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Chapter 1

Introduction

Modern economic and financial systems are some of the most interesting

and complex structures that can be studied. What makes them particularly

fascinating is that, unlike other systems such as ecologies, materials or

proteins, the ways in which they are formed and behave do not descend from

physical or biological laws, but only from the imagination and inventive of

their creators and of those who act within these structures, ultimately of

human beings.

For this reason it has become growingly popular to study financial mar-

kets from the participants’ perspective, rather than by only looking at the

dynamics of asset prices, making it possible to account for the heterogene-

ity of strategies and behaviors that different individuals (or organizations)

have in their toolbox. This has produced the vast literature on agent-based

models (ABM), which aim at reproducing stylized price dynamics deter-

mined by the collective behavior of more or less rational traders sharing

more or less information (Cont (2007); Farmer and Foley (2009); Alfi et al.

(2009a,b); Leal et al. (2016); Fagiolo et al. (2019a)).

Some of the ABM literature focuses on the study of phenomena in fi-
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CHAPTER 1. INTRODUCTION 2

nancial markets that have been broadly described as herd behavior, usu-

ally defined as the human tendency to mimic the actions of a social group

with which the individual identifies, regardless of whether those actions

are rational or irrational. In finance this reflects in the observation that

large amounts of traders sometimes show remarkably similar behavior in

the short term, often causing price movements that are not justified by

fundamental information and increasing price volatility (Grinblatt et al.

(1995); Bouchaud et al. (2009); Toth et al. (2015)).

One of the criticisms that have been moved to ABMs is that they are

often prone to having large numbers of parameters that cannot be estimated

or statistically validated on empirical data, which in recent years has led to

more effort being put into the development of validation methods for these

models (Alfarano et al. (2005); Barde (2016); Fagiolo et al. (2019b)).

As classical economic models used to borrow methods and theories from

the natural sciences, in particular from Netwonian physics and Darwinian

evolutionary theory (and still unconsciously do, see Montes (2003) for a

philosophical critique), agent-based models borrow from modern develop-

ments of these disciplines, namely statistical physics and (evolutionary)

game theory. Statistical physics in particular provides a modelling ap-

proach which is ideal to settings where a large number of interacting agents

are taken into account, as it has been developed to describe extraordinarily

large amounts of interacting particles whose collective behaviour is deter-

mined by their individual, extremely stylized properties. While naively

translating physical models to financial markets is not necessarily a good

idea, mainly because as mentioned financial markets are ultimately not

physical systems, the insights that can be produced by adapting such mod-

els to financial systems are considerable (Sornette (2014); Challet et al.
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(2013)).

Throughout this thesis we provide novel contributions to several streams

of literature, ranging from statistical mechanics to agent-based modelling

and financial econometrics, their connection being in the application to

financial systems of the Kinetic Ising Model (KIM).

The KIM (Derrida et al. (1987); Crisanti and Sompolinsky (1988)), de-

veloped as a neural network model, describes the dynamics of a system

of binary variables - named “spins” in the statistical physics literature -

that have a lagged influence on each other. For a model with N variables

s(t) ∈ {−1, 1}N , the number of parameters is N(N + 1), where N pa-

rameters hi, i = 1, . . . , N , describe the tendency specific to spin i to have

positive or negative value in a vacuum, and a matrix of N2 parameters Jij

summarize the effect of the interaction between spin si and sj. This inter-

action is lagged in time, which means that spin i’s evolution is influenced

by spin j’s past value through the Jij parameter while Jji accounts for the

reciprocal (and possibly asymmetric) effect. The nature of this interaction

is considered irrelevant, the only thing that matters is its magnitude: the

farther from 0 the value of Jij, the stronger the effect that si experiences

coming from sj.

As mentioned, the KIM has been developed as a neural network model

in the late 1980s: these were among the first prototypes that were proposed

to understand the neurological functioning of animal brains and set some of

the pillars of what has then become the field of artificial intelligence (Hop-

field (1982); Coolen (2001a,b)). Much like brains, which are made of overall

very simple units (neurons) but are able of extremely complex functions,

neural networks are able to store and retrieve complex information pre-

sented to them by storing it in the interaction patterns among their nodes.
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In particular recurrent neural networks such as the KIM are able to store

and reproduce temporal patterns.

Given that the model is defined in such a way that the specific nature of

the interaction between variables is irrelevant, it has been used to describe

time series from neuron spike trains in animal brains (Hertz et al. (2010);

Capone et al. (2015)) as well as to model interacting traders in financial

markets (Bornholdt (2001); Bouchaud (2013)). This is the key difference

between what we propose in this thesis and for instance an agent-based

model: we do not focus on the mechanisms that make two variables interact

and reduce all that information to a single number, the coupling Jij.

This is both our main advantage and our main limitation: making this

assumption allows to use a very simple and flexible model to study a variety

of different systems without running into the hardships of calibrating many

parameters, while still keeping track of some of the system’s complexity; on

the other hand it also limits the depth to which the model describes the pe-

culiarities of the system. We believe that taking this approach is functional

to evaluate the presence of lagged dependencies between binary variables

in high-dimensional datasets, where it would be excessively complicated to

model each interaction by its own specific properties, or in situations where

the nature of the interaction is unknown to the modeller but the information

about its existence can be used to make more informed decisions.

In our applications to financial systems we show how the KIM can be

used to describe the relation between traders strategies as well as stocks

volatility, allowing to quantify herding effects or to study abnormal collec-

tive price movements at high frequency with a simple and effective method

that can be implemented for real time use.

Another perspective that can be considered is the one of financial econo-
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metrics and time series analysis, where the KIM would be defined as a vector

logistic autoregressive model of order 1. While in this thesis we do not fo-

cus on the use of our models for hypothesis testing, it is clear that our

contributions take inspiration from that stream of literature too, particu-

larly in the last part where we present the Score-Driven KIM. Furthermore

a model very similar to the KIM, the Vector Discrete AutoRegressive model

of Jacobs and Lewis (1978), has been used in several financial applications

in recent years (Taranto et al. (2014); Mazzarisi et al. (2020a,b)): in an

appendix to this thesis we expand on the relation between the two, finding

they are equivalent with the restriction that the values of Jij need to be

positive. This puts two very different streams of literature into commu-

nication and it is our hope that it will open opportunities to improve the

understanding and functionality of these models.

Having established the motivation for our work, in the following para-

graphs we will briefly introduce the content of the remaining chapters of

this thesis. After a review of relevant literature in Chapter 2, we begin in

Chapter 3 by developing an inference method for the KIM from time series

with significant amounts of missing values.

We tackle the problem of inferring a weighted causality network from

multiple binary time series by using the KIM in datasets where a fraction

of observations is missing. This is highly relevant in a number of real world

situations which show up in social sciences, where even if the existence of

an agent is known to the observer it is not always possible to measure its

state, for reasons that go from observations being costly to intrinsic features

of the system.

The literature on Restricted Boltzmann Machines1 is not new to this

1RBMs are a family of neural network models widely used in machine learning for
classification, dimensionality reduction and feature learning tasks (see Hinton (2012) and
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sort of problem but typically considers a setting where a fraction of nodes

is permanently hidden, rather than having all nodes being hidden for a frac-

tion of their observations (Dunn and Roudi (2013); Decelle et al. (2016)).

What we present in Chapter 3 then is a generalization to the existing meth-

ods by allowing the missing observations to show up for any variable at any

time.

Our algorithm relies on the path integral method of Martin et al. (1973)

to approximate the log-likelihood of the model, allowing to calculate it in

polynomial time rather than exponential time, which can be easily paired

with model selection techniques such as the LASSO (Tibshirani (1996)) or

Decimation (Decelle and Zhang (2015)) to obtain a sparse network solution.

The inference algorithm properly accounts for the presence of missing values

by computing their posterior means, which are in turn used to improve the

accuracy of the network inference in a sort of Expectation-Maximization

procedure (Dempster et al. (1977)).

We test the performance of the algorithm on synthetic data and find

interesting properties regarding the dependency on heterogeneity of the

observation frequency of spins: in particular the more heterogeneous is the

distribution of missing values across variables, the least efficient the method

is at correctly reconstructing both the network and the missing values. We

also find that some of the assumptions necessary to the analytical deriva-

tion of the approximated log-likelihood do not impact the quality of the

estimation too much even when they are violated.

One possible application of this modelling approach is presented in

Chapter 4, where we use it to infer lead-lag relationship networks between

references therein for a comprehensive review of methods and applications). They rely
on a bipartite weighted network of visible and hidden units which is tuned to match a
target probability distribution observed from data.
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investors in the foreign exchange market (FX) and to reconstruct the ag-

gregate state of supply and demand at all times. We analyze records from

the electronic trading platform of a major dealer in the FX market, where

clients of any sort can request a quote from the dealer to exchange some

amount of one currency for another.

The architecture of the FX market relies on a centralized interdealer ex-

change with a continuous double-auction mechanism where only few market

members (the dealers) are allowed to trade, mostly large banks and finan-

cial institutions. These dealers in turn offer their intermediation services to

the public, by providing proprietary electronic trading platforms with other

trading mechanisms, typically in the shape of on-demand over-the-counter

(OTC) trading. This mechanism operates based on the dealer maintaining

a balanced portfolio of currencies, named the inventory, such that a client

can obtain immediate execution of her trades in exchange for a premium re-

warding the dealer for taking the risk related to continuously holding large

amounts of currencies with fluctuating market value.

Taking the perspective of the dealer, a significant part of its risk man-

agement is related to mitigating adverse selection risk, namely the risk of

trading with a more informed counterpart (Kyle (1985); Glosten and Mil-

grom (1985)). In particular in the case of the dealer it is highly likely that

significant fractions of its clients are trading based on more information,

as they are probably specialized in that business, which results in the risk

of accumulating significant amounts of “bad” inventory while trading away

“good” inventory: if for example clients require US Dollars and pay in Euro,

the dealer will accumulate Euro and be lacking US Dollars in its reserves

and will thus need to trade Euros for US Dollars on the interdealer mar-

ket; however if the clients were informed that the EUR/USD exchange rate
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would go up in the near future, meaning Euros are worth less compared to

US Dollars, the dealer will incur in a loss due to its uninformed trading.

This is referred to as inventory risk (Ho and Stoll (1980)) and the dealer

offsets it by imposing a premium to its clients in the form of a spread be-

tween exchange rates, which is asymmetric with respect to the interdealer

spread to incentivize client’s flow in a favorable direction and wide enough

to let it safely trade on the interdealer market.

For this reason it is relevant to the dealer to understand how information

propagates among its clients, identifying players that can forerun large order

flows across the market and thus correctly price the risk they will bear.

We propose to approach the problem using the Kinetic Ising Model and

analyze the trade records of one dealer’s clients at the 5 minutes time scale

on the EUR/USD spot exchange rate market. We assume that trades are

observations of the opinion the trader holds about the rate, namely if she is

buying USD she believes the EUR/USD rate will go up and viceversa. In

particular we take the sign of net volume Vi(t) of EUR acquired in exchange

for USD by agent i in the 5 minutes window (t − 5m, t]: if it is positive

(resp. negative) we assign a value of +1 (−1) to its opinion si(t), which is

considered as a spin of the KIM.

However most of the traders are not active every 5 minutes, even if it is

reasonable to assume that they still hold an opinion and refrain from trading

because of transaction costs, limited liquidity, risk-aversion or other causes,

but they or other traders adopting similar strategies might be active on

other venues: for this reason the time series contains a significant amount

of missing values which, if correctly estimated, would provide a clearer

picture of the state of supply and demand in the whole market, even the

parts to which the dealer is not directly connected.
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Thanks to the inference algorithm we present in Chapter 3 we are able to

reconstruct a lead-lag network between traders unveiling the way in which

their trades relate over time, as well as to reconstruct the unobserved opin-

ions. We apply influencer detection techniques to the networks to identify

leading players in the market and we define a new herding measure, based

on both the observed and estimated traders opinions. We show that this

herding measure has Granger Causality relations with the state of liquidity

in the centralized interdealer market, thus linking to transaction costs the

dealer pays when rebalancing its inventory. Overall our results show that

the dealer efficiently propagates favorable states of liquidity to its clients

while absorbing temporary flow imbalances, thus contributing to market

efficiency and stability.

Up to this point we have considered stationary models, where param-

eters do not vary in time or they do so slowly enough that they can be

considered constant in a subsample. However this stationarity assumption

is not particularly realistic in a variety of situations, as events that warp

the dynamics of financial variables happen all the time. One prominent

example of time-varying parameter in financial literature is the volatility

of price returns, towards which a huge modelling effort has been devoted

since decades (Bollerslev (1986); Heston (1993); Cox (1996)). It is widely

accepted that even something as simple as the variance of log-returns is not

constant even throughout the same trading day, hinting that it is impor-

tant to consider approaches that take into account time-varying parameters

when modelling financial markets.

In the last research Chapter of this thesis, Chapter 5, we extend the

Kinetic Ising Model to its Score-Driven formulation, a particularly flexible

and interesting form of time-varying parameters modelling approach. Intro-



CHAPTER 1. INTRODUCTION 10

duced by Creal et al. (2013) and Harvey (2013), score-driven models are a

particular class of observation-driven models, which differ from parameter-

driven models by the deterministic evolution of the time-varying parameters

as functions of the observations, avoiding the addition of further sources of

stochasticity.

In score-driven models the evolution of the time-varying parameters at

time t depends deterministically on the observations through the score,

i.e. the gradient of the conditional log-likelihood with respect to the time-

varying parameters. We will better introduce the details of the approach in

Chapter 5, but the idea is that the model parameters evolve towards their

local maximum likelihood value driven by a dynamics resembling the New-

ton method for optimization, where the previous value of the parameters is

taken as the starting point for a step in the steepest descent direction.

The main advantage of taking this approach, compared to a more “clas-

sical” parameter-driven model, lies in the less challenging estimation: being

the time-varying parameters fully determined by the observations, there is

no need for Monte Carlo simulations when computing the value of the like-

lihood and thus even very complex models can be efficiently estimated with

relatively low effort. This is true in principle for any observation-driven

model, but the score-driven models have been shown to be optimal among

their “relatives” in terms of information theory by Blasques et al. (2015).

Another advantage is that the model can be used as a misspecified filter,

where the time-varying parameters are estimated from the data without

knowledge of their actual laws of motion: as long as it is meaningful to

introduce a dynamical parameter, endowing it with a score-driven dynam-

ics allows to effectively measure its behaviour without relying on additional

assumptions, as has been shown by Koopman et al. (2016).
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In this thesis we propose two specifications of the Score-Driven KIM:

the Dynamical Noise KIM (DyNoKIM) and the Dynamic Endogeneity KIM

(DyEKIM). The two differ by the number and kind of parameters which

are considered to be time-varying: in the DyNoKIM we only have one

dynamical parameter capturing the level of randomness in the observations,

while in the DyEKIM we factor the parameters of the KIM in a way that

different time-varying parameters account for the relative importance of

one set of effects over the others, particularly focusing on distinguishing

between endogenous and exogenous dynamics of the observations.

We show that the DyNoKIM, with its time-varying “inverse noise” pa-

rameter β(t) inspired by the inverse temperature of statistical physics, is

particularly useful to assess the reliability of forecasts made by the model,

as exhibited by computing the theoretical form of the Area Under the ROC

Curve (AUC) at different values of β. The AUC is a standard metric of per-

formance for binary classifiers, which the KIM de facto is, and summarizes

the specificity and sensitivity of the classifier (Bradley (1997)): we show

that the AUC is an increasing function of the value of the inferred β(t)

(and thus decreasing in the estimated noise level), with a functional form

depending on the other parameters of the model and the data distribution.

Since β can be estimated in real time, and forecasts made at higher β(t)

values can be considered more “reliable” than the ones made at lower β(t),

this provides a useful tool to continuously monitor the forecast ability of the

model and to decide how to account for its predictions in a more informed

and data-driven fashion.

We apply the DyNoKIM to a dataset of US stock prices at the 5 seconds

time scale, where we map times t where stock i changes price to positive

values of the spin si(t) = +1, while if the price does not change we take
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si(t) = −1. This quantity, referred to as stock activity in the literature

(Rambaldi et al. (2015); Wheatley et al. (2019)), is taken as a proxy for

high-frequency volatility, meaning that periods where the si(t) are con-

sistently more positive than negative are periods of higher volatility and

viceversa. We show that the AUC measured empirically for one-step ahead

forecasts matches the theoretical dependence on β(t), further justifying this

modelling approach for real world applications.

In the same Chapter 5 we also propose a more elaborate model, the

DyEKIM, which we design to discern between endogenous and exogenous

dynamics of the observations in the KIM framework. Intuitively, if the dy-

namics is endogenous it means that future realizations of the observations

have a strong dependency on their past realizations, either in the form of

auto-correlations or of lagged cross-correlations, while if the dynamics is

exogenous it is driven by other factors, captured by external regressors or

common trends. By defining a set of time-varying parameters each acting

as a common factor for auto-correlations (the diagonal of the interaction

matrix J), lagged cross-correlations (the off-diagonal terms of J), idiosyn-

cratic and common trends (the bias vector h) and external regressors we

are able to nicely separate these effects, thus gaining insight on the relative

importance each of them has in determining the observations at a given

point in time.

We provide two example applications for the Dynamic Endogeneity

KIM, one applied to a similar dataset of US stock prices as the previous

example and one applied to the traders activity dataset of Chapter 4. In

the US stocks application we consider two events that caused some turmoil

in the market, the Flash Crash of May 6, 2010 (SEC (2010); Kirilenko et al.

(2017); Menkveld and Yueshen (2019)) and the Federal Open Market Com-
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mittee meeting report announcement of July 31, 2019 (Powell (2019)). The

ability to separate endogenous from exogenous effects granted by the time-

varying parameters of the DyEKIM is useful to understand which mecha-

nisms are in effect before, during, and after these events. The main differ-

ence between the two events is their predictability: while the Flash Crash

happened completely unexpected and for initially obscure causes, FOMC

announcements are scheduled events taking place periodically during the

year, meaning that the market can “prepare” for the latter in the previous

days and hours, thus reducing abnormal effects at the exact time of the

announcement.

Indeed this difference is also highlighted by the patterns of our time-

varying parameters, where we find evidence that the Flash Crash originated

from an increase in exogenous volatility which then triggered a consistent

amount of volatility spillovers across stocks, while the reaction to the FOMC

scheduled announcement is much more contained and quickly absorbed by

the market. Both effects are consistent with relevant literature on this sort

of events, such as Kirilenko et al. (2017) and Hautsch et al. (2011).

What is actually interesting is that the FOMC report of July 31, 2019

was followed by a press conference by the FOMC Chairman Jerome H.

Powell, which caused some turmoil due to a few unexpected statements by

the Chairman during the press Q&A regarding future policy decisions. In

that case we see an effect in our time-varying parameters which is much

more similar to the one observed for the Flash Crash. Overall then this

experiment shows that the DyEKIM can be used to assess the level of

endogeneity in the dynamics and that its interpretation is consistent with

other analyses of similar events.

The second example application for the DyEKIM regards the same
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dataset analyzed in Chapter 4, where we now study the behaviour of the

traders in the hours before and after a set of macroeconomic news an-

nouncements. These are scheduled announcements, such as unemployment

rate reports or FOMC meetings, which are particularly relevant for one cur-

rency or another, e.g. a FOMC announcement will cause a re-evaluation of

the value of the US Dollar relative to other currencies but should not affect

the Euro or the Pound. We find that the traders diverge from their typical

strategic behaviour in proximity of scheduled news, with their trading dy-

namics becoming less endogenous and less driven by prices but more driven

by risk-aversion, as we show that they present a common trend to drop the

currency affected by the news in the minutes leading to the announcement.

Finally, this thesis contains an Appendix where we show an interesting

result regarding the equivalence between the Kinetic Ising Model and the

Vector Discrete AutoRegressive model of order 1 (Jacobs and Lewis (1978)),

provided that the elements of the J matrix of the KIM are all Jij ≥ 0. The

two models have been designed and studied for over thirty years in two

very different streams of literature, which we now put in connection by

formalizing an equivalence theorem. We hope that this result will prove

useful to both scientific communities, showing once more that the cross-

fertilization between disciplines can be beneficial.



Chapter 2

From Statistical Mechanics to

Finance

2.1 The Ising model and its successors

It has been a long and rich history the one that started in 1925 with the

publication of Ernst Ising’s doctoral thesis on a new model ideated by his

supervisor Wilhelm Lenz (Ising (1925)). Originally meant to model the

ferromagnetic phase transition in solid state materials, that is the empirical

observation that below a certain critical temperature some materials develop

an intrinsic magnetic dipole moment which is zero otherwise, Ising’s first

conclusion after solving the 1-dimensional version was that the model was

not good for its purpose and had to be discarded, since he proved that the

sought phase transition was not occurring.

It took 10 years before the then Manhattan Project scholar Rudolf

Peierls, while working with Hans Bethe and Max Born, showed that the

phase transition would occur on lattices of dimension greater or equal than

two (Peierls (1936)) and 10 more before an exact solution of the 2D Ising

15
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model was published by Lars Onsager (Onsager (1944)). Following On-

sager’s paper the interest in the Ising model was revamped and, while Ernst

Ising himself (after surviving WWII as a German Jew and emigrating to

the US) never published again in his career, the model carrying his name

is one of the most celebrated and influential in statistical physics and its

implications have reached far beyond the borders of physics itself.

In its original formulation, the Ising model describes a set of N inter-

acting spins s ∈ {−1, 1}N described at equilibrium by the Hamiltonian

H = −J
∑
〈i,j〉

sisj

where J is a parameter characterizing the interaction and 〈i, j〉 indicates

a set of neighbouring spins in a given space, as for example a lattice or any

network. The Boltzmann probability distribution for the equilibrium states

of this model at a given temperature T is then formulated as

P (s|J, β) =
1

Z
exp{βJ

∑
〈i,j〉

sisj}

where Z is the normalizing partition function and β = 1/kBT , with kB

the Boltzmann universal constant. By looking at this formula it appears

clear that if J > 0, called the ferromagnetic case, spins will be more likely

to be found in configurations where they are aligned (that is, with the same

sign) with their neighbours, whereas if J < 0, called the antiferromagnetic

case, spins will be favouring configurations in which they have opposite sign

than their neighbours.

Countless variations on this theme have been produced through the

decades, first exploring higher dimensionalities d of the space in which the

system evolves (Onsager (1944), Ferrenberg and Landau (1991)), then in-
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vestigating higher-dimensional spins (Fisher (1964), Stanley and Kaplan

(1966), Kosterlitz (1974)) and all possibly imaginable combinations. Most

of these variations share one common property, one that is very much ap-

pealing to physicists, which is that they are equilibrium models: in a nut-

shell, the model is analyzed in its equilibrium states, trying to predict the

properties of materials in experiments that typically are not able to measure

quantities on time scales where out-of-equilibrium behavior is visible.

Equilibrium statistical mechanics is the theory showing how macroscopic

observable quantities such as temperature, pressure or the magnetic field

emanating from a magnet are the result of the microscopic interaction of

atomic particles, a macroscopic average of many microscopic states. It is of-

ten said to provide a conjunction between microscopic quantum mechanics

and the macroscopic classical mechanics, and throughout the years a mul-

titude of methods and models have been developed in order to efficiently

study, simulate, and infer statistical mechanical models to describe real,

macroscopic systems, giving birth to the growing field of complex systems.

The most celebrated of the descendents of the Ising model are proba-

bly the Edwards-Anderson (EA) (Edwards and Anderson (1975)) and the

Sherrington-Kirkpatrick (SK) model (Kirkpatrick and Sherrington (1978)),

where a completely new layer of complexity is added on top of Ising’s origi-

nal formulation: in the EA model the interaction term J becomes a symmet-

ric matrix of random variables Jij, so that any equilibrium property now

depends not on the value of J but on its distribution. The Hamiltonian

reads

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi

where Jij = Jji ∼ N (J0, J
2
1 ) and h is a vector of local fields, biasing the
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spins towards one direction. This model is meant to characterize a class

of systems called spin glasses, that are materials with non-trivial magnetic

properties due to the presence of impurities in random sites of their crys-

talline structures, but it is far more general than that as we will show. The

SK model is the solvable version of the EA model, allowing the structure of

the coupling matrix J to not depend on the underlying space and running

the sum over i < j rather than 〈i, j〉. This simplification allowed to give a

complete characterization of the equilibrium states of the model, which can

be summarized in three categories (called phases) depending on the values

of J0 and J1 with respect to the temperature T :

• a ferromagnetic phase (large J1/T and large J0/J1 ratio) where spins

align all together in one direction;

• a paramagnetic phase (small J1/T and small J0/J1 ratio) where spins

have random direction and don’t show collective behaviour;

• a spin glass phase (large J1/T and small J0/J1 ratio) where if one

takes a single realization of the Jijs the individual spins freeze in one

of the two states, but do not show global ordering properties.

The spin glass phase is a peculiar phenomenon which arises as a conse-

quence of the randomness of J , and its discovery has been hugely impactful

in defining a whole new class of models for complex systems. Although the

main topic of this thesis is not spin glass models, most of the concepts we

will build upon in the next chapters are rooted in the spin glass and statis-

tical physics literature, from which we will extensively borrow methods and

ideas for the formulation and inference of models for financial time series.
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2.2 Why Ising models

A legitimate question to ask is: why should Ising models be so interesting

and widespread beyond the pretty narrow application of magnetic materi-

als?

The answer was given in a beautiful and enlightening article by Ed-

win Jaynes (Jaynes (1957)), where the foundations were laid for the bridge

between the information theory of Shannon (Shannon (1948); Cover and

Thomas (2012)) and statistical mechanics, which proved crucial in explain-

ing a simple yet powerful idea: the entropy defined by Shannon for com-

munication systems and the entropy defined by Gibbs for physical systems

not only share their formula, but also the concept behind them is the same.

The argument goes along these lines: take a random variable x ∈
{x1, . . . , xi, . . . , xn} with corresponding probabilities pi, which are unknown.

The only known quantity is the expected value of a function f(x)

〈f(x)〉 =
n∑
i=1

pif(xi) (2.1)

Is it possible from this information to determine the form of the probabil-

ity distribution of x that requires the least possible arbitrary assumptions?

Jaynes points out that this can be framed as a constrained optimization

problem, where the cost function is provided by the Shannon (or Gibbs)

entropy of the probability distribution p

H(p1, . . . , pn) = −K
∑
i

pi log pi

where K is a positive constant. As Shannon proved, this quantity is

the only one which is always positive, is increasing with increasing uncer-

tainty about the random variable x and is additive for independent sources
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of uncertainty. One then needs to maximize this function subject to two

constraints: the first is that {pi}, being a probability distribution, needs to

be normalized, that is
∑

i pi = 1; the second is the known information that

we have, that is Eq. 2.1. Introducing Lagrangian multiplier constants λ, µ

the problem is recast into

{pi} = arg max
{pi}

[
H ({pi}) + λ

(∑
i

pi − 1

)
+ µ

(∑
i

pif(xi)− 〈f(x)〉
)]
(2.2)

which gives the result

pi = exp{−λ− µf(xi)}

λ = logZ(µ)

Z(µ) =
∑
i

exp{−µf(xi)}

This can be easily generalized if a set of constraints is given, and it is

particularly relevant to our case when such constraints are the averages of

binary variables 〈si〉 and their correlations 〈sisj〉. In this case it is easy to

see that the solution to the optimization problem leads to find

p({s}) = exp{
∑
i<j

Jijsisj +
∑
i

hisi − logZ(J, h)}

Z(J, h) =
∑
{s}

exp{
∑
i<j

Jijsisj +
∑
i

hisi}

which coincides exactly with the Boltzmann distribution of the SK

model for β = 1. This means that the SK model is intrinsically the op-

timal model (following this Maximum Entropy principle) for a system of

binary random variables for which we only hold information about averages
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and correlations, and is the main reason for which the family of models

descending from Ising’s initial formulation has been keeping scientists of

many backgrounds interested for almost a century.

