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Abstract

The huge technological advancement achieved in the last years has allowed for the emer-
gence of a new field of physics dubbed “quantum engineering”: with this term people
refer to a wide range of topics, from planning and building physical systems for specific
tasks to developing algorithms to control those systems, from ways to create specific
quantum states to new theoretical tools to describe and plan new physical systems.

As the field of quantum engineering covers many topics in physics, this is reflected
in the community interested in it, ranging from quantum optics theorists to solid state
experimentalists. This also includes the possibility, and sometimes the necessity, for a
scientist willing to enter the field to study very different problems, as it happened for
the material in this thesis, where at least two main topics are covered.

One of them is the study of open quantum systems, more specifically in the context
of collisional model and cascade networks. The latter are networks of quantum systems
interacting through the interaction with a common environment with unidirectional,
i.e. chiral, propagation of the signal. Thanks to the chirality of the environment it is
possible to obtain non symmetrical couplings between the quantum systems composing
the network, opening the way to engineer the steady state of the system.

The tool used to derive master equation describing dynamics and properties of such
systems is the one of collisional models: these models are nowadays extensively used in
a wide range of topics concerning open quantum systems, from the description of both
Markovian and non Markovian dynamics, to quantum optics and quantum thermody-
namics.

In collisional models the environment is depicted as a collection of smaller systems,
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dubbed ancillas, which interact in a collisional fashion with the quantum system under
examination. This way of describing open systems dynamics leads to a discrete master
equation on which it is then possible to enforce a continuous time limit. Among the
advantages provided by such an approach there is the simplicity with which is possible
to switch from a Markovian to a non-Markovian dynamics and the possibility of keeping
track of the environmental degrees of freedom.
The last feature cited is the one exploited in this thesis when studying a quantum

system thermalizing through the interaction with a thermal bath: having at disposal
the environmental state at each discrete step of the thermalization process, it is possible
to compute the thermodynamic functionals relative to the environment. Specifically, by
computing the quantum mutual information between the system and the environment, it
is possible to show that the final joint state reached by the system and the environment
is a factorized state.
The other part of this thesis focuses instead on quantum state engineering by potential

engineering. By appropriately engineering a potential profile, it is possible to obtain
a class of quantum states, dubbed stretchable, which have the property of having a
flat wave function in some regions, somehow analogously to what happens in photonic
metamaterials: in this materials, where either the permittivity or the permeability is
zero, the temporal and spatial variation of the electric field are decoupled, leading to the
possibility of having a stretched wave with both large frequency and large wavelength.
Finally, in this thesis it is shown how, by properly engineering a spatially varying

potential landscape, it is possible to attach a geometric phase to the quantum state
of a traveling wave. More specifically, as the confining potential of a traveling wave
varies along a closed loop in parameters space, it is possible to implement an operation,
usually called holonomy, which attaches a geometric phase to the state, analogously to
what happens in the Berry phase phenomenon for a time dependent Hamiltonian.
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CHAPTER 1

Introduction

Ever since in history physics has had a double goal: on one hand it aims at discovering
the principles of Nature, but on the other hand it is interested in exploiting the laws of
Nature in order to get some advantage in practical purposes.
These two goals are not independent, but rather intertwined: as new theoretical dis-

coveries and predictions are made, they allows for better technology which indeed allows
for new results and data that need to be understood, pushing for new discoveries and
“closing” the loop.

It was along this line that, for instance, the field of thermodynamics first arose: sci-
entists at that time were first interested in discovering the relations between heat, work,
temperature and the other thermodynamical quantities, but as their researches allowed
for the construction of new machines and engines, the new data and experimental evi-
dences allowed them to push even further their knowledge.

Every time there has been a change of paradigm in physics, after a first settlement
period where the new principles discovered were understood and “new” physical laws
and effects were discovered, it always followed a period where those discoveries were
exploited for new technologies [Kuhn 1970]: think for instance of the relativity theory,
which was later used to better telecommunications and build spaceships able to reach
the borders of our stellar system.

Quantum mechanics in this regard was no exception: after a first period where the
new paradigms had to be interiorized by physicists and first predictions of quantum
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Chap. 1 Introduction

mechanics were verified, people started looking for applications of these new effects.

A huge development of physics in all of its fields started after World War II, with
a continuous interplay between new discoveries and new applications: from WWII to
the present days physicists have been able to almost complete their understanding of
the standard model, new discoveries in the field of material science and electronics have
allowed to revolution electronics, building new devices such as smaller and more efficient
transistors, new sources of light like LED and ultra precise atomic clocks, just to cite
some examples.

We could say that the last big paradigm change in physics has happened in the 80s’,
as the field of quantum information science started arising: this new paradigm put to-
gether the fields of information science, which has played a main role in the development
of modern computers, and quantum mechanics, fostering for the creation of the quan-
tum computer, a calculator able to solve certain problems exponentially faster than
its classical counterparts thanks to its ability to use quantum mechanical properties of
information.

It was Richard Feynman one of the first who recognized the importance of exploiting
quantum mechanics principles in order to achieve new research results: he noted that
while it is computationally very hard to simulate a quantum system with classical re-
sources, the same is not true when one has quantum resources at his disposal. He used as
example a system made out of N interacting spins: while the computational complexity
grows exponentially with N using classical computation, thus making it impossible to
solve numerically the problem, with quantum computation complexity would grow only
linearly with N , thus allowing for an efficient simulation of the system.

This paradigm shift is somehow the successful completion of a path started long ago:
since its first formulation in the 20’, quantum mechanics has led scientists to face new and
controversial results [Schrödinger 1926]. The Heisenberg uncertainty principle [Heisen-
berg 1927] and the wave particle duality [Broglie 1924] put a serious challenge to physi-
cists, who spent years trying to understand the implications of the new born quantum
theory, finally accepting the Copenhagen interpretation as the most convenient paradigm
to interpret the new theory [N. Bohr 1928]. From that time on, physicist had contin-
uously improved their knowledge and understanding of quantum mechanics, obtaining
astonishing results both from a fundamental and a practical point of view.

It was in the 40’s, fostered by war necessities, that the field of information theory was
first established by Shannon in his groundbreaking work [Shannon 1948], where he first
defined the concept of information. The concept of information was then extended to
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Chap. 1 Introduction

the quantum realm thanks to the work of Von Neumann [von Neumann 1932]. As people
started studying the possibilities offered by the exploitation of quantum mechanics in the
field of information theory, soon new discoveries were made: it was already in the 80s’
that the first quantum algorithms for quantum communication were conceived, the most
famous instances being the quantum teleportation protocol [Bennett and Brassard 2014;
Bennett, Brassard, et al. 1993], the Deutsch algorithm [Deutsch 1985], the Deutsch-Jozsa
algorithmm [Deutsch and Jozsa 1992], the Grover search algorithm [Grover 1996, 1997]
and the Shor algorithm [Shor 1994, 1997] for prime factorization.

All these algorithms can provide an example of how quantum information differs
from classical one: in the quantum teleportation protocol a quantum state is faithfully
transmitted between two parties thanks to an entangled pair of qubits and two bits of
classical information, while the same task would require an infinite amount of information
to be transmitted if one were to use only classical bits. On the same line the Shor’s
algorithm is able to compute the prime factors of a number with a number of operations
that grows linearly with the number of ciphers, while in the classical case the complexity
grows exponentially with the dimension of the number: thus a task that would take
centuries with a classical computers (a fact that is daily used to guarantee security in
digital payments), it would take a few months with a quantum computer.

On the other hand, physicists soon realized that information is physical, by this mean-
ing that while Shannon theory allows for a general treatment of information [Cover and
Thomas 2006], independently from the way it is stored and transmitted, one actually
has to deal with the necessity of a material support for information processing, storage
and transmission: just as classical computers have been possible thanks to proper tech-
nological supports able to implement the gates necessary to perform logical operations,
the possibility of creating a quantum computer also relies on the ability to build a proper
physical support able to implement all the gates necessary for quantum algorithms to
run. This implies both the ability to create very sharp quantum systems and also the
ability to externally control such systems with a very high degree of precision.

This compelling necessity for controlling quantum systems has been a main driving for
physical research in the last decades: during these years physicists have tried to create
new platforms for implementing quantum algorithms, like ion traps, optical lattices and
the most promising superconducting quantum circuits and new techniques for quantum
control, like adiabatic driving and reservoir engineering.

The huge technological advancement achieved in the last years has allowed for the
emergence of a new field of physics dubbed “quantum engineering”: with this term people
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Chap. 1 Introduction

refer to a wide range of topics, from planning and building physical systems for specific
tasks to developing algorithms to control those systems, from ways to create specific
quantum states to new theoretical tools to describe and plan new physical systems.

As the field of quantum engineering covers many topics in physics, this is reflected
in the community interested in it, ranging from quantum optics theorists to solid state
experimentalists. This also includes the possibility, and sometimes the necessity, for a
scientist willing to enter the field to study very different problems, as it happened to me
during my PhD: in this thesis at least two main topics are covered.

On one side the study of open quantum systems has led me to look at quantum
cascade systems, which are networks of quantum systems often called nodes driven
by an external signal propagating unidirectionally, i.e. chirally. While studying such
systems and deriving expressions for the master equation describing their dynamics can
be ascribed to the field of dissipation engineering, their study has introduced me to the
concept of collisional models, a method for studying open quantum systems that has
gained more and more attention in the last years.

Studying such models has led me also into the field of quantum thermodynamics,
which also gained much attention in recent times: the progressive demand for miniatur-
ization of electrical components has pushed scientists to start ask themselves how and if
the usual laws of classical thermodynamics apply in the quantum realm. Moreover, the
extension of the thermodynamics law to the quantum realm allowed for the discovery
of new problems and issue, both from the practical and the theoretical point of view,
renewing the interest towards fundamental topics such as the validity of standard mas-
ter equation and their ability to give correct and coherent thermodynamic results. Also,
just as in the classical case, there is a strong and deep relationship between thermody-
namics and information theory, exemplified by the interpretation of entropy both as a
thermodynamic state function and as average missing information on a system.

Conversely, I also found myself dealing with more practical problems, such as the
connection between solid state system and quantum optics: thanks to the technological
possibilities implied by band engineering and to mature platform such as superconduct-
ing circuits, it is nowadays possible to recreate physical phenomena belonging to the field
of quantum optics in the solid state context. With this in mind, I studied a class of po-
tentials which we dubbed “stretching potentials”, giving rise to stretched wave functions
of the particle inside the potential, in analogy with what happens optically in photonic
metamaterials.

Finally I studied also the geometric phase, also known as holonomy, imprinted on a
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particle moving in a varying potential: while for time-dependent potentials this phe-
nomenon received first attention by Berry, we studied the problem for space-dependent
potentials in more than one dimension. This phenomenon allows for the manipulation
of the state of a moving particle without worrying of its velocity, as the phase imprinted
by the varying potential is a geometric invariant.
This thesis proceeds as follows: in Chap. 2 we will review some standard properties

of open quantum systems, focusing in particular on the Markovian generator, its prop-
erties and its derivation, both within the standard microscopic approach and within the
collisional model approach. In Chap. 3 we will examine cascade networks, seeing how
to derive a Markovian master equation for the nodes with a properly defined collisional
model and how cascade networks can be exploited to obtain interesting interference ef-
fects. Subsequently in Chap. 4, we will talk about qubit thermalization, showing how,
thanks to a collisional model, it is possible to demonstrate the factorization of the ther-
malizing qubit state from the state of the thermal bath, thus showing the absence of
correlations between a system and its thermal bath after thermalization took on. In
Chap. 5 we will introduce the second part of the thesis, briefly reviewing some basic
concepts of condensed matter physics, such as the band structure of solids, the effec-
tive mass approximation and band engineering. After this, in Chap. 6 we will look at
stretching potentials, defining first the properties characterizing this class of potentials
and then showing how these properties are reflected in the wave functions and eigenen-
ergies associated to such potentials. Then in Chap. 7 we will show how a geometric
phase can be attached to a particle moving in a 2D potential landscape by properly
inserting a spatial dependence on the potential itself. Finally in Chap. 8 we will draw
the conclusions and try to give an outlook for the future.
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CHAPTER 2

Open quantum systems

Every physicist in the world was once a student, and all students, when dealing with
quantum mechanics for the first time, are introduced to the subject starting from the
study of closed systems, i.e. systems that can be described through an operator Ĥ, pos-
sibly time-dependent, called the Hamiltonian of the system. The Hamiltonian operator
is nothing but the energy of the system, and just as in classical mechanics, its knowledge
is sufficient to describe the dynamics of a closed system.

But, just as grown up children find out that Santa Claus does not exist, so physicists
soon have to understand that most of the systems they actually deal with are not closed,
but rather open: a quantum system is always interacting with its surroundings, which
is also known as environment.

The unavoidable presence of the environment is a crucial feature of quantum me-
chanics: it is something one must account for in the equations, in order to both give
correct forecasts on experiments and to foresee interesting quantum mechanical effects.
The first attempts in this direction usually lead to a phenomenological approach, with
the inclusion of effective terms describing the effects of noise and dissipation, as in the
case of the Bloch equations for the nuclear magnetic spin [Bloch 1946; Bloch, Hansen,
and Packard 1946] or the optical Bloch equation for a two levels system [Arecchi and
Bonifacio 1965].

The presence of the environment is also crucial to explain very fundamental questions,
such as the emergence of classicality from the quantum world [Zurek 1993, 2003, 2018]:
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Chap. 2 Open quantum systems

in the quantum realm we observe superposition and interference phenomena between
quantum states, giving rise to probabilistic phenomena, while the world we are used to
observe and live in is deterministic, i.e. governed by classical physics laws.

The presence of the environment is naturally crucial not only when dealing with
fundamental aspects of the theory, but also in more practical issues, such as the thermo-
dynamic description of a system [Kosloff 2013], where the system is usually interacting
with a thermal bath, or in the field of quantum optics, where, just to cite the most fa-
mous effect, the environment is responsible for the phenomenon of spontaneous emission
and the shift of the energy levels of an atom [Dirac and N. H. D. Bohr 1927; Scully and
Zubairy 1997].

A turning point in the context of open quantum systems dynamics is for sure rep-
resented by the works of Gorini, Kossakowski, Sudarshan and Lindblad [Gorini, Kos-
sakowski, and Sudarshan 1976; Lindblad 1976], where for the first time an equation
describing the Markovian dynamics of an open quantum system was derived. These
works fostered a huge amount of work in the field of open quantum systems which still
goes on today: from the study of the time-locality of the generators [Chruściński 2014;
Filippov and Chruściński 2018; Reimer et al. 2019] to the spectral properties of such
generators [V. V. Albert and Jiang 2014; Hatano and Ordonez 2019; Janßen 2017], from
numerical simulation of open systems [Daley 2014; Dalibard, Castin, and Mølmer 1992;
Mascherpa et al. 2019; Torres 2014; Zanardi, Marshall, and Campos Venuti 2016] to the
extension of the GKSL equation beyond its original assumptions, for instance allowing
for a time dependence of the generator [Dann, Levy, and Kosloff 2018] or for ultra-
strong coupling of system and environment [H. P. Breuer, Dietz, and Holthaus 1988;
H.-P. Breuer and Petruccione 1997].

The field of open quantum systems is also of paramount importance in the context of
mathematical physics, where the concept of CPT maps can be studied under a mathe-
matical perspective, leading to the concepts of quantum channels and operations [Caruso
et al. 2014; Holevo and Giovannetti 2012; Kretschmann and Werner 2004] for which
bounds on their entropic and informational properties [Giovannetti, García-Patrón, et
al. 2014; Giovannetti, Holevo, and Mari 2015; Mari, Giovannetti, and Holevo 2014] can
be derived, leading to important technological implication in the context of information
processing and transmission [Chiribella and Adesso 2014; Macchiavello and Palma 2002;
Pirandola and Lloyd 2008].

Given the importance and the broad range of topics covered by the field of open
quantum systems, we find it necessary to give a brief review of some important concepts
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before proceeding with the rest of the thesis. In this chapter we are going to briefly
review the mathematical description of a closed quantum system in Sec. 2.1, which will
also allow us to set the notation. Then we will review open quantum systems and their
properties in Sec. 2.2, illustrating two ways of deriving a Markovian master equation,
namely the dynamical semigroup approach and the microscopic derivation. Finally in
Sec. 2.3 we will describe the collisional model and how it can be used to depict the
dynamics of an open quantum system.

2.1. Closed systems

Mathematically speaking the physical properties of the state of a quantum system S are
encoded in a state vector |ψ〉S living on the Hilbert space HS. Observable quantities
are described by Hermitian operators belonging to the set Σ(HS) of operators acting on
Hilbert space HS. The time evolution of the state vector is given by the Schrödinger
equation:

i~
d

dt
|ψ(t)〉S = ĤS |ψ(t)〉S , (2.1)

where ĤS is the Hamiltonian operator of system S. Analogously to the classical case the
Hamiltonian operator is nothing but the energy of the system, and thus is an Hermitian
operator. Eq. (2.1) can be formally solved as:

|ψ(t)〉S = ÛS(t, t0) |ψ(t0)〉S , (2.2)

where ÛS(t, t0) is the time evolution operator, a unitary operator describing the temporal
evolution of |ψ(t)〉S from the initial time t0 up to time t. The most general form of
ÛS(t, t0), from Eq. (2.1) results:

ÛS(t, t0) = T exp

[
− i
~

∫ t

t0

ĤS(t′)dt′
]
, (2.3)

where T indicates the time-ordered product. Eq. (2.3) express the temporal evolution
operator for the most generic case of a time-dependent Hamiltonian ĤS(t) that does not
commute with itself at different times, i.e.:

[
ĤS(t1), ĤS(t2)

]
6= 0 for t1 6= t2. (2.4)

9



2.1 Closed systems Chap. 2 Open quantum systems

In the following of this chapter we will assume ĤS(t) = ĤS, that is, a time-independent
Hamiltonian, unless differently specified. Here we limit ourselves to remember that the
formal expression of a time-ordered product is given by the Dyson series:

ÛS(t, t0) = 1 +
∞∑

n=1

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnĤS(t1)ĤS(t2) · · · ĤS(tn). (2.5)

For the case of a time-independent Hamiltonian the temporal evolution operator in
Eq. (2.3) has the very simple form:

ÛS(t, t0) = exp

[
− i
~
ĤS(t− t0)

]
. (2.6)

When written as in Eq. (2.6) it is immediate to see that ÛS(t, t0) has the property:

ÛS(t0, t) = exp

[
− i
~
ĤS(t0 − t)

]
= exp

[
i

~
ĤS(t− t0)

]
= Û †S(t, t0), (2.7)

which means that the inverse operator of ÛS(t, t0) is its adjoint Û †S(t, t0):

ÛS(t, t0)Û †S(t, t0) = ÎS, (2.8)

where ÎS is the identity operator on S.

As for any other self-adjoint operator, it is possible to diagonalize ĤS: by diagonalizing
an operator we mean finding a set of state vectors {|φi〉S} such that:

ĤS |φi〉S = Ei |φi〉S . (2.9)

The |φi〉S are called eigenvectors of ĤS and Ei is the energy eigenvalue corresponding to
state |φi〉S. The set of all eigenvectors {|φi〉S} forms an orthonormal basis of the Hilbert
space HS, and thus any state |ψ〉S can be expressed as a linear combination of such base
vectors:

|ψ〉S =
∑

i

|φi〉S 〈φi|ψ〉S =
∑

i

ci |φi〉S , (2.10)

where we have defined ci = 〈φi|ψ〉S and inserted the identity in the {|φi〉S} basis.

From Eq. (2.1) and Eq. (2.9) we can write the temporal evolution of an eigenvector
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of the Hamiltonian as:

i~
∂

∂t
|φi〉S = Ei |φi〉S ⇒ |φi(t)〉S = e−

i
~Ei(t−t0) |φi〉S . (2.11)

The eigenstates of ĤS are stationary states with respect to temporal evolution. From
Eq. (2.11) it is then straightforward to see that expressing the state |ψ(t)〉S as in
Eq. (2.10) the solution to the Schrödinger equation is:

|ψ(t)〉S =
∑

i

cie
− i

~Ei(t−t0) |φi〉S =
∑

i

ci(t) |φi〉 . (2.12)

Knowing the state |ψ(t)〉S allows one to compute the expectation value (ensemble
average) of any operator ÂS as:

〈
ÂS(t)

〉
= S〈ψ(t)|ÂS |ψ(t)〉S . (2.13)

All of this is valid for a pure ensemble, that is, we are sure that the quantum system is
indeed in the state |ψ(t)〉. In most scenarios however we do not have this certainty: this
is why one needs to introduce the density matrix ρ̂S(t). Consider for instance the case
where system S can be in either of two states |ψ1(t)〉S (t) or |ψ2(t)〉S with probability w1

and w2 respectively. Then if we were to compute the expectation value of an observable
for this state we would get:

〈
ÂS(t)

〉
= w1 S〈ψ1(t)|ÂS |ψ1(t)〉S + w2 S〈ψ2(t)|ÂS |ψ2(t)〉S
=

∑

i

wi 〈ψi(t)|ÂS|ψi(t)〉 . (2.14)

If we now insert twice the identity operator for a base set {|φi〉S} into Eq. (2.14) we get:

〈
Â(t)

〉
=
∑

i

∑

`,`′

wi 〈φ`|ψi(t)〉S 〈ψi(t)|φ`′〉S 〈φ`′|ÂS|φ`〉 . (2.15)

Since the properties of the ensemble shall not depend on the specific base chosen, we
define the density matrix ρ̂S(t) as:

ρ̂S(t) =
∑

i

wi |ψi(t)〉〈ψi(t)| . (2.16)
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With this definition it is possible to write the expectation value of ÂS as:

〈
ÂS(t)

〉
=
∑

`,`′

〈φ`′ |ρ̂S(t)|φ`〉 〈φ`|ÂS(t)|φ`′〉 = Tr
{
ÂS ρ̂S(t)

}
. (2.17)

From Eq. (2.16) some important properties of the density matrix can be immediately
derived. As the weights wi are just classical probabilities they must sum up to 1, and
thus:

Tr{ρ̂S(t)} = 1, Tr
{

ˆρ2(t)S

}
≤ 1, ρ̂``′ = ρ̂∗`′`, (2.18)

where the inequality is saturated only for pure states.

Finally it is clear from the definition that the density matrix ρ̂S(t) evolves in time as:

d

dt
ρ̂S(t) = − i

~

[
ĤS, ρ̂S(t)

]
. (2.19)

This representation of quantum dynamics is known as the Schrödinger picture: in this
picture one assumes the observable quantities to be time-independent while only the
states are affected by time evolution. There are infinite possible pictures to represent
quantum dynamics, but only two are commonly used and of importance for our purposes,
namely the Heisenberg picture and the interaction picture which we are going to see in
the next two sections.

2.1.1. The Heisenberg picture

The main goal of any physical theory is to provide expectation values for some quantities
to be measured in experiments. As we have seen observable quantities in quantum
mechanics are described by Hermitean operators belonging to Σ(HS). Specifically the
expectation value of any Hermitean operator ÂS for a system in the state |ψ(t)〉S is given
by Eq. (2.13).

In the previous section we treated time-evolution in such a way that only the state
vectors evolve, while the operators corresponding to observable quantities were assumed
constant. Starting from Eq. (2.13) and inserting Eq. (2.2) we get:

〈Â(t)〉 = S〈ψ(t0)|Û †S(t, t0)ÂSÛS(t, t0) |ψ(t0)〉S = S〈ψ(t0)|ÂS(t) |ψ(t0)〉S , (2.20)
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where now

ÂS(t) = Û †S(t, t0)ÂSÛS(t, t0). (2.21)

In the last passage we have moved the effect of the temporal evolution operator from the
state vector to the operator ÂS: in this way one has time-independent state vectors and
time-dependent operators. Deriving ÂS(t) with respect to t and remembering Eq. (2.6)
one gets:

d

dt
ÂS(t) =

∂

∂t
ÂS(t)− i

~

[
ÂS(t), ĤS

]
(2.22)

Eq. (2.22) is known as the Heisenberg equation of motion: it is the differential equation
describing the evolution of time-dependent operators while all state vectors are time-
independent.

2.1.2. The Interaction picture

We consider then the interaction picture, which is widely used in the study of open
quantum systems. The interaction picture can be considered somehow in between the
Schrödinger and the Heisenberg ones. In order to define the interaction picture for a
system S one has to divide the Hamiltonian in two parts ĤS = Ĥ0,S + ĤI,S, where
usually Ĥ0,S is called the free Hamiltonian and ĤI,S the interaction Hamiltonian. We
define:

∣∣ψ(I)(t)
〉
S

= e
i
~ Ĥ0,S(t−t0) |ψ(t0)〉S (2.23)

Â
(I)
S (t) = e

i
~ Ĥ0,S(t−t0)ÂS(t0)e−

i
~ Ĥ0,S(t−t0) (2.24)

The symbol (I) here signals the object to be meant in the interaction representation,
but throughout this thesis it will be often omitted when no confusion can arise, in order
not to burden the notation. One can directly compute the time evolution of both states
and operators in this picture. As for states one has:

i~
d

dt

∣∣ψ(I)(t)
〉
S

= −Ĥ0,S

∣∣ψ(I)(t)
〉
S

+ e
i
~ Ĥ0,S(t−t0)ĤSe

− i
~ Ĥ0,S(t−t0)

∣∣ψ(I)(t)
〉
S

= e
i
~ Ĥ0,S(t−t0)ĤI,Se

− i
~ Ĥ0,S(t−t0)

∣∣ψ(I)(t)
〉
S

= Ĥ
(I)
I,S

∣∣ψ(I)(t)
〉
S
, (2.25)
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which implies for the density matrix:

d

dt
ρ̂

(I)
S (t) = − i

~

[
Ĥ

(I)
S (t), ρ̂

(I)
S (t)

]
. (2.26)

The evolution of an operator is instead given by:

d

dt
Â

(I)
S (t) =

∂

∂t
Â

(I)
S (t)− i

~

[
Â

(I)
S (t), Ĥ0,S

]

=
∂

∂t
Â

(I)
S (t)− i

~

[
Â

(I)
S (t), Ĥ

(I)
0,S

]
. (2.27)

From Eq. (2.25) and Eq. (2.27) we see that in the interaction picture the states evolve
only through the interaction Hamiltonian, while the operators evolve only through the
free Hamiltonian, both the free and the interaction Hamiltonian being meant in the
interaction picture. This representation is particularly useful in scenarios where the
interaction Hamiltonian represents a perturbation on the system, since the operators
have their unperturbed forms and the states can be treated through perturbation theory.

2.1.3. Composite systems

Before moving to the study of open quantum systems, we need to deal with composite
quantum systems. As it is often the case in physics, the distinction between a single
quantum system and a composite quantum system is just a matter of perspective: if
one is interested in a global property of a system it might be convenient to treat the
system as a unique block, while if one were interested, for instance, in the correlations
among the single components of the system, then it might be more convenient to treat
the system as a composite one.
To treat the latter case in quantum mechanics the concept of tensor product is in-

troduced. Consider two independent quantum systems S1, S2, each described by a
Schrödinger picture state vector |ψ(t)〉Si living in the Hilbert space HSi spanned by the
orthonormal basis {|φi〉Si}. The joint state of sytems S1 and S2 can then be described
through the state vector

|ψ(t)〉S1S2
= |ψ(t)〉S1

⊗ |ψ(t)〉S2
, (2.28)

which is the tensor product of the state vectors describing S1 and S2 separately. The
state vector |ψ(t)〉S1S2

lives in the Hilbert space HS1S2 = HS1 ⊗ HS2 spanned by the
orthonormal basis {|φij〉S1S2

= |φi〉S1
⊗ |φj〉S2

}. As we are assuming the two systems to
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be independent of each other, this means that each has its own Hamiltonian ĤSi , and
that the evolution of the joint state vector is given by:

i~
d

dt
|ψ(t)〉S1S2

=
(
ĤS1 ⊗ ÎS2 + ÎS1 ⊗ ĤS2

)
|ψ(t)〉S1S2

, (2.29)

where ÎSi is the identity operator in the Hilbert space HSi . Things become more com-
plicated when S1 and S2 are no longer independent, as in most of the cases, but there
is instead an interaction between the two systems. In this case {|φij〉S1S2

} is still an
orthonormal basis spanning HS1S2 , but the basis vectors won’t be also energy eigen-
states anymore: though this might seem a minor fact, it is actually this feature that
renders the study of composite quantum system computationally hard as the size of the
system (i.e. the number of components) increases [Feynman 1982], and that eventually
lead to the development of new computational techniques [Schollwöck 2011; Verstraete,
Garcia-Ripoll, and Cirac 2004; Verstraete and Cirac 2004; Vidal 2004].

Dealing with composite systems, one is almost compelled to speak about quantum
entanglement: this phenomenon is one of the iconic features of quantum mechanics that
lead to several discussions over the interpretation of quantum mechanics, for instance
prompting Einstein, Podolski and Rosen to elaborate the paradox that still brings their
name [Einstein, Podolsky, and Rosen 1935]. Their work stimulated the elaboration of the
hidden variable framework by Bell [Bell 1964] and the discovery of the so called CHSH
inequality [Clauser et al. 1969], which was finally seen to be violated experimentally by
the group of Alain Aspects [Aspect, Dalibard, and Roger 1982; Aspect, Grangier, and
Roger 1982].

Entanglement is now considered to be a fundamental resource in the context of quan-
tum information, since many of the protocol introduced in this field, such as quantum
key distribution [A. K. Ekert 1991], quantum dense coding [Barenco and A. K. Ek-
ert 1995] and quantum teleportation [Bennett, Brassard, et al. 1993] are based on the
exploitation of entangled states of bipartite systems.

From a mathematical perspective one observes that it is not always possible to write
a pure state of a composite system as in Eq. (2.28). When this is not possible, i.e. when

|ψ〉S1S2
=
∑

i

ci |ψi〉S1
⊗ |ψi〉S2

, (2.30)

the the state |ψ〉S1S2
is entangled. As for mixed states, one is said to be entangled when
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it cannot be written as a convex combination of product states, that is:

ρ̂S1S2 6=
∑

i

piρ̂
(i)
S1
⊗ σ̂(i)

S2
. (2.31)

From the definitions in Eqs.( 2.30, 2.31) it is quite evident that determining whether a
state is entangled or not is not an easy task. Actually some criterions exist for certain
categories of states and systems [M. Horodecki, P. Horodecki, and R. Horodecki 1996;
Peres 1996; Terhal 2000; Werner 1989], but no general criterion has yet been found,
especially for multipartite systems. All in all the study of entanglement, including its
determination and quantification, is a field still full of open questions in spite of the
great attention that has been given to the subject [R. Horodecki et al. 2009].
A natural question coming to mind is how we can recover the state of one part of

the composite system, for instance the state of S1, knowing the joint state ρ̂S1S2 . The
answer is given by the partial trace operation: this operation consists in tracing away
the degrees of freedom relative to the part of the composite system we are not interested
in. Applying the partial trace operation to a joint state of a composite system, it is
possible to recover the reduced state of the system

TrS2 {ρ̂S1S2} = ρ̂S1 TrS1 {ρ̂S1S2} = ρ̂S2 , (2.32)

where now ρ̂S1 (respectively ρ̂S2) contains information on the state of S1 only (resp. S2).
Another important operation in quantum mechanics is the purification of a state: from
Eq. (2.32) it is clear that any state of a system S can be seen as the reduced state of
a larger system made out by S itself and an auxiliary system S ′. The important point
is that given a mixed state ρ̂S it is always possible to choose the state of the enlarged
system to be a pure one, i.e. it exists a state |ψSS′〉 such that:

TrS′ {|ψSS′〉〈ψSS′ |} = ρ̂S. (2.33)

This concept will turn out to be useful when dealing with CPT maps, as we are going to
see in the following sections: in facts Eq. (2.33) implies that the action of a CPT map
acting on ρ̂S can be seen as the action of a unitary operator ÛSS′ acting on the pure
state |ψSS′〉.
After reviewing the various pictures used in quantum mechanics and the way we

describe composite systems, we have all the ingredients to treat the dynamics of an
open quantum system.
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Figure 2.1.: A sketch of an open quantum system: the composite S + E system is con-
sidered closed, and thus it is described by the density matrix ρ̂SE whose
closed dynamics is dictated by ĤSE . ĤSE is the sum of the free hamil-
tonians of system and environment, ĤS and ĤE respectively, plus ĤS−E
describing the interaction between S and E .

2.2. Open quantum systems dynamics

2.2.1. CPT maps and dynamical semigroups

All the formalism exposed in the previous section is valid for any closed system. Thus we
still have to answer the question of how to describe the dynamics of a quantum system
S interacting with an external environment E .

First of all it must be noted that, as in the case of composite systems, the distinction
between the system S and the environment E is more a matter of definition than a
physical matter: the distinction only comes from our way of modeling the dynamics of a
physical system. What we usually mean when we talk of an open system interacting with
the environment instead of two interacting quantum systems is that that the environment
has a somehow special role [Davies 1976]: in most scenarios the environment E is far
larger than the system S and, moreover, it is usually through the environment that we
are able to perform measurements to gain information on S itself.
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All of this being said, we can start to depict the dynamics of an open quantum system.
The starting point is to represent the joint S + E system as a closed system, as shown
pictorially in Fig. 2.1. The state of the joint system is encoded into the density matrix
ρ̂SE . This density matrix evolves according to the Hamiltonian ĤSE which is the sum of
the Hamiltonians of S and E if they were isolated plus a contribution HS−E describing
the interaction between the system and the environment.
As already shown in the previous section, the density matrix of either S or E can be

found by partially tracing away the degrees of freedom of the system we want to discard:

ρ̂S = TrE {ρ̂SE} ρ̂E = TrS {ρ̂SE} . (2.34)

As the joint S − E system is closed, its density matrix evolves according to:

d

dt
ρ̂SE(t) = − i

~
[HSE , ρ̂SE(t)]⇒ ρ̂SE(t) = ÛSE(t, t0)ρ̂SE(t0)Û †SE(t, t0) (2.35)

Further assuming the initial state of S and E to be a factorized one

ρ̂SE(0) = ρ̂S(t0)⊗ ρ̂E(t0), (2.36)

in order to ensure positivity [Modi 2012; Pollock et al. 2018; Ringbauer et al. 2015;
Rodríguez-Rosario, Modi, and Aspuru-Guzik 2010; Štelmachovič and Bužek 2001], from
Eq. (2.35) it is then possible to compute the reduced density matrix of S through:

ρ̂S(t) = TrE

{
ÛSE(t, t0)ρ̂SE(t0)Û †SE(t, t0)

}
= VS(t, t0)ρ̂S(t0), (2.37)

where we have introduced the dynamical map V(t, t0), a super-operator [Alicki 2002;
Alicki and Lendi 1987; Kraus 1971] (i.e. an operator acting on other operators) de-
scribing the evolution of ρ̂S from time t0 to time t. The dynamical map V(t, t0) can
be a very complicated and involuted object in general, as the interaction of S with the
environment might include effects, such as information back-flow, which are difficult to
describe. The action of VS(t, t0) is resumed in Fig. 2.2.

2.2.2. The Markovian master equation

From a physical point of view Markovianity is usually associated with the absence of
memory effects on the interaction between S and E . In facts the distinction between
Markovian and non-Markovian dynamics [H.-P. Breuer 2012; Li, Hall, and Wiseman
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Figure 2.2.: Diagram showing the action of the dynamical map VS(t, t0).

2018] has been the object of great attention in the last 20 years, leading to the defi-
nition of different measures of the non-Markovianity of a process [H.-P. Breuer, Laine,
and Piilo 2009; H.-P. Breuer, Laine, Piilo, and Vacchini 2016; Rivas, Huelga, and Ple-
nio 2014; Smirne et al. 2013] and to the individuation of several methods to treat such
systems [Cangemi et al. 2018; Ferialdi 2016; Strunz, Diósi, and Gisin 1999; Vega and
Alonso 2017], among which the Nakajima-Zwanzig projection operator technique is prob-
ably the most known [Nakajima 1958; Prigogine 1962; Zwanzig 1960]. Non-Markovianity
is involved also in more fundamental issues, like its relation with time-divisibility [Chruś-
ciński and Kossakowski 2010] and causality [Budini 2018]. Though non-Markovianity can
be also exploited in technological applications, in this work we will focus on Markovian
systems.

A much simpler distinction between Markovian and non-Markovian dynamics can be
obtained from a mathematical perspective, as a stochastic process is said to be Markovian
if the probability distribution describing its future evolution depends only on the present
and not on the past [Cover and Thomas 2006]. Conversely the dynamics is said to be
non-Markovian when this property does not hold.

In what follows we are going to see how the Markovian master equation can be de-
rived either via dynamical semigroups theory and via microscopic derivation, so that
when discussing the collisional model we will be able to highlight and discuss the main
differences between these approaches.

As we saw in the previous pages tracing away the degrees of freedom of the environment
after letting the whole S+E system evolve defines a dynamical map VS(t, t0): since after
its action we must still have a density matrix, VS(t, t0) has to be a Completely Positive
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Trace preserving map (CPT). A map is said to be trace preserving if:

Tr
{
VS(t, t0)ÂS

}
= Tr

{
ÂS

}
∀ ÂS, t. (2.38)

Positivity is the property of a map of mapping positive semidefinite operators into
positive semidefinite operators. An operator ÂS is positive semidefinite if:

〈φi| ÂS |φi〉 ≥ 0 ∀ |φi〉 (2.39)

Complete positivity is a stronger property than positivity: it requires not only that
any positive semidefinite operator is mapped into a positive semidefinite operator, but
also that any extension of a positive semidefinite operator is mapped into a positive
semidefinite operator. By an extension of an operator we mean an operator whose
action is extended to another Hilbert space. Consider an auxiliary Hilbert space HS′

and the identity operator on this space IS′ . The map VS(t, t0) is said to be completely
positive if its tensor product with the identity map IS′ maps any positive operator acting
on the Hilbert space HS ⊗HS′ into positive operators:

(VS(t, t0)⊗ IS′)(ÂSS′) ≥ 0 ∀ÂSS′ ≥ 0. (2.40)

Physically this amounts to the requirement that the local action of VS(t, t0) on S should
map states into states, even in presence of quantum correlations, like entanglement,
between S and S ′.

The axiomatic approach to the derivation of the Markovian master equation assumes
that the maps VS(t, t0) form a dynamical semigroup as t varies. That is, in the time-
homogeneous case, the maps fulfill the property:

VS(t2, t1)VS(t1, t0) = VS(t2, t0) (2.41)

It is also required that the one parameter family of maps VS(t, t0) is ultraweak con-
tinuous, that is:

lim
ε→0

TrS

{
(V†S(t0 + ε, t0)ÂS − ÂS)ρ̂S(t0)

}
= 0 (2.42)

This property allows for the introduction of the generator L of the dynamical semi-
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group, thank to which we can write:

VS(t) = exp{Lt} ⇒ d

dt
ρ̂S(t) = Lρ̂S(t) (2.43)

This is the Markovian master equation: we can now proceed in deriving the standard
form of the generator L.

The map VS(t), and thus the generator L, can be characterized in terms of operators
acting on S only. To show this we write the density matrix ρ̂E through its spectral
decomposition:

ρ̂E =
∑

α

λα |φα〉〈φα| . (2.44)

Accordingly we can write the dynamical map as:

VS(t)ρ̂S(0) =
∑

α,β

ŴSαβ(t)ρ̂S(0)Ŵ †
Sαβ(t), (2.45)

where the operators ŴSαβ(t) are defined as:

ŴSαβ(t) =
√
λβ 〈φα| ÛSE(t, 0) |φβ〉 , (2.46)

and have the property:

∑

α,β

Ŵ †
Sαβ(t)ŴSαβ(t) = ÎS, (2.47)

which guarantees that VS(t) is trace preserving.

For the sake of simplicity let us focus on the case where dim(HS) = d < ∞. We
can then define an orthonormal base of operators acting on HS made out of d2 elements{
F̂Si

}
fulfilling:

(
F̂Si, F̂Sj

)
= TrS

{
F̂ †SiF̂Sj

}
= δij. (2.48)

We also choose the operator F̂Sd2 to be proportional to the identity operator, so that all
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the other F̂Si are traceless. Decomposing the operators WSαβ(t) in this basis, we get:

ŴSαβ(t) =
d2∑

i=1

F̂Si

(
F̂Si, ŴSαβ

)
⇒ VS(t)ρ̂S(0) =

∑

ij

cij(t)F̂Siρ̂S(0)F̂ †Sj, (2.49)

where the cij are defined as:

cij(t) =
∑

α,β

(
F̂Si, ŴSαβ(t)

)(
F̂Sj, ŴSαβ(t)

)∗
, (2.50)

and form an Hermitian positive definite matrix. At this point we can go back to
Eq. (2.43) and get from the definition:

Lρ̂S = lim
ε→0

1

ε
[VS(ε)ρ̂S(0)− ρ̂S(0)]

= lim
ε→0

[
1

d

cd2d2(ε)−d

ε
ρ̂S(t) +

1√
d

d2−1∑

i=1

(
cid2(ε)

ε
F̂Siρ̂S(t) +

cd2i(ε)

ε
ρ̂S(t)F̂ †Si

)

+
d2−1∑

i,j=1

cij(ε)

ε
F̂Siρ̂S(0)F̂ †Sj

]
. (2.51)

In order to find the standard form of the Markovian generator L we define the coefficients:

ad2d2 = lim
ε→0

cd2d2(ε)− d
ε

(2.52)

aid2 = lim
ε→0

cid2(ε)

ε
(2.53)

aij = lim
ε→0

cij(ε)

ε
, (2.54)

where the matrix formed by the aij is Hermitian and positive definite, since the cij are.
The coefficients aij allow us to define the three operators:

F̂S =
1√
d

d2−1∑

i=1

aid2F̂Si (2.55)

ĜS =
1

2d
ad2d2 ÎS +

1

2

(
F̂ †S + F̂S

)
(2.56)

Ĥ =
1

2i

(
F̂ †S − F̂S

)
(2.57)
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Thank to these operators we can write the Markovian generator as:

Lρ̂S(t) = −i
[
Ĥ, ρ̂S(t)

]
+
{
ĜS, ρ̂S(t)

}
+

d2−1∑

i,j=1

aijF̂Siρ̂S(t)F̂ †j . (2.58)

This equation can be further simplified by exploiting the fact that the dynamical semi-
group elements are trace preserving:

TrS {Lρ̂S(t)} = 0⇒ ĜS = −1

2

d2−1∑

i,j=1

aijF̂
†
sjF̂Si, (2.59)

so that substituting we can write the first standard form of the Markovian generator:

Lρ̂S(t) = −i
[
Ĥ, ρ̂S(t)

]
+

d2−1∑

i,j=1

aij

(
F̂Siρ̂S(t)F̂ †Sj −

1

2

{
F̂ †SjF̂Si, ρ̂S(t)

})
. (2.60)

Because of its positivity, the matrix formed by the coefficients aij can be diagonalized
with the help of an appropriate unitary transformation û with matrix elements uij such
that:

û†âû = Diag {γ1, γ2, · · · , γd2−1} with γi ≥ 0, (2.61)

so that defining the operators ÂSk through:

F̂Si =
d2−1∑

k=1

ukiÂSk (2.62)

it is possible to write the generator L in its diagonal form:

Lρ̂S(t) = −i
[
Ĥ, ρ̂S(t)

]
+

d2−1∑

k=1

γk

(
ÂSkρ̂S(t)Â†Sk −

1

2

{
Â†SkÂSk, ρ̂S(t)

})
. (2.63)

Equation (2.63) is known as the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equa-
tion, as it was first derived independently by Gorini, Kossakowski and Sudarshan [Gorini,
Kossakowski, and Sudarshan 1976] and Lindblad [Lindblad 1976]. The operators ÂSk
are usually dubbed Lindblad operators.

The generator L does not fix univocally the form of H or the Lindblad operators ÂSk:
in fact there a two kinds of “gauge transformation” that leaves unchanged the generator:
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• unitary transformations of the set of Lindblad operators such:

√
γkÂSk →

√
γ′kÂ

′
sk =

∑

ki

uki
√
γiÂSi (2.64)

with uki the elements of a unitary matrix.

• inhomogeneous transformations of the form:

ÂSk → Â′sk = ÂSk + ak (2.65)

Ĥ → Ĥ ′ = Ĥ +
1

2i

∑

j

γj

(
a∗jÂSj − ajÂ†Sj

)
+ b, (2.66)

with aj ∈ C and b ∈ R. This property allows one to choose traceless Lindblad
operators.

Though perfectly legitimate, the axiomatic derivation of the GKSL equation leaves
the physics “under the rug”: just for instance, it is not clear what is the meaning of the
coefficients γk, nor the origin and the role of Ĥ, which though being Hermitian cannot
be identified with the free Hamiltonian of the system.

Thus in the next section we are going to write down the GKSL equation using the so
called microscopic derivation.

2.2.3. Microscopic derivation

The microscopic derivation of the Markovian generator [H. P. Breuer and Petruccione
2002] is an ab initio procedure that, starting from the interaction picture equation of
motion of the joint density matrix ρ̂SE of the system, allows one to write down Eq. (2.63)
through a series of approximations that highlight the physical conditions needed to derive
a Markovian master equation.

The microscopic derivation is most easily performed in the interaction picture, which
we shall adopt here. To start the derivation we assume the joint S + E system to be
described by the Hamiltonian:

ĤSE = ĤS + ĤE + ĤS−E (2.67)

and we assume the interaction Hamiltonian ĤS−E to represent a small perturbation.
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In the interaction picture we have:

d

dt
ρ̂SE(t) = −i

[
ĤS−E(t), ρ̂SE(t)

]
⇒ (2.68)

ρ̂SE(t) = ρ̂SE(0)− i
∫ t

0

ds
[
ĤS−E(d), ρ̂SE(s)

]
. (2.69)

As usual we assume that the initial state of the joint system is a factorized state, i.e.:

ρ̂SE(0) = ρ̂S(0)⊗ ρ̂E . (2.70)

This assumption is crucial in order to get a Markovian evolution, as the presence of
initial correlations between system and environment leads to non-Markovian dynamics
and is still the object of several studies [Hayashi, Kimura, and Ota 2003; Modi 2012;
Pollock et al. 2018; Ringbauer et al. 2015; Štelmachovič and Bužek 2001; Usha Devi,
Rajagopal, and Sudha 2011].

We will also assume that the stability condition holds:

TrE

{[
ĤS−E , ρ̂SE(0)

]}
= 0. (2.71)

For the stability condition to hold the environmental average of the interaction Hamil-
tonian must be null. With these assumptions, inserting Eq. (2.69) into Eq. (2.68) and
tracing over the environmental degrees of freedom we get:

d

dt
ρ̂S(t) = −

∫ t

0

dsTrE

{[
ĤS−E(t),

[
ĤS−E(s), ρ̂SE(s)

]]}
. (2.72)

Equation (2.72) still contains the joint S + E density matrix ρ̂SE : in order to solve this
we perform the so called Born approximation. Within this approximation one assumes
that, because of the weak-coupling assumption, the environment is only slightly affected
by the interaction with the system S, and so is its density matrix, such that one can
approximate the joint state of S and E with a tensor product for all times t:

ρ̂SE ' ρ̂S(t)⊗ ρ̂E . (2.73)

It is important to note that this assumption by no means states that there are no
excitations in the environment: as it will be clearer with the Markovian approximation
to be performed in a few passages and in the collisional derivation, we just assume
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that the environmental excitations decay over a timescale which is far smaller than the
coarse-grained timescale at which we look at system’s dynamics.

Thanks to the Born approximation we can write:

d

dt
ρ̂S(t) = −

∫ t

0

dsTrE

[
ĤS−E(t), [HS−E(s), ρ̂S(s)⊗ ρ̂E ]

]
. (2.74)

Equation (2.74) is manifestly non-Markovian, since it depends on ρ̂S(s): the Markov
approximation consist exactly in substituting ρ̂S(s) with ρ̂S(t), so that one can write the
Redfield equation [Redfield 1957; Schmidt 1981]:

d

dt
ρ̂S(t) = −

∫ t

0

dsTrE

[
ĤS−E(t), [HS−E(s), ρ̂S(t)⊗ ρ̂E ]

]
. (2.75)

The Redfield equation is local in time, but still depends on the initial preparation time,
and thus may fail positivity in general, though this issue can be solved under appropriate
hypothesis [Farina and Giovannetti 2019]. In order to solve this we want to substitute
s with t− s and let the upper limit of the integral go to infinity: this is allowed as long
as the timescale τE at which the environmental correlations decay is much smaller than
the relaxation time τR. If this condition justifying the Markov approximation is fulfilled,
then the integral decays sufficiently fast for s >> τE and we can let the upper limit of
the integral to infinity. It is this we meant when we said that the Markovian description
represents a coarse-grained description of the system. Performing the substitution into
Eq. (2.75) we get:

d

dt
ρ̂S(t) = −

∫ ∞

0

dsTrE

[
ĤS−E(t), [HS−E(t− s), ρ̂S(t)⊗ ρ̂E ]

]
. (2.76)

The approximations performed up to now are usually dubbed Born-Markov approxi-
mation, but still they do not guarantee that L is the generator of a dynamical semigroup.
In order to attain this we must further approximate, introducing the secular approxima-
tion. In order to do so we write the interaction Hamiltonian as:

ĤS−E =
∑

α

ÂSα ⊗ B̂Eα, (2.77)

where the operators ÂSα and B̂Eα are Hermitian. We then define the eigenoperators of
the Hamiltonian ĤS: this is readily done by considering the projectors Π̂S(ε) onto the
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eigenspace with energy ε. Then we can define:

ÂSα(ω) =
∑

ε−ε′=ω

Π̂S(ε′)ÂSαΠ̂S(ε). (2.78)

The operators ÂSα(ω) are eigenoperators of ĤS since it can be verified that:

[
ĤS, ÂSα(ω)

]
= −ωÂSα(ω)

[
ĤS, Â

†
Sα(ω)

]
= ωÂ†Sα(ω). (2.79)

The eigenoperators ÂSα(ω) have the properties:

ÂSα(ω) = Â†Sα(−ω) (2.80)

ÂSα =
∑

ω

ÂSα(ω) =
∑

ω

Â†Sα(ω)⇒ (2.81)

ĤS−E =
∑

α,ω

ÂSα(ω)⊗ B̂Eα =
∑

α,ω

Â†Sα(ω)⊗ B̂†Eα. (2.82)

where the first property comes directly from the definition and the second from the
completeness relation. The advantage of working in the basis of the eigenoperators of
ĤS is that in the interaction picture they evolve in athe very simple fashion:

ĤS−E(t) =
∑

α,ω

e−iωtÂSα(ω)⊗ B̂Eα(t) =
∑

α,ω

eiωtÂ†Sα(ω)⊗ B̂†Eα(t), (2.83)

where B̂Eα are the bath operators in the interaction picture. Note also that the stability
condition in Eq. (2.71) now becomes:

〈B̂Eα(t)〉 = Tr
{
B̂Eα(t)ρ̂E

}
= 0. (2.84)

We can now develop the commutators in Eq. (2.76) and get:

d

dt
ρ̂S(t) =

∫ ∞

0

ds

{[
ĤS−E(t− s) (ρ̂S(t)⊗ ρ̂E) ĤS−E(t)

− (ρ̂S(t)⊗ ρ̂E) ĤS−E(t− s)ĤS−E(t)
]

+ h.c.

