4, k = 3 or n = 2, k = 2, and the
latter two cases are the tetrahedron and theta graph respectively.

In what follows sometimes we will color edges of Γ with linear combinations
of colors; the Kau�man bracket can be extended linearly to this context. In
particular, we will use Kirby's color Ω :=

∑
i∈Ir ∆ii.

3.3 The Reshetikhin-Turaev invariants

LetM be a closed oriented connected 3-manifold, and choose L ⊆ S3 a framed
link that gives M by Dehn surgery. Let U,U+ and U− be the framed knots
given by Figure 3.8; each is a trivial knot but with di�erent framing. Let lk(L)
be the linking matrix of L, and σ+ and σ− be the numbers of positive and
negative eigenvalues of lk(L) respectively. Finally we still denote with Ω the
coloring of any link with Kirby's color Ω on each component of the link. Recall
that r is odd and greater than 2, and q is a primitive r-th root of unity.

De�ne the Reshetikhin-Turaev invariant as

RTr(M) := 〈U,Ω〉
−1−b1(M)

2
〈L,Ω〉

〈U+,Ω〉σ+〈U−,Ω〉σ−
.

Theorem 3.11. The Reshetikhin-Turaev invariant does not depend on the
choice of L.

This invariant can also be extended to an invariant of links in 3-manifolds
as follows.

Let L ⊆ M be a framed link in a 3-manifold, and let col be a coloring
of the components of L with elements of Ir = {0, 2, . . . , r − 3}. Find a link
L′ ⊆ M such that M\L′ is di�eomorphic to a link complement in S3 (by an
abuse of notation we still call this second link L′); this is just saying that M
is obtained via Dehn surgery on L′ ⊆ S3. If L and L′ intersect (in M), do a
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small isotopy of one of them to have them disjoint. Since M\L′ ∼= S3\L′ the
link L can be seen as a (colored) link in S3 (which, once again, we still denote
with L) disjoint from L′. Let Ω ∪ col be the coloring of the link L′ ∪ L given
by coloring each component of L′ by Ω and each component of L by its color
in col. As before σ± are the number of ±-signed eigenvalues of lk(L′). Then

RTr(M,L) := 〈U,Ω〉
−1−b1(M)

2
〈L′ ∪ L,Ω ∪ col〉
〈U+,Ω〉σ+〈U−,Ω〉σ−

is an invariant of the link L ⊆M with coloring col. Notice that we picked an
arbitrary perturbation of either L or L′ to make them disjoint; however it can
be shown that RTr is independent of this choice.

Example 3.12. The invariants of the following links/manifolds are trivial to
calculate:

� The manifold S1 × S2 is obtained as surgery from U ; it is immediate to
check that RTr(S

1 × S2) = 1 for all r;

� The manifold S3 is obtained as surgery from either U+ or U−; therefore

RTr(S
3) = 〈U,Ω〉−1/2 = q−q−1

√
−r ;

� For any colored framed link L ⊆ S3, RTr(S
3, L, col) = RTr(S

3)〈L, col〉.

While it is technically possible to compute the Reshetikhin-Turaev invari-
ants for any manifold directly from the de�nition, it is almost always unwieldy.
There is an alternative point of view which allows for much cleaner compu-
tation: shadows. The shadow reformulation of the Rewshetikhin-Turaev in-
variants can be found in [48, 49]; we are not going into details, as we only
need the calculation of the Reshetikhin-Turaev invariants for the case of the
Fundamental Shadow Links.

Lemma 3.13. [[13, Proposition 4.1] following [14]] If L = L1t · · ·tLk ⊆Mc

is a fundamental shadow link and col ∈ Ikr is a coloring of its components, then

RTr (Mc, L, col) =

2

√
sin
(

2π
r

)
r

−c c∏
i=1

∣∣∣∣col(i1) col(i2) col(i3)
col(i4) col(i5) col(i6)

∣∣∣∣ (3.5)

where ij is the component of the link L passing through the j-th strand of block
i.

3.4 The Turaev-Viro invariants

LetM be an orientable compact 3-manifold with a partially ideal triangulation
τ . By this we mean that
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� some vertices of some tetrahedra are truncated;

� the intersection of any tetrahedron T with ∂M is exactly the faces cor-
responding to the truncated vertices of T ;

� the faces corresponding to truncated vertices give a triangulation for ∂M .

Denote with Ar(τ) the set of r-admissible colorings of τ , with V the set of
interior vertices of τ (exactly those that are not truncated) and with E the
set of interior edges (by which we mean edges that are not contained in the
boundary). If col ∈ Ar(τ) assigns to T ∈ τ the colors n1, n2, n3, n4, n5, n6 as
in Figure 3.5, then we denote with |T |col the 6j-symbol∣∣∣∣n4 n5 n6

n1 n2 n3

∣∣∣∣ .
Similarly, if e ∈ E we de�ne

|e|col = (−1)col(e)
{col(e) + 1}
q − q−1

.

De�ne the Turaev-Viro invariant of M at level r in the root q as

TVr(M, τ, q) :=

(
2 sin

(
2π
r

)
√
r

)2|V | ∑
col∈Ar(τ)

∏
e∈E
|e|col

∏
T∈τ
|T |col.

If τ and τ ′ are two partially ideal triangulations of M , then TVr(M, τ, q) =
TVr(M, τ ′, q) [50]. Hence we have a topological invariant of M , denoted by
TVr(M, q), depending on r and q.

Proposition 3.14. [7, Propositon 5.3] For any link L = L1 t · · · t Lk in a
closed oriented 3-manifold M ,

TVr (M \ U(L)) =
∑
col∈Ikr

|RTr(M,L, col)|2 (3.6)

where U(L) is an open regular neighborhood of L.

Proof. For a compact, oriented 3-manifold X with toroidal boundary,

TVr(X) = RTr(|DX|)

where DX is the double of X along its boundary ([8, Theorem 3.2] for the

case q = e
πi
r , adapted to other roots of unity in [19, Theorem 3.1]). Now

let X = M \ U(L). Because of the axioms of the TQFT associated to the
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Reshetikhin-Turaev invariants, we have RTr(DX) = 〈Zr(X), Zr(X)〉, where
Zr(X) is the vector in the TQFT hermitian vector space Vr(∂X).

The boundary ofX is a union of connected toroidal components T1t· · ·tTk,
and Vr(∂X) = Vr(T1)⊗ · · · ⊗Vr(Tk). An orthogonal basis for the vector space
Vr(Ti) is (ej)j∈Ir where ej is the solid torus with boundary Ti and whose
core is colored with color j. Therefore, an orthogonal basis for Vr(∂X) is
(ej1 ⊗ · · · ⊗ ejk)j∈Ikr . By the gluing axioms of the TQFT, RTr(M,L, col) =
Zr(M,L, col) = 〈Zr(X), ecol1 ⊗ · · · ⊗ ecolk〉. Since the basis is orthogonal, we
have

Zr(X) =
∑
col∈Ikr

RTr(M,L, col)ecol1 ⊗ · · · ⊗ ecolk

hence

〈Zr(X), Zr(X)〉 =
∑
col∈Ikr

|RTr(M,L, col)|2

concluding the proposition.

3.5 The Yokota invariant

In this subsection we give an overview of the Yokota invariant, which general-
izes the Kau�man bracket invariant of trivalent graphs to graphs with vertices
of any valence; it was �rst introduced in [56].

Suppose Γ ⊆ S3 is a framed graph with vertices of valence ≥ 3; as before
r > 2 is odd and q = e2πi/r.

For a vertex v of Γ, we can take a small ball B containing v, and replace
Γ∩B with a trivalent planar tree in B having the same endpoints in ∂B∩Γ (see
�gure 3.9). We call this procedure a desingularization of Γ at v. Notice that if
v has valence greater than 3, then this procedure is not unique; however, any
desingularization is related to any other via a sequence of Whitehead moves
(see �gure 3.10).

We say that the trivalent graph Γ′ is a desingularization of Γ if it is obtained
from Γ by desingularization of each vertex of valence > 3.

De�nition 3.15. Let (Γ, col) be a framed graph in S3 colored with elements
of Ir. Let Γ′ be a desingularization of Γ. Call e′1, . . . , e

′
k the edges of Γ′ that

were added by the desingularization. If k > 0, the Yokota invariant of (Γ, col)
is

Yr(Γ, col) :=
∑

col′∈Ikr

(
k∏
i=1

∆col′(e′i)

)
|〈Γ′, col ∪ col′〉|2
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−−−−→

Figure 3.9: Desingularization of a vertex of valence 6

−−−−→

Figure 3.10: A Whitehead move

with col′ coloring the edges e′1, . . . , e
′
k. If instead k = 0 (i.e. Γ = Γ′ i.e. Γ is

trivalent) then Yr(Γ, col) = |〈Γ, col〉|2.

As we did with the Kau�man bracket, we extend linearly the Yokota in-
variant to linear combinations of colors. Notice that in this case, even if Γ is
trivalent, we may get Yr(Γ, col) 6= |〈Γ, col〉|2.

Remark 3.16. We stress the fact that we are using the unitary normalization
for the Kau�man bracket. If we instead used the Kau�man normalization 〈·〉K
of [26], the de�nition of the Yokota invariant of Γ, col would be

Yr(Γ, col) :=
∑

col′∈Ikr

∏k
i=1 ∆col′(e′i)∏

v vertex of Γ Θ(v)
|〈Γ′, col ∪ col′〉K |2

Proposition 3.17. [56] The Yokota invariant does not depend on the choice
of desingularization.

We can easily extend the Yokota invariant to graphs with 1-valent and
2-valent vertices as well via the following de�nition and formulas.

The Yokota invariant of a graph with a single edge and two distinct end-
points colored with i is δi,0;
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a

b

c

−→

a

b

c

a

b

c

Figure 3.11: A vertex sum of two trivalent vertices

Y

(
i j

)
=
δi,j
∆i

Y

(
i

)
;

Y

(
i

)
= δi,0Y

( )
.

Now we give four important properties of the Yokota invariant.

Proposition 3.18. The following hold:

1. The Yokota invariant does not depend on the framing of Γ.

2. If an edge e of Γ is colored with the Kirby color Ω, and Γ′ is obtained
from Γ via a Whitehead move on the edge e (keeping every color the
same) then Yr(Γ, col) = Yr(Γ

′, col).

3. If Γ is a vertex sum of Γ1,Γ2 along trivalent vertices v1 ∈ Γ1 and v2 ∈
Γ2 (see Figure 3.11), then Yr(Γ, col) = Yr(Γ1, col1)Yr(Γ2, col2) where
col1, col2 are the restrictions of col to Γ1,Γ2 respectively.

4. If a link L ⊆ S3 is colored with col ∈ I |L|r , then Yr(L, col) = |JLcol(q)|2
where JLcol is the colored Jones polynomial of L colored with col.

Proof. Part 1 holds because 〈Γ〉 depends on the framing of Γ only up to a factor
of qa, thus when taking squared norms this becomes 1. Part 2 is essentialy the
well de�nition of the Yokota invariant: both sides of the equality are equal to
the Yokota invariant of the graph obtained by collapsing e to a point.

Part 3 follows from the analogous property for the Kau�man bracket; this
is obtained via two applications of the fusion rule and one application of the
bridge rule 5 (see Figure 3.12). Part 4 is just the fact that in the case of L, seen
as a trivalent graph with no vertices, Yr(L, col) = |〈L, col〉|2 = JLcol(q).

It is very important that the vertex sum in Proposition 3.18.3 is done be-
tween trivalent vertices; the assertion is false in general. However, a particular
case still holds.
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−−−−−−−→

Figure 3.12: Applying the fusion rule to three edges arising from a vertex sum.

De�nition 3.19. Let Γ, col be a colored planar graph and v one of its vertices.
We de�ne the double of Γ at the vertex v to be the graph Γ2, col2 obtained
from a vertex sum of two copies, both colored with col, of Γ at the vertex v.

Lemma 3.20.

Yr(Γ
2, col2) = Yr(Γ, col)

2

Proof. We give the proof in the case of v having valence 4; the general case is
identical, except that the notation is heavier.

By linearity, we can assume that Γ2 only has trivalent vertices.

Apply the fusion rule to the edges arising from the vertex sum until you
obtain a bridge which is eliminated.

We have

Yr

( )
=

 ∑
i,j,k∈Ir

∆i∆j∆k

〈
k

i i

j j

〉2

=

∑
i∈Ir

∆i

〈
i i

〉2

=
∑
i,j∈Ir

∆i∆j

〈
i i

〉〈
j j

〉

=
∑
i,j∈Ir

∆i∆j

〈
i j

〉2

= Yr(Γ, col)
2

Remark 3.21. The Kau�man bracket (hence, the Yokota invariant) can also
be de�ned in the much larger setting of framed trivalent graphs in closed
oriented 3-manifolds; since we will not need such a generality that carries
some more technical details, we will restrict ourselves to the S3 case.





Chapter 4

The upper bound of the

6j-symbol

In this chapter we prove Theorem 1.8 and use it to prove the Turaev-Viro
volume conjecture for the complements of FSLs.

The material presented here was obtained through a joint work with R.
Detcherry, E. Kalfagianni and T. Yang in [7].

4.1 Proof of the upper bound

We now give the proof of Theorem 1.8; the proofs of the technical lemmas used
can be found in Section 4.2.

Denote with Λ(x) the Lobachevski function, de�ned as

Λ(x) := −
∫ x

0
log|2 sin(t)|dt.

It is π-periodic, odd, and real analytic outside of {kπ, k ∈ Z}.