2.3 The Kinetic Ising Model

In this thesis our main focus is on the Kinetic Ising Model (KIM), an out-

of-equilibrium version of the SK model (Derrida et al. (1987); Crisanti and

Sompolinsky (1988)) developed a few years later and proposed as dynamical

model for asymmetric neural networks. As we mentioned above, one of the

main assumptions in spin glass models is that Jij = Jji, that is interactions

are symmetric between spins. It is sufficient to break this assumption to

have the model completely change its properties, as the asymmetry is at

odds with the concept of correlation where 〈sisj〉 = 〈sjsi〉 by definition and

might look contrasting to what was stated in the previous section.

However there is still one ingredient that has been missing in this dis-

cussion, one that is extremely relevant in the analysis of financial variables:

time.

If we introduce dynamics into the equations, there is a whole new set of

correlations that can be constrained via the Maximum Entropy principle,

that are correlations at lag l 〈si(t+ l)sj(t)〉. It is straightforward to see that

now these correlations are not invariant to permutation of i and j, hence

if for the SK model the number of constraints was N +N(N − 1)/2 it has

now grown to N +N(N − 1). The result of the constrained optimization of

Eq. 2.2 for l = 1 will then be
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p({si(t+ 1)}|{si(t)}, J, h) =
1

Z(t)
exp{

∑
i,j

Jijsi(t+ 1)sj(t) +
∑
i

hisi(t+ 1)}

(2.3)

Typically, in the physics literature, the J elements are assumed to be iid

Gaussian random variables, Jij ∼ N (J0, J
2
1/N) and the properties of the

model as data generating process are the object of analysis. This simple

change in the structure of J has a huge impact on the behaviour of the

model, which loses its spin glass phase and only preserves a dynamic phase

transition between a paramagnetic and a ferromagnetic phase when the

mean of the J elements, J0, is greater than 1.

It goes beyond the scope of this thesis to characterize the model in its

physical formulation, for which results can be found in the literature (see

Crisanti and Sompolinsky (1988); Derrida et al. (1987); Coolen (2001a,b)).

It is instead our goal to use the model in the context of financial time series

analysis, and for this reason we need to tackle the problem of inferring the

model parameters from data. In the following paragraphs we will summarize

the state of the art regarding inference methods and model selection criteria

for Kinetic Ising Models, which are the true foundations for this work.

2.4 Inference methods for the Kinetic Ising

Model

Inferring a model from data is the process of computing the set of pa-

rameters that is the most likely given the observations, which is typically

achieved by maximizing the posterior probability
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{J, h} = arg max
{J,h}

p({J, h}|{s(t)})

By applying Bayes’s formula to the posterior, we can recognize it splits

in two probabilities: the prior and the likelihood :

p({J, h}|{s(t)}) =

Prior︷ ︸︸ ︷
p({J, h})

Likelihood︷ ︸︸ ︷
p({s(t)}|{J, h})
p({s(t)}) (2.4)

and p({s(t)}) is just a normalizing factor. The prior can be arbitrarily

chosen by the modeller, as it reflects any external knowledge about the

model that is not dependent on the data, as for example information about

how sparse the J matrix should be. For the moment being we will consider

a uniform prior, so that the above relation simplifies to

p({J, h}|{s(t)}) ∝ p({s(t)}|{J, h})

This relation states that, under the uniform prior assumption, any set

of parameters {J, h} that maximizes the likelihood is also the maximum

posterior estimator for the model.

The likelihood for the Kinetic Ising Model reads

p({s(t)}|{J, h}) =
∏
t

∏
i

1

Z(t)
exp

[
si(t+ 1)

(∑
j

Jijsj(t) + hi

)]

where Z(t) = 2 cosh
[
hi +

∑
j Jijsj(t)

]
. The easiest and more straight-

forward way of maximizing this function is via Gradient Ascent methods

(Nesterov (2008); Bottou (2010); Kingma and Ba (2014)), which basically

rely on computing the gradient of the logarithm of the likelihood (the log-

likelihood) and following the steepest path towards the maximum. Many
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different implementations of this algorithm can be found in publicly avail-

able code libraries, each proposing some feature that is supposed to make

the estimation faster and more reliable. We have reported in the bibliog-

raphy the ones that we used throughout this thesis, but they are far from

being the only available options.

While using Gradient Ascent methods is definitely the most intuitive

way to tackle this problem, there are settings where, resorting to some mild

assumptions, the inference of the parameters can be made even simpler or

allow to extract more information from the data. As we will show in Chap-

ter 3, when a fraction of the data is not observable (due to measurement

errors, noise or cost) it is useful to construct a method to use the inferred

model to estimate the missing data, and recursively use this information to

improve the accuracy of the inferred parameters. In order to do so, a set

of assumptions and approximations is necessary following what is called a

Mean Field Method (Opper and Saad (2001)).

The first Mean Field Methods developed for the inference of the Kinetic

Ising Model are the ones by Roudi and Hertz (2011a,b), where they de-

rive the so-called Naive Mean Field (NMF) and Thouless-Anderson-Palmer

(TAP) approximations. The baseline assumption they make is that, as in

the original physical formulation, Jij ∼iid N (0, J2/N). Calling mi = 〈si〉
and δsi(t) = si(t)−mi (averages are taken over time), they calculate from

the data the lagged and synchronous correlations, Dij = 〈δsi(t + 1)δsj(t)〉
and Cij = 〈δsi(t)δsj(t)〉.

The Naive Mean Field approximation is based on the assumption that

each individual spin will “see” others as if they were represented by their

average values, thus assuming that the fluctuations in the sum
∑

j Jijsj(t)

are negligible (or, in other words, that its variance tends to 0). This is
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typically a reasonable approximation only when N → ∞ and J is a dense

matrix, but it is a standard starting point for analysis. This leads to the

self-consistency relation

mi = tanh

(
hi +

∑
j

JNMF
ij mj

)
which, after a series expansion of the tanh term leads to find

〈δsi(t+ 1)δsj(t)〉 = (1−m2
i )
∑
k

JNMF
ik 〈δsk(t)δsj(t)〉

which can be rewritten to give a simple form for the JNMF matrix, by

calling ANMF
ij = (1−m2

i )δij where δij is the Kronecker delta symbol,

JNMF =
[
ANMF

]−1
DC−1 (2.5)

The slightly more complicated TAP approximation, which was formu-

lated for the SK model by Thouless et al. (1977), orbits around the relation

mi = tanh

[
hi +

∑
j

JTAPij mj −mi

∑
j

[
JTAP

]2
ij

(1−m2
j)

]
shown to be valid for the Kinetic Ising Model by Roudi and Hertz

(2011a). In this approximation they find that Eq. 2.5 is still valid once

one modifies A into

ATAPij = ANMF
ij

[
1− (1−m2

i )
∑
l

[
JTAP

]2
il

(1−m2
l )

]
which however needs to be solved iteratively, as now JTAP appears on

both sides of the Eq. 2.5.

One further development was proposed by Sakellariou (2013), who devel-

oped an exact inference method based only on the assumption of Gaussian
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random couplings Jij and of a large enough number of spins N . Given this,

it is straightforward to see that the sum
∑

j Jijsj(t) in the limit N, T →∞
is itself a Gaussian random variable with mean and variance

gi =
∑
j

Jijmj

∆i =
∑
j,k

JijJik [〈sj(t)sk(t)〉 −mjmk] =
∑
j

J2
ij(1−m2

j)

where the last equality comes from the fact that the Jijs are independent

of each other and so j 6= k terms vanish in the N →∞ limit. As a result,

the time averages can now be replaced with Gaussian integrals

mi =

∫
Dx tanh

[
hi + gi + x

√
∆i

]
where Dx = dx√

2π
exp (−x2/2) is a Gaussian integration measure.

The lagged and instantaneous correlations, following the same argu-

ment, are shown to be related by

D = AJC

where again Dij = 〈δsi(t + 1)δsj(t)〉, Cij = 〈δsi(t)δsj(t)〉 and A is a

diagonal matrix with entries

Aii =

∫
Dx
[
1− tanh2

(
hi + gi + x

√
∆i

)]
which again leads to find a recursive relation to determine J of the

same form as Eq. 2.5. The important improvement for this method is that

it does not rely on the typical assumption of Mean Field Methods of weak

interaction, while both the NMF and TAP results are only valid in the limit
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Jij → 0 ∀ i, j, but on the other hand it requires the numerical solution of

multiple integrals to be able to infer the parameters.

2.5 Model selection criteria

All of the above results implicitly assume that there is no restriction on

the structure of J and h, meaning that if one were to draw the resulting

model as a network where the links are non-zero elements of J they would

be most likely facing a fully connected network, a problem that is common

to Maximum Entropy models. However a model with too many parameters

is almost as uninformative as one with none, since the goal of fitting a

model is extracting few relevant features and mechanisms that can improve

the understanding of the process that generated the data, or even help in

forecasting future observations. As someone said, “the best model for a cat

is the same cat, but what can you learn from it?”1.

This is the reason why a significant stream of literature has focused

in developing efficient model selection criteria, which help the modeller in

selecting the most relevant parameters and discard the ones that don’t con-

tribute much to the description of the data. Some of them, like the Akaike

and Bayes Information Criteria (Akaike (1974); Schwarz et al. (1978)), de-

fine a quantity that is the difference between some function of the number

of parameters and the log-likelihood of the fitted model and then look at

which model minimizes such quantity; another option is the likelihood ra-

tio test, which tries to determine whether a model with an extra parameter

is statistically “better” than without it through a statistical test that is

asymptotically correct, but with the drawback that for a finite number of

1I thank Dr. Andrea Baronchelli for this quote.
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parameters the test statistic could have unknown distribution.

Another stream of literature puts its focus on the choice of meaning-

ful prior distributions to be put in Eq. 2.4, in order to either impose a

structure on the J matrix or to penalize models with too many param-

eters. Probably the most relevant approach of this kind for our case is

the LASSO regularization (Tibshirani (1996)), where a prior of the kind

p({J}) ∝ exp
[∑

ij λ|Jij|
]

is added to penalize the quantity of non-zero

elements of J , with λ > 0 being a free parameter to be determined with

out-of-sample validation. This has been used for Ising models as a standard

technique to obtain sparse models (Ravikumar et al. (2010)), but it has been

challenged by more model-specific techniques such as Decimation (Decelle

and Zhang (2015); Decelle et al. (2016)). We will describe in more detail

the Decimation approach in Chapter 3, but it is in principle a different take

on the likelihood ratio test which, instead of producing a test statistic to

compare models, defines a transformed log-likelihood function which com-

pares the restricted model with the complete and empty ones. The model

having a log-likelihood that is the farthest from a linear interpolation of

the two extreme cases is selected. In Chapter 3 we show how this method

outperforms the standard LASSO approach for our applications, consistent

with the results of Decelle and Zhang (2015).

2.6 Handling missing data: deletion, direct

estimation, imputation

An extremely interesting problem in the modelling of time series is how one

can deal with missing observations, a rather common scenario in a variety

of real world settings. Starting with Rubin (1976), the problem has been
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tackled from statisticians in a more and more elaborate way by first studying

how missing data can affect the model estimation and when to ignore the

mechanism leading to missing observations and then progressively devising

methods that allow to improve the model inference and predict what values

would better fill the gaps in the data.

Buhi et al. (2008) provide an overview of commonly adopted methods,

which typically belong to one of three categories: deletion, direct estima-

tion or imputation. Deletion techniques are the most used: they discard

partial observations, only taking into account for statistical analysis the

samples where there is no missing data. This is typically the standard for

computing correlations or inferring generalized linear models, with most

statistical software using this as the default method. Clearly this approach

can significantly reduce the sample size, leading to higher estimation errors

and lower statistical power, and is very weak when the data are not missing

at random, that is there is an underlying reason for which those data are

missing.

Direct estimation techniques instead consider for statistical inference

any piece of available data, removing from the analysis only the missing

entries instead of whole samples. The advantage of these methods is that

one does not reduce the sample size and, in the case of Bayesian inference

methods, can even try to overcome any bias in the sampling by adding prior

information to the model.

The last and most interesting family of methods is the one of imputa-

tion techniques: these not only do not discard any available data, but try to

use available information and modelling assumptions to fill in (impute) the

missing observations. Probably the most popular and celebrated approach

of this kind is the Expectation-Maximization algorithm (Dempster et al.
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(1977)), which alternates a log-likelihood maximization step and a missing

data expectation step, filling gaps in the data by substituting them with

their posterior expectations given the current set of model parameters. It-

erating this procedure has been shown to produce consistent estimates for

data that are missing at random (that is where the sampling is not biased),

as shown in Little and Rubin (2019).

2.7 Taking averages without sampling: the

generating functional

What the Expectation-Maximization approach typically does in the Expec-

tation step is computing averages either by having an analytical solution to

the expectation integral or by sampling from the model’s probability distri-

bution with a Monte Carlo algorithm when such analytical solutions are not

available. However Monte Carlo sampling is extremely inefficient when the

cardinality of the configuration space is exponentially large in the number

of variables (as it is for most models) and it thus requires an exponentially

large time to produce consistent averages.

One method to produce analytical expressions for posterior expectations

in highly complex settings is the generating functional approach, originally

proposed by Martin et al. (1973), which takes advantage of the concept of

path integral. When dealing with a time-evolving quantity the expectation

is to be carried over all possible paths it will follow during its dynamics.

What Martin et al. (1973) first and Janssen (1976) and De Dominicis (1978)

then realized is that the computational complexity of sampling from a very

large configuration space can be shifted to the solution of a high dimen-

sional integral over a set of auxiliary fields which allow to obtain the sought
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averages as derivatives of the resulting functional, called indeed the gener-

ating functional. These high dimensional integrals have all the advantages

that continuous mathematics provides for calculus, allowing to use exact

and approximate techniques (as for instance the saddle point method) to

obtain solutions.

To illustrate the principles behind this technique, which we will exten-

sively use throughout this thesis, let’s consider a simple setting where one

variable x(t) evolves in discrete time according to some stochastic law

x(t+ 1) = F (x(t)) + η(t) (2.6)

where η(t) is a discrete time martingale and F some generic function.

Imagine we want to evaluate the average over all possible realizations of

some quantity φ(t) which is a function of the underlying stochastic pro-

cess, that is E[φ(t)] = E[φ[x(t)]] with the expectation to be taken on the

P ({x(t)}) measure.

As the value of φ is determined uniquely by the realization of the stochas-

tic process x, the average operation is equivalent to a functional integration

over all possible functions x(t), taking into account the restriction that they

should respect the law of Eq. 2.6, what is commonly known as a path in-

tegral. Such a restriction can be expressed by the use of a Dirac delta

function, here given in its integral representation

δ(x− x0) =
1

2π

∫ +∞

−∞
exp{−ix̂(x− x0)}dx̂

Then the required average takes the form

E[φ[x(t)]] = E

[∫
Dxφ[x(t)]

∏
t

δ(x(t+ 1)− F (x(t))− η(t))

]
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where the expectation is taken over the noise term η. It is then easy to

rewrite this last equation as

E[φ[x(t)]] =

∫
D[x, x̂]φ[x(t)]e−i

∑
t x̂(t)[x(t+1)−F (x(t))]E

[
e−i

∑
t x̂(t)η(t)

]
(2.7)

which is generally much simpler to solve as the expectation now involves

only the noise term and no other possibly very complicated function.

One important property of this approach is that Eq. 2.7 can be further

manipulated to obtain a generating functional for any quantity φ. Defining

an auxiliary variable ψ(t) we can define the generating functional for the

moments of φ as

G[ψ] = log

∫
D[x, x̂]e

∑
t ψ(t)φ[x(t)]e−i

∑
t x̂(t)[x(t+1)−F (x(t))]E

[
e−i

∑
t x̂(t)η(t)

]
(2.8)

and it is straightforward to find that the n-th moment of φ corresponds

to the n-th derivative of G with respect to the auxiliary variable ψ(t) in the

limit of ψ(t)→ 0, or more explicitly

E [φn[x(t)]] = lim
ψ(t)→0

∂nG
∂ψ(t)n

While Eq. 2.8 might look complicated at a first glance, it has to be

noticed that the functional integration is now trivial in x thanks to the

introduction of the δ functions, and the exponential form of the integrand

allows, under mild assumptions on F being smooth, to apply integration

techniques such as the saddle-point approximation to solve the integral in

x̂.
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2.8 Ising models for finance

Ising-like models and their countless variations have been used throughout

the last decades to describe data or model systems with the most diverse

nature (Bury (2013); Bouchaud (2013); Tanaka and Scheraga (1977); Cocco

et al. (2017); Kadirvelu et al. (2017)) and to increase our understanding of

how natural, artificial, social and economic systems work.

On the one hand these models, studied in their original physical formula-

tion, can be manipulated to generate a wide range of behaviours mimicking

the features of these systems (Bouchaud (2013); Bornholdt (2001)), and use

a deductive approach to explain the stylized properties of data we observe

in the real world. On the other hand one can use these models in the fash-

ion of descriptive and forecasting models (Bury (2013); Cocco et al. (2017);

Ibuki et al. (2013); Kadirvelu et al. (2017)), by using Maximum Likelihood

(ML) and Maximum A Posteriori (MAP) techniques to fit the model to the

data, inductively working towards an explanation of the observations. This

is typically referred to as the inverse formulation of the model, while the

former is the direct formulation.

Both approaches have been taken in the context of financial data, mostly

in a consistent stream of literature commonly known as econophysics, but

more recently the impact of models of this family in the economic and

econometric literatures has been growing thanks to the increasingly popular

Agent-Based Models methodology as in Cont (2007), Farmer and Foley

(2009) and Fagiolo et al. (2019b).

Perhaps the most general framework that has been proposed is the one

of the Random Field Ising Model (RFIM) of Bouchaud (2013), which is

essentially a Kinetic Ising Model with a random external driver, very sim-

ilar to what we study throughout the thesis except for the fact that the
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coupling coefficients Jij are assumed to be positive. This formulation is by

the way equivalent to the Discrete AutoRegressive model of order 1 (see

Jacobs and Lewis (1978)) with an exogenous regressor, as we show in Ap-

pendix A. Again, the original purpose of the model was to explain hysteresis

phenomena in magnetism, but it is clear that these kinds of mechanisms

can be mapped more or less for free to social and economic dynamics. In

particular hysteresis cycles are situations where a system globally switches

non-linearly between two behaviours and where the change from behaviour

A to behaviour B happens at a different point in the space of parame-

ters than the change from B to A. The RFIM framework shows that if

the interactions between the Ising spins J are large enough the system

presents hysteresis when looking at the average behaviour, while it behaves

quasi-linearly with weaker interactions (or higher noise levels). This kind of

behaviour has been compared to extreme phenomena we observe in socio-

economic systems, such as financial bubbles and economic crises (Roehner

and Sornette (2000)) or major paradigm shifts in political and technological

environments (Bikhchandani et al. (1992)).

Kaizoji (2000) constructs a model very similar to the ones we use in this

thesis except for the time component, which is not included. He analyzes

the equilibrium results for a standard Ising model in the Mean Field ap-

proximation and maps them to behaviour of investors in a stock market,

having them react to two factors: the investment environment, namely the

difference in yield between the risky asset and the safe asset, and the band-

wagon effect, that is the chance the investor copies the trending behaviour

of others, assuming both these effects are equal for all traders. The main

result is the mapping of the Ising phase transition to the financial inter-

pretation of a bear or bull market, namely time frames where the market
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is (excessively) pessimistic or optimistic towards traded assets. The author

then proceeds to fit the model to empirical monthly data from the infamous

1990-1992 Japan bear market, finding that the interplay between the two

effects was highly predictive of the monthly TOPIX (TOkyo stock Price

IndeX) variations in the 1987-1992 time frame.

In a further article, Kaizoji et al. (2002) extend the same Ising model

to a setting with heterogeneous agents, namely where a fraction behaves

as a fundamentalist ignoring others’ behaviours and trade with a contrar-

ian strategy, while others still interact between each other and take their

strategic decisions based on knowledge of their neighbours’ strategies and on

whether they belong to the majority or minority group. The authors then

proceed to model the price formation mechanism in their synthetic market,

and run simulations where they reproduce volatility clustering, log-returns

fat tails and the intermittency of bull and bear markets, as was also shown

in Bornholdt (2001).

Harras et al. (2012) propose a model which is closely related to the one

we present in Chapter 5. There they simulate a Kinetic Ising Model with

dynamical interaction strength, showing that when interpreting spins as

traders that choose whether to buy or sell an asset and with a Walrasian

price formation the autocorrelation of volatility has long memory, which is

not found for log-returns, again a sign of volatility clustering.

Another similar example of this sort of modelling can be found in Kris-

toufek and Vosvrda (2018), where the authors investigate the dynamics

of the model when local interactions among participants are affected by a

global interaction generating a minority game (Challet et al. (2013)). This

interplay produces a dynamics of the price that can diverge from its efficient

value when herding is either too weak or to strong.
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Ising models have also been applied in economic settings to analyse com-

petition and technology adoption, as for instance in Biely et al. (2009), to

describe segregation between communities in cities (Schelling (1971)) and

models that are essentially equivalent to the Ising model have been used

to describe social choice (Brock and Durlauf (1999)) and opinion dynam-

ics (Sood and Redner (2005); Castellano et al. (2009); De Vincenzo et al.

(2017)).

2.9 Collective phenomena in finance:

herding

One prominent example of behaviour not dictated by the rationality of a

representative agent is what Nietzsche called “herd behaviour” in his Un-

timely Meditations (Nietzsche (1997)) and in later works (Nietzsche (1974);

Nietzsche and Common (1950)). By this expression he meant the concept

that most people tend to behave by aligning to the mass, suppressing their

individuality in favour of identifying with the majority. While his feel-

ings about this behaviour were of absolute abhorrence, to the point that

his writings became the basis for despicable ideologies later on, proofs of

the existence of such behaviours can be found in a multitude of settings,

including financial markets where “herding” has had a growing stream of

literature since the inception of behavioral finance (Shiller (2015)).

In synthesis, herding is a collective behaviour expressed by a group of

individuals who coordinate without centralized direction. The coordina-

tion can come from several mechanisms, as for example social pressure and

imitation (Sood and Redner (2005)) or the aggregation of purely selfish

mechanisms as the “selfish herds” of preys running from predators (Hamil-
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ton (1971)). In finance it is typically defined as a trading activity that does

not reflect the private information held by market participants due to their

knowledge that others are trading too (Bikhchandani and Sharma (2000)).

This can lead to abnormal price movements on the short-to-medium term.

The most commonly studied events of this kind are bubbles and crashes,

where market prices take irrationally large deviations from fundamental

values due to collective speculation and suddenly revert to more reasonable

quantities, often destroying large amounts of wealth in the process (Lux

and Sornette (2002)).

One of the first examples of modelling for herd behaviour can be found

in Banerjee (1992). There the author studies a game where each player

can hold a piece of private information about what is the correct choice to

make and players sequentially make their choice, which is public informa-

tion for players acting later. Under mild assumptions on the choice strategy

the equilibrium is largely dictated by the first few players, with all others

following and ignoring their private information in what is called an in-

formation cascade. Indeed if the private information held by players has

probability β of being correct and they hold such private information with

probability α, there is a finite probability p that none of the players makes

the correct choice

p =
(1− α)(1− β)

1− α(1− β)

As a corollary, the author shows that introducing a mechanism that

hides the choice of the first few players to others will get rid of herding

behaviour: this result in particular has shaped some market designs where

orders can be hidden for a limited amount of time.

Recently agent-based models have been increasingly popular in the the-
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oretical investigation of herding. An example is the work of Alfarano et al.

(2005), where they propose an agent-based model for herding behaviour by

assuming traders can pick one of two strategies, the fundamentalist and

the noise trading, and switch between the two based on a probabilistic rule

which accounts for mean field interaction with others. They then construct

a model market with Walrasian auction to determine equilibrium prices,

leading to a skewed and fat-tailed volatility distribution which is also found

for daily financial data.

In Barde (2016) the methodology of Alfarano et al. (2005) is used to

model price evolutions and compared to the performance of the more com-

monly adopted GARCH model (Bollerslev (1986)), showing that having a

more detailed model for the dynamics generating the price allows to out-

perform the GARCH around extreme events.

In terms of empirical works, Lakonishok et al. (1992) ask the ques-

tion whether institutional investors “herd” more than individual investors

and whether their behaviour destabilizes asset prices, leading them away

from their equilibrium values. They empirically evaluate trading patterns

of actively managed pension funds based on quarterly data and find that

institutional herding exists but is not destabilizing the prices, statistically

defining herding as

Ht =

∣∣∣∣ Bt

Bt + St
− pt

∣∣∣∣− AFt
where Bt is the number of (net) buying funds on a given asset at time t,

St is the number of (net) selling funds on the same asset, p is the expectation

of B/(B +S) under the null hypothesis that the fraction of buyers is equal

for all stocks in the market and AF is an adjustment factor that rescales

the measure around 0.
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This sort of evidence is also found by Grinblatt et al. (1995), however

there the authors introduce a more refined herding measure based on funds

activity accounting for the sign of trades, which shows a more generalized

herding behaviour of fund managers, particularly the ones that focus on

momentum strategies. They do so by defining a herding measure for the

single fund which is the interaction of the measure of Lakonishok et al.

(1992) with a signed variable, which indicates whether the fund is trading

“with the herd” or “against” it.

In a further study, Grinblatt and Keloharju (2000) analyze a detailed

dataset of daily ownership of stocks in the Helsinki Stock Exchange. They

categorize each market participant by its overall trading strategy, finding

that most private household investors are contrarians and most foreign

investors are momentum-driven, while Finnish institutional investors are

mostly contrarians but in a less marked way with respect to households.

However they don’t find performance differences between the categories that

match the strength of behavioral differences, meaning that institutional in-

vestors are not behaving “more rationally” than households by being more

sophisticated than simply buying losers and selling winners.

Nofsinger and Sias (1999) investigate whether trading by institutional

investors is more or less related to price returns than herding of individuals

and if this is due to a common “feedback trading” strategy (i.e. traders iden-

tically react to a common signal which are price returns) or to other sorts of

herding. They find that institutional trading has significantly higher corre-

lation with returns, consistent with the hypothesis of institutions engaging

in feedback trading more than individuals or that herding from institutions

impacts the price more. The authors do not disentangle the two effects,

which amounts to determining the direction of causality between the obser-
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vations, for which they do not find sufficient evidence to make conclusive

claims.

In a similar spirit, Lillo et al. (2008) study the trading behaviour of a

set of investors on the Spanish stock market. There the authors categorize

investing strategies based on an eigenvector decomposition of the correla-

tion matrix of inventory variations, finding that the principal component of

said matrix is closely related to returns. This result allows to define three

investor categories as trending, reversing or neutral. They then check for

herding within these categories, using herding measures similar to Lakon-

ishok et al. (1992) and Grinblatt and Keloharju (2000), and find that traders

in the reversing category herd significantly more than others, both on rel-

atively short timescales (15 minute) and on the daily scale, mostly in a

feedback trading fashion as testified by a Granger Causality analysis.