}
(2.85)

=
∑

ω,ω′

∑

α,β

ei(ω
′−ω)tΓαβ(ω)

(
ÂSβ(ω)ρ̂S(t)Â†Sα(ω′)

− Â†Sα(ω′)ÂSβ(ω)ρ̂S(t)
)

+ h.c. (2.86)
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where the quantities

Γαβ(ω) =

∫ ∞

0

ds eiωs
〈
B̂†Eα(t)B̂Eβ(t− s)

〉
, (2.87)

are the one-sided Fourier transforms of the environmental correlation functions:

〈
B̂†Eα(t)B̂Eβ(t− s)

〉
= TrE

{
B̂†Eα(t)B̂Eβ(t− s)ρ̂E

}
. (2.88)

Moreover, if ρ̂E is a stationary state of the environment, that is
[
ĤE , ρ̂E

]
= 0, than the

correlation functions are homogeneous in time, so that their Fourier transform is time-
independent. This is the case, for instance, when the environmental state is a thermal
state, while it is not true if the environmental state is, say, a squeezed vacuum.

It is in Eq. (2.86) that the secular approximation comes into play: system S is char-
acterized by a timescale τS ' |ω − ω′|−1 over which the state of S changes appreciably.
When τS is small compared with the relaxation time τR of the joint system, than the
non-secular terms in Eq. (2.86) can be neglected, as they average out on timescale τR.
We can thus eliminate all the terms for which ω 6= ω′ getting:

d

dt
ρ̂S(t) =

∑

ω

∑

α,β

[
Γαβ(ω)

(
ÂSβ(ω)ρ̂S(t)Â†Sα(ω)− Â†Sα(ω)ÂSβ(ω)ρ̂S(t)

)
+ h.c.

]
.

(2.89)

The last step to do to write the Markovian generator in its first form is to divide the
Γαβ(ω) as follows:

Γαβ(ω) =
1

2
γαβ(ω) + iΣαβ(ω), (2.90)

where the coefficients Σαβ(ω) are defined as:

Σαβ(ω) = − i
2

(
Γαβ(ω)− Γ∗βα(ω)

)
, (2.91)

and at fixed ω form an Hermitian matrix, while the coefficients

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) =

∫ +∞

−∞
dseiωs

〈
B̂Eα(s)B̂Eβ(0)

〉
(2.92)

form a positive matrix. We can then write the Markovian master equation in the inter-
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action picture as:

d

dt
ρ̂S(t) = −i

[
ĤLS, ρ̂S(t)

]
(2.93)

+
∑

ω

∑

α,β

γαβ(ω)

(
ÂSβ(ω)ρ̂S(t)Â†Sα(ω)− 1

2

{
Â†Sα(ω)ÂSβ(ω), ρ̂S(t)

})
,

where the Hermitian operator ĤLS is defined as:

ĤLS =
∑

ω

∑

αβ

Σαβ(ω)Â†Sα(ω)ÂSβ(ω), (2.94)

and represents a renormalization contribution to the Hamiltonian, usually called Lamb
shift Hamiltonian. The other part of the generator, usually dubbed the dissipator, can be
brought in the GKSL form by diagonalizing the matrix γαβ(ω) through an appropriate
unitary u(ω) and introducing the operators

Â′α(ω) =
∑

β

uαβ(ω)ÂSβ(ω), (2.95)

so that we can write

d

dt
ρ̂S(t) = −i

[
ĤLS, ρ̂S(t)

]
(2.96)

+
∑

ω,α

γα(ω)

(
Â′Sα(ω)ρ̂S(t)Â

′†
Sα(ω)− 1

2

{
Â
′†
Sα(ω)Â′Sα(ω), ρ̂S(t)

})
.

We have finally derived the Markovian generator in the GKSL form through a micro-
scopic derivation: during the procedure we invoked several approximations, the most
important being:

• the weak coupling approximation: the coupling between S and E is small, so that
it affects only slightly the environment and we are able to work at the second order
of perturbation theory;

• the Born approximation: because of the weak coupling we assume that it is possible
to write the joint state of S + E as a tensor product at any time;

• the Markov approximation: thank to the fast decay of environmental correlation
functions we can write an equation which is time local;
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• the secular approximation: when the timescale τS over which the state of system
S varies appreciably is small compared to the relaxation time of the joint S + E
system, then it is possible to neglect the counter rotating terms in Eq. (2.86).

The microscopic derivation, at glance with the axiomatic one, makes clear which are
the physical assumptions entailing the possibility of writing a Markovian generator of
the dynamics: nonetheless if only one of these assumptions is false, then the derivation
is not valid anymore, and one would have to rely to other methods and approximations
in order to write a master equation. This is completely different with what happens
with collisional models, as we are going to see in the next section.

2.3. Collisional model

Collisional models were introduced long ago as a tool to describe open quantum sys-
tems [Rau 1963], but it was only until recently that they gained much attention from
the community. This interest stems from the great flexibility in depicting the dynamics
of an open quantum systems given by collisional models: just by changing a few pa-
rameters one can describe very different situation, from Markovian dynamics [Amato,
H.-P. Breuer, and Vacchini 2019] to non-Markovian dynamics [Campbell et al. 2018;
Kretschmer, Luoma, and Strunz 2016; Lorenzo, Ciccarello, Palma, and Vacchini 2017;
McCloskey and Paternostro 2014; Pellegrini and Petruccione 2009], from feedback pro-
cesses [Altamirano et al. 2017; Grimsmo 2015] to measurement processes [Seah et al.
2019]. Moreover, as we are going to see in Chap. 4, collisional models also entails the
possibility of keeping track of the environmental degrees of freedom, a very important
feature in the study of open quantum systems.

In collisional models one describes the environment E as a collection {Ei} of quantum
subsystems usually called ancillas. These ancillas interact in a collisional fashion with
system S for a short but finite time interval δt according to some interaction Hamiltonian.
The sequence of this collisions gives rise to a time discrete evolution of S, the continuous
limit being recovered sending to zero the collision time δt and to infinity the number n
of collisions.

Already from this simple description of collisional model we can observe that there
are many knobs on which to intervene to modify the dynamics: one could change the
state of the ancillas to describe different environments, introduce intra-ancilla collisions
to introduce non-Markovian effects [Ciccarello, Palma, and Giovannetti 2013; Lorenzo,
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Ciccarello, and Palma 2016] or change the order with which the ancillas interact with S
in order to obtain feedback dynamics and more.

Before seeing in Chap. 3 how a collisional model can be used to describe cascade
systems dynamics, let us show how to derive the Markovian master equation through a
collisional model.

We consider once again a system S characterized by the Hamiltonian ĤS, while we
describe the environment E as a collection of ancillas {E`} all in the same reference
state η̂` = η̂, characterized by the Hamiltonian ĤE =

∑
` ĤE` . The interaction between

S and E is described by the Hamiltonian ĤS−E =
∑

` ĤS−E` , which is the sum of the
interaction Hamiltonians of S and the ancillas E`. We further assume the initial state
to be factorized:

ρ̂SE(0) = ρ̂S(0)
⊗

`

η̂` (2.97)

Furthermore we assume, without loss of generality, the interaction picture interaction
Hamiltonian between S and an ancilla E` to be of the generic form:

ĤS−E` = g
∑

α,ω

ÂSα(ω)⊗ B̂E`α(ω) (2.98)

with ÂSα, B̂Eiα Hermitian and g being a coefficient measuring the strength of the inter-
action. Assuming the ÂSα(ω) to be eigenoperators of ĤS one can write the evolution of
the interaction Hamiltonian as:

ĤS−E` =
∑

α,ω

e−iω`δtÂSα(ω)⊗ B̂E`(`δt, ω) (2.99)

where the time evolution of the environmental operators is given by:

B̂E`α(`δt) = B̂E`α((`− 1)δt, ω)− i
[
ĤE` , B̂E`α((`− 1)δt, ω)

]
δt (2.100)

Fig. 2.3 shows how the collisional model proceeds: the reduced density matrix ρ̂S

evolves in discrete steps. At the first step S interacts with the first ancilla E1 according
to:

ρ̂S(0)⊗ η̂1 → USE1(ρ̂S(0)⊗ η̂1) = ÛSE1(ρ̂S(0)⊗ η̂1)Û †SE1
, (2.101)
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USE1
(⇢̂S(0)⌦ ⌘̂1)

<latexit sha1_base64="MyMkOSCddmuBazHgmHI+gu9Q2xE="></latexit>

USE2
(⇢̂S(�t)⌦ ⌘̂2)

<latexit sha1_base64="X7EwzyjVLVDoBuhfEzmFWT4eipU="></latexit>

S
<latexit sha1_base64="V87P2saRU2QC3O8BLSmWolW2lk8=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJICRSYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w/uTWQ1hw6PZKR7ATMghYIOCpTQizWwMJDQDabXmd99BG1EpO5wFoMfsokSY8EZplL7dlituXU3B10mXkFqpEBrWP0ajCJuQ1DIJTOm77kx+gnTKLiEeWVgDcSMT9kE+ilVLATjJ3nQOT2xhmFEY9BUSJqL8HsjYaExszBIJ0OGD2bRy8T/vL7F8aWfCBVbBMWzQygk5IcM1yJtAOhIaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/H6Z3Dfq3lm90T6vNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BTiyRYA==</latexit>

E1
<latexit sha1_base64="d377eDl3Xy6eMavIkIHAzh1+zmk=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BETxGNA9IljA76cQhsw9mepUQ8gle9eRNvPo9HvwXd9c9aGKdiqpuurq8SElDtv1pFZaWV1bXiuuljc2t7Z3y7l7LhLEW2BShCnXH4waVDLBJkhR2Io3c9xS2vfFl6rcfUBsZBnc0idD1+SiQQyk4JdLtVd/plyt21c7AFomTkwrkaPTLX71BKGIfAxKKG9N17IjcKdckhcJZqRcbjLgY8xF2ExpwH407zaLO2FFsOIUsQs2kYpmIvzem3Ddm4nvJpM/p3sx7qfif141peO5OZRDFhIFID5FUmB0yQsukA2QDqZGIp8mRyYAJrjkRasm4EIkYJ6WUkj6c+e8XSatWdU6qtZvTSv0ib6YIB3AIx+DAGdThGhrQBAEjeIJneLEerVfrzXr/GS1Y+c4+/IH18Q1jopH2</latexit>
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<latexit sha1_base64="QCTgREvRRbGsgU4+Sh8gcHeDWCM=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBA8hd1E0GNQBI8RzQOSJcxOOnHI7IOZXiWEfIJXPXkTr36PB//F3XUPmlinoqqbri4vUtKQbX9aS8srq2vrhY3i5tb2zm5pb79lwlgLbIpQhbrjcYNKBtgkSQo7kUbuewrb3vgy9dsPqI0MgzuaROj6fBTIoRScEun2ql/rl8p2xc7AFomTkzLkaPRLX71BKGIfAxKKG9N17IjcKdckhcJZsRcbjLgY8xF2ExpwH407zaLO2HFsOIUsQs2kYpmIvzem3Ddm4nvJpM/p3sx7qfif141peO5OZRDFhIFID5FUmB0yQsukA2QDqZGIp8mRyYAJrjkRasm4EIkYJ6UUkz6c+e8XSatacWqV6s1puX6RN1OAQziCE3DgDOpwDQ1ogoARPMEzvFiP1qv1Zr3/jC5Z+c4B/IH18Q1mwJH4</latexit>
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<latexit sha1_base64="cIDd/3ixVfoVEGWYf14tM/xbmUQ=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB6DIniMaB6QLGF20olDZh/M9Coh5BO86smbePV7PPgv7q570Gidiqpuurq8SElDtv1hFZaWV1bXiuuljc2t7Z3y7l7bhLEW2BKhCnXX4waVDLBFkhR2I43c9xR2vMlF6nfuURsZBrc0jdD1+TiQIyk4JdLN5aA+KFfsqp2B/SVOTiqQozkof/aHoYh9DEgobkzPsSNyZ1yTFArnpX5sMOJiwsfYS2jAfTTuLIs6Z0ex4RSyCDWTimUi/tyYcd+Yqe8lkz6nO7PopeJ/Xi+m0Zk7k0EUEwYiPURSYXbICC2TDpANpUYiniZHJgMmuOZEqCXjQiRinJRSSvpwFr//S9q1qnNSrV3XK43zvJkiHMAhHIMDp9CAK2hCCwSM4RGe4Nl6sF6sV+vte7Rg5Tv78AvW+xdoT5H5</latexit>

TrE2
{⇢̂SE2

} = ⇢̂S(2�t)
<latexit sha1_base64="nAQ8Qf1R/kq84y6tQ6p9U/qJNDc="></latexit>

Figure 2.3.: A sketch resuming the dynamics as described by a collisional model. First
S interacts with the ancilla E1 through USE1 , as shown in panel (a). Then,
as in panel (b), one traces away the degrees of freedom belonging to E1 in
order to get the state ρ̂S(δt) of S after the first collision. After it is traced
away, the ancilla E1 will partecipate to the dynamics no more. Then S
interacts with the second ancilla as in panel (c), which is then traced away
in panel (d) in order to get the state ρ̂S(2δt) of S after the second collision.

with

ÛSE` = exp
[
−iĤSE`δt

]
. (2.102)

At this point one traces away the ancilla E1, which will not partecipate to the dynamics
anymore, getting the reduced state after the first step of length δt:

ρ̂S(δt) = TrE1 {USE1(ρ̂S(0)⊗ η̂1)} (2.103)

Consider next the state ρ̂S(δt)⊗ η̂2 and iterates the procedure, so that we can write the
recursive relation:

ρ̂S((`+ 1)δt) = TrE`

{
ÛSE` (ρ̂S(`δt)⊗ η̂`) ÛSE`

}
, (2.104)

which, as we shall see, allows us to derive the master equation. First we expand the
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unitary operator ÛSE` in powers of gδt:

ÛSE` = ÎSE` − iδtĤSE` −
δt2

2
Ĥ2
SE`

+O
(

(gδt)3
)
. (2.105)

Inserting this expression in Eq. (2.104) and retaining terms up to second order in gδt

we can write:

ρ̂S((`+ 1)δt) = TrE`

{
ρ̂S(`δt)⊗ η̂` − iδt

[
ĤSE` , ρ̂S(`δt)⊗ η̂`

]
(2.106)

− δt2

2

{
ĤSE` , ρ̂S(`δt)⊗ η̂`

}
+ δt2ĤSE`(ρ̂S(`δt)⊗ η̂`)ĤSE`

}
.

As in the previous section, we now invoke a stability condition, which in the collisional
model takes the form:

TrE`

{
B̂E`αη̂`

}
= 0 ∀`, α. (2.107)

Thank to Eq. (2.107) the first order term in Eq. (2.106) vanishes, leading to:

ρ̂S((`+ 1)δt) = ρ̂S(`δt) + δt2g2
∑

α,β
ωω′

TrE`

{
B̂†E`β(`δt, ω′)B̂E`α(`δt, ω)η̂`

}
·

e−i(ω−ω
′)`δt

(
ÂSα(ω)ρ̂S(`δt)Â†Sβ(ω′)− 1

2

{
Â†Sβ(ω′)ÂSα(ω), ρ̂S(`δt)

})
.

This is the discrete form of the Markovian master equation, where we still did not
invoke the secular approximation. If we enforce this approximation, i.e. we discard all
the term with ω 6= ω′ we get:

ρ̂S((`+ 1)δt) = ρ̂S(`δt) (2.108)

+δt2g2
∑

α,β
ω

TrE`

{
B̂†E`β(`δt, ω)B̂E`α(`δt, ω)η̂`

}

(
ÂSα(ω)ρ̂S(`δt)Â†Sβ(ω)− 1

2

{
Â†Sβ(ω)ÂSα(ω), ρ̂S(`δt)

})
.

As in the microscopic derivation, if η̂E` is a stationary state of ĤE` then the environ-
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mental correlation functions do not depend on time, and we can write:

ρ̂S((`+ 1)δt)− ρ̂S(`δt)

δt
= (2.109)

δtg2
∑

α,β
ω

γαβ(ω)

(
ÂSα(ω)ρ̂S(`δt)Â†Sβ(ω)− 1

2

{
Â†Sβ(ω)ÂSα(ω), ρ̂S(`δt)

})

where we have defined

γαβ(ω) = TrE`

{
B̂†E`β(ω)B̂E`α(ω)η̂`

}
. (2.110)

One can then diagonalize the matrix of coefficients γαβ(ω) through a unitary u such
that:

ûγαβ(ω)û† = Diag (γ1, γ2 · · · γd2−1) . (2.111)

After this operation we can write:

ρ̂S((`+ 1)δt)− ρ̂S(`δt)

δt
= (2.112)

δtg2
∑

α,ω

γα(ω)

(
ÂSα(ω)ρ̂S(`δt)Â†Sα(ω)− 1

2

{
Â†Sα(ω)ÂSα(ω), ρ̂S(`δt)

})
.

Equation (2.112) is the discrete form of the Markovian generator in the GKSL form:
it is identical to the standard Markovian generator, with the only difference that in this
case the evolution of the reduced density matrix proceeds in discrete time steps of length
δt. Any master equation derived via a collisional model will have this discrete feature
before taking the continuous time limit.

To get a continuous time equation in a collision model, one has to consider the limit
in which the finite time interval δt becomes a differential. In order to get meaningful
results one must, at the same time, consider the limit of an infinite number of collisions,
so that:

lim
δt→0

δt = dt (2.113)

lim
δt→0
`→∞

`δt = t (2.114)

lim
δt→0
`→∞

δtg2 = γ (2.115)
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Applying these limits to Eq. (2.112) we retrieve the continuous time Marokovian
generator:

d

dt
ρ̂S(t) =

∑

α,ω

γ̃α(ω)

(
ÂSα(ω)ρ̂S(t)Â†Sα(ω)− 1

2

{
Â†Sα(ω)ÂSα(ω), ρ̂S(t)

})
(2.116)

where γ̃α(ω) = γγα(ω).
Now that we have completed the derivation of the Markovian master equation through

a collisional model, we can comment on similarities and differences between this deriva-
tion and the microscopic one we saw in the previous section.

In the microscopic derivation we first invoked the Born approximation, which allowed
us to assume the reduced state and the environmental state to be in a product state for
all time t due to the weakness of the interaction. In the collision model one does not need
such an approximation, because the environment is modeled as a collection of degrees
of freedom, the ancillas, that are independent from each other and interact piecewise
with the reduced system. In the collisional setting the markovianity of the reduced
dynamics is dictated by the intra-ancilla interactions: in absence of such interactions,
as we assumed, the dynamics is automatically Markovian. This also implies that in
the collisional setting one does not need the Markov approximation, the one that in
the microscopic derivation allows for a time-local generator: dynamics in the collisional
model we used in this section is time local per se.
Then in both derivations we called in our help the stability condition in order to

eliminate first order terms from the generator: it must however be noted that this
condition is not restricting us, as the stability condition can always be enforced by
moving to an appropriate rotating reference frame.

Finally in both derivations we invoked the secular approximation: though this ap-
proximation allows to simplify a lot the equations, it is actually not crucial in order to
get a Markovian dynamics: as it can be found in literature [H. P. Breuer, Dietz, and
Holthaus 1988; H. P. Breuer and Petruccione 2002; H.-P. Breuer and Petruccione 1997;
Kohler, Dittrich, and Hänggi 1997], the strong coupling regime can be dealt with via
Floquet theory. The approximations used in the two models are resumed in table 2.1.

The important point to note is that collisional models allow for greater elasticity in
depicting the dynamics: as it can be seen from the literature, and as we are going to see
in Chap. 3, by changing the order in which the ancilla interact with the reduced system
S, or introducing intra-ancilla interactions, one can easily adapt the collisional model to
many situations, ranging from cascade systems to non-Markovian dynamics.
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Approximation Microscopic derivation Collisional model

Born Approximation ρ̂SE(t) = ρ̂S(t)⊗ ρ̂E Not needed

Stability condition TrE

{[
ĤS−E , ρ̂SE(0)

]}
= 0 TrE`

{
B̂E`αη̂`

}
= 0

Markov approximation ρ̂S(s)→ ρ̂S(t) Not needed, Markovian-
ity is provided by the ab-
sence of intra-ancilla inter-
actions

Secular approximation τS ' |ω − ω′|−1 << τR τS ' |ω − ω′|−1 << τR

Table 2.1.: Table resuming the approximations performed in both the microscopic and
collisional derivation of the Markovian generator.

Moreover, as we will see in Chap. 4, while in the microscopic derivation it is hard to
keep track of the environmental degrees of freedom, in collisional models we have the
freedom of not tracing away the ancilla after each interaction, but rather keep the joint
system-ancilla state and proceed with the next collision. This allows one to monitor the
correlations that are created between the system and the environment, a very precious
feature when, for instance, one is interested in the transient dynamics and not only in
the steady state.
In the following two chapters we will thus see some of the power of collisional models.
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CHAPTER 3

Cascade systems

Cascade systems are multipartite quantum systems were two or more subsystems S1, S2, . . .

are linked via their interaction with a common environment in a chiral fashion. By chiral
we mean that there is a hierarchy between the subsystems S1, S2, . . . , often called nodes:
the simplest example of such hierarchy is given by the case of only two subsystems
S1, S2 where the output from S1 is fed as input to S2, but not viceversa. This directional
interaction can happen only thanks to the presence of the environment mediating the
interaction, as a simple Hamiltonian coupling is inherently symmetric, and thus unable
to induce a controller-idler dualism between the nodes.

It was just with this simple case that the study of cascade systems started: the input-
output (IO) formalism was developed by Gardiner and collaborators [Carmichael 1993;
C. W. Gardiner 1993; C. W. Gardiner and Collett 1985; C. W. Gardiner and Parkins
1994] in order to analyze situations where the output from a quantum system is used
as an input for another quantum system, and was then extended to account for fermion
statistics of the driving [C. Gardiner 2004; Grimsmo et al. 2016] and other situation
such as ultra-strong coupling [Ciuti and Carusotto 2006] and pulsed driving [Kiilerich
and Mølmer 2019].

With the development of 1D waveguides [Das et al. 2018; Fischer et al. 2018; Mah-
moodian et al. 2018], the IO formalism has found a natural application in this scenario,
where various quantum nodes interact in a circuit-like fashion, eventually leading to the
development of the LSH formalism [Combes, Kerckhoff, and Sarovar 2017; J. E. Gough,
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Gohm, and Yanagisawa 2008; J. Gough and James 2009], which can be used to describe
and conceive a wide range of networks.

Though the IO formalism fits perfectly the goal of describing the signals propagating
in such networks, in order to derive master equations for the dynamics of the nodes
one has to deal with stochastic calculus, passing through both the Ito and Stratonovich
definitions of the increment [C. Gardiner 2009; C. Gardiner, C. Gardiner, and Zoller
2000]. While this procedure leads to correct results, it is possible to use a collisional
model to describe the dynamics of the network, which simplifies a lot the derivation of
a master equation, especially for complicated networks.

Thus in this chapter we will show how a collisional model can be used to describe
cascade networks, which are networks where the signals propagate unidirectionally be-
tween some quantum nodes, possibly passing through optical elements, such as beam
splitters and phase shifters. We will then see how it is possible to use this formalism
to study a network able to simulate various many-body dynamics by simply changing a
few parameters of the optical elements.

3.1. A minimal example

The simplest, and widely studied [Giovannetti and Palma 2012a,b; Lorenzo, Farace, et
al. 2015], setting of a cascade system consists in having two quantum systems S1 and S2

interacting with the same environment E in a chiral fashion: by this we mean that there
is a hierarchy between S1 and S2, in the sense that the environment first interact with
S1 and only then with S2, and there is no backscattering. Thus S2 is influenced by S1,
but viceversa is not true, see Fig. 3.1.

Let us show how to model this situation in a collisional model setting. The Hamilto-
nian of the two systems S1 and S2 is:

ĤS = ĤS1 + ĤS2 . (3.1)

Note that there is no direct interaction between S1 and S2. In the spirit of col-
lisional models we depict the environment E as a collection of independent ancillas
{E1, E2, · · ·En, · · · }, all in the same reference state η̂En , whose free Hamiltonian reads:

ĤE =
∑

n

ĤEn (3.2)
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E
<latexit sha1_base64="vlAJTCWvDG0zX40Ju4Kf1ChVw0Y=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DEogscI5gHJEnonnThk9sFMrxCW4Fd41ZM38eq3ePBf3F33oIl1Kqq66eryIiUN2fantbS8srq2Xtoob25t7+xW9vbbJoy1wJYIVai7HhhUMsAWSVLYjTSC7ynseJOrzO88oDYyDO5oGqHrwziQIymAUqnX94HuBajkejaoVO2anYMvEqcgVVagOah89YehiH0MSCgwpufYEbkJaJJC4azcjw1GICYwxl5KA/DRuEkeecaPYwMU8gg1l4rnIv7eSMA3Zup76WQW0cx7mfif14tpdOEmMohiwkBkh0gqzA8ZoWXaBfKh1EgEWXLkMuACNBChlhyESMU4Laec9uHMf79I2vWac1qr355VG5dFMyV2yI7YCXPYOWuwG9ZkLSZYyJ7YM3uxHq1X6816/xldsoqdA/YH1sc3RDeV5A==</latexit>

S1
<latexit sha1_base64="o5aJr5XiV4BKSlfY7aHhkPSq9lc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDEpQRNJRBIQ8psaLzZRNOOT90twZFVj6BFio6RMv3UPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON7me+50H1EaGwR1NI3R9Pg7kSApOqdRsDpxBuWJX7QxsmTg5qUCOxqD81R+GIvYxIKG4MT3HjshNuCYpFM5K/dhgxMWEj7GX0oD7aNwkizpjJ7HhFLIINZOKZSL+3ki4b8zU99JJn9O9WfTm4n9eL6bRpZvIIIoJAzE/RFJhdsgILdMOkA2lRiI+T45MBkxwzYlQS8aFSMU4LaWU9uEsfr9M2rWqc1at3Z5X6ld5M0U4gmM4BQcuoA430IAWCBjDEzzDi/VovVpv1vvPaMHKdw7hD6yPb3mQkgQ=</latexit>

S2
<latexit sha1_base64="XhbgpthSDwjtHXPkS9ykOJk9I7s=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDEpQRNJRBIQ8psaLzZRNOOT90twZFVj6BFio6RMv3UPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON7me+50H1EaGwR1NI3R9Pg7kSApOqdRsDmqDcsWu2hnYMnFyUoEcjUH5qz8MRexjQEJxY3qOHZGbcE1SKJyV+rHBiIsJH2MvpQH30bhJFnXGTmLDKWQRaiYVy0T8vZFw35ip76WTPqd7s+jNxf+8XkyjSzeRQRQTBmJ+iKTC7JARWqYdIBtKjUR8nhyZDJjgmhOhlowLkYpxWkop7cNZ/H6ZtGtV56xauz2v1K/yZopwBMdwCg5cQB1uoAEtEDCGJ3iGF+vRerXerPef0YKV7xzCH1gf33sfkgU=</latexit>

E
<latexit sha1_base64="vlAJTCWvDG0zX40Ju4Kf1ChVw0Y=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DEogscI5gHJEnonnThk9sFMrxCW4Fd41ZM38eq3ePBf3F33oIl1Kqq66eryIiUN2fantbS8srq2Xtoob25t7+xW9vbbJoy1wJYIVai7HhhUMsAWSVLYjTSC7ynseJOrzO88oDYyDO5oGqHrwziQIymAUqnX94HuBajkejaoVO2anYMvEqcgVVagOah89YehiH0MSCgwpufYEbkJaJJC4azcjw1GICYwxl5KA/DRuEkeecaPYwMU8gg1l4rnIv7eSMA3Zup76WQW0cx7mfif14tpdOEmMohiwkBkh0gqzA8ZoWXaBfKh1EgEWXLkMuACNBChlhyESMU4Laec9uHMf79I2vWac1qr355VG5dFMyV2yI7YCXPYOWuwG9ZkLSZYyJ7YM3uxHq1X6816/xldsoqdA/YH1sc3RDeV5A==</latexit>

S1
<latexit sha1_base64="o5aJr5XiV4BKSlfY7aHhkPSq9lc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDEpQRNJRBIQ8psaLzZRNOOT90twZFVj6BFio6RMv3UPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON7me+50H1EaGwR1NI3R9Pg7kSApOqdRsDpxBuWJX7QxsmTg5qUCOxqD81R+GIvYxIKG4MT3HjshNuCYpFM5K/dhgxMWEj7GX0oD7aNwkizpjJ7HhFLIINZOKZSL+3ki4b8zU99JJn9O9WfTm4n9eL6bRpZvIIIoJAzE/RFJhdsgILdMOkA2lRiI+T45MBkxwzYlQS8aFSMU4LaWU9uEsfr9M2rWqc1at3Z5X6ld5M0U4gmM4BQcuoA430IAWCBjDEzzDi/VovVpv1vvPaMHKdw7hD6yPb3mQkgQ=</latexit>

S2
<latexit sha1_base64="XhbgpthSDwjtHXPkS9ykOJk9I7s=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDEpQRNJRBIQ8psaLzZRNOOT90twZFVj6BFio6RMv3UPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON7me+50H1EaGwR1NI3R9Pg7kSApOqdRsDmqDcsWu2hnYMnFyUoEcjUH5qz8MRexjQEJxY3qOHZGbcE1SKJyV+rHBiIsJH2MvpQH30bhJFnXGTmLDKWQRaiYVy0T8vZFw35ip76WTPqd7s+jNxf+8XkyjSzeRQRQTBmJ+iKTC7JARWqYdIBtKjUR8nhyZDJjgmhOhlowLkYpxWkop7cNZ/H6ZtGtV56xauz2v1K/yZopwBMdwCg5cQB1uoAEtEDCGJ3iGF+vRerXerPef0YKV7xzCH1gf33sfkgU=</latexit>

No back-action!
<latexit sha1_base64="QQVB/j3azLjGOl+QX6gvb9VWeKg=">AAACCnicbVDLTgJBEJzFF+ILNfHiZZSYeJHsookeiV48GUzkkQAhvUODE2Yfmek1kpU/8Cu86smb8epPePBf3EUOCtapUtWd6i43VNKQbX9ambn5hcWl7HJuZXVtfSO/uVUzQaQFVkWgAt1wwaCSPlZJksJGqBE8V2HdHVykfv0OtZGBf0PDENse9H3ZkwIokTr5nRbhPcVXAXdBDI5ApPLeqJMv2EV7DD5LnAkpsAkqnfxXqxuIyEOfhAJjmo4dUjsGTVIoHOVakcEwSYA+NhPqg4emHY/vH/GDyAAFPETNpeJjEX9vxOAZM/TcZNIDujXTXir+5zUj6p21Y+mHEaEv0iCSCsdBRmiZFIO8KzUSQXo5culzARqIUEsOQiRilDSVS/pwpr+fJbVS0Tkulq5PCuXzSTNZtsv22SFz2Ckrs0tWYVUm2AN7Ys/sxXq0Xq036/1nNGNNdrbZH1gf36NommM=</latexit>

Collisional model
<latexit sha1_base64="0AsuvS3ZMi8j4s8CZS67SFLzNM0=">AAACDHicbVDLSgNBEJz1GeMr6kXwMhgET2E3CnoMevEYwTwgCaF30olDZh/M9IphiZ/gV3jVkzfx6j948F+crDloYp2Kqmq6u/xYSUOu++ksLC4tr6zm1vLrG5tb24Wd3bqJEi2wJiIV6aYPBpUMsUaSFDZjjRD4Chv+8HLiN+5QGxmFNzSKsRPAIJR9KYCs1C3stwnvKbVBu8wqoHgQ9VCNu4WiW3Iz8HniTUmRTVHtFr7avUgkAYYkFBjT8tyYOilokkLhON9ODMYghjDAlqUhBGg6afbBmB8lBijiMWouFc9E/D2RQmDMKPBtMgC6NbPeRPzPayXUP++kMowTwlBMFpFUmC0yQktbDfKe1EgEk8uRy5AL0ECEWnIQwoqJ7Spv+/Bmv58n9XLJOymVr0+LlYtpMzl2wA7ZMfPYGauwK1ZlNSbYA3tiz+zFeXRenTfn/Se64Exn9tgfOB/fQ56b5w==</latexit>

Figure 3.1.: A minimal example of cascade system: a cascade system’s characteristic
feature is the unidirectionality of the signal propagation, thus excluding
backscattering and feedback effects. This feature is reflected in the colli-
sional model thrugh the causal structure under which the ancillas collide
with the nodes, i.e. all the ancillas interact first with S1 and only then
with S2.

Finally, as both systems interact with the environment, we write the interaction Hamil-
tonian:

ĤS−E = ĤS1−E + ĤS2−E , (3.3)

where we have treated the environment as a unique block. Considering that the envi-
ronment is made out of a collection of ancillas we rewrite the interaction with each Sm
as:

ĤSm−E =
∑

n

ĤSm−En , (3.4)

where the Hamiltonian describing the interaction between Sm and a single ancilla can
be written as:

ĤSm−En =
∑

`

Â
(`)
Sm
⊗ B̂(`,m)

En
(3.5)
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where the Â(`)
Sm

act on Sm and the B̂(`,m)
En

act on the ancilla En. A subsystem Sm and an
ancilla En interact collisionally for a short time interval δt, so that the unitary interaction
between them is described by the superoperator USm,En :

USm,En(· · · ) = ÛSm,En(· · · )Û †Sm,En (3.6)

where

ÛSm,En = exp

[
−igδt

∑

`

Â
(`)
Sm
⊗ B̂(`,m)

En

]
. (3.7)

where g is a coupling constant gauging the strength of the interaction.

After each collision between the nodes and the ancillas we introduce the possibility
of acting on the ancillas through the CPT mapsMEn : these maps might represent, for
instance, the action of noise on the ancillas or the action of some optical elements as
beam splitters and phase shifters, as we will see in the next sections.

To represent the cascade nature of the interaction we further impose that the ancillas
interact with the subsystems in an ordered way: at each step of the evolution, each
ancilla interacts first with S1, and only after with S2. This reflects practically in the fact
that the evolution of the whole system during a step of the evolution is given by:

CS,En = US2,En ◦MEn ◦ US1,En , (3.8)

where CS,En is the superoperator defined by the ordered composition of the maps describ-
ing the interaction between the nodes and the ancilla: first the ancilla En interacts with
S1, then it undergoes an evolution dictated by the map MEn , and finally it interacts
with S2. This interaction scheme can be represented in a circuit like fashion, as shown
in Fig. 3.2.

Thus, for the joint state of the nodes and the environment ρ̂SE(n), we have the recursive
relation:

ρ̂SE(n+ 1) = CS,En+1(ρ̂SE(n)⊗ ηEn+1) (3.9)

In order to derive a master equation for the nodes we want to expand the superoperator
CS,En in power series of g δt. In order to do so we first expand the superoperator USm,En :

USm,En = ISm,En + (g δt)U ′Sm,En + (g δt)2 U ′′Sm,En +O
(
(gδt)3

)
(3.10)
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S1
<latexit sha1_base64="o5aJr5XiV4BKSlfY7aHhkPSq9lc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDEpQRNJRBIQ8psaLzZRNOOT90twZFVj6BFio6RMv3UPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON7me+50H1EaGwR1NI3R9Pg7kSApOqdRsDpxBuWJX7QxsmTg5qUCOxqD81R+GIvYxIKG4MT3HjshNuCYpFM5K/dhgxMWEj7GX0oD7aNwkizpjJ7HhFLIINZOKZSL+3ki4b8zU99JJn9O9WfTm4n9eL6bRpZvIIIoJAzE/RFJhdsgILdMOkA2lRiI+T45MBkxwzYlQS8aFSMU4LaWU9uEsfr9M2rWqc1at3Z5X6ld5M0U4gmM4BQcuoA430IAWCBjDEzzDi/VovVpv1vvPaMHKdw7hD6yPb3mQkgQ=</latexit>

S2
<latexit sha1_base64="XhbgpthSDwjtHXPkS9ykOJk9I7s=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDEpQRNJRBIQ8psaLzZRNOOT90twZFVj6BFio6RMv3UPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON7me+50H1EaGwR1NI3R9Pg7kSApOqdRsDmqDcsWu2hnYMnFyUoEcjUH5qz8MRexjQEJxY3qOHZGbcE1SKJyV+rHBiIsJH2MvpQH30bhJFnXGTmLDKWQRaiYVy0T8vZFw35ip76WTPqd7s+jNxf+8XkyjSzeRQRQTBmJ+iKTC7JARWqYdIBtKjUR8nhyZDJjgmhOhlowLkYpxWkop7cNZ/H6ZtGtV56xauz2v1K/yZopwBMdwCg5cQB1uoAEtEDCGJ3iGF+vRerXerPef0YKV7xzCH1gf33sfkgU=</latexit>

US2,E1
<latexit sha1_base64="sYc1jx7mTFsA9VIvOkLBJ5jpeMM=">AAACCXicdZDLSgNBEEV7fBtfUXHlpjEILiTMRDFmFxTBpaIxQhKGmrYSG3sedNcIMuQL/Aq3unInbv0KF/6LPTEEFb2r4twq6nKDRElDrvvujI1PTE5Nz8wW5uYXFpeKyysXJk61wIaIVawvAzCoZIQNkqTwMtEIYaCwGdwc5n7zFrWRcXROdwl2QuhFsisFkEV+ca0dAl0LUFmj72dnfmX7yPf6frHklmv71druHvfK7kDcEquqNyIlNtSJX/xoX8UiDTEiocCYlucm1MlAkxQK+4V2ajABcQM9bNkxghBNJxvE7/PN1ADFPEHNpeIDiN8vMgiNuQsDu5mHNb+9HP7ltVLq7ncyGSUpYSTyRyQVDh4ZoaXtBfmV1EgEeXLkMuICNBChlhyEsDC1RRVsH6Ma/h8uKmVvp1w53S3VD4bNzLB1tsG2mMeqrM6O2QlrMMEy9sAe2ZNz7zw7L87r1+qYM7xZZT/kvH0CE+aaHQ==</latexit>

US1,E1
<latexit sha1_base64="KlbZDhMaeGxC3T+JbVEE5NLjbw8=">AAACCXicdZDLSgNBEEV7fBtfUXHlpjEILiTMxGCSXVAEl4pGhSQMNW2pTXoedNcIYcgX+BVudeVO3PoVLvwXe2IQFb2r4twq6nKDRElDrvvmjI1PTE5Nz8wW5uYXFpeKyytnJk61wJaIVawvAjCoZIQtkqTwItEIYaDwPOjt5/75LWoj4+iU+gl2Q7iO5JUUQBb5xbVOCHQjQGWtgZ+d+N72ge8N/GLJLTfqtUZ1l3tldyhuiVXN+yIlNtKRX3zvXMYiDTEiocCYtucm1M1AkxQKB4VOajAB0YNrbNsxghBNNxvGH/DN1ADFPEHNpeJDiN8vMgiN6YeB3czDmt9eDv/y2ild1buZjJKUMBL5I5IKh4+M0NL2gvxSaiSCPDlyGXEBGohQSw5CWJjaogq2j68a/h/OKmVvp1w5rpaae6NmZtg622BbzGM11mSH7Ii1mGAZu2cP7NG5c56cZ+flc3XMGd2ssh9yXj8AElKaHA==</latexit>

US1,E2
<latexit sha1_base64="sS4jk/haanlrGoDseRoZ2QdWLB4=">AAACCXicdZDLSgNBEEV7fBtfUXHlpjEILiTMRDFmFxTBpaIxQhKGmrYSG3sedNcIMuQL/Aq3unInbv0KF/6LPTEEFb2r4twq6nKDRElDrvvujI1PTE5Nz8wW5uYXFpeKyysXJk61wIaIVawvAzCoZIQNkqTwMtEIYaCwGdwc5n7zFrWRcXROdwl2QuhFsisFkEV+ca0dAl0LUFmj72dnvrd95Ff6frHklmv71druHvfK7kDcEquqNyIlNtSJX/xoX8UiDTEiocCYlucm1MlAkxQK+4V2ajABcQM9bNkxghBNJxvE7/PN1ADFPEHNpeIDiN8vMgiNuQsDu5mHNb+9HP7ltVLq7ncyGSUpYSTyRyQVDh4ZoaXtBfmV1EgEeXLkMuICNBChlhyEsDC1RRVsH6Ma/h8uKmVvp1w53S3VD4bNzLB1tsG2mMeqrM6O2QlrMMEy9sAe2ZNz7zw7L87r1+qYM7xZZT/kvH0CE+KaHQ==</latexit>

US2,E2
<latexit sha1_base64="2Nsck6mjGCAT+gQ2CctZH58teIo=">AAACCXicdZDLSgNBEEV7fBtfUXHlpjEILiTMRDFmFxTBpaIxQhKGmrYSG3sedNcIMuQL/Aq3unInbv0KF/6LPTEEFb2r4twq6nKDRElDrvvujI1PTE5Nz8wW5uYXFpeKyysXJk61wIaIVawvAzCoZIQNkqTwMtEIYaCwGdwc5n7zFrWRcXROdwl2QuhFsisFkEV+ca0dAl0LUFmj72dnfmX7yK/0/WLJLdf2q7XdPe6V3YG4JVZVb0RKbKgTv/jRvopFGmJEQoExLc9NqJOBJikU9gvt1GAC4gZ62LJjBCGaTjaI3+ebqQGKeYKaS8UHEL9fZBAacxcGdjMPa357OfzLa6XU3e9kMkpSwkjkj0gqHDwyQkvbC/IrqZEI8uTIZcQFaCBCLTkIYWFqiyrYPkY1/D9cVMreTrlyuluqHwybmWHrbINtMY9VWZ0dsxPWYIJl7IE9sifn3nl2XpzXr9UxZ3izyn7IefsEFXaaHg==</latexit>

US2,En
<latexit sha1_base64="8TycuFsZ5/V4wwjyGTB+Jfc9TEY=">AAACCXicdZBNSgNBEIV7/Df+RcWVm8YguJAwE8WYXVAEl4pGhSQMNW2pjT09Q3eNIENO4Cnc6sqduPUULryLPTGIir5V8b0q6vGiVElLvv/mDQ2PjI6NT0yWpqZnZufK8wsnNsmMwJZIVGLOIrCopMYWSVJ4lhqEOFJ4Gl3vFv7pDRorE31Mtyl2Y7jU8kIKIIfC8lInBroSoPJWL8yPwtr6Xqh7YbniVxvb9cbmFg+qfl/cEad68EUqbKCDsPzeOU9EFqMmocDaduCn1M3BkBQKe6VOZjEFcQ2X2HajhhhtN+/H7/HVzAIlPEXDpeJ9iN8vcoitvY0jt1mEtb+9Av7ltTO62O7mUqcZoRbFI5IK+4+sMNL1gvxcGiSCIjlyqbkAA0RoJAchHMxcUSXXx1cN/w8ntWqwUa0dblaaO4NmJtgyW2FrLGB11mT77IC1mGA5u2cP7NG78568Z+/lc3XIG9wssh/yXj8AczaaWg==</latexit>

US1,En
<latexit sha1_base64="UuKAHpSlOFEgtqmCDDnbh0M/L7E=">AAACCXicdZBNSgNBEIV7/Df+RcWVm8YguJAwo2LiThTBpaJRIQlDTVtqk56eobtGCENO4Cnc6sqduPUULryLPTGIir5V8b0q6vGiVElLvv/mDQ2PjI6NT0yWpqZnZufK8wtnNsmMwIZIVGIuIrCopMYGSVJ4kRqEOFJ4HnX2C//8Fo2ViT6lbortGK61vJICyKGwvNSKgW4EqLzRC/OTMFg/CHUvLFf86k69trO1zYOq3xd3xKkWfJEKG+goLL+3LhORxahJKLC2GfgptXMwJIXCXqmVWUxBdOAam27UEKNt5/34Pb6aWaCEp2i4VLwP8ftFDrG13Thym0VY+9sr4F9eM6OrejuXOs0ItSgekVTYf2SFka4X5JfSIBEUyZFLzQUYIEIjOQjhYOaKKrk+vmr4fzjbqAab1Y3jrcru3qCZCbbMVtgaC1iN7bJDdsQaTLCc3bMH9ujdeU/es/fyuTrkDW4W2Q95rx9xoppZ</latexit>

E1
<latexit sha1_base64="kx3trMKtm9PWE23NpL8/iXKRTtw=">AAAB9XicdZA7SwNBFIVn4yvGV9TSZjAIVmE3BpN0QREsI5oHJCHMTm7ikNkHM3eVsOQn2GplJ7b+Hgv/i7NrCCp6qst37uUejhtKodG2363M0vLK6lp2PbexubW9k9/da+kgUhyaPJCB6rhMgxQ+NFGghE6ogHmuhLY7OU/89h0oLQL/Bqch9D029sVIcIYGXV8MnEG+YBdr1UqtfEqdop2KGmJUcRakQOZqDPIfvWHAIw985JJp3XXsEPsxUyi4hFmuF2kIGZ+wMXTN6DMPdD9Oo87oUaQZBjQERYWkKYTvFzHztJ56rtn0GN7q314C//K6EY6q/Vj4YYTg8+QRCgnpI82VMB0AHQoFiCxJDlT4lDPFEEEJyjg3MDKl5Ewfixr+H1qlonNSLF2VC/WzeTNZckAOyTFxSIXUySVpkCbhZEweyCN5su6tZ+vFev1azVjzm33yQ9bbJ+blkk4=</latexit>

E2
<latexit sha1_base64="mEIkUhTlw+sJNF2NQTKBpcTnqYg=">AAAB9XicdZA7SwNBFIVn4yvGV9TSZjAIVstuDCbpgiJYRjQPSJYwO7mJQ2YfzNxVQshPsNXKTmz9PRb+F2djCCp6qst37uUejh9LodFx3q3M0vLK6lp2PbexubW9k9/da+ooURwaPJKRavtMgxQhNFCghHasgAW+hJY/Ok/91h0oLaLwBscxeAEbhmIgOEODri96xV6+4NjVSrlaOqWu7cxEDTEquwtSIHPVe/mPbj/iSQAhcsm07rhOjN6EKRRcwjTXTTTEjI/YEDpmDFkA2pvMok7pUaIZRjQGRYWkMwjfLyYs0Hoc+GYzYHirf3sp/MvrJDioeBMRxglCyNNHKCTMHmmuhOkAaF8oQGRpcqAipJwphghKUMa5gYkpJWf6WNTw/9As2u6JXbwqFWpn82ay5IAckmPikjKpkUtSJw3CyZA8kEfyZN1bz9aL9fq1mrHmN/vkh6y3T+h0kk8=</latexit>

En
<latexit sha1_base64="hnntx3erZm3C7C5HAt5wylOwZ2Y=">AAAB9XicdZA7TwJBFIVn8YX4Qi1tJhITK7KLRKAjGhNLjPJIgJDZ4YITZmc3M3c1hPATbLWyM7b+Hgv/i7NIiBo91c137s09OX4khUHXfXdSS8srq2vp9czG5tb2TnZ3r2HCWHOo81CGuuUzA1IoqKNACa1IAwt8CU1/dJ74zTvQRoTqBscRdAM2VGIgOEOLri96qpfNuflKuVQpnlIv785ELbEqeQuSI3PVetmPTj/kcQAKuWTGtD03wu6EaRRcwjTTiQ1EjI/YENp2VCwA053Mok7pUWwYhjQCTYWkMwjfLyYsMGYc+HYzYHhrfnsJ/MtrxzgodydCRTGC4skjFBJmjwzXwnYAtC80ILIkOVChKGeaIYIWlHFuYWxLydg+FjX8PzQKee8kX7gq5qpn82bS5IAckmPikRKpkktSI3XCyZA8kEfy5Nw7z86L8/q1mnLmN/vkh5y3T0YHkos=</latexit>

ME1
<latexit sha1_base64="Sn0gB2tEj71Bb5Dg+UsTK9vEsrY=">AAACBXicbVDLSgNBEJyNrxhfiR69DAbBU9iNgh6DIngRIpgHJGHpnXTikNkHM71KWHL2K7zqyZt49Ts8+C/uxhw0sU5FVTddXV6kpCHb/rRyS8srq2v59cLG5tb2TrG02zRhrAU2RKhC3fbAoJIBNkiSwnakEXxPYcsbXWR+6x61kWFwS+MIez4MAzmQAiiV3GKp6wPdCVDJ9cRNLl1n4hbLdsWegi8SZ0bKbIa6W/zq9kMR+xiQUGBMx7Ej6iWgSQqFk0I3NhiBGMEQOykNwEfTS6bRJ/wwNkAhj1BzqfhUxN8bCfjGjH0vncyCmnkvE//zOjENznqJDKKYMBDZIZIKp4eM0DLtBHlfaiSCLDlyGXABGohQSw5CpGKcllRI+3Dmv18kzWrFOa5Ub07KtfNZM3m2zw7YEXPYKauxK1ZnDSbYA3tiz+zFerRerTfr/Wc0Z8129tgfWB/fK3WYhQ==</latexit>

ME2
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Figure 3.2.: A circuit-like representation of the dynamics: the nodes S1 and S2 se-
quentially interact with the ancillas E1, E2, . . . , with the difference that
the ancillas interact with S2 only after they interacted with S1, so that
when an ancilla collides with S2 it contains information about S1, in this
way inducing an interaction between the two nodes. In between the colli-
sions with the nodes, each ancilla is subject to an evolution described by
the CPT mapMEn .

where ISm,En is the identity superoperator and the superoperators in the expansion are
defined as:

U ′Sm,En (· · · ) = −i
[
ĤSm,En , · · ·

]
(3.11)

U ′′Sm,En (· · · ) = ĤSm,En(· · · )ĤSm,En −
1

2

{
Ĥ2
Sm,En , · · ·

}
. (3.12)

With the expansion in Eq. (3.10) it is possible to write the superoperator CS,En as:

CS,En = C(0)
S,En

+ (g δt) C ′S,En + (g δt)2 C ′′S,En +O
(
(gδt)3

)
(3.13)

with

C(0)
S,En

=MEn (3.14)

C ′S,En = U ′S2,En
◦MEn + U ′S1,En

(3.15)

C ′′S,En = U ′′S2,En
◦MEn + U ′′S1,En

+ U ′S2,En
◦MEn ◦ U ′S1,En

(3.16)
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Now, in order to derive the master equation for the nodes we have to trace out the
ancillas’ degrees of freedom. Let us show this procedure term by term. From the zeroth
order term we get:

TrEn

{
C(0)
S,En

(ρ̂S(n− 1)⊗ η̂En)
}

= ρ̂S(n− 1), (3.17)

sinceMEn is a CPT map acting on En only.

From the first order term we get:

TrEn
{
C ′S,En (ρ̂S(n− 1)⊗ η̂En)

}
=

∑

`

TrEn

{
B̂

(`,2)
En
MEn η̂n

}[
Â

(`)
S2
, ρ̂S(n− 1)

]

+ TrEn

{
B̂

(`,1)
En

η̂En

}[
Â

(`)
S1
, ρ̂S(n− 1)

]
(3.18)

This term nullifies if we impose the stability condition, which in this setting has the
form:

TrEn

{
B̂

(`,1)
En

η̂En

}
= 0 (3.19)

TrEn

{
B̂

(`,2)
En
MEn η̂En

}
= 0 (3.20)

We are then left with the second order term C ′′S,En , in which two different contributions
can be individuated: one has two local terms given by U ′′Sm,En , where by local we mean
that only one node Sm is involved; the other second order contribution is instead given
by the combination of the two first order terms U ′Sm,En , and thus is non-local, by this
meaning that this term introduces an indirect interaction between the nodes provided
by the cascade nature of the environment.