The tool used to estimate the quantum 6j-symbol is the following lemma,

�rst appeared in [22, Proposition 8.2] for q = e
iπ
r , and then in the other roots

of unity in [18, Proposition 4.1]:

Lemma 4.1. For any integer 0 < n < r

log
∣∣∣{n}!|q=exp(2πi/r)

∣∣∣ = − r

2π
Λ

(
2nπ

r

)
+O (log(r))

where the term O(log(r)) is such that there exist constants C, r0 independent
of n and r such that O(log(r)) 6 C log(r) whenever r > r0.

49
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Remark 4.2. If 0 < n < r − 1, we can equally well use the estimate

log
∣∣∣{n+ 1}!|q=exp(2πi/r)

∣∣∣ = − r

2π
Λ

(
2nπ

r

)
+O(log(r)),

since by applying a Taylor expansion to Λ we �nd

Λ

(
2nπ

r
+

2π

r

)
− Λ

(
2nπ

r

)
=

2π

r
Λ′
(

2nπ

r

)
+ o

(
1

r

)
=

=− 2π

r
log

∣∣∣∣2 sin
2nπ

r

∣∣∣∣+ o

(
1

r

)
= O

(
log (r)

r

)
since

∣∣sin (2πn
r

)∣∣ > π
r (because 2n 6= r), and thus −2π

r log(|2 sin 2nπ
r |) 6

log(r)
r ,

since log(ax) 6 a log(x). Notice again that the constants involved in the

O
(

log(r)
r

)
are independent of n and r.

Theorem 1.8. For any r, and any admissible 6-tuple (n1, n2, n3, n4, n5, n6),
we have

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3

n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6 v8 +O

(
log(r)

r

)
where v8

∼= 3.66 is the volume of the regular ideal hyperbolic octahedron.

Proof. Applying Lemma 4.1 (together with the subsequent remark) to the
formula for the quantum 6j-symbol (3.3) we obtain the estimate

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3

n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6 V (θ1, θ2, θ3, θ4, θ5, θ6) +O

(
log(r)

r

)
(4.1)

where

V (θ1, θ2, θ3, θ4, θ5, θ6) := max
maxUi6Z6minVj ,2π

F (Z, θ1, θ2, θ3, θ4, θ5, θ6)+

ν(θ1, θ2, θ3) + ν(θ1, θ5, θ6) + ν(θ2, θ4, θ6) + ν(θ3, θ4, θ5)
(4.2)

and:

� θi = 2πni
r and Z = 2πz

r ;

� Ui = 2πTi
r and similarly Vi = 2πQi

r ;

� ν(α, β, γ) = 1
2(Λ(α+β+γ

2 )− Λ(α+β−γ
2 )− Λ(α−β+γ

2 )− Λ(−α+β+γ
2 ));
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� F (Z, θ1, θ2, θ3, θ4, θ5, θ6) =
∑4

i=1 Λ(Z − Ui) +
∑3

j=1 Λ(Vj − Z)− Λ(Z)

and all variables involved are between 0 and 2π, thanks to the admissibility
conditions. Notice that the θis satisfy similar triangular inequalities and admis-
sibility conditions as the nis. In particular θ1 +θ2 +θ3 6 4π, θ1 +θ5 +θ6 6 4π,
θ2 + θ4 + θ6 6 4π and θ3 + θ4 + θ5 6 4π.

We now want to maximize V subject to the admissibility conditions of the
θis. This is broken down in the following two technical lemmas, whose proofs
are postponed to Section 4.2.

Lemma 4.3. If 0 6 α, β, γ 6 π then ν(α, β, γ) 6 0.

Corollary 4.4. If 0 ≤ γ ≤ π and π ≤ α, β ≤ 2π, then ν(α, β, γ) ≤ 0.

Proof. It is immediate to check that ν(π − α, π − β, γ) = ν(α, β, γ).

Lemma 4.5. If 0 6 θ1, . . . , θ6 6 2π and

max(U1, U2, U3, U4) 6 Z 6 min(V1, V2, V3, 2π),

then
F (Z, θ1, θ2, θ3, θ4, θ5, θ6) + 2ν(θ1, θ2, θ3) 6 8Λ

(π
4

)
= v8

We obtain the following corollary.

Corollary 4.6. We have

max
maxUi6Z6minVj

F (Z, θ1, θ2, θ3, θ4, θ5, θ6) + ν(θ1, θ2, θ3) + ν(θ1, θ5, θ6) 6 v8.

Proof. Follows immediately by using Lemma 4.5 twice and taking averages.

Consider now an admissible 6-tuple (θ1, θ2, θ3, θ4, θ5, θ6). If θi ≤ π for all i,
then Lemmas 4.3, 4.5 and Corollary 4.6 imply that

V (θ1, θ2, θ3, θ4, θ5, θ6) ≤
max

maxUi≤Z≤minVj
F (Z, θ1, θ2, θ3, θ4, θ5, θ6) + ν(θ1, θ2, θ3) + ν(θ1, θ5, θ6) ≤ v8

Similarly, as soon as Lemma 4.3 or Corollary 4.4 imply that ν ≤ 0 for two
vertices of the tetrahedron, we obtain that V ≤ v8. Figures 4.1 and 4.2 show
all the possibilities (up to symmetry) with regards to the relationship between
the θis and π: a thick line indicates that the corresponding θi ≥ π, and a thin
line that θi ≤ π. In Figure 4.1, two circles mark the vertices where Lemma 4.3
or 4.4 implies ν ≤ 0.

Thus, we only need to examine the cases of �gure 4.2; notice that in each
of those cases, either 1 or 3 θs are greater than π.
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Figure 4.1: Two vertices satisfy ν ≤ 0
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Figure 4.2: All vertices have ν ≥ 0.

Lemma 4.7. Suppose (θ1, . . . , θ6) are as shown in �gure 4.2. Then the 6-tuple(
θ̃1, . . . , θ̃6

)
de�ned as θ̃i = θi if θi ≤ π and θ̃i = 2π−θi if θi ≥ π is the 6-tuple

of external dihedral angles of a unique hyperbolic truncated tetrahedron.

Proof. By [2, Theorem 1],
(
θ̃1, . . . , θ̃6

)
are the external dihedral angles of a

hyperbolic truncated tetrahedron if and only if θ̃1 + θ̃2 + θ̃3 ≥ 2π, θ̃1 + θ̃5 + θ̃6 ≥
2π, θ̃2 + θ̃4 + θ̃6 ≥ 2π, θ̃3 + θ̃4 + θ̃5 ≥ 2π.

If θ1 ≥ π while θ2, θ3 ≤ π, then θ̃1 + θ̃2 + θ̃3 = 2π− θ1 + θ2 + θ3 ≥ 2π since
−θ1+θ2+θ3 ≥ 0. If instead θ1, θ2, θ3 ≥ π, then θ̃1+θ̃2+θ̃3 = 6π−θ1−θ2−θ3 ≥
2π since θ1 +θ2 +θ3 ≤ 4π. The inequalities around the other vertices are dealt
by symmetry.

Lemma 4.8. If (θ1, . . . , θ6) are as in �gure 4.2, then

V (θ1, . . . , θ6) = V
(
θ̃1, . . . , θ̃6

)
.

The proof of this lemma is also postponed to Section 5.3.
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Combining Lemmas 4.3, 4.4, 4.5 and 4.8, we �nally obtain

2π

r
log

∣∣∣∣∣∣∣
{
n1 n2 n3

n4 n5 n6

}∣∣∣
q=exp(2πi/r)

∣∣∣∣∣∣∣ ≤ v8 +O

(
log(r)

r

)
.

Remark 4.9. In [18] a less sharp upper bound on the growth rate of the
quantum 6j-symbol was given, to prove that if a compact 3-manifoldM admits
a triangulation with t tetrahedra, then

limsupr→∞
2π

r
log|TVr(M)| 6 2.08v8t.

The improvement of the upper bound allows us to state a better estimate.

Corollary 4.10. If M is a compact manifold that admits a triangulation with
t tetrahedra, then

limsupr→∞
2π

r
log|TVr(M)| 6 v8t.

Remark 4.11. There is a concept of complexity of a manifold that is related
to quantum invariants, the so called shadow complexity. For an overview of
shadows and shadow complexity, see for example [49, Part 2] or [17]. Shadow
complexity easily gives a bound on the growth of the Turaev-Viro invariants:

Corollary 4.12. If M has shadow complexity c, then

limsupr→∞
2π

r
log|TVr(M)| 6 2cv8.

Furthermore we have equalities for fundamental shadow links.

Proof. The inequality is an immediate consequence of Theorem 1.8 and the
shadow formula for the Reshetikhin-Turaev invariants [49, Theorem X.3.3].
By [17], for fundamental shadow link in #c+1(S2×S1) the shadow complexity
is c. Hence sharpness follows from Theorem 1.8.

Moreover, shadow complexity also gives an upper bound on the simplicial
volume:

Theorem ([17], Theorem 3.37). Let M be a manifold with (possibly empty)
toroidal boundary, simplicial volume Vol(M) and shadow complexity c; then,
Vol(M) 6 2cv8. Furthermore this bound is sharp for complements of funda-
mental shadow links.
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Remark 4.13. The bound in Corollary 4.10 is likely not sharp. However in
[18] it is used to show that for 3-manifoldsM with toroidal or empty boundary
the exponential growth of TVr(M) is bounded above linearly by the Gromov
norm ofM . On the other hand, the Gromov norm upper bound of the shadow
complexity obtained in [17] is quadratic.

Before we move on to prove the volume conjecture for fundamental shadow
links, we need to show that the bound of Theorem 1.8 is sharp.

Lemma 4.14. If the sign is chosen such that r±1
2 is even, then

lim
r→∞

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣ r±1

2
r±1

2
r±1

2
r±1

2
r±1

2
r±1

2

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ = v8.

Proof. Because of the color choice, then maxTi >
r
2 , hence in the sum de�ning

the 6j-symbol r
2 < z < r, and {z} = 2i sin (2πiz/r) is an imaginary number

with negative sign. Moreover, 0 6 z − Ti < r
2 and 0 6 Qj − z < r

2 for all i, j.
Therefore,

(−1)z{z + 1}!∏4
i=1{z − Ti}!

∏3
j=1{Qj − z}!

is an imaginary number, and passing from z to z + 1 in the sum does not
change its sign, since all terms in the denominator do not change sign, and
there is a change of sign due to {z + 2} that gets corrected by (−1)z+1. Since
there is no change in sign among the summands, the estimate given by (4.1)
is actually an equality. We have ∆ (π, π, π) = 0, and

F

(
7π

4
, π, π, π, π, π, π

)
= 8Λ

(π
4

)
= v8.

Thus, using Theorem 1.8,

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣ r±1

2
r±1

2
r±1

2
r±1

2
r±1

2
r±1

2

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ = v8 +O

(
log r

r

)
which concludes the proof.

4.2 Proofs of the technical lemmas

We now turn to the proofs of Lemmas 4.3 and 4.5.

Lemma 4.3. If 0 6 α, β, γ 6 π then ν(α, β, γ) 6 0.

Proof. Put x = α+β−γ
2 , y = α−β+γ

2 , z = −α+β+γ
2 . Then we need to maximize

ν(α, β, γ) = ϑ(x, y, z) =
1

2
(Λ(x+ y + z)− Λ(x)− Λ(y)− Λ(z))
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with the constraints 0 6 x+ y 6 π, 0 6 x+ z 6 π and 0 6 y + z 6 π.

To do this, we check �rst its stationary points in the interior of the domain,
then we explore the boundary, and �nally the points where ϑ is not smooth.

∂ϑ(x, y, z)

∂x
=

1

2
(log(2| sin(x+ y + z)|)− log(2| sin(x)|)); (4.3)

∂ϑ(x, y, z)

∂y
=

1

2
(log(2| sin(x+ y + z)|)− log(2| sin(y)|)); (4.4)

∂ϑ(x, y, z)

∂z
=

1

2
(log(2| sin(x+ y + z)|)− log(2| sin(z)|)) (4.5)

So by putting them all equal to 0, we �rst see that sin(x) = ± sin(y) = ± sin(z),
so either x = y = z modulo π or one of x + y, y + z or x + z is equal kπ for
some k ∈ Z. Suppose x+ y = kπ. Then

ϑ(x, y, z) = Λ(kπ + z)− Λ(kπ − y)− Λ(y)− Λ(z) = 0;

because Λ is odd and π-periodic; y + z = kπ and x+ z = kπ are the same by
symmetry.

If instead x = y = z modulo π, substituting x = y = z in (4.3), we get
sin(3x) = ± sin(x). This means that x = y = z = kπ

4 modulo π. In the interior
of the domain this implies x = y = z = π

4 ; all other possibilities lie outside the
domain or on its boundary. In this point ϑ = −2Λ

(
π
4

) ∼= −1.83 < 0.

The boundary cases x + y = kπ and permutations were already checked,
�nding ϑ = 0.

Finally we check the points where ϑ is not smooth. This happens when one
of the following holds:

� x = kπ, or y = kπ, or z = kπ; or

� x+ y + z = kπ.

Remark 4.15. If P is a point and γ is a direction such that the derivative of
ϑ in that direction is +∞, then P cannot be a local maximum of ϑ.

If x = kπ, then ∂ϑ(x,y,z)
∂x = +∞ unless x+ y + z = hπ, and (x, y, z) cannot

be a maximum. If instead x = kπ and x+y+z = hπ, we have y+z = (h−k)π
and we are in a case we already checked. y = kπ and z = kπ are symmetric.