A recent study by Cai et al. (2019) finds that institutional traders are

even more subject to herding in the corporate bond market, and that the

effect of this behaviour is asymmetric depending on whether it is a “buy

herding” or a “sell herding”. In the first case they show that herding when

buying fixed-income securities is beneficial to price discovery, generating a

more permanent price impact, while on the other hand herding of sellers

generates a large transitory price impact, signifying that it is distorting the

price dynamics beyond equilibrium levels. A similar analysis is performed

by Galariotis et al. (2016) on the European governments bond markets,

finding that herding is exacerbated by macroeconomic announcements dur-

ing the Euro crisis of 2010-2011.

A different take on herding measures can be found in Toth et al. (2015),

where the authors look at the aggregate effect of herding by splitting the

autocorrelation of the order flow at high frequency in two components, one
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dictated by order-splitting (the common practice of diluting in time a large

trade to optimize transaction costs) and the other dictated by herding.

They propose two methodologies to perform the decomposition, one based

on an Ising model itself, and they show that herding is not a factor in the

determination of the autocorrelation of the order flow on short timescales.

Recent efforts have been directed to identifying herding phenomena

based on the refinement of automated text analysis techniques. It is the

case of Palmer et al. (2018), where the authors adopt topic modelling tech-

niques to identify similarities between financial analysts reports. They find

that these similarities increased during the financial crisis of 2008, but the

degree to which this is due to herding rather than common fundamental

information is still unclear.

2.10 Going micro to understand macro:

investors networks

As the amount and quality of available market data increased in the last

decade, a number of more and more refined methods to analyze the mi-

crostructure of the markets have been developed. What is typically known

as market microstructure is the set of rules and actors that are the building

blocks of modern financial markets and the study of how the design of a

market affects the price formation process and trading strategies. One of

the recently popular topics in this branch of finance has been the recon-

struction of investors networks, that are networks where nodes represent

traders and links some form of interaction between them.

Estimating such networks clearly requires an amount of detail in the

data that is not easy to find, as no modelling of this kind is possible if the
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scientist has no access to single traders actions, and this explains why this

sort of analysis is relatively recent. Indeed with the advent of automated

and digitalized markets it has been much easier to register huge quantities

of transactions at a relatively low cost, making it possible to keep track of

all the events that happen in the market up to the finest detail of single

limit orders in an order book.

One of the first examples of investors networks is found in Tumminello

et al. (2012), where the authors analyse through the methodology of Statis-

tically Validated Networks (SVN, Tumminello et al. (2011)) the behaviour

of a very heterogeneous set of traders in the Finnish stock market on a daily

timescale. In their work they identify a network where nodes are traders

(both institutional and retail) and links represent a tendency to trade to-

gether on a given stock which cannot be explained by the null hypothesis

of trading on random days (keeping the trading frequency constant). They

then provide a cluster analysis of the SVNs, for which they find that in-

vestors belonging to the same category (household, financial institution,

foreign, government, non-profit, insurance) are indeed more likely to trade

together. The same method was later adopted by Curme et al. (2015) for

the investigation of lead-lag networks between financial assets at high fre-

quency and by Musciotto et al. (2018) to study how the investors networks

evolve in time, finding that in times of higher volatility these networks be-

come more heterogeneous, that is the number of groups that use different

strategies is larger, an observation that was predicted by Farmer (2002).

Another example of SVN applied for the inference of synchronous and

lagged relationships among traders can be found in Challet et al. (2018),

where first the authors apply the SVN methodology to identify clusters of

investors in the Foreign Exchange market that show high synchronicity at
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the 1 hour timescale and then construct a lead-lag SVN, this time treating

the clusters as a representative agent. In this way they are able to analyze

whether there are trading strategies that consistently anticipate others, and

they show that the order flow can be predicted with good accuracy.

Departing from SVNs one recent work by Gutiérrez-Roig et al. (2019)

uses Information Theoretic methods such as the Mutual Information and

the Symbolic Transfer Entropy to quantify synchronicity and lead-lag rela-

tions among investors in the Spanish stock market on the daily timescale.

Similarly to Challet et al. (2018) they resort to machine learning methods

to nowcast and forecast traders activity based on their networks, finding

that nowcasting is improved by the mutual information network for some

activity patterns and that forecasting is marginally improved by the transfer

entropy network.

In Chapter 4 we propose to use the Kinetic Ising Model as an alterna-

tive method to study investors networks, specifically targeted at identifying

possible high-frequency herding phenomena that can impact the liquidity

supply in the market.



Chapter 3

Kinetic Ising model and

missing data

Almost all results in this chapter previously appeared in Campajola et al.

(2019)

3.1 Introduction

As we have shown in Chapter 2, the Kinetic Ising Model (Derrida et al.

(1987); Crisanti and Sompolinsky (1988)) is a Maximum Entropy model

describing a set of binary units - named “spins” in the physics literature -

that influence each other through time. The simplicity of the model makes

it extremely flexible in the kinds of systems it can represent, ranging from

networks of neurons in the brain (Capone et al. (2015)) all the way to

traders in a financial market (Bornholdt (2001); Sornette (2014)). Recent

work on the inference of the Kinetic Ising Model has led to the development

of exact solutions (Sakellariou (2013)), cavity methods (Zhang (2012)) and

Mean Field (Roudi and Hertz (2011a)) techniques for the inference of the

44
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parameters, and the latter have been used to work with partially observed

systems linking to the realm of (Semi-) Restricted Boltzmann Machines

(Dunn and Roudi (2013)).

This latest stream of literature sparked our interest for the model ap-

plied to time series of financial data at high frequency, where we typically

encounter problems related to the lack of homogeneously frequent and syn-

chronized observations (Aı̈t-Sahalia et al. (2010); Buccheri et al. (2020);

Corsi et al. (2012)).

The literature on Kinetic Ising Model has previously considered mainly

the inference problem in the presence of hidden nodes (Dunn and Roudi

(2013)), i.e. part of the spins are never observed, but it is known that

they exist and interact with the visible ones. This setting is of particular

interest in neuroscience where an experiment typically monitors the firing

activity of a subset of neurons. In other domains, such as in economics,

finance, and social sciences, another type of missing data is often present,

namely the case where even for the visible agents (nodes), observations

are missing a significant fraction of the times. Moreover in these cases

there is a strong heterogeneity of the frequency of observations, i.e. some

nodes are frequently observed while other are rarely observed. There are

different sources for this lack of data: in some cases, it might be due to the

fact the observation is costly for the experimenter, whereas in other cases

it is intrinsic to the given problem. Consider, for example, the problem

of inferring the opinion of investors from their trading activity. When an

investor buys (sells) it is reasonable to assume that she believes the price will

increase (decrease), but in many circumstances the investor will not trade

leading to missing observations for her belief. Using a suitable inference

model, as the one proposed in this paper, it is possible to estimate her
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belief from the inferred structure of interaction among investors and the

observed state of the set of visible ones. We will also include external fields

(for example the market price in the previous example) that can influence

spins (investors’ opinion).

Missing data is a common problem in many fields of science, and several

techniques have been developed to overcome this issue. Starting with the

historical paper by Rubin (1976), the interest for the problem has grown and

different kinds of deletion (Buhi et al. (2008)), imputation (Rubin (2004))

and estimation (Dempster et al. (1977); Marlin and Zemel (2009); Mohan

et al. (2013)) methods have been developed, each answering questions for

specific classes of missing data problems. Our contribution fits in the fam-

ily of Maximum Likelihood estimators and the Expectation-Maximization

(EM) method, which has been proved to provide bias-free estimates as long

as the data are missing at random by Little and Rubin (2019).

Taking inspiration from the work by Dunn and Roudi (2013), we ex-

tend the formulation of the inference procedure to cases where the missing

observations are unevenly cross-sectionally distributed, meaning that time

series are sampled at a constant rate and whenever no observations are

found between two timestamps a missing value is recorded. The result is

an algorithm closely related to an Expectation-Maximization (EM) method

(Dempster et al. (1977)), iteratively alternating a step of log-likelihood gra-

dient ascent (Nesterov (2008)) and the self-consistent resolution of TAP

equations (Roudi and Hertz (2011a)), that gives as output both a coupling

matrix and an approximated maximum-likelihood estimate of the missing

values.

To evaluate the algorithm performance we devise a series of tests stress-

ing on different characteristics of the input, simulating synthetic datasets
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with several regimes of intrinsic noise, observation frequency, heterogeneity

of variables and model misspecification. We thus define some performance

standards that can be expected given the quality of data fed to the method,

giving an overview of how flexible the approach is.

3.2 Solving the Inverse Problem with

missing values

The Kinetic Ising Model (or non-equilibrium Ising Model) (Derrida et al.

(1987)) is defined on a set of spins y ∈ {−1,+1}N , whose dynamics is

described by the transition probability mass function

p[y(t+ 1)|y(t)] =

= Z−1(t) exp

∑
〈i,j〉

yi(t+ 1)Jijyj(t) +
∑
i

yi(t+ 1)hi

 (3.1)

where 〈i, j〉 is a sum over neighbouring pairs on an underlying network,

Jij are independent and identically distributed couplings, h is the vector

of spin-specific fields and Z(t) is a normalizing constant also known as the

partition function.

In our treatment of the problem we will adopt a Mean Field (MF) ap-

proximation, which relies on the assumption that the dynamics of a spin i

depends only on an effective field locally “sensed” by the spin rather than

on the sum of the single specific interactions with others. The result of

this picture is that the topology of the underlying network is considered

irrelevant and assumed fully connected - although the goal of the inference

would be the reconstruction of the network nonetheless - thus the sum on
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neighbours is substituted by a sum on all the other spins. This recasts the

transition probability into the following form

p[y(t+ 1)|y(t)] = Z−1(t) exp

[
N∑
i=1

yi(t+ 1)g̃i(t)

]
(3.2)

where g̃i(t) =
∑N

j=1 Jijyj(t) + hi is the local effective field of spin i and

J is now a square and fully asymmetric matrix with normally distributed

entries Jij ∼ N (0, J2
1/N), where the assumption on the distribution and

the scaling of the variance with N−1 will be necessary in the forthcoming

calculations.

Consider observing only a fraction M(t)/N of spins at each time step,

and define G(t) as the M(t) × N matrix mapping the configuration y(t)

into the observed vector s(t) ∈ {−1, 1}M(t). Also define F (t) as the (N −
M(t)) × N matrix mapping y(t) into the unobserved spins vector σ(t) ∈
{−1, 1}N−M(t). We require that both matrices are right-invertible at all

t, thus they must have full rank, that implies that observations are not

linear combinations of the underlying variables as our interest is in a par-

tially observed system rather than a low-dimensional observation of a high-

dimensional system. For the sake of simplicity we assume that the entries

are either 0 or 1, meaning observation is not noisy or distorted and the

right-inverse matrices will coincide with the transpose.

In the upcoming calculations we will use some simplifying custom nota-

tion in order to reduce what can be some cumbersome equations. We will

thus denote
∑′

i
the sum over indices i at time t + 1, while the regular∑

i
indicates a sum over indices i at time t and

∑−

i
a sum at time t− 1.

Accordingly, we will indicate with si spin i at time t, with s−i at time t− 1

and with s′i at time t+ 1, and the same applies for g, σ and any other vari-

able. Also indices i, j, k, l are used for observed variables, whereas indices
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a, b, c, d will identify unobserved variables.

In this notation, the probability mass function is rewritten as

p[{s′, σ′}|{s, σ}] = Z−1 exp

[∑′

i

s′ig
′
i +

∑′

a

σ′ag
′
a

]
(3.3)

Defining the matrices Joo(t + 1) = G(t + 1)JGT (t), Joh(t + 1) = G(t +

1)JF T (t), Jho(t + 1) = F (t + 1)JGT (t) and Jhh(t + 1) = F (t + 1)JF T (t)

the local fields are

gi =
∑
j

Jooij s
−
j +

∑
b

Johib σ
−
b + hi

ga =
∑
j

Jhoaj s
−
j +

∑
b

Jhhab σ
−
b + ha (3.4)

and the partition function or normalization constant is

Z =
∏′

i,a

2 cosh(g′i)2 cosh(g′a)

The ultimate purpose of this work is to devise an approximate method

to obtain Maximum Likelihood Estimates (MLE) for the parameters J, h

and the unobserved spins σ. The likelihood function is just the product

through time of the independent transition probabilities expressed in Eq.

3.3, taking the trace over the missing values

p[{s}] = Trσ
∏
t

p[{s′, σ′}|{s, σ}] (3.5)

To solve the problem, our approach is closely related to the one de-

veloped by Dunn and Roudi (2013), where the authors investigate on a

system where only a subset of spins is observable. The extension to our

case is presented below.



CHAPTER 3. KINETIC ISING MODEL AND MISSING DATA 50

The trace of Eq. 3.5 is computationally intractable for large systems

with many hidden variables. However the path integral formulation first

proposed by Martin et al. (1973) allows to decouple spins and perform the

trace at the cost of computing a high dimensional integral. Define the

functional

L[ψ] = log Trσ
∏
t

exp

[∑
a

ψaσa

]
p[{s′, σ′}|{s, σ}] (3.6)

Notice that this is equivalent to the log-likelihood if ψa(t) = 0 ∀a, t, thus

the goal of the calculation will be to efficiently maximise L[ψ] in the J, h

coordinates considering the limit when ψ → 0. As will become clear in the

next steps, the introduction of these so-called “auxiliary fields” is necessary

to switch from the unknown values σ to their posterior expectations m, thus

smoothing the log-likelihood function eliminating unknown binary variables

from its formula. Call

Q[s, σ] =
∑
t

∑
i

sigi +
∑
t

∑
a

σaga+

−
∑
t

∑
i

log 2 cosh(gi)−
∑
t

∑
a

log 2 cosh(ga)

∆ =
∑
t

∑
i

iĝi

[
gi −

∑
j

Jooij s
−
j −

∑
b

Johib σ
−
b − hi

]
+

+
∑
t

∑
a

iĝa

[
ga −

∑
j

Jhoaj s
−
j −

∑
b

Jhhab σ
−
b − ha

]

where e∆, integrated over the ĝs is the integral representation of the

Dirac delta function. Then one obtains

L[ψ] = log

∫
DG exp[Φ] (3.7)
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where G = {gi, ga, ĝi, ĝa}t and

Φ = log Trσ exp

[
Q+ ∆ +

∑
t

∑
a

ψaσa

]
(3.8)

Now the trace can be easily computed since the introduction of the

delta function has decoupled the σs by fixing the value of the local fields g,

obtaining

Φ =
∑
t

[∑
i

[sigi − log 2 cosh(gi)]−
∑
a

log 2 cosh(ga)+

+
∑
i

iĝi

[
gi −

∑
j

Jooij s
−
j − hi

]
+

+
∑
a

iĝa

[
ga −

∑
j

Jhoaj s
−
j − ha

]
+

+
∑
a

log 2 cosh

[
g−a −

∑
i

iĝiJ
oh
ia −

∑
b

iĝbJ
hh
ba + ψ−a

]]

As mentioned, the cost is computing the integral of Eq. 3.7, which can

be solved via the saddle-point approximation, where the saddle-point is

obtained by the extremization of Φ with respect to the coordinates in G.

Setting ∇GΦ = 0 gives

g0
i = hi +

∑−

j

Jooij s
−
j +

∑−

a

Johia m
−
a

g0
a = ha +

∑−

j

Jhoaj s
−
j +

∑−

b

Jhhab m
−
a

iĝ0
i = tanh(gi)− si

iĝ0
a = tanh(ga)−ma
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which, substituted in Φ, give the zero-order solution to the saddle-point

integral.

The missing part of the puzzle is the posterior mean E [σa(t)], for which

L acts as the generating functional

E [σa(t)] = ma(t) = lim
ψa(t)→0

µa(t) = lim
ψa(t)→0

∂L
∂ψa(t)

where the expectation is performed under the posterior measure p[{σ}|{s, J, h}].
Thus we find

lim
ψa→0

∂L
∂ψa

= ma = tanh

[
g0
a −

∑′

i

iĝ0′
i J

oh
ia −

∑′

b

iĝ0′
b J

hh
ba

]
This zero-order approximation is rather rough, nonetheless the saddle-

point method can be solved at higher orders of approximation. The second-

order (i.e. Gaussian) correction to the saddle point solution of the integral

in Eq. 3.7 is

δL = −1

2
log det[∇2

GL]

where ∇2
GL is the Hessian matrix in the G space of L evaluated at the

saddle point. This is a forbidding task to tackle numerically, since the

matrix has (4NT )2 elements, but with a few algebraic manipulations the

computations become feasible.

The Hessian matrix elements can be summarized in the following sub-

matrices Att
′
, ..., Gtt′ , given by
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∂2Φ

∂gi(t)∂gj(t′)
= Att

′

ij = −δijδtt′(1− tanh2[g0
i (t)])

∂2Φ

∂ĝi(t)∂ĝj(t′)
= Btt′

ij = −δtt′
∑−

a

Johia (t)Johja (t)[1− µ2
a(t− 1)]

∂2Φ

∂ga(t)∂gb(t′)
= Ctt′

ab = −δabδtt′
[
µ2
a(t)− tanh2[g0

a(t)]
]

∂2Φ

∂ĝa(t)∂ĝb(t′)
= Dtt′

ab = −δtt′
∑−

c

Jhhac (t)Jhhbc (t)
[
1− µ2

c(t− 1)
]

∂2Φ

∂ĝi(t)∂ĝb(t′)
= Ett′

ib = −δtt′
∑−

a

Johia (t)Jhhba (t)
[
1− µ2

a(t− 1)
]

∂2Φ

∂ĝi(t)∂gb(t′)
= F tt′

ib = −iδt−1,t′J
oh
ib (t)

[
1− µ2

b(t− 1)
]

∂2Φ

∂ga(t)∂ĝb(t′)
= δabδtt′ +Gtt′

ab = δabδtt′ − iδt+1,t′J
hh
ba (t+ 1)

[
1− µ2

a(t)
]

∂2Φ

∂gi(t)∂ĝj(t′)
= δijδtt′

∂2Φ

∂gi(t)∂gb(t′)
=

∂2Φ

∂gi(t)∂ĝb(t′)
= 0 ∀ t, t′, i, b

and in matrix form it has the following almost block-diagonal form (we

show the sub-matrix for times t, t+ 1)



Att iI 0 0 0 0 0 0

iI Btt 0 Ett 0 0 0 0

0 0 Ctt iI 0 [F t+1,t]
T

0 Gt,t+1

0 [Ett]
T

iI Dtt 0 0 0 0

0 0 0 0 At+1,t+1 iI 0 0

0 0 F t+1,t 0 iI Bt+1,t+1 0 Et+1,t+1

0 0 0 0 0 0 Ct+1,t+1 iI

0 0 [Gt,t+1]
T

0 0 [Et+1,t+1]
T

iI Dt+1,t+1


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We are interested in the determinant, and in particular its logarithm.

Dividing the Hessian in the matrices α containing block-diagonal elements

and β containing the rest, we find

log det(α+β) = log det(α)+log det[I+α−1β] = log det(α)+Tr log[I+α−1β] ≈

≈ log det(α) + Tr[α−1β] +
1

2
Tr{[α−1β]2}+ ... (3.9)

Given that α is block-diagonal, so will be α−1, then Tr[α−1β] = 0 and

we ignore higher order terms assuming the off-diagonal part of the Hessian

matrix is small compared to the diagonal one. In our initial assumption,

the couplings Jij are Gaussian random variables with mean of order 1/N

and variance of order J2
1/N , which means log det(α) is quadratic in J1.

The determinant now can be computed and a weak couplings expansion

(i.e. J1 → 0) can be made to eliminate the logarithm, leading to the final

approximate form of the correction

δL ≈− 1

2

∑
t

∑′

i

[(
1− tanh2(g′i)

)∑
b

[
Joh′ib

]2
(1− µ2

b)

]
+

− 1

2

∑
t

∑′

a

[(
µ′ 2a − tanh2(g′a)

)∑
b

[
Jhh′ab

]2
(1− µ2

b)

]

Given the new form of L1 = L0 + δL, we need to recalculate the self-

consistency relation for ma(t) and the learning rule for J . As for ma(t), we

can easily see that it is going to coincide withma(t) = limψa(t)→0 µa(t)+la(t),

where
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la(t) =
∂(δL)

∂ψa(t)
=

= µa(1−µ2
a)

[∑′

i

[(
1− tanh2(g′i)

) [
Joh′ia

]2]]

+µa(1−µ2
a)

[∑−

b

[
Jhhab
]2

(1− µ− 2
b )+

+
∑′

b

(
µ′ 2b − tanh2(g′b)

) [
Jhh′ba

]2 ]
(3.10)

Implementing the MSR method has introduced an explicit dependence

of the L functional from the auxiliary fields ĝ and ψ, which however make

little sense in terms of the model itself. Now that we have solved the integral

at the saddle-point and in its immediate neighbourhood the auxiliary fields

can be absorbed back into the original variables by performing a Legendre

transform of L, exploiting the fact that L is convex and that we would

rather have it depend on the conjugate field of ψ, that is µ. The transform

is

Γ[µ] = L −
∑
t

∑
a

ψa(t)µa(t) s.t. − ψa(t) =
∂Γ[µ]

∂µa(t)
(3.11)

and so we can adopt Γ as the functional to be maximised in the learning

process instead. At zero-order, this is easily found to be

Γ0[µ] =
∑
t

[∑′

i

[
s′ig

0 ′
i − log 2 cosh(g0 ′

i )
]

+

+
∑′

a

[
µ′ag

0 ′
a − log 2 cosh(g0 ′

a )
]

+
∑
a

S[µa]

]
(3.12)

where S[x] = −1+x
2

log(1+x
2

) − 1−x
2

log(1−x
2

) is the entropy of an uncou-

pled spin with magnetization x. It is relevant to mention that so far the
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functional is expressed in terms of µ, while we have already highlighted

that after the Gaussian correction a new term l is introduced in the for-

mula for m. However, since we are restricting to second order in J , the

terms containing l in Γ are all of superior order and are thus negligible in

this approximation, then Γ0[m] ≈ Γ0[µ]|µ=m. Performing the exact same

steps on the correction term δL one finds the corrected functional

Γ1[m] = Γ0[m] + δL[m]

Γ1 is the functional to be optimized through an Expectation-Maximization-

like algorithm, recursively computing the self-consistent magnetizations m

given J, h and then climbing the gradient ∇J,hΓ1 to obtain a new J matrix

and h vector.

The formulas necessary to the EM-like algorithm, namely the log-likelihood

gradient and the self-consistent relations for the magnetizations, respec-

tively read

∂Γ1

∂Jkl
=
∑
t

[∑′

i

[
∂g′i
∂Jkl

(s′i − tanh(g′i))

]
+

+
∑′

a

[
∂g′a
∂Jkl

(m′a − tanh(g′a))

]
+

+
∑′

i

[
tanh(g′i)

cosh2(g′i)

∂g′i
∂Jkl

∑
bmn

G′imJ
2
mnF

T
nb(1−m2

b)

]
+

+
∑′

i

[
−
(
1− tanh2(g′i)

)∑
b

G′ikJklF
T
lb (1−m2

b)

]
+

+
∑′

a

[
tanh(g′a)

cosh2(g′a)

∂g′a
∂Jkl

∑
bmn

F ′amJ
2
mnF

T
nb(1−m2

b)

]
+

+
∑′

a

[
−
(
m2 ′
a − tanh2(g′a)

)∑
b

F ′akJklF
T
lb (1−m2

b)

]]
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where the fields g and their derivatives are given by

g′i =
∑
j

∑
kl

G′ikJklG
T
ljsj +

∑
b

∑
kl

G′ikJklF
T
lbmb + hi

g′a =
∑
j

∑
kl

F ′akJklG
T
ljsj +

∑
b

∑
kl

F ′akJklF
T
lbmb + ha

∂g′i
∂Jkl

=
∑
j

G′ikG
T
ljsj +

∑
b

G′ikF
T
lbmb

∂g′a
∂Jkl

=
∑
j

F ′akG
T
ljsj +

∑
b

F ′akF
T
lbmb

The self consistency equations for the magnetizations m are then ob-

tained by imposing ∂Γ1/∂ma(t) = 0, finding

ma = tanh

[
ga +ma

[∑′

i

(
1− tanh2(g′i)

)∑
kl

G′ikJ
2
klF

T
la+

+
∑′

b

(
m2 ′
b − tanh2(g′b)

)∑
kl

F ′bkJ
2
klF

T
la+

−
∑−

c

∑
kl

FakJ
2
klF

T −
lc (1−m2−

c )

]
+

+
∑′

i

(s′i − tanh(g′i))
∑
kl

G′ikJklF
T
la+

+
∑′

b

(m′b − tanh(g′b))
∑
kl

F ′bkJklF
T
la+

+
∑′

i

tanh(g′i)

cosh2(g′i)

∑
oqb

G′ioJoqF
T
qb(1−m2 ′

b )
∑
kl

G′ikJklF
T
la+

+
∑′

c

tanh(g′c)

cosh2(g′c)

∑
oqb

F ′coJoqF
T
qb

(
1−m2 ′

b

)∑
kl

F ′ckJklF
T
la

]
(3.13)

Once this approximate log-likelihood is maximized and the final iteration

of the expectation part of the algorithm is finished, the result is an (approx-
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imated) Maximum Likelihood Estimate of the couplings as well as a Maxi-

mum A Posteriori estimate of the hidden spins σ, given by σ̂(t) = sign(mt).

Summarizing, the procedure is the following:

Algorithm

• Initialize J , h, m(t)

• Until convergence is reached

– compute the self-consistent magnetizations m(t)

– compute the gradient ∇J,hΓ1

– apply Gradient Ascent step, in our case Nesterov’s II

method proximal gradient ascent with backtracking line

search

• Possibly involve LASSO `1-norm regularization or pruning tech-

niques to obtain a sparse model.

3.3 Tests on synthetic data

We perform a series of tests on the algorithm in order to assess its per-

formance in several diverse conditions of data availability. We particularly

focus on how we select the observed spins and on the structure of the cou-

pling matrix J in the data generating model. To construct the G(t) and

F (t) matrices, we assign to each spin a probability pi of being observed,

meaning that yi(t) is observed with probability pi for all t.

We explore how the performance of the inference depends on the follow-

ing model specifications:

0. The average observation frequency, taking the Bernoulli probabilities
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pi = p, ∀i = 1, . . . , N ;

1. The heterogeneity of the Bernoulli probabilities pi, which we choose

to be distributed according to a Beta distribution B(a(K), b(K)) with

given mean K and shape parameters a and b;

2. The scale J1 of the J entries, which are distributed as Jij ∼ N (0, J2
1/N);

3. The structure of the J matrix, specifically whether the underlying

network is fully connected or an Erdős-Rényi random network of vary-

ing density, adopting either the LASSO `1 regularization (Tibshirani

(1996)) or the decimation procedure of Decelle and Zhang (2015) to

select the links;

4. The asymmetry of the J matrix. One of the key assumptions in

the calculation is that Jij 6= Jji and that they are independent and

identically distributed, and we investigate how far one can violate it

up to the case of a symmetric J matrix;

5. The dependency on the length of the time series relative to the number

of units involved, T/N , to check the estimate asymptotic efficiency.