In facts, tracing away the environmental degrees of freedom in the local contributions
leads to:

TrEn
{
U ′′S1,En

(ρ̂S(n− 1)⊗ η̂En)
}

= (3.21)
∑

`,`′

γ
(`,`′)
1

2

{
2Â

(`)
S1
ρ̂S(n− 1)Â

(`′)
S1
−
{
Â

(`′)
S1
Â

(`)
S1
, ρ̂S(n− 1)

}}

TrEn
{
U ′′S2,En

◦MEn(ρ̂S(n− 1)⊗ η̂En)
}

=

∑

`,`′

γ
(`,`′)
2

2

{
2Â

(`)
S2
ρ̂S(n− 1)Â

(`′)
S2
−
{
Â

(`′)
S2
Â

(`)
S2
, ρ̂S(n− 1)

}}
, (3.22)
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where we have defined:

γ
(`,`′)
1 = TrEn

{
B̂

(`′,1)
En

B̂
(`,1)
En

η̂En

}
(3.23)

γ
(`,`′)
2 = TrEn

{
B̂

(`′,2)
En

B̂
(`,2)
En
MEn(η̂En)

}
. (3.24)

One can immediately see that both contributions in Eqs.( 3.21, 3.22) involve only local
operators, so that the first term only affects S1 and the other only S2. The same is not
true when tracing away the environment from the remaining contribution:

TrEn
{
U ′S2,En

◦MEn ◦ US1,En(ρ̂S(n− 1)⊗ η̂n)
}

=
∑

`,`′

{
ζ

(`,`′)
12 Â

(`)
S1

[
ρ̂S(n− 1), Â

(`′)
S2

]
− ξ(`,`′)

12

[
Â

(`′)
S2
, ρ̂S(n− 1)

]
Â

(`)
S1

}
, (3.25)

where

ζ
(`,`′)
12 = Tr

{
B̂

(`′,2)
En
MEn

(
B̂

(`,1)
En

η̂En

)}
(3.26)

ξ
(`,`′)
12 = Tr

{
B̂

(`′,2)
En
MEn

(
η̂EnB̂

(`,1)
En

)}
. (3.27)

At glance with the previous terms, the contribution in Eq. (3.25) contains operators
acting on both S1 and S2, thus introducing an interaction between the two nodes which
is induced by the common interaction with the environment. We will see later that upon
diagonalizing the master equation in order to put it in Lindblad form, cross terms like
the one in Eq. (3.25) give rise to a unitary contribution to the dynamics which is chiral,
by this meaning that the induced Hamiltonian changes sign upon exchange of S1 and
S2.

In the end, substituting the terms we have just computed in Eq. (3.9), we are left with
a discrete master equation of the form:

ρ̂S(n+ 1)− ρ̂S(n)

δt
= g2 δt [L1 + L2 +D12] (ρ̂S(n)) (3.28)
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where we have defined

L1(· · · ) =
∑

`,`′

γ
(`,`′)
1

2

{
2Â

(`)
S1

(· · · )Â(`′)
S1
−
{
Â

(`′)
S1
Â

(`)
S1
, · · ·

}}
(3.29)

L2(· · · ) =
∑

`,`′

γ
(`,`′)
2

2

{
2Â

(`)
S2

(· · · )Â(`′)
S2
−
{
Â

(`′)
S2
Â

(`)
S2
, · · ·

}}
(3.30)

D12(· · · ) =
∑

`,`′

{
ζ

(`,`′)
12 Â

(`)
S1

[
· · · , Â(`′)

S2

]
− ξ(`,`′)

12

[
Â

(`′)
S2
, · · ·

]
Â

(`)
S1

}
(3.31)

Rearranging the terms in Eq. (3.28) and performing the continuous time limit the
same way we did in Sec. 2.3 we can finally write the master equation for a two nodes
cascade system:

d

dt
ρ̂S(t) = γ [L1 + L2 +D12] (ρ̂S(t)) = γCS(ρ̂S(t)). (3.32)

It can be seen that this master equation contains three terms: the two terms L1,2

describe the local dissipation due to the interaction of the nodes with the environment,
while the term D12 is characteristic of cascade systems, and describe the interaction
between the two nodes due to their common interaction with the environment. This is
even more evident if one tries to trace away one node from the master equation: if one
tries to trace away the second node, he finds that the dynamics of the first node is fully
contained in the term L1. Conversely, tracing away the second node does not nullify the
term D12, and as a result one would obtain a master equation containing the local term
L2 and another term, obtained from the trace over D12, describing the influence of S1

on S2.
Once we have analyzed this very simple cascade system and highlighted its main

features, we are ready to make a step further and complicate things, moving to the
analisys of a cascade network.

3.2. Cascade networks

As already said in the introduction to this chapter, a cascade network consists in
an ensemble of M quantum systems {S1, S2, · · · , SM}, often called the nodes, con-
nected by one or more transmission lines, each described as a distinct environment
{E (1), E (2), · · · , E (K)}. These environments can moreover interact between themselves
through optical elements, such as beam splitters and phase shifters, which introduce in-
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terference effects in the signal propagation, thus influencing the dynamics of the nodes.
A very simple sketch of this kind of systems is shown in Fig. 3.3. In analogy with the ex-
ample exposed in the previous section, we expect to find a master equation made out of
local terms, describing the local dissipative dynamics of the nodes, and non-local terms
describing the cascade interaction between the nodes and containing the information
over the hierarchy between the nodes. Furthermore, we expect these non-local terms
to be influenced by the optical elements and the interference effects induced by their
presence. In this section we are first going to expose our model to derive the Marko-
vian master equation, highlighting some features of the master equation, before finally
recasting it in the GKSL form.

3.2.1. The model

In this section we are going to see how it is possible, through a collisional model, to
describe the presence of more than one environment and the interference effects given
by their interaction through optical elements.

In the spirit of collisional models, we divide each of the environments in an ensemble
of ancillas, E (k) = {E(k)

n , n = 1, 2, · · · }. It will also turn out to be useful to regroup
the ancillas according to the index n, i.e. defining the sets En = {E(1)

n , E
(2)
n , · · · , E(K)

n }:
this amounts to dividing the ancillas in “temporal slices", that is, grouping the ancillas
according to the time they enter the dynamics. Associating the index n with a temporal
label can however be done only under the assumption that the traveling time between
one node and another, i.e. the time it takes for an ancilla to move from a node Sm to
a node Sm′ , is negligible. This is a necessary assumption in order to keep the dynamics
Markovian, as time delays unavoidably introduce non-Markovian features due to feed-
back effects. We also note that this assumption is necessary only when dealing with
a network where more transmission lines are present: for the case of a series of nodes
connected through a linear chain, like the minimal one we examined in the previous sec-
tion, one can redefine the operators acting on the nodes such that the phase shift gained
during the traveling time is absorbed into the new definition, leaving the expectation
values of any Hermitian operator unchanged [C. W. Gardiner 1993].

Once the time-delays have been assumed to be negligible, it is then possible to enforce
a causal structure on the network by simply imposing that the superoperator USm,En
describing the collisional event involving the node Sm and the ancillas belonging to the
set En should precede both USm+1,En and USm,En+1 , as the ancillas from En see Sm+1 only
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Figure 3.3.: A very simple representation of a cascade network: in the left panel we
sketch the typical structure of a cascade network, namely an ensemble of
nodes (blue dots) connected by various transmission lines (i.e. environ-
mental channels) that can interact through optical elements such as beam
splitters and phase shifters (yellow boxes). On the right panel we sketch
the same network in a collisional model setting: each environmental chan-
nel is depicted as a collection of ancillas that interact collisionally with the
nodes, but also interact with each other through the optical elements. This
collisions between ancillas are the ones giving rise to interference effects.

after they interacted with Sm, and the elements of En enter the network before the ones
from En+1. No ordering is instead required between USm+1,En and USm,En+1 , as they act
on different systems and thus commute with each other.

In analogy with the previous section we assume S to have free Hamiltonian ĤS =∑
m ĤSm , while the Hamiltonian of the environment is ĤE =

∑
k,n ĤE

(k)
n
. We also

assume once again the interaction Hamiltonian between a node and an ancilla to be of
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the form:

Ĥ
Sm−E(k)

n
=
∑

`

Â
(`,k)
Sm
⊗ B̂(`,m)

E
(k)
n

, (3.33)

with Â(`,k)
Sm

and B̂(`,m)

E
(k)
n

Hermitian. This assumption however is only imposed in order to
simplify the derivation, but it could be relaxed leading to equivalent expressions that
render less explicit the mathematical and physical features of the model.

Once the interaction Hamiltonian has been defined we can write the superoperator
USm,En as:

USm,En(· · · ) = ÛSm,En(· · · )Û †Sm,En , (3.34)

ÛSm,En = exp

[
−ig δt

K∑

k=1

Ĥ
Sm,E

(k)
n

]
, (3.35)

where as usual g is a coupling constant gauging the strength of the interaction and δt is
the time interval over which the collisions take place.

At this point we want to write the superoperator CS,En describing the n-th step of the
dynamics:

ρ̂SE(n) = CS,En (ρ̂S(n− 1)⊗ η̂En) . (3.36)

At glance with the previous case, here with the symbol η̂En we mean the joint state of
the ancillas belonging to the set En. It is important to note at this point that in the
following we will assume the state η̂En to be independent of n, that is, we will assume the
environments E (k) to form a stationary medium. On the same footing we will assume also
the couplings USm,En and the maps ME(m)

n
to be independet from n. These hypothesis

can however be relaxed, given the condition that the changes are slow compared with
the characteristic time scale of the node Sm.

Within the above scenario, we can write the superoperator CS,En by looking at the
circuit-like representation of the dynamics shown in Fig. 3.4: The ancillas belonging to
the set En enter the network and interact first with S1, then they undergo some evolution
dictated by the CPT mapM(1)

En before interacting with S2 and so forth. Thus, using the
symbol

←−
Π to indicate the ordered product of superoperators from left to right, we can
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Figure 3.4.: A circuit-like representation of the cascade network model under examina-
tion: the ancillas belonging to the set En enter the network first interacting
with S1, then undergo an evolution dictated by the CPT mapM(1)

En before
interacting with S2 and so forth. On the other hand the node Sm interact
with the ensemble En only after the latter has interacted with the previous
nodes Sm′ with m′ < m. This feature, together with the inclusion of in-
teraction between the ancillas belonging to the same En described by the
maps M(m)

En , give rise to interference effects, at glance with the example
from the previous section.

write:

CS,En =
←−
ΠM
m=1

[
M(m)
En ◦ USm,En

]
. (3.37)

When writing Eq. (3.37) we are implicitly assuming that there is no temporal corre-
lation between the ancillas, i.e. the input state of the ancillas is factorized with respect
to the grouping E1, E2, · · · . In fact admitting temporal correlations between the ancillas
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would lead to non-Markovian effects: this kind of situations actually still represents an
open problem in the field of open quantum system dynamics, and a rich literature on
the topic exists [H.-P. Breuer 2012; Li, Hall, and Wiseman 2018], but for the scope of
this work we will keep the assumption of no temporal correlations among ancillas.

As in the previous section we want to expand the superoperator CS,En in power series
of g δt up to second order and then perform the continuous time limit. In order to be
able to power expand CS,En we must first compute the power expansion of USm,En , which
is similar to the one in Eq. (3.10):

USm,En = ISm,En + (g δt)U ′Sm,En + (g δt)2 U ′′Sm,En +O
(
(g δt)3

)
, (3.38)

where IS,En is once again the identity superoperator and now we have:

U ′S,En(· · · ) = −i
K∑

k=1

[
Ĥ
Sm,E

(k)
n
, (· · · )

]
, (3.39)

U ′′S,En(· · · ) =
K∑

k,k′=1

{
Ĥ
Sm,E

(k)
n

(· · · ) Ĥ
Sm,E

(k′)
n
− 1

2

{
Ĥ
Sm,E

(k′)
n
Ĥ
Sm,E

(k)
n
, (· · · )

}}
.

(3.40)

These two terms of the power expansion of USm,En have the same form of the ones in
Eq. (3.11) and Eq. (3.12) respectively, with the only difference that in this case we need
to sum up the Hamiltonians of all the environmental channels with which the node Sm
interacts.

Given the expansion of USm,En we can perform the series expansion of CS,En , which
leads to:

CS,En = C(0)
S,En + (g δt) C ′S,En + (g δt)2 C ′′S,En +O

(
(g δt)3

)
, (3.41)

where now:

C(0)
S,En =M(M←1)

En , (3.42)

C ′S,En =
M∑

m=1

M(M←m)
En ◦ U ′Sm,En ◦M

(m←1)
En , (3.43)

C ′′S,En = C ′′(a)
S,En + C ′′(b)S,En , (3.44)
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with

C ′′(a)
S,En =

M∑

m=1

M(M←m)
En ◦ U ′′SmEn ◦Mm−1←1

En , (3.45)

C ′′(b)S,En =
M∑

m′=m+1

M−1∑

m=1

M(M←m′)
En ◦ U ′S′m,En ◦M

(m′−1←m)
En ◦ U ′Sm,En ◦M

(m−1←1)
En .

(3.46)

In writing the above equations we have defined

M(m2←m1)
En =

{ ←−
Πm2
m=m1

M(m)
En for m2 ≥ m1,

I for m2 < m1.
(3.47)

In order to derive the master equation for the reduced density matrix, just as we did
for the case of only two nodes, we must insert the expansion of Eq. (3.41) into Eq. (3.36)
and trace away the environmental degrees of freedom.

The zeroth order term in Eq. (3.42), being a composition of CPT maps acting only
on the ancillas, gives the very simple contribution:

Tr
{
C(0)
S,En (ρ̂S(n− 1)⊗ η̂En)

}
= ρ̂S(n− 1). (3.48)

We then turn to the first order term: from Eq. (3.43) it is immediately seen that the
CPT maps acting after the evolution superoperator U ′Sm,En+1

have no effects. Then, after
the trace operations, we are left with:

TrEn
{
C ′S,En (ρ̂S(n− 1)⊗ η̂En)

}
= −i

∑

m,k,`

γ
(`)
m(k)

[
Â

(`,k)
Sm

, ρ̂S(n− 1)
]
, (3.49)

(3.50)

where we have defined:

γ
(`)
m(k) = TrEn

{
B̂

(m,`)

E
(k)
n

M(m−1←1)
En (η̂En)

}
. (3.51)

As explained in Chap. 2, in order to avoid the explosion of this first order contribution
in the final expression, we want to impose a stability condition on the environmental
degrees of freedom, which in this case amounts to nullify the coefficients of the first order
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contributions, i.e.:

γ`m(k) = 0 ∀ m, k, `. (3.52)

Thus, in the final expression we want to derive, we will not insert the first order term,
having already assumed this condition.

At this point we are left with the second order contribution, which we have divided
in two parts: the first contribution, C ′′(a)

S,En contains all the local contributions to the
dissipative dynamics, while the second contribution C ′′(b)S,En gives rise to the cross terms
like the one in Eq. (3.31).

Let us start from C ′′(a)
S,En . Just as for the first order contribution, the CPT maps acting

on the left of U ′′Sm,En give in facts no contribution after the trace operation. After some
straightforward algebra it is possible to write:

TrEn

{
C ′′(a)
S,En (ρ̂S(n− 1)⊗ η̂En)

}
= (3.53)

1

2

M∑

m=1

∑

k,k′

∑

`,`′

γ
(`,`′)
m(kk′)

{
2Â

(`,k)
Sm

ρ̂S(n− 1)Â
(`′,k′)
Sm

−
{
Â

(`′,k′)
Sm

Â
(`,k)
Sm

, ρ̂S(n− 1)
}}

,

where the coefficients γ(`,`′)
m(k,k′) are worth:

γ
(`,`′)
m(kk′) = TrEn

{
B̂

(`′,m)

E
(k′)
n

B̂
(`,m)

E
(k)
n

M(m−1←1)
En (η̂En)

}
. (3.54)

On a similar footing one can compute the non-local contributions stemming from the
term C ′′(b)S,En : once again the CPT maps acting after U ′Sm′ ,En give no contribution after the
trace operation, so that we can write:

Tr
{
C ′′(b)S,En (ρ̂S(n− 1)⊗ η̂En)

}
= (3.55)

M∑

m′=m+1

M−1∑

m=1

∑

k,k′

`,`′

{
ζ

(`,`′)
mm′(kk′)Â

(`,k)
Sm

[
ρ̂S(n− 1), Â

(`′,k′)
Sm′

]
− ξ(`,`′)

mm′(kk′)

[
ρ̂S(n− 1), Â

(`′,k′)
Sm′

]
Â

(`,k)
Sm

}
,

where we have defined:

ζ
(`,`′)
mm′(kk′) = Tr

{
B̂

(`′,m′)

E
(k′)
n

M(m′−1←m)
En B̂

(`,m)

E
(k)
n

M(m−1←1)
En (η̂En)

}
, (3.56)

ξ
(`,`′)
mm′(kk′) = Tr

{
B̂

(`′,m′)

E
(k′)
n

M(m′−1←m)
En

(
M(m−1←1)
En (η̂En) B̂

(`,m)

E
(k)
n

)}
. (3.57)
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Once all the contributions have been computed, and taking the continuous time limit
as in Chap. 2, we can write the master equation for S as:

dρ̂S(t)

dt
= γC(ρ̂S(t)) = γ

[∑

m

Lm +
M∑

m′=m+1

∑

m

Dmm′
]

(ρ̂S(t)). (3.58)

This is a Markovian master equation describing the dissipative dynamics of an en-
semble of nodes connected through chiral environments in a cascade fashion. Being a
Markovian master equation it can be recast in GKSL form by properly rearranging the
various terms on the right hand side of Eq. (3.58): before doing this, it is worth to look
at the various terms in the master equation and understand their meaning.

The local terms Lm describe a local dissipative dynamics due to the interaction of
the nodes S with the environments E (k). As each Lm contains operators acting on the
node Sm only, these terms do not create correlations among the various nodes, they only
account for dissipative behaviours.

On the other hand, as we anticipated in Sec. 3.1, the terms Dmm′ are characteristic of
cascade systems: in facts they describe an interaction between node Sm and node Sm′
which is due to a common interaction of the nodes with the same environment. Thus,
at glance with what would happen in presence of an Hamiltonian coupling between Sm
and Sm′ , the Dmm′ terms are intrinsically asymmetric, in accordance with the cascade
nature of the network. This can be seen by looking at the structure of these non local
terms: first of all only terms with m′ > m are present, due to the fact that the ancillas
interact with Sm′ after they have interacted with Sm, but note viceversa. To see the fact
that Sm′ has no influence over Sm, one can simply trace away Sm′ from Dmm′ getting:

Tr {Dmm′(ρ̂S(t))} = 0. (3.59)

The opposite, as already anticipated, is not true: if we were to trace away Sm, we
would get a term describing the effects of Sm on Sm′ , in accordance with the causal
structure described.

Another thing to be noted is that the information about interactions between ancillas
belonging to different environmental channels E (k) is stored into the coefficients γ(`,`′)

m(kk′),
ζ

(`,`′)
mm′(kk′) and ζ(`,`′)

mm′(kk′), as these are the result of the trace over the ancillary degrees of
freedom.
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3.2.2. GKSL form of the master equation

After these considerations, it is time to see how the rhs of Eq. (3.58) can be recast in
order to get a Markovian generator in the GKSL form and understand another feature
of cascade systems by looking at the Hamiltonian terms induced by the open dynamics.

We start this operation by noticing that, as we assumed both the Â(`,k)
Sm

and the B̂(`,m)

E
(k)
n

to be Hermitean, it holds:

γ
(`,`′)
m(kk′) =

[
γ

(`′,`)
m(k′k)

]∗
, (3.60)

ξ
(`,`′)
mm′(kk′) =

[
ζ

(`,`′)
mm′(kk′)

]∗
. (3.61)

Both these relations will turn out to be useful in the derivation of the GKSL form of
the Markovian generator. Our goal is to write the C(· · · ) superoperator in Eq. (3.58) in
the form:

C(· · · ) = −i
[
Ĥ, (· · · )

]
+
∑

i

2L̂(i)(· · · )L̂(i)† −
{
L̂(i)†L̂(i), (· · · )

}
, (3.62)

with Ĥ being a self-adjoint operator and the L̂(i)’s being a collection of operators
acting on S. We start from the local terms Lm: from Eq. (3.60) we note that, dubbing
j the joint index (`, k), the matrix θjj′ whose elements are the γ(`,`′)

m(kk′)/2 is Hermitian.
Moreover, since the B̂(`,m)

E
(k)
n

are Hermitian and the definition of the γ(`,`′)
m(kk′) in Eq. (3.54),

Θjj′ is also semi-positive definite. As a consequence of this, it follows immediately that
we can rewrite the local terms Lm as purely dissipative terms:

Lm(· · · ) =
∑

s

λs

{
2Λ̂

(s)
Sm

(· · · )Λ̂(s)†
Sm
−
{

Λ̂
(s)†
Sm

Λ̂
(s)
Sm
, (· · · )

}}
, (3.63)

where the λs are the eigenvalues of Θjj′ and the operators Λ̂
(s)
Sm

are defined as:

Λ̂
(s)
Sm

=
∑

k,`

v(`,k),sÂ
(`,k)
Sm

, (3.64)

vj,s being the unitary matrix that allows to diagonalize Θjj′ , that is Θjj′ =
∑

s vj,sλsv
∗
s,j′ .

In the end, the Λ̂
(s)
Sm

are linear combinations of the Â(`,k)
Sm

, and if it were not for the non
local terms Dmm′ , the procedure would have already been completed, identifying the
Lindblad operators L̂(i) in Eq. (3.62) with

√
λsΛ̂

(s)
Sm

and Ĥ = 0.

We then need to analyze the non local contributions. Looking at these terms it would
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seem that they cannot directly produce terms in the Lindblad form. However, with little
algebra, it is possible to derive the identities

Â
(`,k)
Sm

[
(· · · ), Â(`′,k′)

Sm′

]
= −1

2

[
Â

(`,k)
Sm

Â
(`′,k′)
Sm′

, (· · · )
]

(3.65)

+ Â
(`,k)
Sm

(· · · )Â(`′,k′)
Sm′

− 1

2

{
Â

(`,k)
Sm

Â
(`′,k′)
Sm′

, (· · · )
}
,

[
(· · · ), Â(`′,k′)

Sm′

]
Â

(`,k)
Sm

= −1

2

[
Â

(`′,k′)
Sm′

Â
(`,k)
Sm

, (· · · )
]

(3.66)

− Â
(`′,k′)
Sm′

(· · · )Â(`,k)
Sm

+
1

2

{
Â

(`′,k′)
Sm′

Â
(`,k)
Sm

, (· · · )
}
.

Thanks to these expressions it is now possible to rearrange the non local contributions
into two pieces:

Dmm′(· · · ) = −i
[
Ĥmm′ , (· · · )

]
+ ∆Lmm′(· · · ). (3.67)

The first contribution on the rhs of Eq. (3.67) has the form of an effective Hamiltonian
and is worth:

Ĥmm′ =
K∑

k,k′=1

∑

`,`′

ξ
(`,`′)
mm′(kk′) − ζ

(`,`′)
mm′(kk′)

2i
Â

(`,k)
Sm

Â
(`′,k′)
Sm′

(3.68)

=
K∑

k,k′=1

∑

`,`′

Im[ξ
(`,`′)
mm′(kk′)]Â

(`,k)
Sm

Â
(`′,k′)
Sm′

,

where in passing from the first to the second line we made use of Eq. (3.61).

We then turn our attention to the second contribution on the rhs of Eq. (3.67), which
reads:

∆Lmm′ =
∑

m,m′

K∑

k,k′=1

∑

`,`′

∆D
(`,`′)
mm′(kk′)

{
2Â

(`,k)
Sm

(· · · )Â
S
(`′,k′)
m′

−
{
Â

(`′,k′)
Sm′

Â
(`,k)
Sm

, (· · · )
}}

,

(3.69)

where we have defined:

∆D
(`,`′)
mm′(kk′) =

1

2





ζ
(`,`′)
mm′(kk′) for m < m′,

0 for m = m′,

ξ
(`′`)
m′m(k′k) for m > m′.

(3.70)
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Exploiting once again Eq. (3.61) one can immediately see that the matrix ∆Ωjj′ of
elements ∆D

(`,`′)
mm′(kk′), this time j being the joint index (`, k,m), is Hermitian. Still, there

is no guarantee that ∆Ωjj′ is semi-positive definite, and this prevents us from directly
diagonalizing ∆Ωjj′ and expressing directly the ∆Lmm′ contributions as dissipative con-
tributions as we did for the local terms. Nonetheless, inserting Eq. (3.67) into Eq. (3.58)
we are able to write:

C(· · · ) = −i
[
Ĥ, (· · · )

]
(3.71)

+
∑

m,m′

K∑

k,k′=1

∑

`,`′

D
(`,`′)
mm′(kk′)

{
2Â

(`,k)
Sm

(· · · )Â(`′,k′)
Sm′

−
{
Â

(`′,k′)
Sm′

Â
(`,k)
Sm

, · · ·
}}

,

where now the effective Hamiltonian Ĥ is worth

Ĥ =
∑

m′>m

M∑

m=1

Ĥmm′ , (3.72)

and the coefficients D(`,`′)
mm′(kk′) have been defined as:

D
(`,`′)
mm′(kk′) =

{
∆D

(`,`′)
mm′(kk′) for m 6= m′,

γ
(`,`′)
m(kk′) for m = m′.

(3.73)

In order to cast the master equation in GKSL form we are only left to demonstrate
that the matrix Ωjj′ of elements D(`,`′)

mm′(kk′), j being still the joint index (`, k,m), is semi-
positive definite. As the demonstration is quite long and gives no particular insight on
the problem, we report it in App. A.1.
Given the semi-positive definiteness of Ωjj′ we can compute its eigenvalues κi and

the matrix wj,i that diagonalizes it, finally identifying the Lindblad operators for the
generator of the master equation (3.58) with:

L̂(i) =
√
ki
∑

`,k,m

w(`,k,m),iÂ
(`,k)
Sm

. (3.74)

In this section we have derived the master equation for a network of cascade systems,
highlighting its main feature and showing its main mathematical properties. We are now
ready to move to the next section, where we will see two simple but yet illuminating
examples of cascade network with non trivial topology, i.e. where the nodes are not
simply ordered in a linear chain, but instead more than one transmission line is present
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together with interference effects. In particular we will first see a cascade network
made out of two nodes and two transmission lines that behaves like a Mach-Zehnder
interferometer, then we will focus on a three nodes network where the relative strengths
of the interactions among the nodes can be tuned thanks to interference effects.

3.3. Simple non-trivial cascade networks

In this section we are going to show two simple applications of the formalism presented in
the previous section. These two examples allow us to show how, thanks to the presence
of only passive elements, interference effects can arise in cascade systems, what is their
effect and how it is manifested in the master equation.

3.3.1. A cascade Mach-Zehner interferometer

The first example we are going to analyze is the network shown in Fig. 3.5. In this
network we haveM = 2 nodes S1 and S2 that interact via K = 2 unidirectional channels
E (1) and E (2) that are interweaved to form a Mach-Zehnder interferometer. The two nodes
can be thought either as monochromatic quantum electrodynamical cavities (QED) of
frequency ω or as two levels systems (TLS) of energy gap ~ω.
In this model the first node S1 interacts with E (1), which is assumed to be in a thermal

state at temperature T1, through a standard excitation hopping interaction Hamiltonian.
The output from S1 is then mixed via a first beam splitter BS1 with the channel E (2)

which we also assume to be in a thermal state at temperature T2. The two signals then
propagate in the interferometer along paths of different length, accumulating a phase
shift PS. Then the two states are mixed once again in the second beam splitter BS2

before the output from one of the two ports is fed into S2.
In order to apply the formalism of Sec. 3.2 we model the two environmental channels

as a collection of quantum ancillas {E(1)
n ;n = 1, 2, · · · } (E(2)

n ;n = 1, 2, · · · respectively)
described by bosonic annihilation operators {b̂

E
(1)
n

;n = 1, 2, · · · } ({b̂
E

(2)
n

;n = 1, 2, · · · }).
Each ancilla is initialized in the Gibbs state of temperature T1 (T2):

η̂
E

(1)
n

=
exp

[
−β1b̂

†
E

(1)
n

b̂
E

(1)
n

]

Tr
{

exp
[
−β1b̂

†
E

(1)
n

b̂
E

(1)
n

]} , (3.75)

where β1 = ~ω/kBT1 (β2 = ~ω/kBT2 for η̂
E

(2)
n
). Accordingly, the input states η̂En at each
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E(1)

E(2)

BS1

BS2

PS
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S1

E(1)

E(1)
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E(2) …PS
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BS2

Figure 3.5.: Left panel: a sketch of the system under examination. The signal prop-
agates along two different environmental channels that interact through
passive optical elements, in particular two beam splitters and a phase
shifter. The node S1 interact with the channel E (1), then the output from
S1 interferes first with the signal propagating along E (2) through the first
beam splitter (BS1 in figure), then the signal along E (1) is phase shifted
(PS) before interfering once again with E (2) via another beam splitter
(BS2). Then the signal along E1 interacts with the node S2. Right panel:
circuit-like representation of the dynamics under the collisional model ap-
proach.

step n are expressed as:

η̂En = η̂
E

(1)
n
⊗ η̂

E
(2)
n
. (3.76)

We want to describe the dynamics following the scheme shown in the right panel
of Fig. 3.5. According to this we set to zero the interaction Hamiltonian between the
nodes and E (2), Ĥ

Sm,E
(2)
n

= 0. On the other hand, as already anticipated, we assume an
excitation hopping coupling between the nodes and E (1), which takes the form:

Ĥ
Sm,E

(1)
n

= â†mb̂E(1)
n

+ âmb̂
†
E

(1)
n

, (3.77)

where the operators âm, â†m are bosonic annihilation and creation operators for the
cavity Sm, or the corresponding raising and lowering Pauli operators in case we are
dealing with TLS. The last thing to do is to define the action of the CPT map M(1)

En

acting on the ancillas between their collisions with S1 and S2. This map describes
the action of the beam splitters and the phase shift: more specifically it is given by
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the concatenation of three unitary terms V̂BS2V̂PSV̂BS1 , where the first and the third
operator describe the action of the two beam splitters, while the second describes the
phase shift. The mapM(1)

En acts on states as:

M(1)
En (· · · ) = V̂BS2V̂PSV̂BS1(· · · )V̂ †BS1

V̂ †PSV̂
†
BS2

. (3.78)

Thanks to the cyclicity properties of the trace operation, we can move the effects of
M(1)
En on the environmental operators, i.e.:

M̃(1)
En (B̂) = V̂ †BS1

V̂ †PSV̂
†
BS2

(B̂)V̂BS2V̂PSV̂BS1 , (3.79)

where we have indicated with M̃(1)
En the complementary toM(1)

En , which acts on operators
instead of density matrices.

The action of a beam splitter, indicating with εj the transmissivity of BSj, can be
described using the identities:

V̂ †BSj b̂E(1)
n
V̂BSj =

√
εj b̂E(1)

n
− i
√

1− εj b̂E(2)
n
, (3.80)

V̂ †BSj b̂E(2)
n
V̂BSj = −i

√
1− εj b̂E(1)

n
+
√
εj b̂E(2)

n
. (3.81)

Similarly, the action of the phase shift is described via:

V̂ †PS b̂E(1)
n
V̂PS = e−iϕb̂

E
(1)
n
, (3.82)

V̂ †PS b̂E(2)
n
V̂PS = b̂

E
(2)
n
. (3.83)

Before proceeding and compute the master equation for the nodes, it is worth noticing
that in the limit ε1 = ε2 = 1, corresponding to beam splitters with unit transmissivity,
the model reduces to the one shown in Sec. 3.1.

We then observe that with the input choice in Eq. (3.75) the stability condition is
automatically fulfilled, as both the annihilation and creation operators have zero expec-
tation value on a Gibbs state. In facts, has the interaction Hamiltonian with E (2) is zero,
we have automatically that γ(`)

m(2) = 0. Moreover, from the expression of the interaction

58



Chap. 3 Cascade systems 3.3 Simple non-trivial cascade networks

Hamiltonian in Eq. (3.77), we can make the following identifications:

Â
(`,k)
Sm

= δk,1

{
â†m for ` = 1,

âm for ` = 2,
(3.84)

B̂
(`,m)

E
(k)
n

= δk,1

{
b̂
E

(k)
n

for ` = 1,

b̂
E

(k)
n

for ` = 2,
(3.85)

from which we have that:

γ
(1)
1(1) =

[
γ

(2)
1(1)

]∗
= TrEn

{
b̂
E

(1)
n
η̂En

}
= TrEn

{
b̂
E

(1)
n
η̂
E

(1)
n

}
= 0. (3.86)

We can also compute γ(`)
2(1) as:

γ
(1)
2(1) =

[
γ

(2)
2(1)

]∗
= TrEn

{
b̂
E

(1)
n
M(1)
En (η̂En)

}
= TrEn

{
M̃(1)
En

(
b̂
E

(1)
n

)
η̂En

}

= c(ϕ) TrEn

{
b̂
E

(1)
n
η̂
E

(1)
n

}
+ s(ϕ) TrEn

{
b̂
E

(2)
n
η̂
E

(2)
n

}
= 0, (3.87)

where we have defined:

c(ϕ) = e−iϕ
√
ε1ε2 −

√
(1− ε1)(1− ε2), (3.88)

s(ϕ) = −ie−iϕ
√

(1− ε1)ε2 − i
√
ε1(1− ε2). (3.89)

In an analogous way we can compute the remaining coefficients γ(`,`′)
m(kk′), ζ

(`,`′)
mm′(kk′),

ξ
(`,`′)
mm′(kk′). In order to achieve this goal we first note that, as Ĥ

Sm,E
(2)
n

= 0, then only
those terms for which k = k′ = 1 will be non null.

Then, indicating the mean photon numbers in the environments with:

Nk = Tr
{
b†
E

(k)
n

b̂
E

(k)
n
η̂
E

(k)
n

}
=
(
eβk − 1

)−1
, (3.90)

we can compute the local coefficients for S1 as:

γ
(kk′)
1(11) =

[
γ

(2,2)
1(kk′)

]∗
= δk,1δk′,1 TrEn

{
b2

E
(1)
n
η̂
E

(
n1)

}
= 0 (3.91)

γ
(2,1)
1(kk′) = δk,1δk′,1 TrEn

{
b†
E

(1)
n

b̂
E

(1)
n
η̂
E

(
n1)

}
= δk,1δk′,1N1 (3.92)

γ
(1,2)
1(kk′) = δk,1δk′,1 TrEn

{
b
E

(1)
n
b̂†
E

(1)
n

η̂
E

(
n1)

}
= δk,1δk′,1(N1 + 1). (3.93)
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From this expression we can write the local dissipative term for S1 as:

L1(· · · ) = (N1 + 1)

{
â1(· · · )â†1 −

1

2

{
â†1â1, (· · · )

}}

+ N1

{
â†1(· · · )â1 −

1

2

{
â1â

†
1, (· · · )

}}
. (3.94)

The form of this local term is quite standard, it is already in GKSL form, and it
describes a thermalization process with a thermal bath at temperature T1.

The local coefficients for S2 can be computed in a similar way as:

γ
(1,1)
2(kk′) =

[
γ

(2,2)
2(kk′)

]∗
= δk,1δk′,1 TrEn

{
b2

E
(
n1)
M(1)
En (η̂En)

}
(3.95)

= δk,1δk
′, 1 TrEn

{(
c(ϕ)b̂

E
(1)
n

+ s(ϕ)b̂
E

(2)
n

)2

η̂En

}
= 0

γ
(2,1)
2(kk′) = TrEn

{
b̂†
E

(1)
n

b̂
E

(1)
n
M(1)
En (η̂En)

}
(3.96)

= TrEn

{(
c∗(ϕ)b̂†

E
(1)
n

+ s∗(ϕ)b̂†
E

(2)
n

)(
c(ϕ)b̂

E
(1)
n

+ s(ϕ)b̂
E

(2)
n

)
η̂En

}
= δk,1δk′,1N12(ϕ)

γ
(1,2)
2(kk′) = TrEn

{
b̂
E

(1)
n
b̂†
E

(1)
n

M(1)
En (η̂En)

}
= (3.97)

TrEn

{(
c(ϕ)b̂

E
(1)
n

+ s(ϕ)b̂
E

(2)
n

)(
c∗(ϕ)b̂†

E
(1)
n

+ s∗(ϕ)b̂†
E

(2)
n

)
η̂En

}
= δk,1δk′,1 (N12(ϕ) + 1) ,

where it has been defined:

N12(ϕ) = |c(ϕ)|2N1 + |s(ϕ)|2N2 = N2 + (N1 −N2)|c(ϕ)|2 (3.98)

and in the second equality we exploited |c(ϕ)|2 + |s(ϕ)|2 = 1. At this point we can write
the local dissipator for S2 as:

L2(· · · ) = (N12(ϕ) + 1)

{
â2(· · · )â†2 −

1

2

{
â†2â2, (· · · )

}}

+ N12(ϕ)

{
â†2(· · · )â2 −

1

2

{
â2â

†
2, (· · · )

}}
(3.99)

This term, similarly to L1, is already in GKSL form, and describes a thermalization
process with a thermal bath at an intermidiate temperature between T1 and T2, de-
pending on the transmissivity of the two beam splitters and on the phase shift through
N12(ϕ).

We are thus left with evaluating the non-local term D12. Computing the coefficients
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leads to:

ζ
(1,1)
12(kk′) =

[
ξ

(2,2)
12(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂
E

(1)
n
M(1)
En (b̂

E
(1)
n
η̂En)

}
(3.100)

= δk,1δk′,1 TrEn

{(
c(ϕ)b̂

E
(1)
n

+ s(ϕ)b̂
E

(2)
n

)
b̂
E

(1)
n
η̂En

}
= 0,

ζ
(2,2)
12(kk′) =

[
ξ

(1,1)
12(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂†
E

(1)
n

M(1)
En (b̂†

E
(1)
n

η̂En)
}

(3.101)

= δk,1δk′,1 TrEn

{(
c∗(ϕ)b̂†

E
(1)
n

+ s∗(ϕ)b̂†
E

(2)
n

)
b̂†
E

(1)
n

η̂En

}
= 0,

for the terms with ` = `′, while for ` 6= `′ we get:

ζ
(1,2)
12(kk′) =

[
ξ

(2,1)
12(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂†
E

(1)
n

M(1)
En (b̂

E
(1)
n
η̂En)

}
(3.102)

= δk,1δk′,1 TrEn

{(
c∗(ϕ)b̂†

E
(1)
n

+ s∗(ϕ)b̂†
E

(2)
n

)
b̂
E

(1)
n
η̂En

}
= δk,1δk′,1c

∗(ϕ)N1,

ζ
(2,1)
12(kk′) =

[
ξ

(1,2)
12(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂
E

(1)
n
M(1)
En (b̂†

E
(1)
n

η̂En)
}

(3.103)

= δk,1δk′,1 TrEn

{(
c(ϕ)b̂

E
(1)
n

+ s(ϕ)b̂
E

(2)
n

)
b̂†
E

(1)
n

η̂En

}
= δk,1δk′,1c(ϕ)(N1 + 1).

Once we computed these expressions, we can write the non-local term as:

D12(· · · ) = N1

{
c∗(ϕ)â†1[(· · · ), â2]− c(ϕ)

[
(· · · ), â†2

]
â1

}
(3.104)

+ (N1 + 1)
{
c(ϕ)â1

[
(· · · ), â†2

]
− c∗(ϕ)[(· · · ), â2]â†1

}
.

Now, it must be noted that, at glance with the local term for S1 in Eq. (3.94), both
the local term L2 and the non-local term D12 depend on the phase ϕ, i.e. the dissipative
dynamics of the second node is tunable. More specifically, setting ε1 = ε2 = 1/2, c(ϕ)

acquires an oscillating behavior, since:

c(ϕ) = −ie−iϕ2 sin(ϕ/2) for ε1 = ε2 = 1
2
. (3.105)

It must be stressed however that the local term L2 never nullifies, in accordance with
the fact that a system is always interacting with the vacuum. On the contrary, the non-
local term can nullify, since if the outputs from S1 interfere destructively before being
fed to S2, then no interaction between the two systems is allowed.

Following the model, we can finally write the superoperator L1+L2+D12 in the GKSL
form. Following the receipt of Sec. 3.2, we can compute the Hamiltonian contribution
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to the dynamics in Eq. (3.68) as:

Ĥ12 = − i
2

(
c(ϕ)â1â

†
2 − c∗(ϕ)â†1â2

)

= − i
2
|c(ϕ)|

(
ei arg[c(ϕ)]â1â

†
2 − e−i arg[c(ϕ)]â†1â2

)
, (3.106)

while the ∆L12 contribution of Eq. (3.69) can be written as:

∆L12(· · · ) = N1c
∗(ϕ)

{
â†1(· · · )â2 −

1

2

{
â†1â2, (· · · )

}}

+ (N1 + 1)c(ϕ)

{
a1(· · · )â†2 −

1

2

{
â1â

†
2, (· · · )

}}
. (3.107)

In order to find the GKSL expression of the master equation, we note that in this case
the matrix ∆D

(`,`′)
mm′(kk′) reduces to ∆D

(`,`′)
mm′(1,1), so that we can write:

∆D
(`,`′)
mm′(1,1) =




0 0 N1c
∗(ϕ) 0

0 0 0 (N1 + 1)c(ϕ)

N1c(ϕ) 0 0 0

0 (N1 + 1)c∗(ϕ) 0 0




(3.108)

where the top left and bottom right 2× 2 blocks refer to m = m′ = 1, 2 respectively. As
already said in the previous section, this matrix is Hermitean but not in principle positive
semi-definite. On the other hand, adding the coefficients γ(`,`′)

m(1,1) along the diagonal, we
can write the matrix D(`,`′)

mm′(1,1), which is positive semi-definite:

D
(`,`′)
mm′(1,1) =




N1 0 N1c
∗(ϕ) 0

0 N1 + 1 0 (N1 + 1)c(ϕ)

N1c(ϕ) 0 N12(ϕ) 0

0 (N1 + 1)c∗(ϕ) 0 N12(ϕ) + 1



. (3.109)

The eigenvalues of D(`,`′)
mm′(1,1) can be easily found:

κ1,± =
1

2

(
N1 +N12(ϕ) + 2±

√
(N1 −N12(ϕ))2 + 4(N1 + 1)2|c(ϕ)|2

)

κ2,± =
1

2

(
N1 +N12(ϕ)±

√
(N1 −N12(ϕ))2 + 4N2

1 |c(ϕ)|2
)
, (3.110)
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and can be easily seen to be non-negative for any choice of N1, N2, ϕ. Then, exploiting
Eq. (3.74), we can write the Lindblad operators for the system under examination as:

L̂(1,+) =
√
κ1,+

w1,+â1 + â2√
1 + |w1,+|2

, L̂(1,−) =
√
κ1,−

w1,−â
†
1 + â†2√

1 + |w1,−|2
,

L̂(2,+) =
√
κ2,+

w2,+â1 + â2√
1 + |w2,+|2

, L̂(2,−) =
√
κ2,−

w2,−â
†
1 + â†2√

1 + |w2,−|2
,

where:

w1,± =
N1 −N12(ϕ)±

√
(N1 −N12(ϕ))2 + 4(N1 + 1)2|c(ϕ)|2

2(N1 + 1)c∗(ϕ)
, (3.111)

w2,± =
N1 −N12(ϕ)±

√
(N1 −N12(ϕ))2 + 4N2

1 |c(ϕ)|2
2N1c(ϕ)

. (3.112)

We stress once again that setting ε1 = ε2 = 1 leads to the same model studied in
Sec. 3.1. More specifically, setting also T1 = 0, one would find that only κ1,+ = 2 would
be different from zero, leading to a unique collective operator ˆL(1,+) = â1 + â2, which is
a signature of super radiance effects.

With this very simple system we were able to expose practically the features of the
model shown in Sec. 3.2, seeing how the presence of interactions among ancillas from
different environments can lead to interference effects, and how they manifest themselves
in the master equation and the expressions of the Lindblad operators.

3.3.2. Interference controlled topology

In this section we will move further with respect to the previous example, examining
the system with three nodes illustrated in Fig. 3.6. This system is somehow similar to
the Mach-Zehnder interferometer analyzed before, but the presence of the third node
implies the appearance of three new terms in the master equation, namely L3, D13 and
D23.

Since we will need to make comparison with the previous section, in this case we dub
the nodes Q1, Q2 and Q3: as it can be seen from the figure, the nodes Q1 and Q3 occupies
the positions of S1 and S2 of the previous section respectively. The node Q2 lays instead
inside the interferometer, and thus in this network there will be two first-neighbor terms,
the D12 and D23 terms, plus a non-local term describing the second-neighbor interaction
D13 between Q1 and Q3.
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Figure 3.6.: Left panel: a sketch of the system under examination: once again there
are two environmental channels E (1),E (2), two beam splitters and a phase
shifter. The only difference with the Mach-Zehnder interferometer ana-
lyzed in the previous section is the presence of a third node in the circuit.
Right panel: circuit-like representation of the dynamics in the collisional
model approach.

Just as in the previous example we assume the nodes to be interacting only with
channel E (1), so that we write the interaction Hamiltonian between the nodes and the
environments as:

Ĥ
Qi,E

(1)
n

= â†i b̂E(1)
n

+ âib̂
†
E

(1)
n

, Ĥ
Qi,E

(2)
n

= 0. (3.113)

We also assume once again the environmental states η̂
E

(1)
n

and η̂
E

(2)
n

to be Gibbs states
at temperature T1 and T2 respectively. As the computation of the various terms of the
master equation is all in all similar to the one performed in Sec. 3.3.1, we report the
explicit calculations for the various coefficients in App. A.2.

We start our analysis of this network from the local terms Li, which can be written

64



Chap. 3 Cascade systems 3.3 Simple non-trivial cascade networks

explicitly as:

L1(· · · ) = (N1 + 1)

{
â1(· · · )â†1 −

1

2

{
â†1â1, (· · · )

}}

+ N1

{
â†1(· · · )â1 −

1

2

{
â1â

†
1, (· · · )

}}
, (3.114)

L2(· · · ) = (N̄12 + 1)

{
â2(· · · )â†2 −

1

2

{
â†2â2, (· · · )

}}

+ N̄12

{
â†2(· · · )â2 −

1

2

{
â2â

†
2, (· · · )

}}
, (3.115)

L3(· · · ) = (N12(ϕ) + 1)

{
â3(· · · )â†3 −

1

2

{
â†3â3, (· · · )

}}

+ N12(ϕ)

{
â†3(· · · )â3 −

1

2

{
â3â

†
3, (· · · )

}}
, (3.116)

where N12(ϕ) is the same of Eq. (3.98) and we have defined:

N̄12 = ε1N1 + (1− ε1)N2 = N2 + ε1(N1 −N2), (3.117)

as the mean photon number of the environment perceived by node Q2.

We note immediately that Eq. (3.114) is identical to Eq. (3.94), and this come as no
surprise as S1 and Q1 occupy the same position in the network. For the same reason the
local term L3 in Eq. (3.116) is formally identical to Eq. (3.99). On the other hand the
local term L2 does not depend upon ϕ, but only on the transmissivity of the first beam
splitter BS1, as the node Q2 is placed before the phase shift.

We can then turn our focus on the non-local terms, starting from the first-neighbors
couplings between nodes Q1 and Q2 and between Q2 and Q3, which can be written as:

D12(· · · ) =
√
ε1N1

{
â†1[(· · · ), â2] +

[
â†2, (· · · )

]
â1

}
(3.118)

+
√
ε1(N1 + 1)

{
â1

[
(· · · ), â†2

]
+ [â2, (· · · )]â†1

}
,

D23(· · · ) = M∗
12(ϕ)â†2[(· · · ), â3] +M12(ϕ)

[
â†3, (· · · )

]
â2 (3.119)

+ (M12(ϕ) + λ(ϕ)) â2

[
(· · · ), ˆ

a†3

]
+ (M∗

12(ϕ) + λ∗(ϕ)) [â3, (· · · )]â†2,
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where we have introduced:

M12(ϕ) =
√
ε1c(ϕ)N1 + i

√
1− ε1s(ϕ)N2, (3.120)

λ(ϕ) =
√
ε1c(ϕ) + i

√
1− ε1s(ϕ), (3.121)

and c(ϕ), s(ϕ) as in Eq. (3.88) and (3.89) respectively.

Finally we can write the second-neighbor term describing the interaction between Q1

and Q3:

D13(· · · ) = N1

{
c∗(ϕ)â†1[(· · · ), â3] + c(ϕ)

[
â†3, (· · · )

]
â1

}
(3.122)

+ (N1 + 1)
{
c(ϕ)â1

[
(· · · ), â†3

]
+ c∗(ϕ)[â3, (· · · )]â†1

}
,

which formally coincides with the D12 of Sec. 3.3.1.

From Eqs. (3.118, 3.119, 3.122) it is evident that the coupling terms connecting the
various nodes have all a different functional dependence on the phase ϕ. To better
highlight the properties of this network, we find it useful to focus on the zero temperature
regime (i.e. T1 = T2 = 0) and set the transmissivity of both beam splitters to 50% (i.e.
ε1 = ε2 = 1/2). In this case the local contributions describe a purely dissipative process,
acquiring the very simple form:

Lm(· · · ) = âm(· · · )â†m −
1

2

{
â†mâm, (· · · )

}
. (3.123)

Conversely, the non-local terms become:

D12(· · · ) =
1√
2

{
â1

[
(· · · ), â†2

]
+ [â2, (· · · )]â†1

}
, (3.124)

D23(· · · ) =
1√
2

{
e−iϕâ2

[
(· · · ), â†3

]
+ eiϕ[â3, (· · · )]â†2

}
, (3.125)

D13(· · · ) = −i sin
ϕ

2

{
e−i

ϕ
2 â1

[
(· · · ), â†3

]
+ ei

ϕ
2 [â3, (· · · )]â†1

}
. (3.126)

From the expressions of the non-local terms one can infer that the phase ϕ gives two
kinds of contributions to the dynamics: first it introduces a relative phase between the
three nodes that cannot be eliminated by simply absorbing it into a redefinition of the
annihilation and creation operators. Second, it allows for a selective modulation of the
strength of the interactions between the nodes. This can be seen easier by looking at
the expression of the induced Hamiltonian one finds after recasting the master equation
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Figure 3.7.: A scheme resuming the phase dependence of the relative strengths of the
interactions among the nodes Q1, Q2 and Q3. In the left panel we can
see the situation for ϕ = 0: as the sine function nullifies, there are only
first-neighbor interactions among the nodes. The central panel shows in-
stead the situation for ϕ = π/2: in this case the second-neighbor inter-
action is present and it has the same weight of the first-neighbor inter-
actions. Finally, the right panel shows the situation as ϕ = π: not only
the second-neighbor interaction is present, but it is also stronger than the
first-neighbor interactions.

into the GKSL form (see App. A.2):

Ĥ12 = − i

2
√

2

(
â1â

†
2 − â†1â2

)
, (3.127)

Ĥ23 = − i

2
√

2

(
ei
ϕ
2 â2â

†
3 − e−i

ϕ
2 â†2â2

)
, (3.128)

Ĥ13 = − i
2

sin
ϕ

2

(
ei
ϕ+π
2 â1â

†
3 − e−i

ϕ+π
2 â†1â3

)
. (3.129)

By looking at this expressions, we realize that tuning ϕ it is possible to modify the
topology of the interactions between the nodes, as resumed schematically in Fig. 3.7: for
instance, by setting ϕ = 0 we can shut down the interaction between Q1 and Q3, while
setting ϕ = π we move to a situation where the second-neighbor interaction is stronger
than the first neighbor interactions. We can move continuously from both extreme into
intermediate situations, like ϕ = π/2 where the first and second neighbor interactions
have the same strength.