If instead x + y + z = kπ, we �nd once again an in�nite derivative unless
x = hπ, and we reason as before. So in conclusion ϑ is equal to 0 on the
boundary of the set {0 6 x + y 6 π, 0 6 x + z 6 π, 0 6 y + z 6 π}, cannot
have a maximum in a non-smooth point and has a unique stationary point in
the interior, where it is negative. This concludes the proof.
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Lemma 4.16. If 0 6 a, b and a+ b 6 2π, then

−v3 6 Λ(a+ b)− Λ(a)− Λ(b) 6 v3

where v3 = Λ
(
π
3

) ∼= 1.01 is the volume of the regular ideal tetrahedron.

Proof. First notice that if a + b = kπ, then because Λ is odd and π-periodic,
we have Γ(a, b) = Λ(a + b) − Λ(a) − Λ(b) = 0. Similarly if a = 0 or b = 0
then Γ(a, b) = 0. By calculating the derivatives of Γ and putting them to
0 we obtain, reasoning as before, a = ±b modulo π. If a = −b modulo
π then we have seen that Γ = 0. Then a = b implies sin(2a) = ± sin(a),
and either a = kπ (in which case Γ = 0) or 3a = kπ. If a = π

3 we obtain
Γ
(
π
3 ,

π
3

)
= −3Λ(π3 ) = −v3, while a = 2π

3 implies Γ
(

2π
3 ,

2π
3

)
= 3Λ(π3 ) = v3.

Lemma 4.5. If 0 6 θ1, . . . , θ6 6 2π and max(Ti) 6 Z 6 min(Qj , 2π), then

F (Z, θ1, θ2, θ3, θ4, θ5, θ6) + 2ν(θ1, θ2, θ3) 6 8Λ
(π

4

)
= v8

Proof. Put ai = Z−Ui, and bj = Vj−Z. The inverse of this change of variable
is:

� θ1 = a3 + a4 + b1 + b2;

� θ2 = a2 + a4 + b1 + b3;

� θ3 = a2 + a3 + b2 + b3;

� θ4 = a1 + a2 + b1 + b2;

� θ5 = a1 + a3 + b1 + b3;

� θ6 = a1 + a4 + b2 + b3 and

� Z = a1 + a2 + a3 + a4 + b1 + b2 + b3.

In these new variables,

F (Z, θ1, θ2, θ3, θ4, θ5, θ6) = F̃ (a1, a2, a3, a4, b1, b2, b3) =

−Λ

 4∑
i=1

ai +

3∑
j=1

bj

+

4∑
i=1

Λ(ai) +

3∑
j=1

Λ(bj)

while

2ν(θ1, θ2, θ3, θ4, θ5, θ6) = 2ν̃(a1, a2, a3, a4, b1, b2, b3) =(
Λ

(
3∑
i=1

(ai + bi)

)
−

3∑
i=1

Λ(ai + bi)

)
.
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Notice that L := F̃ + 2ν̃ is periodic of period π in each variable, hence we
can assume 0 6 ai 6 π and 0 6 bi 6 π. Moreover, because of the constraints
on the θs and on Z, we have that 0 6

∑
ai +

∑
bj 6 2π. Denote with Ω the

region of R7 de�ned by all these inequalities.

Notice furthermore that ν̃ is independent of a4, and that L is symmetric
under the exchange of ai with bi for any i 6= 4, and under

(a1, a2, a3, a4, b1, b2, b3)→ (aσ1 , aσ2 , aσ3 , a4, bσ1 , bσ2 , bσ3)

where σ is any permutation of 3 elements.

We now proceed by �rst dealing with the points in the boundary of Ω,
then with the points where the function L is not di�erentiable, and �nally
by �nding the stationary points in the interior of Ω. Start by calculating the
partial derivatives of L:

∂L

∂a4
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3)

sin(a4)

∣∣∣∣ (4.6)

∂L

∂a1
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a1 + b1)

sin(a1) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ (4.7)

∂L

∂a2
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a2 + b2)

sin(a2) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ (4.8)

∂L

∂a3
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a3 + b3)

sin(a3) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ (4.9)

∂L

∂b1
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a1 + b1)

sin(b1) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ (4.10)

∂L

∂b2
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a2 + b2)

sin(b2) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ (4.11)

∂L

∂b3
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a3 + b3)

sin(b3) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ . (4.12)

Step 1: the boundary points

Suppose we have a maximum for L in a point P in the boundary of Ω. If
a1 = π, then by periodicity we would have a maximum with a1 = 0, so we
study this case instead. The derivative of L (4.7) with respect to a1 is +∞ if
a1 + b1 6= kπ and a1 + a2 + a3 + a4 + b1 + b2 + b3 6= kπ, and we would not get
a maximum. Hence, either a1 + a2 + a3 + a4 + b1 + b2 + b3 = kπ or b1 = kπ.
In the �rst case, we have that

L = Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3)

and using Lemma 4.16 we �nd L 6 2v3. In the second case,

L =Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3)

+ Λ(b2 + b3 + a2 + a3) + Λ(a4)− Λ(b2 + b3 + a4 + a2 + a3)
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and again Lemma 4.16 implies L 6 3v3. If a4 = 0, the same reasoning implies
that P cannot be a maximum unless a1 + a2 + a3 + a4 + b1 + b2 + b3 = kπ,
and in this case

L =Λ(a1) + Λ(b1)− Λ(a1 + b1) + Λ(a2) + Λ(b2)+

− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3) 6 3v3.

If a1 +a2 +a3 +a4 + b1 + b2 + b3 = kπ once again we would have ∂L
∂(−a4) = +∞

unless a4 = 0 and we would be in the same case as before. The remaining
cases are dealt by symmetry.

Step 2: the non-smooth points

First o�, notice that L is di�erentiable at P = (a1, a2, a3, a4, b1, b2, b3) un-
less one (or more) of the following equalities (considered modulo π) holds:

1. ai = 0 for some i;

2. bj = 0 for some j;

3. ai + bi = 0 for some i;

4. a1 + a2 + a3 + a4 + b1 + b2 + b3 = 0;

5. a1 + a2 + a3 + b1 + b2 + b3 = 0.

These cases are dealt in a similar fashion as the boundary cases.

Suppose we have a maximum for L in a point P such that a1 +a2 +a3 +b1 +
b2 + b3 = kπ. Then, unless a1 + b1 = kπ or a1 +a2 +a3 +a4 + b1 + b2 + b3 = kπ
the derivative of L with respect to a1 is +∞, hence P could not be a maximum.
Using Lemma 4.16 we obtain that in the �rst case,

L = Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3) 6 2v3 (4.13)

and in the second

L =Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3)+

Λ(b2 + b3 + a2 + a3) + Λ(a4)− Λ(b2 + b3 + a4 + a2 + a3) 6 3v3.

The cases ai = kπ, bj = kπ, or a1 + a2 + a3 + a4 + b1 + b2 + b3 = kπ were
already addressed before. If a1 + b1 = 0, then a1 = b1 = 0 and it was already
addressed. If a1 + b1 = kπ > 0, then the derivative of L in the direction −a1

is +∞ unless a1 = 0 or a1 + a2 + a3 + b1 + b2 + b3 = kπ, which are both cases
we have dealt with already. The remaining cases are done by the symmetries
of L.

Step 3: the interior smooth points
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Now we turn to the smooth points in the interior of Ω. By equating (4.7)
and (4.10) to 0, we �nd sin(a1) = ± sin(b1). Similarly sin(ai) = ± sin(bi) for
i = 2, 3 by equating (4.8) to (4.11) and (4.9) to (4.12) respectively. Because
of the boundary and smoothness conditions, we have that in the interior of
the domain this implies ai = bi for i = 1, 2, 3. By putting equations (4.7) and
(4.8) to 0, we �nd

sin(2a1)

sin a1
= ±sin(2a2)

sin a2
. (4.14)

Which implies that cos(a1) = ± cos(a2) and either a1 = a2 or a1 + a2 = π.
However, if a1 + a2 = π, we would have a1 + a2 + a3 + a4 + b1 + b2 + b3 =
2a1 + 2a2 + 2a3 + a4 > 2π; hence, this is not possible in the interior of Ω.
Similarly a1 = a3.

Now by putting equation (4.6) equal to 0 we obtain

sin (6a1 + a4) = ± sin(a4) (4.15)

This implies either 6a1 = kπ or 6a1 + 2a4 = kπ, but in the �rst case we would
not be in a smooth point (case 5 of the previous step). By plugging everything
we obtained in equation (4.7) we �nally �nd

sin(a4) sin(2a1)

sin(a1) sin(2a4)
= ±1 (4.16)

Hence a4 = a1 or a4 = π − a1. Both cases imply that the stationary points
of L must be of the form

(
kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8

)
, for k = 1, 2. In the �rst

case L ∼= 3.01 < v8, while in the second L = 8Λ
(
π
4

)
= v8.

Lemma 4.8. If (θ1, . . . , θ6) are as in �gure 4.2, then

V (θ1, . . . , θ6) = V
(
θ̃1, . . . , θ̃6

)
.

Proof. The value of V
(
θ̃1, . . . , θ̃6

)
is equal, by the Murakami-Yano-Ushijima

formula [36, Theorems 1 and 2], [51, Theorem 1.1], to the volume of the hyper-
bolic truncated tetrahedron with external dihedral angles θ̃1, . . . , θ̃6. Thus we
need to show that this formula is symmetric under the change (θ1, . . . , θ6) ↔(
θ̃1, . . . , θ̃6

)
in all three cases. We now pass to the internal dihedral angles

(ξ1, . . . , ξ6) with ξi = π − θ̃i, as these are more natural for the MYU formula.
In these variables, the formula reads

V(a1, . . . , a6) :=
1

2
Im (U(z1,~a)− U(z2,~a)) (4.17)

where:

� ai = e
√
−1ξi ;



4.2. PROOFS OF THE TECHNICAL LEMMAS 61

�

U(z,~a) =
1

2
(Li2(z) + Li2(za1a2a4a5) + Li2(za1a3a4a6)+

+ Li2(za2a3a5a6)− Li2(−za1a2a3)− Li2(−za1a5a6)+

− Li2(−za2a4a6)− Li2(−za3a4a5));

(4.18)

� z1 and z2 are the solutions of the equation α+ βz + γz2 = 0, labeled in
such a way as to obtain a positive value for V;

�

α =1 + a1a2a4a5 + a1a3a4a6 + a2a3a5a6 + a1a2a3 + a1a5a6+

a2a4a6 + a3a4a5;
(4.19)

�

β =− a1a2a3a4a5a6

(
(a1 − a−1

1 )(a4 − a−1
4 )+

+ (a2 − a−1
2 )(a5 − a−1

5 ) + (a3 + a−1
3 )(a6 − a−1

6 )
)
;

(4.20)

�

γ =a1a2a3a4a5a6(a1a2a3a4a5a6 + a1a4 + a2a5 + a3a6+

+ a1a2a6 + a1a3a5 + a2a3a4 + a4a5a6).
(4.21)

Notice that in these variables, the symmetries we need to explore are

1. (a1, a2, a3, a4, a5, a6)↔ (a−1
1 , a2, a3, a

−1
4 , a5, a6),

2. (a1, a2, a3, a4, a5, a6)↔ (a−1
1 , a−1

2 , a−1
3 , a4, a5, a6) and

3. (a1, a2, a3, a4, a5, a6)↔ (a−1
1 , a−1

2 , a−1
3 , a−1

4 , a−1
5 , a−1

6 ).

Case 1: Call α, β and γ as in formulas (4.19)-(4.21), and α′, β′, γ′ the
same formulas with a1 → a−1

1 and a4 → a−1
4 . Let z1 and z2 be solutions

of α + βz + γz2 = 0. Now it is immediate to check that α′ = γ
a2

1a2a3a2
4a5a6

,

β′ = β
a2

1a
2
4
and γ′ = a2a3a5a6α

a2
1a

2
4

. Hence, we need to solve the equation

γ

a2a3a5a6
+ βz + αa2a3a5a6z

2 = 0;

call the solutions ẑ1 and ẑ2. Then, ẑ
−1
1 and ẑ−1

2 are solutions of

γ

a2a3a5a6
z2 + βz + αa2a3a5a6 = 0;
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therefore ẑ−1
1 = z1a2a3a5a6 and ẑ

−1
2 = z2a2a3a5a6 (after perhaps a relabeling).

Since it was shown in [36, Page 384] that z1 and z2 must be complex numbers
with absolute value 1, we have that ẑ1 = z1a2a3a5a6 and ẑ2 = z2a2a3a5a6.
Now we can compute

U(ẑ1, a
−1
1 , a2, a3, a

−1
4 , a5, a6) =

1

2
(Li2(z1a2a3a5a6) + Li2(z1a1a3a4a6)+

+ Li2(z1a1a2a4a5) + Li2(z1)− Li2(−z1a1a5a6)− Li2(−z1a1a2a3)+

− Li2(−z1a3a4a5)− Li2(−z1a2a4a6)).

Because Li2(a) = Li2(a), we see that

U(ẑ1, a
−1
1 , a2, a3, a

−1
4 , a5, a6) = U(z1, a1, a2, a3, a4, a5, a6);

the exact same computation shows that

U(ẑ2, a
−1
1 , a2, a3, a

−1
4 , a5, a6) = U(z2, a1, a2, a3, a4, a5, a6).

Because we have to switch the labels as to obtain a positive value of V, we
�nally obtain V(a−1

1 , a2, a3, a
−1
4 , a5, a6) = V(a1, a2, a3, a4, a5, a6).