In Test 0 we study the performance of the algorithm in a very simple

setting of missing information, where each variable has the same probability

of being observed and the generating model is a fully-connected Kinetic

Ising model. This is intended to study the effect the average amount of

missing information in the sample has on the inference, without considering

the possibility of having heterogeneous types of nodes. In this setting we

also introduce a procedure we call Recursive E-M: by properly iterating the

algorithm multiple times it allows to boost data artificially thus achieving
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good performances even when the fraction of missing values is particularly

high.

In Test 1 we explore the possibility that spins have heterogeneous obser-

vational properties. We sample the {pi} from a Beta distribution varying

parameters to probe different levels of heterogeneity. The Beta distribution

allows to range from a sharply peaked unimodal distribution to a sharply

peaked bimodal distribution tuning the shape parameters α and β, while

keeping the mean K constant: the former case is a situation of perfect ho-

mogeneity in the frequency of observations calling back to Test 0, while the

latter is the extreme heterogeneity of having some units that are (almost)

always hidden while the others are (almost) always observed. We select

some intermediate cases to characterize how heterogeneity in observation

frequency affects the identification of the model parameters.

Test 2 aims at assessing whether there is a minimal interaction strength

to have the inferential process converging and how the approximations nec-

essary to develop the method impact the accuracy of the inference. Indeed

while J1 in the physical model is proportional to the ratio between the

strength of the magnetic coupling interaction and the temperature at which

the system is observed, from a modelling perspective it is inversely propor-

tional to the impact of the noise on the dynamics. Given the approximation

of Eq. 3.9, if J1 gets too large, the precision with which the parameters are

identified should get worse. We thus expect to find an optimal region for the

inference to be accurate, bounded from below by an identifiability threshold

and from above by the limit of validity of the expansion.

In Test 3 we pursue the goal of making the methodology useful for real

world scenarios, where it is highly unlikely that all spins interact among

themselves and the underlying network is probably sparse. We compare
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the performance of two well established techniques, the LASSO `1 regular-

ization and the decimation procedure, and explore how these two methods

perform paired with our algorithm by simulating data on a set of Erdős-

Rényi random networks with different densities.

In a similar spirit, in Test 4 we study how the i.i.d. assumption made in

Eq. 3.9 affects the performance in situations where coupling coefficients are

pairwise correlated or even symmetric, a condition we envision to be more

realistic in social and economic environments (Squartini et al. (2013)). We

vary the correlation parameter Cor(Jij, Jji) = ρ for i 6= j between 0 and

1, with the symmetric case being also of special interest because the model

transforms into a dynamical form of the Sherrington-Kirkpatrick model,

thus connecting to the extensive literature on the topic.

Finally, a sanity check is made in Test 5 by looking at the dependency of

performance metrics on the ratio T/N , that is the ratio between the number

of observations and the number of spins, to characterize the convergence

rate of the estimator towards the true value and its consistency.

We test the algorithm and evaluate the performance using mainly two

metrics, one relative to the reconstruction of the couplings and one to the

reconstruction of missing values:

1. The Root Mean Square Error (RMSE) on the elements of the ma-

trix J , RMSE =
√
〈(Ĵij − Jij)2〉ij, suitably rescaled when comparing

experiments with different J1;

2. The “Reconstruction Efficiency” (RE), namely the fraction of spins

that are correctly guessed among the hidden ones averaged throughout

the time series, or RE = 〈 1
N−M(t)

∑
a δσ̂a(t),σa(t)〉t where σ̂a(t) is the

sign of the self-consistent magnetization ma(t) calculated using the
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Figure 3.1: (a) Angular coefficient of the linear fit Ĵij = aJij + c before
and after R-EM varying the average observation density p; (b) Root Mean
Squared Error on the couplings; (c) Reconstruction Efficiency.

inferred coupling matrix Ĵ .

Test 0: dependency on a homogeneous pi

The algorithm is outstandingly resilient to cases with few observations avail-

able. We simulate a system of N = 100 spins, for T = 10000 time steps,

with Jij
iid∼ N (0, 1/N) lying on a fully connected network and we give a

probability of observation to each variable pi = p, with p ranging from 0.1

to 0.9. As can be seen from the top panel of Figure 3.1, showing the linear

regression coefficient a of Ĵij = aJij+c, with one iteration of the method we
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get a very reliable result for the couplings for p ≥ 0.8, although below this

value the lack of data reduces the quality of the estimation and moves the

estimates towards 0. To overcome this issue, we propose the aforementioned

R-EM procedure as a further enhancement of our algorithm: once a maxi-

mum of the approximate likelihood has been reached, a fraction of hidden

spins is substituted with their maximum likelihood estimates σ̂a = sign(ma)

and the inference is run again on the new, artificially boosted data. Since

m is proportional to the probability of the spin being up, we choose the

missing values to be substituted at every t as the ones with the most polar-

ized magnetization, i.e. for which m is closer to ±1. This artificial boosting

on the data shows promising results since with a few recursions the perfor-

mance is noticeably better even in cases with severe lack of observations, as

is also reflected in the middle and bottom panels of Figure 3.1. We defer a

more rigorous treatment of this recursive method to future work, while still

proposing it here as we find it surprisingly accurate.

The bottom panel of Figure 3.1 shows the Reconstruction Efficiency, which

gets worse almost linearly as the number of observations decreases and on

which the R-EM has a smaller effect, albeit still being a clear improvement.

It is evident from all panels that when a large fraction of data is missing

(p ≤ 0.2) the inference fails to identify any of the parameters and the model

is no better than a coin flip at reconstructing configurations.

In the following paragraphs we will always show results obtained with

the R-EM procedure, as the performance is typically better or not signifi-

cantly different from the single iteration method.
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Test 1: heterogeneous pi

In Test 1 we want to highlight how our model is a generalization of the

one studied extensively by Dunn and Roudi (2013) and to characterize the

impact of heterogeneity on the inference performance. To give a better

comparison with the aforementioned paper, we realize simulations morph-

ing from our initial specification of pi = p ∀i, studied in Test 0, to a case very

close to the one of Dunn et al. where pi ∈ {0, 1}, that is some variables are

always observed and some are always hidden. We choose to take the prob-

abilities distributed according to a Beta distribution, pi ∼ B(a(K), b(K)),

giving us the possibility of leaving the average number of observations con-

stant while skewing the distribution between a fully bimodal (small b(K))

and a sharp quasi-delta function (large b(K)). We choose the parameters a

and b such that the mean E[pi] = K is constant, so that different tests can

be compared and the role of heterogeneity is highlighted. This binds the

values of a and b through a = Kb
1−K .

The results of Figure 3.2 clearly show that when the distribution is

bimodal, that is when some variables are very rarely observed, the perfor-

mance of the algorithm is worse. With a sample size of T = 104 and N = 40,

the Dunn et al. model approximated by B(a(K), 0.1) is identified with rea-

sonable performance only when K ≥ 0.8. This is extremely mitigated when

the observations are more homogeneously distributed, particularly in the

case of the coupling coefficients whose estimation seem to require a rather

homogeneous distribution of observations among variables to be reliable.

On the other hand, the reconstruction efficiency is far less demanding in

terms of data quality and a reasonable performance is achieved even with

sparse data and heterogeneous observations.

In Figure 3.3 we plot the Root Mean Square Error on couplings condi-
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Figure 3.2: (a) Reconstruction efficiency as a function of K with different
Beta parameters. Inset: the pdf of the adopted Beta distributions with K =
0.5 (color coding is the same as in the main panel) (b) Root Mean Square
Error on the couplings as a function of K with different Beta parameters.

tional on the probability of observing subsequently the spins at their ends.

This probability is simply given by pij = pipj since observations are inde-

pendently sampled, and the RMSE is

RMSE(p) =

√
〈(Ĵij − Jij)2〉pij=p

where the mean is taken on links that have (close to) the same joint

observation probability. The plots highlight how for pairs with less frequent

joint observations the precision of the fit is significantly worse, however it is

also clear that the error grows for the more frequently observed couplings

too. This is partially mitigated when one looks at the linear fit between the

inferred Js and the true ones, meaning that the error is mostly affected by

the variance component rather than the bias one.

The overall effect of heterogeneity is thus a decrease in the quality of

the inference, with a stronger effect on couplings that are between the least
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Figure 3.3: Quality of inference varying the probability of observing the
end nodes at subsequent times. (a) RMSE for different values of the Beta b
parameter with mean K = 0.7; (b) Linear fit coefficient for different values
of the b parameter, K = 0.7.

observed pairs of spins and an important loss in accuracy, but with a bias

component that is mitigated for the most frequently observed pairs.

Test 2: dependency on J1

So far we have dealt with elements of J drawn i.i.d. from a N (0, 1/N)

distribution. We want to relax this hypothesis and, while changing the

mean value of the distribution would not be particularly meaningful in

that it would just shift the correlation patterns between variables, it makes

sense to investigate the behaviour as one changes the variance and thus

the strength of the interactions. While there is no phase transition in the

underlying model as long as the Jij are i.i.d., we want to check how weak
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can the couplings be in order to be correctly inferred and give a reliable

reconstruction of the data. In other words, we are trying to identify a

threshold in the interaction strength below which the algorithm is unable

to converge.

We report results for an experiment with N = 100, T = 10000, pi = p =

0.8 and J1 ranging from 0.05 to 13. We see from Figure 3.4 that increasing

the typical size of couplings positively affects the quality of the inference,

as should be expected since the dynamics is less affected by randomness.

In the top panel we plot the reconstruction efficiency which has a steady

increase and saturates towards 1 after J1 ' 5. The bottom panel shows the

relative RMSE, that is RMSE/J1, and we see that it drops below 5% for

J1 > 0.5. It is rather surprising to see how, regardless of the small couplings

expansion we utilize in Eq. 3.9, the algorithm seems to work efficiently even

in cases where the variance of the couplings J2
1/N is of order 1, albeit a

region of optimality for the inference of the couplings seems to lie within

0.5 ≤ J1 ≤ 7.

Test 3: impact of network structure

We test the algorithm performance on some more realistic network structure

than the fully connected one. It is indeed known that real networks, and

particularly social networks, are typically sparse and thus network models

have to implement some pruning mechanism permitting to discriminate be-

tween noise, spurious correlations and actual causal relations. We generate

our data simulating the Kinetic Ising model on one of the simplest random

network models, the Erdős-Rényi model, with edges that have weights Jij

normally distributed with variance 1/N , N = 100 and T = 10000 and with

a probability of observing the variables of p ∈ {0.8, 0.6, 0.4}. One then
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Figure 3.4: (a) Reconstruction Efficiency as a function of J1. (b) Rescaled
RMSE (by J1) on the couplings as a function of J1.

needs to adjust the algorithm to give sparse solutions, as the mean field

approximation will tend to return fully connected J matrices. The adjust-

ments we make are the LASSO regularization and the decimation procedure

of Decelle and Zhang (2015). The first is the well known `1 norm regular-

ization of the objective function, which projects the maximum likelihood

fully connected solution on a symplex of dimensions determined by a free

parameter λ (which has to be validated out of sample).

The second is a recently proposed technique that selects parameters

starting to decimate them from the least significant ones and repeating the

process until a so-called Tilted log-Likelihood function shows a discontinuity

in the first derivative.

To briefly describe the procedure, call Lmax the value of the log-likelihood

provided by the maximum likelihood algorithm without any constraint and
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Figure 3.5: (a-b) Results from the LASSO with 80% observations: (a)
RMSE on couplings as a function of the LASSO parameter; (b) ROC curves.
(c-d) Results from the decimation procedure with 80% observations: (c)
Tilted likelihood evolution through the decimation process, vertical lines
show the correct number of null elements; (d) ROC curves through the
decimation process with different network densities. The circle identifies
the point at which the Tilted Likelihood is maximized.

then call x the fraction of parameters Jij that are being set to 0. Finally

call L(x) the log-likelihood of the model with the fraction x of decimated

parameters and L1 the log-likelihood of a model with no couplings that is,

in case hi = 0∀ i, L1 = −∑tM(t) log 2. The Tilted log-Likelihood takes
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the form

Ltilted(x) = L(x)− ((1− x)Lmax + xL1)

that is, the difference between a convex combination of the original log-

likelihood with the log-likelihood of a system with no parameters and the

log-likelihood of the decimated model. This function is strictly positive

and is 0 only for x = 0, 1, since L(0) = Lmax and L(1) = L1, thus there

has to be a maximum. The decimation process thus consists in gradually

increasing the fraction of pruned parameters x until the maximum of the

Tilted log-Likelihood is found, giving the optimal set of parameters of the

model.

We show in Figure 3.5 and 3.6 the results of the test. We observe how

the ROC curves seem to lean strongly in favor of the decimation approach,

which tends to score perfectly on the False Positives Ratio (FPR) - True

Negatives Ratio (TNR) plane. However the maximum of the Tilted Likeli-

hood does not always correspond to the optimal score in the ROC diagram,

both in the case of a non-sparse network and when the data has a large

number of missing values. While the former case is not particularly inter-

esting in that a dense network model fitted on real data would be prone

to overfitting and of disputable use, the latter is much more of a concern,

albeit the process is still surprisingly efficient even when data is extremely

sparse.

Even if the decimation procedure is consistently outperforming the LASSO,

there is reason to still hold the `1 regularization as a viable option. Indeed

when one introduces local fields h of non-negligible entity, the decimation

procedure is not anymore reliable in that the Tilted Likelihood becomes

non-convex as shown in Figure 3.6 and the maximum is not in the correct
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Figure 3.6: (a-b) Results from the decimation procedure with 80%, 60%
and 40% observations available and a network density of 0.05: (a) Tilted
Likelihood evolution through the decimation, vertical line shows the correct
number of null elements; (b) ROC curves through the decimation process
with different observation densities. (c-d) Results from the decimation in-
troducing local fields h: (c) Tilted likelihood, vertical lines show the cor-
rect number of null elements; (d) ROC curves. The introduction of local
fields makes the tilted likelihood non-convex and seriously affects the per-
formance.

position. This is due to the underestimation of the h parameters during

the log-likelihood maximization of the fully connected model, where part of

the role of the local fields is absorbed in couplings that should be pruned.
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However these couplings are still relevant to the model since they compen-

sate for the underestimated h parameters, giving the Tilted likelihood a

non-convex form and shifting its maximum towards a more dense network

model. This situation does not occur with the LASSO regularization as

the pruning is performed at the same time as the maximization, giving the

LASSO the advantage of a much more reliable fit of the local fields albeit

with an overall worse performance in the inference of the nonzero couplings.

Test 4: Impact of asymmetricity assumption

Another assumption we made to perform the calculations in Equation 3.9

was that the Jij are iid Gaussian random variables. In the case of social

networks and trade networks reciprocity, that is the correlation between Jij

and Jji, is often found to be much higher than what would be expected in an

iid setting (Squartini et al. (2013)). We ask ourselves how impactful is this

assumption on the outcome of the inference and we test the algorithm on

data generated from a model withN = 100, T = 10000, pi = p = 0.8, J1 = 1

and such that Cor(Jij, Jji) = ρ, i 6= j. We show the results for this series

of tests in Figure 3.7. What we find is that the ρ parameter barely affects

the performance and even makes it easier to infer the hidden variables,

albeit marginally. Indeed we only used the assumption to approximate the

determinant of the Hessian in the second order correction to the saddle-

point solution, and letting the couplings not be reciprocally independent

should affect the approximation slightly by having some elements of J2 that

vanish slower than others in the sums. It is possible that having a large

enough N facilitates the inference then, since the amount of those slowly

vanishing terms grows with N while the number of entries of J grows with

N2.
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Figure 3.7: (a) Reconstruction Efficiency varying the correlation between
symmetric elements of J ; (b) RMSE on the couplings.

We then turn our attention to the extreme case of ρ = 1, corresponding

to the well known Sherrington-Kirkpatrick (SK) model (Kirkpatrick and

Sherrington (1978)), one of the first and most studied spin glass models in

the literature. The SK model has the peculiarity of undergoing a phase

transition at J1 = 2 in our notation for the Hamiltonian (since we have

not included a factor 1/2 to remove double counting), where for J1 > 2 the

spin glass phase arises and multiple equilibrium states appear such that the

model is not easy to infer anymore. It is thus interesting to see whether this

affects the inference from dynamical configurations and how the identifia-

bility transition is reached. We perform the experiment of varying J1 in this

framework and show the results in Fig. 3.8. We find the expected increase

in rescaled error (that is, RMSE/J1) marking the transition, surrounded by

a finite-size scaling noisy region, while the reconstruction efficiency of the
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Figure 3.8: (a) Reconstruction Efficiency as a function of J1 in the SK
model; (b) Rescaled RMSE on couplings as a function of J1.

configurations remains very good. This fits in the narrative of the phase

transition of the SK model, since in the spin glass phase an equilibrium

configuration of the model can be generated by multiple - and in princi-

ple indistinguishable - choices of parameters which we indeed struggle to

identify with our methodology.

Test 5: sample size and convergence

We finally devolve our attention to the convergence properties of our estima-

tor and how they are affected by finite sample sizes. The relevant parameter

to be varied is the ratio between the length of the time series T and the

number of units that are modelled, N . We run simulations with N = 100,

J1 = 1, pi = p = 0.8 and varying T between 100 and 25000, and report the
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Figure 3.9: (a) Reconstruction Efficiency as a function of the T/N ratio; (b)
RMSE as a function of the T/N ratio. Area in green is 1 standard deviation
from the mean over 30 repetitions.

results in Figure 3.9. It can be seen that the RMSE on Jij diminishes, after

T/N = 20, with what might look like a power law behaviour with exponent

close to 0.5, although we do not provide an exact law for the convergence.

The RMSE is below 5% of J1 when T/N is larger than 20 and is steadily

converging towards 0. Regarding the reconstruction efficiency we see that it

saturates quickly towards 90% and then it keeps increasing towards 100%.

This evidence is a heuristic proof that the estimator is converging and is

important to estimate how reliable a result might be given the T/N ratio

of the data. Although a more rigorous law would be much more appealing

for the task, it would require being able to write the posterior of J, σ given

s, which to the best of our knowledge is not a feasible calculation in this

setting.
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Additional parameters: exogenous drivers

The model can be easily extended to a version in which an exogenous driver

(or multiple ones), observed at all times, affects the dynamics of the vari-

ables. In a financial setting the first external driver would be given by

the log-returns rt and the associated parameter would be the typical reac-

tion of a trader to price changes, typically categorized between contrarians

and chartists whether they go “against” the flow (i.e. sell when the price

rises and viceversa) or follow the trend. In the model, this is introduced

by adding a set of linear parameters b in the local fields that couple the

variables to the driver

gk(t) =
∑
l

yl(t) + hk + bkrt

The introduction of the parameter does not complicate the inference

process at all and is particularly important if one wants to use the model

to describe and possibly forecast order flows in financial markets. We omit

the results for this section for the sake of space and because no significant

dependency on the size of the bk parameters is found for our performance

metrics.

3.4 Conclusions

In this Chapter we developed a methodology to perform inference of Ki-

netic Ising Models on datasets with missing observations. We successfully

adapt a known approximation from the Mean Field literature to the pres-

ence of missing values in the sample and devise several performance tests

to characterize the algorithm and show its potential. We also propose a

recursive methodology, R-EM, that gradually reconstructs the dataset with
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inferred quantities and tries to refine the inference, and show its efficacy on

synthetic data.

The main results are that it is indeed possible to infer Kinetic Ising

Models from incomplete datasets and that our procedure is resilient to

noise, heterogeneity in the nature of data and in the frequency of missing

values, and overall quantity of missing data. We make the algorithm ready

for real-world applications by implementing pruning techniques in the form

of LASSO and decimation, and give a brief overview of what we think are

the better uses for each.

The methodology lends itself to applications on many diverse datasets,

but our main focus in the next chapters will be on opinion spreading in

financial markets where transactions occur at high frequency, such as the

FX or the cryptocurrency markets. We indeed envision our algorithm can

identify significant structures of lagged correlations between traders, that

in turn can be mapped to a network of lead-lag relations. Such a network

would be particularly useful to get a quantitative picture of how possible

speculative or irrational price movements can occur due to voluntary or in-

voluntary coordination between traders and to devise appropriate strategies

to counteract them.



Chapter 4

Traders networks and herding

Almost all results in this chapter previously appeared in Campajola et al.

(2020)

4.1 Introduction

A significant part of risk management for financial intermediaries is related

to the mitigation of the adverse selection risk (Kyle (1985); Glosten and

Milgrom (1985)), namely the risk of trading with a counterpart that has

access to better information on the traded asset. This risk is exacerbated

in contexts where multiple counterparties might - consciously or not - co-

ordinate their trades, introducing not only an adverse selection risk against

a specific counterpart but against a group of traders, a situation typically

referred to as inventory risk (Ho and Stoll (1980)). Understanding how

information propagates in the market is crucial to identify key players that

can forerun the order flow, a knowledge that an intermediary can exploit

to better hedge against inventory risk.

Methods to detect lead-lag relationships between financial variables have

78
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been extensively studied in the literature, starting with correlations between

financial assets (Jegadeesh and Titman (1995)) and evolving towards more

complex measurement methods such as cascade models (Lux et al. (2001))

or Vector AutoRegressive models (Barigozzi and Brownlees (2019)). In re-

cent years there has been a rising interest in methods to cluster together

traders based on their strategic and behavioral features as well as studying

how they influence each other. A prominent example is the Statistically Val-

idated Networks (SVN) methodology, first described in Tumminello et al.

(2011) and then applied to financial data (Tumminello et al. (2012); Curme

et al. (2015); Musciotto et al. (2018)), which has then been extended to

the Statistically Validated Lead-Lag Networks methodology (Challet et al.

(2018); Cordi et al. (2019)) to analyse how investors can be classified based

on their strategic behaviour and which clusters correlate at different time-

scales. Challet et al. (2016) proposed a Machine Learning method to con-

struct lead-lag networks between clusters of investors and predict the order

flow, while Gutiérrez-Roig et al. (2019) rely on information-based methods

to achieve similar results.

We propose our approach as an alternative to the aforementioned meth-

ods, introducing the Kinetic Ising Model as an opinion spreading mechanism

whose parameters can be inferred from the data, adopting the algorithm

we showed in Chapter 3.

Our goal is to find significant lead-lag relationships between single mar-

ket participants on the intra-day time-scale, as well as exploiting these

lead-lag relations to estimate the current implicit state of supply and de-

mand. There are two main innovations in our approach with respect to the

above mentioned ones: on the one hand, treating the data as a whole in

a multivariate model, instead of running multiple pairwise tests - as pre-
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viously cited methods do - allows us to correctly identify correlations and

causalities, whereas a pairwise approach is potentially prone to cases where

spurious effects appear; on the other hand, we also have the ability to han-

dle missing observations, which in the case of financial markets is an effect

of the intrinsic asynchronicity of trade records, as shown by Aı̈t-Sahalia

et al. (2010) and Corsi et al. (2012).

The main purpose of financial markets is to aggregate the public opinion

about a particular asset, determining the correct price as the optimal match

between supply and demand. The opinion of a particular trader about the

asset price is thus expressed when they perform a transaction: when they

buy an asset at price p, they believe the correct price (the “value” of the

asset) is p′ > p, and vice-versa. Due to transaction costs, limited liquidity

and other frictional effects, the traders incur in a cost whenever they want

to express their opinion, inducing them to trade less than they would in

an ideal situation. As a result, when looking at trade records on the intra-

day time-scale, it is very hard to aggregate time at a level such that every

participant trades in every time slice. However it is reasonable to assume

that, even if a trader has not traded in the last time interval, they still hold

an opinion about the asset, which could be reflected in other trades they

perform on other markets or could influence other traders in their future

actions.

We choose to model this system through the Kinetic Ising Model, assum-

ing traders’ opinions can either be positive (belief that p′ > p) or negative

(p′ < p) and thus be represented by binary spins that evolve in discrete

time. Their coupling factors will then carry the information about lead-

lag relationships in the spreading of opinions at the considered time-scale.

As mentioned, the only observations available about such opinions are the



CHAPTER 4. TRADERS NETWORKS AND HERDING 81

trades that investors make, meaning that the data will likely present a sig-

nificant amount of missing values if one takes a reasonably short time step.

A good reason to choose the Kinetic Ising Model then is the possibility to

infer the model parameters efficiently even from incomplete data, thanks to

the Expectation-Maximization-like algorithm developed in Campajola et al.

(2019) and shown in Chapter 3, while also getting a Maximum Likelihood

estimate of the unobserved opinions. Such estimations can then be used to

make an informed guess about the hidden opinion, by simply taking their

sign.

The case is particularly relevant for the foreign exchange (FX) market.

The market has a multi-dealer organization, where a centralized double-

auction exchange is accessible to few market members (the dealers) which

in turn offer, through their proprietary platform, a trading service to their

clients. The dealer then acts as a liquidity provider, while also absorbing

temporary shocks in supply and demand through its inventory which is

then rebalanced by trading with other dealers on the centralized platform.

Optimal dealership (mostly known as optimal market making) is a vastly

studied problem in finance (see Guéant (2016) for a comprehensive review),

trying to devise how to optimally rebalance the inventory one accumulates

when satisfying clients’ requests and what is the fee the dealer has to charge

clients in exchange for the immediacy of their transaction. One of the costs

faced by dealers is the cost of liquidity on the inter-dealer market, which

can be particularly high when all market participants experience the same

kind of pressure from their clients. To predict what this cost will be it

can be useful to understand what the aggregate opinion of traders is, even

the ones the dealer doesn’t observe due to lack of trading activity, either

because they might influence other clients actions or because they are active
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with other competing dealers and will eventually impact the cost of liquidity

shortly afterwards.

Our modelling approach also allows to analyse the inferred lead-lag net-

works to identify key nodes in the opinion spreading process, whether the

network changes over time as traders enter and exit the market, and to

study how influential nodes are relevant for the prediction of the order flow

and future liquidity.

The chapter is organized as follows: in Section 4.2 we describe the

dataset and model we use, in Section 4.3 we show the results coming from

multiple network analysis metrics, we analyze the performance of the model

when trying to forecast the order flow and we define a herding measure from

the inferred opinions, for which we test for Granger Causality (Granger

(1969)) effects with several liquidity imbalance measures. Section 4.4 con-

cludes the chapter.

4.2 Dataset

Our dataset consists of all the trades performed in the period going from

January 2012 to December 2013 on the eFX platform of a major dealer in

the EUR/USD spot exchange rate market, including an anonymized iden-

tifier of the market agent requesting the trade, the volume and sign of the

transaction, the time of request, and the price in EUR/USD quote offered

by the dealer.

We select trades occurring on working days between 8AM and 4PM

GMT and we split the dataset by month, resulting in 24 time series of trades

with information about time, volume, sign, and identity of the counterpart.

We then aggregate trades performed by the same agent i within 5 minutes
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time windows and take the sign of the aggregate volume Vi(t) of EUR

acquired in exchange for USD as the information on whether the agent has

sold (Vi(t) < 0), bought (Vi(t) > 0) or has stayed idle (Vi(t) = 0) at time

t. Finally, we call pi the fraction of time intervals in which trader i was

active - that is, the fraction of non-missing data - and for each month we

remove traders that were active in a fraction pi ≤ 0.3 of the total number

of samples.