This example allowed us to show more features of cascade networks and the formalism
we developed: as we are going to see in the next section, the network we studied in this
section can be scaled up, giving rise to a complex-many-body network where all the
interactions are in principle completely tunable.
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3.4. A complex cascade network

It is time now to explore the last issue of cascade network we will meet in this work:
in Sec. 3.3.2 we saw how it is possible, via interference effects, to tailor the interactions
between the nodes of a quantum cascade network. Specifically we saw how, with the aid
of beam splitters and phase shifts only, it is possible to obtain very different topologies of
the intra nodes interactions, from suppressing second neighbor interactions to situations
where second neighbor interactions were stronger than the first neighbor ones.

3.4.1. Path-dependent coupling constants

We want to show now that it is possible to scale up such network to an arbitrary
number of sites, obtaining a network like the one shown in Fig. 3.8: we consider a set
of M nodes {S1, S2, · · · , Sm} connected through a set of M multimode unidirectional
environmental channels {E (1), E (2), · · · , E (M)}, each one being described by the set of
annihilation operators {b̂E(m)

n
} fulfilling the following commutation relations:

[
b̂E(m)
n
, b̂†
E(m
′)

n′

]
= δmm′δnn′ ,

[
b̂E(m)
n
, b̂E(m′)

n′

]
= 0, (3.130)

where the index n accounts for the mode degeneracy of each channel. At variance with
the previous section, all throughout this section we will assume all the environmental
modes to be in the vacuum state.

As shown in Fig. 3.8 the environmental channels E (m) and E (m′) intercept at the beam
splitter BSmm′ , whose effects are described by the unitary transformation Ûmm′ acting
on the environmental operators as:

b̂E(m)
n
→ Û †mm′ b̂E(m)

n
Ûmm′ =

√
tmm′ b̂E(m)

n
− i
√

1− tmm′ b̂E(m′)n
, (3.131)

b̂E(m′)n
→ Û †mm′ b̂E(m′)n

Ûmm′ = e−iϕmm′
(√

tmm′ b̂E(m′)n
− i
√

1− tmm′ b̂E(m)
n

)
, (3.132)

where tmm′ ∈ [0, 1] is the transmissivity of BSmm′ and we have included a phase difference
between the two ports of BSmm′ described by ϕmm′ ∈ [0, 2π], as resumed in Fig. 3.9 on
page 71.

In analogy with the choice of the previous sections, we assume the interaction between
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Figure 3.8.: A schematic representation of the network under examination: the in-
teractions between the nodes {S1, S2, · · · } (blue dots) are mediated by a
network of multimode environmental channels {E (1), E (2), · · · } (colored ar-
rows) interfering via a series of beam splitters BSij (yellow squares) while
moving unidirectionally along the network, from top to bottom, crossing
the various levels of the network (horizontal solid lines).

the nodes and the environments to be described by the exchange Hamiltonian:

ĤSm,E(m′) = δmm′
∑

n

gn

(
â†mb̂E(m′)n

+ âmb̂
†
E(m
′)

n

)
, (3.133)

where the gn are the coupling constants between node Sm and the mode described by
b̂E(m)
n

, and âm is the annihilation operator for the node Sm.

Within the assumptions made, the master equation of the system can be written as:

dρ̂S(t)

dt
=
∑

m

Lm(ρ̂S(t)) +
∑

m′>m

Dmm′(ρ̂S(t)), (3.134)
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where the Lm terms as usual describe local dissipation processes:

Lm(· · · ) =
γ

2

{
2âm(· · · )â†m −

{
â†mâm, ,

}
(· · · )

}
, (3.135)

while the Dmm′ are worth:

Dmm′(· · · ) = γ
{
ζmm′ âm

[
(· · · ), â†m′

]
+ ζ∗mm′ [âm′ , (· · · )]â†m

}
. (3.136)

Here it must be noted that the local terms are not tunable, i.e. they do not depend
upon the transmissivities and the phases of the beam splitters BSmm′ . On the contrary
the coefficients ζmm′ do depend on the transmissivities and the phases: this fact entails
the possibility of tuning the interactions among the nodes induced by the presence of the
environmental channel. As we are going to see in a while, the coefficients ζmm′ depend
strictly on the paths connecting node Sm and node Sm′ .

Even if this will not be the focus of this section, we note that the master equation in
Eq. (3.134) could be recast in GKSL form. Following the method exposed in Sec. 3.2,
we would find that the matrix Ωmm′ is worth:

Ωmm′ =





γ for m = m′,

γ ζmm′ for m′ > m,

γ ζ∗mm′ for m′ > m,

(3.137)

so that upon diagonalization it would yield the Lindblad operators:

L̂i =
√
κi
∑

m

w∗m,iâm, (3.138)

where κi are the eigenvalues of Ωmm′ and the wm,i are the elements of the matrix diag-
onalizing Ωmm′ , i.e. it holds:

κi =
∑

m,m′

w∗miΩmm′wm′i. (3.139)

While we are going to see in the following some cases where an explicit expression
for the L̂i can be written, this is in general not true for arbitrary choices of the net-
work parameters, i.e. arbitrary choices of the transmissivities and phases of the beam
splitters BSmm′ . However, in general the L̂i will be non-local, giving rise to cooperative
emission processes like Dicke superradiance. An explicit computation of the operators
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b̂E(m0)
n

Û†
mm0 b̂E(m0)

n
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Û †
mm0 b̂E(m)

n
Ûmm0BSmm0

Figure 3.9.: A scheme resuming the input-output relations induced by the beam split-
ter BSmm′ that couples channels E (m) and E (m′). As one can see the two
outputs are combinations of the inputs weighted according to the trans-
missivity of the beam splitter. Moreover the two outputs gain a relative
phase ϕ.

in Eq. (3.138) is given in App. A.3.

3.4.2. Computing the coefficients ζmm′

As we anticipated in the previous section, the coefficients ζmm′ dictating the interaction
between the nodes depend on the paths connecting the two nodes, and thus on the
parameters of the beam splitters, namely the transmissivities tmm′ and their induced
relative phases ϕmm′ .

In fact, according to our model, these coefficients can be written as:

ζmm′ = Tr
{
b̂E(m′)n

M(m′−1←m)
E

(
b̂E(m)
n
M(m−1←1)
E (η̂E)

)}
, (3.140)

where η̂E is the joint initial state of the environmental channels (which we assumed to
be the vacuum), andM(m′←m)

E is the CPT map describing the evolution of the environ-
mental state, in the absence of the nodes S, from level m to level m′ of the network, see
Fig. 3.8. This map can be described via the unitary transformations Ûmm′ induced by
the beam splitters BSmm′ . In order to do this we use:

V̂m = · · · Ûm+3,mÛm+2,mÛm+1,m, (3.141)

to indicate the product of the beam splitter unitary operators coupling channel E (m)
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with the following ones, so that we define

V̂m′←m = V̂m′ · · · V̂m+1V̂m, (3.142)

the ordered product of the V̂ operators from level m to level m′ > m, so that the CPT
mapMm′←m

E can be expressed as:

Mm′←m
E (· · · ) = V̂m′←m(· · · )V̂ †m′←m. (3.143)

Since, as it can be verified directly, the composition rule:

V̂m′′←m′V̂m′←m = V̂m′′←m, (3.144)

holds for any m′′ > m′ > m, then Eq. (3.140) can be rewritten as:

ζmm′ = TrE

{
ĉE(m′)n

ĉ†
E(m)
n

η̂E

}
, (3.145)

where the operator ĉE(m)
n

is the operator b̂E(m)
n

evolved from level 1 to level m of the
network in the Heisenberg picture:

ĉE(m)
n

= V̂ †m←1b̂E(m)
n
V̂m←1, (3.146)

where we included the case m = 1 by identifying V̂0←1 with the identity operator, so
that ĉE(1)n

= b̂E(1)n
. To understand the meaning of Eq. (3.146), consider for instance the

case m = 2:

ĉE(2)n
= Û †12b̂E(2)n

Û12 = e−iϕ12

(√
t12b̂E(2)n

− i
√

1− t12b̂E(1)n

)
, (3.147)

where the fact that for m > 3 the operator Û1m commutes with b̂E(2)n
has been used.

Analogously for m = 3 we get:

ĉE(3)n
= Û †12Û

†
13Û

†
23b̂E(3)n

Û23Û13Û12 = e−iϕ23

{
e−iϕ13

√
t13t23b̂E(3)n

(3.148)

+
[
−ie−iϕ12

√
t12(1− t23)− e−iϕ13

√
(1− t12)(1− t13)t23

]
b̂E(2)n

+
[
e−iϕ12

√
(1− t12)(1− t23)− ie−iϕ13

√
t12(1− t13)t23

]
b̂E(1)n

}
.

As one can verify by direct inspection of the above expressions, the operator ĉE(m)
n

can

72



Chap. 3 Cascade systems 3.4 A complex cascade network

1 5

1

1

1

1

2

2

2

2

3

3

3

4

4

S1

S2

S3

S4

S5

1 5

1

1

1

1

2

2

2

2

3

3

3

4

4

S1

S2

S3

S4

S5

1 5

1

1

1

1

2

2

2

2

3

3

3

4

4

S1

S2

S3

S4

S5

1 5

1

1

1

1

2

2

2

2

3

3

3

4

4

S1

S2

S3

S4

S5

level 1

level 2

level 3

level 4

level 5

a) b)

c) d)

S4

S5

S2

S5

S2

S4

S1

S5

Figure 3.10.: Illustration of the paths (bold curves) contributing to the coupling con-
stants ζmm′ . In panel (a) we see that for a first neighbor coupling there
is only one path contributing to the coupling, while already for second-
neighbor interactions there are two different paths connecting the nodes,
as shown in panel (b). The number of paths contributing to the coupling
clearly increases exponentially with the distance between the nodes, as
exemplified in the other two panels (c) and (d), which show the paths
connecting third-neighboring and fourth-neighboring sites respectively.

be written as:

ĉE(m)
n

=
m∑

k=1

A
(k)
m←1b̂E(k)n

, (3.149)

where with Â(k)
m←1 we indicate the probability amplitudes obtained by coherently sum-

ming all the paths that bring the input mode b̂E(k)n
from level 1 to level m of the network
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(see Fig. 3.8). Inserting expression (3.149) in Eq. (3.140) we get:

ζmm′ =
m′∑

k′=1

m∑

k=1

A
(k′)
m′←1

[
A

(k)
m←1

]∗
Tr
{
b̂E(k′)n

b̂E(k)n
η̂E

}
. (3.150)

For the special case where the input modes state is a zero-mean factorized one,
Eq. (3.150) can be further simplified. Specifically, under our assumption of having the
input modes in the vacuum state |Ø〉, we have:

〈Ø| b̂E(k′)n
b̂†
E(k)n

|Ø〉 = δkk′ , (3.151)

so that Eq. (3.150) becomes:

ζmm′ =
m∑

k=1

A
(k)
m′←1

[
A

(k)
m←1

]∗
. (3.152)

Indeed the expression can be simplified further, thanks to the properties of the am-
plitudes Am←1. As a matter of fact we can write the compact form:

ζmm′ = A
(m)
m′←m. (3.153)

This expression shows that for the case of vacuum input modes, the coupling between
sites Sm, Sm′ is identical to the probability amplitudes associated with the propagation
of signals from Sm to Sm′ , as exemplified in Fig. 3.10.

To derive Eq. (3.153) we go back to Eq. 3.145 and note that the vacuum states are
invariant under the action of the beam splitter operators Ûmm′ , so that we are allowed
to write:

ζmm′ = 〈Ø|
(
V̂m′−1←mb̂E(m′)n

V̂ †m′−1←m

)
b̂†
E(m)
n

|Ø〉

=
m′∑

k=m

A
(k)
m′←k 〈Ø| b̂E(k)n

b̂E(m)
n
|Ø〉 = A

(m)
m′←m. (3.154)

To derive Eq. (3.154) we used the identity:

V̂ †m′−1←mb̂E(m′)n
V̂m′−1←m =

m′∑

k=m

A
(k)
m′←kb̂E(k)n

, (3.155)
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Figure 3.11.: Illustration of the network in the presence of losses: these can be mod-
eled by adding auxiliary beam splitters interacting with auxiliary envi-
ronments initialized in the vacuum state in the place indicated by black
elements in figure. This induces a (1 − ν)m

′−m damping factor on the
coupling coefficients ζ(loss)

m,m′ .

which is a straightforward generalization of Eq. (3.149).

We conclude this section by asserting that noise phenomena in the signal transmission,
which have been ignored up to know, can be easily included in this formalism. Any form
of disturbance can in fact be included by properly including it in the definition of the
mapME(m

′←m)
n

. Consider for instance the case, illustrated in Fig. 3.11, where each path
composing the network is characterized by a probability ν ∈ [0, 1] of losing the signal
transmitting through it. We can then easily account for this effect in the expression
of the coefficients ζmm′ , where an extra factor exponentially decreasing with the sites
distance appears:

ζ
(loss)
mm′ = (1− ν)m

′−mA
(m)
m′←m. (3.156)
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This expression can be easily verified by representing the losses via the action of
extra beam splitters placed along the network in correspondence of the black elements
of Fig. 3.11 that mix the signal with an auxiliary environments initialized in the vacuum
state.

3.4.3. Regular Network

In Sec. 3.4.1 we have seen how the couplings between the nodes of the network shown
in Fig. 3.8 depend on the coherent sum of the paths connecting them. We have also
seen that for generic parameters tmm′ and ϕmm′ , the computation of the coefficients ζmm′
quickly becomes extremely hostile.

In order to see some practical instances, we want to focus in this section on the case of
a regular network, like the one shown in Fig. 3.12, where the beam splitters dictating the
n-th neighbor interaction are assumed to be identical, i.e. the beam splitters are grouped
according to their index difference, so that for instance {BS12, BS23, . . . , BSm,m+1} have
all the same transmissivity t1 and the same relative phase ϕ1, so that in general we set:

tm,m+k = τk ϕm,m+k = ϕk ∀m, k. (3.157)

Under these assumptions the coefficients ζmm′ become invariant under translation of
the indexes:

ζmm′ = ζ1,m′−m+1 ∀m′ > m, (3.158)

so that we are allowed to write the master equation as:

dρ̂S(t)

dt
=
∑

m

Lm(ρ̂S(t)) +
∑

k

Dk(ρ̂S(t)), (3.159)

where now the superoperators Dk are translationally invariant:

Dk(· · · ) = γ
∑

m

ξk âm

[
(· · · ), â†m+k

]
+ ξ∗k [âm+k, (· · · )]â†m, (3.160)

and we have defined

ξk = ζ1,k+1 = A
(1)
k+1←1, (3.161)
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Figure 3.12.: Illustration of the regular network under examination: the beam split-
ters laying on the same diagonal, as the labels suggest, have the same
properties, i.e. they have the same transmissivity tk and they induce the
same relative phase ϕk. This implies, for instance, that beam splitters
BS12, BS23, . . . , BSm,m+1 all have the same transmissivity τk=1 and rel-
ative phase ϕk=1, as well as the elements BS13, BS24, . . . , BSm,m+2 are
characterized by transmissivity τk=2 and relative phase ϕk=2.

which become

ξ
(loss)
k = (1− ν)kA

(k)
k+1←1 (3.162)

in presence of losses (see Eq. (3.156)). The translational invariance of the Dk manifests
itself also in the expression of the induced effective Hamiltonian, which is worth:

Ĥ =
∑

k

Ĥk , Ĥk = −iγ
2

∑

m

(
ξkâmâ

†
m+k − ξ∗kâ†mâm+k

)
. (3.163)

It is also clear by construction that ξk will depend upon the τk′ and ϕk′ with k′ < k,
so that tuning appropriately these parameters one is able to tailor the dynamics of the
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Figure 3.13.: Finite size network where t1 = 0 has been set. This choice gives rise to
a uniform chain of nodes connected through the one chiral channel E (1).
As a consequence any node interacts with all the other, giving rise to the
interaction topology shown in figure.

network. Still, writing explicitly the functional dependence of the ξk is quite difficult,
due to the complexity of this dependence. However, for some special cases we are going
to analyze it is possible to find manageable analytic expressions. We thus consider two
special instances of the regular network we have just shown: the case of a finite size
network, and the case where we want to retain only one kind of interaction, i.e. only
first-neighbor interactions or only second.neighbor and so on and so forth.

Finite size networks

Consider the case where the transmissivity of the beam splitters BSm,m+1 coupling first
neighboring sites is set to zero, τ1 = 0, as illustrated in Fig. 3.13. With this choice the
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network splits up in two: one part is made out of the nodes S communicating through the
chiral channel E (1), the other part being the composed by the remaining environmental
channels that do not interact with the nodes.

Under this hypothesis the couplings ξk are easily computed. As a metter of fact we
have:

ξk = (−ie−iϕ1)k = e−ik(ϕ1+π/2), (3.164)

showing that the nodes interact all with the same strenght independently of the dis-
tance between them. This comes as no surprise, since with the choice made we just
recovered the many-body generalization of the model in Sec. 3.1, where M sites are cou-
pled to a single chiral channel. This can be seen even better by looking at the effective
Hamiltonian, which looks:

Ĥk = −iγ
2

∑

m

(
e−ik(ϕ1+π/2)âmâ

†
m+k − h.c.

)
= −iγ

2

∑

m

(
d̂md̂

†
m+k − h.c.

)
,

(3.165)

where in the second equality we show explicitly how the relative phase ϕ1 is in this case
irrelevant, as it can be reabsorbed into the system operators through the transformation:

âm → d̂m = âme
−im(ϕ1+π/2), (3.166)

which leaves the other contributions to the master equation unchanged. A similar be-
havior is observed when we leave τ1 arbitrary but we still assume all the other beam
splitters of the network to have unitary transmissivity, i.e. τk = 1 for k > 1. This choice
implies that a signal which gets transmitted through BSm,m+1 will never have the op-
portunity to interact with a node, so that the overall effect of this choice of parameters
implies an exponential depression of the couplings,

ξk = e−ik(ϕ1+π/2)(1− τ1)k/2, (3.167)

which is the same expression one would get considering the case τ1 = 0 in presence of
losses, upon the identification of

√
1− τ1 with the factor (1− ν).

Actually, this is not the end of the story: Eq. (3.164) can be generalized to the case
where, for a given integer K ≥ 2, the transmissivity of beam splitters BSm,m+K is set
equal to zero, i.e. τK = 0. As in the previous case, the network splits up in two parts,
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Figure 3.14.: Schematic illustration of the components of the vectors ~V` for the case
K = 3. For ` and k integer, the component V (k)

` describes the probability
amplitude associated to the path connecting the first entry of level 1 and
the k-th entry of level ` (upper panel). In the lower panel we highlight
the paths contributing to V (2)

3 .

the first on containing the nodes and the first K chiral channels, the other containing
all the rest of the network, which does not contribute to the dynamics.

To show this we introduce a K dimensional vector ~V` having as components the
probability amplitudes associated with the propagation of E (1) from level 1 of the network
up to the first K entries of level ` (see Fig. 3.14):

~V T
` =

(
V

(1)
` , V

(2)
` , . . . , V

(K)
`

)
for ` ≥ 2, (3.168)

~V T
1 = (1, 0, . . . , 0) . (3.169)
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To better understand this notation we highlight that the amplitude A(1)
k+1←1, which ba-

sically determines the coupling ξk, corresponds to the first entry of ~Vk+1, so that we
have:

A
(1)
k+1←1 = V

(1)
k+1 = ~V T

1 · ~Vk+1. (3.170)

Moreover the vectors ~V` and ~V`+1 are clearly not independent, but instead they are
related via:

~V`+1 = T ~V`, (3.171)

where T is a K ×K matrix describing the propagation of a signal from one level of the
network to the next whose elements are worth:

Tij =





e−iϕi
√
τi for j = i+ 1,

e−iϕi(−i√1− τi)(−i
√

1− τi−1) for i = j,

e−iϕi(−i
√

1− τj−1)(
i−1∏

`=j

√
τ`)(−i

√
1− τi) for j < i,

0 otherwise.

(3.172)

where we adopted the convention −i√1− τ0 → 1 for ease of notation. Writing the
matrix T = UDU †, where D is the diagonal matrix formed by the eigenvalues of T and
U the unitary operator diagonalizing T , whose rows are the corresponding eigenvectors,
we can write from Eq. (3.171):

~V`+1 = T `~V1 = UD`U †~V1. (3.173)

Inserting this into Eq. (3.170) we get the expression for the ξk:

ξk = A
(1)
k+1←1 = ~V T

1 · · · ~Vk+1 = ~V T
1 UD

kU †~V1. (3.174)

This is a general formula allowing one to compute the coupling ξk for the general case
where the transmissivities of beam splitters BSm,m+K have been set to zero. Consider
for instance the case K = 2. In this case T is a 2× 2 matrix which is worth:

T =

(
−i√1− τ1e

−iϕ1
√
τ1e
−iϕ1

−i√τ2e
−iϕ2 −√1− τ1e

−iϕ2

)
= UDU †, (3.175)
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where the matrices D and U can be expressed as:

D =

(
eiθ+ 0

0 eiθ−

)
, U =




u+√
τ1+|u+|2

u−√
τ1+|u−|2

√
τ1√

τ1+|u+|2

√
τ1√

τ1+|u−|2


 , (3.176)

with:

eiθ± =
1

2

[
−
√

1− τ1(ie−iϕ1 + e−iϕ2)

±
√

(e−iϕ2 − ie−iϕ1)2 − τ1(ie−iϕ1 + e−iϕ2)2
]
, (3.177)

u± =
√

1− τ1(e−i(ϕ1−ϕ2) + i)

± i
√

(1− τ1)(1− e−i2(ϕ1−ϕ2))− 2ie−i(ϕ1−ϕ2)(1 + τ1). (3.178)

From Eq. (3.174) it then follows:

ξk =
u+e

ikθ+ − u−eikθ−
u+ − u−

, (3.179)

from which we deduce an oscillatory behavior of the ξk and a complex functional depen-
dence on the beam splitter characteristics. To better illustrate the functional dependence
of the ξk upon the beam splitter parameters, in Fig. 3.15 we plot the modulus of the
couplings |ξ1|, |ξ2|, |ξ3| and |ξ4| as a function of τ1 and ϕ2, assuming ϕ1 = 0. As one can
see from the plots, there is a rich variety of behaviors depending on the choice of τ1, ϕ1

and ϕ2.

For instance it suffices to set τ1 = 0 to find u− = 0 and recover the case in Eq. (3.164).
On the other hand, setting τ1 = 1 we have u+ = u− and eiθ± = ±e−i(

2ϕ1+2ϕ2+π
4 ), so that:

ξk = e−ik(
2ϕ1+2ϕ2+π

4 ) ×
{

0 for k odd
1 for k even

(3.180)

which implies that odd (even) sites interact with odd (even) sites only. Another inter-
esting feature of Eq. (3.179) is that, by setting ϕ2 = ϕ1 + π/2, it becomes:

ξk = e−ik(ϕ1+π/2) ×
{ √

1− τ1 for k odd,
1 for k even,

(3.181)

so that under this parameters choice two nodes belonging to the same set (even or odd
sites) interact with strength 1, while the interactions among nodes of different species
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Figure 3.15.: Plots of the modulus of the first four couplings ξk for the case τ2 = 0
and ϕ1 = 0, as a function of τ1 and ϕ2. As one can notice, for τ1 = 0 all
the couplings have unitary modulus, in agreement with Eq. (3.164). On
the other hand, for τ1 = 1 the odd terms ξ1 and ξ3 nullify, the even ones
getting their maximum value.

are suppressed by a factor
√

1− τ1. Under these hypotheses the master equation for the
nodes becomes:

dρ̂S(t)

dt
=

∑

m

γ

2

{
2âmρ̂S â

†
m −

{
â†mâm, ρ̂S

}}
+
∑

k even

γ
{
âm

[
ρ̂S, â

†
m+k

]
+ [âm+k, ρ̂S]â†m

}

+
∑

k odd

γ
√

1− τ1

{
âm

[
ρ̂S, â

†
m+k

]
+ [âm+k, ρ̂S]â†m

}
. (3.182)

It is possible to diagonalize this master equation obtaining analytical expressions for
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both the effective Hamiltonian and the Lindblad operators. The former reads:

Ĥ = − iγ

2

∑

k,even

∑

m

(
âmâ

†
m+k − h.c.

)
(3.183)

− iγ

2

√
1− τ1

∑

k odd

∑

m

(
âmâ

†
m+k − h.c.

)
,

illustrating once more the fact that the nodes interact among them differently accord-
ing to the set they belong to. As for the Lindblad operators L̂i and their associated
eigenvalues κi, it turns out that, independently of the number of nodes M , only two of
them are non-null. More specifically, the expressions of these Lindblad operators change
depending on the parity of M itself. For M even we have in fact:

L̂j =
1√
M

M∑

m=1

(−1)mj âm, (3.184)

κj = Mγ
1 + (−1)j

√
1− τ1

2
, (3.185)

which for the particular choice τ1 = 1 become:

L̂1 =

√
2

M

M/2−1∑

j=0

â2j+1, L̂2 =

√
2

M

M/2∑

j=1

â2j, (3.186)

κ1 = κ2 =
Mγ

2
, (3.187)

which is in agreement with the fact that for this value of τ1 the even nodes decouple
from the odd ones. If instead we have an odd number of sites the previous expressions
become:

L̂j =
1√
A




(M−1)/2∑

m=0

â2m+1 +
−1 + (−1)j

√
M2 − (M2 − 1)τ1

(M − 1)
√

1− τ1

(M−1)/2∑

m=1

â2m


 ,

(3.188)

A =
M + 1

2
+

1

2(M − 1)

∣∣∣∣∣
1 +

√
M2 − (M2 − 1)τ1√

1− τ1

∣∣∣∣∣ , (3.189)

κj = γM
1 + (−1)j

√
1− (1− 1/M2)τ1

2
, (3.190)
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which simplify further setting τ1 = 1:

L̂1 =

√
2

M + 1

(M−1)/2∑

j=0

â2j+1, (3.191)

L̂2 =

√
2

M − 1

(M−1)/2∑

j=1

â2j, (3.192)

κ1 =
M − 1

2
γ κ2 =

M + 1

2
γ. (3.193)

3.4.4. Retaining only one interaction

Another interesting case to analyze is the one where we can eliminate long range inter-
actions between the nodes. In fact in all the example we saw up to know all the ξk were
different from zero, while here we want to check whether it is possible to have one kind
of interaction, for instance retaining only first-neighbor interactions while suppressing
all the others. To tackle this problem we proceed in a reverse manner, i.e. we require
that the transmissivities and the relative phases of the beam splitters are such that:

ξk = 0 ∀ k ≥ 2. (3.194)

As shown in detailed manner in App. A.4, it is possible to obtain such result given
the transmissivity τ1 is above the threshold value of 3/4. Specifically, for τ1 ∈ [3/4, 1]

we have:

ξ1 = −ie−iϕ1
√

1− τ1, (3.195)

while the condition in Eq. (3.194) can be enforced by properly tuning the relative phases
ϕk and choosing the transmissivities according to the recursive formula:

τk = 1−
(

1− τk−1τk−2 · · · τ1

τk−1τk−2 · · · τ1

)(
1− τk−1

τk−1

)
. (3.196)

We immediately note that also in this case the relative phase appearing in the expres-
sion for ξ1 can be eliminated by proper absorbing it into a redefinition of the system
operators, so that it is irrelevant to the dynamics. Another thing to be noted is that
Eq. (3.196) can be adapted in order to retain only n-th neighbor interactions: to do
this it suffices to set τk = 1 for all k < n and then use Eq. (3.196) with the index shift
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k → k + n.
When Eqs.(3.194, 3.195) are fulfilled, the master equation for the network becomes:

ρ̂S(t)

dt
=

∑

m

γ

2

{
2âmρ̂S â

†
m −

{
â†mâm, ρ̂S

}}

+
∑

m

γ
√

1− τ1

{
âm

[
ρ̂S, â

†
m+1

]
+ [âm+1, ρ̂S]â†m

}
, (3.197)

where we set ϕ = π/2 in order to simplify the expression, as it is irrelevant. Upon recast-
ing the master equation in GKSL form, one would find the Hamiltonian contribution:

Ĥ = Ĥ1 = −iγ
√

1− τ1

2

∑

m

(
âmâ

†
m+1 − h.c.

)
. (3.198)

This Hamiltonian contains only first-neighboring sites exchange terms and presents
a chiral symmetry which causes the Hamiltonian to change sign when reversing the
ordering of the sites. As for the Lindblad operators, they can be computed and an
analytical expression obtained, but the latter is not very informative, as we have M
collective jump operators which are combinations of the original nodes operators âm.
With this we conclude our treatment of quantum cascade networks: throughout this

chapter we first saw how to derive the master equation for an arbitrary network, high-
lighting its features and properly highlighting the conditions upon which the model is
valid. Then we turned our attention to some examples, first studying systems with a
limited number of sites, to get acquainted with the interference effects that can arise,
moving then to the analysis of more complex networks, with a high number of nodes and
environmental channels. In this last context we saw how, exploiting interference effects,
it is possible, by only changing the parameters of the optical elements in the network, to
obtain a rich variety of different dynamics, some of which can be described by analytical
formulas.

86



CHAPTER 4

Thermodynamics

In this chapter we will still talk about collisional models, moving away from cascade
systems towards the realm of thermodynamics. It is a well known fact that thermody-
namics has subdued a revival of interest in recent years [Alicki and Kosloff 2018; Kosloff
and Levy 2014; Vinjanampathy and Anders 2016],which lead to new discoveries as well
as to new questions, ranging from the energetic balance of nanoscale devices [Campisi
and Fazio 2016; Gelbwaser-Klimovsky and Kurizki 2015; M. Horodecki and Oppenheim
2013; Lena, Palma, and De Chiara 2016; Linden, Popescu, and Skrzypczyk 2010] and
the storageof energy in quantum batteries [Andolina, Farina, et al. 2018; Andolina,
Keck, et al. 2019; Binder et al. 2015; Campaioli et al. 2017; D. Ferraro et al. 2018], to
more fundamental questions, such as the generalization to the quantum realm of the
fluctuation-dissipation relations [Elouard et al. 2017; Manzano, Horowitz, and Parrondo
2018], the ability of master equations of describing correctly heat exchange phenom-
ena [Chiara et al. 2018; Hofer et al. 2017; Rodrigues et al. 2019], the quantification of
irreversibility [Benenti and Palma 2007] and the relation between thermodynamics and
information theory [Campisi and Goold 2017; Deffner and Jarzynski 2013; Goold et al.
2016].

It is just on irreversibility that the following chapter focus: the irreversibility of a
process is well-known to be related with the entropy balance of a given thermodynamical
transformation, or, in other terms, to the second principle of thermodynamics. The
latter, in the quantum realm, can be formulated either via a Clausius-like formulation
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or via a relation accounting for the presence of correlations [Alipour et al. 2016; Bera
et al. 2017; Hewgill, A. Ferraro, and De Chiara 2018; Manzano, Galve, et al. 2016;
Manzano, Plastina, and Zambrini 2018; Tacchino et al. 2018] between the system and
the environment, which in this context is usually called a thermal bath.

It is thanks to the comparison between these two formulations and the aid of a col-
lisional model [Barra 2015; Lorenzo, McCloskey, et al. 2015; Man, Xia, and Lo Franco
2018, 2019; Manatuly et al. 2019; Strasberg et al. 2017] that we are able to get a better
insight into the final state of the joint system+bath system after the thermalization
process is completed. In facts in Chap. 2 we anticipated that one interesting feature
of collisional model is the possibility of keeping track of the environmental degrees of
freedom: it is just this feature that allows our analysis, leading to a very interesting
result, namely the factorization of the system and the environmental state after the
thermalization.

We start by reviewing in Sec. 4.1 some of the thermodynamic functionals used in
thermodynamics and their mutual relations. In Sec. 4.2 we are instead going to see how
these thermodynamic functionals can be used to quantify the irreversibility of a ther-
modynamic process. Then in Sec. 4.3 we describe the collisional model used to describe
the thermalization process, while finally in Sec. 4.4 we demonstrate, via analytical and
numerical results, the decay of correlations between the system and the thermal bath.

4.1. Thermodynamic functionals

As in the next section we are going to use them, here we want to briefly review some of the
thermodynamic functionals commonly used and some of their basic properties [Nielsen
and Chuang 2010].

The main quantity we will be dealing with in the following is the Von Neumann
entropy:

S(ρ̂) = −Tr {ρ̂ ln ρ̂} , (4.1)

where ρ̂ is the density matrix of a quantum state. The Von Neumann entropy is a
non-negative quantity that nullifies only if ρ̂ is a pure state, reaching its maximum value
ln d for the completely mixed state ρ̂ = Î/d, d being the dimension of the Hilbert space.
When dealing with composite systems, the entropy of a state which is the tensor product
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of states belonging to the subsystems is the sum of the entropies of the states:

S(ρ̂A ⊗ ρ̂B) = S(ρ̂A) + S(ρ̂B). (4.2)

When instead the joint state of A and B is not a tensor product, the entropy S is
subadditive, that is:

S(ρ̂AB) ≥ S(ρ̂A) + S(ρ̂B). (4.3)

Finally, the entropy of a state is invariant under the action of unitary operations: this
is readily seen considering that by definition the entropy of a state depend on the eigen-
values of density matrix, which are left unchanged by the action of unitary operators.

Another quantity we will be using in the next sections is the relative entropy, which
is a strictly non-negative quantity defined as:

S(ρ̂||σ̂) = Tr{ρ̂ ln ρ̂} − Tr{ρ̂ ln σ̂}. (4.4)

This quantity somehow measures the distance between two quantum states, though
mathematically speaking it is not a distance. Nonetheless it is zero if and only if ρ̂ = σ̂,
just as a distance, while it is infinite when the kernel of σ̂ has a non-null intersection
with the support of ρ̂, as in this case it is impossible to distinguish the two states. An
important property of the relative entropy that will be used is the contractivity under
the action of a CPT map Φ:

S(ρ̂||σ̂) ≥ S(Φ(ρ̂)||Φ(σ̂)). (4.5)

We conclude the section with the definition of the last entropic functional we will
encounter, the quantum mutual information between to quantum systems A and B:

IA:B = S(ρ̂A) + S(ρ̂B)− S(ρ̂AB). (4.6)

The mutual information is always non-negative, reaching its minimum value when the
joint state of the A+B system is a tensor product.
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4.2. Irreversibility quantification

We want to consider a quantum system A in contact with a thermal bath B at tem-
perature T . We choose different symbols with respect to the other chapters in order to
avoid confusion between the quantum system and the entropy S(· · · ).

Assuming that during its interaction with B, system A undergoes an entropy variation
∆SA, exchanging an amount of heat ∆QA with the bath, then from purely thermody-
namical considerations it is possible to write the Clausius formulation of the second
principle of thermodynamics:

∆SA ≥ β∆QA, (4.7)

where β = 1/kBT is the inverse temperature of the bath, kB being the Boltzmann
constant. The formulation of the second principle given in Eq. (4.7) provides an intrinsic
lower bound on the local entropy production. When using the word “intrinsic” we want
to highlight that the inequality in Eq. (4.7) involves quantities referring to system A only.
On the other hand it is possible to derive, from information-theoretical considerations,
another formulation of the second principle which reads:

∆SA ≥ −∆SB. (4.8)

In opposition with the Clausius formulation, we define this bound as extrinsic, as it
involves quantities depending on both A and B.

Since these two bounds put a limit on the entropy variation of A, they provide a
characterization of the irreversibility of the thermalization process. As we are going to
see in the next sections, these two bounds are not completely independent, though no
ordering between them can be established. Both expressions can be derived by modeling
our system with the Hamiltonian Ĥ = ĤA + ĤB + Ĥint, where ĤA and ĤB are the
free Hamiltonians of system and bath respectively, while Ĥint describes the interaction
between the two systems. Further assuming no initial correlations between A and B, we
can write the initial A+B state as:

ρ̂AB(0) = ρ̂A(0)⊗ η̂(β)
B , (4.9)

where ρ̂A(0) is the initial state of A and η̂(β)
B indicates the Gibbs state at temperature β
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of the bath, which is worth:

η̂
(β)
B =

e−βĤB

TrB

{
e−βĤB

} . (4.10)

With this hypothesis, we are sure that the dynamics is Markovian, so that we can
describe the evolution of A through the set of CPT maps {Φt}t≥0 defining the mapping:

ρ̂A(0)→ ρ̂A(t) = Φt[ρ̂A(0)] := TrB {ρ̂AB(t)} , (4.11)

where, according to Chap. 2, we have:

ρ̂AB(t) = e−
i
~ Ĥt
(
ρ̂A(0)⊗ η̂(β)

B

)
e
i
~ Ĥt, (4.12)

since the A + B system is a closed system. With these expressions in mind, we can
say that the bath B induces thermalization on A, by this meaning that the mapping
{Φt}t≥0 leads A to an equilibrium configuration where A has transitioned to a thermal
state, i.e. ρ̂A = η̂

(β)
A , irrespectively of the initial state ρ̂A(0). Whether the equilibrium

configuration is reached for some finite time t or in the infinite time limit t → ∞, this
has no importance in the derivation of the inequalities in Eqs.(4.7, 4.8). What is of
interest to us is the fact that no external work is performed on the system, so that the
local energy variation of A can be safely identified with the heat exchanged with the
thermal bath B:

∆QA = Tr
{
ĤA(ρ̂A(t)− ρ̂A(0))

}
. (4.13)

Moreover, since A+B is a closed system, total energy conservation must hold, so that:

Tr
{
Ĥ(ρ̂AB(t)− ρ̂AB(0))

}
= 0⇒ ∆QA = −∆QB −∆Eint, (4.14)

where

∆QB = Tr
{
ĤB(ρ̂B(t)− ρ̂B(0))

}
, (4.15)

∆Eint = Tr
{
Ĥint(ρ̂AB(t)− ρ̂AB(0))

}
. (4.16)

While ∆QB can be immediately and clearly identified with the heat absorbed by the bath
in the thermalization process, ∆Eint does not allow for such a clear interpretation: it is
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the energy of the joint system due to the interaction between A and B. In most works,
and we make no exception, it is neglected either because the interaction is assumed to be
small, meaning that Eint is negligible, or because an excitations exchange Hamiltonian
is used, so that ∆Eint = 0 by definition. In both cases one is allowed to write ∆QA =

−∆QB.
All of this being said and done, Eq. (4.7) can be derived by identifying the lhs as:

∆SA = S(ρ̂A(t))− S(ρ̂A(0)), (4.17)

so that we can write:

∆SA − β∆QA = S(ρ̂A(0)||η̂(β)
A )− S(ρ̂A(t)||η̂(β)

A ). (4.18)

At this point we can simply exploit the contractivity of the relative entropy under
CPT evolution to conclude that the expression above is non-negative, so that Eq. (4.7)
holds. Given our setting, at least in the infinite time limit, the thermal state η̂(β)

A can be
assumed to be invariant with respect to the action of the CPT map Φt. Exploiting then
the monotonicity property of the relative entropy under CPT maps, Eq. (4.7) follows.
The inequality in Eq. (4.8), on the other hand, is simply derived by considering the

subadditivity of the entropy and its invariance under unitary transformations, which
imply:

S(ρ̂A(t)) + S(ρ̂B(t)) ≥ S(ρ̂AB(t)) = S(ρ̂AB(0)) = S( ˆρA(0)) + S(ρ̂B(0)), (4.19)

from which Eq. (4.8) follows. The same equation can also be derived equivalently using
the quantum mutual information via:

IA:B(0) = 0 ≤ IA:B(t) = S(ρ̂A(t)) + S(ρ̂B(t))− S(ρ̂AB(t)), (4.20)

which will turn out to be useful in the next sections.
As we anticipated, the two inequalities under examination are not independent, but

rather the difference between their rhs can be computed following the derivation in [Reeb
and Wolf 2014], finding1:

β∆QA + ∆SB = −S(ρ̂B(t)||η̂(β)
B )− βEint. (4.21)

1Actually in [Reeb and Wolf 2014] the identity β∆QB = −∆SA + IA:B(t) + S(ρ̂B(t)||η̂(β)B ) is derived,
which reduces to the one in the main text upon considering Eq. (4.20).
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In general, rhs of Eq. (4.21) has no definite sign, as Eint can be either positive or
negative depending on the specific characteristics of the system. Anyway, whenever
Eint = 0 for any of the reasons already exposed, from the positivity of the relative
entropy we can deduce that the extrinsic bound in Eq. (4.8) is tighter than the intrinsic
one in Eq. (4.7).

Before proceeding and illustrate the collisional model describing the thermalization
process, we want to remember that for the case the CPTmaps {Φt} are time-homogeneous
and Markovian, i.e. they possess a dynamical semigroup structure, the dynamics can be
described in terms of a Markovian generator in GKSL form: when this is the case, the
intrinsic inequality in Eq. (4.7) can be extended to its differential form. This amounts
to defining both a differential entropy variation and a differential heat variation as:

∂SA(t) = S(ρ̂A(t+ dt))− S(ρ̂A(t)), (4.22)

∂QA(t) = Tr
{
ĤA(ρ̂A(t+ dt)− ρ̂A(t))

}
, (4.23)

so that the Clausius inequality becomes:

∂SA(t) ≥ β∂QA(t). (4.24)

While this formulation supersedes the discrete one in Eq. (4.7), which can now be derived
by integrating Eq. (4.24) itself, a similar operation cannot be done with the extrinsic
inequality in Eq. (4.8): as shown in Sec. 2.2.3, the GKSL form of the Markovian generator
is derived under the assumption that system-environment correlations are negligible, this
feature hindering the possibility of a differential version of the bound in Eq. (4.8). This
last observation is the reason we rely on a collisional model in order to study and compare
the two inequalities, as shown in the next section.

4.3. Collisional model and thermalization

The collisional model we are going to use in this section differs in more than one aspect
from the ones used in Chap. 2 to derive the Markovian master equation and in Chap. 3
to describe cascade networks. Let us show this step by step deriving the model.

Once again we depict the bath as a collection of ancillas {b1, b2, . . . }, each described
by a free Hamiltonian Ĥbn , all in the same reference thermal Gibbs state η̂(β)

bn
. The first

difference with the others collisional models seen up to now, is that in order to study the
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Figure 4.1.: Pictorial representation of the thermalization process in the collisional
model framework: one has the system A in its initial state undergoing
sequential collisions with ancillas all in the same thermal reference state.
This causes system A to homogenize with B, i.e. it thermalizes to tem-
perature T if B is a thermal bath.

bounds in Eqs.(4.7, 4.8), we will be interested not only on the reduced state of ρ̂A, but
also in the reduced state of the bath ρ̂B and in the joint state ρ̂AB of the two systems.
The joint state is given, as we already saw, by an equation of the form:

ρ̂AB(n) = Un ◦ · · · ◦ U2 ◦ U1

(
ρ̂A(0)

n⊗

i=1

η̂
(β)
bi

)
, (4.25)

where Ui(· · · ) = Ûi(· · · )Û †i is the superoperator describing the interaction between A

and the i-th ancilla. The reduced state of A can then be computed accordingly in the
standard way via:

ρ̂A(n) = Trbn

{
Ui(ρ̂A(n− 1)⊗ η̂(β)

bn
)
}

= Φ(ρ̂A(n− 1)), (4.26)

where the Markovian character of the evolution has been understood, and in the last
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equality we have explicitly written the evolution in terms of the stroboscopic dynamical
map Φ. It also clear from this that the state of A is equivalently written as ρ̂A(n) =

Φn(ρ̂A(0)).

In a perfectly symmetrical way, we can compute also the environmental state as:

ρ̂B(n) = TrA {ρ̂AB(n)} = TrA

{
Un ◦ · · · ◦ U2 ◦ U1

(
ρ̂A(0)

n⊗

i=1

η̂
(β)
bi

)}
. (4.27)

Now, in order to ensure the thermalization for large enough n, we follow the receipt
in [Bäumer et al. 2019; Campbell et al. 2018; Diòsi, Feldmann, and Kosloff 2006; Lorenzo,
McCloskey, et al. 2015; Pezzutto, Paternostro, and Omar 2016; Scarani et al. 2002],
which consists of assuming the ancillas to be isomorphic with A, so that it makes sense
to choose the interaction Hamiltonian Ĥint to be a partial SWAP generator, i.e. to be
such that the unitary operator Ûn can be written as:

Ûn = exp
[
iθŜn

]
= cos(θ)În + i sin(θ)Ŝn, (4.28)

where we indicate with θ ∈] − π, π] a parameter gauging the strength of the swap
interaction between A and an ancilla, the equivalent of what we previously indicated
as g δt, and with Ŝn the swap operator acting on A and bn. The swap operator is self-
adjoint, i.e. Ŝn = Ŝ†n = Ŝ−1

n , and it acts on a joint state of two isomorphic quantum
systems as:

Ŝn |ψ〉A ⊗ |φ〉bn = |φ〉A ⊗ |ψ〉bn . (4.29)

We note that the action of the swap operator ensures thermalization, i.e.

lim
n→∞

ρ̂A(n) = η̂
(β)
A , (4.30)

and that with this choice the unitary operator Ûi in Eq. (4.28) commutes with the sum
of the free Hamiltonians ĤA +

∑
i Ĥbi , so that within this model we can state Eint = 0,

this implying that we can safely state ∆QA(n) = −∆QB(n), where we define:

∆QX(n) = Tr
{
ĤX(ρ̂X(n)− ρ̂X(0))

}
X = A,B. (4.31)

Moreover, as shown in App. B.1, one can verify that the inequalities in Eqs.(4.7, 4.8)
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still hold in the form:

∆SA(n) ≥ β∆QA(n), (4.32)

∆SA(n) ≥ −∆SB(n), (4.33)

where ∆SX(n) stands for the entropy difference between the zeroth and the n-th step
of the process, namely:

∆SX(n) = S(ρ̂X(n))− S(ρ̂X(0)), X = A,B. (4.34)

At this point it is worth highlighting that computing ∆SB with the environmental
state at the n-th step as in Eq. (4.27) is in general a heavy task from the computational
point of view, as one is required to diagonalize the full density matrix ρ̂B(n) in order to
keep track of the internal correlations of the environment due to the common interaction
of the ancillas b1, b2, . . . with A.

A different path consist instead in neglecting such correlations, following for in-
stance [Campbell et al. 2018], obtaining a local version of the extrinsic bound as:

∆SA(n) ≥ ∆S
(loc)
B (n), (4.35)

which is weaker than the one in Eq. (4.8), as shown in App. B.1. Furthermore, since
Eint = 0, we still can use Eq. (4.21), so that we can derive the ordering:

∆SA(n) ≥ −∆SB(n) ≥ −∆S
(loc)
B (n) ≥ β∆QA(n). (4.36)

As proved numerically in the following, we effectively observe that the gap between
∆SA(n) and ∆SB(n) goes to zero asymptotically, so that the extrinsic bound in Eq. (4.8)
turns out to be optimal. This result can be recast in a more informative shape considering
that the mutual information IA:B can be expressed in terms of entropies relative to A
and B via:

IA:B(n) = S(ρ̂A(n)) + S(ρ̂B(n))− S(ρ̂AB(n)), (4.37)

so that saying that the gap between ∆SA(n) and−∆SB(n) closes asymptotically amounts
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to:

lim
n→∞

IA:B(n) = 0. (4.38)

The statement implied by Eq. (4.38) is far stronger than the one implied by Eq. (4.30):
while the latter only implies that the joint state of A and B is locally thermal on A, the
former also implies the explicit factorization of this joint state in the asymptotic limit,
i.e.

lim
n→∞

ρ̂AB(n) = η̂
(β)
A ⊗ Λ̂B. (4.39)

This result will be proved analytically for the strong collision regime (|θ| ≥ tan−1 2) in
Sec. 4.4. A sort of analytical proof can be given also for the weak coupling regime, but
under slightly different hypothesis. On the other hand, in the remaining of this section
we will provide some numerical evidence for Eq. (4.39) in the weak coupling regime,
assuming A and the bi to be qubits.

We assume system A to have Hamiltonian:

ĤA =
1

2
σ̂

(3)
A , (4.40)

where σ̂(3) is the diagonal Pauli operator and we measure the energy in units of ~ω = 1.
We also model the ancillas as two level systems with Hamiltonian Ĥbi = 1

2
σ̂

(3)
bi

, so that A
and the ancillas are isomorphic and the swap operator has a clear operational meaning.

To describe the state of A we exploit the Bloch representation of a qubit state, which
consists in expressing the density matrix as:

ρ̂A(n) =
ÎA + ~r(n) · ~σA

2
, (4.41)

where ~r (n) is a three dimensional vector with |~r(n)| ≤ 1 and ~σA = (σ̂
(1)
A , σ̂

(2)
A , σ̂

(3)
A ). This

representation allows for very simple expressions for the entropy and the mean energy
of A:

S(ρ̂A(n)) = H2

(
1 + |~r(n)|

2

)
, (4.42)

EA(n) = Tr
{
ĤAρ̂A(n)

}
=
r3(n)

2
, (4.43)
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whereH2(x) = −x lnx−(1−x) ln(1− x) is the Shannon binary entropy. From Eq. (4.42)
we can immediately write:

∆SA(n) = H2

(
1 + |~r(n)|

2

)
−H2

(
1 + |~r(0)|

2

)
, (4.44)

∆QA(n) =
r3(n)− r3(0)

2
. (4.45)

Once we have expressed all the quantities of interest in terms of the vector ~r(n), we
are interested in writing a master equation for this vector. Indeed it is easy to see that
applying the partial swap transformation in Eq. (4.28) we have:

ρ̂AB(n) = Ûn(ρ̂A(n− 1)⊗ η̂(β)
bn

)Û †n

= sin2(θ)η̂
(β)
A ⊗ ρ̂bn(n− 1) + cos2(θ)ρ̂A(n− 1)⊗ η̂(β)

bn

−i sin(θ) cos(θ)
[
Ŝn, ρ̂A(n− 1)⊗ η̂(β)

bn

]
, (4.46)

so that tracing away the ancilla bn we get:

ρ̂A(n) = Tr {ρ̂AB(n)} = sin2(θ)η̂
(β)
A + cos2(θ)ρ̂A(n− 1). (4.47)

From the last equation one can immediately deduce the following master equation:

~r(n) = sin2(θ)~s+ cos2(θ)~r(n− 1), (4.48)

where ~s is the vector associated to η̂(β)
A in the Bloch sphere, and has the very simple

form:

~s = (0, 0, s(β)) s(β) = − tanh(β/2). (4.49)

Iterating Eq. (4.48), we can formally integrate it, obtaining:

~r(n) = cos2n(θ)~r(0) + (1− cos2n(θ))~s (4.50)

= ~s+ cos2n(θ)∆~r(0), (4.51)

where the symbol ∆~r(0) = ~r(0)−~s stands for the difference between the Bloch vector of
the input state of A and the Bloch vector associated to the thermal state η̂(β). From the
expression in Eq. (4.50) one is able to compute the modulus and the third component
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Figure 4.2.: Plot of the quantities involved in the bounds in Eq. (4.36) using the colli-
sional model for a qubit. The plots show the behavior of this quantities for
the first steps of the evolution, starting from different initial states of A.
In particular we have ~r(0) = (0, 0, 1), (1/2, 0, 0), (1, 0, 0), (0, 0, ) in panels
(a), (b), (c) and (d) respectively. As it is immediately seen the plotted
quantities fulfill the ordering in Eq. (4.36). Moreover, as n increases the
quantity −∆SB approaches ∆SA, confirming that the extrinsic bound is
optimal.

of ~r(n) as:

|~r(n)| =
√
s(β)2 + cos4n(θ)|∆~r(0)|2 + cos2n(θ)s(β)∆r3(0), (4.52)

r3(n)− r3(0) =
[
cos2n(θ)− 1

]
∆r3(0). (4.53)

We can follow the same reasoning to get analogous expressions for the output state of
the ancillas after their interaction with A, obtaining:

~s(n) = sin2(θ)~r(n− 1) + cos2(θ)~s = ~s+ sin2(θ) cos2(n−1)(θ)∆~r(0), (4.54)

|~s(n)| =
√
s(β)2 + sin4(θ) cos4(n−1)(θ)|∆~r(0)|2 + sin2(θ) cos2(n−1)(θ)s(β)∆r3(0).