The other cases follow the same steps.

Case 2

In this case using the same notations, we �nd α′ = α
a1a2a3

, β′ = − β
a2

1a
2
2a

2
3

and γ = γ
a3

1a
3
2a

3
3
. Therefore, ẑ1 and ẑ2 are solutions of

a1a2a3α− βz +
γ

a1a2a3
z2 = 0;

this shows that ẑ1 = −z1a1a2a3 and ẑ2 = −z2a1a2a3, once again up to rela-
beling. We �nd

U(ẑ1, a
−1
1 , a−1

2 , a−1
3 , a4, a5, a6) =

1

2
(Li2(−z1a1a2a3) + Li2(−z1a3a4a5)+

Li2(−z1a2a4a6) + Li2(−z1a1a5a6)− Li2(z1)− Li2(z1a2a3a5a6)+

− Li2(z1a1a3a4a6)− Li2(z1a1a2a4a5));

therefore, U(ẑ1, a
−1
1 , a−1

2 , a−1
3 , a4, a5, a6) = −U(z1, a1, a2, a3, a4, a5, a6), and

U(ẑ2, a
−1
1 , a−1

2 , a−1
3 , a4, a5, a6) = −U(z2, a1, a2, a3, a4, a5, a6) by the same cal-

culation. Then we also get V(a−1
1 , a−1

2 , a−1
3 , a4, a5, a6) = V(a1, a2, a3, a4, a5, a6)

via the same reasoning as before.

Case 3
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In this case, α′ = γ
a2

1a
2
2a

2
3a

2
4a

2
5a

2
6
, β′ = β

a2
1a

2
2a

2
3a

2
4a

2
5a

2
6
, γ′ = α

a2
1a

2
2a

2
3a

2
4a

2
5a

2
6
. Hence,

ẑ1 and ẑ2 are solutions of

γ + βz + αz2 = 0

which implies ẑ1 = z1 and ẑ2 = z2, since |z1/2| = 1. From this we can easily
compute

U(ẑ1, a
−1
1 , a−1

2 , a−1
3 , a−1

4 , a−1
5 , a−1

6 ) =
1

2
(Li2(z1) + Li2(z1a1a2a4a5)+

+ Li2(z1a1a3a4a6) + Li2(z1a2a3a5a6)− Li2(−z1a1a2a3)− Li2(−z1a1a5a6)+

− Li2(−z1a2a4a6)− Li2(−z1a3a4a5)).

Now the conclusion is the same as in case 1.

4.3 The Volume Conjecture for FSLs

We are ready to prove the Turaev-Viro Volume Conjecture for the complements
of the fundamental shadow links.

Theorem 1.4. For any fundamental shadow link L = L1t · · ·tLk built from
c blocks,

lim
r→∞

2π

r
log|TVr(Mc \ L)| = Vol(Mc \ L) = 2cv8. (4.22)

Proof. If L = L1 t · · · t Lk we have by Proposition 3.14,

TVr(Mc \ L) =
∑
col∈Ikr

|RT (Mc, L, col)|2.

Because the possible colorings are polynomial in r,

2π

r
log(TVr(Mc \ L)) 6 max

col∈Ikr

2π

r
log |RT (Mc, L, col)|2 +O

(
log(r)

r

)
.

By Lemma 3.13, we have that RT (Mc, L, col), up to a factor that grows
polynomially in r, is equal to

g∏
i=1

∣∣∣∣col(i1) col(i2) col(i3)
col(i4) col(i5) col(i6)

∣∣∣∣
where ij is the component of the link L passing through the j-th strand of
block i. Hence, because of Theorem 1.8,

lim
r→∞

2π

r
log(TVr(Mc \ L)) 6 2cv8
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On the other hand, if we take col =
(
r±1

2 , . . . , r±1
2

)
to be even colors, we

have

lim
r→∞

2π

r
TVr(Mc \ L) > lim

r→∞

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣ r±1
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Chapter 5

The Maximum Volume

Theorem

This chapter is devoted to the proof of Theorem 1.6.

5.1 Related results

Before we delve into the proof of Theorem 1.6, a few words are necessary on
what makes this result particularly complicated.

AΓ contains polyhedra with obtuse angles.

Often when hyperbolic polyhedra are considered, they are restricted to
have acute angles (especially when studying their relationship to orbifolds and
cone-manifolds). This limitation greatly simpli�es matters, mainly because
of two properties of acute-angled polyhedra, both consequences of Andreev's
Theorem [1]:

� Dihedral angles are global coordinates for acute-angle polyhedra;

� The space of dihedral angles of acute-angle polyhedra is a convex subset
of RN (except when the polyhedron has 4 vertices).

Using these properties, it is a just a matter of applying the Schlä�i identity
2.36 to prove that the maximum volume of acute-angled polyhedra is the
volume of the recti�cation.

By contrast, if we allow obtuse angles things are considerably more di�cult.
It is unknown whether dihedral angles determine a polyhedron; furthermore
the space of dihedral angles is never convex [20].
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66 CHAPTER 5. THE MAXIMUM VOLUME THEOREM

On the other hand, requiring that a polyhedron be acute-angled is very
restricting; in particular, there are no non-simple acute-angle compact polyhe-
dra. Therefore allowing obtuse angles greatly increases the scope of Theorem
1.6.

AΓ contains polyhedra with any combination of real, ideal or hy-

perideal vertices.

The case of polyhedra with only ideal vertices has been known for a long
time.

Theorem 5.1. [43, Theorem 14.3] There is a unique (up to isometry) hy-
perbolic ideal polyhedron with �xed 1-skeleton of maximal volume; furthermore
this polyhedron is maximally symmetric.

Notice that even though the maximal volume polyhedron is unique, the
symmetry property does not always determine it uniquely.

Theorem 5.1 relies on the fact that ideal polyhedra share the two above
properties of acute-angled polyhedra: they are determined by their angles,
and the space of dihedral angles is a convex polytope. Moreover, this result
relies on the concavity of the volume function for ideal polyhedra; this result
once again does not hold for compact polyhedra.

We might wish to extend Theorem 5.1 to polyhedra with both real and
ideal vertices; a pleasant result would be the following:

�Theorem� : For any polyhedron P with real and ideal vertices, there is
a polyhedron Q with only ideal vertices, with the same 1-skeleton as P and
such that Vol(P ) ≤ Vol(Q).

This would imply that the maximal volume ideal polyhedron is also of
maximal volume among polyhedra with both real and ideal vertices. Unfor-
tunately, this �Theorem� has no chance of being true: there are some graphs
which are the 1-skeleton of hyperbolic polyhedra but are not the 1-skeleton of
any ideal polyhedron (a complete characterization of inscribable graphs, i.e.
those that are the 1-skeleton of an ideal polyhedron, can be found in [44]). In
such a case, the maximal volume polyhedron (if it even existed) would have
some ideal vertices and some real vertices, would possibly not be unique and
would certainly be very di�cult to determine.

Therefore, admitting vertices of all 3 types allows us to obtain a satisfying
result, where the maximal volume is obtained at a very concrete polyhedron
whose volume can be explicitly computed. However it comes at the cost of
increased complications in the proofs, mainly having to deal with almost proper
polyhedra.

It is not a simple application of the Schlä�i identity.
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Looking at the Schlä�i identity might suggest that it immediately implies
the Maximum Volume Theorem. An argument might go like this:

A local maximum must have every length of an edge (not arising from trun-
cation) equal to 0; therefore it must be the recti�cation.

This does not work for two reasons:

� Simply putting derivatives equal to 0 would give local maxima in the
interior of AΓ; to truly �nd a supremum we would have to analyze the
behavior at its boundary.

� Dihedral angles do not give local coordinates on all of AΓ; in particular
it is unknown whether they would give local coordinates at the boundary
∂AΓ (if, for example, some angles are equal to 0).

5.2 Proof of the Maximum Volume Theorem

The following is the main result of the chapter.

Theorem 1.6. [6] For any planar 3-connected graph Γ,

Vol
(
Γ
)

= sup
P∈AΓ

Vol(P ).

Proof. For the sake of understanding, the proof of the key Proposition 5.2 is
postponed in Subsection 5.3.

It is easy to see that Vol
(
Γ
)
≤ supP∈AΓ

Vol(P ); the family Pε de�ned in
the statement of Lemma 2.34 is a family in AΓ, has decreasing angles (hence
increasing volume) and it converges to Γ. Since the length of every edge of
Pε converges to 0 (because it is equal to the distance between two planes who
converge to be asymptotic), we can apply Lemma 2.39 to the truncation of Pε
to obtain that Vol(Pε)→ Vol(Γ).

Now we prove that Vol(P ) ≤ Vol
(
Γ
)
for any P ∈ AΓ. We �rst assume that

P only has hyperideal vertices.

Let (θ1, . . . , θk) be the dihedral angles of P . Since the space of dihedral
angles of hyperideal polyhedra is convex by Theorem 2.15, there is a continuous
family of polyhedra with decreasing angles connecting P to Pε (for a small
enough ε), which implies that Vol(P ) < Vol(Pε). But we have already seen that
Vol(Pε) increases to Vol

(
Γ
)
as ε→ 0, which implies that Vol(P ) < Vol

(
Γ
)
.

Let now P be any polyhedron in AΓ. We wish to de�ne inductively a
(possibly empty) sequence of polyhedra P (1), . . . , P (m) without ideal vertices
such that

Vol(P ) < Vol
(
P (1)

)
< · · · < Vol

(
P (m)

)
< Vol

(
Γ
)
. (5.1)
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The key proposition in building this chain is the following.

Proposition 5.2. Let P be either a proper or an almost proper polyhedron
with 1-skeleton Γ with no ideal vertices and at least one real vertex. Then there
exists a generalized hyperbolic polyhedron P ∗ with the following properties:

� Vol(P ∗) > Vol(P );

� P ∗ is either proper or almost proper;

� P ∗ has at most the same number of real vertices as P ;

� P ∗ either has fewer vertices, fewer real vertices or fewer proper vertices
than P ;

� if P ∗ has ideal vertices, then it has exactly one;

� if P ∗ has ideal vertices, then it is proper.

� the 1-skeleton of P ∗ can be obtained from Γ via a �nite sequence of the
following moves:

(i) an edge of Γ collapses to a vertex (see Figure 2.9);

(ii) a face of Γ collapses to an edge (see Figure 2.10).

The proof of this proposition is postponed to Section 5.3.

Let now P be a proper polyhedron with 1-skeleton Γ.

If P only has hyperideal vertices, then we have already seen that Vol(P ) <
Vol

(
Γ
)
.

If P has some ideal vertices, then take the polyhedron P ′ := Φv
λ(P ) for λ

slightly larger than 1 and v ∈ P where Φv
λ is the homothety of center v and

factor λ. For any ε > 0 there is a λ > 1 and close enough to 1 such that P ′

is proper, it has no ideal vertices and its volume is larger than Vol(P ) − ε.
To see this, notice that as λ → 1, the truncation face of a hyperideal vertex
that becomes ideal is a hyperbolic polygon that becomes Euclidean (hence, the
length of its sides goes to 0) and thus we can apply Lemma 2.39) to obtain that
the volume changes continuously. If we prove that Vol(Φv

λ(P )) < Vol
(
Γ
)
for

any λ, then we also prove that Vol(P ) ≤ Vol
(
Γ
)
which implies the theorem.

Therefore we can assume that P has no ideal vertices.

If P has no ideal vertices and at least one real vertices, take P ∗ given by
Proposition 5.2. If P ∗ does not have ideal vertices, take P (1) := P ∗, if it does
then take P (1) := Φv

λ(P ∗) with v ∈ P ∗ and λ > 1 small enough to ensure that
Vol

(
P (1)

)
> Vol(P ).
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−→

Figure 5.1: If an edge collapses, dually an edge gets deleted.

Suppose now that we have de�ned the sequence P (1), . . . , P (j) satisfying
the inequalities of (5.1), and de�ne inductively P (j+1).

By hypothesis P (j) cannot have ideal vertices. If P (j) has no real vertices,
we stop. If P (j) has some real vertices, then we can apply Proposition 5.2 to
it and we de�ne P (j+1) to be the resulting polyhedron (once again applying a
small expansion if it has ideal vertices).

Notice that when passing from P (i) to P (i+1) the tuple

(# of vertices,# of real vertices,# of proper vertices)

decreases in the lexicographic order, since we applied Proposition 5.2 to go
from P (i) to P (i+1). Therefore at some point we have to arrive at a P (m) with
only hyperideal vertices: we have seen at the beginning of the proof that this
implies Vol(P (m)) < Vol

(
Γ′
)
where Γ′ is the 1-skeleton of P (m).

The conclusion of the proof comes from the following proposition, which
could be of independent interest.

Proposition 5.3. If Γ′ is obtained from Γ either via a single edge collapsing
to a vertex (see Figure 2.9) or a single face collapsing to an edge (see Figure
2.10), then Vol

(
Γ′
)
≤ Vol

(
Γ
)
.

Proof. The proof works exactly the same for either the edge collapse or the
face collapse; we carry it out for the edge collapse.

The key observation (see Remark 2.30) is that Vol
(
Γ
)

= Vol
(
Γ∗
)
, and if

Γ′ is obtained from Γ by an edge collapse, then Γ′∗ is obtained from Γ∗ by
deleting an edge e (see Figure 5.1).