The final dataset involves a total of 68 traders, with an average of 16

traders active each month, a minimum of 9 and a maximum of 29 and we

report some statistics in Table 4.1. To better understand the heterogeneity

in the activity of market agents involved, we compute the Gini coefficient

on the monthly pis and find the distribution of observations to be mostly

homogeneous, typically having only one agent that is much more active

than all the others.

T N s pi
Minimum 679 9 0.02 0.45
Maximum 2231 29 0.13 0.55

Mean 2039.33 16.46 0.08 0.49
Stdev 308.57 4.59 0.03 0.02

Trader pi pi Gini Trader ACF1 Flow ACF1
Minimum 0.30 0.16 -0.15 0.04
Maximum 0.99 0.23 0.57 0.19

Mean 0.49 0.19 0.07 0.12
Stdev 0.18 0.02 0.07 0.05

Table 4.1: Basic statistics of the dataset: (top) number of time steps T
and of agents N of the monthly time series, monthly average sign of ob-
served trades s, monthly fraction of observations pi; (bottom) single trader
monthly fraction of non-missing values pi, monthly Gini coefficient of pi,
ACF at lag 1 of single traders and of the aggregate order flow.

The sign of the aggregate trade volume si(t) = sign[Vi(t)] is intended

as a proxy of the opinion yi(t) the trader has at that time on whether
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the price should go up or down in the near future, while the zeros are

intended as missing observations on their opinion. As shown in Table 4.1

the AutoCorrelation Function (ACF) at lag 1 on the aggregate order flow

is typically higher than the average ACF of single traders, suggesting that

traders act in coordination on a short lag, having their opinions diffuse

gradually over a network of information spreading.

The model we use to describe our data is the Kinetic Ising Model with

an external regressor for log-returns, described by the transition probability

p [y(t+ 1)|y(t)] = Z−1(t) exp

[∑
〈i,j〉

yi(t+ 1)Jijyj(t)+

+
∑
i

yi(t+ 1) (hi + bir(t))

]
(4.1)

where again the y(t)s are not always observed, thus we have the observed

opinions s(t) alongside the unobserved opinions σ(t) at each time step and

the usual reparametrization we showed in the previous chapter.

We infer the parameters of Eq. 4.1 on monthly subsets of data to ac-

count for non-stationarity and for traders that enter and exit the platform

throughout the considered two year period. The outcome is a series of

weighted and directed networks whose weighted adjacency matrix for month

k is A(k) = JT (k) (transposing conforms the matrix to the standard defi-

nition of adjacency matrix, which has non-zero element aij if there is a link

from node i to node j), where the nodes are traders and the links represent

an influence relation between the sign of the opinion of the origin node at

time t and the sign of the opinion of the end node at time t+ 1. The links

can have either positive or negative weight: when it is positive it means

that the follower tends to agree with the leader opinion, while when it is

negative they tend to disagree.
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Since we hypothesize that returns r(t) can affect the trading behaviour

of traders, we introduce the 5-minutes log-returns as a control variable in

the model, with a trader-specific parameter bi capturing their reaction to

a price change in the previous time window. We use the mid-price in the

order book of the EBS electronic inter-dealer exchange to which the dealer

has access as a market member: although traders do not specifically trade

at that price, it is the only price indicator that we can reliably use while

not introducing trade-specific effects.

4.3 Results

The networks resulting from the model inference (as for example the one

shown in Figure 4.1) are then analysed to find out whether there are traders

that are more influential than others, how the network changes over time,

and how accurate is the prediction of trade signs. We start by defining

a characterization of the nodes as influencers and followers based on an

adapted weighted version of the PageRank (Brin and Page (1998)) measure

as proposed by Kiss and Bichler (2008). Then in the next subsection we

compute the persistence of the neighbourhood of nodes as described by

Nicosia et al. (2013) to quantify the local stability of the networks in time

and try to disentangle degree-related effects from preferential attachment

by comparing the results with the ones obtained by randomly rewiring the

networks and reshuffling the time series. We then compute the out-of-

sample accuracy of prediction of trade signs to evaluate model performance

compared to a Logistic AutoRegressive (LAR) model of order 1, taking as

input the previous trade sign of trader i (where available) and the last log-

return. We also evaluate the forecasting and nowcasting performance of
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Figure 4.1: The inferred lead-lag network at month 13. Node coloring
follows the PageRank influence categorization described in section 4.3, the
size of both nodes and links is proportional to their strength and weight,
respectively. The link color indicates whether it is positively (green) or
negatively (red) weighted.

the model, utilizing parameters fitted on one month to predict trade signs

in the next one, always comparing with the LAR benchmark. Finally we

show a further interesting feature of our approach which allows us to define

a micro-level herding measure. We take this measure and run a Granger

Causality analysis between it and a set of liquidity imbalance measures

computed on the order book of the EBS inter-dealer exchange to highlight

the functioning of the multi-dealer market and emphasize the role of the

dealer as a liquidity provider.
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Figure 4.2: Stability of the PageRank ratio categorization. (a) Ratio be-
tween the number of identified influencers and the number of identified
followers varying the threshold parameter ρ; (b) Normalized Hamming dis-
tance between the categorization chosen optimizing Eq. 4.3 and other cat-
egorizations varying ρ. Vertical dashed lines mark the value of ρ∗.

Influence network: key players and properties

It is our interest to identify key actors in the market that carry informa-

tion about behavioral trends and that might “lead the pack”, forerunning

the order flow. To categorize traders in our network we adopt the measure
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developed by Kiss and Bichler (2008) as a modification of the PageRank

algorithm by Brin and Page (1998). The PageRank measure identifies im-

portant nodes based on how likely it is that a so-called random surfer, that

is a random walker with some probability of restarting from a random node,

ends up on some specific node of the network. In particular we want to la-

bel our nodes in 3 categories: influencers, followers, and neutrals. Kiss and

Bichler (2008) define the Weighted PageRank (WPR) and the Weighted

SenderRank (WSR) measures, where a node has higher WPR (WSR) the

larger the relative strength1 of incoming (outgoing) links it has from (to-

wards) highly ranked nodes. Both these measures have a minimum value

related to a parameter f called damping factor, representing the probability

that the random surfer keeps walking instead of jumping to a random node,

which we choose to be the literature standard 0.85 for both. The resulting

measure for node i is then defined as

WSRi = (1− f) + f
∑
j∈Li

wij
Si

WSRj

WPRi = (1− f) + f
∑

j s.t. i∈Lj

wji
Sj

WPRj

where Li is the set of nodes that have an incoming link from node i, wij is

the weight of the link between i and j and Si =
∑

Li
wij is the out-strength

of node i.

Notice that since the links can have negative weights we take the abso-

lute value of the weight to account for negative influence as well. We then

define the category Ct
i of trader i in month t based on the ratio between

1The strenght of a node is the sum of the weights of all links pointing at (in-strength)
or departing from (out-strength) that node.
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their WSR and WPR:

Ct
i =



Influencer, I if WSRt
i/WPRt

i > ρ

Follower, F if WSRt
i/WPRt

i < 1/ρ

Neutral, N otherwise

(4.2)

where ρ is a threshold ratio that can be arbitrarily decided. To make

this decision less arbitrary, we try to find an optimal value of the ratio in

order to maximize categorization diversity cross-sectionally while keeping it

consistent through time. The idea is thus to minimize a measure of diversity

for the single agent across months, while maximizing the same measure

between different agents in the same month, and taking ρ as the optimal in

terms of Euclidean distance from the ideal case of perfect trader consistency

in time and perfect uniformity of categorization cross-sectionally.

Call pρi (C) = 1/T
∑

t δ(C
t
i , C) the empirical probability at which trader

i is assigned to category C using threshold ρ: the measure of diversity we

choose is the normalized Total Variation Distance d(pρi ) from the uniform

distribution, namely

d(pρi ) =
3

2
sup

C∈{I,F ,N}

∣∣∣∣pρi (C)− 1

3

∣∣∣∣
where pρi is compared to the uniform distribution which takes value 1/3 for

all categories, and the factor 3/2 is making sure that d(pρi ) is normalized

to 1 in the case of maximum homogeneity, while it is 0 at maximum diver-

sity. Call Čρ
i = arg max pρi (C) the most frequent categorization of trader

i at threshold ρ, and define the frequency of category Č among the Čis

as fρ(Č) = 1/N
∑

i δ(Či, Č). Finally, call ζρ = d(fρ) the cross-sectional
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Figure 4.3: PageRank categorization of agents across months.

diversity between the most frequent categories the traders are assigned to.

Then we optimize ρ as

ρ∗ = arg min
ρ

[
(ζρ)2 + (Ei[d(pρi )]− 1)2

]
(4.3)

that is we minimize the Euclidean distance from the ideal case of having

each trader in the same category every month (Ei[d(pρi )] = 1) and evenly

spread categories across agents (ζρ = 0), obtaining a threshold value of

1.44.

We show how the selection of the threshold affects the categorization in

Fig. 4.2, plotting the influencers/followers ratio and the Hamming distance

between the chosen and all other categorizations. In the region surrounding

the chosen threshold the ratio of influencers to followers is rather stable at

around 3, and the normalized Hamming distance (that is the fraction of

categories changing between two choices of ρ) between the chosen category

and its neighbourhood is rather low and smoothly varying when moving
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away from the chosen threshold, a sign that the categorization is stable

enough to justify using this selection method.

The resulting categories for traders that exist in the data for more than

5 months are shown in Fig. 4.3. It is rather interesting to see how some

traders show a consistent behaviour across the whole dataset being identi-

fied mostly as influencers (see for example trader #1012, #113 and #1481),

while others have a more swinging nature.

Network persistence

To understand how variable the network is from month to month we com-

pute the neighbourhood persistence measure proposed by Nicosia et al.

(2013), defined as

Di(t, t+ 1) =

∑
j aij(t)aij(t+ 1)√∑
j aij(t)

∑
k aik(t+ 1)

(4.4)

where aij are the elements of the network adjacency matrix. Since the

network is directed we compute the measure on the three possible neigh-

bourhoods - the in, out, and total neighbourhood - changing the summation

indices appropriately: in particular, Eq. 4.4 refers to the out-neighborhood,

while summing over rows instead of columns produces the measure for the

in-neighborhood and the total is obtained by using the symmetrized adja-

cency matrix AT + A. We compare it to the same measure averaged over

10, 000 order randomizations of the network time series to isolate the actual

persistence in time from the average connectivity the trader has. In Figure

4.4a we plot the two quantities for the 10 nodes in the network that show

the largest persistence and for all neighbourhood types. We see that these

nodes tend to have abnormally persistent neighbourhoods, sometimes more
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Figure 4.4: (a) Neighbourhood persistence measured before and after a ran-
dom reshuffle of the network time series for a subset of nodes; (b) Residual
in- and out-neighbourhood persistence after a degree-preserving rewiring of
the network for the same subset of nodes.

in the in-neighbourhood and sometimes in the out-neighbourhood, a sign

that some preferential relationships exist and replicate themselves in time.

We also test the persistence by doing a random degree-preserving rewiring

of the networks (while keeping the temporal structure) in order to remove

the effect of the node degree, as a more connected node is more likely to
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have a more persistent neighbourhood than a less connected one. Figure

4.4b shows the difference in the directed neighbourhood persistence between

the original networks and the rewired ones. When this residual persistence

is positive it means that the node has a persistence higher than in the null

configuration model and viceversa.

The results show that there are indeed nodes that show a higher (or

lower) persistence in their neighbourhoods even when ruling out the effect

of the in- and out-degree, while this is typically not true for the undirected

version (which roughly corresponds to the sum of the two). A node with

a higher persistence of the out-neighbourhood is a node that attaches pref-

erentially to some other nodes, meaning, in our convention, that it has

influence over a persistent set of nodes, while the opposite is true for a

node with higher persistence of the in-neighbourhood. For example, node

#1011 has overly persistent incoming links and non-persistent outgoing

links, meaning it is typically influenced by the same set of nodes, while its

influenced neighbours are more randomly selected. The opposite happens

for node #1012, which is indeed consistently recognized as an influencer by

Weighted PageRank. Overall this analysis shows that, even if the network

density is rather high and it is difficult to extract significant community

structures, there is evidence of some preferential attachment mechanism at

work in the directed network.

Out of sample validation and forecasting

In this subsection we perform out of sample validation and forecasting for

the presented model. Specifically, we neglect some observed trades and we

test whether our model is able to correctly guess them. In the forecasting

exercise we instead train the model in a subperiod and test whether we are
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Figure 4.5: Out-of-sample K-leaveout accuracy of the KIM model compared
to a Logistic AutoRegressive (LAR) model and to a Logistic Regression on
log-returns (LR) for every month in the dataset.

able to predict the trading activity in the following subperiod. In all cases

we consider models with and without 5-minutes log-returns as a control

variable.

In Figure 4.5 we plot the performance one has predicting out-of-sample

trade signs using the Kinetic Ising Model compared to the average of N

logistic univariate logistic regressions, with the log-returns as an indepen-

dent variable and, in the AutoRegressive version (LAR), the trade sign of

the trader at the previous time interval (if available). The performance

is measured by K-leaveout cross-validation, consisting of hiding K = 5%

observations from the sample and then comparing the predicted trade sign

with the actual one. The measure is then the fraction of correctly identified

trade signs.

Overall the performance of our model is better than the benchmarks

in a range from 5% to over 10% (excluding a couple of months where it

does slightly worse), and in the best case the model predicts trade signs
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with 70% accuracy, while on average it scores around 60%. While being

nothing too extraordinary, this result shows that the model can provide a

valid platform for descriptive and forecasting purposes.

The difference in performance between the KIM and the univariate lo-

gistic regression models is larger when the cross-correlation at lag 1 between

the order flow and the log-returns is non-significant (not shown here). This

tells us that, while the simpler models capture what is probably the most

important interaction observed in the market (the reaction of traders to

price changes), when this interaction is weaker they fail to capture any

significant effect. However a significant amount of coordination persists re-

gardless of whether it is caused by price movements or by other mechanisms,

and it can be explained by our modelling approach.

We thus try to use the Kinetic Ising Model to forecast order signs: as

a proof of concept, we take the result from one month and use the inferred

parameters to produce the one-step-ahead forecasts in the next month.

Calling {JM , hM , bM} the set of inferred model parameters at month M

and sMi (t) the observed order sign of trader i at time t in month M , we

forecast one step ahead using ŝMi (t+ 1) = sign(m̌i(t+ 1)), where

m̌M
i (t+1) = tanh

hM−1
i + bM−1

i rt +
∑

j∈obs(t)

JM−1
ij sMj (t) +

∑
b/∈obs(t)

JM−1
ib mM

b (t)


and obs(t) is the set of observed indices at time t. This quantity is then

compared to the time t+ 1 observations and the average number of correct

guesses is reported as the forecasting performance. Notice that every time

an observation is added the m̌M(t) vector is updated through Eq. 3.13 to

include the new information and keep the forecasting just to one step ahead

of the observations.
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We analyze the performance of the KIM when using all traders or only

the influencers subset to predict future order signs compared to the same

task performed with a LAR model. The results (not reported for the sake of

space) show that there is no significant increase in performance by introduc-

ing the multivariate modeling, and restricting the prediction to using only

traders that were identified as influencers in the previous month doesn’t

seem to change radically the forecasting accuracy.

We observe that the performance is marginally better (∼ 55%) than

a random guess and that is rather stable across time horizons (we also

tested the one-step ahead forecasts using models several months after their

inference without noticing significant changes). Our hypothesis is that both

the LAR and the KIM methods, when used for forecasting, mostly rely on

the log-returns to guess the next trade, which we believe is the reason why

the accuracy of predictions is just a few percents higher than a coin flip and

it does not vanish at longer time horizons. While this may seem at odds

with the results shown in the previous sections, it has to be pointed out

that the main objective of our model is to infer the state of investors when

they do not trade, not forecasting, and that to do so we take advantage of

future information in Eq. 3.13, something that is clearly not possible for

one step ahead forecasts.

Predicting liquidity from inferred opinions

One possible use for our modelling approach is to produce a “herding” mea-

sure, given by the average opinion of traders at any point in time. Indeed

a by-product of the model estimation is a maximum likelihood estimate

of the unobserved opinions in the market, which we can use to generalize

the buy-sell imbalance that trade signs show to an implied opinion imbal-
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Figure 4.6: Causality relations from herding to liquidity. The model is
based on 5 minutes lags with order up to 12, that is one hour, and the
reported sign is the one of the coefficient is the one for the minimum order
showing Granger Causality effects. The herding measure either accounts for
all traders (“All”), only the ones belonging to the influencers group under
the PR influence measure (“PR”) or only the observed ones (“Obs”).

ance. Typically herding is defined as an irrational behaviour that crowds

show where a large fraction of agents co-ordinate based on social interac-

tion rather than as a reaction to information, often resulting in unjustified

macroscopic phenomena as, in the case of financial markets, price volatility

jumps and dramatic liquidity imbalances. Herding has been documented

in fund industry (Grinblatt et al. (1995)) as well as in institutional and

individual investors (Nofsinger and Sias (1999); Grinblatt and Keloharju

(2000)), and in market members (Lillo et al. (2008)).

The herding measure we define, as a simplification of the one already

present in Lakonishok et al. (1992), is

H(t) =
1

N

N∑
i=1

ŷi(t)

where ŷi(t) is either the observed sign of the transaction si(t) executed by
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Figure 4.7: Causality relations from liquidity to herding. The model is
based on 5 minutes lags with order up to 12, that is one hour, and the
reported sign is the one of the coefficient is the one for the minimum order
showing Granger Causality effects. The herding measure either accounts for
all traders (“All”), only the ones belonging to the influencers group under
the PR influence measure (and “PR”) or only the observed ones (“Obs”).

trader i at time t or the one inferred as sign[mi(t)]. The main difference

with the existing definitions is of course that we include also inferred states.

We want to show how this measure can be used to study a typical

problem dealers are confronted with, that is facing poor liquidity conditions

in the inter-dealer market when their inventory becomes unbalanced due to

unexpected trading pressure from clients. To this end, we take into account

a set of liquidity imbalance measures in the interdealer market:

• VBA: Dollar Volume at best Bid-Ask. It is the difference between

the volume of limit orders at the best bid level and the volume of

limit orders at the best ask, normalized by the total volume at those

levels;

• OBD: Order Book Depth. It is the difference between the number
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of levels that have to be explored to execute a buy market order of

107 units of currency (which is the typical imbalance that the dealer

accumulates in a 5-minutes time window) and an equal sell market

order size;

• MCI imbalance: It is the imbalance between the Marginal Cost

of Immediacy between the ask and bid side. MCI, introduced by

Cenesizoglu and Grass (2018), is defined as

MCIA =
VWAPMA

VlmA

VWAPMA = log

VlmA∑L
l=1QA,l

0.5(PA,1 + PB,1)

VlmA =
L∑
l=1

PA,lQA,l

where PA,l is the price at level l on the Ask side andQA,l is the quantity

available at level l on the Ask side. The same can be defined for the

Bid side and the measure we use is MCIA −MCIB. The quantity is

computed for L = 10 (MCI) and for L = OBD (MCIL), in order to

capture book-wide imbalances as opposed to typical transaction size

imbalances.

• VlmI: Dollar Volume Imbalance. It is the normalized amount of

dollars in orders on the bid side of the book minus the same quantity

on the ask side;

All these measures are defined such that a positive imbalance means

that liquidity is higher for the bid side of the order book, that is it is easier

for a market participant to execute a sell market order (the asset is always

considered to be EUR and the quotes are given in USD, as in the dealer

platform data).
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Figure 4.8: Residuals variance ratio between models using our herding mea-
sure Ht or the observed trade sign imbalance. The ratio is mostly less than
1, showing models have a better goodness of fit when using Ht.

To explore the relationship between these measures and H(t) we run

Granger Causality tests on pairwise Vector AutoRegressive (VAR) models

for which we report results in Figures 4.6 and 4.7. We choose this method

over alternatives such as Transfer Entropy (Bossomaier et al. (2016); Novelli

et al. (2019)) for its simplicity and ease of interpretation, but it is possible

that comparing with more elaborate techniques can produce more interest-

ing results. The figures show the causality relations we find in both direc-

tions and specify whether the coefficient of the VAR model for which the

causality is found is positive or negative. If a positive (negative) causality is

found, it means that an increase in the first variable is causing an increase

(decrease) in the other. To reduce the number of false positives we imple-

ment the false discovery rate (FDR) method of Benjamini and Hochberg

(1995) for multiple hypothesis testing, setting the significance threshold at

0.05.

The results highlight the importance of the dealer in distributing liquid-
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ity and absorbing temporary imbalance in the supply and demand: indeed

most of the relations running in the direction H → L, that is Herding to

Liquidity, are positively signed, while the opposite is true when looking at

the L → H direction. This means that when the herding measure is posi-

tive, and so the majority of traders on the eFX platform is buying EUR, the

liquidity on the EBS market will make it harder for the dealer to quickly

rebalance her inventory as the imbalances are typically positive, meaning it

is easier to sell than to buy EUR. On the other hand, when the EBS market

conditions are favorable for the dealer to sell (positive L), this is typically

followed by a majority of traders selling EUR to the dealer (negative H),

as it is likely that the dealer is offering better quotes given the ease she has

in unloading excess inventory.

We also show how the herding relation to liquidity is typically unchanged

whether one includes in its computation all traders or only the subset of

influencers as identified by the Weighted PageRank measure, meaning that

they are indeed among the most informative traders in this sense, while only

using the observed trades and ignoring the opinions reconstructed through

the Kinetic Ising Model one finds less and more incoherent causality rela-

tions. As a further argument in support, the quality of the Vector AutoRe-

gressive model fit is generally better when considering our measure over

the observed trades imbalance, as shown by Figure 4.8. There we compare

the variance of the residuals on the liquidity side of the VAR model when

using our herding measure H(t) or the observed trades as the other model

variable. We see that the ratio is typically less than 1, meaning the variance

is smaller (and thus the fit better) with our measure.

To further investigate this relation, we apply the test of Granger Causal-

ity in tail originally proposed by Hong et al. (2009) between H(t) and the
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Direction Month
L ⇐= H
VlmI
VBA
OBD
MCIL
MCI

L =⇒ H
VlmI
VBA
OBD
MCIL
MCI

RT → RT & LT → LT Caus.
RT → RT or LT → LT Caus.

No Caus.
RT → LT or LT → RT Caus.
RT → LT & LT → RT Caus.

Figure 4.9: Tail Granger Causality relations identified by the test of Hong
et al. (2009). We see how the results agree with the Granger Causality in
mean, showing the strong connection between the markets also on extreme
events.

liquidity measures. It is indeed interesting to see whether the Granger

Causality only appears on average or it shows also between extreme events.

The test is built to identify causality relations between binary time series,

representing occurrences of extreme (tail) events with respect to recent his-

tory. Such events are identified as values of the liquidity or herding measure

that exceed the 90% empirical conditional quantile (or are below the 10%

quantile), measured as proposed by Davis (2016) on the past 2 hours of

data at all points. The measurements above the 90% threshold are denom-

inated as “right tail” (RT) events, while the events below the 10% one are

“left tail” (LT) events. We show the results of the analysis in Figure 4.9,

where we see that the picture given by the Granger Causality in mean is

confirmed and the effects are particularly recurrent for the total volume

imbalance (VlmI) and the MCI measure.

This last result highlights why it could be important to estimate the
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unseen opinions of traders: given the multi-dealer structure of the spot

rate FX market, a dealer only has a partial picture of what the supply and

demand for the asset looks like at any given time, offered by the trades

she sees from her clients. However these clients might have access to other

dealer platforms and trade at their convenience with one or the other, thus

hiding their opinion to the single dealer while still using market liquidity.

This is then reflected in the order book of the inter-dealer market, where

liquidity deteriorates whenever a shift in supply and demand occurs and

makes it costly for the dealers to efficiently rebalance their inventories.

Simulation study

In conclusion to this chapter we present a brief simulation study aiming to

provide further insight to the reader regarding the results that should be

expected from this approach. We produce a synthetic dataset of opinions

based on the basic statistics of our data, summarized in Table 4.1, by sim-

ulating the Kinetic Ising Model fixing N , T and the distribution of traders

probability of observation pi to closely resemble the ones that we observe

in the data. We thus choose N = 20, T = 2000 and the distribution of

pi is assumed to be a Beta distribution, pi ∼ B(α, β), with parameters

α = β ≈ 4.01. The value of the parameters is obtained following Pham-Gia

and Turkkan (1992) in order to be consistent with the observed average

Gini coefficient of pi and the mean cross-sectional pi of 0.5. The remaining

free parameters are the ones directly related to what we aim to infer, that is

the structure of the interaction matrix J and the magnitude of its elements.

We thus explore several degrees of sparsity of the underlying J matrix

by sampling it as an Erdős-Rényi random graph with parameter dJ ∈ [0, 1]

describing the probability of a link, i.e. the density of the graph, and vary
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the parameter J1 which regulates the magnitude of the coupling coefficients

assuming that for the existing links Jij ∼ N (0, J1/
√
N). The scaling with

√
N is necessary to be able to compare parameters coming from models

with different N , as it correctly normalizes the sum in Eq. 4.1.

We show these results in Figure 4.10, by plotting the Reconstruction

Efficiency (RE) of hidden opinions, that is the fraction of hidden opinions

that is correctly guessed, varying dJ and J1 and showing the region we find

empirically from our trading dataset. While no particular dependence of

the RE is to be expected from the network density, as shown in Figure

4.10a, in Figure 4.10b we also see how it is instead strongly dependent on

the magnitude of the couplings. This is also predictable from the theory, as

we show with an hyperbolic tangent fit. Indeed the probability distribution

of a hidden value σi given mi is

p(σi(t) = ±1|mi) =
1±mi

2
(4.5)

Here mi depends from J1 through Eq. 3.13 where J1 is, given its defini-

tion and the Central Limit Theorem, the typical size of any sum of the kind∑
j Jijsj or

∑
b Jibmb, assuming all mbs are estimated with no error and

N → ∞. Indeed the coefficients of the fit RE = a + b tanh(J1) are found

to be a = 0.49 ± 0.03 and b = 0.43 ± 0.03 to 95% confidence for N = 20,

T = 2000 and similar results are obtained for a larger system with N = 100,

T = 10000. The small discrepancy between the theoretical value of b = 0.5

and the one we measure in simulations is most likely due to the presence of

more than one hidden value, introducing uncertainty in the estimation of

m itself.

We also plot the Root Mean Squared Error on J elements in relative

terms to the magnitude of the parameters J1, showing that in the region in
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Figure 4.10: Results from the simulation study. (a) Reconstruction Effi-
ciency (RE) varying the network density dJ . We see that, besides a slightly
decreasing efficiency at very low densities, the expected performance is more
or less constant. (b) RE varying the magnitude of couplings J1. Here we
see a clear relation between the two, highlighted by the hyperbolic tangent
fit; (c) Rescaled Root Mean Squared Error (RMSE) on J elements. In all
panels the blue lines show the region where the models inferred from trading
data are situated.
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which we find our inferred parameters there is a RMSE of roughly 5% in

simulations, giving an idea of the error one could expect on the estimates.