(4.55)

The last expression in particular can be used to compute the local entropy variation
of the bath defined in App. B.1. In Fig. 4.2 we show some results obtained from this
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model for different initial states of A. In particular the quantities ∆SA, −β∆QA and
−∑∆S

(loc)
B have been plotted using the formulas derived above, while the computation

of −∆SB requires the diagonalization of the full density matrix of the environmental
state. As one can observe from the plot, independently from the initial state of A, the
ordering between the bound that we stated in Eq. (4.36) is always fulfilled. Furthermore,
we observe that ∆SA always approaches −∆SB as n increases, suggesting that the bound
in Eq. (4.8) is optimal.

4.4. Decay of correlations

In this section we want to demonstrate the factorization property conjectured in Eq. (4.39).
We start noticing that Eq. (4.39) is trivially fulfilled if the initial state of A is already
the thermal one. In facts in this case we have the initial joint state:

ρ̂AB(0) = η̂
(β)
A

⊗

i

η̂
(β)
bi
⇒ ρ̂AB(n) = η̂

(β)
A

⊗

i

η̂
(β)
bi
, (4.56)

since the state η̂(β)⊗ η̂(β) is invariant under the action of the swap operator Ŝ, so that the
action of the unitary operator in Eq. (4.28) becomes trivial. The factorization property
is also fulfilled trivially for an arbitrary initial state of A when the thermal state of
the bath is the zero temperature one, i.e. β → ∞ and the ground state of A is non-
degenerate: in this case the Gibbs thermal state η̂(β)

bi
corresponds to the pure state |0〉bi ,

so that:

lim
n→∞

ρ̂A(n) = |0A〉〈0A| , (4.57)

which can be fulfilled only if the joint state of A and B approaches a state of the form
|0A〉〈0A| ⊗ Λ̂B.

Given these specific cases, we want to demonstrate Eq. (4.39) analytically. In order
to reach the goal we consider a generic initial state of A, ρ̂A(0) 6= η̂

(β)
A and a finite

temperature β of the thermal bath. We start our proof from the recursive equation for
the joint state of A and B:

ρ̂AB(n) = Un(ρ̂AB(n− 1)), (4.58)
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and write the joint state ρ̂AB(n) as the sum of two contributions:

ρ̂AB(n) = R̂AB(n) + T̂AB(n). (4.59)

The first term R̂AB(n) contains all the contributions where the state of A is the thermal
state factorized from the one of B, T̂AB(n) containing all the other contributions. For the
initial state we have clearly R̂AB(0) = 0 and T̂AB(0) = ρ̂AB(0). Exploiting the properties
of the swap operator, it is then possible to write two distinct recursive equations for
R̂AB(n) and T̂AB(n) respectively. Since, as we already said, the state η̂(β) ⊗ η̂(β) is
invariant under the action of the swap operator, we get immediately:

Un+1

(
R̂AB(n)

)
= R̂AB(n). (4.60)

As a consequence R̂AB(n + 1) differs from R̂AB(n) only via the contributions coming
from the action of the swap on T̂AB(n), so that we have:

R̂AB(n+ 1) = R̂AB(n) + sin2(θ)Ŝn+1T̂AB(n)Ŝn+1, (4.61)

T̂AB(n+ 1) = cos2(θ)T̂AB(n) + i sin(θ) cos(θ)
[
Ŝn+1, T̂AB(n)

]
. (4.62)

At this point, in order to demonstrate the factorization property, we only need to
show that the norm of T̂AB(n) goes to zero as n increases. From Eq. (4.62) and the
subadditivity of the norm we get:

∥∥∥T̂AB(n+ 1)
∥∥∥ ≤ | cos2(θ)|

∥∥∥T̂AB(n)
∥∥∥+ | sin(θ) cos(θ)|

∥∥∥
[
Ŝn+1, T̂AB(n)

]∥∥∥ (4.63)

≤
(
| cos2(θ)|+ 2| sin(θ) cos(θ)|

) ∥∥∥T̂AB(n)
∥∥∥ , (4.64)

where in the second line, thanks to the unitarity of Ŝn, we used
∥∥∥Ŝn+1T̂AB(n)

∥∥∥ =∥∥∥T̂AB(n)
∥∥∥. Iterating Eq. (4.63) we easily arrive to:

∥∥∥T̂AB(n+ 1)
∥∥∥ ≤ (| cos2(θ)|+ 2| sin(θ) cos(θ)|)n+1 ‖ρ̂AB(0)‖ . (4.65)

The proof is finally completed for the strong coupling regime by noticing that for |θ| >
tan−1(2) the quantity in parenthesis is smaller than one, from which it follows:

lim
n→∞

‖TAB(n)‖ = 0, (4.66)
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Figure 4.3.: Numerical evaluation of the bounds in Eqs.(4.7, 4.8) using the colli-
sional model for a qubit. The dashed lines represent the quantity
∆SA(n)−β∆QA(n) as a function of n for different values of θ, the swapping
parameter: one can observe that this quantity grows monotonically with
n, reaching an asymptotic value, as it is to be expected from Eq. (4.18).
The solid lines show instead the quantity ∆SA(n) + ∆SB(n), which is im-
mediately seen to be non-monotonic and to become asymptotically zero
as n increases, thus confirming the asymptotic factorization prediction. In
the inset we inserted the same plots in logarithmic scale. The numerical
values have been evaluated starting from an initial state of A described by
the vector ~r(0) = (1/2, 0, 0), while the temperature of the bath correspond
to β = 1 and β = 0.5 in left and right panel respectively.

which allows us to identify ρ̂AB(n) with R̂AB(n) for n large enough, thus proving our
claim.
As for the weak coupling regime, we were able to give an analytical proof of the

property only by slightly changing our hypotheses, as shown in App. B.2. On the other
hand, as it can be observed from Fig. 4.3, we were able to collect numerical evidence
that the factorization property holds also for the weak coupling regime under the same
hypotheses used to prove the strong coupling regime. In facts the plots show how the
mutual information between A and B goes to zero asymptotically for different coupling
strengths, all below the threshold of tan−1 2.
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CHAPTER 5

Interlude

This brief chapter is meant to be a sort of second introduction for the following two
chapters. In fact, while in previous chapters we dealt with the study of open quantum
systems, focusing in particular on collisional models, the next two chapters have a more
practical spirit. In facts in Chap. 6 we will present a class of potential profiles that give
rise to a special class of states which we dub “stretchable”, in analogy with analogous
phenomena in optics. In Chap. 7 we will instead see how a particle moving in a potential
that varies in space can acquire a geometric phase which depends only on how the
potential varies, and not on the velocity of the particle.

Both the problems are better understood if thought in the context of condensed mat-
ter physics, specifically in the context of semiconductors and band engineering: in facts,
since the seminal work by Esaki and Tsu [Esaki and Tsu 1970], the field of band engi-
neering in semiconductor has developed enormously [Capasso 1986; Franciosi and Walle
1996; Wolfe, Stillman, and Holonyak 1989; Yu, McCaldin, and McGill 1992], allowing for
high-precision material engineering in order to achieve new effects, such as the negative
differential resistance [Beltram, Capasso, Hutchinson, et al. 1989; Beltram, Capasso,
Sivco, et al. 1990; Capasso and Kiehl 1985] and resonant tunneling [L. L. Chang, Esaki,
and Tsu 1974; Luryi 1985], and to be able to build new conductors [Mimura et al. 1980],
such as superlattice structures [L. Canali et al. 1996; Carpena, Gasparian, and Ortuño
1999; Esaki and L. L. Chang 1974; Helm 1995; Stęślicka et al. 2002] and 2-dimensional
electron gases (2DEG) [Heiblum, Mendez, and Stern 1984; Stern and Das Sarma 1984].
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Such precision is possible thanks to innovative techniques, such as the Molecular-
Beam Epitaxy [Madhukar 1990; Orton and Foxon 2015] or Metal-Organic Chemical
Vapor Deposition [Dauelsberg et al. 2005], where a semiconductor is built one layer
of atoms after another. Thanks to these technologies it is possible nowadays to build
electronic systems of any dimensionality, from quantum dots [Beenakker 1991; Hanson
et al. 2007; Petta et al. 2005; Reimann and Manninen 2002; Wiel et al. 2002] to quantum
wires [Harrison and Valavanis 2016; Hurt 2000; Nazarov and Blanter 2009] and electron
waveguides [Alamo et al. 1998; McLennan et al. 1991; Timp 1992].
Given the importance of this branch of physics, before proceeding with the next chap-

ters, we want to briefly review some basic concepts of the field, starting from the Bloch
theorem and the band structure of solids in Sec. 5.1 before introducing the effective mass
approximation in Sec. 5.2 and electron waveguiding in 2DEG in Sec. 5.3.

5.1. Bloch theorem and band structure

To understand the way actual solids are modeled and described, it is useful to start
from a 1D situation, where some difficulties due to higher dimensionality are absent,
this allowing us to focus on the main concepts. It must be however remembered that
not all the properties of 1D systems can be straightforwardly extended to 2D or 3D
systems, so that caution is required.
As solids are made out of a regular array of atoms, the simplest way to describe a

solid is to start from the Schrödinger equation describing the motion of electrons in the
array of atoms:

− ~2

2m

d2ψ(x)

dx2
+ V̂ (x)ψ(x) = Eψ(x) (5.1)

where we assume the potential V (x) to be periodic. A periodic potential is characterized
by its period a, so that it holds:

V̂ (x) = V̂ (x+ma) ∀m ∈ Z. (5.2)

An important property of a periodic potential is that its Fourier transform includes
only plane waves with wavenumbers hn = n2π

a
, so that:

V̂ (x) =
+∞∑

n=−∞

Vne
ihnx. (5.3)
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In the following we want to see the implications for the eigenenergies and eigenstates
of the Hamiltonian when the potential fulfills Eq. (5.3). In order to do so, we first note
that for the special case V (x) = 0, the eigenfunctions of the Hamiltonian are the plane
waves:

Wk(x) =
1√
L
eikx (5.4)

where L is the length of the array under examination and the wavenumbers k are real,
so that the energy eigenvalues are E(k) = ~2k2

2m
. The important point here is that the

plane waves Wk(x) form an orthonormal set, and thus can be used as an expansion set.

We further note that applying the operator Ĥ = p̂2x
2m

+ V̂ (x) to a plane wave Wk(x)

we obtain a plane wave belonging to the subset Sk = {Wk(x),Wk+h1(x),Wk−h1(x), · · · }
of plane waves with wavenumbers k + ĥn. Also, the set Sk is closed with respect to the
application of Ĥ to any of its elements, as it can be directly verified using Eq. (5.3): this
implies that diagonalizing Ĥ within any Sk provides a valid set of eigenfunctions of Ĥ
which we dub ψk(x).

Moreover it is evident that two sets Sk and Sk′ are different if and only if k and k′

do not differ by an integer multiple of 2π/a. One then defines the Brillouin zone as the
fundamental region in k-space limited by [−π/a, π/a].

All of this being said and done, we have that a generic wave function ψk(x) can be
expanded in terms of plane waves belonging to the set Sk as:

ψk(x) =
∑

n

cn(k)
1√
L
ei(k+hn)x (5.5)

where we have that:

uk(x) =
∑

n

cn(k)
1√
L
eihnx =

∑

n

cn(k)
1√
L
ein( 2π

a
)x (5.6)

is a periodic function with the same period a of the potential V̂ (x). This is essentially
the content of the Bloch theorem: any physically acceptable solution of the Schrödinger
equation in presence of a periodic potential can be expressed in the form of a traveling
wave modulated by a periodic function with the same periodicity of the potential:

ψk(x) = eikxuk(x) (5.7)
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A first necessary remark is that up to now we are considering the Schrödinger equation
in the interval [−∞,+∞]: from the physical point of view this is equivalent to considering
the region [0, L = Na], N being the total number of atoms in the chain, as N is in fact
very large (already of the order 108 for L = 1 cm). The reason why one usually considers
a large but finite region is that this allows one to count the states and distribute the
electrons in the energy bands, a concept we are going to explore in a few lines. In order
for the physics not to be influenced by the choice of a finite region, one usually considers
periodic boundary conditions to solve the problem given by a periodic crystal, which
amounts to require:

ψ(x+Na) = ψ(x) (5.8)

As ψ(x) must also be a Bloch function of wavenumber k, periodic boundary conditions
restrict the allowed values of k to the ones fulfilling:

eikNa = 1⇒ k =
2π

Na
n, n ∈ Z. (5.9)

Thus, as L = Na becomes large, k must be considered as a discrete, though dense,
variable.

As anticipated, the Bloch theorem also entails the fact that the energy spectrum of
a periodic potential is made out of allowed regions, separated by gaps, called energy
bands. To better understand this, we consider the instructive and paradigmatic example
of the Kronig-Penney model: in this model one assumes the periodic potential V (x) to
be composed of quantum wells of width w separated by potential barriers of width b and
height V0, so that the period of the potential is a = w + b.

Within the unit cell in the region [−w b] we can write the solution to the associated
Schrödinger equation for 0 < E < V0 as the union of the solution in the region [−w, 0],
where V̂ (x) = 0, and the solution in the region [0, b], where V̂ (x) = V0, so that we have:

ψ(x) =

{
ψwell(x) = Aeiqx +Be−iqx for −w ≤ x ≤ 0

ψbar(x) = Ceβx +De−βx for 0 ≤ x ≤ b,
(5.10)

where q =
√

2mE/~2 and β =
√

2m(V0 − E)/~2. The constants A,B,C,D must be
found with the usual method of imposing the continuity of ψ(x) and its first derivative
at the point x = 0, and by imposing the boundary conditions required by the Bloch
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theorem, namely:

ψbar(b) = eikaψwell(−w) (5.11)
dψbar(x)

dx

∣∣∣
x=b

= eika
ψwell(x)

dx

∣∣∣
x=−w

. (5.12)

This leads to a system of four equations in four unknown variables. As known from
elementary algebra, a homogeneous system of n equations in n variables has a non-
trivial solution if and only if the determinant of the coefficients matrix is zero. A direct
computation of the determinant for the Kronig-Penney model leads to the equation:

β2 − q2

2qβ
sinh(βb) sin(qw) + cosh(βb) cos(qw) = cos(ka). (5.13)

This compatibility equation can be solved graphically, i.e. via numerical methods, as
shown in Fig. 5.1, leading to the individuation of allowed energy regions, the already
cited energy bands. In the standard approach, which can be found in any standard
textbook on solid state physics, one usually consider the further simplification obtained
by considering the width b of the barriers to go to zero while at the same time the
height V0 goes to infinity, keeping constant the product V0 b. Under this hypothesis the
compatibility equation becomes:

P
sin(qa)

qa
+ cos(qa) = cos(ka) (5.14)

where P = mV0ba/~2 is a dimensionless parameter proportional to V0 b. P = 0 corre-
spond to a free electron situation, whereas in the limit P → ∞ one would recover the
energy levels of the infinite well.

We saw how electrons moving in periodic potentials have their energy distributed in
bands separated by energy gaps. However we assumed a perfect regular crystal, thus
neglecting the presence of impurities and the vibrations of the lattice. In order to add
this effects in the description of electrons in solid state systems, other approximations
and methods are more convenient, such as the effective mass approximation we are going
to review in the next section.

107



5.1 Bloch theorem and band structure Chap. 5 Interlude

w
<latexit sha1_base64="JoFaDlcZVi9vWLvJuDuPmvYt1aY=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJREKkxIrOl0045Xy27vZAkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Tbq3lm90T6vNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BhkiRhA==</latexit>

b
<latexit sha1_base64="sBBHW7ZeBdAcOdN1oHlzvPwXHk4=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kdjKo1t+7moKvEK0iNFGiNql/DccRtCAq5ZMYMPDdGP2EaBZewqAytgZjxGZvCIKWKhWD8JA+6oGfWMIxoDJoKSXMRfm8kLDRmHgbpZMjwwSx7mfifN7A4ufYToWKLoHh2CIWE/JDhWqQNAB0LDYgsSw5UKMqZZoigBWWcp6JNK6mkfXjL36+SbqPuXdQb7cta86ZopkxOyCk5Jx65Ik1yR1qkQzgB8kSeyYtjnVfnzXn/GS05xc4x+QPn4xtljZFv</latexit>

a = w + b
<latexit sha1_base64="KDYcJxO8xafxvEGW888kqiu2mU4=">AAAB93icbVDLSgNBEJyNrxhfUY9eBoMgCGE3CnoRgl48RnCTQBJC76QTh8w+mOlVwpJv8Konb+LVz/Hgv7gb96CJdSqquunq8iIlDdn2p1VYWl5ZXSuulzY2t7Z3yrt7TRPGWqArQhXqtgcGlQzQJUkK25FG8D2FLW98nfmtB9RGhsEdTSLs+TAK5FAKoFRy4fLxxOuXK3bVnoEvEicnFZaj0S9/dQehiH0MSCgwpuPYEfUS0CSFwmmpGxuMQIxhhJ2UBuCj6SWzsFN+FBugkEeouVR8JuLvjQR8Yya+l076QPdm3svE/7xOTMOLXiKDKCYMRHaIpMLZISO0TFtAPpAaiSBLjlwGXIAGItSSgxCpGKe1lNI+nPnvF0mzVnVOq7Xbs0r9Km+myA7YITtmDjtndXbDGsxlgkn2xJ7ZizWxXq036/1ntGDlO/vsD6yPb++Hktc=</latexit>

V0
<latexit sha1_base64="uVmHzc9b9cvCVjTUvfV0KwdhwKc=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRXZAgjKChjII8pASKzpfNuGU80N3a1Bk5RNooaJDtHwPBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F2PG1QywBZJUtiNNHLfU9jxJleZ33lAbWQY3NE0Qtfn40COpOCUSrftgT2oVO2anYMtEqcgVSjQHFS++sNQxD4GJBQ3pufYEbkJ1ySFwlm5HxuMuJjwMfZSGnAfjZvkUWfsODacQhahZlKxXMTfGwn3jZn6Xjrpc7o3814m/uf1YhpduIkMopgwENkhkgrzQ0ZomXaAbCg1EvEsOTIZMME1J0ItGRciFeO0lHLahzP//SJp12vOaa1+c1ZtXBbNlOAQjuAEHDiHBlxDE1ogYAxP8Awv1qP1ar1Z7z+jS1axcwB/YH18A3y0kgY=</latexit>

qa
<latexit sha1_base64="25lPGucIFZ3tKT68sxW8jUN/JlA=">AAAB9HicbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJQBkYeURNH6sgmnnB/crSNFVv6AFio6RMv/UPAv2MYFJEw1mtnVzo4bKmnItj+twsrq2vpGcbO0tb2zu1feP2iZINICmyJQge64YFBJH5skSWEn1Aieq7DtTq5Tvz1FbWTg39MsxL4HY1+OpABKpLtHGJQrdtXOwJeJk5MKy9EYlL96w0BEHvokFBjTdeyQ+jFokkLhvNSLDIYgJjDGbkJ98ND04yzpnJ9EBijgIWouFc9E/L0Rg2fMzHOTSQ/owSx6qfif141odNmPpR9GhL5ID5FUmB0yQsukAuRDqZEI0uTIpc8FaCBCLTkIkYhR0kkp6cNZ/H6ZtGpV56xauz2v1K/yZorsiB2zU+awC1ZnN6zBmkywEXtiz+zFmlqv1pv1/jNasPKdQ/YH1sc3OYyR6Q==</latexit>

F (qa) = P
sin(qa)

qa
+ cos(qa)

<latexit sha1_base64="p1UbADFBXDBIlbrlPPisNPLGrWU=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIIihLsoaCMEBbGMYFTIBZnbTHTJ3t5ld04IR36AP8FfYauVndhaWvhfvIspNPFVb96bYWZeECtpyXU/nYnJqemZ2bn5wsLi0vJKcXXt0kaJEVgXkYrMdQAWldRYJ0kKr2ODEAYKr4LOSe5f3aOxMtIX1IuxGcKtlm0pgDLpplg63e7CzlHNbxsQqW+lzut+2oX+ri8im1dZl1t2B+DjxBuSEhuidlP88luRSELUJBRY2/DcmJopGJJCYb/gJxZjEB24xUZGNYRom+ngmT7fSixQxGM0XCo+EPH3RAqhtb0wyDpDoDs76uXif14jofZhM5U6Tgi1yBeRVDhYZIWRWUrIW9IgEeSXI5eaCzBAhEZyECITkyy2QpaHN/r9OLmslL29cuV8v1Q9HiYzxzbYJttmHjtgVXbGaqzOBHtgT+yZvTiPzqvz5rz/tE44w5l19gfOxzdbOp76</latexit>

1
<latexit sha1_base64="Rp7FDOr075r4crgPfhmwzh5gFQk=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6ntjao1t+7moKvEK0iNFGiNql/DccRtCAq5ZMYMPDdGP2EaBZewqAytgZjxGZvCIKWKhWD8JA+6oGfWMIxoDJoKSXMRfm8kLDRmHgbpZMjwwSx7mfifN7A4ufYToWKLoHh2CIWE/JDhWqQNAB0LDYgsSw5UKMqZZoigBWWcp6JNK6mkfXjL36+SbqPuXdQb7cta86ZopkxOyCk5Jx65Ik1yR1qkQzgB8kSeyYtjnVfnzXn/GS05xc4x+QPn4xsZLpE+</latexit>

�1
<latexit sha1_base64="Ph0X+ly/rQb3n7if7oKq3TAw5Mo=">AAAB9HicbVC7TsNAEFyHVwivACXNiQiJhsgOSFBG0FAGRB5SYkXnyyaccn7obh0psvIHtFDRIVr+h4J/wQ4uIGGq0cyudna8SElDtv1pFVZW19Y3ipulre2d3b3y/kHLhLEW2BShCnXH4waVDLBJkhR2Io3c9xS2vfFN5rcnqI0MgweaRuj6fBTIoRScUun+zOmXK3bVnoMtEycnFcjR6Je/eoNQxD4GJBQ3puvYEbkJ1ySFwlmpFxuMuBjzEXZTGnAfjZvMk87YSWw4hSxCzaRicxF/byTcN2bqe+mkz+nRLHqZ+J/XjWl45SYyiGLCQGSHSCqcHzJCy7QCZAOpkYhnyZHJgAmuORFqybgQqRinnZTSPpzF75dJq1Z1zqu1u4tK/TpvpghHcAyn4MAl1OEWGtAEAUN4gmd4sSbWq/Vmvf+MFqx85xD+wPr4BoRtkXU=</latexit>

(a)
<latexit sha1_base64="nGs3eqIKuTgFxRvVYx3y9aOv64A=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESGFJrIDEpQRNJRBkIeUWNH6sgmnnB+6W4OiKJ9ACxUdouV7KPgXbOMCEqYazexqZ8eLlDRk25/W0vLK6tp6YaO4ubW9s1va22+ZMNYCmyJUoe54YFDJAJskSWEn0gi+p7Dtja9Sv/2A2sgwuKNJhK4Po0AOpQBKpNsKnPRLZbtqZ+CLxMlJmeVo9EtfvUEoYh8DEgqM6Tp2RO4UNEmhcFbsxQYjEGMYYTehAfho3GkWdcaPYwMU8gg1l4pnIv7emIJvzMT3kkkf6N7Me6n4n9eNaXjhTmUQxYSBSA+RVJgdMkLLpAPkA6mRCNLkyGXABWggQi05CJGIcVJKMenDmf9+kbRqVee0Wrs5K9cv82YK7JAdsQpz2Dmrs2vWYE0m2Ig9sWf2Yj1ar9ab9f4zumTlOwfsD6yPbyzdkdM=</latexit>

(b)
<latexit sha1_base64="Y5X6S2UpGRuLaoJfcjwMTgIrITk=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESGFJrIDEpQRNJRBkIeUWNH5sgmnnB+6W4OiKJ9ACxUdouV7KPgXbOMCEqYazexqZ8eLlDRk25/W0vLK6tp6YaO4ubW9s1va22+ZMNYCmyJUoe543KCSATZJksJOpJH7nsK2N75K/fYDaiPD4I4mEbo+HwVyKAWnRLqteCf9Utmu2hnYInFyUoYcjX7pqzcIRexjQEJxY7qOHZE75ZqkUDgr9mKDERdjPsJuQgPuo3GnWdQZO44Np5BFqJlULBPx98aU+8ZMfC+Z9Dndm3kvFf/zujENL9ypDKKYMBDpIZIKs0NGaJl0gGwgNRLxNDkyGTDBNSdCLRkXIhHjpJRi0ocz//0iadWqzmm1dnNWrl/mzRTgEI6gAg6cQx2uoQFNEDCCJ3iGF+vRerXerPef0SUr3zmAP7A+vgEubZHU</latexit>

Figure 5.1.: The Kronig-Penney model. In panel (a) a sketch of the periodic potential
assumed in the Kronig-Penney model is shown. In panel (b) we plotted of
the lhs of Eq. (5.14) as a function of qa, where the constant P has been set
equal to 3π/2. When |F (qa)| < 1 the compatibility equation is satisfied,
individuating the allowed values of qa and thus the allowed energies. This
leads to the formation of energy bands, which have been highlighted in
blue.
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Chap. 5 Interlude 5.2 The effective mass approximation

5.2. The effective mass approximation

In Sec. 5.1 we discussed the band structure of solids starting from the Schrödinger
equation of an electron moving in a periodic potential. While it is true that a perfect
lattice gives rise to a periodic potential, actual lattices contain impurities, so that the
actual potential is almost periodic, but not quite. Also the vibrational motion of the
atoms in the lattice gives rise to a deviation from a perfectly periodic potential. Moreover
a voltage bias could be applied, so that also a drift potential would be present. In
formulas we could write the actual potential, in three dimensions, as the sum of three
distinct contributions:

V̂ (~r) = V̂L(~r) + V̂S(~r) + V̂E(~r), (5.15)

where VL(~r) is the periodic potential generated by the lattice in absence of impurities,
VS(~r) accounts for the random fluctuations due to vibrations and impurities and VE(~r)

is due to the applied bias. In order to find the electronic eigenfunctions we should thus
solve the Schrödinger equation:

∂

∂t
ψ(~r, t) = Ĥψ(~r, t) + (VS(~r) + VE(~r))ψ(~r, t), (5.16)

Ĥ = − ~2

2m
∇2 + V̂L(~r). (5.17)

Solving this equation is a very hard task. However it turns out that, under appropriate
conditions, it is possible to use the single band effective mass equation:

∂

∂t
Ψ(~r, t) = Eν(−i~∇)Ψ(~r, t) + Û(~r)Ψ(~r, t), (5.18)

Û(~r) = V̂S(~r) + VE(~r), (5.19)

where Ψ(~r, t) is known as the envelope function and Eν(−i~∇) is the dispersion relation of
the band where the substitution ~k → −i~∇ has been performed. An important condition
in order for the single band effective mass equation to be valid is that Û(~r) should not
introduce relevant inter-band interactions, or, in other words, inter-band interactions
should be negligible.

In order to demonstrate Eq. (5.18) we start from the Bloch theorem in Sec. 5.1, which
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states that the eigenfunctions in presence of a periodic potential can be written as:

ψν,~k(~r) = uν,~k(~r)
ei
~k·~r
√

Ω
, (5.20)

where ν is the band index, ~k is the wavevector and Ω is the normalization volume. The
periodic functions

∣∣∣ν,~k
〉

= ψν,~k(~r) are orthogonal in both indexes, i.e.:

〈
ν ′, ~k ′

∣∣∣ν,~k
〉

= δν,ν′δ~k,~k ′ , (5.21)

so that for ~k ′ = ~k we have:

〈
ν ′, ~k

∣∣∣ν,~k
〉

=

∫
d3rΨ∗

ν′,~k
(~r)Ψν,~k(~r) =

∫
d3r

Ω
u∗
ν′,~k

(~r)uν,~k(~r) = δν,ν′ , (5.22)

which implies:
∫

d3r u∗
ν,~k

(~r)uν,~k(~r) = Ωδν,ν′ . (5.23)

In order to see under which conditions Eq. (5.18) can be used, we expand the wave
function in Eq. (5.16) in the

∣∣∣ν,~k
〉
basis:

ψ(~r, t) =
∑

ν′,~k ′

cν′,~k ′ (t)ψν′,~k ′ (~r) =
∑

ν′,~k ′

cν′,~k ′ (t)
∣∣∣ν ′, ~k ′

〉
. (5.24)

Inserting Eq. (5.24) in Eq. (5.16) and applying on the left
〈
ν,~k
∣∣∣ we obtain:

i~
d

dt
cν,~k(t) =

∑

ν′,~k ′

〈
ν,~k
∣∣∣ Ĥ + Û(~r)

∣∣∣ν ′, ~k ′
〉
cν′,~k ′ (t). (5.25)

Upon considering that the
∣∣∣ν ′, ~k ′

〉
are eigenfunctions of Ĥ:

〈
ν,~k
∣∣∣ Ĥ
∣∣∣ν ′, ~k ′

〉
= Eν′(~k

′
)
〈
ν,~k
∣∣∣ν ′, ~k ′

〉
= Eν(~k)δν,ν′δ~k,~k ′ , (5.26)

we finally arrive to:

i~
d

dt
cν,~k(t) = Eν(~k)cν,~k(t) +

∑

ν′,~k ′

〈
ν,~k
∣∣∣ Û(~r)

∣∣∣ν ′, ~k ′
〉
cν′,~k ′ (t), (5.27)

110



Chap. 5 Interlude 5.2 The effective mass approximation

where the matrix elements
〈
ν,~k
∣∣∣ Û(~r)

∣∣∣ν ′, ~k ′
〉
are worth:

〈
ν,~k
∣∣∣ Û(~r)

∣∣∣ν ′, ~k ′
〉

=

∫
d3r

Ω
u∗
ν,~k

(~r)uν′,~k ′ (~r)e
i(~k
′−~k)·~rÛ(~r). (5.28)

We now go back to Eq. (5.18) and expand the envelope function in terms of the
orthonormal base of plane waves

∣∣∣~k
〉

= ei
~k·~r/
√

Ω:

Ψ(~r, t) =
∑

~k ′

c~k ′ (t)
∣∣∣~k ′
〉

=
∑

~k ′

c~k ′ (t)
ei
~k
′ ·~r

Ω
. (5.29)

Inserting this into Eq. (5.18) and multiplying on the left by
〈
~k
∣∣∣ we get:

i~
d

dt
c~k(t) =

∑

~k ′

〈
~k
∣∣∣ Ĥ + Û(~r)

∣∣∣~k ′
〉
c~k ′ (t). (5.30)

As the effect of a spatial derivative ~∇ on
∣∣∣~k
〉

is only to drop a factor i~k from the
exponential, Eq. (5.30) can be rewritten as:

i~
d

dt
c~k(t) =

∑

~k ′

〈
~k
∣∣∣Eν(−i~∇) + Û(~r)

∣∣∣~k ′
〉
c~k ′ (t), (5.31)

where, as already anticipated, Eν(−i~∇) is the dispersion relation of the ν-th band where
~k has been substituted by −i~∇. From the orthogonality relation of the

∣∣∣~k
〉
, we can

immediately derive the identity:

〈
~k
∣∣∣Eν(−i~∇)

∣∣∣~k ′
〉

= Eν(~k)δ~k,~k ′ , (5.32)

thanks to which we are allowed to write:

i~
d

dt
c~k(t) = Eν(~k)c~k(t) +

∑

~k ′

〈
~k
∣∣∣ Û(~r)

∣∣∣~k ′
〉
c~k ′ (t), (5.33)

where the matrix elements
〈
~k
∣∣∣ Û(~r)

∣∣∣~k ′
〉
can be written explicitly as:

〈
~k
∣∣∣ Û(~r)

∣∣∣~k ′
〉

=

∫
d3r

Ω
ei(

~k
′−~k)·~rÛ(~r). (5.34)
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At this point we compare Eq. (5.27) with Eq. (5.34), noticing that the two differential
equations are equivalent if it holds:

〈
ν,~k
∣∣∣ Û(~r)

∣∣∣ν ′, ~k ′
〉

= δν,ν′
〈
~k
∣∣∣ Û(~r)

∣∣∣~k ′
〉
. (5.35)

This is basically the condition we anticipated at the beginning of the section: for the
single band effective mass equation to be valid, the matrix elements of the potential
Û(~R) between states from different bands should be negligible. We can be more precise
on this by considering the following integral over a unit cell of the lattice:

∫
d3ru∗

ν,~k
(~r)uν′,~k ′ (~r)e

i(~k
′−~k)·~rÛ(~r) = ei(

~k
′−~k)·~rnÛ(~rn)

∫
d3r u∗

ν,~k
(~r)uν′,~k ′ (~r) =(5.36)

ei(
~k
′−~k)·~rnÛ(~rn)δν,ν′

Ω

N
, (5.37)

where ~rn is the position of the center of the unit cell and N is the number of unit cells
in the lattice. In writing Eq. (5.36) we have made two assumptions: first we assumed
the potential Û(~r) to be slowly varying, so that we can consider it constant over a unit
cell, thus allowing us to bring it out of the integral; secondly we have assumed that:

∫
d3r u∗

ν,~k
(~r)uν′,~k ′ (~r) '

∫
d3r u∗

ν,~k
(~r)uν′,~k(~r) = δν,ν′

Ω

N
, (5.38)

that is, we assumed the periodic functions uν,~k(~r) not to vary much with ~k. Within these
assumptions it is also possible to write a relation between the real electronic wavefunction
and the envelope function via:

ψ(~r, t) =
∑

~k

cν,~k(t)
ei
~k·~r
√

Ω
uν,~k(~r) = uν,~k(~r)

∑

~k

cν,~k(t)
ei
~k·~r
√

Ω
= uν,~k(~r)Ψ(~r, t). (5.39)

So one can see from Eq. (5.39) that the real electronic wave function is the product
of a microscopic periodic function and the envelope function. So what one practically
does using Eq. (5.18) is to ignore the microscopic periodic part of the wavefunction,
focusing on the envelope function, which describes the electrons on a somehow course-
grained scale. This is possible given the assumptions we made are valid, namely that
the potential is slowly varying and that the microscopic periodic functions uν,~k(~r) do
not change much with ~k. The single band effective mass equation is widely used to
describe electrons in the conduction band, while as anticipated it breaks down when
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dealing with the valence band, for which the multi-band effective mass equation must be
used [Datta 1989]. Nonetheless Eq. (5.18) has also been used to describe some kinds of
heterojunctions where the gap between the two materials is not too large as to involve
the valence band. All in all the single band effective mass equation is a precious tool
which will be used in the next section to describe electrons in the conduction band of
2DEGs and electron waveguides.

5.3. 2DEG and electron waveguiding

As anticipated at the beginning of this chapter, it is possible nowadays to build semi-
conductors one layer of atoms after another: this entails the possibility of building
heterojunctions, i.e. semiconductors made out by the junction of two different materials
with similar crystalline structure, like for instance GaAs and AlGaAS.

An exhaustive discussion over heterojunctions would take us quite a long time, and it
would be beyond the scope of the present chapter. What is important to highlight here
is that, by inserting donor impurities in the AlGaAS (n-AlGaAS) it is possible to have
free charge carriers, this leading to a rise of the Fermi level of the material. When joined
with an undoped semiconductor such as GaAs, due to the mismatch of the Fermi levels
and energy gap between valence and conduction bands in the two materials, this causes
the free electron to move from the n-AlGaAs to the interface between the two materials,
thus giving rise to a 2-dimensional electron gas (2DEG).

This is all that concerns us about heterojunctions for the scopes of this chapter, and
we suggest the interested reader to check the large amount of literature available on the
subject [Bastard 1988; Capasso 1990].

2DEGs are characterized by a high carrier concentration, typically one order of mag-
nitude higher than in bulk semiconductors, and high mobility, which can be even two
orders of magnitude higher than in bulk semiconductors, depending also on other factors
such as temperature and magnetic field.

The motion of electrons in the conduction band can be described through the single
band effective mass equation in Eq. (5.18). Allowing for the presence of a magnetic field,
this equation can be rewritten in a time-independent form as:

[
Ec +

(i~~∇+ e ~A)2

2m∗
Û(~r)

]
Ψ(~r) = EΨ(~r), (5.40)
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where Ec is the energy at the bottom of the conduction band and ~A is the vector potential
accounting for the magnetic field. For the case of a 2DEG, there will be some confining
potential Û(z) along the z axis, limiting the motion of the electrons in the x− y plane.
Assuming for the moment a zero magnetic field, the envelope function will have the
form:

Ψ(~r) = φn(z)eikxxeikyy, (5.41)

with a dispersion relation of the form:

E = Ec + εn +
~2

2m∗
(
k2
x + k2

y

)
, (5.42)

where φn(z) are eigenfunctions of the n-th subband along the z direction, and εn are
the corresponding eigenenergies. In the low temperature regime only the lowest of these
subbands will be occupied, so that the motion of the electrons along z can be ignored as
a matter of fact. We can thus rewrite the effective mass equation in two dimensions as:

[
Es +

(i~~∇+ e ~A)2

2m∗
+ Û(x, y)

]
Ψ(x, y) = EΨ(x, y), (5.43)

where Es = Ec + ε1. This equation allows for a simple treatment and understanding of
the motion of conduction electrons in 2DEGs, leading to the concept of magneto-electric
subbands and electron waveguiding.

Consider a conductor which is uniform along the x direction and is characterized by
some confining potential Û(y) along the y direction. The effective mass equation can
then be written as:

[
Es +

(i~~∇+ e ~A)2

2m∗
+ Û(y)

]
Ψ(x, y) = EΨ(x, y). (5.44)

If we also assume the magnetic field to be constant and directed along z, which can
be described through the vector potential

~A = −By x̂⇒ Ax = −By, Ay = 0, (5.45)
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the equation can be further rewritten as:

[
Es +

(px + eBy)2

2m∗
+

p2
y

2m∗
+ Û(y)

]
Ψ(x, y) = EΨ(x, y), (5.46)

where

px = −i~ ∂
∂x
, py = −i~ ∂

∂y
. (5.47)

The solutions to Eq. (5.46) are easily seen to be of the form:

Ψ(x, y) =
1√
L
eikxxχ(y), (5.48)

where L is the normalization length and χ(y) satisfies:

[
Es +

(~kx + eBy)2

2m∗
+

p2
y

2m∗
+ Û(y)

]
χ(y) = Eχ(y). (5.49)

Equation (5.49), as a matter of fact, is a one-dimensional Schrödinger equation giving
rise to a set of discrete levels described by functions (χ1(y), χ2(y), · · · ). So, as it can
be seen from Eq. (5.48), the envelope function for the electrons in the conduction band
of a 2DEG is made out of plane waves along the x direction, describing the fact that
electrons are propagating along that direction, multiplied by a transverse eigenfunction
given by the solution of Eq. (5.49), thus dividing the electrons into subbands, which
are analogous to the transverse modes of electromagnetic waveguides. The form of
the functions χ1(y), χ2(y), · · · depends on both the magnetic field and the confining
potential, so that by engineering the latter it is possible to obtain traveling waves with
an almost arbitrary transverse profile: it is with this in mind that the following chapters
were originally conceived. Specifically, in absence of magnetic field, the transverse profile
of the wave will depend only on the confining potential Û(y), which can be chosen in
order to obtain a desired profile.
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CHAPTER 6

Stretchable states

The huge increase in our ability to build materials with specific desired property has
led in recent years to a growing attention towards photonic metamaterials with near-
zero parameters [Liberal and Engheta 2017; Niu et al. 2018]: by this one means media
where the relative permittivity or the relative permeability, or both, are almost zero.
This interest is readily explained looking at the Helmholtz equation for electro-magnetic
waves propagating in a medium:

∇2E = vph
∂2

∂t2
E = µεω2E, (6.1)

where E is the electric field and vph = 1/
√
εµ is the phase velocity, with ε being the

permittivity of the medium and µ its permeability. From Eq. (6.1) one can immediately
see that as either ε or µ becomes zero, then the phase velocity goes to infinity [Reshef
et al. 2017]: this has profound consequences on the wave propagation [Alù et al. 2007;
Nguyen, L. Chen, and Halterman 2010; M. Silveirinha and Engheta 2006; Ziolkowski
2004], as an infinite phase velocity implies the decoupling of the electrical and magnetic
components of the wave, and thus an effective decoupling of the spatial and temporal
field variations.

Thanks to this in a metamaterial one can have, for instance, a wave whose frequency
and wavelength are independent, so that one can have large frequency and large wave-
length at the same time: the increase of the wavelength without affecting the frequency
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corresponds to a “stretching” of the wave. This kind of effects has deep technological
implications, from which the great interest in such materials arises, as it allows for tun-
neling in distorted channels [Edwards, Alù, M. G. Silveirinha, et al. 2009; Edwards, Alù,
Young, et al. 2008; M. Silveirinha and Engheta 2006], radiation pattern tailoring [Alù
et al. 2007; Pacheco-Peña et al. 2014], boosted non-linear effects [Argyropoulos, P.-Y.
Chen, et al. 2012; Argyropoulos, D’Aguanno, and Alù 2014; Sokhoyan and Atwater
2013; Suchowski et al. 2013] and cloaking [Pendry, Schurig, and Smith 2006; Schurig
et al. 2006], just to cite some.

On the other side, as reviewed in the previous chapter, also the field of band engineer-
ing in semiconductor has reached a level where we can build materials within the atomic
layer precision [D. E. Chang et al. 2018]: this possibility, together with the analogies
between photon and electrons [Datta 1995], has lead some researchers to investigate how
the discoveries made in the field of photonic metamaterials [Song and Gabor 2018] can
be exported to the field of semiconductor physics.

It is in this spirit that some pioneering works have started the field of quantum meta-
materials, leading to matter waves cloaking [Liao et al. 2013; Zhang et al. 2008], subwave-
length focusing [Cheianov, Fal’ko, and Altshuler 2007; M. G. Silveirinha and Engheta
2013] and spintronics applications [Chesi and Coish 2015], inspiring also the project of
new devices, such as superconducting structures [Castellanos-Beltran et al. 2008; Zhe-
ludev 2010], faster circuits and optical devices [M. G. Silveirinha and Engheta 2012,
2014].

In this chapter we are going to show how, thanks to the electron-photon analogy, it
is possible to build media, dubbed quantum metamaterials, where matter waves behave
with similar effects to the ones observed in photonic metamaterials. It is in this context
that the following sections take steps: by following a reverse engineering approach, in
Sec. 6.1 we are going to give sufficient and necessary conditions on a potential profile
for it to sustain stable configurations of stretched wave functions, i.e. wave functions
that are flat in a region of the potential. We will then see in Sec. 6.2 how this potential
profiles can be applied when dealing with more than one spatial dimension, for instance
in 2D materials. After establishing these conditions we will give some examples building
stretching profiles starting from the well-known infinite well potential in Sec. 6.3, deriving
both the expression of the wave function and the energy eigenvalues corresponding to
such profiles, seeing how they differ from the corresponding potential without stretching.
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6.1. Stretching potentials in 1D systems

The starting point of our analysis is the electron-photon analogy. In facts matter waves
are described by the Schrödinger equation:

∇2ψE(x) = −2m

~2
(E − V (~x))ψE(x). (6.2)

Comparing Eq. (6.2) with Eq. (6.1), we recognize that the −2m
~2 (E − V (~x)) term is the

matter waves counterpart of the εµω2 term of the Helmholtz equation. Thus we see that
in a quantum metamaterial the equivalent of the condition of having ε or µ near-zero is
to have E − V (~x) = 0. Reversing the perspective, Eq. (6.2) can be used to identify the
spatial properties a potential V (~x) must have in order to obtain a target wave-function
ψtar(~x) which is energetically stable, in formulas:

V (~x)− E =
~2

2m

∇2ψtar(~x)

ψtar(~x)
. (6.3)

This equation allows us to easily write down a condition for the wave-function ψtar(~x)

to have a constant value in some spatial region R. Specifically it is clear that a necessary
condition for a stretched wave-function is to have a constant potential in the region of
interest, i.e.:

ψtar(~x) = const.⇒ V (~x) = const. ∀~x ∈ R. (6.4)

Starting from this necessary condition, it is not so simple to find a sufficient condition
for the stretching. In facts, even a constant potential does not guarantee the stretching
of the wave-function, as one must consider also the matching of the boundary conditions
for the wave function.

Our method to solve this problem consist in creating a new potential profile starting
from a given original one, which we call seeding potential, so that we are able to define
energetically stable stretched state starting from the original non stretched ones. We
are now going to show this method for the simple but paradigmatic case of a particle
trapped in a 1D potential, which allows for an analytical treatment of the problem. In
a 1D setting the Schrödinger equation becomes:

∂2
xψE(x) = −2m

~2
(E − V (x))ψE(x), (6.5)
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x

x

x̄

x̄ x̄ + L

V (x)

stretching  
region

 
[L]
0 (x)

 0(x)

E0

V [L](x)

Figure 6.1.: A sketch of the stretching procedure. In the upper panel we show the
original potential profile V (x), or seeding potential (black line), and the
associated wave function ψ0(x)(blue line) with eigenenergy E0. In the
lower panel we show instead a modified version of the potential V [L](x)
where we performed a cut in correspondence of the stationary point of x̄
of ψ0(x), inserting a constant profile with energy E0 connecting the two
regions. This new potential supports a stretched wave function ψ

[L](x)
0

whose energy is still E0, but is flat in the region [x̄, x̄+ L].

where V (x) is some arbitrary seeding potential. As it can be found in any quantum
mechanics textbook [Sakurai and Napolitano 2017], Eq. (6.5) admits an orthonormal set
of bound-state eigenfunctions {ψn(x), En} where the En are the associated eigenenergies
which we assume to be ordered in increasing order with respect to n. Another known fact
is that the n-th eigenfunction ψn(x) has n nodes, and thus at least n+1 stationary points.
Let us indicate with x̄ the only stationary point of the ground state wave-function, for
which it holds:

∂xψ0(x̄) = 0. (6.6)

We then consider a modified version of the seeding potential, shown in Fig. 6.1, where
we cut it at point x̄, separating the two halves with a spatial distance L. In the region
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[x̄, x̄ + L] we insert a constant potential of value E0, the energy of the original ground
state wave-function, obtaining the new potential:

V [L](x) =





V (x) for x ≤ x̄,

E0 for x̄ < x < x̄+ L,

V (x− L) for x ≥ x̄+ L.

(6.7)

The crucial observation is that the new Schrödinger equation:

∂2
xψE(x) = −2m

~2
(E − V [L](x))ψE(x), (6.8)

still admits E0 as eigenvalue for any choice of L. Moreover it is simple to find a solution
ψ

[L]
E=E0

(x) for Eq. (6.8): in facts in the region x < x̄ we can take ψ[L]
E=E0

(x) = ψ0(x), as
well as in the region x ≥ x̄+ L we can take ψ[L]

E=E0
(x) = ψ0(x− L). Being left with the

central region, we notice that this region admits solutions with energy E0 once we choose
ψ

[L]
E=E0

(x) to be constant and equal to ψ0(x̄) in order to match the boundary conditions.

Resuming, starting from a seeding potential V (x) we have defined an entire family of
stretching potential depending on the parameter L:

F [L](V ) = {V [L](x); L ≥ 0}, (6.9)

whose elements admit as ground state the stretched wave-function

ψ
[L]
0 (x) =





ψ0(x) for x ≤ x̄,

ψ0(x̄) for x̄ < x < x̄+ L,

ψ0(x− L) for x ≥ x̄+ L,

(6.10)

which has still E0 as associated eigenvalue. As by construction the wave functions ψ[L]
0 (x)

have no nodes, we are assured that they still represent the ground-state of the stretched
potential. As for the other energy levels of the seeding potential, none of the observation
above applies. We can instead say that, in general, the other levels will not correspond
to the stretched version of their original counterpart, as it would be impossible to match
the boundary conditions. Moreover, even their energy eigenvalues will be different from
the original ones: as the new potential V [L](x) will be in general shallower than the
seeding one, one can expect the energy gaps between different levels to reduce:

En+1 − En ≥ E
[L]
n+1 − E[L]

n , (6.11)
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vanishing in the limit of L→∞.
The procedure we just described can be applied also when the ground state wave

function has more than one stationary point {x̄1, x̄2, . . . }. In this case it is possible to
define a vector ~L = (L1, L2, . . . ) to identify the family of potentials:

F [~L](V ) = {V [~L](x); ~L = (L1, L2, . . . )}, (6.12)

characterized by the positive independent parameters L1, L2, . . . each inducing a different
modification on V (x). If for instance the wave function ψ0(x) have j stationary points, we
can obtain the new potential V [~L](x) by cutting V (x) into j+ 1 parts in correspondence
of the stationary points x̄j and inserting constant potential regions of length Lj and
height E0 to sew the different regions. The corresponding ground state ψ[L]

0 (x) can
then be found along the same line above, using the former solution ψ0(x) in the regions
corresponding to the seeding potential and connecting them with constant lines of values
ψ0(x̄1), ψ0(x̄2), . . . in order to match the proper boundary conditions. For the same zero-
node argument, we re also ensured that ψ[L]

0 (x) represents the ground-state configuration
in the new potential.

This very construction can be further generalized to the excited states of the seeding
potential, as illustrated in Fig. 6.2: considering an excited state wave function ψn(x), it is
sufficient to consider its stationary points and perform the cuts on the seeding potential
V (x) in correspondence of these points. The only difference with the previous case will
be in the height of the constant potentials connecting the regions of the original seeding
potential, which will be the energy En of the state considered and not the ground state
energy E0. Moreover, when stretching the n-th excited state, we are ensured that its
stretched counterpart will still be the n-th level, because of the node counting argument
already illustrated. As for the other energy levels, because of the same reasons illustrated
for the ground state, the ones above En get compressed as L increases:

E
[L′]
n′+1 − E

[L′]
n′ ≤ E

[L]
n′+1 − E

[L]
n′ for n′ ≥ n, L′ ≥ L. (6.13)

As for the states with energy below En, their behavior will typically be richer than
the one observed for the states above the stretched one, and in general no forecast can
be done on it. However, we anticipate, explaining it better in Sec. 6.3, that in general
the levels below the stretched one will form multiplexes of almost degenerate states.

We conclude this section by showing that, at least in 1D, the construction we presented
exhaust the problem. In facts considering a potential W (x) admitting a stretched state
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Figure 6.2.: Pictorial representation of a potential with two stretching region. In the
upper panel the seeding potential V (x) is shown (black line) together with
the wave function ψ1(x) which present two stationary points. In the lower
panel one can see the modified version of the potential V [~L](x) where there
are two cuts in correspondence of the two stationary points x̄1 and x̄2 where
two constant profiles of energy E1 have been inserted. The corresponding
wave function presents, accordingly, two stretched region of length L1 and
L2 respectively.

ψE(x) as eigenvector with associated energy E, we can show that W (x) must stem from
a seeding potential which has a non stretched eigenstate with energy E. In practice we
are saying that a potential W (x) admits a stretched eigenstate if and only if it belongs
to a family F [L](V ). We already proved with our construction that if W (x) belongs to
F [L](V ), then it admits a stretched eigenstate. The reversed implication can be proved
by reversing the construction previously shown.