Let now Pε,α, be the polyhedron with 1-skeleton Γ∗, dihedral angle α at the
edge e and every other dihedral angle equal to ε. Because of Theorem 2.15, for
any ε su�ciently close to 0, Pε,α exists for α ∈ (0, π−kε) where k depends only
on the valence of Γ∗ at the endpoints of e. Because of the Schlä�i formula,
Vol(Pε,α) is decreasing in α, and in particular Vol(Pε,π−kε) < Vol(Pε,ε). But
Vol(Pε,ε)→ Vol

(
Γ
)
and Vol(Pε,π−kε)→ Vol

(
Γ′
)
. The �rst convergence comes

from Lemmas 2.34 and 2.39; the second convergence comes with the same
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−→

Figure 5.2: Two edges on the same face getting �switched�.

argument as in the proof of Lemma 2.34 after we notice that if two faces have
an angle converging to π, then they must converge to the same plane.

Remark 5.4. Proposition 5.3 could be translated into a statement about
ideal right-angled polyhedra. Speci�cally, it says that if P1 and P2 are two
ideal right-angled polyhedra with 1-skeleta Γ1 and Γ2 related as in Figure 5.2,
then Vol(P1) ≥ Vol(P2).

Corollary 5.5.

sup
P∈AΓ

Vol(P ) = sup
P ′∈AΓ∗

Vol(P ′)

Proof. As we noted before, the recti�cation of Γ and the recti�cation of Γ∗

have isometric truncations.

5.3 Proof of Proposition 5.2

We are going to prove Proposition 5.2 by deforming the polyhedron P until
it collapses to a limit polyhedron. First we need two lemmas describing what
happens when the limit polyhedron has ideal vertices. Both follow the same
general reasoning (and similar notation) of Proposition 5 and Lemma 22 of [2].

Lemma 5.6. Let Pn be a sequence of proper or almost proper polyhedra with
1-skeleton Γ and with angles bounded away from 0 and π, and suppose Pn
converges as n → +∞ to the projective polyhedron P ∗. Further suppose that
all the vertices of Pn also converge, and a sequence of vertices vn ∈ Pn con-
verges to v ∈ ∂H3. Let e1, . . . , ek be the edges of Γ with exactly one endpoint
converging to v, and let e1, . . . , ek′ be the subset of those edges converging to a
segment intersecting H3. Then the sum of external dihedral angles of e1, . . . , ek′

converges to either 2π (if and only if k = k′) or π otherwise.

Proof. First notice that all edges of a limit of proper or almost proper polyhe-
dra must either intersect H3 or be tangent to its boundary.
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Figure 5.3: Cases 1 and 2

Let en1 , . . . , e
n
k be the edges of Pn corresponding to e1, . . . , ek respectively,

each converging to e∞1 , . . . , e
∞
k (many di�erent e∞i s could be in the same edge

of P ∗). We distinguish several cases.

Case 1. The segment e∞i intersects H3 for every i.

In this case clearly k = k′. Let Fn1 , . . . , F
n
k be the faces of Pn containing

en1 , . . . , e
n
k . Let Πn

j be the plane containing F
n
j and denote with Π∞j their limit.

Finally let θ̃n1 , . . . , θ̃
n
k be the external dihedral angles of en1 , . . . , e

n
k respectively.

Since dihedral angles between two planes vary continuously (as long as
their intersection is contained in H3), limn→∞ θ̃

n
j = θ̃∞j where θ̃∞j is the angle

between planes Π∞j and Π∞j+1. Then the second part of [2, Proposition 5]
shows that ∑

i

θ̃∞i = 2π

which concludes the proof in this case.

Case 2. Some edges e∞i intersect H3, while at least some other e∞j is

tangent to ∂H3; however, every limit edge tangent to ∂H3 is in the same edge
of P ∗.

Let vnj be the endpoint of enj converging to v∞j 6= v; v∞j is necessarily
hyperideal; we may suppose also that each vnj is hyperideal. Truncate Pn
along Πvnj

and double it along the truncation face. This gives a sequence

P̃n converging to the polyhedron obtained from P ∗ by truncating along Πv∞j
and doubling. This sequence falls under Case 1, and the sum of the external
dihedral angles of P̃n at the edges converging to v must be equal to 2

∑k′

j=1 θ̃j ,
and it must converge to 2π which gives the thesis.

Case 3. Some edges e∞i intersect H3, while at least some other e∞j is

tangent to ∂H3; morever, there are at least two distinct edges of P ∗ tangent
to ∂H3.
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Figure 5.4: Cases 3 and 4

This case (like the following one) is essentially the same as the correspond-
ing case of Lemma 22 of [2]. This means that P ∗ has two (or more) edges
tangent to ∂H3 in v and some other edge with endpoint v which intersects
H3. Then let S be a horosphere centered in v and consider A := S ∩ P ∗. The
polygon A is not compact, has at least two ends (one in the direction of each
edge tangent to ∂H3) and at least one vertex with positive angle, but this is
impossible, hence this case never happens.

Case 4. Every edge e∞i is tangent to ∂H3.

This case is impossible as well: each eni has one endpoint vni that does not
converge to v. Since Γ is 3-connected, there are three indices a, b, c such that
ea, eb, ec have the endpoints va, vb, vc (the one not converging to v) which are
all di�erent. Then the lines connecting vna , v

n
b and vnc must intersect H3, but

this is impossible since they converge to points each lying on a di�erent line
tangent to ∂H3 in the same point v. This contradicts the fact that Pn is a
generalized hyperbolic polyhedron.

Corollary 5.7. With the same hypotheses of Lemma 5.6, if a vertex of Pn
converges to a point on ∂H3, then it converges to a vertex of the limit polyhe-
dron.

Proof. Suppose vn is a sequence of vertices converging to v ∈ P ∗ and v is not a
vertex of P ∗; then it is either contained in the interior of an edge or the interior
of a face. If it is contained in the interior of an edge, the analysis of Case 3 of
Lemma 5.6 show that there is a contradiction; likewise if it is contained in the
interior of a face there is a contradiction because of the reasoning in Case 4 of
Lemma 5.6.
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Further notice that from the hypotheses of Lemma 5.6 we can drop the
assumption that the vertices of Pn converge, since we can always pass to a
subsequence such that this holds (and using the easy fact that if every subse-
quence of a sequence has a subsequence converging to x, the whole sequence
converges to x).

Lemma 5.8. Take a sequence of proper or almost proper polyhedra Pn with 1-
skeleton Γ and decreasing angles bounded away from 0, such that Pn converges
to the projective polyhedron P ∗ as n → +∞. If there is a vertex vn of Pn
converging to an ideal vertex v of P ∗, then vn is a real vertex of Pn for all n.

Proof. We proceed by contradiction, supposing that vn is hyperideal (notice
that if vn is ideal or hyperideal for some n then it is strictly hyperideal for all
n > n by Lemma 2.13).

Let Kv ⊆ Γ ⊆ S2 be the union of all vertices and edges converging to v, and
consider as we did before the edges e1, . . . , ek of Γ with exactly one endpoint in
Kv. Denote with e

n
1 , . . . , e

n
k the corresponding edges of Pn and call e∞1 , . . . , e

∞
k

the limit edges. As before the external dihedral angle of eni is denoted θ̃ni .
Let Fn1 , . . . , F

n
k be the faces containing these edges. Each Fni lies on a plane

Πn
i ⊆ R3 and determines a half space Hn

i ⊆ R3 bounded by Πn
i (the one that

contains Pn). Pick n big enough so that the triple intersections of the various
Πn
i s are very close to v.

We distinguish the same 4 cases as in Lemma 5.6; we showed that Case 3
and Case 4 are impossible (under more lax assumptions) hence we skip them.

Case 1. Every limit edge e∞i intersects H3.

We show that
∑

i θ̃
n
i > 2π. Since the internal dihedral angles are decreasing,

the external dihedral angles are increasing in n, which would contradict Lemma
5.6.

Let Qn be the intersection of allH
n
i s; this is a convex non-compact subset of

R3. By assumption Qn has some hyperideal vertices (since certainly Pn ⊆ Qn
and Pn has a hyperideal vertex close to v).

Let Υ ⊆ R2 be the 1-skeleton of Qn. It must have (unbounded) edges
e1, . . . , ek and additional edges e′1, . . . , e

′
l, however it cannot have any cy-

cle since an innermost cycle would bound some face of Qn not contained in
Π1, . . . ,Πk.

If γ ⊆ R2 is an embedded 1-manifold intersecting transversely distinct edges
ei1 , . . . , eij exactly once, we write

∑
γ θ̃e for the sum

∑j
m=1 θ̃eij .

Let Υ∞ be the subgraph of Υ whose vertices are exactly the hyperideal ver-
tices of Qn, and whose edges are exactly the edges of Qn lying completely out-
side of H3. By assumption Υ∞ is not empty; choose one of its connected com-
ponents and consider γ the boundary of its regular neighborhood in R2. Since
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Υ contains no cycles, γ must be connected (otherwise the regular neighborhood
of Υ∞ would contain a cycle). Proposition 5 of [2] implies that

∑
γ θ̃e > 2π.

If γ only intersects the old edges e1, . . . , ek, then we have concluded. Suppose
then that instead γ intersects e′i. We distinguish two cases, based on whether
both endpoints of e′i are in Υ∞ or not.

If both endpoints of e′i are in Υ∞, still e
′
i cannot be contained in Υ∞ by con-

struction; moreover its endpoints cannot be contained in the same connected
component because Υ contains no cycles. One endpoint of e′i is contained in
a connected component U of Υ∞ whose regular neighborhood is bounded by
γ, the other in a component U ′ whose regular neighborhood is bounded by γ′.
Let γ′′ be the boundary of the regular neighborhood of U ∪ U ′ ∪ e′i. Then∑

γ′′

θ̃e =
∑
γ′

θ̃e +
∑
γ

θ̃e − 2θ̃e′i > 4π − 2θ̃e′i > 2π.

If instead one endpoint v of e′i is not in Υ∞, denote with γ
′ the boundary

of a regular neighborhood U ′ of v in R2, and with γ′′ the boundary of a regular
neighborhood of U ∪ U ′ ∪ e′i. Then∑

γ′′

θ̃e =
∑
γ

θ̃e +
∑
γ′

θ̃e − 2θ̃e′i >
∑
γ

θ̃e > 2π.

where the �rst inequality is because the external angles of hyperbolic poly-
hedra must satisfy the triangular inequality, thus

∑
γ′ θ̃e − 2θ̃e′i > 0.

We can repeat this process, modifying γ while keeping
∑

γ θ̃e > 2π, until
γ intersects only e1, . . . , ek, obtaining the desidered inequality. Figure 5.5
exempli�es this process in a particular case.

Case 2. Some edges e∞i intersect H3, while at least some other e∞j is

tangent to ∂H3; however every edge tangent to ∂H3 is in the same edge of P ∗.

By renumbering if necessary suppose that en1 , . . . , e
n
k′ converge to edges

intersecting H3 and the remainder do not.

In this case we employ the same trick of Lemma 5.6: we truncate Qn and
we double along the truncation face to fall back into Case 1. This way we show
that

∑k′

i θ̃
n
i > π which once again contradicts Lemma 5.6 since the angles are

decreasing.

Proposition 5.2. Let P be either a proper or almost proper polyhedron with
1-skeleton Γ with no ideal vertices and some real vertices. Then there exists a
generalized hyperbolic polyhedron P ∗ with the following properties:

� Vol(P ∗) > Vol(P );
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The 1-skeleton Υ. The subgraph Υ∞ is comprised of edge v1v2 and vertex v4.
The edge v1v2 in Qn will lie outside H3, the vertex v4 will be hyperidal and v3
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We start with γ encircling v1v2. We extend Γ to encircle v3: doing so increases∑
γ θ̃e because of the triangular inequality.
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Figure 5.5: We �nish by extending γ to encircle v4 as well. This way γ
intersects e1 through e6 and

∑
γ θ̃e > 2π as requested.
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� P ∗ is either proper or almost proper;

� P ∗ has at most the same number of real vertices as P ;

� P ∗ either has fewer vertices, fewer real vertices or fewer proper vertices
than P ;

� if P ∗ has ideal vertices, then it is proper.

Furthermore, the 1-skeleton of P ∗ can be obtained from Γ via a �nite sequence
of the following moves:

(i) an edge of Γ collapses to a vertex;

(ii) a face of Γ collapses to an edge.

Proof. The strategy to obtain the polyhedron P ∗ is to deform P by decreasing
all angles (hence, increasing the volume) until it is no longer possible.

If P has only real vertices, then for an appropriate λ > 1 the polyhedron
Φv
λ(P ) (for v ∈ P ) is a proper polyhedron with 1-skeleton Γ, at least an ideal

vertex and larger volume (since it clearly contains P ), hence it satis�es the
conditions in the thesis.

Suppose now that P has a hyperideal vertex v, and let ~θ = (θ1, . . . , θk)
be the dihedral angles of all proper edges of P (if P is proper, all its edges
are proper). Then Corollary 2.18 or Corollary 2.20 tell us that for t in a
neighborhood of 1 there is a continuous family of polyhedra Pt (de�ned up to
isometry) with P1 = P , 1-skeleton Γ, dihedral angles of proper edges equal
to t~θ and the same almost proper vertices of P . By the Schlä�i identity, the
volume of Pt increases as t decreases. Up to a small perturbation of ~θ that
decreases all angles, we can assume that the path t~θ intersects the hyperplanes∑

i∈I θi = kπ one at a time, where I is any possible subset of {1, . . . , k}. Let
t∗ the in�mum of all t's such that Pt is de�ned.