Of course this is an ideal case, where the data generating process and the

model coincide, meaning that these results have to be interpreted as upper

bounds in performance. We indeed see that our out-of-sample performance

results of Figure 4.5 are below the RE we get from simulations, but we

argue that they are not that far from those given the size of the inferred

parameters, meaning that even if the model is more than likely misspecified

and an oversimplification of reality it still captures significant features from

the data.

4.4 Conclusions

In this chapter we proposed the Kinetic Ising Model as a method to infer

causal relationships between trader activities in a financial market at high

frequency and to achieve a better estimate of the aggregate supply and de-

mand at any point in time. We applied the model to a proprietary dataset

offered to us by a major dealer, selecting the most active traders on their

electronic foreign exchange trading platform to study the lead-lag relation-

ships that occur among them and how their behaviour affects the state of

liquidity on another market, the EBS inter-dealer electronic exchange. We

showed that several market players can be identified as influencers, that is

they are typically leading the order flow on the 5 minutes time-scale, and

that their trading activity and opinion explains liquidity imbalances on the

EBS market. Studying the persistence in time of the network structure on

the local scale, we notice that some nodes have directed neighbourhoods

that replicate through months, an effect that further validates the inferred
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lead-lag relations and that matches quite well with the results from the

influence analysis. We also test the forecasting performance that can be

achieved with this model, finding that both the model and the LAR bench-

mark are not particularly well-suited for the purpose and the inclusion of

the lead-lag relationships does not change the forecast significantly. We do

not investigate the nature of these lead-lag relationships, but we propose

they should be interpreted as the effect of different traders following simi-

lar strategies with different reaction times, leading to one or more traders

consistently forerunning the others, rather than a more “direct” type of

influence caused by actual social interactions. Finally we defined a herding

measure based on the inferred opinions, which we show has much stronger

Granger Causality relations with the state of liquidity on the inter-dealer

market than just observed trade signs, exposing a mechanism that highlights

the role of the dealer in providing immediacy to her clients and absorbing

the cost of liquidity.



Chapter 5

The Score-Driven Kinetic Ising

Model

The contents of this chapter are the result of a joint work with Domenico

Di Gangi, Prof. Fabrizio Lillo and Prof. Daniele Tantari, to appear soon

in an online pre-print and submitted for publication.

5.1 Introduction

In this last research chapter we will explore the possibility of giving a time

evolution to some of the parameters of the Kinetic Ising Model. One com-

plication that is ubiquitous to real complex systems, and particularly to

the ones that cannot be reproduced in laboratory experiments, is non-

stationarity. It is often the case in fact that systems change over time, pos-

sibly even in response to their own dynamics: traders in financial markets

continuously adapt their strategic decision-making to each other’s actions

(Challet et al. (2016)) and to new information (Lillo et al. (2015)); preys

change their behavior to avoid predators (Schmitz (2017)); neurons rein-

108
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force (or inhibit) connections in response to stimuli (Tavoni et al. (2017)).

Making accurate descriptions assuming that all parameters are constant is

then frequently very hard if not impossible, resulting either in very strong

limitations to sample selection and experimental design or in the neces-

sity to develop models that are able to capture this non-stationarity with

reasonable effort and accuracy.

There are examples of successful attempts to overcome this issue: for in-

stance the introduction of temporal networks (Holme and Saramäki (2012))

as the space in which interactions are embedded has provided suitable meth-

ods to account for relations that are confined in time. More generally these

network models refer to the broader literature on Hidden Markov Models

(Ghahramani (2001); Sewell and Chen (2016); Nystrup et al. (2017)), where

the basic assumption is that the observations come from a model whose pa-

rameters are dependent on an underlying, hidden Markovian dynamics that

makes the system state evolve in time. While these approaches shine when

the network structure is known, as is the case for instance in transportation

networks (Gallotti and Barthelemy (2015)) or interbank networks (Maz-

zarisi et al. (2020a)), when the network structure is unknown its inference

can be cumbersome and dictates important model selection decisions on

how to characterize the hidden Markov dynamics.

Here we tackle the problem of how to efficiently model non-stationarity

in the KIM: we focus on its applications to time series analysis and extend

it to allow the presence of time-varying parameters with score-driven dy-

namics (Creal et al. (2013); Harvey (2013)), which is a relatively recent and

extremely effective method to describe non-stationary time series.

In its standard form we presented in Chapter 3 the Kinetic Ising Model

for time series involves three main sets of parameters: a N ×N interaction
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or coupling matrix J , a N -dimensional vector h and a N×K matrix b char-

acterizing the interaction with external covariates x(t) ∈ RK . The model

is Markovian with synchronous dynamics, characterized by the transition

probability

p(s(t+ 1)|s(t), x(t); β, J, h, b) =

= Z−1(t) exp

[
β
∑
i

si(t+ 1)

[∑
j

Jijsj(t) + hi +
∑
k

bikxk(t)

]]
(5.1)

where Z(t) is a normalizing constant and β is a parameter that deter-

mines the amount of noise in the dynamics, known as the inverse temper-

ature; the smaller is β, the more the dynamics of the s(t) evolves ran-

domly, to the point that, in the limit β → 0, s(t) becomes a vector

of independent Bernoulli random variables with parameter 0.5, while if

β → +∞ the dynamics becomes fully deterministic. Typically the quan-

tity inside the inner brackets of Eq. 5.1 is called the effective field per-

ceived by spin i at time t, and in the following we will refer to it as

gi(t) =
∑

j Jijsj(t) + hi +
∑

k bikxk(t). For ease of notation we can also

define the set of static parameters of the KIM, Θ = (J, h, b).

There are two main reasons that motivate our interest in developing an

effective non-stationary version of this model: the first is that, as we will

argue in the following paragraphs, the introduction of a time-varying noise

parameter β(t) allows to better understand the role of noise in the dynam-

ics, quantifying the level of noise at any point in time and thus leading to

more informed forecasts; the second is that by introducing a convenient fac-

torization for the model parameters it is possible to discriminate whether

an observation is more or less explained by endogenous interactions with

other variables or by exogenous effects, offering better insight on the dy-
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namics that generated the data even when these effects are not constant

over time. As mentioned, the non-stationarity of parameters is a common

problem to complex systems such as financial markets, where for instance it

is widely accepted that the volatility of returns is time-dependent, but also

to brain networks where the processing of time-varying stimuli (Nghiem

et al. (2017); Ferrari et al. (2018); Nghiem et al. (2020)) or the spontaneous

emergence of thought (Mooneyham et al. (2017)) have been investigated in

recent years with more quantitative methods.

To expand on the first point made above, a more practical representa-

tion of the effect of having different noise levels is obtained by deriving the

theoretical Area Under the ROC Curve (AUC) for the KIM and observing

how it varies as a function of β. The AUC is a standard metric to evaluate

the performance of binary classifiers (Hanley and McNeil (1982); Bradley

(1997)), which the Kinetic Ising Model de facto is, and relies on the gener-

ation of the Receiver Operating Characteristic (ROC) curve based on the

predictions ŝi(t+ 1) provided by the model.

A ROC curve is a set of points (FPR(α), TPR(α)), with α ∈ [0, 1]

being a free parameter determining the minimum value of p(si(t + 1) =

+1|s(t), x(t); β,Θ) which is considered to predict ŝi(t + 1) = 1. If the

prediction ŝi(t+1) matches the realization si(t+1) then the classification is

identified as a True Positive (or Negative, if p < α), otherwise it is identified

as a False Positive (Negative). The True Positive Rate (TPR) is the ratio

of True Positives to the total number of realized Positives, that is True

Positives plus False Negatives. Similarly the False Positive Rate (FPR)

is the ratio of False Positives to the total number of realized Negatives.

Summarizing
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TPR =
TP

TP + FN

FPR =
FP

FP + TN

We can explicitly derive the analytical form of the theoretical AUC,

that is the area that lies below the set of points (FPR(α), TPR(α)), as-

suming the data generating process is well specified and performing some

assumptions on the distribution of the model parameters. As a reminder,

a classifier having AUC = 0.5 is called an uninformed classifier, meaning

it makes predictions statistically indistinguishable from random guessing,

while values of AUC greater than 0.5 are a sign of good forecasting capa-

bility. Following the definition of TPR and FPR one can compute their

expected values

TPRφ(α, β) =
1

Z+
φ (β)

∫
gi:p+>α

dgiφ(g)p+(β, gi) (5.2a)

FPRφ(α, β) =
1

Z−φ (β)

∫
gi:p+>α

dgiφ(g)p−(β, gi) (5.2b)

where Z±φ (β) = p(si = ±1) is a normalization function, φ(g) is the un-

conditional distribution of the effective fields gi (which we discuss in more

detail in Appendix B) and we have abbreviated the probability of sampling

a positive or negative value as

p±(β, gi) =
e±βgi

2 cosh(βgi)

The definition of the theoretical AUC then reads as

AUCφ(β) =

∫ 0

1

TPRφ(α, β)
∂FPRφ(α, β)

∂α
dα
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that is the area below the set of points (FPR(α), TPR(α)). The lower

limit to the integration in Eqs. 5.2 is gmin : p+(gmin) = α, which is found

to be

gmin(α, β) =
1

2β
log

α

1− α
Then applying the partial derivative to the definition of FPR it follows

that

∂FPR

∂α
= − 1

Z−φ (β)

∂gmin
∂α

φ(gmin)(1− α)

where we have substituted p−(β, gmin) = 1− α. Plugging all the above

results in the definition of AUCφ we then find

AUCφ(β) =
1

Z+
φ (β)Z−φ (β)

∫ 1

0

dα

[∫ +∞

gmin(α,β)

dgφ(g)
eβg

2 cosh βg

]
×

×
[

1

2αβ
φ(gmin(α, β))

]
(5.3)

In Figure 5.1 we show the result assuming φ(g) is a Gaussian distribution

with mean g0 and standard deviation g1. This is the case for instance

if the Jij entries are Gaussian distributed with zero mean as we show in

Appendix B, since g would become a sum of Gaussian variables with random

signs given by the values of s(t). We see that the AUC is monotonically

increasing with β, but also that the distribution of the static parameters

affects the slope with which the curve converges towards 1. Indeed the

smaller the mean and variance of the effective fields gi, the slower the growth

of AUC(β).

This result would prove extremely useful if it wasn’t for the fact that, in

the standard form with static parameters of the KIM, β is not identifiable
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Figure 5.1: Theoretical AUC as a function of β assuming gi is Gaussian
distributed with mean g0 and standard deviation g1. We see that increasing
β has the effect of reducing the uncertainty on the random variable si(t+1),
keeping gi unchanged. Grey dashed lines at AUC = 0.5 and AUC = 1 are
guides to the eye.

(Sakellariou (2013)): indeed it is a common multiplying factor to all the

other parameters, meaning that for any two values β1 and β2 there are

also two sets of parameters Θ1 and Θ2 such that p(s(t + 1)|s(t); β1,Θ1) =

p(s(t + 1)|s(t); β2,Θ2) for all s(t). For this reason in inference problems it

is typically assumed that β = 1 incorporating its effect in the size of the

other parameters.

As we will see in more detail in Section 5.2 there is a way in which

the β can be identified, and it relies on relaxing the assumption that β is

constant throughout the whole sample. If the β of Eq. 5.1 is allowed to

be time-varying the identification problem is limited to its average value

(which still needs to be assumed equal to 1), while its local value can be

inferred from the data using suitable methods. It is clear that the presence

of a time-varying parameter implies the necessity to complicate the model to

describe the dynamical laws of the parameter, but thanks to the score-driven

methodology we propose it is actually both very easy and very efficient to
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do so.

This result has implications particularly for forecasting applications: a

forecast should be considered more or less reliable by looking at the value

of β(t) at the previous instant in time and considering how well above 0.5

the corresponding expected AUC is. In Section 5.2 we introduce a dynamic

β specification of the KIM which is designed to capture this effect, which

we then apply in Section 5.4 to a financial setting.

Having stated some of the motivations that move us towards the develop-

ment of a non-stationary KIM, let us set the stage to introduce score-driven

models by briefly reviewing the theory of time-varying parameters models

in discrete time. There is a rich literature on the topic, which has been

summarized in the review by Tucci (1995) and more recently by Koopman

et al. (2016). In general, a time-varying parameters model can be written

as

y(t) ∼ p(y(t)|f(t),Y(t− 1),Φ) (5.4a)

ft = ψ(f(t− 1), f(t− 2), ...,Y(t− 1), ε(t),Φ) (5.4b)

where y(t) is a vector of observations sampled from the probability dis-

tribution function p , Y(t− 1) is the set of all observations up to time t− 1

and f(t) are the parameters which are assumed to be time varying. The

dynamics of those parameters can either depend on past observations, on

past values of the same parameters, on some external noise ε(t) and on a

set of static parameters Φ.

If the function ψ only contains past values of the time-varying param-

eters, a noise term and the static parameters, then the model is called a

parameter-driven model, whereas if the function ψ can be written as a deter-
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ministic function of past observations only, it is called an observation-driven

model (Cox et al. (1981)).

Examples for parameter-driven models can be found in the financial

econometrics literature looking at the Stochastic Volatility models (Tauchen

and Pitts (1983); Shephard (2005)), as well as other examples as Bauwens

and Veredas (2004) or Hafner and Manner (2012).

The other family is the one of observation-driven models, whose proba-

bly most celebrated example is the Generalized AutoRegressive Conditional

Heteroscedasticity (GARCH) model of Bollerslev (1986), where a time se-

ries of log-returns is modelled using a time-varying volatility parameter

depending deterministically on squared observations up to that time and

past values of volatilities.

The main advantage of adopting an observation-driven model rather

than a parameter-driven one lies in its estimation: having time-varying pa-

rameters that only depend on observations through a set of static parame-

ters results in a strong reduction of complexity in writing the likelihood of

the model, whereas the calculations for most non-trivial parameter-driven

models are typically extremely convoluted and computationally intensive.

In this work we focus on one specific class of observation-driven models,

the one of score-driven or Generalized Autoregressive Score (GAS) models,

and their implementation in the case of the Kinetic Ising Model. Originally

introduced by Creal et al. (2013) and Harvey (2013), they postulate that

time-varying parameters depend on observations through the score of the

conditional likelihood, that is its gradient.

To better introduce the score-driven methodology, let us consider a se-

quence of observations {y(t)}Tt=1, where each y(t) ∈ RN , and let us de-

fine a model with conditional probability density p(y(t)|f(t)) depending
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on a vector of time-varying parameters f(t) ∈ RM . Defining the score as

∇t = ∂ log p(y(t)|f(t))
∂f(t)

, a score-driven model assumes that the time evolution

of f(t) is ruled by the recursive relation

f(t+ 1) = w +Bf(t) + AI−1/2(t)∇t (5.5)

where w, B and A are a set of static parameters. In this generic form,

w is a M -dimensional vector, while A and B are M ×M matrices. I−1/2(t)

is also a M ×M matrix, that we choose to be the inverse of the square root

of the Fisher information matrix associated with p(y(t)|f(t)). This is not

the only possible choice for this rescaling matrix (Creal et al. (2013)) but

we will keep it this way throughout this article as it is the most intuitive

way of rescaling the score.

As is clear from Eq. 5.5, the score drives the time evolution of f(t). This

means that given a form of p(y(t)|f(t)) the sampling of the observations

from this distribution results in a deterministic update of the time-varying

parameters. The update can remind the reader of a Newton-like method

for optimization, in that the parameters are moved towards the maximum

of the likelihood at each realization of the observations while keeping track

of the time evolution through the B static parameter.

Another reason to implement a score-driven model is provided by results

(Blasques et al. (2015, 2017)) from information theory about the optimality

of this approach compared to any other observation-driven method.

Finally, the score-driven modelling approach provides access to a simple

statistical test, developed by Calvori et al. (2017), which tests whether it is

reasonable to assume that a given parameter is time-varying. This is of cru-

cial importance when estimating a model parameters on data, as knowing

whether the parameter can be considered static or should be assumed to



CHAPTER 5. THE SCORE-DRIVEN KINETIC ISING MODEL 118

be time-varying helps in the definition of models that extract more relevant

informations from the data and are less prone to overfitting or underfitting

problems.

The chapter is structured as follows: in Section 5.2 we formalize two

implementations of score-driven Kinetic Ising Models, the Dynamical Noise

KIM (DyNoKIM) and the Dynamic Endogeneity KIM (DyEKIM); then in

Section 5.3 we provide a number of tests on simulated data to assess the

consistency of the estimation and to showcase the utility of score-driven

modelling; in Section 5.4 we offer three example applications to financial

data of the two models; Section 5.5 concludes the chapter.

5.2 The Score-Driven KIM

The Dynamical Noise KIM

In this section we define the Dynamical Noise Kinetic Ising Model (DyNoKIM),

where as anticipated the noise parameter β of Eq. 5.1 is considered to be

time-varying, which we assume to be modelled by a score-driven dynamics,

To keep the formulas concise, we impose that hi = bik = 0 for all i, k as it

is straightforward to extend the results for any value of h and b. This leads

to writing the transition probability as

p(s(t+ 1)|s(t); J, β(t)) = = Z−1(t)
∏
i

exp

[
β(t)

∑
j

si(t+ 1)Jijsj(t)

]
(5.6)

with Z(t) =
∏

i 2 cosh
[
β(t)

∑
j Jijsj(t)

]
.

The interpretation for this model is simple yet extremely useful: the

higher the value of β, the smaller the uncertainty over the realization of
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s(t + 1) or, in other words, the more accurate a prediction of the value of

s(t+ 1), as we have shown in Fig. 5.1.

We still have not explicitly introduced the dynamic rule of motion for

the time-varying parameter β(t), which, as was stated above, we choose to

be score-driven. We define the parameter to be positive to represent the

inverse of a noise, and thus we define the update equation for its logarithm,

letting f(t) = log β(t)

log β(t+ 1) = w +B log β(t) + AI−1/2(t)∇t (5.7)

where w, B and A are parameters to be inferred by Maximum Likelihood

Estimation (MLE) and I is the Fisher Information matrix.

The last term in Eq. 5.7 includes the score, which is the derivative

of the log-likelihood L at a given time t with respect to the time-varying

parameter log β(t), reading

∇t = β(t)
∑
i

(
si(t+ 1)− tanh

[
β(t)

∑
j

Jijsj(t)

])∑
j

Jijsj(t) (5.8)

The score is rescaled by the inverse of the square root of the Fisher

Information, which is used to regularize its impact at different times by

considering the convexity of the log-likelihood. The Fisher Information

corresponds to the expectation of the Hessian of the log-likelihood, changed

in sign and evaluated at time t

I(t) = −E
[
∂2L(t)

∂(log β)2

]
β(t)

= −β(t)2∂
2L(t)

∂β2

∣∣∣
β(t)

where
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∂2L(t)

∂β2

∣∣∣
β(t)

= −
∑
i

(
1− tanh2

[
β(t)

∑
j

Jijsj(t)

])(∑
j

Jijsj(t)

)2

and the expectation can be dropped as the above equation does not

depend on the observation s(t+ 1).

In the statistical physics literature there have been several attempts to

study similar models: some examples are Penney et al. (1993) where a

model very similar to the one of Eq. 5.1 is considered, or the literature on

superstatistics of Beck and Cohen (2003) and Beck et al. (2005) which pro-

vides a general theory for physical systems with non-static parameters and

in particular studies models where a time-varying noise parameter takes

the role of β(t) in Eq. 5.6. There is however one important difference,

which is related to the assumption of local equilibrium and time scale sep-

aration that is common to all the cited works. The authors assume that

the sampling of the observations and of the time-varying parameters take

place on two separated time scales, meaning that the time-varying param-

eters are locally constant when the observations are sampled. This is not

true for score-driven models, which are in fact designed to not require this

assumption, intuitively formalized by the values of the parameters B and

A. If B � A then the evolution of f is indeed slower than the one of

observations, while if B � A they evolve on the same time scale.

The estimation of the model can be done in two steps, first estimating

a static version where β(t) = 1 ∀ t in order to infer the static parameters J ,

and then proceeding to the estimation of the score-driven part. In short,

the model is estimated first as a static Kinetic Ising Model, fitting only the

J and h parameters following the procedure of Sakellariou (2013), and then

a standard gradient descent algorithm for optimization (Kingma and Ba
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(2014)) is used to fit the w, B and A parameters related to the score-driven

dynamics. While in principle a joint estimation procedure of all parameters

would be possible, this two-step procedure is to be preferred as it does not

require to apply the filter of Eq. 5.7 at every iteration of the gradient descent

method when estimating J and h, a feature that significantly reduces the

computational cost of the inference.

In Section 5.3 we provide simulation results to validate this estimation

procedure, while later in Section 5.4 we show an empirical application of

the DyNoKIM to forecasting stock price changes at high frequency.

The Dynamic Endogeneity KIM

The second specification of the score-driven Kinetic Ising Model we explore

in this article is the Dynamic Endogeneity Kinetic Ising Model (DyEKIM).

In the DyEKIM we let the number of time-varying parameters be a bit

larger, assuming that the J , h and b parameters each have their own spe-

cific time-varying factorization. In principle these choices are up to the

modeller, depending on the specific application and data: here we present

one factorization we believe is a reasonable choice for the financial appli-

cations we propose in Section 5.4, albeit other implementations could be

possible too. Going back to Eq. 5.1, we now impose the following structure

to each of the time-varying parameters:

Jij(t) = βdiag(t)Jiiδij + βoff (t)Jij(1− δij)

hi(t) = βh(t)(hi + h0(t))

bik(t) = βk(t)bikxk(t)

where δij here represents the Kronecker symbol which is 1 if i = j and
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0 otherwise. The conditional probability density for this model, calling

β(t) = (βdiag, βoff , βh, {βk}), reads

p(s(t+ 1)|s(t), x(t); J, h, b, h0(t),β(t)) =

= Z−1(t) exp
[∑

i

si(t+ 1)
[
βdiag(t)Jiis(t) + βoff (t)

∑
j 6=i

(t)Jijsj(t)+

+ βh(t)(hi + h0(t)) +
∑
k

βk(t)bikxk(t)
]]

(5.9)

This change in the form of the model radically changes the interpreta-

tion one gives to the values of β(t). While it still has the role of modulating

the relevance of parameters, and thus the entropy is still smaller when in-

creasing any component of β, the main effect is establishing how important

are autocorrelations and lagged cross-correlations among spins compared

to idiosyncratic or external effects at any point in time. This model can

then be used to describe data where the dynamics of the variables is de-

pendent on others at intermittent times, disentangling network effects from

idiosyncratic dynamics or exogenous effects in a time-varying fashion.

We will discuss in more detail the specific interpretation for each of the

time-varying parameters in the empirical applications of the second and

third part of Section 5.4. The intuition behind this choice however is that

we want to be able to discriminate between different components of the

dynamics observed in a set of variables: one associated to external inputs

(βk), one to the idiosyncratic properties of variable i (βh), as well as general

trends (h0), one for autocorrelations (βdiag) and finally one for lagged cross-

correlations among variables (βoff ). In this formulation then each of these

time-varying parameters provides insight on the relative importance of one

term over the others in the generation of the data, highlighting periods of

higher or lower endogeneity of the dynamics (when correlations have higher
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Figure 5.2: Consistency of the J matrix estimation. (a) Histogram of linear
regression coefficients b between inferred and true values of Jij over 250
samples for N = 50, T = 750 and T = 1500; (b) Histogram of coefficients
of determination (R2) for the same set of models. The convergence of both
values towards 1 when increasing T is a sign of consistency of the estimation.

importance) rather than periods where the dynamics is more idiosyncratic

or exogenously driven.

Regarding the estimation, the procedure is largely the same as the one

for the previous model. There are however a couple of subtleties that need

to be pointed out, regarding the structure of the B and A parameters

and of the Fisher Information I, which are now matrices. In order to make

the estimation less computationally demanding in our example applications

we choose to assume A,B and I diagonal, disregarding the dependencies

between time-varying parameters: this will likely make our estimates less

precise, but it also reduces the number of static parameters to be inferred,

letting us bypass model selection decisions which are outside the scope of

this article.

As a last remark, notice that the DyNoKIM and the DyEKIM are equiv-

alent when h0(t) = 0 ∀ t and βdiag = βoff = βh = βk = β. In the next sec-
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tion we mainly present simulation results for the DyNoKIM alone to keep

the manuscript concise, as we found no significant differences between the

two models when it comes to the reliability of the estimation process, and

later apply them to real-world scenarios where their interpretation is much

more meaningful.

5.3 Estimation on simulated data

DyNoKIM - consistency, filtering and forecasting

We start our analysis from a consistency test on simulated data, aimed

at understanding whether the two-step estimation procedure we outlined

above is able to recover the values of the parameters of the model when the

model itself generated the data.

Here we report results for simulations run with parameters N = 50,

T = 750 or T = 1500, Jij ∼ N (0, 1/
√
N), hi = 0 ∀ i, B = 0.95 and

A = 0.01. We see from Fig. 5.2 that the estimation of the elements of

J is indeed consistent: we estimate a linear regression model between the

estimated and the true values of Jij, namely Jestij = bJ trueij + a, and plot the

histogram of the values of b and of the coefficient of determination R2 of

the resulting model from 250 simulations and estimations. In the ideal case

where for any i, j Jestij = J trueij one would have b = R2 = 1, which is what we

aim for in the limit T →∞. We see from our results that there is indeed a

convergence of both values towards 1 when increasing sample size, reducing

both the bias and the variance of the regression parameters.

Turning to the score-driven dynamics parameters A and B, the situation

does not change significantly. In Fig. 5.3 we show the histograms of esti-

mated values of B and A over 250 simulations of N = 50 variables for both
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Figure 5.3: Consistency of the score-driven dynamics parameters. (a) His-
togram of estimated values of B over 250 samples for N = 50, T = 750 and
T = 1500; (b) Histogram of estimated values of A over 250 samples for the
same set of models. The convergence towards the true value by increasing
T is a sign of consistency of the estimation.

T = 750 and T = 1500. It again appears clearly that when increasing the

sample size the bias and variance of the estimators converge towards 0, with

the estimated parameter converging towards its simulated value. Thanks

to these results we are able to confidently apply the two-step estimation

method without needing to estimate all the parameters at once.

Having shown that the model can be estimated consistently and effi-

ciently, we want to test its performance when the β dynamics is not pro-

duced with the score-driven data generating process. Indeed there is little

reason to believe that this sort of dynamics is significant for real-world ap-

plications, where the dynamics of β might follow exogenous and unknown

rules. The power of score-driven models lies also in this feature, in that they

are able to estimate time-varying parameters such as β(t) without actually

needing any assumption on their true dynamical laws. In this sense they

behave as filters for the underlying, unknown dynamics of the parameter.
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Figure 5.4: Estimation of β(t) under model misspecification. (a) Simu-
lated dynamics of β(t) in the shape of a double step function and estimated
(adjusted by b) β over 250 trials; (b-c) Consistency analysis for J param-
eters (linear regression coefficient and R2); (d) Root Mean Squared Error
(RMSE) on the estimated β(t) compared to the simulated one over 250
trials.

We show in Fig. 5.4 the results for a set of simulations where β(t)

follows a deterministic piecewise constant dynamics, taking values 0.5, 1.5

and 1 each for 500 timesteps, while the other parameters are N = 30,

Jij ∼ N (0, 1/
√
N), hi = 0 ∀ i and the time evolution of s(t) is given by the

DyNoKIM with the enforced β(t). The estimator is then fed with just the

resulting simulated s(t) time series, having the task to reconstruct J and
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find a pair of parameters A and B able to produce a dynamics of β(t) that

resembles the one that produced the data. The consistency analysis for the

elements of J shows that there is a bias to underestimate the value of the

parameters (in absolute value), however the explained variance expressed

by the R2 coefficient is large, meaning the quality of the fit is high enough.