We consider, for simplicity but without loss of generality, a potential W (x) which ad-
mits a stretched ground state with energy E. As the generalization to multiple stretching
regions is straightforward, we also assume this ground state to have only one stretching
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region I = [x̄, x̄+ L] for which:

ψE(x) = const.⇒ W (x) = const. ∀x ∈ I. (6.14)

We then take L′ < L and define the potential W [L′](x), which is identical to W (x) for
x ≤ x̄ + L − L′, while for x > x̄ + L − L′ it amounts to the shifted version of W (x),
W (x+ L′):

W [L′](x) =

{
W (x) for x ≤ x̄+ L− L′,

W (x+ L′) for x > x̄+ L− L′.
(6.15)

Reversing the construction of the stretched state, one sees immediately that the po-
tential W [L′](x) admits the following eigenvector with energy E:

ψ
[L′]
E (x) =

{
ψE(x) for x ≤ x̄+ L− L′

ψE(x+ L′) for x > x̄+ L− L′
, (6.16)

where one can see that the boundary conditions are automatically matched, as ψE(x+

L′) and W [L′](x+L′) are constant in the region ]x̄+L−L′, x̄+L] ⊆ I. For all L′ < L,
ψ

[L′]
E (x) is a stretched state, while as L′ = L this is not true anymore, since W [L](x)

becomes a seeding potential with eigenfunction ψ
[L]
E (x), which by construction admits

a stationary point in x̄ and no stretching. Finally, taking V (x) = W [L](x) we can
writeW (x) = V [L](x), thus proving thatW (x) belongs to F [L](W [L](x)), completing our
discussion.

6.2. Stretching in higher spatial dimensions

A natural path to follow after investigating 1D stretching potentials, is to check wether
the 1D construction can be extended to higher dimensionality. A very simple generaliza-
tion is obtained for instance when dealing with seeding potentials exhibiting an explicit
separation of the spatial coordinates:

V (~x) =
∑

j

Vj(xj), (6.17)
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where xj is the j-th element of ~x. In this case the eigensolutions can be written in the
form:

ψE(~x) =
∏

j

ψ
(j)
Ej

(xj) E =
∑

j

Ej, (6.18)

where all the ψ(j)
Ej

(xj) satisfy:

∂2
xj
ψ

(j)
Ej

(xj) = −2m

~2
(Ej − Vj(xj))ψ(j)

Ej
(xj). (6.19)

It is clear that in this specific case we can treat each spatial dimension separately,
following the same procedure illustrated for 1D potentials. An example of this is given
in App. C.1.

Unlucky, extending the stretched construction in more than one dimension beyond
the simple case just shown is a more demanding task. In facts the interplay between
the various spatial coordinates in the seeding potential does not allow us to separate
the spatial coordinates acting on only one of them without interfering with the others.
On the other hand it is possible to give a solution to this problem for potentials where
the interplay between the different spatial coordinates is small. In order to illustrate
this concept, we focus on a 2D geometry: we consider a particle A moving in the (x, y)

plane under the action of seeding potential which is translationally invariant with respect
to the y coordinate, which amounts to say V (x, y) = V (x), from which it follows the
Schrödinger equation:

(∂2
x + ∂2

y)ψE(x, y) = −2m

~2
(E − V (x))ψE(x, y). (6.20)

The solutions to this equation can be readily written as:

ψE(x, y) = eikyψn(x), E = En +
~2k2

2m
, (6.21)

where ψn(x) is the n-th eigenstate with eigenvalue En of the 1D problem defined by
V (x). We then proceed taking, for simplicity, the case n = 0, so that ψ0(x) is the
ground state of V (x) with energy E0, and we consider the new Schrödinger equation:

(∂2
x + ∂2

y)ψE(x, y) = −2m

~2
(E − V [L(y)](x))ψE(x, y), (6.22)
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where with V [L(y)] we mean a stretched version of the seeding potential V (x) where the
stretching length depends on the y coordinate. We focus now on the case where the
L(y) varies only on a limited interval y ∈ I = [yin, yfin], while for y < yin or y > yfin we
assume the stretching length to be constant with values Lin = L(yin) and Lfin = L(yfin)

respectively.
A very simple instance allowing for an analytical solution is given when L(y) is con-

stant and Lin = Lfin, where we can write the ansatz:

ψE(x, y) = eikyψ[L]
n (x), E = E[L]

n +
~2k2

2m
, (6.23)

where ψ[L]
n (x) and E

[L]
n are eigensolutions of the 1D problem defined by the potential

V [L](x). Taking for instance n = 0, what we get is a wave-function that is uniformly
stretched along the x direction for any given y:

ψE(x, y) = eikyψ
[L]
0 (x), E = E0 +

~2k2

2m
. (6.24)

This is nothing but a specific instance of the situation described in Eq. (6.17). This is
however only a very simple exception, since as soon as L(y) is not constant the potential
acquires an y dependence. A useful way to tackle the problem is to consider the ansatz:

ψE(x, y) = eikyψ̃(x, y), (6.25)

where, apart from the phase factor, we allow for a residual dependence on y in ψ(x, y).
Inserting this ansatz in the Schrödinger equation associated to the problem we get:

∂2
xψ̃(x, y) = −2m

~2
[E − V [L(y)](x)]ψ̃(x, y) + ∆(x, y), (6.26)

∆(x, y) = −∂2
y ψ̃(x, y)− 2ik∂yψ̃(x, y). (6.27)

Now, the point to note is that Eq (6.26) is identical to Eq. (6.8) apart from the ∆(x, y)

contribution. Thus, as long as we can neglect this term, we can use the solution in
Eq. (6.10) to approximate ψ̃(x, y), obtaining:

ψE(x, y) ' eikyψ
[L(y)]
0 (x), E = E0 +

~2k2

2m
. (6.28)

Intuitively we can imagine that this solution will be valid, i.e. ∆(x, y) will be negligible,
as long as the function L(y) varies slowly. For the ansatz choice in Eq. (6.28), the extra
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term becomes:

∆(x, y)
∣∣∣
ψ
[L(y)]
0 (x)

= (6.29)

−Θ(x′ − x)
[
∂x′ψ0(x′)L′′(y) +

(
2ik∂x′ψ0(x′) + ∂2

x′ψ0(x′)L′(y)
)
L′(y)

]
x′=x−L(y)

,

where L′(y) and L′′(y) are the first and second derivative of L(y) respectively. It is
immediate to see that in the limit where L(y) is almost constant, the rhs of the last
equation gets suppressed. We can be more quantitative on this respect by computing
the `2 norm [Nielsen and Chuang 2010] of ∆(x, y):

‖∆(x, y)‖2 =

∫ ∞

−∞
dx |∆(x, y)|2 =

∫ ∞

x̄

dx
∣∣∣∂xψ0(x) (L′′(y) + 2ikL′(y)) + ∂2

xψ0(x) (L′(y))
2
∣∣∣
2

≤
∫ ∞

−∞
dx
∣∣∣∂xψ0(x) (L′′(y) + 2ikL′(y)) + ∂2

xψ0(x) (L′(y))
2
∣∣∣
2

≤ |L′′(y) + 2ikL′(y)|
∫ ∞

−∞
dx |∂xψ0(x)|2 + |L′(y)|4

∫ ∞

−∞
dx
∣∣∂2
xψ0(x)

∣∣2

+ 2 |L′(y)|2 |L′′(y) + 2ikL′(y)|
√∫ ∞

−∞
dx |∂xψ0(x)|2

∫ ∞

−∞
dx |∂2

xψ0(x)|2

=

(
|L′′(y) + 2ikL′(y)|

√∫ ∞

−∞
dx |∂xψ0(x)|2 + |L′(y)|2

√∫ ∞

−∞
dx |∂2

xψ0(x)|2
)2

=

(
|L′′(y) + 2ikL′(y)|

√
〈p̂2
x〉0

~
+ |L′(y)|2

√
〈p̂4
x〉0

~2

)2

, (6.30)

where to keep notation simple we indicate with 〈· · · 〉0 the expectation value with respect
to ψ0(x) and p̂2

x is the transverse kinetic energy. Our next goal is to compute the `2

norm of the function f(x, y) = −2m
~2 [E − V [L(y)](x)]ψ

[L(y)]
0 (x):

‖f(x, y)‖2 =

∫ ∞

−∞
dx |f(x, y)|2 =

∫ ∞

−∞
dx
∣∣∣∂2
xψ

[L(y)]
0 (x)

∣∣∣
2

=

∫ x̄

−∞
dx
∣∣∂2
xψ0(x)

∣∣2 +

∫ ∞

x̄+L

dx
∣∣∂2
xψ0(x− L)

∣∣2

=

∫ ∞

−∞
dx
∣∣∂2
xψ0(x)

∣∣2 =
〈p̂4
x〉0
~4

. (6.31)

Finally, comparing the final expression of Eq. (6.31) with the final expression in

127



6.3 Stretching the infinite well Chap. 6 Stretchable states

Eq. (6.30), we can state that as long as the inequality

〈p̂4
x〉0

〈p̂2
x〉0~2

� |L
′′(y)|2 + 4k2 |L′(y)|2

(1− |L′(y)|2)2
(6.32)

holds, we are sure that also

‖f(x, y)‖ � ‖∆(x, y)‖ (6.33)

is valid, thus showing that the ∆(x, y) contribution is negligible when integrating over
a not too large interval.

With this we have concluded our treatment of stretching in higher dimensions, showing
how the problem is not trivial, but instead requires many considerations in order to get
a meaningful approximate solution. In the next section we are going to return to the
analytically treatable 1D situation, illustrating practically through some examples the
effect of stretching a potential on the wave functions and their energy eigenvalues.

6.3. Stretching the infinite well

In this section we want to show through some examples how the presence of a stretched
state influences the system, in particular the shape of the wave function and its associated
energy eigenvalue, both for the stretched state and the others.

In order to be practical, we consider as seeding potential an infinite well of width a:

V (x) =

{
0 for |x| < a/2

+∞ otherwise
, (6.34)

whose eigenfunctions are well known to be:

ψn(x) =
√

2a





cos
(
π(n+1)x

a

)
for n ≥ 0 even,

sin
(
π(n+1)x

a

)
for n ≥ 1 odd,

(6.35)

with associated energy eigenvalues:

En =
π2(n+ 1)2~2

2ma2
. (6.36)

As first instance of stretching potential, we want to build a potential profile that
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Figure 6.3.: Wave functions and energy levels for ground state stretching. Upper panel:
the inset shows a sketch of the potential profile under examination, which
gives rise to a stretched ground state, while in the panel the energy of the
first four levels is plotted as a function of the stretching length L. As one
can notice, as L increases the energy of the ground state is unaffected, as
it is the energy of the stretched state, while the higher energy levels get
compressed, as it would be expected in a continuum limit. Lower panel:
plot of the wave functions of the first four energy levels of the infinite well
modified in order to sustain a stretched ground state for the specific ratio
L/a = 0.4. It is possible to notice how the ground state wave function
is flat in correspondence of the barrier, while all the other wave functions
retain their oscillatory behavior.

supports a stretched ground state. From the expression of ψ0(x) in Eq. (6.35) we im-
mediately verify that it has only one extremal point at the center of the well. Hence,
we perform a cut at this point, inserting a potential barrier of length L and height E0,
obtaining the potential shown in the inset of Fig. 6.3. The new problem defined by the
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stretching potential can be solved analytically with no difficulties.

As we are stretching the ground state, we are sure that the first allowed solution is
E = E0 = π2~2

2ma2
, with associated wave function as in Eq. (6.10). As for the excited states,

their energy and eigenfunctions can be found with the standard method [Griffiths and
Schroeter 2018] of solving the Schrödinger equation in each region of the potential and
imposing the continuity of the wave function and its first derivative. We define:

k̄ =

√
2m(E − E0)

~2
, k =

√
2mE

~2
, (6.37)

getting the two following quantization conditions:

k cot

(
ak

2

)
= k̄ tan

k̄L

2
, (6.38)

k cot

(
ak

2

)
= −k̄ cot

(
k̄L

2

)
. (6.39)

for even and odd states respectively. The solutions to this two equations are plot in
the upper panel of Fig. 6.3 of a function of the stretching length L: as one can see the
energy of the ground state is not influenced by the stretching, while the other energy
levels get compressed, as anticipated in Sec. 6.1. This is due to the fact that as L
becomes large, the system becomes more and more similar to free space, and hence the
energy levels approach the continuum. On the other hand, as L approaches zero we
recover the energies of the infinite well, as expected.

As for the wave functions, plotted in the lower panel of Fig. 6.3, we can observe that
in the region corresponding to the barrier the ground state wave-function is flat, as we
wanted it to be, while the other wave functions still keep an oscillatory nature.

Another possibility to examine is to stretch an excited state of the infinite well. Con-
sidering for instance an excited state wave function ψn(x), with n even, we can verify
that it has a stationary point in x = 0, just as the ground state. Thus, in order to
stretch such state, we can use the same potential shown in the inset of Fig. 6.3, but
setting the height of the barrier equal to En. Making this choice, by virtue of what has
been said in Sec. 6.1, E = En is a proper eigenvalue of the problem irrespectively of the
stretching length L. For E > En, one can easily find that the quantization conditions
are the same of the previous instance, as in Eqs.(6.38, 6.39). However, now the model
admits also eigenvalues for E < En. These energies can be found via the following two

130



Chap. 6 Stretchable states 6.3 Stretching the infinite well

�a + L

2<latexit sha1_base64="9nGSxB3gb4uzypomZTzbOg5YE2M=">AAACAHicbVC7SgNBFJ2NrxhfUUubwSAIYtiNgpZBGwuLCOYByRruTm7ikNkHM3eFsKTxK2y1shNb/8TCf3GzptDEUx3OuZd77vEiJQ3Z9qeVW1hcWl7JrxbW1jc2t4rbOw0TxlpgXYQq1C0PDCoZYJ0kKWxFGsH3FDa94eXEbz6gNjIMbmkUoevDIJB9KYBS6e6409cgEji6HieVcbdYsst2Bj5PnCkpsSlq3eJXpxeK2MeAhAJj2o4dkZuAJikUjgud2GAEYggDbKc0AB+Nm2Spx/wgNkAhj1BzqXgm4u+NBHxjRr6XTvpA92bWm4j/ee2Y+uduIoMoJgzE5BBJhdkhI7RM60DekxqJYJIcuQy4AA1EqCUHIVIxTvsppH04s9/Pk0al7JyUKzenperFtJk822P77JA57IxV2RWrsToTTLMn9sxerEfr1Xqz3n9Gc9Z0Z5f9gfXxDcmflq4=</latexit>

0
L/a

<latexit sha1_base64="zmXYzCN4NtMGH8LjS241Hiw3wXQ=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKtgBCcoIGgqKIMhDSqJofdmEU84P3a1BkZVPoIWKDtHyPRT8C7ZxAYGpRjO72tlxQyUN2faHVVhYXFpeKa6W1tY3NrfK2zstE0RaYFMEKtAdFwwq6WOTJCnshBrBcxW23clF6rfvURsZ+Lc0DbHvwdiXIymAEunm6ggG5YpdtTPwv8TJSYXlaAzKn71hICIPfRIKjOk6dkj9GDRJoXBW6kUGQxATGGM3oT54aPpxFnXGDyIDFPAQNZeKZyL+3IjBM2bqucmkB3Rn5r1U/M/rRjQ668fSDyNCX6SHSCrMDhmhZdIB8qHUSARpcuTS5wI0EKGWHIRIxCgppZT04cx//5e0alXnuFq7PqnUz/NmimyP7bND5rBTVmeXrMGaTLAxe2RP7Nl6sF6sV+vte7Rg5Tu77Bes9y9uaZH9</latexit>

2ma2E
<latexit sha1_base64="AyQw7KXi8Z5xeN67a4SlXIJHl3Q=">AAAB+HicbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjICIVEGiTykxETryyYcOT90t0YKVv6BFio6RMvfUPAvOMYFJEw1mtnVzo4XKWnItj+thcWl5ZXVwlpxfWNza7u0s9s0YawFNkSoQt32wKCSATZIksJ2pBF8T2HLG11M/dYDaiPD4IbGEbo+DAM5kAIolZpVH26rl71S2a7YGfg8cXJSZjnqvdJXtx+K2MeAhAJjOo4dkZuAJikUTord2GAEYgRD7KQ0AB+Nm2RpJ/wwNkAhj1BzqXgm4u+NBHxjxr6XTvpAd2bWm4r/eZ2YBmduIoMoJgzE9BBJhdkhI7RMa0DelxqJYJocuQy4AA1EqCUHIVIxTnsppn04s9/Pk2a14hxXqtcn5dp53kyB7bMDdsQcdspq7IrVWYMJds+e2DN7sR6tV+vNev8ZXbDynT32B9bHN2V1kxQ=</latexit>

1
2
3

L

2<latexit sha1_base64="XReF2CCtMEpwXM+2MPLdeklX2XE=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRXZAgjKChoIiSOQhJVG0vmzCKeezdbdGiiyLr6CFig7R8i0U/AuOSQEJU41mdrWz40dKWnLdT2dpeWV1bb2wUdzc2t7ZLe3tN20YG4ENEarQtH2wqKTGBklS2I4MQuArbPnjq6nfekBjZajvaBJhL4CRlkMpgDKp0x0aEMlNmlTTfqnsVtwcfJF4M1JmM9T7pa/uIBRxgJqEAms7nhtRLwFDUihMi93YYgRiDCPsZFRDgLaX5JFTfhxboJBHaLhUPBfx90YCgbWTwM8mA6B7O+9Nxf+8TkzDi14idRQTajE9RFJhfsgKI7MukA+kQSKYJkcuNRdggAiN5CBEJsZZOcWsD2/++0XSrFa800r19qxcu5w1U2CH7IidMI+dsxq7ZnXWYIKF7Ik9sxfn0Xl13pz3n9ElZ7ZzwP7A+fgGL96V1w==</latexit>

�L

2<latexit sha1_base64="vGWAa+cUU1EHOGEBchMEeGk5TWc=">AAAB/nicbVC7SgNBFJ2NrxhfUUubwSDYGHajoGXQxsIignlAdgl3JzdxyOyDmbtCWAJ+ha1WdmLrr1j4L+7GFJp4qsM593LPPX6spCHb/rQKS8srq2vF9dLG5tb2Tnl3r2WiRAtsikhFuuODQSVDbJIkhZ1YIwS+wrY/usr99gNqI6PwjsYxegEMQzmQAiiT3BN3oEGkN5O0NumVK3bVnoIvEmdGKmyGRq/85fYjkQQYklBgTNexY/JS0CSFwknJTQzGIEYwxG5GQwjQeOk084QfJQYo4jFqLhWfivh7I4XAmHHgZ5MB0L2Z93LxP6+b0ODCS2UYJ4ShyA+RVDg9ZISWWRnI+1IjEeTJkcuQC9BAhFpyECITk6ydUtaHM//9ImnVqs5ptXZ7VqlfzpopsgN2yI6Zw85ZnV2zBmsywWL2xJ7Zi/VovVpv1vvPaMGa7eyzP7A+vgGc85YO</latexit>

a + L

2<latexit sha1_base64="oOl4NMv0MgaMzw9M8rIm/QUzh3k=">AAAB/3icbVC7SgNBFJ31GeMramkzGARBCLtR0DJoY2ERwTwgWcLdyU0cMvtw5q4QlhR+ha1WdmLrp1j4L+7GLTTxVIdz7uWee7xISUO2/WktLC4tr6wW1orrG5tb26Wd3aYJYy2wIUIV6rYHBpUMsEGSFLYjjeB7Clve6DLzWw+ojQyDWxpH6PowDORACqBUcrsDDSKB4+tJUp30SmW7Yk/B54mTkzLLUe+Vvrr9UMQ+BiQUGNNx7IjcBDRJoXBS7MYGIxAjGGInpQH4aNxkGnrCD2MDFPIINZeKT0X8vZGAb8zY99JJH+jOzHqZ+J/XiWlw7iYyiGLCQGSHSCqcHjJCy7QN5H2pkQiy5MhlwAVoIEItOQiRinFaTzHtw5n9fp40qxXnpFK9OS3XLvJmCmyfHbAj5rAzVmNXrM4aTLB79sSe2Yv1aL1ab9b7z+iCle/ssT+wPr4BXCyWdw==</latexit>

01 23

4

4

0.5 1 1.5 2

4 π2

9 π2

16π2

25π2

36π2

5

5

Figure 6.4.: Upper panel: plot of the first six energy levels for the case where the
height of the barrier equals the energy E4 of the fifth energy level. As
one can observe, the states with higher energy than E4 behave as in the
case of ground state stretching, while the levels below E4 form a doublets
structure. Lower panel: plot of the wave functions for the first six levels
for the specific ratio a/L = 0.6. From here it is possible to observe that the
doublets in the upper panel correspond to states with opposite symmetry.
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for even and odd states respectively, where γ =
√

2m(En − E)/~2. We note that these
two quantization conditions become exactly the same in the limit L � a, and thus we
expect them to lead to a doublet structure in the lower part of the spectrum. This fact
has a simple physical interpretation: we can look at the system as the union of two
distinct identical wells separated by a potential barrier, that interact via tunnel effect.
As L becomes large, the tunnel coupling becomes weaker and thus the two wells start
behaving as independent, giving rise to the doublets structure. While these predictions
are confirmed in the upper panel of Fig. 6.4, we notice that the same argument can also
be applied to the stretched state and the next higher level, i.e. n = 4, 5: as L becomes
large the energy E5 approaches E4, and thus its wave function becomes essentially linear
in the stretching interval, as for small argument sin(x) ' x.

The last instance we want to analyze is one where we deal with multi-parameter
stretching, that is, a situation where there is more than one stretching region. To this
aim we consider the stretching of the first excited level of the infinite well ψ1(x) =√

2
a

sin
(

2π
a

)
, which possesses two extremal points located at x̄± = ±a

4
. Accordingly we

want to look at the potential profile:

V (x) =





∞ for x < −a
2
− L1

0 for a
2
− L1 ≤ x ≤ −a

4
− L1

E1 for −a
4
− L1 ≤ x ≤ −a

4

0 for −a
4
≤ x ≤ a

4

E1 for a
4
≤ x ≤ a

4
+ L2

0 for a
4

+ L2 ≤ x ≤ a
2

+ L2

∞ for x > a
2

+ L2

(6.42)

where E1 = 4π2~2
2ma2

and L1, L2 are the stretching parameters, as shown in the bottom
panel of Fig. 6.5. The spectrum can be easily computed also in this case. We have of
course the solution E = E1, which does not depend on the stretching parameters, while
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Figure 6.5.: Upper panel: plot of the first three energy levels for the infinite well with
two stretching regions, as a function of L1 and L2. While the energy of
the second level stays constant, the upper levels get compressed. Lower
panel: plot of the wave functions of the first three levels for L1/a = 0.4
and L2/a = 0.2.

for E < E1 we have the quantization condition:
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where now γ =
√

2m(E1−E)
~2 and k̄ =

√
2m(E−E1)

~2 . For E > E1 we have instead the
condition:
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In Fig. 6.5 both the first three energy levels and the corresponding wave functions
are plotted. As one can see the ground state energy quickly reaches an asymptotic
value as L1 and L2 increases, while the energy of the first excited level stays constant.
Concerning the other levels, as the stretching parameters grow they go towards the
asymptotic value E1: this in once again to be expected, since as in the other instances
we examined increasing the stretching parameters implies approaching the free particle
limit.
All the concepts exposed in this section can be adapted also to the case where the

seeding potential is a harmonic oscillator, as reported in App. C.

134



CHAPTER 7

Geometric phases

The growing importance of quantum engineering has been fostered by the need for new
more efficient circuits and transistors, and also by the creation of the first prototypes
of quantum computers. Having this in mind, it becomes clear that coherence manipu-
lation becomes of great importance in present technological challenges, as coherence is
considered to be at the origin of quantum supremacy.

One possibility in this direction is to exploit the so called Berry phase [Wilczek and
Shapere 1989]. When the Hamiltonian of a quantum system changes, the state of the
system acquires a phase: though this effect was known before the work by Berry, his key
insight was to recognize that for a cyclic change of the Hamiltonian this phase becomes
gauge independent, and thus a measurable and meaningful quantity.

This effect is nowadays exploited by some approaches to quantum information process-
ing [A. Ekert et al. 2000; Faoro, Siewert, and Fazio 2003; Sjöqvist, Azimi Mousolou, and
C. M. Canali 2016; Zanardi and Rasetti 1999] and quantum state manipulation [De
Chiara and Palma 2003; Duan, Cirac, and Zoller 2001; Vepsäläinen, Danilin, and
Paraoanu 2018; Zhu and Wang 2002], where target states are obtained by applying
a, possibly unitary, transformation implemented through a cyclic driving of the Hamil-
tonian, either adiabatically [Wilczek and Shapere 1989] or non-adiabatically [Aharonov
and Anandan 1987], and even in dissipative processes [A. Carollo and Palma 2006; A.
Carollo, Santos, and Vedral 2006]. The resulting operations are usually referred to as
holonomies, and have also been proved experimentally [Hansom et al. 2014; Leek et al.
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2007; Yale et al. 2016; Zhou et al. 2017]. Another very important feature of these op-
erations is their resiliency to local fluctuations [Berger et al. 2013; Snizhko, Egger, and
Gefen 2019; Yale et al. 2016], due to the geometrical character of the phenomenon.

What we propose here is to extend this approach to Hamiltonian that vary in space,
and not in time: as we saw in Chap. 5, present day techniques for nanofabrication allow
for the creation of very arbitrary and sharp potential profiles. By allowing the confining
potential of a traveling wave to change adiabatically, we will show how it is possible
to attach a phase to the state of the system. The adiabatic assumption is not strictly
necessary to implement an holonomy, but it allows one to invoke a partial decoupling
of fast and slow degrees of freedom [Aldinger, Böhm, and Loewe 1991; Mead 1992;
Novičenko, Ruseckas, and Anisimovas 2019], see also Sec. 6.2.

In Sec. 7.1 we will briefly review the standard derivation of the adiabatic Berry’s
phase, seeing how a time dependent Hamiltonian can give rise to a geometric phase
when it varies along a closed path in parameters space. Then in Sec. 7.2 we will show
how also in the case of a coordinate dependent Hamiltonian it is possible to attach a
geometric phase to a quantum state. Finally in Sec. 7.3 we will give some examples of
coordinate-dependent Hamiltonian where a geometric phase is attached to a quantum
state.

7.1. Standard Berry phase

In the standard approach to the Berry phase, one typically considers a Hamiltonian
Ĥ(~R(t)) which depends upon a set of time dependent parameters described by the vector
~R(t) = (R1(t), R2(t), · · · ). A necessary assumption in order to stay in the adiabatic
regime is that the spectrum of Ĥ(~R(t)) has always a finite gap between the ground state
and the rest of the spectrum for all the considered values of ~R(t).

We then let the vector ~R(t) change slowly (i.e. adiabatically) in time such that:

~
T
<< ∆min (7.1)

where T is the time necessary for the transformation and ∆min is the minimum energy
gap between the ground state and the first excited state. When Eq. (7.1) holds we are
ensured that as Ĥ(~R) varies, the system remains always in the instantaneous ground
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state
∣∣∣φ(0)

~R(t)

〉
. At this point we consider the instantaneous set of eigenvectors of Ĥ(~R(t)):

Ĥ(~R(t))
∣∣∣φ(j)

~R(t)

〉
= ε

(j)
~R(t)

∣∣∣φ(j)
~R(t)

〉
, (7.2)

thanks to which the solution to the time dependent Schödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(~R(t)) |ψ(t)〉 (7.3)

can be written as:

|ψ(t)〉 = eiγ(t)e
− i

~
∫ t
0 dt
′ε

(0)
~R(t)

∣∣∣φ(0)
~R(t)

〉
+
∑

j 6=0

aj(t)
∣∣∣φ(j)

~R(t)

〉
. (7.4)

If the adiabatic approximation in Eq. (7.1) holds, this allows us to neglect the sum
on the rhs of Eq. (7.4). Focusing hence on the ground state contribution, we see that it
has two phases attached to it: one is the dynamical phase given by free evolution of the
system, while γ(t) is known as the Berry phase.

In order to find the value of this phase, one requires the state to fulfill the time
dependent Schrödinger equation. Evaluating the lhs of Eq. (7.3) we get:

i~
∂

∂t
|ψ(t)〉 =

[
−~γ̇(t) + ε

(0)
~R(t)

]
|ψ(t)〉+ i~eiγ(t)e

− i
~
∫ t
0 dt
′ε

(0)
~R(t) ~̇R(t) · d

d~R

∣∣∣φ(0)
~R(t)

〉
, (7.5)

where dotted quantities indicate time derivatives and the sum over the excited states
has been neglected. Evaluating the rhs of Eq. (7.3) we get instead:

Ĥ(~R(t)) |ψ(t)〉 = ε
(0)
~R(t)
|ψ(t)〉 , (7.6)

where once again we neglect the excited states contribution. At this point we can use
the completeness relation and the adiabatic approximation to write:

d

d~R

∣∣∣φ(0)
~R(t)

〉
=
∑

j

∣∣∣φ(j)
~R(t)

〉〈
φ

(j)
~R(t)

∣∣∣ d
d~R

∣∣∣φ(0)
~R(t)

〉
'
〈
φ

(0)
~R(t)

∣∣∣ d
d~R

∣∣∣φ(0)
~R(t)

〉 ∣∣∣φ(0)
~R(t)

〉
, (7.7)

which substituted in Eq. (7.5) leads to:

i~
∂

∂t
|ψ(t)〉 =

[
−~γ̇(t) + i~ ~̇R(t)

〈
φ

(0)
~R(t)

∣∣∣ d
d~R

∣∣∣φ(0)
~R(t)

〉
+ ε

(0)
~R(t)

]
|ψ(t)〉 . (7.8)
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At this point we note that Eq. (7.8) and Eq. (7.6) are equal if:

γ̇(t) = i ~̇R(t)
〈
φ

(0)
~R(t)

∣∣∣ d
d~R

∣∣∣φ(0)
~R(t)

〉
, (7.9)

where the normalization condition
〈
φ

(0)
~R(t)

∣∣∣φ(0)
~R(t)

〉
= 1 ensures the reality of γ(t).

At this point it should be noted that one is always free to choose the phase attached
to the basis states for each value of ~R, so that γ(t) would result to be somehow gauge
dependent: the key point observed by Berry is that if we let the vector ~R vary along a
closed path Γ in parameters space, i.e. if:

~R(0) = ~R(T ), (7.10)

then γ(t) is not gauge dependent anymore, becoming a geometric quantity:

γBerry =

∫ T

0

γ̇(t)dt′ = i

∮

Γ

d~R
〈
φ

(0)
~R

∣∣∣ d
d~R

∣∣∣φ(0)
~R

〉
. (7.11)

The Berry phase is said to be a geometric quantity because it does not depend on
the velocity with which the transformation happen, but only on the path covered in
parameters’ space. The Berry phase is also gauge independent, in analogy with what
happens in electrodynamics, where the line integral of the vector potential along a closed
path is a gauge independent quantity. Following this analogy one can define the Berry
connection ~A as:

~A = i
〈
φ

(0)
~R

∣∣∣ d
d~R

∣∣∣φ(0)
~R

〉
(7.12)

so that the Berry phase in Eq. (7.11) can be rewritten as

γBerry =

∮

Γ

d~R · ~A. (7.13)

We conclude this section by noting that the Berry connection is a gauge dependent
quantity, and thus it is not an observable quantity. However it is possible to define a
gauge independent, and hence observable, quantity starting from the Berry connection,
the so called Berry curvature:

Ω = Ωij =
∂

∂Ri

Aj −
∂

∂Rj

Ai. (7.14)
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Using the Berry curvature and applying the Stokes theorem, it is possible to write the
Berry phase in the alternative, and sometimes simpler to treat, form:

γBerry =

∫

S(Γ)

d~S · Ω (7.15)

where S(Γ) is the surface enclosed in the loop Γ.

Having reviewed the Berry phase mechanism we are now ready to see how to obtain
geometric phases with coordinate dependent Hamiltonians.

7.2. Spatial Berry phase

In order to show our result, let us consider a non relativistic particle A of mass m
propagating in the xy-plane in a potential landscape V̂ (x̂, ŷ) like the one shown in
Fig. 7.1, which confines the particle along the x direction, while letting it propagate
along y. Thus the particle has Hamiltonian:

Ĥ =
p̂2
x

2m
+

p̂2
y

2m
+ V̂ (x̂, ŷ). (7.16)

As shown pictorially in Fig. 7.1, we are considering a situation where the particle
A enters the potential landscape with energy E, this corresponding to an input state
that far away from the scattering region has the form of a plane wave propagating with
impulse p0 > 0, hence setting the largest energy scale in the system, as Ekin = p2

0/(2m) '
E.

What we want to do now is to look for solutions of the time independent Schrödinger
equation compatible with the boundary conditions. In order to achieve the goal we move
to a representation with respect to the y coordinate, i.e. we multiply both sides of the
Schrödinger equation by the bra 〈y|, obtaining:

〈y| Ĥ |ψE〉 = 〈y|E |ψE〉 ⇒ −
~2

2m

∂2

∂y2
|ψE(y)〉+ ĥy(x̂) |ψE(y)〉 = E |ψE(y)〉 , (7.17)

where we have defined |ψE(y)〉 = 〈y|ψE〉 as the transverse wave vector component for
assigned longitudinal position. The self-adjoint operator

ĥy(x̂) =
p̂2
x

2m
+ V̂y(x̂), (7.18)
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x

y

V̂ (x̂, ŷ)

ei
p0
~ y
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Figure 7.1.: Pictorial representation of the system under examination: a particle A is
moving in the potential landscape described by the operator V̂ (x̂, ŷ) with
a certain energy E.

with V̂y(x̂) = V̂ (x̂, y), is obtained by replacing the operator ŷ with its eigenvalue y.

In analogy with the previous section, we assume the dependence upon y of V̂y(x̂) to
be mediated by a set of control parameters R(i)

y , described collectively by the vector
~Ry = (R

(1)
y , R

(2)
y , · · · ), so that we can write:

V̂y(x̂) = V0(x̂; ~Ry). (7.19)

We further assume that the operator ĥy(x̂), via the potential V̂y(x̂), induces confine-
ment along x, so that for each assigned y we can identify a discrete set of eigenvectors
{
∣∣∣φ(`)
y

〉
; ` = 0, 1, 2, · · · } with associated eigenvalues E(`)

y = ~2
2m
ε

(`)
y , i.e.:

ĥy(x̂)
∣∣φ(`)
y

〉
= E(`)

y

∣∣φ(`)
y

〉
(7.20)
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We can then expand the state |ψE(y)〉 in the instantaneous eigenbasis as

|ψE(y)〉 =
∑

`

C(`)
y

∣∣φ(`)
y

〉
, C(`)

y ∈ C, (7.21)

so that we can write:

〈
φ(`)
y

∣∣ ∂
2

∂y2
|ψE(y)〉 =

∂2

∂y2
C(`)
y +

∑

`′

2
∂

∂y
C(`′)
y

〈
φ(`)
y

∣∣ ∂
∂y

∣∣∣φ(`′)
y

〉
+
∑

`′

C(`′)
y

〈
φ(`)
y

∣∣ ∂
2

∂y2

∣∣∣φ(`′)
y

〉

=
∂2

∂y2
C(`)
y +

∑

`′

(
2[Ky]``′

∂

∂y
C(`′)
y + [Γy]``′C

(`′)
y

)
. (7.22)

Here we have defined the two matrices of elements:

[Ky]``′ =
〈
φ(`)
y

∣∣ ∂
∂y

∣∣∣φ(`′)
y

〉
, [Γy]``′ =

〈
φ(`)
y

∣∣ ∂
2

∂y2

∣∣∣φ(`′)
y

〉
. (7.23)

We anticipate here, and demonstrate in App. D.1, that the matrix Ky is anti-Hermitean,
having only real elements and its diagonal terms being null.

Inserting the expression in Eq. (7.22) in Eq. (7.17), we can get a set of coupled
differential equations for the coefficients C(`)

y :

∂2

∂y2
C(`)
y +

∑

`′

(
2[Ky]``′

∂

∂y
C(`′)
y + [Γy]``′C

(`′)
y

)
+

2m

~2
(E − E(`)

y )C(`)
y = 0. (7.24)

Defining the column vector ~Cy = (C
(1)
y , C

(2)
y , · · · ) and introducing the rescaled energy

ε = 2m
~2 E, we can recast this system of differential equations in vectorial form as:

∂2

∂y2
~Cy + 2Ky

∂

∂y
~Cy + (Γy + ε− Ωy)~Cy = 0, (7.25)

where we introduced the diagonal matrix:

[Ωy]``′ =
2m

~2
E(`)
y δ``′ = ε(`)y δ``′ . (7.26)

As shown in App. D.1, it holds:

[K2
y ]``′ = −

(
∂

∂y

〈
φ(`)
y

∣∣
)
∂

∂y

∣∣φ(`)
y

〉
, (7.27)
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and we notice that:

[Γy −
∂

∂y
Ky]``′ =

〈
φ(`)
y

∣∣ ∂
2

∂y2

∣∣∣φ(`′)
y

〉
− ∂

∂y

(〈
φ(`)
y

∣∣ ∂
∂y

∣∣∣φ(`′)
y

〉)
(7.28)

= −
(
∂

∂y

〈
φ(`)
y

∣∣
)
∂

∂y

∣∣φ(`)
y

〉
= [K2

y ]``′ , (7.29)

which allows us to finally rewrite Eq. (7.25) in the form:

(
∂

∂y
+Ky

)2

~Cy + (ε− Ωy) ~Cy = 0 (7.30)

The presence of the term Ky in Eq. (7.30) is analogous to a coupling to a non Abelian
vector potential, and hence it can be gauged away via an appropriate transformation.
This transformation is the unitary map given by:

UY0→y = P exp

[
−
∫ y

Y0

dy′Ky′

]
, (7.31)

where P indicates a path ordered integral and Y0 is the coordinate of the beginning of the
scattering region. Applying this transformation, i.e. defining the vector ~̃Cy = U †Y0→y ~Cy,
we can write:

∂2

∂y2
~̃Cy + (ε− Ω̃y) ~̃Cy = 0, (7.32)

with Ω̃y = U †Y0→yΩyUY0→y. When ε, and thus the kinetic energy, is the largest energy
scale in the system, Eq. (7.32) admits solutions of the form:

~̃Cy =W(+)
y

~A+W(−)
y

~B, (7.33)

where ~A and ~B are determined by the boundary conditions of the problem and the
matrices W(±) describe the propagation of the particle in the ±y direction. Moreover,
when ε is so large that the gaps in Ωy are negligible, an approximate solution is given
by W(±)

y = e±i
√
ε(y−Y0), which explicitly depends upon the integration length and thus

its effect on the state is just an irrelevant global phase.

At this point we want to consider the case where the scattering region starts at Y0 and
ends at some Y . We then assume ~B = 0 and ~A = ~CY0 , that is, we assume a situation
where the particle propagates only in one direction with no back-scattering contributions,
which can always be achieved for large enough values of the kinetic energy. Given the
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initial condition ~CY0 , we can write the evolved vector at the coordinate Y as:

~CY = UY0→YW(+)
Y

~CY0 . (7.34)

What we want to show now is that the operator UY0→Y is an holonomy that attaches
a geometric non Abelian phase to the particle state. To see this we first notice that the
dependence on y of the eigenvectors

∣∣∣φ(`)
y

〉
is mediated by the control parameters ~Ry, so

that we can rewrite the matrix elements of Ky as:

Ky = ~K(~Ry) ·
∂

∂y
~Ry, [ ~K(~Ry)]``′ =

〈
φ(`)
y

∣∣ d
d~R

∣∣∣φ(`′)
y

〉
. (7.35)

The matrix ~K(~Ry) defines a connection analogous to the one we saw in Eq. (7.12) for
the standard Berry phase. If now we assume that the trajectory R = {~Ry}y∈[Y0,Y ] in
parameters space followed by ~Ry is closed, which is equivalent to requiring ~RY0 = ~RY ,
it is possible to use Eq. (7.35) to rewrite UY0→Y as:

UY0→Y = U(R) = P exp

[
−
∮

R
d~R · ~K(~R)

]
, (7.36)

where the path ordering is formally defined as:

P exp

[
−
∮

R
d~R · ~K(~R)

]
=

+∞∑

n=0

(−1)n
∫ ~RY

~RY0

d~r1 · ~K(~r1)

∫ ~r1

~RY0

d~r2 · ~K(~r2) · · ·
∫ ~rn−1

~RY0

d~rn · ~K(~rn),

(7.37)

where for a given j = 0, 1, · · ·n − 1, the vector ~rj = ~Ryj is the element of the curve R
assumed by the parameters vector ~Ry at the point y = yj, the points y1, y2, · · · yn being
coordinate values in the interval [Y0, Y [ ordered according to yj ≥ yj+1.

Now, the point is that the path ordered integral does not depend anymore on the
speed of the longitudinal variation of the potential, or, in other words, ∂ ~R

∂y
does not

appear in Eq. (7.36), a feature that makes manifest the geometric nature of the phase
shift induced by U(R).
Note also that, at glance with the previous section, the phase shift generated by the

holonomy in Eq. (7.36) is of non Abelian nature [Wilczek and Zee 1984], as it mixes
different energy levels of the system.

Moreover it is possible to invoke the non Abelian version of the Stokes theorem [Halpern
1979] to further rewrite U(R) in terms of the curvature tensor Fij(~R) obtained from
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~K(~R). The latter can be written as:

Fij(~R) = i
∂K(j)

∂R(i)
− i∂K

(i)

∂R(j)
+ i
[
K(i)(~R), K(j)(~R)

]
, (7.38)

so that the operator U(R) becomes:

U(R) = P exp

[
i

2

∫

S
Fij(~R)dR(i) ∧ dR(j)

]
, (7.39)

where P indicates the surface ordered product and S is any regular surface in parameters
space which can be bounded by R. While Eq. (7.39) is quite evocative, it is actually
not much informative, as the surface ordered product is typically quite demanding from
a computational perspective.

7.2.1. The case of two dimensional models

When the dynamics of the system can be reduced to an Hilbert space spanned by only
two eigenstates

∣∣∣φ(0)
y

〉
,
∣∣∣φ(1)
y

〉
of the transverse Hamiltonian ĥy(x̂), a great simplification

occurs to all the formalism we exposed in the previous section. Such a situation can be
reached, for instance, when the energy gap ∆y = ε

(1)
y − ε(0)

y is the smallest among all the
energy gaps, i.e.:

∆y << |ε(`)y − ε(`
′)

y |, ∀` 6= `′, ∀y. (7.40)

When this assumption is fulfilled we can write the matrix Ωy as:

Ωy = ωy Î−∆y
σ̂3

2
, (7.41)

where I is the 2× 2 identity matrix, σ̂3 is the diagonal Pauli matrix and ωy =
(ε

(0)
y +ε

(1)
y )

2
.

Moreover, the matrix Ky reduces to a 2× 2 matrix as well, becoming:

Ky = iλyσ̂2 (7.42)

where σ̂2 is the imaginary Pauli matrix and λy = λ∗y =
〈
φ

(0)
y

∣∣∣ ∂
∂y

∣∣∣φ(1)
y

〉
. This feature

leads to a great simplification, as now the auto-commutator becomes trivial:

[Ky, Ky′ ] = 0, ∀y, y′. (7.43)
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From Eq. (7.43) it follows that the operator UY0→y reduces to an SU(2) rotation:

UY0→y = exp [−iαyσ̂2] = cosαyI− i sinαyσ̂2 (7.44)

where αy =
∫ y
Y0
dy′λ(y′). For the case of our interest where y = Y , the expression further

simplifies to:

U(R) = eiασ̂2 , (7.45)

where

α =

∮

R
d~R · ~λ(~R) =

∫

S
d~S · (~∇~R ∧ ~λ(~R)), (7.46)

with ~λ(~R) =
〈
φ

(0)
y

∣∣∣ ∂

∂ ~R

∣∣∣φ(1)
y

〉
. All of this implies the possibility of rewriting Eq. (7.32)

as:

∂2

∂y2
~̃Cy +

[
(ε− ωy) Î + ∆y

˜̂σ3

2

]
~̃Cy = 0, (7.47)

with ˜̂σ3 = eiαyσ̂2σ̂3e
−iαyσ̂2 . At this point, assuming once again ε to be the largest energy

scale in the problem, which in this case amounts to requiring ε >> |ωy|, |∆y|, it is
possible to exploit the Wentzel-Kramers-Brillouin (WKB) approximation [Messiah 1999]
to obtain the solutionW(±)

Y ' e
±i

∫ Y
Y0

√
ε−ωy′dy′ Î, which still represents an irrelevant global

phase, and can thus be neglected.

Accordingly we can describe the effect of UY0→Y as a qubit gate: given an input state
of the form |ψE(Y0)〉 = a

∣∣∣φ(0)
Y0

〉
+ b

∣∣∣φ(1)
Y0

〉
, with a, b ∈ C, it will result in an output at

the end of the scattering region of the form:

UY0→Y |ψE(Y0)〉 = |ψE(Y )〉 (7.48)

' e
+i

∫ Y
Y0

√
ε−ωy′dy′

[
(a cosα− b sinα)

∣∣∣φ(0)
Y0

〉
+ (b cosα + a sinα)

∣∣∣φ(1)
Y0

〉]
.

This concludes our demonstration, while in the next section we provide some examples
of the theory we exposed in this section.
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7.3. Examples

In this section we want to examine a potential profile where the system Hilbert space
is effectively two fold, in order to exploit the simplification exposed in Sec. 7.2.1. To
this aim we consider a potential profile like the one shown in the inset of Fig. 7.2, which
reads:

V̂~R(x̂) =





0 for 0 ≤ x ≤ a
2

V0 = 9π2~2
2ma2

for a
2
≤ x ≤ a

2
+ L

0 for a
2

+ L ≤ x ≤ a+ L+ w

+∞ otherwise

, (7.49)

which resembles the stretched construction we met in Chap. 6. Here a is the width of
the original well and L is the width of the barrier. We also introduce the parameter w
which describes the amount we increase the well width, as in what follows we will only
want to increase such width from the right side (i.e. in a non-symmetrical way).

The eigenfunctions of the potential in Eq. (7.49) are readily written as:

φ~R(x) =





sin(kx) for 0 ≤ x ≤ a
2

Ae−γx +Beγx for a
2
≤ x ≤ a

2
+ L

C sin(kx) +D cos(kx) for a
2

+ L ≤ x ≤ a+ L+ w

. (7.50)

Imposing the usual boundary conditions we can compute the coefficients A,B,C,D
via:

sin
(
k
a

2

)
= Ae−γ

a
2 +Beγ

a
2 (7.51)

k cos
(
k
a

2

)
= γ

(
−Ae−γ a2 +Beγ

a
2 )
)

(7.52)

Ae−γ(
a
2

+L) +Beγ(
a
2

+L) = C sin
(
k(
a

2
+ L)

)
+D cos

(
k(
a

2
+ L)

)
(7.53)

γ
(
−Ae−γ(a2 +L) +Beγ(

a
2

+L)
)

= k
(
C cos

(
k(
a

2
+ L)

)
−D sin

(
k(
a

2
+ L)

))
(7.54)
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where we have defined

k =

√
2mE

~2
, γ =

√
2m(V0 − E)

~2
. (7.55)

The energies can be found solving the equation:

C sin (k(a+ L+ w)) +D cos (k(a+ L+ w)) = 0, (7.56)

whose solutions for the first three energy levels are plotted in Fig. 7.2.

From Fig. 7.2 we notice that, at least in the region of small L and w, the energy gap
between the first two levels and the third is very large. Furthermore, the energy gap
between the first two levels becomes small in the same region, so that the matrix elements
[Ky]``′ become negligible for `, `′ > 2. This allows us to treat the system effectively as
two fold, as confirmed from the plot in Fig. 7.3.

Moreover, we can show that only the variation of L contributes to the phase, while
varying w gives no effects. To show this we start by writing a regularized version of the
potential in Eq. (7.49) as a sum of Heavyside step functions:

V
(κ)
~R

(x) = V0

[
Θ(x− a

2
)−Θ(

a

2
+ L− x)

κf(x)Θ(−x) + κf(x− a− L− w)Θ(x− a− L− w)
]
, (7.57)

where k >> 1 is a regularization parameter that will be sent to infinity to recover V~R(x)

and f(x) is any regular function that nullifies in x = 0 and is strictly positive everywhere
else.