If t∗ = 0, then for t very close to 0 the polyhedron Pt is hyperideal; since P
has some real vertices then Pt has more hyperideal vertices than P and thus
satis�es all the conditions of the thesis. Suppose then t∗ > 0. We prove that
in this case Pt has an accumulation point as t→ t∗.

Lemma 5.9. The family Pt just de�ned has an accumulation point Q which
is a non-degenerate projective polyhedron.

Proof. We need to prove that, up to a suitable choice of isometry class for Pt,
there is a converging subsequence, and its limit is a non-degenerate polyhedron
contained in an a�ne chart (i.e. it does not contain any line). Choose any

subsequence Pn := Ptn with tn → t∗. Consider representatives in
(
(RP3)∗

)F
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of Pn; by an abuse of notation we still call them Pn. Up to isometries we can
keep a hyperideal vertex v of Pn �xed (we assume there is one because of the
remark at the beginning of the proof).

Consider now An := Pn ∩ Πv: it is a sequence of polygons satisfying the
hypotheses of Lemma 2.35 (when viewed as subsets of Πv

∼= H2); then up to
isometry of H2 and subsequence they converge to a non-degenerate polygon A.
This shows that we can choose the representatives of Pn so that An converges
to A.

By compactness of (RP3)∗ the polyhedra Pn are going to have a subsequence
converging to some convex set Q ⊆ RP3.

Then Q must contain the pyramid with base A and vertex v, hence it is
non-degenerate.

We need to show that Q is contained in an a�ne chart. Suppose by contra-
diction that Q contains a projective line l. If v ∈ l then there must be wn ∈ Pn
di�erent from v but converging to v, and then the distance between Πv and
Πwn must converge to 0. This implies that the thickness of Pn (i.e. the radius
of the largest ball contained in Pn) must also converge to 0; this implies that
Vol(Pn)→ 0 by [34, Proposition 4.2] which is a contradiction. If instead v /∈ l
then we can �nd a vertex wn in Pn arbitrarily far (in the Euclidean sense)
from H3, and then −−→vwn does not intersect H3 which is absurd.

We pass to a further subsequence, if needed, so that all vertices of Pn
converge.

We now distinguish 3 cases.

Case 1. If Q is a generalized hyperbolic polyhedron without ideal vertices,
then we de�ne P ∗ := Q.

We need to check several properties of P ∗: we do so in the same order we
listed them in the statement.

� Since P ∗ has compact truncation, Lemma 2.38 implies that Vol(Pt) →
Vol(P ∗) increasingly, hence Vol(P ∗) > Vol(P ).

� Since P ∗ is a limit of proper or almost proper polyhedra, it must be
proper or almost proper itself, as being proper or almost proper is a
closed condition.

� By Lemma 5.8 an ideal or hyperideal vertex of Pn cannot become ideal
or real in P ∗, hence P ∗ has at most the same number of real vertices as
P .
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� If P ∗ had the same number of vertices (hence the same 1-skeleton), no
ideal vertices and the same almost proper vertices, then the dihedral
angles of proper edges would be local coordinates around P ∗; this would
imply that actually Pt → P ∗ (since all limit points of Pt must have the
same angles, hence be locally the same) and we could extend the path
Pt. This would contradict the fact that t∗ is minimal.

We need to show then that the 1-skeleton of P ∗ can be obtained by a
sequence of edge or face collapses. This is done by applying Lemma 2.24.

This conclude the proof in the case where Q is a generalized hyperbolic
polyhedron without ideal vertices.

Case 2. If Q is a projective polyhedron without ideal vertices (i.e. all
its vertices are not on the sphere at in�nity ∂H3), then it is a generalized
hyperbolic polyhedron.

To see this, remember that we only need to show that every edge of Q
intersects H3. Suppose that an edge e of Q is instead tangent to ∂H3. By
assumption neither of the endpoints of e can lie on ∂H3, hence they must
lie outside of H3. First we prove that there is only one sequence of edges en
converging to e (or even a subset of e). If there was another sequence of edges
e′n of Pn converging to a subset of e, then by the discussion following Lemma
5.6 both of its endpoint would have to converge to points outside H3. Then
the lines connecting these endpoints to the endpoints of en must, for n big
enough, lie outside H3 which is a contradiction. Therefore there is only one
edge en of Pn converging to e, and let Fn, Gn be the two faces containing en
and converging to F,G faces of Q containing e. If one of F or G was tangent
to ∂H3 then we would have another contradiction as some other edge would
lie outside H3. Therefore F,G must be contained in two hyperbolic planes
intersecting with dihedral angle 0, and the angle between Fn and Gn would
converge to 0 which contradicts the way we chose the angles of Pn.

Therefore, we can once again de�ne P ∗ := Q. The fact that P ∗ satis�es
the thesis is exactly the same as before.

Case 3: Q is a projective polyhedron with some ideal vertices.

The problem in this case is that it could happen that Vol(Pn) does not
converge to Vol(Q). In this case we need to modify the sequence Pn to arrive
at some other polyhedron Q′.

For any v ideal vertex of Q let (as in the proof of Lemma 5.6) Kv ⊆ Γ be
the union of all edges and vertices collapsing to v. Let e1, . . . , ek be the edges
of Γ with exactly one endpoint in Kv (notice that since Q is non-degenerate
there are at least 3 such edges), let en1 , . . . , e

n
k be the corresponding edges of

Pn, and e
∞
1 , . . . , e

∞
n their limit in Q.
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Let n be big enough that all the vertices of Pn converging to v are very
close to ∂H3 (in the Euclidean distance), while every other vertex is farther.

We further distinguish two cases.

Case 3a. The ideal vertex of Q is proper (i.e. it is not contained in the
dual plane of any hyperideal vertex of Q).

Notice that in this case we can apply the same reasoning of Case 2 to get
that Q is a generalized hyperbolic polyhedron.

We have shown Lemma 5.6 that in this case limn→∞
∑

i θeni is a multiple of
π, therefore Q has exactly one ideal vertex because of the way we perturbed
~θ.

Then there is a hyperbolic plane Π delimiting the half-spaces H1 and H2

such that H1 contains, for every n ≥ n, exactly the vertices of Pn converging
to v, while H2 contains every other vertex of Pn and every truncation plane
(notice: not just truncation faces). For simplicity we can assume that Π is the
dual plane to some hyperideal point close to v (so that Π is almost orthogonal
to en1 , . . . , e

n
k). Up to an isometry we can make it so that Π is an equatorial

plane (i.e. one containing 0 ∈ H3 ⊆ R3). Let −→a be the unit normal vector to
Π pointing toward H1. Recall that Ψ−→

b
is the translation of R3 in the direction

−→
b .

For n big enough, Q ∩ H2 is compact and close to Pn ∩ H2, hence their
volumes are also close. Then for any δ > 0 there is a λ small enough that
Vol (Ψλ−→a (Q) ∩H2) > Vol (Q ∩H2)− 1

2δ, which implies that

Vol (Ψλ−→a (Pn) ∩H2) > Vol (Pn ∩H2)− δ
for every n big enough. It is important to notice that λ does not depend on
n, only on δ.

Then we de�ne P ∗ to be Ψλ′−→a (Pn) for some n and λ′ < λ. For n su�ciently
large and an appropriate λ′, there is some vertex of Pn that becomes ideal.
Moreover since every vertex that is close to v is real by Lemma 5.8, this must
happen before any edge of Pn gets pushed out of H3. This implies that P ∗ is
a generalized hyperbolic polyhedron.

We prove that P ∗ satis�es all the conditions of the thesis, in the same order.

� Clearly Vol(P ∗ ∩ H1) > Vol(Pn ∩ H1), since Pn ∩ H1 ⊆ P ∗ ∩ H1. Fur-
thermore we chose λ′ < λ such that Vol(P ∗ ∩H2) > Vol(Pn ∩H2) − δ.
Therefore Vol(P ∗) > Vol(Pn)− δ, which implies that Vol(P ∗) > Vol(P )
for δ small enough.

� The translation vector −→a is contained in the tangent cones of all hyper-
ideal vertices of Pn (see Figure 5.6), therefore P ∗ is proper by Lemma
2.14.
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v

Πv

Π

Ψλ−→a (v)

λ~a

Figure 5.6: Because Πv is completely contained in H2, the translation by λ~a
sends v into its tangent cone.

� Pn has at most the same number of real vertices of P by Lemma 5.8;
then P ∗ has some more ideal vertices, hence fewer real vertices.

� P ∗ has exactly the same number of vertices of P but at least one fewer
real vertices, as we noted in the preceding point.

� we have noted that P ∗ is proper.

Furthermore P ∗ has the same 1-skeleton as Pn hence the same 1-skeleton as
P .

Case 3b. The ideal vertex of Q is almost proper.

This case is almost the same as case 3a; we just need to be careful about
the truncating plane containing the almost proper vertex.

Once again by Lemma 5.6 we have that limn→∞
∑k′

i=1 θeni is a multiple of
π, therefore Q has exactly one ideal vertex.

Let v be the almost proper vertex of Q and let w be the vertex of Q such
that v ∈ Πw. Since w must be hyperideal, there is a unique vertex wn ∈ Pn
converging to it. Now �x n big enough. As before we can �nd a plane Π that
divides H3 in H1, H2 with H1 containing every vertex that converges to v and
H2 containing every other vertex and the dual plane to every hyperideal vertex
of Pn other than wn. Furthermore we can choose Π passing through wn, so
that Π and Πwn are orthogonal.
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With an isometry we �x Πwn to be an equatorial plane and Πv is an equa-
torial plane orthogonal to it (notice that in this particular case of equatorial
planes, being orthogonal in H3 is the same as being orthogonal in R3). Having
Πwn being equatorial means that wn is a point at in�nity in RP3.

Let −→a be the unit normal vector to Π pointing towards H1 and
−→
bn be the

unit normal vector to Πwn pointing towards the truncation of Pn.

Then the polyhedron Ψ
λ(−→a +ε

−→
bn)

(Pn), for n big enough and λ and ε small

enough, satis�es all the conditions required for P ∗. The proof is almost the
same as in case 3a: the only additional detail to check is that any almost proper
vertex lying on Πwn becomes proper. To see this, notice that Ψ

λ(−→a +ε
−→
b )

does

not move wn since it is a point at in�nity (hence, leaves Πwn �xed) and pushes
every vertex away from wn.





Chapter 6

Volume conjecture for

polyhedra

In this chapter we introduce the Maximum Volume Conjecture for polyhedra.
The proof for a large family of examples is in Section 6.2 and relies on Barrett's
Fourier transform. Finally in Section 6.3 we use these results to prove the
Turaev-Viro Volume Conjecture in a new family of examples.

6.1 The volume conjecture for polyhedra

A Volume Conjecture for trivalent graphs (and their Kau�man bracket invari-
ant) was �rst proposed in [52] and later re�ned in [16] to the case of planar
trivalent graphs and simple hyperbolic polyhedra. The conjecture of [16] eval-
uates the invariant at the �rst root of unity q = eπi/r; the downside of this
choice is that they have to consider poles of the Kau�man bracket, instead of
its values directly. Recently, Murakami and Kolpakov [29] proposed a volume
conjecture for polyhedra at the second root of unity q = e2πi/r, but only stated
it for simple polyhedra without hyperideal vertices; remarkably this conjecture
directly involves the value of the Kau�man bracket. Here we propose an ex-
tension of Kolpakov-Murakami's volume conjecture to a very general setting,
and then propose a volume conjecture for polyhedra that is similar in spirit to
the Turaev-Viro Volume Conjecture.

We propose the following formulation of the volume conjecture, generalizing
the aforementioned versions.

Conjecture 1.3 (The volume conjecture for polyhedra). Let P be a proper
polyhedron with dihedral angles α1, . . . , αm at the edges e1, . . . , em, and 1-
skeleton Γ. Let colr be a sequence of r-admissible colorings of the edges e1, . . . , em
of Γ such that

2π lim
r→+∞

colr(ei)

r
= π − αi.

83
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Then
lim

r→+∞

π

r
log |Yr(Γ, colr)| = Vol(P ).

Remark 6.1. In the case where P is a simple polyhedron in H3 (i.e. a compact
polyhedron with only trivalent vertices) this conjecture is the same as the
volume conjecture of Kolpakov-Murakami [29].

Conjecture 1.3 was veri�ed in [11] for tetrahedra with at least one hyperideal
vertex; we provide some further supporting numerical evidence for Conjecture
1.3 for some pyramids in the Appendix, and prove it for a large family of
examples in Proposition 6.12 and the subsequent remark (however, only for a
single sequence of colors).

The Maximum Volume Conjecture

As we noted in Proposition 3.14, the Turaev-Viro invariant of the complement
of a link L ⊆ S3 is related to the Reshetikhin-Turaev invariants of L via
a simple formula. This motivates us to give the following de�nition of the
Turaev-Viro invariant of a graph.

De�nition 6.2. Let Γ ⊆ S3 be a planar graph with e edges. We de�ne the
Turaev-Viro invariant of Γ, in analogy with Propositions 3.14 and 3.18.4, as

TVr(Γ) :=
∑
col∈Ier

|Yr(Γ, col)|.

We now state a volume conjecture for polyhedra in the vein of the uraev-
Viro Volume Conjecture] of Chen-Yang.

Conjecture 6.3 (The Maximum Volume Conjecture). Let Γ ⊆ S3 be a 3-
connected planar graph. Then

lim
r→+∞

π

r
log (TVr(Γ)) = sup

P∈AΓ

Vol(P )

where r ranges across all odd natural numbers.