The bias is indeed incorporated in the estimated β, shown in Fig. 5.4a,

where one can see that the filtered β is typically above the true value.

However, once it gets rescaled by the b parameter of the linear regression

J infij = bJ trueij + a it fits nicely on the data generating process and the Root

Mean Squared Error (RMSE), reported in Fig. 5.4d, reduces accordingly.

Clearly there is no way to determine the rescaling coefficient b from

data as there is no J true to compare the inferred parameters with, but it

is comforting to see that when the magnitude of Jij is underestimated it is

compensated by an equal overestimation of 〈β〉, meaning the overall effect

is unchanged (as β always multiplies J).

In Fig. 5.5 we report the analogue of Fig. 5.4a for two other types of β(t)

dynamics, one a deterministic sine function and the other an AutoRegressive

model of order 1 (AR(1)). The frequency of the sine function is chosen to

have exactly 5 periods in the simulation length, with an amplitude of 0.5

and mean 1, while the AR(1) model reads

βAR(t+ 1) = a0 + a1β
AR(t) + ε(t)

where ε(t) ∼ N (0,Σ2) with parameters a0 = 0.005, a1 = 0.995, Σ = 0.01

so to have 〈βAR〉 = 1.

As mentioned in the previous section, DyNoKIM is able to identify time

periods when the data is more predictable using a Kinetic Ising Model ap-

proach. In Fig. 5.6 we show how the forecasting performance depends on
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Figure 5.5: Simulation and estimation of a misspecified score-driven model.
(a) Deterministic β(t) following a sin function; (b) Stochastic β(t) following
an AutoRegressive model of order 1.

the estimated values of β on a simulated dataset, where an underlying piece-

wise constant β is used to generate configurations with the DyNoKIM, using

the Area Under Curve (AUC) performance metric. We see that the Area

Under the Curve of the ROC is significantly dependent on the estimated

values of β, meaning that forecasts made at high β values are significantly

more reliable than those made at low β values, as predicted by the theory.

DyEKIM - separating multiple effects

In this section we briefly show some simulations results from tests on the

DyEKIM, where we want to show that different effects are correctly sep-

arated and identified when estimating the model on a misspecified data
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Figure 5.6: Forecasting performance on increasingly long estimation win-
dows on a misspecified data generating process for β(t). (a) Estimation of
a piecewise constant β(t) using as estimation windows 750, 1250, 1750 and
2250 steps; (b) Area Under Curve (AUC) as a function of the estimated
β, aggregated in bins and reporting means and 1 standard deviation error
bars. The lines indicate the theoretical value prescribed by the theory and
the average AUC one would have using no time-varying parameter.

generating process. In fact while the consistency analysis largely resembles

the one we reported for the DyNoKIM in Figures 5.2 and 5.3 and for this

reason we omit it, the effect of filtering multiple time-varying parameters is

something that cannot be predicted by the simulations on the DyNoKIM

alone.

In Figure 5.7 we show the results when estimating the DyEKIM on

a dataset generated by a Kinetic Ising Model with time-varying βdiag(t),

βoff (t) and βh(t) as in Eq. 5.9 but where the dynamics of the parameters
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Figure 5.7: Estimation of βdiag(t), βoff (t) and βh(t) under model misspecifi-
cation. The model was simulated with a constant βdiag(t) = 1, a piece-wise
constant βoff (t) and an exponentiated sinusoidal βh(t) = exp[sin(ωt)], with
ω = 52π

T
. The points are the result of 30 different simulations and estima-

tions, the lines show the values of βoff and βh used to generate the data.

is predetermined instead of following the score-driven update rule. We

arbitrarily choose to take a constant βdiag(t) = 1, a piece-wise constant

βoff (t) and an exponentiated sinusoidal βh(t) = exp[sin(ωt)], with ω = 52π
T

,

T = 1500 and N = 30. The results show that the filter works correctly

and that the different time-varying parameters are consistently estimated,

regardless of the kind of dynamics given to each of them.

Having provided evidence that both the DyNoKIM and the DyEKIM

can be consistently estimated and have a specific interpretation, in the

following section we propose three simple real world applications for our

modelling approach, which we apply to high-frequency trading data from

the US stock market and from the Foreign Exchange (FX) market.
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5.4 Empirical applications

Forecasting stock activity with the DyNoKIM

The first dataset we use is a selection of 11 trading days (November 6 to

November 20, 2019) in the 100 largest capitalization stocks in the NASDAQ

and NYSE1, for which we track the events of mid-price change in the Limit

Order Book (LOB) at a frequency of 5 seconds. The mid-price is the average

of the best bid and best ask occupied price levels in the LOB of a stock,

defined for stock i at time t as

Mi(t) =
P b
i (t) + P a

i (t)

2

where P b
i (t) and P a

i (t) are the best bid and ask prices available in the

LOB of stock i at time t. We discretize time in slices of 5 seconds and

define for each stock a binary time series si(t), taking value +1 if the mid-

price has changed in the previous 5 seconds and −1 otherwise. The choice

of time scale is largely arbitrary: we choose 5 seconds to obtain a set of

variables that have unconditional mean as close to 0 as possible to have a

balanced dataset. The mid-price movements have been used in the past in

the modelling of intensity bursts in market activity (Rambaldi et al. (2015,

2018)), where the authors used Hawkes point processes to investigate how

Foreign Exchange markets behave around macroeconomic news, as well

as to study how endogenous the price formation mechanism is in financial

markets measuring what has been called the “market reflexivity” (Filimonov

and Sornette (2012); Hardiman et al. (2013); Filimonov and Sornette (2015);

Hardiman and Bouchaud (2014); Wheatley et al. (2019)). It has to be noted

1Data provided by LOBSTER academic data - powered by NASDAQ OMX.
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Figure 5.8: Results applying the DyNoKIM to series of US stocks mid-price
change events at 5 seconds time scale on November 19, 2019. (top) Cross-
sectional mean value of s(t). A value of 〈s〉 closer to +1 indicates a large
fraction of stocks has changed price in those 5 seconds and vice-versa if
〈s〉 → −1; (bottom) Estimated β(t) in and out of sample. The estimated
amplitude of the dynamics is not huge but still significant and exhibits a
sharp rise towards the end of the trading day, which we find in all the
analysed days.

that our approach differs from the literature in the time discretization we

perform, while the cited approaches all consider continuous-time models.

There are multiple reasons for which the mid-price can change: it can be

the arrival of a new limit order at a price which is between the best bid/ask,

the cancellation of the last order at the best bid/ask or the execution of a

market order which consumes all the limit orders at the best bid/ask. We

ignore what causes the movement of the mid-price and focus our attention

on the lagged interdependencies among different stocks, by applying the

DyNoKIM to the multivariate time series s(t).

We test whether there is reason to assume a time-varying β by perform-
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Significance of LM tests
SP100 - DyNoKIM FC - DyEKIM FOMC FX

p < 0.001 100% 100% 100% 88%
p < 0.01 - - - -
p < 0.05 - - - 4%
p > 0.05 - - - 8%

Table 5.1: Percentage of p-values of Lagrange Multiplier tests below sig-
nificance thresholds, divided by dataset. The first column refers to the
application of the first part of Section 5.4, the second and third to the sec-
ond part and the last to the last part. The only non-rejected nulls regard
two βb parameters in the FX dataset, meaning traders don’t show signifi-
cant changes in strategy when it comes to their reactions to prices in those
months.

ing the Lagrange Multiplier (LM) test proposed by Calvori et al. (2017)

as a generalization of the method by White (1987). In short, the LM test

consists in testing the null hypothesis that log β = f is constant in time,

that is f = w and A = B = 0, against the alternative hypothesis of a

time-varying parameter. Calvori et al. (2017) show that the test statistic

of the LM test can be written as the Explained Sum of Squares (ESS) of

the auxiliary linear regression

1 = cw∇0
t + cAS0

(t−1)∇0
t (5.10)

where∇0
t is the time t element of the score under the null hypothesis that

f(t) = w ∀ t, S0
t is the time t element of the rescaled score (i.e. I−1/2(t)∇t)

under the null, the constants cw and cA are estimated by standard linear

regression methods and the resulting LM test statistic is distributed as a

χ2 random variable with one degree of freedom. If the null is rejected, the

hypothesis that β is time varying is a valid alternative and we can proceed

to estimate the score-driven dynamics parameters.

All our empirical results are validated by this preliminary test, for which
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we have strong rejections of the null on all samples as reported in the first

column of Table 5.1.

In Fig. 5.8 we show the activity we see on a trading day, Tuesday

November 19th, 2019. The top panel shows the cross-sectional average of s,

that represents the fraction of stocks for which the mid-price has changed

in a given time window, while the bottom panel shows the values of β(t)

we obtain estimating the model parameters on the same day (in sample,

yellow points) or on the previous day and using observations to obtain the

filtered β value (out of sample, purple points).

We see that there is a pattern in the fraction of moving stock prices over

the day, with higher values at the opening and closing times (we do not

include opening and closing auctions in our data) as it is typically observed

for stock markets, and that a similar pattern is observed for β throughout

the day. We also notice that the out of sample β is always lower than the

in sample one - as should be expected, since it utilizes parameters which

are not MLE - but it follows the same overall behaviour.

Our theoretical and simulation results from Figures 5.1 and 5.6 suggest

to use our estimates of β to quantify the reliability of forecasts using this

model: we thus estimate the model parameters once per day and use them

to filter β(t) on the next day, while checking the accuracy with which the

model predicts mid-price movements out of sample using the AUC metric.

The forecasts ŝi(t+ 1) are produced according to

ŝi(t+ 1) = sign [p (si(t+ 1) = 1|s(t), J, h, β(t− 1))− α] (5.11)

and the ROC curves are obtained varying the value of α between 0 and

1. Notice that we take β(t − 1) instead of β(t) as in the original Eq. 5.6:

the reason is that in order to estimate β(t) we need the observation of
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Figure 5.9: AUC statistics compared to β(t−1) forecasting US stocks mid-
price change events at 5 seconds time scale. (a) AUC values for November
19, 2019 aggregated for different values of β(t−1) compared to the theoret-
ical AUC in the hypothesis of Gaussian effective fields gi and to the average
performance with a constant β; (b) Pearson’s correlation coefficient between
β(t− 1) and AUC(t) estimated daily with 95% confidence intervals.

s(t + 1), which is what we are trying to predict instead, thus we take the

last available estimate of β as a proxy for the current value. In this way

our prediction is fully causal.

We show results of this analysis in Fig. 5.9. When looking at a single

day we see an upward trend in the AUC score as a function of the value

of β(t − 1), meaning that the higher the estimated β the more reliable

the forecast can be considered. Comparing our results to the theoretical

value that the AUC should take if the distribution of effective fields gi were
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Gaussian we see that the empirical results are in good agreement with the

theoretical prediction, however since the actual fields we measure are non-

Gaussian the match is not perfect. A further aggregated measure is shown

in Fig. 5.9b by looking at the correlation coefficient between AUC and

β(t− 1), estimated daily. Again we see how the correlation is significantly

positive, with 95% confidence bands well above 0.

This simple example proves that our theoretical results for the DyNoKIM

are indeed verified in realistic applications and that using this method -

which we believe could be applied even to more sophisticated models - can

result in a significant gain in the use of forecasting models, giving a simple

criterion to discriminate when to trust (or not) the forecasts.

Endogenous vs exogenous price activity

In another application to a stock prices dataset, we analyze two events that

caused turmoil in the stock markets on the intraday level as an example

application of our second kind of score-driven Kinetic Ising Model, the Dy-

namic Endogeneity KIM (DyEKIM). The two events we choose to analyze

are the Flash Crash of May 6, 2010 and the Federal Open Market Com-

mittee announcement of July 31, 2019. The Flash Crash marked a historic

event for electronic markets, when a seemingly unjustifiable sudden drop

in the price of E-mini S&P 500 futures contracts caused all major stock

indices to plummet in a matter of a few minutes, including the biggest to

date one-day point decline for the Dow Jones Industrial Average and an

overall loss of over 5% value across markets. The markets then stabilized

and recovered most of the losses when circuit breakers came into place in the

original venue (the Chicago Mercantile Exchange) (Securities et al. (2010)).

Multiple explanations of what happened have been offered by a large num-
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Figure 5.10: Values of β(t), β̄(t), 〈gβ〉(t) and h0(t) on a regular trading
day, November 12, 2019. We see that the endogenous components of g have
larger values at the beginning and the end of the day, while the exoge-
nous gβh only grows towards closing. The most varying β parameter is the
one related to cross-correlations, βoff , which has a very significant increase
towards market closure.

ber of academics, regulators and practitioners: CFTC-SEC officials initially

attributed responsibility to a “fat-finger trade” by a mutual fund unload-

ing its inventory through an unsophisticated sell algorithm, triggering a

liquidity crisis in the futures and stock markets.

Following the official report, alternative explanations challenging this

view were presented, as in Easley et al. (2011), where they argue that

the state of liquidity had deteriorated prior to the start of the crash and

that liquidity providers, in the form of High-Frequency Traders (HFT) and

market makers, turned their backs on the market as soon as the distress rose,

becoming liquidity consumers. Madhavan (2012) does not take position

on the cause but argues that market fragmentation, that is the fact that
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Figure 5.11: Values of β(t), β̄(t), 〈gβ〉(t) and h0(t) on May 6, 2010, along
with the average midprice across the S&P100 stocks. The red shade high-
lights the time window (14:32:00 to 15:08:00 EST) where the Flash Crash
takes place. We see that the average activity parameter h0 starts increasing
in the 45 minutes preceding the crash, while during the crash a bigger role
is played by the correlation parameters βdiag and βoff .

the same financial instrument can be traded on multiple markets, causes

liquidity provision to be more susceptible to transitory order imbalances, a

view that is confirmed by Menkveld and Yueshen (2019). Finally, Kirilenko

et al. (2017) analyze trading records by market participants and find that

in terms of executed orders the behavior of HFTs had not changed during

the Flash Crash, while traditional intermediaries acted according to their

limited risk-bearing capacity and did not absorb the shock in full. This

difference although does not mean that HFTs did not contribute to the
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amplification of the liquidity crisis, as the authors argue that they operate

significantly different strategies from traditional market makers, including

quote sniping (or latency arbitrage) which is harmful to liquidity provision

(Aquilina et al. (2020)).

The other event we analyze is the announcement following the Federal

Open Market Committee (FOMC) meeting of July 31, 2019. In this recent

meeting the Federal Reserve operated its first interest rate cut in over a

decade, the last one dating back to the 2008 financial crisis, encountering

mixed reactions in both the news and the markets. In particular an answer

to a question in the Q&A press conference by the Fed Chairman Powell has

been highlighted by news agencies, when being asked whether further cuts

in the future meetings were an option, he answered “we’re thinking of it

essentially as a midcycle adjustment to policy” (Powell (2019)). This answer

triggered turmoil in the equity markets, with all major indices dropping

around 2% in a few minutes.

Our analysis focuses again for both events on midprice movements for

the then S&P100-indexed stocks at the 5 seconds time scale2. Differently

from the previous example, here we apply the DyEKIM methodology to

study variations in the relative importance of different sets of parameters

as events unfold, as defined in Eq. 5.9. In this setting we include no

covariates xk(t), so there is no b parameter matrix and consequently no

βk(t). As usual we begin by running the Lagrange Multiplier test on each

of the hypothesized time-varying parameters, obtaining that all the nulls are

rejected on both datasets as summarized in the second and third columns

of Table 5.1. To exclude dependencies between the tests we take as null

models both the completely static model (i.e. where all the time-varying

2Data provided by LOBSTER academic data - powered by NASDAQ OMX.
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parameters are constant) and the model where all the parameters are time-

varying except the one being tested, obtaining similar results regardless of

the choice.

In order to better understand the results of this modelling approach,

we first need to define two quantities based on the filtered values of β that

capture different aspects of the effect the time-varying parameter has. First

of all, we want to understand how each β varies compared to its own average

value: different βs might differ in their unconditional mean, and studying

their variation with respect to that base level can highlight effects that can

be overshadowed by the fact that a β has a larger average value. To this

end we introduce the quantity

β̄(t) =
β(t)− E[β(t)]

E[β(t)]
(5.12)

where E[β(t)] is the sample mean of β(t). Another quantity we study

is the value taken by the components of the effective fields gi(t), which

can be subdivided in their components related to each of our time-varying

parameters. In particular, we define

gi(t) = gi,βdiag(t) + gi,βoff (t) + gi,βh(t)

gi,βdiag(t) = βdiag(t)Jiisi(t)

gi,βoff (t) = βoff (t)
∑
j

Jijsj(t)

gi,βh(t) = βh(t)(hi + h0(t))

which we then mediate across all indices i, obtaining the quantities

〈gβdiag〉(t) and so on.

The way to interpret these quantities follows from the interpretation the

various time-varying parameters have: as mentioned in the definition of the



CHAPTER 5. THE SCORE-DRIVEN KINETIC ISING MODEL 141

model, the βdiag parameter captures the level of endogeneity in the dynamics

related to auto-correlation in the time series; βoff is related to endogeneity

in the form of lagged cross-correlations; βh instead models the level to which

the observations are close to realizations of independent Bernoulli random

variables, unconditional of previously observed values - that is, they are

not dependent from any other modelled variable, thus linking to exogenous

effects - and h0 shifts up or down the mean of these independent Bernoulli,

thus capturing purely exogenous effects on the dynamics. What the 〈gβ〉(t)
quantities show then is intuitively related to what the explained sum of

squares means for linear regression models, in the sense that the more a

〈gβ〉(t) is far from 0 relative to others the more the data reflect a dynamics

that is modelled by that subset of parameters. We choose to show these

quantities as a simple way of assessing the relevance of the components, a

problem that is not easily solved in these kinds of models. One potential

candidate to better quantify these effects is provided by dominance analysis

(Budescu (1993); Azen and Budescu (2003)), which to the best our knowl-

edge has only been applied in the framework of multiple logistic regressions

but never to autoregressive models and whose generalization goes beyond

the scope of this article.

Since the baseline model is applied to stock midprice changes at high

frequency, typically called the activity of a stock which is taken as a proxy

of high-frequency volatility (Filimonov and Sornette (2012); Hardiman et al.

(2013)), the interpretation of these time-varying parameters relates to volatil-

ity clustering in the case of βdiag, to volatility spillovers for βoff , to higher

or lower market-wise volatility for h0 and the relevance of exogenous effects

is given by βh.

In Figure 5.10 we show results for these quantities on a regular trading
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day, November 12, 2019, which show the typical intraday patterns one can

observe from the values of β(t). We see that the J-related parameters,

βdiag and βoff , as well as the corresponding g components, show a U-shaped

pattern throughout the trading day, having higher values at the opening and

closing, while the h-related parameter βh only shows an increase towards the

end of the day. The h0 parameter, which captures the average exogenous

price activity across all stocks, shows itself a U-shaped pattern which is

more pronounced at closing, consistent with the intraday pattern typical of

traded volume.

Figure 5.11 shows the same quantities during the Flash Crash of May

6, 2010. Here the situation appears to be radically different from the one of

Figure 5.10: the parameters show a huge variation around the crash, with

an abnormal increase in quantities related to βh in the 45 minutes preceding

the crash followed by a similar increase of the endogeneity parameters βdiag

and βoff during the event, which then stay relevant until market close. The

intraday pattern is overshadowed by the effect of the crash, but the picture

at the beginning of the day is similar to normal trading days. These mea-

surements are consistent with the reconstruction of how events unfolded,

with an abnormal exogenous increase in activity starting the crash, which is

then amplified by endogenous mechanisms of volatility spillovers. Of note,

the endogeneity parameters persist at relatively high values in the after-

math of the crash, indicating that the turmoil induced by the Flash Crash

reverberated for the remainder of the trading hours, even after the prices

had recovered at pre-crash levels.

Moving on to the recent FOMC announcement of July 31, 2019, in Fig-

ure 5.12 we show the values of β, β̂, 〈gβ〉 and the average stock price of the

S&P100-listed stocks we consider in the analysis (which are a different set
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Figure 5.12: Values of β(t), β̄(t), 〈gβ〉(t) and h0(t) on July 31, 2019, along
with the average midprice across the S&P100 stocks. We highlight the time
of at which the announcement becomes public (14:00:00 EST) and the time
at which the press Q&A with Chairman Powell begins (14:36:00 EST).

from the one in the Flash Crash example). The announcement went public

at 14:00:00 EST and is followed by a press conference at 14:30:00 EST,

with a Q&A starting at around 14:36:00 EST. Again we see that the usual

intraday pattern shown in Figure 5.10 is interrupted by the news, which

however, differently from the Flash Crash, is a scheduled announcement.

This difference leads to the complete absence of any sort of “unusual” ef-

fect in the earlier hours of the day, as typically analysts provide forecasts

regarding these announcements in the previous days and this information is

already incorporated in the prices. What then happens is that, if the news
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does not meet market expectations, a correction in prices will occur as soon

as the information is made public, leading to higher market volatility in

the minutes and hours following the announcement (Chuliá et al. (2010);

Hautsch et al. (2011)). In this specific case, forecasts were mixed between

a 25 and a 50 basis points interest rates cut scenario3.

The published announcement at 14:00 EST mostly matched these fore-

casts, with the FOMC lowering the interest target rate by 25 basis points,

and we indeed see that the price levels are not particularly affected by the

news. However an increase in volatility, and in particular the endogenous

components, can still be observed in the few minutes following the an-

nouncement, quickly returning to average levels though. What is actually

interesting is to see the reaction to the press conference held 30 minutes

after the release, and in particular to the answers the Chairman of the Fed

Jerome H. Powell gives to journalists in the Q&A. We see in fact that as

soon as the Q&A starts, around 14:36 EST, prices begin to plummet in re-

sponse to the Chairman’s answers, possibly reacting to the statement that

this interest rates cut was only intended as a “midcycle adjustment to pol-

icy” rather than as the first of a series. Expectations of further rates cuts

in the later months of the year could be a reason for this adjustment in the

prices when these forecasts are not met, as usually lower interest rates push

the stock prices up. We see however that this unexpected event causes a

behavior in the time-varying parameters estimates much more similar to

what we have seen in the Flash Crash, albeit the endogenous components

are even more significant here.

Overall, these two examples show that our model captures different

reactions to events in stock volatilities depending whether at least part

3This information can be found on any finance-focused media outlet such as fi-
nance.yahoo.com, bloomberg.com or zacks.com
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of the new information is already incorporated in the price, as is the case

for the FOMC decision release, or whether the event is unpredictable in

nature and triggered by external causes, as in the Flash Crash or the press

conference of July 31, 2019.

Identifying traders strategy changes around

macroeconomic news

Another example application we propose is an extension to the study pre-

sented in Chapter 4, where we utilized the standard Kinetic Ising Model to

infer a network of lead-lag relationships among traders and to estimate the

opinions held by traders on the underlying asset price, in this case the spot

exchange rate between Euro and US Dollar. Here the time series represent

buy (+1) or sell (-1) trades performed by individual traders in the period

May - September 2013, on a time scale of 5 minutes on the electronic For-

eign Exchange platform of a major dealer in the market, which provided

the data. Briefly summarizing the process to produce the time series, we

start from the trading records, containing information about the time of

trade with millisecond precision, anonymized identity of the trader, volume

of EUR purchased in exchange for USD (negative in case the trade goes in

the other direction) and price paid, and we aggregate the traded volume for

each trader in 5 minute time windows, and take the sign of the total volume

as the binary variable to feed the Kinetic Ising Model. In the model we also

include the log-returns on the exchange rate as an external covariate, thus

letting x(t) = r(t) and introducing the covariate coupling parameters bi.

We also split the data monthly in order to account for the non-stationary

sample of traders of the platforms, which enter and exit the dataset thus

rendering the data too incomplete on longer time scales.
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We then proceed to the estimation of the J and h parameters along-

side the imputation of the unobserved trades as discussed in the previous

chapters, and we add the score-driven dynamics to the model as in Eq.

5.9. After performing the usual LM test reported in the fourth column of

Table 5.1, we infer the score-driven dynamics parameters. We then obtain

a set of time series for β, now including also a time-varying βb(t) param-

eter for the log-returns couplings, and h0. As mentioned in Chapter 4,

this model should be interpreted as a way to put in relation the strate-

gic decisions made by traders, highlighting which market participants can

carry information about short-term trends in demand and supply as well

as identifying the relations between traders adopting different strategies.

In this extended score-driven version, the time-varying parameters allow a

more refined interpretation of the model results by making explicit when

the considered traders are more “coupled” to others or to price variations

in their strategic behavior.

We compare our results to a dataset of macroeconomic announcement

times from the website www.dailyfx.com, which provides a calendar of sched-

uled announcements (e.g. interest rate decisions by central banks, quarterly

unemployment rate reports, ...) with labels characterizing which curren-

cies are mostly affected by the announcement and the level of importance

(low, medium or high) of the news. We restrict our analysis to the news

that are labeled as highly important and involving either EUR or USD,

the pair traded by the traders in our dataset. We obtain a total of 474

non-overlapping announcement events, of which 283 are referred to the US

Dollar and the remaining 201 to the Euro.

As we have different models for different months which we need to com-

pare, we first need to standardize the time series of our time-varying pa-
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Figure 5.13: Multiplicative seasonal-trend decomposition of the inferred
βoff series from a month (May 2013) of trader activity data in the Foreign
Exchange market, with daily seasonality. Dotted lines mark the overnights.

rameters. To do so we proceed to operate a multiplicative trend-seasonal

decomposition on the βs and an additive decomposition on h0. Then we

have

βk(t) = βseask (t)βtrendk (t)βrandk (t)

h0(t) = hseas0 (t) + htrend0 (t) + hrand0 (t)

where β(t) = (βdiag(t), βoff (t), βh(t), βb(t)). The seasonal component is

assumed to have daily periodicity, thus capturing any intraday pattern the

parameters might show, while the trend component is the moving average

of the parameter with a two-side square filter with bandwidth of one day,

to match the seasonality. The remaining components βrandk and hrand0 are

what we are actually interested in, as they are the residual part of our

parameters that is not explained by either the intraday pattern or the local

average value. To check that we were not neglecting other possible choices,
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we measure seasonality in the data by computing the Fourier transform

of the time series to extract the principal spectral component (not shown

here for the sake of space) and found it to be typically around the daily

frequency: we decided to enforce daily seasonality in order to make the

decomposition homogeneous across months. In Figure 5.13 we show one

example of the trend-seasonal decomposition for βoff in the month of May

2013.

Having done this decomposition, we focus on the behavior of the residual

parts βrandk and hrand0 in the vicinity of news announcements. Defining the

news timestamp t∗, we select the values of βrandk and hrand0 in the interval

[t∗ − 60m, t∗ + 60m], that is one hour before and after the event. In order

to be able to compare the residuals coming from different months, since

we find that they are distributed similarly to a Gaussian by inspecting the

quantile-quantile plots, we normalize them by subtracting the mean and

dividing by the standard deviation, obtaining

β̂
rand

k (t) =
βrandk (t)− E[βrandk ]

Stdev[βrandk ]
(5.13)

We then take, for each lag l in the time window around the events, the

average value of the normalized β̂
rand

k and ĥ0 across all events, that is

〈β̂randk (l)〉 =
1

Ne

Ne∑
e=1

β̂
rand

k (t∗e + l)

where Ne is the number of macroeconomic news events, l ∈ [−60m, 60m]

and t∗e is the timestamp within which event e takes place, that is the an-

nouncement happens in the time window (t∗e − 5m, t∗e] identified by the bin

labeled 0 in the figures.