From Eq. (7.57) we can write:

∂

∂L
V

(κ)
~R

(x) = −V0δ(
a

2
+ L− x)− κV0f(x− a− L− w)δ(x− a− L− w),(7.58)

∂

∂w
V

(κ)
~R

(x) = −κV0f(x− a− L− w)δ(x− a− L− w), (7.59)

so that we are able to write, for any finite κ:

〈
φ

(`,κ)
~R

∣∣∣ ∂
∂L

V
(κ)
~R

(x)
∣∣∣φ(`,κ)

~R

〉
= −V0φ

∗(`,κ)
~R

(
a

2
+ L)φ

(`′,κ)
~R

(
a

2
+ L) (7.60)

〈
φ

(`,κ)
~R

∣∣∣ ∂
∂w

V
(κ)
~R

(x)
∣∣∣φ(`′,κ)

~R

〉
= 0, (7.61)
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L/a
<latexit sha1_base64="W93w7RwC8azTpdzTFCj+ZC+3vLk=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiZWfOyKbly4qGgf0IYymU7aoZNJmJkIJfQT3LhQxK1f5M6/cZIGUeuBC4dz7uXee7yIM6Vt+9MqLCwuLa8UV0tr6xubW+XtnZYKY0lok4Q8lB0PK8qZoE3NNKedSFIceJy2vfFV6rcfqFQsFPd6ElE3wEPBfEawNtLdzRHulyt21c6A5omTkwrkaPTLH71BSOKACk04Vqrr2JF2Eyw1I5xOS71Y0QiTMR7SrqECB1S5SXbqFB0YZYD8UJoSGmXqz4kEB0pNAs90BliP1F8vFf/zurH2z92EiSjWVJDZIj/mSIco/RsNmKRE84khmEhmbkVkhCUm2qRTykK4SHH6/fI8aR1XnVq1dntSqV/mcRRhD/bhEBw4gzpcQwOaQGAIj/AMLxa3nqxX623WWrDymV34Bev9C+Exjas=</latexit>

w/a
<latexit sha1_base64="EU+XdyWpX5eZDq8xxaM1Jz4qy/w=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiZWfOyKblxWtA9oQ5lMJ+3QySTMTJQS+gluXCji1i9y5984SYOo9cCFwzn3cu89XsSZ0rb9aRUWFpeWV4qrpbX1jc2t8vZOS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+Cr12/dUKhaKOz2JqBvgoWA+I1gb6fbhCPfLFbtqZ0DzxMlJBXI0+uWP3iAkcUCFJhwr1XXsSLsJlpoRTqelXqxohMkYD2nXUIEDqtwkO3WKDowyQH4oTQmNMvXnRIIDpSaBZzoDrEfqr5eK/3ndWPvnbsJEFGsqyGyRH3OkQ5T+jQZMUqL5xBBMJDO3IjLCEhNt0illIVykOP1+eZ60jqtOrVq7OanUL/M4irAH+3AIDpxBHa6hAU0gMIRHeIYXi1tP1qv1NmstWPnMLvyC9f4FIsKN1g==</latexit>

E/(~2/(2ma2))
<latexit sha1_base64="q8VGOBZXo4HTGZ2rhufK0aSZYpo=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQbto0FR+7ogguK9gHtGmZTCft0MkkzEyEEOqvuHGhiFs/xJ1/Y5IGUeuBC4dz7uXee2yfUakM41PLrayurW/kNwtb2zu7e/r+QUd6gcCkjT3miZ6NJGGUk7aiipGeLwhybUa69uwq8bv3REjq8TsV+sRy0YRTh2KkYmmkF69r5cHURmJo1sqmi4ZmpTLSS0bVSAGXST0jJZChNdI/BmMPBy7hCjMkZb9u+MqKkFAUMzIvDAJJfIRnaEL6MeXIJdKK0uPn8DhWxtDxRFxcwVT9OREhV8rQteNOF6mp/Osl4n9eP1DOuRVR7geKcLxY5AQMKg8mScAxFQQrFsYEYUHjWyGeIoGwivMqpCFcJDj9fnmZdMxqvVFt3J6UmpdZHHlwCI5AGdTBGWiCG9ACbYBBCB7BM3jRHrQn7VV7W7TmtGymCH5Be/8CsBiS/g==</latexit>

(a)

(b)

V0 =
9⇡2~2

2ma2
<latexit sha1_base64="l3+q3iVUeE9uYxfYe9GikueW4vo=">AAACDnicbVDLSsNAFJ34rPUVdelmsBRclSQVtQuh6MZlBfuAJg2T6aQdOnkwMxFK6Be48VfcuFDErWt3/o2TNIhaD1w4nHMv997jxYwKaRif2tLyyuraemmjvLm1vbOr7+13RJRwTNo4YhHveUgQRkPSllQy0os5QYHHSNebXGV+945wQaPwVk5j4gRoFFKfYiSV5OrVjmvAC2j7HOG0Ae2YDix77CE+sOAstQKIBtYMunrFqBk54CIxC1IBBVqu/mEPI5wEJJSYISH6phFLJ0VcUszIrGwngsQIT9CI9BUNUUCEk+bvzGBVKUPoR1xVKGGu/pxIUSDENPBUZ4DkWPz1MvE/r59I/9xJaRgnkoR4vshPGJQRzLKBQ8oJlmyqCMKcqlshHiOVjFQJlvMQGhlOv19eJB2rZtZr9ZuTSvOyiKMEDsEROAYmOANNcA1aoA0wuAeP4Bm8aA/ak/aqvc1bl7Ri5gD8gvb+Bc6hmjU=</latexit>

x
<latexit sha1_base64="BnN0NrDK8lYyZ4KxXjDRNl7K2o4=">AAAB6XicbVDLSsNAFL2pr1pfVZduBovgqiS2+NgV3bisYh/QhjKZTtqhk0mYmYgl9A/cuFDErX/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yVXqd+6pVCwUd3oaUTfAI8F8RrA20u0DGpQrdtXOgBaJk5MK5GgOyh/9YUjigApNOFaq59iRdhMsNSOczkr9WNEIkwke0Z6hAgdUuUl26QwdGWWI/FCaEhpl6s+JBAdKTQPPdAZYj9VfLxX/83qx9s/dhIko1lSQ+SI/5kiHKH0bDZmkRPOpIZhIZm5FZIwlJtqEU8pCuEhx+v3yImmfVJ1atXZTrzQu8ziKcACHcAwOnEEDrqEJLSDgwyM8w4s1sZ6sV+tt3lqw8pl9+AXr/QtU7I1d</latexit>

a

2<latexit sha1_base64="/1aKbPVg8darPMzhhoyCiyfx6yY=">AAAB8nicbVDLSsNAFJ3UV62vqks3wSK4KmkrPnZFNy4r2AekoUymk3boZCbM3Agl5DPcuFDErV/jzr9xkgZR64ELh3Pu5d57/IgzDY7zaZVWVtfWN8qbla3tnd296v5BT8tYEdolkks18LGmnAnaBQacDiJFcehz2vdnN5nff6BKMynuYR5RL8QTwQJGMBjJHQYKkwSnSTMdVWtO3clhL5NGQWqoQGdU/RiOJYlDKoBwrLXbcCLwEqyAEU7TyjDWNMJkhifUNVTgkGovyU9O7ROjjO1AKlMC7Fz9OZHgUOt56JvOEMNU//Uy8T/PjSG49BImohioIItFQcxtkHb2vz1mihLgc0MwUczcapMpNimASamSh3CV4fz75WXSa9YbrXrr7qzWvi7iKKMjdIxOUQNdoDa6RR3URQRJ9Iie0YsF1pP1ar0tWktWMXOIfsF6/wKbiJGa</latexit>

{
0

<latexit sha1_base64="Hjv0NcAfzwFSMG0kZutj/3YI2TE=">AAAB6HicbVDJSgNBEK2JW4xb1KOXxiB4CjMqLregF48JmAWSIfR0apI2PQvdPUII+QIvHhTx6id582/smQyixgcFj/eqqKrnxYIrbdufVmFpeWV1rbhe2tjc2t4p7+61VJRIhk0WiUh2PKpQ8BCbmmuBnVgiDTyBbW98k/rtB5SKR+GdnsToBnQYcp8zqo3UsPvlil21M5BF4uSkAjnq/fJHbxCxJMBQM0GV6jp2rN0plZozgbNSL1EYUzamQ+waGtIAlTvNDp2RI6MMiB9JU6EmmfpzYkoDpSaBZzoDqkfqr5eK/3ndRPuX7pSHcaIxZPNFfiKIjkj6NRlwiUyLiSGUSW5uJWxEJWXaZFPKQrhKcf798iJpnVSd0+pp46xSu87jKMIBHMIxOHABNbiFOjSBAcIjPMOLdW89Wa/W27y1YOUz+/AL1vsXkeGM6w==</latexit>

V =1
<latexit sha1_base64="7ML6cewQ7Asty+aidK8mDDMU87k=">AAAB+nicbVC7TsNAEFzzDOEVoKQ5ESFRRXZAggYpgoYySOQhJVF0vmzCKeezdbdGikx+ghYqOkTLz1DwL9gmBSRMNZrZ1c6OHylpyXU/naXlldW19cJGcXNre2e3tLfftGFsBDZEqELT9rlFJTU2SJLCdmSQB77Clj++zvzWAxorQ31Hkwh7AR9pOZSCUyq1m5ddqYc06ZfKbsXNwRaJNyNlmKHeL311B6GIA9QkFLe247kR9RJuSAqF02I3thhxMeYj7KRU8wBtL8nzTtlxbDmFLELDpGK5iL83Eh5YOwn8dDLgdG/nvUz8z+vENLzoJVJHMaEW2SGSCvNDVhiZFoFsIA0S8Sw5MqmZ4IYToZGMC5GKcdpMMe3Dm/9+kTSrFe+0Ur09K9euZs0U4BCO4AQ8OIca3EAdGiBAwRM8w4vz6Lw6b877z+iSM9s5gD9wPr4BrYaUbA==</latexit>

E3 =
9⇡2~2

2ma2
<latexit sha1_base64="lwBpZwDKVqh7bucWtB5CQ9rZWIo=">AAACE3icbVC7SgNREL0bXzG+opYWXgyCVdhdBbUQgiJYKhgVsptl9joxl9x9cO+sIEtKP8GvsNXKTmz9AAv/xU1MocbTzOGcGWbmhKmShmz7wypNTE5Nz5RnK3PzC4tL1eWVC5NkWmBTJCrRVyEYVDLGJklSeJVqhChUeBn2jgb+5S1qI5P4nO5S9CO4iWVHCqBCCqrrx8H2gdfRIPJ9L5Vt1+uGoNtuP3cjKEpQrdl1ewg+TpwRqbERToPqp3ediCzCmIQCY1qOnZKfgyYpFPYrXmYwBdGDG2wVNIYIjZ8PH+nzzcwAJTxFzaXiQxF/TuQQGXMXhUVnBNQ1f72B+J/Xyqiz5+cyTjPCWAwWkVQ4XGSElkVCyK+lRiIYXI5cxlyABiLUkoMQhZgVkVWKPJy/34+TC7fubNfds51a43CUTJmtsQ22xRy2yxrshJ2yJhPsnj2yJ/ZsPVgv1qv19t1askYzq+wXrPcvhaKdfQ==</latexit>

a

2<latexit sha1_base64="+kYj8aY3HWiW5OzFdpVY1YhCXaE=">AAAB/XicbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJRBIg8piaL1ZRNOOZ+tuzVSZEV8BS1UdIiWb6HgX7BNCkiYajSzq50dP1LSkut+OoWV1bX1jeJmaWt7Z3evvH/QsmFsBDZFqELT8cGikhqbJElhJzIIga+w7U+uM7/9gMbKUN/RNMJ+AGMtR1IApVK3NzIgEpgltdmgXHGrbg6+TLw5qbA5GoPyV28YijhATUKBtV3PjaifgCEpFM5KvdhiBGICY+ymVEOAtp/kkWf8JLZAIY/QcKl4LuLvjQQCa6eBn04GQPd20cvE/7xuTKPLfiJ1FBNqkR0iqTA/ZIWRaRfIh9IgEWTJkUvNBRggQiM5CJGKcVpOKe3DW/x+mbRqVe+sWrs9r9Sv5s0U2RE7ZqfMYxeszm5YgzWZYCF7Ys/sxXl0Xp035/1ntODMdw7ZHzgf31Dtlew=</latexit>

a

2
+ L

<latexit sha1_base64="w4JsUTtk5gTnxNvtaI+RGDz4abY=">AAAB/3icbVC7SgNBFJ31GeMramkzGARBCLtR0DJoY2ERwTwgWcLdyU0cMvtw5q4QlhR+ha1WdmLrp1j4L+7GLTTxVIdz7uWee7xISUO2/WktLC4tr6wW1orrG5tb26Wd3aYJYy2wIUIV6rYHBpUMsEGSFLYjjeB7Clve6DLzWw+ojQyDWxpH6PowDORACqBUcrsDDSKBSVKdHF/3SmW7Yk/B54mTkzLLUe+Vvrr9UMQ+BiQUGNNx7IjcBDRJoXBS7MYGIxAjGGInpQH4aNxkGnrCD2MDFPIINZeKT0X8vZGAb8zY99JJH+jOzHqZ+J/XiWlw7iYyiGLCQGSHSCqcHjJCy7QN5H2pkQiy5MhlwAVoIEItOQiRinFaTzHtw5n9fp40qxXnpFK9OS3XLvJmCmyfHbAj5rAzVmNXrM4aTLB79sSe2Yv1aL1ab9b7z+iCle/ssT+wPr4BXZ6Wdw==</latexit>

a + L + w
<latexit sha1_base64="L3kgm3X/NDs+qMOx3Dl5eGtnkwE=">AAAB93icbVA9SwNBEN3zM8avqKXNYhCEQLiLgpZBGwuLCF4SSI4wt5nEJXsf7M4pIeQ32GplJ7b+HAv/i3fxCk181eO9GebN82MlDdn2p7W0vLK6tl7YKG5ube/slvb2myZKtEBXRCrSbR8MKhmiS5IUtmONEPgKW/7oKvNbD6iNjMI7GsfoBTAM5UAKoFRyoXJTeeyVynbVnoEvEicnZZaj0St9dfuRSAIMSSgwpuPYMXkT0CSFwmmxmxiMQYxgiJ2UhhCg8SazsFN+nBigiMeouVR8JuLvjQkExowDP50MgO7NvJeJ/3mdhAYX3kSGcUIYiuwQSYWzQ0ZombaAvC81EkGWHLkMuQANRKglByFSMUlrKaZ9OPPfL5JmreqcVmu3Z+X6Zd5MgR2yI3bCHHbO6uyaNZjLBJPsiT2zF2tsvVpv1vvP6JKV7xywP7A+vgGwo5Kv</latexit>

0<latexit sha1_base64="EchEDaTEktUFLEeaIM03tXELxjU=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6ntjqo1t+7moKvEK0iNFGiNql/DccRtCAq5ZMYMPDdGP2EaBZewqAytgZjxGZvCIKWKhWD8JA+6oGfWMIxoDJoKSXMRfm8kLDRmHgbpZMjwwSx7mfifN7A4ufYToWKLoHh2CIWE/JDhWqQNAB0LDYgsSw5UKMqZZoigBWWcp6JNK6mkfXjL36+SbqPuXdQb7cta86ZopkxOyCk5Jx65Ik1yR1qkQzgB8kSeyYtjnVfnzXn/GS05xc4x+QPn4xsXn5E9</latexit>

w
<latexit sha1_base64="JoFaDlcZVi9vWLvJuDuPmvYt1aY=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJSJREKkxIrOl0045Xy27vZAkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Tbq3lm90T6vNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BhkiRhA==</latexit> L<latexit sha1_base64="LpEfiblY9uV48QWt14Ce0dDH4i4=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNBQUiURIpMSKzpdNOOV8tu72kCIrX0ALFR2i5YMo+Bds4wISphrN7GpnJ4ilMOi6n05pZXVtfaO8Wdna3tndq+4f3JvIag4dHslI9wJmQAoFHRQooRdrYGEgoRtMrzO/+wjaiEjd4SwGP2QTJcaCM0yl9u2wWnPrbg66TLyC1EiB1rD6NRhF3IagkEtmTN9zY/QTplFwCfPKwBqIGZ+yCfRTqlgIxk/yoHN6Yg3DiMagqZA0F+H3RsJCY2ZhkE6GDB/MopeJ/3l9i+NLPxEqtgiKZ4dQSMgPGa5F2gDQkdCAyLLkQIWinGmGCFpQxnkq2rSSStqHt/j9Mrlv1L2zeqN9XmteFc2UyRE5JqfEIxekSW5Ii3QIJ0CeyDN5cazz6rw57z+jJafYOSR/4Hx8A0NDkVk=</latexit>

✏
<latexit sha1_base64="ZUyy/ScNaur51LBgZ32rKZz+2uI=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJRBIg8psaLzZRNOOZ9Pd2ukyOQnaKGiQ7T8DAX/gm1cQMJUo5ld7ewEWgqLrvvplFZW19Y3ypuVre2d3b3q/kHHRrHh0OaRjEwvYBakUNBGgRJ62gALAwndYHqd+d0HMFZE6g5nGvyQTZQYC84wlXoD0FbISA2rNbfu5qDLxCtIjRRoDatfg1HE4xAUcsms7XuuRj9hBgWXMK8MYgua8SmbQD+lioVg/STPO6cnsWUYUQ2GCklzEX5vJCy0dhYG6WTI8N4uepn4n9ePcXzpJ0LpGEHx7BAKCfkhy41IiwA6EgYQWZYcqFCUM8MQwQjKOE/FOG2mkvbhLX6/TDqNundWb9ye15pXRTNlckSOySnxyAVpkhvSIm3CiSRP5Jm8OI/Oq/PmvP+Mlpxi55D8gfPxDQ5GlKk=</latexit>

V~R(x)
<latexit sha1_base64="SeuzjDFlvH3eeLvORKUNBhJOrt4=">AAAB9XicbVDLSsNAFJ3UV62vqks3wSLUTUms+NgV3bisYh/QxjKZ3rRDJ5MwM6mWkP9w40IRt/6LO//GSVpErQcuHM65l3vvcUNGpbKsTyO3sLi0vJJfLaytb2xuFbd3mjKIBIEGCVgg2i6WwCiHhqKKQTsUgH2XQcsdXaZ+awxC0oDfqkkIjo8HnHqUYKWlu2Yv7o6BxDdJUn447BVLVsXKYM4Te0ZKaIZ6r/jR7Qck8oErwrCUHdsKlRNjoShhkBS6kYQQkxEeQEdTjn2QTpxdnZgHWumbXiB0cWVm6s+JGPtSTnxXd/pYDeVfLxX/8zqR8s6cmPIwUsDJdJEXMVMFZhqB2acCiGITTTARVN9qkiEWmCgdVCEL4TzFyffL86R5VLGrler1cal2MYsjj/bQPiojG52iGrpCddRABAn0iJ7Ri3FvPBmvxtu0NWfMZnbRLxjvX2q0kpc=</latexit>

L
<latexit sha1_base64="S6ysFFEkihrjS46Sy/tvvdjeyRo=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKbly4aME+oA1lMp20YyeTMDMRSugXuHGhiFs/yZ1/4yQNotYDFw7n3Mu993gRZ0rb9qdVWFpeWV0rrpc2Nre2d8q7e20VxpLQFgl5KLseVpQzQVuaaU67kaQ48DjteJPr1O88UKlYKO70NKJugEeC+YxgbaTm7aBcsat2BrRInJxUIEdjUP7oD0MSB1RowrFSPceOtJtgqRnhdFbqx4pGmEzwiPYMFTigyk2yQ2foyChD5IfSlNAoU39OJDhQahp4pjPAeqz+eqn4n9eLtX/hJkxEsaaCzBf5MUc6ROnXaMgkJZpPDcFEMnMrImMsMdEmm1IWwmWKs++XF0n7pOrUqrXmaaV+lcdRhAM4hGNw4BzqcAMNaAEBCo/wDC/WvfVkvVpv89aClc/swy9Y71+8UY0H</latexit>

a

2
+ L

<latexit sha1_base64="NJavV9BoVczvJYJABaoMCe8z+pI=">AAAB9HicbVDLSsNAFL2pr1pfVZduBosgCCVpxceu6MaFiwr2AW0ok+mkHTp5ODMplJDvcONCEbd+jDv/xkkaRK0HLhzOuZd773FCzqQyzU+jsLS8srpWXC9tbG5t75R399oyiAShLRLwQHQdLClnPm0ppjjthoJiz+G040yuU78zpUKywL9Xs5DaHh75zGUEKy3ZfVdgEuMkriUnt4NyxayaGdAisXJSgRzNQfmjPwxI5FFfEY6l7FlmqOwYC8UIp0mpH0kaYjLBI9rT1McelXacHZ2gI60MkRsIXb5CmfpzIsaelDPP0Z0eVmP510vF/7xepNwLO2Z+GCnqk/kiN+JIBShNAA2ZoETxmSaYCKZvRWSMdQ5K51TKQrhMcfb98iJp16pWvVq/O600rvI4inAAh3AMFpxDA26gCS0g8ACP8AwvxtR4Ml6Nt3lrwchn9uEXjPcvowaSJQ==</latexit>

D<latexit sha1_base64="VBACY8iJEX2RuYB1AMu5D8bQY1k=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKunDZgn1AG8pkOmnHTiZhZiKU0C9w40IRt36SO//GSRpErQcuHM65l3vv8SLOlLbtT6uwtLyyulZcL21sbm3vlHf32iqMJaEtEvJQdj2sKGeCtjTTnHYjSXHgcdrxJtep33mgUrFQ3OlpRN0AjwTzGcHaSM2bQbliV+0MaJE4OalAjsag/NEfhiQOqNCEY6V6jh1pN8FSM8LprNSPFY0wmeAR7RkqcECVm2SHztCRUYbID6UpoVGm/pxIcKDUNPBMZ4D1WP31UvE/rxdr/8JNmIhiTQWZL/JjjnSI0q/RkElKNJ8agolk5lZExlhiok02pSyEyxRn3y8vkvZJ1alVa83TSv0qj6MIB3AIx+DAOdThFhrQAgIUHuEZXqx768l6td7mrQUrn9mHX7DevwCwMYz/</latexit>

Figure 7.2.: Panel (a): Sketch of the potential in Eq. (7.49): we have an infinite well
of variable width D = a+ L+ w with a potential barrier of length L and
height V0 = 9π2~2

2ma2
inside. Panel (b): Energies of the first three levels of the

potential in Eq. (7.49) as functions of L and w. It can be noticed that the
energy decrease as w increases, just as expected from a well with larger
width. On the other hand we will have to pay attention whenever w = 0,
as in this case, for sufficiently large values of L the energies of the first
two levels might become equal. Inset: sketch of the potential profile under
examination.

where with
∣∣∣φ(`,κ)

~R

〉
we mean the `-th energy eigenvector of the Hamiltonian associated

with the regularized potential V (κ)
~R

(x). Finally in the limit κ→ +∞ we have:
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∂L
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∣∣∣φ(`′)

~R

〉
= −V0φ
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(
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+ L), (7.62)
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= 0. (7.63)

148
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|h�(`)
~R
@L|�(`0)

~R
i|a2

<latexit sha1_base64="cP1NOupIXYM9QC+wlImAwEiGxfE="></latexit>

w

a
<latexit sha1_base64="ZnRhWDPYd/2fI3/HYoxgvZMFQQ4=">AAAB/XicbVDLSgNBEJyNrxhfUY9eBoPgKWxUfNyCXjxGMA9IltA76cQhsw9mepWwBL/Cq568iVe/xYP/4u66iBrrVFR109Xlhkoasu13qzA3v7C4VFwurayurW+UN7daJoi0wKYIVKA7LhhU0scmSVLYCTWC5ypsu+OL1G/fojYy8K9pEqLjwciXQymAEqnbG2oQ8d00hmm/XLGrdgY+S2o5qbAcjX75ozcIROShT0KBMd2aHZITgyYpFE5LvchgCGIMI+wm1AcPjRNnkad8LzJAAQ9Rc6l4JuLPjRg8Yyaem0x6QDfmr5eK/3ndiIanTiz9MCL0RXqIpMLskBFaJl0gH0iNRJAmRy59LkADEWrJQYhEjJJySlkfZymOv7+fJa2Dau2wenh1VKmf580U2Q7bZfusxk5YnV2yBmsywQL2wB7Zk3VvPVsv1uvXaMHKd7bZL1hvn9R5lmQ=</latexit>

L

a
<latexit sha1_base64="7ETqNY87OL8bJJYXreh+RHzXLRg=">AAAB/XicbVDJSgNBEO2JW4xb1KOXxiB4ChMjLregFw8eIpgFJkOo6VRik56F7hohDMGv8Konb+LVb/HgvzgzBnF7p8d7VdSr50VKGrLtN6swN7+wuFRcLq2srq1vlDe32iaMtcCWCFWoux4YVDLAFklS2I00gu8p7Hjj88zv3KI2MgyuaRKh68MokEMpgFLJ6Q01iORymsC0X67YVTsH/0tqM1JhMzT75ffeIBSxjwEJBcY4NTsiNwFNUiiclnqxwQjEGEbopDQAH42b5JGnfC82QCGPUHOpeC7i940EfGMmvpdO+kA35reXif95TkzDEzeRQRQTBiI7RFJhfsgILdMukA+kRiLIkiOXAReggQi15CBEKsZpOaW8j9MMR1/f/yXtg2qtXq1fHVYaZ7NmimyH7bJ9VmPHrMEuWJO1mGAhu2cP7NG6s56sZ+vlc7RgzXa22Q9Yrx+QyJY5</latexit>
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<latexit sha1_base64="N4oJCpoLdLlRifpJeHl2YUfNYHw=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKnII4tFF0FAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGQkCYajSzq50dP5LCoOu+O4Wl5ZXVteJ6aWNza3unvLvXMaHVHNo8lKHu+cyAFAraKFBCL9LAAl9C159ep373HrQRobrFWQRewCZKjAVnmEgtMyxX3KqbgS6SWk4qJEdzWP4YjEJuA1DIJTOmX3Mj9GKmUXAJ89LAGogYn7IJ9BOqWADGi7Ogc3pkDcOQRqCpkDQT4edGzAJjZoGfTAYM78xfLxX/8/oWxxdeLFRkERRPD6GQkB0yXIukAaAjoQGRpcmBCkU50wwRtKCM80S0SSWlrI/LFGff3y+Szkm1Vq/WW6eVxlXeTJEckENyTGrknDTIDWmSNuEEyAN5JE+OdZ6dF+f1a7Tg5Dv75Bect0+XhpGz</latexit>

[K]01
<latexit sha1_base64="bsuhdYr+1DIbsQ+bI6eyJlcExlE=">AAAB+nicbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG8FNBfuANJTJ9LYOnUzCzI1QYn/Cra7ciVt/xoX/YhKDqPWsDufcyz33+JEUBm373SrNzS8sLpWXKyura+sb1c2ttgljzaHFQxnqrs8MSKGghQIldCMNLPAldPzxReZ37kAbEaobnETgBWykxFBwhqnUda+8fmI70361ZtftHHSWOAWpkQLNfvWjNwh5HIBCLpkxrmNH6CVMo+ASppVebCBifMxG4KZUsQCMl+R5p3QvNgxDGoGmQtJchJ8bCQuMmQR+OhkwvDV/vUz8z3NjHJ56iVBRjKB4dgiFhPyQ4VqkRQAdCA2ILEsOVCjKmWaIoAVlnKdinDZTyfs4y3D8/f0saR/UncP64fVRrXFeNFMmO2SX7BOHnJAGuSRN0iKcSPJAHsmTdW89Wy/W69doySp2tskvWG+fMkqUQQ==</latexit>

[K]02
<latexit sha1_base64="6QyRj2PIHj2rlYfQ9yKdJaWqjuE=">AAAB+nicbVDLSsNAFJ3UV62vqks3g0VwVdJWfOyKbgQ3FewD0lAm09s6dDIJMzdCif0Jt7pyJ279GRf+i0kMotazOpxzL/fc44VSGLTtd6uwsLi0vFJcLa2tb2xulbd3OiaINIc2D2Sgex4zIIWCNgqU0As1MN+T0PUmF6nfvQNtRKBucBqC67OxEiPBGSZSz7lyB7Fdnw3KFbtqZ6DzpJaTCsnRGpQ/+sOARz4o5JIZ49TsEN2YaRRcwqzUjwyEjE/YGJyEKuaDceMs74weRIZhQEPQVEiaifBzI2a+MVPfSyZ9hrfmr5eK/3lOhKNTNxYqjBAUTw+hkJAdMlyLpAigQ6EBkaXJgQpFOdMMEbSgjPNEjJJmSlkfZymOv7+fJ516tdaoNq6PKs3zvJki2SP75JDUyAlpkkvSIm3CiSQP5JE8WffWs/VivX6NFqx8Z5f8gvX2CTPalEI=</latexit>

[K]12
<latexit sha1_base64="/UO7diGN2grwI4SCl2Q5oBF8HQM=">AAAB+nicbVDLSsNAFJ3UV62vqks3g0VwVZJWfOyKbgQ3FewD2lAm09s6dDIJMzdCif0Jt7pyJ279GRf+i0kMotazOpxzL/fc44VSGLTtd6uwsLi0vFJcLa2tb2xulbd32iaINIcWD2Sgux4zIIWCFgqU0A01MN+T0PEmF6nfuQNtRKBucBqC67OxEiPBGSZSt3flDmKnNhuUK3bVzkDniZOTCsnRHJQ/+sOARz4o5JIZ03PsEN2YaRRcwqzUjwyEjE/YGHoJVcwH48ZZ3hk9iAzDgIagqZA0E+HnRsx8Y6a+l0z6DG/NXy8V//N6EY5O3VioMEJQPD2EQkJ2yHAtkiKADoUGRJYmByoU5UwzRNCCMs4TMUqaKWV9nKU4/v5+nrRrVaderV8fVRrneTNFskf2ySFxyAlpkEvSJC3CiSQP5JE8WffWs/VivX6NFqx8Z5f8gvX2CTVrlEM=</latexit>

L

a
<latexit sha1_base64="7ETqNY87OL8bJJYXreh+RHzXLRg=">AAAB/XicbVDJSgNBEO2JW4xb1KOXxiB4ChMjLregFw8eIpgFJkOo6VRik56F7hohDMGv8Konb+LVb/HgvzgzBnF7p8d7VdSr50VKGrLtN6swN7+wuFRcLq2srq1vlDe32iaMtcCWCFWoux4YVDLAFklS2I00gu8p7Hjj88zv3KI2MgyuaRKh68MokEMpgFLJ6Q01iORymsC0X67YVTsH/0tqM1JhMzT75ffeIBSxjwEJBcY4NTsiNwFNUiiclnqxwQjEGEbopDQAH42b5JGnfC82QCGPUHOpeC7i940EfGMmvpdO+kA35reXif95TkzDEzeRQRQTBiI7RFJhfsgILdMukA+kRiLIkiOXAReggQi15CBEKsZpOaW8j9MMR1/f/yXtg2qtXq1fHVYaZ7NmimyH7bJ9VmPHrMEuWJO1mGAhu2cP7NG6s56sZ+vlc7RgzXa22Q9Yrx+QyJY5</latexit>
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Figure 7.3.: Panel (a): Plot of the quantities |
〈
φ

(`)
~R

∣∣∣ ∂
∂L

∣∣∣φ(`′)
~R

〉
|a2 for the couples

(`, `′) = (0, 1), (1, 2), (0, 2). We can observe how, in the region used to
compute the phase in shown in Fig. 7.4, |

〈
φ

(0)
~R

∣∣∣ ∂
∂L

∣∣∣φ(1)
~R

〉
|a2 is far larger

than the same quantity evaluated for the other two indices couples. Panel
(b): Plot of the matrix elements [K]``′ along one of the paths used to plot
the phase in Fig. 7.4. The path is parametrized as R(s) with s ∈ [0, 1].
As one can observe the matrix element [K]01 is always far larger than the
other two, thus confirming our working hypotheses.

Inserting Eqs.(7.62, 7.63) into Eq. (D.86) in App. D we finally get:
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7.3 Examples Chap. 7 Geometric phases

↵
<latexit sha1_base64="bdJaRoCbTLzffRKjWBh1iwv6xX0=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJRBIg8psaL1ZZMcOT90t0YKVv6BFio6RMvfUPAvOMYFJEw1mtnVzo4XKWnItj+twsrq2vpGcbO0tb2zu1feP2iZMNYCmyJUoe54YFDJAJskSWEn0gi+p7DtTa7nfvsBtZFhcEfTCF0fRoEcSgGUSq0eqGgM/XLFrtoZ+DJxclJhORr98ldvEIrYx4CEAmO6jh2Rm4AmKRTOSr3YYARiAiPspjQAH42bZGln/CQ2QCGPUHOpeCbi740EfGOmvpdO+kBjs+jNxf+8bkzDSzeRQRQTBmJ+iKTC7JARWqY1IB9IjUQwT45cBlyABiLUkoMQqRinvZTSPpzF75dJq1Z1zqq12/NK/SpvpsiO2DE7ZQ67YHV2wxqsyQS7Z0/smb1Yj9ar9Wa9/4wWrHznkP2B9fENQmSToQ==</latexit>

wfin

a
<latexit sha1_base64="is48Y7Q5cM3me8LweiYj98a/cgo=">AAACDHicbVC7TsNAEDzzDOEVoEGiOREhUUU2IEEZQUMZJPKQkihaXzbhlPPZulsDkWU+ga+ghYoO0fIPFPwLTkgBCVONZna1O+NHSlpy3U9nbn5hcWk5t5JfXVvf2CxsbddsGBuBVRGq0DR8sKikxipJUtiIDELgK6z7g4uRX79FY2Wor2kYYTuAvpY9KYAyqVPYbfUMiOSuk7QI7ynpSZ2maQJpp1B0S+4YfJZ4E1JkE1Q6ha9WNxRxgJqEAmubnhtROwFDUihM863YYgRiAH1sZlRDgLadjBOk/CC2QCGP0HCp+FjE3xsJBNYOAz+bDIBu7LQ3Ev/zmjH1ztqJ1FFMqMXoEEmF40NWGJlVg7wrDRLB6HPkUnMBBojQSA5CZGKcdZXP+vCm08+S2lHJOy4dXZ0Uy+eTZnJsj+2zQ+axU1Zml6zCqkywB/bEntmL8+i8Om/O+8/onDPZ2WF/4Hx8A0/0nJE=</latexit>

Lfin

a
<latexit sha1_base64="b5rPBpdN/505FPFm/rdawqCZXc0=">AAACDHicbVC7TsNAEDyHd3gFaJBoTkRIVJEdkKCMoKGgAIlApCSK1pdNOOV8tu7WiMgyn8BX0EJFh2j5Bwr+BcekgISpRjO72p3xIyUtue6nU5iZnZtfWFwqLq+srq2XNjavbRgbgXURqtA0fLCopMY6SVLYiAxC4Cu88QenI//mDo2Vob6iYYTtAPpa9qQAyqROabvVMyCS807SIrynpCd1mqYJpJ1S2a24Ofg08cakzMa46JS+Wt1QxAFqEgqsbXpuRO0EDEmhMC22YosRiAH0sZlRDQHadpInSPlebIFCHqHhUvFcxN8bCQTWDgM/mwyAbu2kNxL/85ox9Y7bidRRTKjF6BBJhfkhK4zMqkHelQaJYPQ5cqm5AANEaCQHITIxzroqZn14k+mnyXW14h1UqpeH5drJuJlFtsN22T7z2BGrsTN2wepMsAf2xJ7Zi/PovDpvzvvPaMEZ72yxP3A+vgEKFJxm</latexit>

L
<latexit sha1_base64="S6ysFFEkihrjS46Sy/tvvdjeyRo=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKbly4aME+oA1lMp20YyeTMDMRSugXuHGhiFs/yZ1/4yQNotYDFw7n3Mu993gRZ0rb9qdVWFpeWV0rrpc2Nre2d8q7e20VxpLQFgl5KLseVpQzQVuaaU67kaQ48DjteJPr1O88UKlYKO70NKJugEeC+YxgbaTm7aBcsat2BrRInJxUIEdjUP7oD0MSB1RowrFSPceOtJtgqRnhdFbqx4pGmEzwiPYMFTigyk2yQ2foyChD5IfSlNAoU39OJDhQahp4pjPAeqz+eqn4n9eLtX/hJkxEsaaCzBf5MUc6ROnXaMgkJZpPDcFEMnMrImMsMdEmm1IWwmWKs++XF0n7pOrUqrXmaaV+lcdRhAM4hGNw4BzqcAMNaAEBCo/wDC/WvfVkvVpv89aClc/swy9Y71+8UY0H</latexit>

w
<latexit sha1_base64="cfVGjCX84wPuPxSEKgzvSa5rJNI=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKbly2YB/QhjKZTtqxk0mYmSgl9AvcuFDErZ/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqd+6pVCwUt3oaUTfAI8F8RrA2UvNhUK7YVTsDWiROTiqQozEof/SHIYkDKjThWKmeY0faTbDUjHA6K/VjRSNMJnhEe4YKHFDlJtmhM3RklCHyQ2lKaJSpPycSHCg1DTzTGWA9Vn+9VPzP68Xav3ATJqJYU0Hmi/yYIx2i9Gs0ZJISzaeGYCKZuRWRMZaYaJNNKQvhMsXZ98uLpH1SdWrVWvO0Ur/K4yjCARzCMThwDnW4gQa0gACFR3iGF+vOerJerbd5a8HKZ/bhF6z3L/19jTI=</latexit>

(Lfin, wfin)
<latexit sha1_base64="LK1Tj9GFvRikAhiIkUjbAXSzKjY=">AAACCHicbVDLSsNAFJ3UV62vqEsXBotQQUpixceu6MaFiwr2AW0ok+mkHTqZhJkbtYQs3fgrblwo4tZPcOffmKRFrHrgwplz7mXuPU7AmQLT/NRyM7Nz8wv5xcLS8srqmr6+0VB+KAmtE5/7suVgRTkTtA4MOG0FkmLP4bTpDM9Tv3lDpWK+uIZRQG0P9wVzGcGQSF19u3TZjTpA7yBymYjj/dup515XL5plM4Pxl1gTUkQT1Lr6R6fnk9CjAgjHSrUtMwA7whIY4TQudEJFA0yGuE/bCRXYo8qOskNiYzdReobry6QEGJn6cyLCnlIjz0k6PQwD9dtLxf+8dgjuiR0xEYRABRl/5IbcAN9IUzF6TFICfJQQTCRLdjXIAEtMIMmukIVwmuLo++S/pHFQtirlytVhsXo2iSOPttAOKiELHaMqukA1VEcE3aNH9IxetAftSXvV3satOW0ys4mmoL1/AezbmrI=</latexit>

(Lin, win)
<latexit sha1_base64="bzNjOwa9iSExdVwb6xEiSbmK2xY=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkWoICWx4mNXdOPCRQX7gDaEyXTaDp08mLlRS8jKjb/ixoUibv0Gd/6Nk7RIfRwYOHPOvcyc44acSTDNTy03Mzs3v5BfLCwtr6yu6esbDRlEgtA6CXggWi6WlDOf1oEBp61QUOy5nDbd4XnqN2+okCzwr2EUUtvDfZ/1GMGgJEffLl06cQfoHcTMT5L92+nbnqMXzbKZwfhLrAkpoglqjv7R6QYk8qgPhGMp25YZgh1jAYxwmhQ6kaQhJkPcp21FfexRacdZjMTYVUrX6AVCHR+MTJ3eiLEn5chz1aSHYSB/e6n4n9eOoHdiq0RhBNQn44d6ETcgMNJOjC4TlAAfKYKJYOqvBhlggQmo5gpZCacpjr4j/yWNg7JVKVeuDovVs0kdebSFdlAJWegYVdEFqqE6IugePaJn9KI9aE/aq/Y2Hs1pk51N9APa+xdVcJnS</latexit>

wfin
<latexit sha1_base64="82ov/87x3c+XsJmis1+GkIGpFFY=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0mt+HErevFYwdZCG8tmu2mXbjZhd2ItIf/DiwdFvPpfvPlv3KRB1Ppg4PHeDDPz3FBwDbb9aRUWFpeWV4qrpbX1jc2t8vZOWweRoqxFAxGojks0E1yyFnAQrBMqRnxXsFt3fJn6t/dMaR7IG5iGzPHJUHKPUwJGupv04x6wB4g9LpOkX67YVTsDnie1nFRQjma//NEbBDTymQQqiNbdmh2CExMFnAqWlHqRZiGhYzJkXUMl8Zl24uzqBB8YZYC9QJmSgDP150RMfK2nvms6fQIj/ddLxf+8bgTemRNzGUbAJJ0t8iKBIcBpBHjAFaMgpoYQqri5FdMRUYSCCaqUhXCe4uT75XnSPqrW6tX69XGlcZHHUUR7aB8doho6RQ10hZqohShS6BE9oxdrYj1Zr9bbrLVg5TO76Bes9y+ftZNh</latexit>

Lfin
<latexit sha1_base64="Lnr5BjquFlbA5G+BWvo03NMsH58=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwVVIVH7uiGxcuKtgHtLFMppN26GQSZm7UEvIfblwo4tZ/ceffOEmDqPXAhcM593LvPW4ouAbb/rQKc/MLi0vF5dLK6tr6Rnlzq6WDSFHWpIEIVMclmgkuWRM4CNYJFSO+K1jbHV+kfvuOKc0DeQOTkDk+GUrucUrASLdX/bgH7AFij8sk6ZcrdtXOgGdJLScVlKPRL3/0BgGNfCaBCqJ1t2aH4MREAaeCJaVepFlI6JgMWddQSXymnTi7OsF7RhlgL1CmJOBM/TkRE1/rie+aTp/ASP/1UvE/rxuBd+rEXIYRMEmni7xIYAhwGgEecMUoiIkhhCpubsV0RBShYIIqZSGcpTj+fnmWtA6qtcPq4fVRpX6ex1FEO2gX7aMaOkF1dIkaqIkoUugRPaMX6956sl6tt2lrwcpnttEvWO9fXFqTNg==</latexit>

R
<latexit sha1_base64="n+IPO9XD42Je9/qzca8tNrILwPA=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgqiS2+NgV3bisYh/QhjKZTtqhk0mcmQgl9CfcuFDErb/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yVXqdx6oVCwUd3oaUTfAI8F8RrA2UjfpE8zR7WxQrthVOwNaJE5OKpCjOSh/9IchiQMqNOFYqZ5jR9pNsNSMcDor9WNFI0wmeER7hgocUOUm2b0zdGSUIfJDaUpolKk/JxIcKDUNPNMZYD1Wf71U/M/rxdo/dxMmolhTQeaL/JgjHaL0eTRkkhLNp4ZgIpm5FZExlphoE1EpC+Eixen3y4ukfVJ1atXaTb3SuMzjKMIBHMIxOHAGDbiGJrSAAIdHeIYX6956sl6tt3lrwcpn9uEXrPcv03iP9w==</latexit>

Figure 7.4.: Plot of the geometric phase obtained following the paths shown in the
inset: we choose as initial point in parameters space ~Rint = (0.35a, 0),
plotting the geometric phase α as a function of Lfin and wfin. Inset: sketch
of the paths followed in parameters space.

Equation (7.64) implies that the computation of the geometric phase α is greatly
simplified, as we will only need to compute two integrals. We choose the integration
paths shown in the inset of Fig. 7.4: we start from an initial point in parameters space
~Rin = (Lin, win), and then we increase w up to a final value wfin, before increasing L up
to its final value Lfin. We then move back to the initial point ~Rin, so that the geometric
phase can be computed as:

α = V0

[∫ Lfin

Lin

dL
φ
∗(0)
~R

(
a
2

+ L
)
φ

(1)
~R

(
a
2

+ L
)

E
(1)
~R
− E(0)

~R

∣∣∣∣∣
wfin

+

∫ Lin

Lfin

dL
φ
∗(0)
~R

(
a
2

+ L
)
φ

(1)
~R

(
a
2

+ L
)

E
(1)
~R
− E(0)

~R

∣∣∣∣∣
win

]
.

(7.65)
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Exploiting Eq. (7.65) we obtain the plot shown in Fig. 7.4: we notice that it is possible
to obtain, by appropriately choosing the path in parameter space, a wide range of values
of the phase α, by only exploring the small parameters region. This fully shows how it
is possible to attach a geometric phase by letting the Hamiltonian of the system vary in
space, other than in time.

151





CHAPTER 8

Conclusions

We are now moving towards the conclusion of this thesis. During the exposition we
went through many different topics in quantum engineering, ranging from open quantum
system dynamics to potential engineering for state control and manipulation.

Collisional models are now quickly spreading as an effective tool to describe quantum
dynamics in very different scenarios, from thermodynamics to quantum metrology. In
Chap. 3 we showed how the elasticity given by collisional models in setting the causal
structure of the interaction between different quantum systems allowed us to derive
in a simple fashion the master equation describing the dynamics of a quantum cascade
network. As the field of network study, both classical [R. Albert and Barabási 2002; Bar-
rat, Barthélemy, and Vespignani 2008] and quantum [Chiribella, D’Ariano, and Perinotti
2009; Nikolopoulos and Jex 2013], is nowadays rapidly expanding, it would be interesting
to check whether collisional models, and more in general the theory of open system dy-
namics, can give further contributions in the field, from the modeling of socio-technical
systems [Antal, Redner, and Sood 2006; Castellano, Marsili, and Vespignani 2000] and
infrastructure networks [Barrat, Barthélemy, et al. 2004], such as environmental net-
works [Montoya, Pimm, and Solé 2006; Pimm 2002], telecommunications networks [R.
Albert, Jeong, and Barabási 1999, 2000], scientific networks [Newman 2001a,b; Redner
2005], to the exploitation of quantum networks for state engineering [Pichler and Zoller
2016; Ramos et al. 2014; Ringel, Pletyukhov, and Gritsev 2014; Söllner et al. 2015] and
quantum computation [Pichler, Choi, et al. 2017; Zheng, Gauthier, and Baranger 2013].
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On the other hand in Chap. 4 we exploited another important feature of collisional
models, namely the easiness in keeping track of the environmental degrees of freedom, in
order to study a simple, yet fundamental thermodynamical process, the thermalization
of a quantum system interacting with a thermal bath. By keeping track of the environ-
mental state, we were able to compute the thermodynamic functionals needed at each
step of the thermalization process, getting greater insight on the resulting final state of
the process. Also in this case it must be said that the possibility of studying the envi-
ronmental state has been a scarcely exploited feature of collisional models up to know,
mostly because of the large memory required to describe the state as the time steps
increase. Nonetheless this might represent an interesting topic to investigate, maybe ex-
ploiting some computational techniques from the field of many-body physics [Silvi et al.
2013; Verstraete, Garcia-Ripoll, and Cirac 2004; Vidal 2004].

Besides open quantum system theory, also potential engineering has been treated
in this thesis. Specifically, after introducing the band engineering paradigm and the
concept of confining potential and subbands in electron waveguides in Chap 5, we have
shown how to arbitrary create potential profiles giving rise to what we dubbed stretchable
states. This class of states, in analogy to what happens to an electromagnetic wave in
an ε-near-zero metamaterial, has its wave profile stretched, i.e. the wave function of
the particle has a flat region. While it is not easy to think to a specific outlook to this
work, it must be noted that the field of quantum metamaterials is still expanding, and
as such it will be interesting to further explore the analogies between electromagnetic
waves in photonic metamaterials [Cai and Shalaev 2009; Caloz 2005] and matter waves
in quantum metamaterials [Rakhmanov et al. 2008].

Finally in Chap. 7 we have shown how it is possible to attach a Berry phase to a quan-
tum state by spatially varying the potential landscape dictating the particle dynamics.
Though the mathematics behind this phenomenon was already known and exploited in
different contexts [Grosso and Parravicini 2000], it was never highlighted the possibility
of imprinting a geometric phase on a quantum state. While we developed our theory for
a two dimensional potential landscape, the result can be straightforwardly generalized to
a three dimensional situation, where however the phenomenology would be richer, due
to the greater freedom in choosing the basis and the gauge. It is also worth highlighting
that much work has been done on the relation between holonomies and networks [Bas-
cone et al. 2019; Lahtinen et al. 2008] and critical behavior [Pachos and A. C. Carollo
2006; Plastina, Liberti, and A. Carollo 2006]. Moreover it would be interesting to see
how shortcuts to adiabaticity techniques [Guéry-Odelin et al. 2019; Menchon-Enrich et
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al. 2016; Vepsäläinen, Danilin, and Paraoanu 2018] might help in relaxing the hypothesis
under which the theory has been developed, possibly leading to a simpler experimental
feasibility.
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A Appendix to Chap. 3

A. Appendix to Chap. 3

A.1. Positivity of the matrix Ωjj′

In this section we demonstrate the non-negativity of the matrix Ωjj′ defined in Sec. 3.2,
remembering that j stands for the joint index (`, k,m) and the elements of Ωjj′ are the
coefficients D(`,`′)

mm′(kk′) defined in Eq. (3.73), which amounts to show that for any vector
~q of complex elements qj, it holds:

~q Ω ~q † =
∑

jj′

qjΩjj′q
∗
j′ ≥ 0. (A.1)

Starting from the definition of the coefficients in Eqs.(3.54, 3.56, 3.57) and exploiting
Eq. (3.61) we get:

2~q Ω ~q † =
∑

m

q(`,k,m)q
∗
(`′,k′,m)γ

(`,`′)
m(kk′) +

∑

m′>m

[
q(`,k,m)q

∗
(`′,k′,m′)ζ

(`,`′)
mm′(kk′)

]

=
∑

m

TrEn

{
Q̂

(m)†
En Q̂

(m)
En M

(m−1←1)
En (η̂En)

}

+
∑

m′>m

[
TrEn

{
Q̂

(m′)†
En M(m′−1←m)

En

(
Q̂

(m)
En M

(m−1←1)
En (η̂En)

)}
+ h.c.

]
, (A.2)

where we are using the summation over repeated indices convention and we have defined
for easiness of notation:

Q̂
(m)
En =

∑

`,k

q(`,k,m)B̂
(`,m)

E
(k)
n

. (A.3)

We now invoke the Stinespring representation to write the CPT maps in the expression
as:

M(m)
En (· · · ) = TrA

{
V(m)
En,A(· · · ⊗ |0〉〈0|A)

}
, (A.4)

V(m)
En,A = V̂

(m)
En,A(· · · )V̂ (m)†

En,A , (A.5)

where |0〉A is some reference state of an ancillary system A and V̂
(m)
En,A is a unitary
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transformation coupling A and En. Thanks to Eq. (A.4) we can write:

M(m′←m)
En = TrA

{
V(m′←m)
En,A (· · · ⊗ |0A〉〈0A|)

}
, (A.6)

V(m′←m)
En,A (· · · ) = V̂

(m′←m)
En,A (· · · )V̂ (m′←m)†

En,A , (A.7)

V̂
(m′←m)
En,A = V̂

(m′)
En,A V̂

(m′−1)
En,A · · · V̂ (m)

En,A. (A.8)

Inserting these expressions in Eq. (A.2) we get:

2~q Ω ~q † =
∑

m

TrEn,A

{
Q̂

(m)†
En Q̂

(m)
En V

(m−1←1)
En,A (η̂En ⊗ |0A〉〈0A|)

}
(A.9)

+
∑

m′>m

[
TrEn,A

{
Q̂

(m′)†
En V(m′−1←m)

En,A

(
Q̂

(m)
En V

(m−1←1)
En,A (η̂En ⊗ |0A〉〈0A|)

)}
+ h.c.

]

=
∑

m

TrEn,A

{
Ṽ(m−1←1)
En,A

(
Q̂

(m)†
En Q̂

(m)
En

)
(η̂En ⊗ |0A〉〈0A|)

}
(A.10)

+
∑

m′>m

[
TrEn,A

{
Ṽ(m−1←1)
En,A

(
Ṽ(m′−1←m)
En,A

(
Q̂

(m′)†
En

)
Q̂

(m)
En

)
(η̂En ⊗ |0A〉〈0A|)

}
+ h.c.

]
.

At this point we observe that:

Ṽ(m−1←1)
En

(
Q̂

(m)†
En Q̂

(m)
En

)
=

Ṽ(m−1←1)
En (Q̂

(m)†
En )Ṽ(m−1←1)

En (Q̂
(m)
En ) = T̂

(m)†
En,A T̂

(m)
En,A, (A.11)

Ṽ(m−1←1)
En,A

(
Ṽ(m′−1←m)
En,A

(
Q̂

(m′)†
En

)
Q̂

(m)
En

)
=

Ṽ(m′−1←1)
En (Q̂

(m′)†
En )Ṽ(m−1←1)

En (Q̂
(m)
En ) = T̂

(m′)†
En,A T̂

(m)
En,A, (A.12)

where we have introduced the operators:

T̂
(m)
En,A = Ṽ(m−1←1)

En,A (Q̂
(m)
En ). (A.13)

Inserting Eqs.(A.11, A.12) into Eq. (A.10) and rearranging the terms, we finally prove
the thesis:

2 ~qΩ ~q † =
M∑

m,m′=1

TrEn,A

{
T̂

(m′)†
En,A T̂

(m)
En,A(η̂En ⊗ |0A〉〈0A|)

}
. (A.14)

A.2. Calculations from Sec. 3.3.2

In this section we report the calculations for the master equation in Sec. 3.3.2.
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First of all we are interested in the expressions for the CPT mapsM(m)
En acting on the

ancillas. As it can be seen from Fig. 3.6, the mapM(1)
En acting after the interaction of the

ancillas with the first node Q1 but before their interaction with Q2, is associated with
beam splitter BS1. Complementary, we have the mapM(2)

En acting after the interaction
with node Q2 associated to the phase shift PS and the second beam splitter BS2. We
can then write:

M(1)
En (· · · ) = V̂BS1(· · · )V̂ †BS1

, (A.15)

M(2)
En (· · · ) = V̂BS2V̂PS(· · · )V̂ †PSV̂ †BS2

. (A.16)

Once we have these expressions, it is very simple to see that the stability condition
still holds for the same reasons exposed in Sec. 3.3.1. Moreover, we have already said
that the coefficients γ(`,`′)

1(kk′) relative to the term L1 are identical to the ones computed in
Sec. 3.3.1, together with the γ(`,`′)

3(kk′) associated to L3, and the coefficients ζ(`,`′)
13(kk′), ξ

(`,`′)
13(kk′)

associated with D13, as they are identical to the coefficients for the D12 term in Sec. 3.3.1.
We are then left with the computation of the coefficients relative to the terms L2, D12

and D23. As for the local term L2 we have:

γ
(1,1)
2(kk′) =

[
γ

(2,2)
2(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂2

E
(1)
n
M(1)
En (η̂En)

}
= 0,

γ
(1,2)
2(kk′) = δk,1δk′,1 TrEn

{
b̂†
E

(1)
n

b̂
E

(1)
n
M(1)
En (η̂En)

}

= δk,1δk′,1 TrEn

{(√
ε1b̂
†
E

(1)
n

+ i
√

1− ε1b̂†
E

(2)
n

)(√
ε1b̂E(1)

n
− i
√

1− ε1b̂E(2)
n

)
η̂En

}

= δk,1δk′,1N̄12,

γ
(2,1)
2(kk′) = δk,1δk′,1 TrEn

{
b̂
E

(1)
n
b̂†
E

(1)
n

M(1)
En (η̂En)

}

= δk,1δk′,1 TrEn

{(√
ε1b̂E(1)

n
− i
√

1− ε1b̂E(2)
n

)(√
ε1b̂
†
E

(1)
n

+ i
√

1− ε1b̂†
E

(2)
n

)
η̂En

}

= δk,1δk′,1(N̄12 + 1).
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The coefficients for D12 are instead worth:

ζ
(1,1)
12(kk′) =

[
ξ

(2,2)
12(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂
E

(1)
n
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En

(
b̂
E

(1)
n
η̂En

)}
= 0,
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12(kk′) =

[
ξ

(1,1)
12(kk′)

]∗
= δk,1δk′,1 TrEn
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b̂†
E

(1)
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En

(
b̂†
E

(1)
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η̂En

)}
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ζ
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ξ
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12(kk′)

]∗
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b̂†
E

(1)
n
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En

(
b̂
E

(1)
n
η̂En
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{(√
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†
E

(1)
n

+ i
√

1− ε1b̂†
E

(2)
n

)
b̂
E

(1)
n
η̂En

}
= δk,1δk′,1

√
ε1N1,

ζ
(2,1)
12(kk′) =

[
ξ

(1,2)
12(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂
E

(1)
n
M(1)
En

(
b̂†
E

(1)
n

η̂En

)}

= δk,1δk′,1 TrEn

{(√
ε1b̂E(1)

n
− i
√

1− ε1b̂E(2)
n

)
b̂†
E

(1)
n

η̂En

}
= δk,1δk′,1

√
ε1(N1 + 1).