Remark 6.4. If Conjecture 1.3 is true, then of course

lim
r→+∞

π

r
log (TVr(Γ)) ≥ sup

P∈AΓ

Vol(P ).

However, there could be a sequence of colorings colr such that Yr (Γ, colr)
grows faster than for any sequence satisfying the hypotheses of Conjecture
1.3; therefore Conjecture 1.3 does not imply the Maximum Volume Conjecture.
Nevertheless we believe the Maximum Volume Conjecture to be easier to prove
than Conjecture 1.3, as it only concerns the largest values for the volume
and the Turaev-Viro invariants, and not those of any particular geometric
structure.
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Figure 6.1: The 0-framed Hopf link

We also propose a slightly stronger version of the Maximum Volume Con-
jecture; the stronger statement can be seen as the natural generalization of
Theorem 1.8 to the case of general graphs.

Conjecture 6.5. If Γ is a planar 3-connected graph and col is any r-admissible
coloring of its edges, then

π

r
log |Yr(Γ, col)| ≤ Vol(Γ) +O

(
log(r)

r

)
Moreover, the inequality is sharp, with equality attained by the sequence of
colorings giving the color r−2±1

2 to each edge (the sign is chosen so that the
colors are even).

It is straightforward to show that Conjecture 6.5 implies the Maximum
volume conjecture, since TVr is a sum of polynomially many terms of the type
Yr(Γ, col). However it is slightly more precise since it speci�es which colorings
give the maximum growth.

6.2 The Fourier Transform

In this section we prove Theorem 1.7. The �rst main tool used is Theorem
1.8, giving an upper bound on the growth of the 6j-symbol.

The second main tool used to prove Theorem 1.7 is the Fourier Transform
introduced in [3] by Barrett. We introduce it here in a slightly di�erent context
and notation.

Let H ⊆ S3 be the 0-framed Hopf link as in Figure 6.1. If i, j ∈ Ir we
denote with H(i, j) ∈ C the value of the Kau�man bracket of the Hopf link
colored with i, j; an easy induction on j shows that

H(i, j) = (−1)i+j [(i+ 1)(j + 1)] = (−1)i+j
sin
(

2π
r (i+ 1) (j + 1)

)
sin
(

2π
r

) .

Furthermore denote with
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N :=
r

4 sin2
(

2π
r

) = 〈U,Ω〉2 =

(∑
i∈Ir

∆2
i

)2

where U is the 0-framed unknot in S3 colored with the color Ω :=
∑
i∈Ir

∆ii.

Remark 6.6. Once again we remark that we are using the SO(3) version of
the invariants evaluated at q = e2πi/r. However, the Fourier transform and its
properties hold with any choice of primitive 2r-th root of unity, or any choice
of primitive 4r-th root of unity for the SU(2) case; the proofs work verbatim
in every other case.

The following proposition was �rst noticed by Barrett in [3]; a concise proof
was later given in [4]. For the sake of completeness, we include a detailed proof
of this result.

Proposition 6.7. If Γ is a planar framed graph and Γ∗ is its planar dual,
then

Yr(Γ
∗, col′) = N−g

∑
colcoloring of Γ

Yr(Γ, col)H(col, col′)

where

H(col, col′) :=
∏

e edge of Γ

H(col(e), col′(e∗)),

and g is the genus of a regular neighborhood of Γ.

Proof. The proof is entirely diagrammatic; when we display an equality be-
tween (linear combinations of) diagrams, we mean that they have the same
Kau�man bracket. Throughout the proof we will liberally add Ω-colored, 0-
framed unknots that are unlinked from anything else; this will generate an
ambiguity of a power of N that we will account for at the end.

First we show that Yr(Γ, col) is equal to the Kau�man bracket of the link L
obtained from Γ as in Figure 6.2. Every vertex is replaced by a circle colored
with Ω, and every edge is replaced by a circle colored with the same color as
the edge, wrapping around once each of the two circles corresponding to its
vertices.

This can be shown by using the de�nition of Y after applying the following
identity to L:
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−−−−→

Ω

Figure 6.2: The Chainmail Rule. Each circle has the same color as its corre-
sponding edge.

Ω

i

Figure 6.3

Ω

=
∑
i∈Ir

∆i

Ω

i i

(6.1)

This holds for any number of strands; it is obtained by repeated application
of the fusion rule followed by the well known fact (see [30, Lemma 6] that if a
diagram contains the skein element in Figure 6.3 it is equal to 0 unless i = 0.

When passing from Γ to L we still speak of edges and vertices of L: we
mean the circles corresponding to edges and vertices of Γ respectively. Slightly
more improperly we speak of faces of L, by which we mean the portions of the
plane delimited by edges of L.

Now we wish to apply the Fourier transform in a diagrammatic way. This
is done via the following relation (obtained from the connected sum formula
for the Kau�man bracket):
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Figure 6.4: Stretching edges towards the center and adding an extra compo-
nent.

∑
i∈Ir

H(i, j)
i

=

j

Ω (6.2)

to each component of L that corresponds to an edge of Γ: this gives us the
Fourier transform of Yr(Γ, col). We call the meridional circles added via this
process the transverse circles; they will correspond to edges of Γ∗.

Take a face F of L and stretch the circles transverse to its edges so that
they are close to the center of F (see Figure 6.4). Add an unknot U colored
with Ω at the center of F and handleslide it along all the edges of F ; the
result is that U gets linked to each transversal circle and remains unlinked
from any edge or vertex of Γ as in the left part of Figure 6.5. The circle U will
correspond to a vertex in Γ∗. Repeat this procedure for every face of L.

Now apply the inverse of the chainmail relation in Figure 6.2 to each circle
corresponding to a vertex of Γ and each circle corresponding to a vertex of Γ∗.
The result is going to be 4 unlinked graphs (and several unlinked unknots that
for now we ignore), 2 of which give Yr(Γ

∗, col′) and two of which give Yr(Γ,Ω)
(where we still denote with Ω the coloring of Γ with color Ω on each edge).

Lemma 6.8. The following equality holds:

Yr(Γ,Ω) = Ng.

Proof. The Yokota invariant does not change when performing a Whitehead
move on an edge colored with Ω (Proposition 3.18.2). Therefore, we can change
Γ to be a �bicycle� graph as in 6.6, with some circles connected linearly by
segments; since a Whitehead move does not change the genus of the regular
neighborhood, there are g circles. Because of the bridge rule 5, the Kau�man
bracket is 0 unless the colors of every connecting edge is 0, and therefore



6.2. THE FOURIER TRANSFORM 89

Figure 6.5: The central component gets linked by handleslides.

Figure 6.6: Bicycle with 3 wheels

Yr(Γ,Ω) =

 ∑
i1,...,ig∈Ir

∆2
i1 · · ·∆2

ig

 = Ng

which concludes the proof.

To conclude the proof it only remains to check how many factors of N are
added or lost through this procedure. At the beginning we added an unknot for
each vertex of Γ, and then for each face. However when we applied the inverse
of the chainmail relation we removed the exact same number of components;
therefore there is no additional N factor.

Proposition 6.9. We have

lim
r→∞

TVr(Γ)

TVr(Γ∗)
= O(rn)

for some n ∈ N .

Proof. Let colmax be a coloring of Γ such that |Yr(Γ, col)| is maximum.

Thanks to Proposition 6.7

TVr(Γ
∗)

TVr(Γ)
≤
∑

col |Yr(Γ∗, col)|
|Yr(Γ, colmax)| = N−g

∑
col

∣∣∣∣∣∑
col′

H(col, col′)
Yr(Γ, col

′)

|Yr(Γ, colmax)|

∣∣∣∣∣ ≤
N−g

∑
col,col′

|H(col, col′)|

and the latter is a sum of polynomially many polynomial terms.
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Corollary 6.10. If lim
r→+∞

π
r log (TVr(Γ)) exists, then lim

r→+∞
π
r log (TVr(Γ

∗))

also exists; moreover the two quantities are equal.

Corollary 6.11. The Maximum Volume Conjecture is true for Γ if and only
if it is true for Γ∗.

Proof. Corollary 5.5 states that the maximum volume of Γ is the same as the
maximum volume of Γ∗; this and Corollary 6.10 imply the thesis.

Theorem 1.7. Conjecture 6.5 (hence, the Maximum Volume conjecture) is
veri�ed for any planar graph obtained from the tetrahedron by applying any
sequence of the following two moves:

� blowing up a trivalent vertex (see Figure 1.1) or

� triangulating a triangular face (see Figure 1.2).

Proof. The proof is by induction on the number g of blow-ups or triangulations
needed to construct Γ. Notice that if Γ is obtained from Γ′ via a blow-up, Γ∗

is obtained from (Γ′)∗ by a triangulation of a triangular face, and vice-versa.

We �rst prove that Vol(Γ) = (g+1)v8. The case of g = 0 is well known and
appears in [51]. Take now any Γ obtained from Γ′ by a blow-up of a vertex
v; we can take the recti�cation Γ′ and glue a right-angled ideal octahedron
to the face corresponding to v. Notice that the gluing is done along an ideal
triangular face, and along right dihedral angles. It is immediate to see that this
gluing gives the truncation of Γ: the 1-skeleton is the same and there are only
right angles. Therefore, by blowing up a vertex the maximum volume grows by
v8. Dually, triangulating a triangular face makes the maximum volume grow
by v8 as well.

We now prove that

π

r
log |Yr(Γ, col)| ≤ (g + 1)v8 +O

(
log(r)

r

)
.

The base case g = 0 is Theorem 1.8.

If Γ is obtained from Γ′ as a blow-up of a single vertex, then

Yr(Γ, col) = Yr(Γ
′, col1)Yr(T, col2)

where T is a tetrahedron, and col1, col2 are the colorings induced by col on
Γ′ and T respectively. Therefore, Yr(Γ, col) ≤ Yr(Γ

′, col1)Yr(T, col2) and by
induction



6.2. THE FOURIER TRANSFORM 91

π

r
log |Yr(Γ, col)| ≤ (g + 1)v8 +O

(
log(r)

r

)
.

By duality, this inequality also holds if Γ is obtained from Γ′ by triangu-
lating a single triangular face.

The sharpness of the upper bound is proven in the following proposition.

Proposition 6.12. If Γ is as above and col = ( r−2±1
2 , . . . , r−2±1

2 ) (where the
signs are chosen so that r − 2± 1 is a multiple of 4), then

lim
r→+∞

π

r
log (Yr(Γ, col)) = (g + 1)v8.

Proof. The proof is once again by induction; the base case is Theorem 1.8.
Suppose Γ is obtained from the tetrahedron by g blow-ups and triangulations,
and at least 1 blow-up. Then, Γ is a vertex sum of Γ1 and Γ2, with both
graphs obtained from the tetrahedron via g1 and g2 blow-ups or triangulations
respectively, and g1 + g2 = g − 1. Since Yr(Γ, col) = Yr(Γ1, col1)Yr(Γ2, col2)
(with col1, col2 the colorings induced by col on Γ1,Γ2 respectively), we have

lim
r→+∞

π

r
log (Yr(Γ, col)) = lim

r→+∞

π

r
log (Yr(Γ1, col1)Yr(Γ2, col2)) =

= (g1 + 1 + g2 + 1)v8 = (g + 1)v8.

We need to deal with the case of Γ being obtained via g triangulations.
In this case, Γ∗ is obtained from the tetrahedron via g blow-ups. Apply the
Fourier transform to Yr(Γ, col):

Yr(Γ, col) =
∑
col′

H(col, col′)Yr(Γ
∗, col′);

however, since col is constantly r−2±1
2 and even,

H

(
r − 2± 1

2
, j

)
= (−1)j

sin
(

2π
r
r±1

2 (j + 1)
)

sin(2π/r)
=

(−1)j
sin
(
π(j + 1)± π

r (j + 1)
)

sin(2π/r)
= −sin(±π

r (j + 1))

sin(2π/r)

which has ∓ sign since 0 ≤ j ≤ r − 1. Moreover, since Γ∗ is a trivalent
graph, Yr(Γ

∗, col′) = |〈Γ∗, col′〉|2 is non-negative for every coloring; therefore,
Yr(Γ, col) is a sum with constant sign of Yr(Γ

∗, col′) over all possible colorings.
This shows that Yr(Γ, col) grows as the maximum growth of Yr(Γ

∗, col′) over
all colorings, which is (g + 1)v8.
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Remark 6.13. Proposition 6.12 actually proves the Conjecture 1.3 for a large
family of polyhedra (albeit for a single sequence of colors each) since the volume
of a polyhedron with internal angles 0 is the volume of its recti�cation (notice
how 2π r±1−2

2 → π). Moreover, because of 3.20, Conjecture 1.3 is veri�ed (for
the sequence above) for any graph obtained from the tetrahedron via blow-ups,
triangulations and doubles.

6.3 The Turaev-Viro volume conjecture

In this section we apply Theorem 1.7 to prove the Turaev-Viro volume conjec-
ture for an in�nite family of examples. The manifolds for which we prove the
conjecture have Reshetikhin-Turaev invariants closely related to the Yokota
invariant of the graphs of Theorem 1.7.