In Figure 5.14 we show these average values for all the different β com-

ponents, along with 95% confidence intervals obtained considering the prob-
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Figure 5.14: Patterns of the residual normalized components of β around
macroeconomic news announcements, with 95% confidence bands.

ability that a sample of Ne Gaussian random variables sampled with zero

population mean and unit variance has an empirical mean different from

zero. We clearly see that there are significant patterns in the proximity of

the news announcement, where both the βdiag and the βoff parameters show

a reduction in the importance of both autocorrelation and cross-correlation

effects in the trading behavior by traders, while the exogenous component

βh is mostly unchanged. The βb parameter is also marginally smaller in

the immediate vicinity of the announcement, possibly meaning that in that

time frame the traders are less focused on following the price dynamics and

more on reacting to the news.
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As further evidence that this modelling approach captures meaningful

effects, in Figure 5.15 we show the pattern of h0 around the news events.

Again, when h0 > 0 it means that most of the trading activity of traders

is directed towards purchasing EUR in exchange for USD, and viceversa

when h0 < 0. While when looking at the top panel of Figure 5.15 it might

seem that around news traders tend to buy more USD, while it is actually

more subtle than that. Indeed as we mentioned our dataset contains news

affecting either USD or EUR, so we can condition our averaging procedure

to this information.

In the middle and bottom panels of Figure 5.15 we show the average

pattern of ĥrand0 around USD-affecting news and EUR-affecting news, re-

spectively. What we find is that traders are actually more likely to drop the

affected currency from their inventory when they know a news is coming,
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and that the effect is stronger for EUR than USD. We believe there are at

least two plausible explanations for this: one is that the market we analyze

is a European market in London opening times, thus the majority of the

traders are likely to be European; another is that the year is 2013 and the

Euro debt crisis is affecting EUR-related news, causing more risk-aversion

in traders. While this effect is not particularly surprising and could be

showed by simply looking at the net order flow, which is what h0 is de-

signed to capture, it proves that our modelling approach can be used to

cleanly filter these effects when describing these systems.

We also argue that this particular behavior is consistent with the way

we select traders: as we only consider in our data traders that are active in

more than 30% of the timestamps, we are very likely excluding the traders

that follow a news-trading strategy, as they are unlikely to trade that often

outside of these time intervals. In this sense it is not surprising to see

other traders be risk-averse with respect to the news, thus dropping the

affected currency before the news comes to avoid adverse selection and

higher volatility.

5.5 Conclusions

We have applied the score-driven methodology to extend the Kinetic Ising

Model to a time-varying parameters formulation, introducing two new mod-

els for non-stationary time series, the Dynamical Noise Kinetic Ising Model

(DyNoKIM) and the Dynamic Endogeneity Kinetic Ising Model (DyEKIM).

We showed that the DyNoKIM, characterized by a time-varying noise level

parameter β(t), has a clear utility in forecasting applications, as the Area

Under the ROC Curve can be showed to be a growing function of β(t),
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while the DyEKIM can be used to discriminate between endogenous and

exogenous effects in the evolution of a time series. We then provided three

example applications of the two models: in the first the DyNoKIM is suc-

cessfully used to quantify the forecasting accuracy of stock activities in the

US stock market; in the second we applied the DyEKIM to describe the

high-frequency volatilities of US stocks in proximity of extreme events such

as the Flash Crash of May 6, 2010 or around scheduled announcements as

the FOMC report of July 31, 2019; in the last empirical application we built

upon a previous work (Campajola et al. (2020)) on traders lead-lag networks

to describe how trading strategies affect one another around macroeconomic

announcements, showing that the DyEKIM effectively captures some inter-

esting features of the data. Our empirical applications have been focused on

financial systems, but we envision our approach can be useful also in other

fields of application such as neuroscience and machine learning, where the

static version of the Kinetic Ising Model has been in use for a long time.



Chapter 6

Conclusive remarks

In this thesis we have provided innovative contributions to the literature on

the Kinetic Ising Model, as well as explored some of its potential financial

applications.

We began by developing an inference algorithm for the estimation of

the KIM parameters on datasets with missing observations, successfully

adapting a known approximation to the presence of randomly distributed

missing values in the sample.

The proposed methodology, based on an Expectation-Maximization-like

strategy, is shown to be resilient to noise and relatively high fractions of

missing data, and applicable to a wide range of problems thanks to the

possibility to pair it with model selection techniques such as LASSO regu-

larization or Decimation.

We then proceeded to apply our methodology in Chapter 4, studying a

dataset of trading records in a financial market at high frequency. The data

contains information about trading by clients of a major dealer in the foreign

exchange market, specifically trading on the EUR/USD spot rate. For each

trade we have information about the sign of the trade (whether the client

153
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has bought or sold EUR for USD), the pseudonymous identity of the client

and the exact time at which the trade took place. We discretized time to the

5 minutes time-scale and used traded volumes to determine the opinion the

trader holds about the exchange rate in each time window, proceeding then

to estimate the KIM parameters on the resulting dataset. Since traders are

not constantly active in the market, the data has a significant fraction of

missing values, which were taken into account and estimated thanks to the

method developed in Chapter 3; this has been done assuming that even

when a trader is inactive she still holds an opinion about the rate, which

can be informative of the trading she or similar traders might be operating

on other platforms.

The resulting models were mapped into networks of influence between

traders, which we have studied through influencer detection techniques,

showing there are some agents that are typically leading the order flow,

and we also showed that the imputation of missing values provides a clearer

picture about the state of supply and demand in the market as a whole, as

justified by our Granger Causality analysis with the state of liquidity on

another market venue, the centralized interdealer EBS exchange.

We found that the lead-lag networks are persistent in time, by fitting the

model monthly over two years of data and measuring neighbourhood simi-

larity, however the methodology is not well-suited for forecasting purposes

due to the necessity, during the imputation of missing values, of including

information from the future.

As a general remark, we interpret these lead-lag networks as the effect of

traders following similar strategies with different reaction times, despite our

choice of terminology referring to opinion spreading which we intended to

provide intuition about the system without diving too deep in the financial
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lexicon, which might be obscure to a broader audience.

The final contribution of this thesis is an extension of the KIM to a

time-varying parameters formulation using the score-driven methodology.

We proposed two such extentions, the Dynamical Noise KIM (DyNoKIM)

and the Dynamic Endogeneity KIM (DyEKIM), each suited for a specific

application. We provided evidence that the DyNoKIM has clear utility in

forecasting applications, as we have shown that the Area Under the ROC

Curve is an increasing function of the inverse noise parameter β(t), an effect

we measure empirically on a dataset of midprice variations of US stocks.

On the other hand the DyEKIM can be used to study the level of endo-

geneity of the dynamics observed in data, which we describe in two empirical

applications, one to the high-frequency volatility of US stocks in proxim-

ity of extreme events or news and the other to the same traders dataset

of Chapter 4, this time focusing on the time frames surrounding macroe-

conomic news announcements. We find that in both cases the DyEKIM

captures interesting features in the data, providing a useful tool for the

analysis of financial time series and not only, as the formulation of the

score-driven KIM is general enough that opportune adaptations can be de-

vised for all sorts of application fields, such as computational neuroscience

and the theory of machine learning.

In conclusion, this thesis has provided a new bridge between several

strands of literature, mainly the ones on statistical mechanics and financial

econometrics, but also taking inspiration from machine learning, neuro-

science and social science. We hope that our work can be beneficial to

these communities, which have already done much by growing our under-

standing of the world around us and the world we shape ourselves to live

in.
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Appendix A

Equivalence between KIM and

V-DAR(1) models

The contents of this appendix are the result of a joint work with Dr. Piero

Mazzarisi, Prof. Fabrizio Lillo and Prof. Daniele Tantari, to appear soon

in an online pre-print and submitted for publication.

In this appendix we show the equivalence, under appropriate reparametriza-

tion, between the Kinetic Ising Model and the Vector Discrete AutoRegres-

sive model of order 1, the V-DAR(1).

The V-DAR(1) model {{X t}, pV DAR,π} is defined for a set of T observa-

tions, each constituted by a vector of binary random variables X t ∈ {0, 1}N

which are independent conditionally on past observations. This model has

been proposed originally in its univariate version in Jacobs and Lewis (1978)

and followed by several extensions such as the Discrete AutoRegressive

Moving Average (DARMA) model of Jacobs and Lewis (1983), the INteger

valued AutoRegressive (INAR) model of Al-Osh and Alzaid (1987) and re-

cently proposed in its multivariate formulation by Mazzarisi et al. (2020b),
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the V-DAR model indeed. Models from this family have seen applications in

genetics (Dehnert et al. (2003)), queueing theory (Kim et al. (2008)), tem-

poral networks (Williams et al. (2019)) and recently in financial systems,

as methods to forecast order flows (Taranto et al. (2014)) or to identify

preferential lending between banks (Mazzarisi et al. (2020a)).

It is, like the KIM, a Markovian model of order 1, with transition prob-

ability

pV DAR(X t|X t−1;π) =
N∏
i=1

[
νi

(
N∑
j=1

λijδXi
t ,X

j
t−1

)
+ (1− νi)(χi)X

i
t (1− χi)1−Xi

t

]
(A.1)

where δXi
t ,X

j
t−1

is the Kronecker delta symbol and π = {(νi, {λij}j, χi)}.
The parameters in π are to be intended as probabilities of Bernoulli random

variables: νi reflects the probability that the value X i
t is copied from the

past; if X i
t is copied, λij is the probability that it takes the value of Xj

t−1;

otherwise, if X i
t is not copied, X i

t is sampled as a Bernoulli random variable

with parameter χi.

It then follows that π is defined in a space Π = ([0, 1]× SN × [0, 1])N

where SN = {λi ∈ [0, 1]N :
∑N

j λij = 1}. The space Π has dimension

N(N + 1), exactly as the space of parameters of the Kinetic Ising Model,

and the VDAR(1) also maps the evolution of binary variables with lagged

dependency of order 1. It is thus immediate to ask the question whether a

mapping between the two exists, as well as finding under which conditions

the two models can be considered equivalent.

The transition probability of the Kinetic Ising Model given by Eq. 2.3

can be stated in terms of the same binary variables X t ∈ {0, 1}N ∀i, t,
through the relation X i

t = 1+si(t)
2

, reading
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pKIM(X t|X t−1;θ) =
N∏
i=1

exp
[
2X i

t

(
hi +

∑N
j=1 Jij(2X

j
t−1 − 1)

)]
1 + exp

[
2
(
hi +

∑N
j=1 Jij(2X

j
t−1 − 1)

)] (A.2)

where θ = (J, h), thus the KIM can be summarized as model {{X t}, pKIM ,θ}.
Calling Θ = RN×N ×RN the space of all possible KIM parameters θ, if one

is able to show that there exists a unique and injective map f : Π → Θ

such that

pKIM(X t|X t−1; f(π)) = pV DAR(X t|X t−1;π) (A.3)

for any X t and X t−1 then the two models are equivalent in the range

of f , which does not necessarily coincide with the whole codomain Θ.

Before stating the theorem, let us show that this map exists in the trivial

cases of N = 1 and N = 2. In the case N = 1, where both J and h are

scalars and there is only one λ = 1 by design, this mapping is easily found

to be

h =
1

4
log

(
χ

1−χ + ν
1
χ
− (1− ν)

)
(A.4)

J =
1

4
log

(
1 +

ν

(1− ν)2χ(1− χ)

)
(A.5)

One can notice that here J is strictly positive as long as ν, χ > 0 and

is J = 0 if and only if ν = 0: this points to the idea that the V-DAR(1)

model is indeed a restricted version of the KIM, with the elements of the

coupling matrix restricted to positive values. Intuitively this is due to the

fact that, while Jij < 0 implies that spin i tends to take the opposite value

of j, there is not a probability of “negated copying” in the V-DAR model.
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In the case N = 2 there are two λi parameters. By considering three

independent configurations of Xt−1 and one possible realization of Xt, one

can extract from Eq. A.3 the system


1 1 −1

1 −1 −1

−1 −1 −1



Ji1

Ji2

hi

 =
1

2


log
(

1
(1−νi)χi

− 1
)

log
(

1
νi(1−λi)+(1−νi)χi

− 1
)

log
(

1
νi+(1−νi)χi

− 1
)

 , ∀i = 1, 2

(A.6)

What we learn from this case is that the mapping is in fact the solution

to a linear system of equations involving the inverse logistic functions on

the right hand side and the vector of parameters of the KIM on the left

hand side. Again it is easy to find that also in this case any value of π

maps to a value of θ where Jij ≥ 0 ∀i, j.
As it will be useful in the following, let us define a subspace of the space

of KIM parameters, Θ+ = (RN×N
+ × RN) ⊂ Θ, where R+ is the set of

positive real numbers including 0, hence Θ+ only includes matrices J with

positive entries.

Given these premises, we can now move to the main result of this ap-

pendix, by stating

Theorem 1. Given a set of observations {Xt} for t = 1, . . . , T , a Kinetic

Ising Model {{X t}, pKIM ,θ} and a V-DAR(1) model {{X t}, pV DAR,π},
there exists a unique and invertible map f : Π → Θ+ ⊂ Θ, i.e. the two

models are equivalent if θ = f(π) ∈ Θ+.

In order to prove the theorem above, let us first construct the system

of equations generating the mapping for the generic case N > 2. Following

the same procedure used to construct Eq. A.6, defining Log(x) = e2x

1+e2x
we

find
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Mn ·



Ji1

Ji2

Ji3
...

JiN

hi


≡



1 1 ... 1 1 −1

1 1 ... 1 −1 −1

1 1 ... −1 −1 −1

... ... ... ... ... ...

1 −1 ... −1 −1 −1

−1 −1 ... −1 −1 −1





Ji1

Ji2

Ji3
...

JiN

hi


= −1

2



Log−1 [(1− νi)χi]
...
...
...

Log−1 [(νi + (1− νi)χi]


(A.7)

∀i = 1, ..., N .

The above system is constructed by considering n = N + 1 independent

states for the vector X t−1 and one possible realization of the variable X i
t .

Then, matching the probabilities of Eq. A.2 and A.1 for each of the possible

independent combinations summarized in the matrix Mn, one finds Eq. A.7

for variable i. It is thus sufficient to apply the same constraints to all is to

achieve N systems of n equations in n unknowns, each characterized by the

matrix Mn ∈ {−1, 1}(N+1)×(N+1).

For the sake of clarity, the n independent conditions giving Eq. A.7 read



Log(hi +
∑

j≥1 Jij) = νi + (1− νi)χi if X1
t−1 = 1, X2

t−1 = 1, ..., XN
t−1 = 1

Log(hi − Ji1 +
∑

j≥2 Jij) = νi(
∑N

j=2 λij) + (1− νi)χi if X1
t−1 = 0, X2

t−1 = 1, ..., XN
t−1 = 1;

... ...

Log(hi −
∑

j≤n Jij) = (1− νi)χi if X i
t−1 = 0, X i

t−1 = 0, ..., XN
t−1 = 0

(A.8)

Given this result, if we call Li(π) the vector on the right hand side of

Eq. A.7, as soon as Mn is invertible we obtain the mapping f : Π→ Θ as

fi(π) = −1

2
M−1

n Li(π) ∀i (A.9)
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where with a slight abuse of notation we call fi the mapping onto the

subspace of Θ indexed by i, that is θi = ({Jij}j, hi). The map is injective

thanks to the linearity of the systems A.7. To prove that the inverse of Mn

exists, we need to prove that its determinant is non-zero. We then start by

proving the following

Proposition 1. Given the determinant of the matrix Mn−1, then the de-

terminant of the matrix Mn is

det(Mn) = (−1)n2 det(Mn−1) (A.10)

Proof. By means of the minor expansion formula (by using the minors as-

sociated with the elements of the first row), the determinant of Mn can be

computed as

det(Mn) =(+1)1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ... 1 −1 −1

1 ... −1 −1 −1

... ... ... ... ...

−1 ... −1 −1 −1

−1 ... −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ... 1 −1 −1

1 ... −1 −1 −1

... ... ... ... ...

1 ... −1 −1 −1

−1 ... −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

+...+(−1)n(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 ... 1 −1

1 1 ... −1 −1

... ... ... ... ...

1 −1 ... −1 −1

−1 −1 ... −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n+1(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 ... 1 −1

1 1 ... −1 −1

... ... ... ... ...

1 −1 ... −1 −1

−1 −1 ... −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.11)

Here one notices that the first n− 2 minors of the sum in Eq. A.11 are

zero, because the last two columns of each n− 1× n− 1 matrix are indeed
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equal (two n − 1-dimensional vectors of −1). Thus, Eq. A.11 is simplified

as

det(Mn) = (−1)n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 ... 1 −1

1 1 ... −1 −1

... ... ... ... ...

1 −1 ... −1 −1

−1 −1 ... −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n2 det(Mn−1) (A.12)

where we notice that the last two minors of (A.11) are equal to each other

and correspond to the determinant of Mn−1. Eq. (A.12) then completes

the proof of the proposition.

Thanks to this result, we are now able to tackle the existence problem

for the mapping between the two models, expressed by

Proposition 2. There exists a solution of the problem of Eq. A.7 for any

N ∈ N \ 0 and this solution is unique.

Proof. For N = 1, the solution can be explicitly computed as showed in

Eqs. A.4 and A.5. For N = 2 the problem in Eq. A.7 is equivalent to Eq.

A.6 and det(M3) = 4, thus there exists the inverse of the matrix M3 and

the solution is uniquely determined by solving the linear system of Eq. A.6.

Because of Proposition 1, the determinant of Mn is different from zero, in

particular

det(Mn) = (−1)
∑n

l=4 l(2n−3) det(M3) = (−1)
∑n

l=4 l(2n−3)4,

∀n > 3 (or, equivalently, ∀N > 2), thus resulting in the existence of the

inverse matrix of Mn. Hence, the solution of the problem in Eq. A.7 can

be uniquely determined. This completes the proof of the proposition.
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Proof of Theorem 1. Given Propositions 1 and 2 we have proved that an

equivalence mapping f : Π → Θ exists between the two models and is

injective. We still have left to prove that f is bijective in Θ+, or that

f(Π) = Θ+.

Let us start by proving that f(Π) ⊆ Θ+, or in other words that for any

π ∈ Π the corresponding f(π) has Jij ≥ 0 ∀i, j. In order to do so let us

go back to Eq. A.8 and notice that, combining the equations by taking the

difference between the first and the second, between the second and the

third and so on, we obtain the N relations



νi(1−
∑

j≥2 λij) = Log(hi +
∑

j≥2 Jij + Ji1)− Log(hi +
∑

j≥2 Jij − Ji1)

. . .

νiλik = Log(hi −
∑

j<k Jij +
∑

j≥k+1 Jij + Jik)− Log(hi −
∑

j<k Jij +
∑

j≥k+1 Jij − Jik)

. . .

νiλiN = Log(hi −
∑

j<N Jij + JiN)− Log(hi −
∑

j<N Jij − JiN)

(A.13)

Being by definition νλij ≥ 0 for any i, j then it is always true that

Log(C + Jij)− Log(C − Jij) ≥ 0

and, since Log(x) is a monotonically increasing function of x, this can

be true if and only if Jij ≥ 0 ∀i, j. Thus this condition is necessarily true if

π is in the domain of f , meaning f(Π) ⊆ Θ+.

By following the same steps in the opposite direction it is straightforward

to prove the reversed relation, that is Jij ≥ 0 is a sufficient condition to

have f−1(θ) ∈ Π or equivalently f−1(Θ+) ⊆ Π. Indeed for any Jij ≥ 0,

the product νiλij is 0 ≤ νiλij ≤ 1 ∀i, j given the system A.13 and that
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Log(x) ∈ [0, 1] for any x. Then, by summing all the equations in system

A.13 one obtains

νi = Log(hi +
∑
j

Jij)− Log(hi −
∑
j

Jij)

which is also positive and smaller than 1 if Jij ≥ 0 ∀j. It then follows

that all the λij are 0 ≤ λij ≤ 1 ∀i, j. Finally, combining the first and last

lines of Eq. A.8 one finds that 0 ≤ χ ≤ 1, thus f−1(Θ+) ⊆ Π. Then, being

both true that f(Π) ⊆ Θ+ and f−1(Θ+) ⊆ Π it follows that f(Π) = Θ+,

which proves the theorem.

In conclusion, the V-DAR(1) model for binary random variables {X i
t}

is equivalent to the Kinetic Ising Model for spins {si(t)} thanks to the

existence of a unique mapping for both the random variables and the pa-

rameters as long as the J parameters of the Kinetic Ising Model are positive,

as a consequence of the fact that the ν and λ parameters only account for

positive lagged correlations among random variables.



Appendix B

Theoretical results on the

distribution of effective fields

In this appendix we expand on what is the unconditional distribution φ(g)

in Eq. 5.2 and how its parameters depend on the static parameters of the

model. From an operational perspective this is the distribution that the

effective fields show cross-sectionally across the whole sample, that is gi(t) ∼
φ(g) ∀i, t, but it can also be calculated by giving a prior distribution to the

static parameters of the model, Θ = (J, h, b). Finding this distribution can

be useful to provide an easier and more accurate evaluation of the expected

AUC of a forecast at a given β value, as it provides a bridge from the model

parameters to the AUC(β) we derived in Eq. 5.3 and shown in Fig. 5.1 in

the main text.

Let us assume, as is standard in the literature (Crisanti and Sompolinsky

(1988); Roudi and Hertz (2011b); Sakellariou (2013)), that the parameters

Θ are structured in such a way that

187
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Jij
iid∼ N (J0/N, J

2
1/N − J2

0/N
2), Jii = 0 ∀ i

hi
iid∼ N (h0, h

2
1)

while bik = 0 for simplicity. If that is the case then the distribution of

gi(t) is itself a Gaussian, as gi(t) is now a sum of independent Gaussian

random variables Jij and hi with random coefficients sj(t). Let us also

define two average operators: the average 〈·〉 over the distribution p of Eq.

2.3, also called the thermal average, and the average · over the distribution

of parameters, also known as the disorder average. Following Sakellariou

(2013) we can then find the unconditional mean of si which reads

mi = 〈si(t)〉 = 〈tanh [βgi(t)]〉 (B.1)

where we have substituted the conditional mean value of si(t) inside the

brackets. This depends from the distribution of gi(t): assuming stationarity

and calling g0
i = 〈gi(t)〉 and ∆2

i = 〈g2
i (t)〉 − 〈gi(t)〉2 we find that they are

gi = 〈
∑
j

Jijsj(t) + hi〉 =
∑
j

Jijmj + hi (B.2a)

∆2
i =

〈(∑
j

Jijsj(t) + hi

)2〉
−
〈∑

j

Jijsj(t) + hi

〉2

=

=
∑
j,k

JijJik [〈sj(t)sk(t)〉 −mjmk] (B.2b)

In Eq. B.2b spins sj(t) and sk(t) are mutually conditionally independent

under p: this means that the only surviving terms are for j = k, thus finding

∆2
i =

∑
j

J2
ij(1−m2

j) (B.3)
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Having determined the value of the mean and variance of the effective

field of spin i we can now proceed to average over the disorder and find

the unconditional distribution of effective fields at any time and for any

spin, φ(g). First we can realize that the average of Eq. B.1 can now be

substituted by a Gaussian integral

mi =

∫
Dx tanh [β (gi + x∆i)] (B.4)

where Dx is a Gaussian measure of variable x ∼ N (0, 1). Then we can

see that the unconditional mean of the fields distribution φ(g) is

〈gi(t)〉 = g0 =
∑
j

Jijmj + hi (B.5)

Given the above results, if Jii = 0 ∀i then the dependency between Jij

and mj vanishes as N → ∞, which means that the two can be averaged

over the disorder separately. This results in the following expression for the

unconditional mean of gi(t)

g0 = J0mj + h0 = J0m+ h0 (B.6)

where

m = mi =

∫
Dx tanh [β(gi + x∆i)]

both the integral and the average here are of difficult solution and results

have been provided by Crisanti and Sompolinsky (1988): they show that in

the limit N →∞ and with hi = 0 ∀i the system can be in one of two phases,

a paramagnetic phase where m = 0 if β is smaller than a critical threshold

βc(J0) and J0 < 1, and a ferromagnetic phase where m 6= 0 otherwise. In

the following we report results for simulations in the paramagnetic phase,
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as the inference is not possible in the ferromagnetic phase. To give better

intuition let us consider the integral above in the limit β → 0: then we can

expand the hyperbolic tangent around 0 to find (since x has zero mean)

m ≈ βgi = β

(∑
j

Jijmj + h0

)
= β(J0m+ h0) (B.7)

which in turn leads to an approximated solution for g0 in the limit β → 0

g0 ≈ h0

(
βJ0

1− βJ0

+ 1

)
Moving on to the variance of g the calculation is straightforward. Adding

the mean over the disorder to Eq. B.2b we find

g2
1 =

〈[∑
j

Jijsj(t) + hi

]2〉
−
〈∑

j

Jijsj(t) + hi

〉2

=

=
∑
j

J2
ij + h2

i + 2hi
∑
j

Jijmj −
∑
j

Jijmj + hi
2

=

= J2
1 + h2

1 − J2
0m

2 (B.8)

Equations B.6 and B.8 can then be used to calculate, given the param-

eters of the distribution generating Θ, the values of g0 and g1 that are to

be plugged in the distribution φ(g) of Eq. 5.3.

We simulated a Kinetic Ising Model with N = 100 spins for T = 2000

time steps at different constant values of β and then measured the AUC

of predictions assuming the parameters are known. In Fig. B.1 we report

a comparison between these simulated values and the theoretical ones pro-

vided by Eq. 5.3 varying β and the hyperparameters J0, J1, h0 and h1 in the

Gaussian setting we just discussed and adopting the expansion for β → 0.

We see that the approximation for small β of Eq. B.7 does not affect the
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Figure B.1: Comparison between the AUC estimated on data simulated
from a Kinetic Ising Model and the theoretically derived AUC with Gaus-
sian distribution of the J and h parameters, varying β and the hyperpa-
rameters J0, J1, h0 and h1. Plot points report average simulated values
for a given β with error bars at ±1 standard deviation, dashed lines report
theoretical values predicted by Eq. 5.3.

accuracy of the theoretical prediction for larger values of β and that the

mean is correctly captured by Eq. 5.3. The only exception to this is found

for β > 1 and J0 = 1, which according to the literature is close to the line

of the ferromagnetic transition: in this case the small β approximation fails

to predict the simulated values. Larger values of N and T (not shown here)

produce narrower error bars.

The general effect we see from Fig. B.1 is that higher variance of the

J and h parameters leads to higher AUC values leaving all else unchanged

(orange squares and yellow circles), while moving the means has little effect

as long as the system is in its paramagnetic phase.

These results are easy to obtain thanks to the assumption that the model

parameters J and h have Gaussian distributed entries, but in principle the

distribution φ(g) can be derived also for other distributions, albeit probably

necessiting numerical solutions rather than the analytical ones we presented

here.
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