Finally, the coefficients for D23 can be written as:

ζ
(1,1)
23(kk′) =

[
ξ

(2,2)
23(kk′)

]∗
= δk,1δk′,1 TrEn

{
b̂
E

(1)
n
M(2)
En

(
b̂
E

(1)
n
M(1)
En (η̂En)

)}
= 0,

ζ
(2,2)
23(kk′) =

[
ξ

(1,1)
23(kk′)

]∗
= δk,1δk′,1 TrEn
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b̂†
E

(1)
n

M(2)
En

(
b̂†
E

(1)
n

M(1)
En (η̂En)
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ζ
(1,2)
23(kk′) =

[
ξ

(2,1)
23(kk′)

]∗
= δk,1δk′,1 TrEn
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b̂†
E

(1)
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M(2)
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(
b̂
E
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En (η̂En)
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(1)
n
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E
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ε1b̂E(1)

n
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√

1− ε1b̂E(2)
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= δk,1δk′,1M
∗
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= δk,1δk′,1 TrEn
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E
(1)
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)(√
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†
E

(1)
n

+ i
√

1− ε1b̂†
E

(2)
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}

= δk,1δk′,1 (M12(ϕ) + λ12(ϕ)) .

As for the GKSL form of the master equation, the matrix D(`,`′)
mm′(kk′) can be written as:




N1 0
√
ε1N1 0 c∗(ϕ)N1 0

0 N1 + 1 0
√
ε1(N1 + 1) 0 c(ϕ)(N1 + 1)

√
ε1N1 0 N̄12 0 M∗

12(ϕ) 0

0
√
ε1(N1 + 1) 0 (N̄12 + 1) 0 M12(ϕ) + λ(ϕ)

c(ϕ)N1 0 M12(ϕ) 0 N12(ϕ) 0

0 c∗(ϕ)(N1 + 1) 0 M∗
12(ϕ) + λ∗(ϕ) 0 (N12(ϕ) + 1)




.
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Diagonalizing this matrix, one finds the following Hamiltonian contributions:

Ĥ12 = − i
2

√
ε1

(
â1â

†
2 − â†1â2

)
, (A.17)

Ĥ23 = − i
2

(
λ∗(ϕ)â2â

†
3 − λ(ϕ)â†2â3

)
, (A.18)

Ĥ13 = − i
2

(
c∗(ϕ)â1â

†
3 − c(ϕ)â†1â3

)
. (A.19)

A.3. Lindblad operators for the network of Sec. 3.4

The master equation for the network of Sec. 3.4 reported in Eq. (3.134) can be diagonal-
ized following the receipt already shown in Sec. 3.2, obtaining the Lindblad operators in
Eq. (A.3).

To achieve our goal we write the 2M × 2M matrix Ωjj′ in a block representation:

Ω =




Ξ11 Ξ12 · · · Ξ1M

Ξ21 Ξ22 · · · Ξ2M

· · · · · · · · · · · ·
ΞM1 ΞM2 · · · ΞMM



, (A.20)

where each Ξmm′ is a 2× 2 diagonal block of the form:

Ξmm′ =

(
0 0

0 ζmm′

)
∀m′ > m, (A.21)

ζmm′ being the coefficients in Eq. (3.140). The κi in Eq. (3.138) are nothing but the
eigenvalues of Ωjj′ , while the Lindblad operators L̂i in the same equation are obtained
via:

L̂ = W




â†1

â1

â†2

â2

...
â†M
âM




, (A.22)

where W is the 2M × 2M matrix diagonalizing Ωjj′ , i.e. Ω = WDW †, D = diag[κi]
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Figure A.1.: Schematic illustration of the amplitudesW (`)
k labelling the horizontal lines

of the network. As made clear by the figure in left panel, these ampli-
tudes are associated with the propagation of a signal from S1 to the k-th
horizontal step of the `-th level of the network. To better exemplify this,
in the right panel the paths contributing the definition of W (3)

4 have been
highlighted.

being the diagonal matrix whose elements are the eigenvalues of Ωjj′ . For the case under
consideration the construction above can be further simplified if we consider the we are
dealing with environmental channels in the vacuum state. This is manifested in Ωjj′

by the fact that its odd column, as well as its odd rows, contain only zero elements, so
that they can be safely removed, their corresponding eigenvalues being null. Upon this
consideration, Ω becomes an M ×M matrix and we can write the Lindblad operators
as in Eq. (3.138).

A.4. Proof of Eq. (3.196)

Before proceeding in demonstrating Eq. (3.196), in order to obtain more compact ex-
pressions, it is useful to adopt a change of notation. In fact in our demonstration we will
need to label the horizontal elements of the network: for ` and k integers we use W (`)

k

to indicate the amplitude of the signal reaching the k-th horizontal step of the network
at the `-th level, as exemplified in Fig. A.1.
The various elements W (`)

k are connected through the action of the beam splitters in
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the network, giving rise to linear relationships which we report for the first values of k:

W
(1)
2 =

√
τ1 W

(2)
2 = −i

√
1− τ1e

−iϕ1 W
(1)
3 =

√
τ2W

(1)
2 ,

W
(2)
3 = (−i

√
1− τ1e

−iϕ1)(−i
√

1− τ2e
−iϕ2)W

(1)
2 +

√
τ1W

(2)
2 ,

W
(3)
3 = (

√
τ1e
−iϕ1)(−i

√
1− τ2e

−iϕ2)W
(1)
2 + (−i

√
1− τ1e

−iϕ1)W
(2)
2 .

Using this notation we have that A(1)
k←1 corresponds to the element W (k)

k , so that we
have:

ξk = A
(1)
k+1←1 = W

(k+1)
k+1 . (A.23)

Moreover we also have that for ` = 1 and any k it holds:

W
(1)
k =

√
τk−1τk−2 · · · τ2τ1, (A.24)

so that Eq. (3.196) can be equivalently written as:

τk = 1−
(

1− |W (1)
k |2

|W (1)
k |2

)(
1− τk−1

τk−1

)
. (A.25)

Now, let us assume that we want to nullify second-neighbor interactions, i.e. ξ2 = 0.
This is tantamount to nullify W (3)

3 :

√
τ1(−i

√
1− τ2e

−iϕ2)W
(1)
2 + (−i

√
1− τ1)W

(2)
2 = 0

⇒ ϕ2 = ϕ1 +
π

2
, τ2 = 1−

(
1− |W (1)

2 |2

|W (1)
2 |2

)(
1− τ1

τ1

)
. (A.26)

The solution for τ2 in Eq. (A.26) shows the validity of Eq. (3.196) for k = 2. To pro-
ceed further we note that when we eliminate second-neighbor interactions, this implies
that the signal from S1 reaches the third level of the interferometer without interacting
with S3, thus producing the amplitudes W (1)

3 and W (2)
3 . Though we already computed

the explicit value of these amplitudes, actually we only need to note that probability
conservation and W (3)

3 = 0 imply the complementarity of W (1)
3 and W (2)

3 , leading to

W
(2)
3 = e−iα3

√
1− |W (1)

3 |2, (A.27)

α3 being an irrelevant phase. At this point we pose ourselves the problem of eliminat-
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Figure A.2.: Left panel: sketch of the possible paths when nullifying ξ2. As high-
lighted, the signal from S1 (green) splits away in the first beam splitter
following two paths that recombine themselves in the beam splitter with
transmissivity τ1 at the second level of the network. From there, if the
relative phase has been tuned properly, the signal goes all in the hori-
zontal output branch of the beam splitter, thus not interacting with S3.
Right panel: still a sketch of the possible paths the signal can follow, but
for third-neighbor interactions. From this picture one can observe how
the signal must remain confined in the first two level of the network in
order to eliminate third-neighbor interactions.

ing third-neighbor interactions: in order to do this we must prevent the signal to reach
the node S4, i.e. we require W (4)

4 = 0. However we are faced with the problem that we
already imposed the condition W (3)

3 = 0, so that there is no horizontal signal that can
be used by the beam splitter of transmissivity τ1 to interfere destructively with the one
coming from above. From this we conclude that in order to reach our goal, the signal
must be confined in the first two levels of the network (see right panel in Fig. A.2),
leading to the condition:

√
τ2(−i

√
1− τ3e

−iϕ3)W
(1)
3 + (−i

√
1− τ2)W

(2)
3 = 0. (A.28)

Exploiting Eq. (A.27) we can solve the equation for ϕ3 and τ3, obtaining:

ϕ3 = α3 + π (A.29)

τ3 = 1−
(

1− |W (1)
3 |2

|W (1)
3 |2

)(
1− τ2

τ2

)
, (A.30)

so that we proved Eq. (3.196) to be valid also for k = 3. In order to complete the
demonstration we iterate the procedure we just performed, noting that having imposed
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ξ2 = ξ3 = 0 implies that the signal must be confined in the first two levels, so that the
fourth step of the network is populated only through the complementary terms W (1)

4

and W (2)
4 which must fulfill:

√
τ3

(
−i
√

1− τ4e
−iϕ4

)
W

(1)
4 + (−i

√
1− τ3)W

(2)
4 = 0, (A.31)

leading to

τ4 = 1−
(

1− |W (1)
4 |2

|W (1)
4 |2

)(
1− τ3

τ3

)
, (A.32)

so that Eq. (3.196) is proved by construction. Nonetheless this is not all: in the main
text we anticipated that Eq. (3.196) is valid only when we choose τ1 ∈ [3/4, 1]. The
necessity of a lower bound for τ1 is readily seen if we consider the functional dependence
of the other transmissivities on τ1:

τ2(τ1) = 1− (1− τ1)2

τ 2
1

, (A.33)

τ3(τ1) = 1− (1− τ1)3

(2τ1 − 1)2
, (A.34)

τ4(τ1) = 1− (1− τ4)4

(τ 2
1 + τ1 − 1)2

. (A.35)

Since τk ∈ [0, 1] for any k, we see immediately that not all values of τ1 are allowed.
Considering for instance Eq. (A.33), we get instantly the condition τ1 > 1/2, while from
the condition on τ3 we get τ1 > (

√
5− 1)/2 ' 0.618 and finally from Eq. (A.35) we have

τ1 > 2/3. Before discussing why Eq. (3.196) is valid for any k given τ1 ∈ [3/4, 1], we
want to highlight that the condition τk ≤ 1 is easily shown to be true for any k, since it
suffices to note that 1 − τk+1 and 1 − τk−1 must have the same sign, as can be seen by
the formula:

1− τk+1 =

(
1− τk−1τk−2 · · · τ1

1− τk−1τk−2 · · · τ1 − τk−1

)2

(1− τk−1), (A.36)

which is obtained via a simple iteration of Eq. 3.196.

Going back to the problem of setting a lower bound on τ1, we proceed as follows:
consider τ̄1 ∈ [0, 1] such that τk ≥ 0 for all k; then, for any ¯̄τ1 > τ̄1, it must still hold that
all the other transmissivities are posiive, since for a given k the rhs of Eq. (3.196) is an
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increasing function of the parameters τk−1, τk−2, . . . , τ1. We then notice that τ1 = 3/4

is a legitimate choice, since it yields:

τk(τ1 = 3/4) = 1− 1

(k + 1)2
=
k(k − 2)

(k + 1)2
, (A.37)

the last expression being easily obtained by induction. We finally justify τ1 ≥ 3/4 as
lower bound considering that a direct evaluation of the transmissivities up to k = 10

already shows numerically that τ1 > 0.74 at least.
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B. Appendix to Chap. 4

B.1. Derivation of the inequalities in the collisional model

In Sec. 4.2 we derived the Clausius inequality in Eq. (4.7) by exploiting the contractivity
of the relative entropy under CPT evolution. In order to generalize the inequality to the
collisional setting one can follow the same procedure, comparing the relative entropies
of ρ̂A(n) and ρ̂A(n− 1) with the thermal state η̂(β)

A , obtaining:

dSA(n) ≥ βdQA(n), (B.38)

dSA(n) = S(ρ̂A(n))− S(ρ̂A(n− 1)), dQA(n) = Tr
{
ĤA(ρ̂A(n)− ρ̂A(n− 1))

}
.

showing that the intrinsic inequality holds also when considering a discrete step evolu-
tion.

The extrinsic inequality is obtained by invoking the subadditivity of the entropy,
obtaining:

∆SA(n) ≥ −∆SB(n) = nS(η̂
(β)
b )− S(ρ̂B(n)), (B.39)

where ρ̂B(n) is the full state of the environment at the n-th step of the evolution,
including all possible correlations among the ancillas. Also in this case we can write an
incremental version of the inequality:

dSA(n) ≥ −dSbn = S(η̂b)− S(ρ̂bn), (B.40)

where ρ̂bn = TrA{Ûn(ρ̂A(n)⊗ η̂(β)
bn

)Û †n} is the output state of the ancilla after the collision
with A. Eq. (B.40) defines a weaker inequality than the one in Eq. (4.8). In fact
starting from the previous equation we can define the local entropy variation appearing
in Eq. (4.36) as:

∆S
(loc)
B (n) =

n∑

k=1

S(ρ̂bk)− nS(η̂
(β)
b ). (B.41)

The inequality defined starting from Eq. (B.41) is immediately seen to be weaker than
the extrinsic bound because of the entropy subadditivity,

∑
k S(ρ̂bk) ≥ S(ρ̂B(n)). This

must come as no surprise, since computing the entropy variation of the environment as
in Eq. (B.41) is tantamount to approximating the environmental state at the n-th step
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of the evolution with
⊗

n ρ̂bn , thus neglecting all the correlations among the ancillas.

Finally it is worth noticing that Eq. (4.21) can be rewritten in the collisional framework
as:

β∆QA(n) + ∆SB(n) = −S(ρ̂B(n)||ρ̂B(0))⇒ −∆SB(n) ≥ β∆QA(n). (B.42)

For the local entropy variation we can write similarly:

βdQA(n) + dSbn = −S(ρ̂bn||η̂(β)
b )⇒ −∆S

(loc)
B (n) ≥ β∆QA(n). (B.43)

B.2. Asymptotic factorization with full dephasing

The asymptotic factorization, as anticipated in the main text, can be proved also in the
weak coupling regime with a little modification of the model. In particular we are able
to prove the factorization by forcing A to undergo a full dephasing DA every k >> 1

steps of the dynamical evolution. The action of the transformation DA is to destroy the
off-diagonal elements of the density matrix of A:

DA(|jA〉〈j′A|) = δjj′ |jA〉〈jA| . (B.44)

Without loss of generality, we now proceed in demonstrating our claim assuming A to
be a qubit. Moreover our proof does not depend upon the specific form of the unitary
operator describing the dynamics, the only requirement being that the corresponding
CPT map gives rise to thermalization and acts trivially on the thermal state.

We divide the ancillas into sets, B1, B2 · · · , each one containing k ancillas. After A
has interacted with all the ancillas in B1 we are left with the joint state:

ρ̂AB1(k) = Uk ◦ · · · ◦ U2U1

[
ρ̂A(0)

k⊗

i=1

η̂
(β)
bi

]
=
∑

j,j′

|ja〉〈j′a| Π̂(j,j′)
B1

(ρ̂A(0)), (B.45)

where Π
(j,j′)
B1

(ρ̂A(0)) are operators of B1 depending linearly on the input state of A.
Tracing away B1 we are left with:

ρ̂A(k) =
∑

j,j′

M
(k)
jj′ (ρ̂A(0)) |jA〉〈j′A| , (B.46)

M
(k)
jj′ (ρ̂A(0)) = TrB1

{
Π̂

(j,j′)
B1

(ρ̂A(0))
}
. (B.47)

170



B Appendix to Chap. 4

As we assumed the whole dynamics to induce thermalization on A, for large enough k
we are ensured that A is approaching the thermal state η̂(β)

A , which is diagonal in the
{|j〉A} basis with eigenvalues η(β)

j = e−β~Ej/Z(β), Z(β) being the partition function.
According to this, for any ε < 1, it exists k sufficiently large such that:

∣∣∣M (k)
jj′ (ρ̂A(0))− η(β)

j

∣∣∣ < ε, (B.48)
∣∣∣M (k)

jj′ (ρ̂A(0))
∣∣∣ < ε ∀j 6= j′ (B.49)

hold. At this point we use the assumption of being dealing with a qubit, so that applying
the full dephasing to the state in Eq. (B.45) we find:

DA(ρ̂AB(k)) = |0A〉〈0A| ⊗ Π̂
(0,0)
B1

(ρ̂A(0)) + |1A〉〈1A| ⊗ Π̂
(1,1)
B1

(ρ̂A(0)). (B.50)

If we now sum and subtract the term η
(β)
0

η
(β)
1

Π̂
(1,1)
B1

(ρ̂A(0)) we can recast the last equation as

ρ̂AB(k) = |0A〉〈0A| ⊗ ∆̂
(k)
B1

(ρ̂A(0)) + η̂
(β)
A ⊗ Ξ̂

(k)
B1

(ρ̂A(0)), (B.51)

with:

Ξ̂B1(ρ̂A(0)) =
Π̂
B

(1,1)
1

η
(β)
1

, (B.52)

∆̂
(k)
B1

(ρ̂A(0)) = Π̂
(0,0)
B1

(ρ̂A(0))− η
(β)
0

η
(β)
1

Π̂
(1,1)
B1

(ρ̂A(0)). (B.53)

Now we want to show that the trace norm ‖∆̂(k)
B1

(ρ̂A(0))‖ can be forced to be strictly
smaller than one for large enough k. This is readily done by summing and subtracting
M

(k)
00 (ρ̂A(0))

M
(k)
11 (ρ̂A(0))

Π̂
(1,1)
B1

(ρ̂A(0)) to ∆̂
(k)
B1

(ρ̂A(0)) and applying the triangular inequality to get:

∥∥∥∆̂
(k)
B1

(ρ̂A(0))
∥∥∥ ≤ α(k) + β(k), (B.54)

α(k) = M
(k)
00 (ρ̂A(0))

∥∥∥∥∥
Π̂

(0,0)
B1

(ρ̂A(0))

M
(k)
00 (ρ̂A(0))

− Π̂
(1,1)
B1

(ρ̂A(0))

M
(k)
11 (ρ̂A(0))

∥∥∥∥∥ , (B.55)

β(k) =

∣∣∣∣∣M
(k)
00 (ρ̂A(0))− η

(β)
0

η
(β)
1

M
(k)
11 (ρ̂A(0))

∣∣∣∣∣

∥∥∥∥∥
Π̂

(1,1)
B1

(ρ̂A(0))

M
(k)
11 (ρ̂A(0))

∥∥∥∥∥ . (B.56)

The quantity α(k)can be shown to be smaller than one, for k large enough: in facts, for
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large k, the state of A approaches the thermal state, so thatM (k)
00 (ρ̂A(0)) approaches η(β)

0 ,
which is smaller than one for positive β. Moreover the trace norm in the expression of
α(k) is computed over the difference between two properly normalized density matrices,
so that we are ensured it is smaller than one. On the other hand for β(k) we have that∣∣∣∣M

(k)
00 (ρ̂A(0))− η

(β)
0

η
(β)
1

M
(k)
11 (ρ̂A(0))

∣∣∣∣ goes to zero for large k, thanks to Eq. (B.48). Finally
∥∥∥∥

Π̂
(1,1)
B1

(ρ̂A(0))

M
(k)
11 (ρ̂A(0))

∥∥∥∥ = 1, being the trace norm of a normalized state.

After having verified that ‖∆̂(k)
B1

(ρ̂A(0))‖ < 1, we go back to Eq. (B.51) describing
the state of ρAB(k) after the dephasing operation: we notice that repeating the above
operations with the second set of ancillas B2, the part of the state proportional to η̂(β)

A

is left unchanged by the evolution, so that after the second dephasing operation we are
left with:

|0A〉〈0A| ⊗ ∆̂
(k)
B1

(ρ̂A(0))⊗ ∆̂
(k)
B2

(|0A〉〈0A|) + η̂
(β)
A Ξ̂B1B2(ρ̂A(0)), (B.57)

where Ξ̂B1B2(ρ̂A(0)) is a proper operator of B1B2. Iterating the procedure with the other
sets of ancillas, after q iterations we find:

|0A〉〈0A| ⊗ ∆̂
(k)
B1

(ρ̂A(0))⊗q`=2 ∆̂
(k)
B`

(|0A〉〈0A|)⊗ η̂(β)
A ⊗ Ξ̂B1B2...Bq(ρ̂A(0)). (B.58)

To conclude the demonstration we only need to compute the trace norm of the first
term of the equation above, obtaining:

∥∥∥|0A〉〈0A| ⊗ ∆̂
(k)
B1

(ρ̂A(0))⊗q`=2 ∆̂
(k)
B`

(|0A〉〈0A|)
∥∥∥ =

∥∥∥∆̂
(k)
B1

(ρ̂A(0))
∥∥∥
∥∥∥∆̂

(k)
B`

(|0A〉〈0A|)
∥∥∥
q−1

,(B.59)

which is exponentially decreasing in q, thus proving that for large q the state of A + B

is equal to the second contribution of Eq. (B.58), thus demonstrating the factorization
property.
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C. Appendix to Chap. 6

C.1. 2D stretchable separable potential

In this section we want to show an example of a 2D separable potential where it is
possible to stretch the wave function. In particular, we will show how to stretch the
ground state wave function. Consider an infinite 2D square well, which can be written
as:

V (x, y) = Vx(x) + Vy(y) (C.60)

with

Vxj(xj) =

{
0 for 0 ≤ xj ≤ axj ,

+∞ otherwise,
(C.61)

where axj is the width of the well along xj.

This potential is manifestly separable, and thanks to the fact that the potential is
infinite at the boundaries, also the boundary conditions are separable. We want to
consider the stretching of the ground state, which can be written as:

ψ0(x, y) = ψ
(x)
0 (x)ψ

(y)
0 (y), (C.62)

where

ψ
(xj)
0 (xj) =

√
2

axj
sin

(
π

axj
xj

)
, (C.63)

whose associated eigenenergies are E(xj)
0 = ~2π2

2ma2xj
, so that E0 = E

(x)
0 + E

(y)
0 . From these

expressions one immediately sees that the wave function ψ0(x, y) has zero gradient at
the point (ax

2
, ay

2
): we hence insert a potential box of height E(x)

0 and width Lx at the
point x = ax/2, and similarly a box of height E(y)

0 and width Ly at point y = ay/2,
obtaining the potential shown in the inset of Fig. C.3. This new potential ground state
eigenfunction reads:

ψ
[Lx,Ly ]
0 = ψ

(x)[Lx]
0 (x)ψ

(y)[Ly ]
0 (y), (C.64)
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where now ψ
(xj)[Lxj ]

0 (xj) is worth:

ψ
(xj)[Lxj ]

0 (xj) =
1√
Nxj





sin
(

π
axj
xj

)
for 0 ≤ xj ≤

axj
2
,

1 for
axj
2
≤ xj ≤

axj
2

+ Lxj ,

sin
(

π
axj

(xj − Lxj)
)

for
axj
2

+ Lxj ≤ xj ≤ axj + Lxj .

(C.65)

This leads to the ground state wave function plotted in Fig. C.3, where one has a cen-
tral region where ψ[Lx,Ly ]

0 (x, y) is constant, and four regions where one of the components
of the gradient is null. These four regions correspond to the blue and green regions of
the inset of Fig. C.3, where only one the kinetic components is absorbed into potential
energy.

C.2. Stretched states of the harmonic oscillator

Here we want to show how to build a stretching potential using the harmonic oscillator as
seed. The harmonic oscillator V (x) = mω2

2
x2 is known to have equally spaced eigenvalues

En = ~ω(n+ 1/2) for n ≥ 0 and associated eigenfunctions:

ψn(x) =

(
mω
π~

)1/4

√
2nn!

Hn

(mω
~
x
)

exp

[
−mωx

2

2~

]
, (C.66)

where Hn(x) is the n-th Hermite polynomial. As for n even the corresponding wave
function has a stationary point in x = 0, we can use the following stretching potential:

V (x)[L] =





mω2

2

(
x+ L

2

)
for x ≤ −L

2
,

En for |x| < L
2
,

mω2

2

(
x− L

2

)
for x ≥ L

2
.

. (C.67)

We now solve the problem using once again the standard method of solving the
Schrödinger equation in each region and then imposing the appropriate boundary con-
ditions. One has that the only square-integrable solution for the region x ≤ −L

2

(respectively x ≥ L
2
) is the parabolic cylinder function Dε− 1

2
(−
√

2ξ(x + L
2
)) (resp.

Dε− 1
2
(
√

2ξ(x − L
2
))), where ε = E

~ω and ξ =
√

mω
~ . Once the quantities εn = En

~ω ,
γ =

√
εn − ε and k̄ =

√
ε− εn have been introduced, we can write the solutions for
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<latexit sha1_base64="Jymps8ZNQVQxOtvtzuWCkRuwOHI=">AAACBXicbVDLSgNBEJz1GeMr6tHLYBAEIWyM+LgFvXjwEMFEIVmW3rGjg7MPZnrVsOTsV3jVkzfx6nd48F/cXRdRY52Kqm66urxISUO2/W6NjU9MTk2XZsqzc/MLi5Wl5Y4JYy2wLUIV6nMPDCoZYJskKTyPNILvKTzzrg8z/+wGtZFhcEqDCB0fLgPZlwIoldzKUq+vQSTg3g2TreHmsXvnVqp2zc7BR0m9IFVWoOVWPnoXoYh9DEgoMKZbtyNyEtAkhcJhuRcbjEBcwyV2UxqAj8ZJ8uhDvh4boJBHqLlUPBfx50YCvjED30snfaAr89fLxP+8bkz9PSeRQRQTBiI7RFJhfsgILdNOkF9IjUSQJUcuAy5AAxFqyUGIVIzTksp5H/sZdr6/HyWdrVq9UWucbFebB0UzJbbK1tgGq7Nd1mRHrMXaTLBb9sAe2ZN1bz1bL9br1+iYVeyssF+w3j4BN/iYsQ==</latexit>

ax + Lx
<latexit sha1_base64="XN4/v+VjbyK6ZrmKhxUPpfEeLk8=">AAAB+XicbVDJSgNBEO2JW4xb1KOXxiAIQpgYcbkFvXjwEMEskIRQ06nEJj0L3TWSMOQjvOrJm3j1azz4L86Mg7i90+O9KurVcwIlDdn2m5Wbm19YXMovF1ZW19Y3iptbTeOHWmBD+MrXbQcMKulhgyQpbAcawXUUtpzxReK37lAb6Xs3NA2w58LIk0MpgGKpBf3JwVV/0i+W7LKdgv8llYyUWIZ6v/jeHfgidNEjocCYTsUOqBeBJikUzgrd0GAAYgwj7MTUAxdNL0rjzvheaIB8HqDmUvFUxO8bEbjGTF0nnnSBbs1vLxH/8zohDU97kfSCkNATySGSCtNDRmgZ94B8IDUSQZIcufS4AA1EqCUHIWIxjIsppH2cJTj++v4vaR6WK9Vy9fqoVDvPmsmzHbbL9lmFnbAau2R11mCCjdk9e2CPVmQ9Wc/Wy+dozsp2ttkPWK8fuJCUAg==</latexit>

ay + Ly
<latexit sha1_base64="eN5QstWA6ld7847KKd0mjBSUIDs=">AAAB+XicbVDLSgNBEJz1GeMr6tHLYBAEIWyM+LgFvXjwEME8IFmW3kknDpl9MNMrhCUf4VVP3sSrX+PBf3F3DaLGOhVV3XR1eZGShmz73ZqbX1hcWi6sFFfX1jc2S1vbLRPGWmBThCrUHQ8MKhlgkyQp7EQawfcUtr3RZea371EbGQa3NI7Q8WEYyIEUQKnUBnd8eO2O3VLZrtg5+CypTkmZTdFwSx+9fihiHwMSCozpVu2InAQ0SaFwUuzFBiMQIxhiN6UB+GicJI874fuxAQp5hJpLxXMRf24k4Bsz9r100ge6M3+9TPzP68Y0OHMSGUQxYSCyQyQV5oeM0DLtAXlfaiSCLDlyGXABGohQSw5CpGKcFlPM+zjPcPL9/SxpHVWqtUrt5rhcv5g2U2C7bI8dsCo7ZXV2xRqsyQQbsQf2yJ6sxHq2XqzXr9E5a7qzw37BevsEu7KUBA==</latexit>

E
(x)
0

<latexit sha1_base64="BMygidG493/PW3E8csneNKIdR+A=">AAAB+3icbVDLSsNAFJ34rPVVdelmsAh1UxIrPnZFEVxWsA9pY5lMb+vQyYOZG7GEfIVbXbkTt36MC//FJAZR61kdzrmXe+5xAik0mua7MTM7N7+wWFgqLq+srq2XNjZb2g8Vhyb3pa86DtMghQdNFCihEyhgriOh7YzPUr99B0oL37vCSQC2y0aeGArOMJGuz/vmTVS534v7pbJZNTPQaWLlpExyNPqlj97A56ELHnLJtO5aZoB2xBQKLiEu9kINAeNjNoJuQj3mgrajLHBMd0PN0KcBKCokzUT4uRExV+uJ6ySTLsNb/ddLxf+8bojDYzsSXhAieDw9hEJCdkhzJZImgA6EAkSWJgcqPMqZYoigBGWcJ2KYVFPM+jhJcfj9/TRp7VetWrV2eVCun+bNFMg22SEVYpEjUicXpEGahBOXPJBH8mTExrPxYrx+jc4Y+c4W+QXj7ROwNZSD</latexit>

E
(y)
0

<latexit sha1_base64="gPO6iP9A8KmJJ/EHfZDWfav5qi4=">AAAB+3icbVDLSsNAFJ3UV62vqks3g0Wom5JY8bEriuCygn1IG8tkeluHTh7M3Agl5Cvc6sqduPVjXPgvJjGIWs/qcM693HOPE0ih0TTfjcLc/MLiUnG5tLK6tr5R3txqaz9UHFrcl77qOkyDFB60UKCEbqCAuY6EjjM5T/3OPSgtfO8apwHYLht7YiQ4w0S6uRiYt1F1uh8PyhWzZmags8TKSYXkaA7KH/2hz0MXPOSSad2zzADtiCkUXEJc6ocaAsYnbAy9hHrMBW1HWeCY7oWaoU8DUFRImonwcyNirtZT10kmXYZ3+q+Xiv95vRBHJ3YkvCBE8Hh6CIWE7JDmSiRNAB0KBYgsTQ5UeJQzxRBBCco4T8QwqaaU9XGa4uj7+1nSPqhZ9Vr96rDSOMubKZIdskuqxCLHpEEuSZO0CCcueSCP5MmIjWfjxXj9Gi0Y+c42+QXj7ROxxpSE</latexit>

E
(x)
0 + E

(y)
0

<latexit sha1_base64="gV9+TK+uTCwKdNR/deD0+0NUzew=">AAACB3icbVDJSgNBFOyJW4xbNEcvjUFIEMLEiMstKILHCGaBZAw9nZfYpGeh+404DPkAv8KrnryJVz/Dg//izCSIW52Kqvd49cr2pdBomu9GZm5+YXEpu5xbWV1b38hvbrW0FygOTe5JT3VspkEKF5ooUELHV8AcW0LbHp8lfvsWlBaee4WhD5bDRq4YCs4wlvr5wnnfvI5Kd+XJ3pSF5Uk/XzQrZgr6l1RnpEhmaPTzH72BxwMHXOSSad2tmj5aEVMouIRJrhdo8BkfsxF0Y+oyB7QVpeEndDfQDD3qg6JC0lSE7xsRc7QOHTuedBje6N9eIv7ndQMcHluRcP0AweXJIRQS0kOaKxG3AnQgFCCyJDlQ4VLOFEMEJSjjPBaDuKZc2sdJgsOv7/+S1n6lWqvULg+K9dNZM1myTXZIiVTJEamTC9IgTcJJSB7II3ky7o1n48V4nY5mjNlOgfyA8fYJo/yYNw==</latexit>

E
(x)
0

<latexit sha1_base64="BMygidG493/PW3E8csneNKIdR+A=">AAAB+3icbVDLSsNAFJ34rPVVdelmsAh1UxIrPnZFEVxWsA9pY5lMb+vQyYOZG7GEfIVbXbkTt36MC//FJAZR61kdzrmXe+5xAik0mua7MTM7N7+wWFgqLq+srq2XNjZb2g8Vhyb3pa86DtMghQdNFCihEyhgriOh7YzPUr99B0oL37vCSQC2y0aeGArOMJGuz/vmTVS534v7pbJZNTPQaWLlpExyNPqlj97A56ELHnLJtO5aZoB2xBQKLiEu9kINAeNjNoJuQj3mgrajLHBMd0PN0KcBKCokzUT4uRExV+uJ6ySTLsNb/ddLxf+8bojDYzsSXhAieDw9hEJCdkhzJZImgA6EAkSWJgcqPMqZYoigBGWcJ2KYVFPM+jhJcfj9/TRp7VetWrV2eVCun+bNFMg22SEVYpEjUicXpEGahBOXPJBH8mTExrPxYrx+jc4Y+c4W+QXj7ROwNZSD</latexit>

E
(y)
0

<latexit sha1_base64="gPO6iP9A8KmJJ/EHfZDWfav5qi4=">AAAB+3icbVDLSsNAFJ3UV62vqks3g0Wom5JY8bEriuCygn1IG8tkeluHTh7M3Agl5Cvc6sqduPVjXPgvJjGIWs/qcM693HOPE0ih0TTfjcLc/MLiUnG5tLK6tr5R3txqaz9UHFrcl77qOkyDFB60UKCEbqCAuY6EjjM5T/3OPSgtfO8apwHYLht7YiQ4w0S6uRiYt1F1uh8PyhWzZmags8TKSYXkaA7KH/2hz0MXPOSSad2zzADtiCkUXEJc6ocaAsYnbAy9hHrMBW1HWeCY7oWaoU8DUFRImonwcyNirtZT10kmXYZ3+q+Xiv95vRBHJ3YkvCBE8Hh6CIWE7JDmSiRNAB0KBYgsTQ5UeJQzxRBBCco4T8QwqaaU9XGa4uj7+1nSPqhZ9Vr96rDSOMubKZIdskuqxCLHpEEuSZO0CCcueSCP5MmIjWfjxXj9Gi0Y+c42+QXj7ROxxpSE</latexit>

0
<latexit sha1_base64="+3d+Ky6kn+32EvRtQ4RljBwc8jE=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKnII4tFF0FAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGQkCYajSzq50dP5LCoOu+O4Wl5ZXVteJ6aWNza3unvLvXMaHVHNo8lKHu+cyAFAraKFBCL9LAAl9C159ep373HrQRobrFWQRewCZKjAVnmEgtd1iuuFU3A10ktZxUSI7msPwxGIXcBqCQS2ZMv+ZG6MVMo+AS5qWBNRAxPmUT6CdUsQCMF2dB5/TIGoYhjUBTIWkmws+NmAXGzAI/mQwY3pm/Xir+5/Utji+8WKjIIiieHkIhITtkuBZJA0BHQgMiS5MDFYpyphkiaEEZ54lok0pKWR+XKc6+v18knZNqrV6tt04rjau8mSI5IIfkmNTIOWmQG9IkbcIJkAfySJ4c6zw7L87r12jByXf2yS84b58vGZFw</latexit>

0
<latexit sha1_base64="+3d+Ky6kn+32EvRtQ4RljBwc8jE=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKnII4tFF0FAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGQkCYajSzq50dP5LCoOu+O4Wl5ZXVteJ6aWNza3unvLvXMaHVHNo8lKHu+cyAFAraKFBCL9LAAl9C159ep373HrQRobrFWQRewCZKjAVnmEgtd1iuuFU3A10ktZxUSI7msPwxGIXcBqCQS2ZMv+ZG6MVMo+AS5qWBNRAxPmUT6CdUsQCMF2dB5/TIGoYhjUBTIWkmws+NmAXGzAI/mQwY3pm/Xir+5/Utji+8WKjIIiieHkIhITtkuBZJA0BHQgMiS5MDFYpyphkiaEEZ54lok0pKWR+XKc6+v18knZNqrV6tt04rjau8mSI5IIfkmNTIOWmQG9IkbcIJkAfySJ4c6zw7L87r12jByXf2yS84b58vGZFw</latexit>

0
<latexit sha1_base64="+3d+Ky6kn+32EvRtQ4RljBwc8jE=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKnII4tFF0FAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGQkCYajSzq50dP5LCoOu+O4Wl5ZXVteJ6aWNza3unvLvXMaHVHNo8lKHu+cyAFAraKFBCL9LAAl9C159ep373HrQRobrFWQRewCZKjAVnmEgtd1iuuFU3A10ktZxUSI7msPwxGIXcBqCQS2ZMv+ZG6MVMo+AS5qWBNRAxPmUT6CdUsQCMF2dB5/TIGoYhjUBTIWkmws+NmAXGzAI/mQwY3pm/Xir+5/Utji+8WKjIIiieHkIhITtkuBZJA0BHQgMiS5MDFYpyphkiaEEZ54lok0pKWR+XKc6+v18knZNqrV6tt04rjau8mSI5IIfkmNTIOWmQG9IkbcIJkAfySJ4c6zw7L87r12jByXf2yS84b58vGZFw</latexit>

0
<latexit sha1_base64="+3d+Ky6kn+32EvRtQ4RljBwc8jE=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKnII4tFF0FAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGQkCYajSzq50dP5LCoOu+O4Wl5ZXVteJ6aWNza3unvLvXMaHVHNo8lKHu+cyAFAraKFBCL9LAAl9C159ep373HrQRobrFWQRewCZKjAVnmEgtd1iuuFU3A10ktZxUSI7msPwxGIXcBqCQS2ZMv+ZG6MVMo+AS5qWBNRAxPmUT6CdUsQCMF2dB5/TIGoYhjUBTIWkmws+NmAXGzAI/mQwY3pm/Xir+5/Utji+8WKjIIiieHkIhITtkuBZJA0BHQgMiS5MDFYpyphkiaEEZ54lok0pKWR+XKc6+v18knZNqrV6tt04rjau8mSI5IIfkmNTIOWmQG9IkbcIJkAfySJ4c6zw7L87r12jByXf2yS84b58vGZFw</latexit>

 
[Lx,Ly ]
0 (x, y)

<latexit sha1_base64="HNmOmxObxB8PTIc4OiB5b8g+oFQ=">AAACC3icbVC7TsNAEDzzDOEVoKCgOREhBSmKHIJ4dBE0FBQgEYLkGOt82cAp54fu1iiWlU/gK2ihokO0fAQF/4JtIgSEqUYzu9qdcUMpNJrmuzExOTU9M1uYK84vLC4tl1ZWL3UQKQ4tHshAXblMgxQ+tFCghKtQAfNcCW23f5z57TtQWgT+BcYh2B678UVPcIap5JTWO6EWjnmdWKfOoHrqxPawMqjG206pbNbMHHSc1EekTEY4c0ofnW7AIw985JJpbdXNEO2EKRRcwrDYiTSEjPfZDVgp9ZkH2k7yAEO6FWmGAQ1BUSFpLsLPjYR5Wseem056DG/1Xy8T//OsCHsHdiL8MELweXYIhYT8kOZKpM0A7QoFiCz7HKjwKWeKIYISlHGeilFaVTHv4zDD3nf6cXK5U6s3ao3z3XLzaNRMgWyQTVIhdbJPmuSEnJEW4WRIHsgjeTLujWfjxXj9Gp0wRjtr5BeMt0+eNJpz</latexit>

y/ay
<latexit sha1_base64="qwm3ybywbrhn0G83vTWZN2siqgg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU02t+HErevFYwbSFNpTNdtMu3WzC7kYIob/BiwdFvPqDvPlv3KRB1Ppg4PHeDDPzvIgzpW370yotLa+srpXXKxubW9s71d29jgpjSahDQh7KnocV5UxQRzPNaS+SFAcep11vepP53QcqFQvFvU4i6gZ4LJjPCNZGcpITPEyG1Zpdt3OgRdIoSA0KtIfVj8EoJHFAhSYcK9Vv2JF2Uyw1I5zOKoNY0QiTKR7TvqECB1S5aX7sDB0ZZYT8UJoSGuXqz4kUB0olgWc6A6wn6q+Xif95/Vj7l27KRBRrKsh8kR9zpEOUfY5GTFKieWIIJpKZWxGZYImJNvlU8hCuMpx/v7xIOqf1RrPevDurta6LOMpwAIdwDA24gBbcQhscIMDgEZ7hxRLWk/Vqvc1bS1Yxsw+/YL1/AbmAjsQ=</latexit>

x/ax
<latexit sha1_base64="ExRo8bnmYOd2t8ALmfqnbw0SCfo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU02t+HErevFYwbSFNpTNdtMu3WzC7kZaQn+DFw+KePUHefPfuEmDqPXBwOO9GWbmeRFnStv2p1VYWl5ZXSuulzY2t7Z3yrt7LRXGklCHhDyUHQ8rypmgjmaa004kKQ48Ttve+Cb12w9UKhaKez2NqBvgoWA+I1gbyZmc4P6kX67YVTsDWiS1nFQgR7Nf/ugNQhIHVGjCsVLdmh1pN8FSM8LprNSLFY0wGeMh7RoqcECVm2THztCRUQbID6UpoVGm/pxIcKDUNPBMZ4D1SP31UvE/rxtr/9JNmIhiTQWZL/JjjnSI0s/RgElKNJ8agolk5lZERlhiok0+pSyEqxTn3y8vktZptVav1u/OKo3rPI4iHMAhHEMNLqABt9AEBwgweIRneLGE9WS9Wm/z1oKVz+zDL1jvX7Z0jsI=</latexit>

Figure C.3.: Inset: density plot of the stretching potential under examination. Figure:
plot of the 2D stretched ground state ψ[Lx,Ly ]

0 (x, y) for ax = ay = 1,
Lx = 0.3ax and Ly = 0.5ay. One can observe the flat region at the center,
in correspondence of the red region of the inset, where the wave function
has a constant value. One can also observe four regions where only one
component of the gradient nullifies, corresponding to the blue and green
regions of the inset.

E < En, up to a normalization constant, as:
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for the even states, where εn is determined via:

Dε+ 1
2
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Dε− 1
2
(0)

= −γ tanh
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2ξγ

L

2

)
. (C.69)

As for the odd states we have instead:

ψn(x) =





− sinh(
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where the quantization condition reads:
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2
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Dε− 1
2
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2ξγ

L

2

)
. (C.71)

After this we turn to the states with E > En. For the even states the wave-function
can be written as:

ψn(x) =
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while for the odd states one has

ψn(x) =





− sin(
√
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where the two quantization conditions are:
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, (C.74)
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)
, (C.75)
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✏

1 2 3 4 5

1

2

3

4

5

L/⇠
<latexit sha1_base64="Bg9HNwQKSnNl5pMNt1VYbGA3yVg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKtgBCcoIGgqKIOEkUmJF58smnHI+W3drRGTlG2ihokO0fA4F/4JtXEDCVKOZXe3s+JEUBm370yotLa+srpXXKxubW9s71d29tgljzcHloQx112cGpFDgokAJ3UgDC3wJHX9ylfmdB9BGhOoOpxF4ARsrMRKcYSq5Nyf9RzGo1uy6nYMuEqcgNVKgNah+9YchjwNQyCUzpufYEXoJ0yi4hFmlHxuIGJ+wMfRSqlgAxkvysDN6FBuGIY1AUyFpLsLvjYQFxkwDP50MGN6beS8T//N6MY4uvESoKEZQPDuEQkJ+yHAt0haADoUGRJYlByoU5UwzRNCCMs5TMU5rqaR9OPPfL5J2o+6c1hu3Z7XmZdFMmRyQQ3JMHHJOmuSatIhLOBHkiTyTF2tqvVpv1vvPaMkqdvbJH1gf3xF5ku0=</latexit>

0

3

21

4

x

V [L](x)
<latexit sha1_base64="ISsRCGA2XOfxPH1PFYvbMAxPP+Y=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJEdkKCMoKGgCBJ5CMdE58smnHI+W3drRGSFr6CFig7R8i8U/AuOSQEJU41mdrWz40dSGLTtTyu3sLi0vJJfLaytb2xuFbd3miaMNYcGD2Wo2z4zIIWCBgqU0I40sMCX0PKH5xO/dQ/aiFBd4ygCL2ADJfqCM0ylm+Zt4l564/LDYbdYsit2BjpPnCkpkSnq3eJXpxfyOACFXDJjXMeO0EuYRsEljAud2EDE+JANwE2pYgEYL8kSj+lBbBiGNAJNhaSZCL83EhYYMwr8dDJgeGdmvYn4n+fG2D/1EqGiGEHxySEUErJDhmuRVgG0JzQgsklyoEJRzjRDBC0o4zwV47SbQtqHM/v9PGlWK85RpXp1XKqdTZvJkz2yT8rEISekRi5InTQIJ4o8kWfyYj1ar9ab9f4zmrOmO7vkD6yPb5QTlOA=</latexit>

En
<latexit sha1_base64="UgT5M4q9B9/Mnw2P9bXiiW6Z+C8=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9EY+IRozwS2JDZocEJs7ObmV4NIXyCVz15M179Hg/+iwvuQcE6Vaq609UVxEpact1PJ7e0vLK6ll8vbGxube8Ud/caNkqMwLqIVGRaAbeopMY6SVLYig3yMFDYDIaXU7/5gMbKSN/RKEY/5AMt+1JwSqXbq67uFktu2Z2BLRIvIyXIUOsWvzq9SCQhahKKW9v23Jj8MTckhcJJoZNYjLkY8gG2U6p5iNYfz6JO2FFiOUUsRsOkYjMRf2+MeWjtKAzSyZDTvZ33puJ/Xjuh/rk/ljpOCLWYHiKpcHbICiPTDpD1pEEiPk2OTGomuOFEaCTjQqRikpZSSPvw5r9fJI1K2TspV25OS9WLrJk8HMAhHIMHZ1CFa6hBHQQM4Ame4cV5dF6dN+f9ZzTnZDv78AfOxzfCtZIz</latexit>
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Figure C.4.: Upper panel: plot of the first six energy levels when we stretch the state
n = 4. As L increases, just as for the infinite well, the levels with energy
below E4 form a doublet structure, while the levels above E4 get com-
pressed. Lower panel: plot of the wave functions of the first six levels
for the specific choice L/ξ = 0.4. Inset: a sketch of the potential under
examination.

for even and odd states respectively.

We first note that for E = En, both Eqs.(C.69, C.74) are fulfilled, and substituting
this value into Eq. (C.68) one obtains the stretched version of ψn(x). As in the case
of the infinite well, we note that the two quantization conditions in Eqs.(C.69, C.71)
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become identical in the limit of large L, giving rise to a doublet structure shown in
Fig. C.4 for the case the barrier height is E4. Finally, also in this case as L becomes
large the system approach the free particle limit, so that the states with energy above
En get energetically compressed.
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D. Appendix to Chap. 7

D.1. Properties of the matrix Ky

In this section we derive some properties of the matrix Ky, whose elements are defined
as:

[Ky]``′ =
〈
φ(`)
y

∣∣ ∂
∂y

∣∣∣φ(`′)
y

〉
. (D.77)

In order to do so, we start from the orthonormality relation between the eigenstates
of the transverse Hamiltonian ĥy(x̂):

〈
φ(`)
y

∣∣∣φ(`′)
y

〉
= δ``′ , (D.78)

which derived with respect to y on both sides yelds:

[Ky]``′ =
〈
φ(`)
y

∣∣ ∂
∂y

∣∣∣φ(`′)
y

〉
= −

(
∂

∂y

〈
φ(`)
y

∣∣
) ∣∣∣φ(`′)

y

〉
= −[Ky]

∗
`′`, (D.79)

from which it follows the anti-hermiticity property Ky = −K†y.
We also notice that, since the {

∣∣∣φ(`)
y

〉
; ` = 0, 1, 2, · · · } form a complete basis, we have:

[K†yKy]``′ =
∑

`′′

[K†y]``′′ [Ky]`′′`′ =
∑

`′′

[Ky]
∗
`′′`[Ky]`′′`′
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(
∂

∂y

〈
φ(`)
y

∣∣
)
∂
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y

〉
. (D.80)

We further observe that the matrix elements [Ky]``′ are all real. This observation,
together with the anti-Hermitian property, implies that:

[Ky]`` = 0, ∀`. (D.81)

The reality of the matrix elements follows from the observation that the wave functions
in the x representation associated with the eigenstates of ĥy(x̂), the φ(`)

y (x) =
〈
x
∣∣∣φ(`)
y

〉
,
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can always be chosen to be real together with all their derivatives with respect to y, i.e.:

φ(`)
y (x) = φ(`)∗

y (x),
∂k

∂yk
φ(`)
y (x) =

(
∂k

∂yk
φ(`)
y (x)

)∗
. (D.82)

Exploiting this last property we have:
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from which, setting y′ = y, Eq. (D.81) follows.
Finally we consider the identity:
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Deriving both sides of the identity with respect to y and setting y′ = y we get:
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Equation (D.85) can be used to write the analogous expression for the elements
[ ~K(~R)]``′ :

[ ~K(~R)]``′ =

〈
φ

(`)
~R

∣∣∣ ∂

∂ ~R
V̂~R(x̂)

∣∣∣φ(`′)
~R

〉

E
(`′)
~R
− E(`)

~R

, (D.86)

where we highlighted the dependence of both the energies and the wave functions on the
control parameters.
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