Proposition 6.14. Let Γ ⊆ S3 be a graph obtained from the tetrahedron by a
sequence of g−1 blow-ups of vertices or triangulations of triangular faces as in
the hypothesis of Theorem 1.7; let e1, . . . , ek be its edges, and denote with h the
number of vertices of Γ. Then there is a k-component link L = L1t· · ·tLk in
S3#h−1

(
S1 × S2

)
such that for any col ∈ Ikr coloring (seen both as a coloring

of Γ and as a coloring of L) we have

Yr(Γ, col) =

(√
2

r
sin(2π/r)

)h
RTr(S

3#h−1
(
S1 × S2

)
, L, col)

Proof. We have seen in the proof of Proposition 6.7 that there is a way to
associate to any (Γ, col) a skein element L in S(S3) such that Yr(Γ, col) = 〈L〉.
The skein L is a link with k + h components; k of these components are in
bijection with the edges of Γ and are colored with the corresponding color of
col. The other h are unknotted components in bijection with the vertices of Γ
and are colored with Ω. Pick a component of L colored with Ω: it is possible
to handleslide it along each other Ω-colored component without modifying the
Kau�man bracket. After it is handleslid along each component, it becomes un-

linked from everything, therefore 〈L〉 = 〈U〉〈L′〉 =
(√

2
r sin(2π/r)

)
〈L′〉 where

U is an unknotted, unlinked component colored with Ω and L′ is the remain-
ing part of the skein. By the de�nition of the Reshetikhin-Turaev invariant of
links

〈L′〉 =

(√
2

r
sin(2π/r)

)h−1

RTr(S
3#h−1

(
S1 × S2

)
, L, col)
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where L is the link obtained from L′ by doing a 0-framed Dehn surgery on the
components of L colored with Ω. Notice that L only depends on Γ and not on
the coloring.

As we did previously to simplify the notation, when writing the formu-

las we drop the factor
(√

2
r sin(2π/r)

)h−1

; since this is a factor that grows

polynomially in r, dropping it is inconsequential when proving the volume
conjecture.

Proposition 6.15. If Γ is as in Proposition 6.14, then the link L obtained
from Γ by the construction of Proposition 6.14 is hyperbolic, and its hyperbolic
structure is obtained by gluing 4g right-angled hyperbolic ideal octahedra.

Proof. Let Γ be the recti�cation of Γ, and let P be its truncation. We have
seen in the proof of Theorem 1.7 that P can be obtained by gluing g right-
angled hyperbolic octahedra. Take two copies of P and glue them along each
corresponding truncation face. This gives a manifold homeomorphic to a han-
dlebody of genus h − 1 with some annuli removed from the boundary; the
decomposition into octahedra makes it into a �nite volume manifold M with
geodesic boundary. Take the double of M along the geodesic boundary: this
gives a manifold N which is homeomorphic to S3#h−1

(
S1 × S2

)
\ L.

To see this, take the octahedron O and truncate a small link of each of
its vertices. This truncation can be seen as the basic building block of the
fundamental shadow links (see Figure 2.13): each truncated vertex corresponds
to an arc, four of the faces of the octahedron correspond to the discs and the
remaining four faces correspond to the regions of the spheres delimited by the
arcs.

The polyhedron P is obtained by gluing octahedra together; glue the build-
ing blocks in the same pattern to obtain a ball with h discs on its boundary
and some arcs connecting the discs. If we take the double of this ball along
the discs we obtain a genus h − 1 handlebody with a link in its boundary.
Doubling the handlebody gives S3#h(S1 × S2) and the link in the boundary
is exactly L.

We will soon prove that the Turaev-Viro Volume Conjecture holds for the
complements of the links just introduced; we need to show that this result is
interesting by proving that some of these complements are not di�eomorphic
to complements of Fundamental Shadow Links. We do this by counting how
many thrice punctured spheres there are in each complement.

Proposition 6.16. Let Γ be a graph as in the hypotheses of Proposition 6.14;
let t be the maximal number of disjoint triangular faces in the truncation of Γ.
Let L be the link associated to Γ by the construction of Proposition 6.14, and
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Figure 6.7: The 6 geodesic in a thrice punctured sphere cutting it into triangles.

EL be its exterior. Then EL contains at most t+2g−2 disjoint thrice-punctured
spheres.

Proof. The reasoning in this proof is similar to the proof of [15, Proposition
3.4].

Let P be the truncation of Γ; we have seen that EL is obtained by doubling
P along the truncation faces (to obtain a hyperbolic manifold with geodesic
boundary H) and doubling again along the geodesic boundary.

Since it is the recti�cation of Γ, the truncation faces of P can be colored
with black and the remaining with white; this way two faces of the same color
never share an edge.

As we have seen EL decomposes into octahedra; take O an octahedron in
this decomposition, and let S be any thrice-punctured sphere.

Claim: S ∩O is either the empty set or a facet of O.

We �rst look at S ∩ O as a subset of S. It must be a convex region of S
delimited by geodesics. Since S contains exactly 6 close geodesics the possible
con�gurations are easy to list. Figure 6.7 shows the 6 geodesics cutting S
into triangles; the possibilities for S ∩ O can be obtained by looking at all
the possible ways to glue these triangles to obtain a convex set. The convex
subsets of S obtained by gluing triangle regions are:

1. a triangle with 1 ideal vertex (obtained by taking a single triangle region);

2. a triangle with 2 ideal vertices (obtained by gluing two triangle regions
without an ideal vertex in common);

3. a square with 1 ideal vertex and 2 right angles (obtained by gluing two
triangle regions with an ideal vertex in common);

4. a triangle with 2 ideal vertices and a right angle (obtained by gluing a
triangle region to the triangle in 2);



6.3. THE TURAEV-VIRO VOLUME CONJECTURE 95

Figure 6.8: A square arising as the intersection of a thrice-punctured sphere
and an octahedron of EL.

5. a square with 2 ideal vertices (obtained by gluing two triangles in 2 along
a common geodesic side);

6. a bigon with 1 ideal point (obtained by gluing all triangle regions sharing
an ideal vertex);

7. a triangle with 3 ideal vertices (obtained by gluing 6 triangle regions);

8. the whole thrice-punctured sphere S.

Every other possible way of gluing together the triangle regions of Figure
6.7 does not give a convex subset.

On the other hand, S∩O as a subset ofO must coincide with the intersection
of O with a plane Π ⊆ H3; therefore it cannot be either a bigon with an
ideal point nor the whole S. Moreover, Π ∩ O cannot be a triangle with one
or two ideal vertices, nor can it be a square with one ideal vertex and two
right angles. The remaining possibilities are that it is a vertex, an edge, an
ideal triangle (which is to say, a face) or a square with two ideal vertices (see
Figure 6.8). However, every octahedron that is glued to O must be distinct by
construction; therefore the latter case is impossible since the intersection of S
with four of these octahedra must also be a square with 2 ideal vertices, which
would contradict the fact that S is a thrice-punctured sphere.

Let S be a set of disjoint thrice-punctured spheres. This determines a set of
disjoint ideal triangles in each of the four copies of P that make up EL. Each
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Figure 6.9: A graph whose link is not a fundamental shadow link.

polyhedron contains exactly g − 1 properly embedded geodesic triangles (the
ones that decompose P into octahedra). These glue up to give 2g − 2 disjoint
thrice-punctured spheres in EL. Furthermore, a disjoint collection T1, . . . , Tt
of triangles in ∂P induces a set of disjoint thrice-punctured spheres. Therefore,
there are at most 2g − 2 + t disjoint thrice-punctured spheres in EL.

Remark 6.17. IfM is the exterior of a fundamental shadow link with volume
2nv8, then it contains exactly 2n disjoint thrice-punctured spheres. This can
be used to show that some of the exterior of the links provided by Proposi-
tion 6.14 are not fundamental shadow links; the simplest such example is the
link associated to the graph shown in Figure 6.9. An easy check shows that
the truncation of Γ contains at most 6 disjoint triangular faces, which means
that EL contains at most 10 thrice-punctured spheres; on the other hand a
fundamental shadow link with the same volume as EL must contain 12 spheres.

More in general, if Γ as above is obtained from the tetrahedron through at
least one triangulation and at least one blow-up, then the associated manifold
is not di�eomorphic to the exterior of a fundamental shadow link.

Theorem 6.18. Let L ⊆ S3#h−1
(
S1 × S2

)
obtained from Γ by applying the

construction of Proposition 6.14. Then the Turaev-Viro volume conjecture
holds for the exterior of L.

Proof. Theorem 1.7 implies that

π

r
log|RTr(S3#h−1

(
S1 × S2

)
, L, col)| = π

r
log|Yr(Γ, col)| ≤ gv8 +O(log(r)/r).

Furthermore if we denote with c the coloring
(
r±1

2 , . . . , r±1
2

)
(where the sign

is chosen so that the color is always even), we have

π

r
log|RTr(S3#h−1

(
S1 × S2

)
, L, c)| = π

r
log|Yr(Γ, c)| = gv8 +O(log(r)/r).

If EL is the exterior of L,

TVr(EL) =
∑
col∈Ikr

|RTr(S3#h−1
(
S1 × S2

)
, L, col)|2

by 3.14, and Vol(EL) = 4gv8 by Proposition 6.15, which implies the thesis by
the same reasoning used in the proof of Theorem 1.8.
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Remark 6.19. There is an overlap between Theorem 6.18 and Theorem
1.8. Some links of Theorem 6.18 are also Fundamental Shadow Links (FSL);
namely, those links corresponding to graphs obtained from the tetrahedron by
blow-ups. However many other are not.





Appendix A

Numerical evidence for

Conjecture 1.3

Supporting evidence for Conjecture 1.3 in the case of simple polyhedra can be
found in [29]. In this appendix we show numerical computations supporting
the conjecture for the square and pentagonal pyramids; all the calculations are
performed with the Mathematica software.

The ideal regular square pyramid.

By Theorem 2.15 there is a unique square pyramid such that the angles
at the base are π

4 and the vertical angles are π
2 . Such a pyramid is ideal

and is maximally symmetric; it is decomposed into two ideal tetrahedra with
angles π

4 ,
π
4 ,

π
2 hence its hyperbolic volume is equal to 4Λ

(
π
4

)
= v8

2
∼= 1.83193

(where Λ is the Lobachevski function). Consider the coloring of Figure A.1; it
converges to the angles of the ideal pyramid in the sense of Conjecture 1.3.

[
r
4

] [
r
4

]
[
r
4

] [
r
4

]

[
3r
16

]

[
3r
16

][
3r
16

]

[
3r
16

]

Figure A.1: The coloring of a square pyramid associated to the ideal regular
pyramid
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Its Yokota invariant is given by

∑
i∈Ir

∆i

∣∣∣∣ [ r4] [
r
4

]
i[

3r
16

] [
3r
16

] [
3r
16

]∣∣∣∣4

where [x] is the rounding of x to the nearest integer.
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Regular ideal square pyramid

Yokota invariant

Volume

The 0-angled squared pyramid

Because of the arguments of Section 2.2, the square pyramid with every
dihedral angle equal to 0 exists and attains the maximum volume of any square
pyramid (it is in fact the recti�ed pyramid). Its truncation is the right-angled
ideal square antiprism. The volume of a right-angled ideal antiprism with
n-gonal face is given by

2n
(

Λ
(π

4
+

π

2n

)
+ Λ

(π
4
− π

2n

))

and for n = 4 this gives ∼= 6.02305.

Color the pyramid with the color
[
r
4

]
at every vertex; this coloring converges

to the angles of the recti�ed pyramid.

Its Yokota invariant is given by

∑
i∈Ir

∆i

∣∣∣∣[ r4] [
r
4

]
i[

r
4

] [
r
4

] [
r
4

]∣∣∣∣4 .
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[
r
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r
5

]
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r
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]
[
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[
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]

[
r
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r
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]

[
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] [
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]

Figure A.2: The coloring of the pentagonal pyramid corresponding to an ideal
regular pyramid
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The ideal regular pentagonal pyramid.

As before there is a unique ideal pentagonal pyramid with vertical angles 3π
5

and base angles π
5 ; this pyramid is maximally symmetric. We can decompose

it into 3 ideal tetrahedra, two with dihedral angles π
5 ,

π
5 ,

3π
5 and the remaining

with dihedral angles π
5 ,

2π
5 ,

2π
5 . Its volume then is

5Λ
(π

5

)
+ 2Λ

(
2π

5

)
+ Λ

(
3π

5

)
∼= 2.49339.

Consider the coloring in Figure A.2, converging to the angles of the ideal
pyramid. Its Yokota invariant is

∑
i,j∈Ir

∆i∆j

∣∣∣∣(∣∣∣∣[ r10

] [
r
10

]
i[

r
5

] [
r
5

] [
r
5

]∣∣∣∣ ∣∣∣∣[ r10

] [
r
10

]
j[

r
5

] [
r
5

] [
r
5

]∣∣∣∣ ∣∣∣∣[ r10

]
i j[

r
5

] [
r
5

] [
r
5

]∣∣∣∣)∣∣∣∣2 .



102 APPENDIX A. NUMERICAL EVIDENCE FOR CONJECTURE 1.3
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The 0-angled pentagonal pyramid

The volume of the recti�ed pyramid is ∼= 8.13789, and the corresponding
Yokota invariant is

∑
i,j∈Ir

∆i∆j

∣∣∣∣(∣∣∣∣[ r4] [
r
4

]
i[

r
4

] [
r
4

] [
r
4

]∣∣∣∣ ∣∣∣∣[ r4] [
r
4

]
j[

r
4

] [
r
4

] [
r
4

]∣∣∣∣ ∣∣∣∣[ r4] i j[
r
4

] [
r
4

] [
r
4

]∣∣∣∣)∣∣∣∣2 .
Because of the greater range of the sum, it is considerably slower to compute

than the other examples; we were only able to arrive to level r = 321, and the
Yokota invariant is within 4% of the volume. However this is similar to the
error (at level 321) in the previous examples.
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