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Abstract

Symplectic fillings of standard tight contact structures on lens spaces are understood
and classified. The situation is different if one considers non-standard tight structures (i.e.
those that are virtually overtwisted), for which a classification scheme is still missing. In this
work we use different approaches and employ various techniques to improve our knowledge
of symplectic fillings of virtually overtwisted contact structures.

We study curves configurations on surfaces to solve the problem in the case of a specific
family of lens spaces. Then we give general constraints on the topology of Stein fillings of
any lens space by looking at algebraic properties of integer lattices and at geometric slicing of
solid tori. Furthermore, we try to place these manifolds in the context of algebraic geometry,
in order to determine whether Stein fillings can be realized as Milnor fibers of hypersurfce
singularities, finding a series of necessary conditions for this to happen. In the concluding
part of the thesis, we focus on the connections between planar contact 3-manifolds and the
theory of Artin presentations.
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Introduction

In this thesis we study some topological properties of symplectic 4-manifolds with non-
empty (and prescribed) boundaries. If the boundary of a symplectic manifold (X,ω) is
ω-convex (i.e. Lνω = ω for an outer vector field ν defined in a neighborhood of ∂X), then
the restriction of ω to the 3-dimensional boundary is a contact 1-form α = ω(ν,−): this is
the basic fact that ties symplectic and contact topology together.

A contact structure ξ is a nowhere integrable planes distribution. The first distinction
within contact geometry is between overtwisted and tight structures: ξ is an overtwisted
contact structure on Y if there exists an embedded disk D ↪→ Y such that ξ agrees with
TD along the boundary ∂D. If such disk does not exist, the structure is called tight.
The classification of overtwisted contact structures on a 3-manifold is essentially reduced
to a problem in homotopy theory: there is a unique overtwisted contact structure in every
homotopy class of oriented plane fields, see [Eli89]. However, all the contact structures that
arise from a symplectic filling (see Definition 1.7) as ξ = ker(ω(ν,−)) are tight [EG91],
and their properties are more geometric in nature. As a drawback, this kind of geometric
approach that uses differential forms is not ideal for topologists. Thanks to the works of
Donaldson [Don96] and Gompf [Gom04], the way of looking at symplectic 4-manifolds has
changed in favor of a more topological point of view: up to certain conditions, symplectic
4-manifolds are the same as Lefschetz fibrations, in the sense that such a fibration supports a
symplectic form and, vice versa, any such manifold can be given the structure of a Lefschetz
fibration.

Of particular importance in the context of contact 3-manifolds are those Lefschetz fi-
brations over the disk, with bounded fibers and positive monodromy: this is one way of
characterizing Stein domains [LP01], [AÖ01]. A Stein domain can be defined as a smooth
submersion X → D2 whose general fiber is a surface with boundary, away from a finite set of
critical points where the local behavior is modeled by the holomorphic map (z, w) 7→ z2+w2.
To each singular value corresponds a singular fiber, obtained by collapsing to a point a sim-
ple closed curve on a neighboring smooth surface Σ, see [GS99]. The advantage of this
correspondence is that all the information regarding the underlying diffeomorphism type
of the Stein domain is encoded by a chosen positive factorization of the monodromy: the
(ordered) collection of those simple curves on the general fiber is the supporting set of as
many positive (i.e. right) Dehn twists, whose product τ1τ2 · · · τn is called the monodromy,
usually indicated with the letter ϕ.

The element ϕ of the mapping class group Γ(Σ) is not enough, alone, to describe the
symplectic (in fact Stein) 4-manifold X we started from, but a positive factorization has
to be specified. This is the key distinction between the 4-dimensional description of a
symplectic manifold and the 3-dimensional description of a contact manifold: the pair (Σ, ϕ)
constitutes a 3-dimensional open book decomposition, and identifies a 3-manifold Y together
with a contact structure ξ on it, which is said to be supported by the open book itself. The
resulting contact manifold (Y, ξ) in unique up to contactomorphism [Gir03]. The pair (Y, ξ)
is determined by the element ϕ ∈ Γ(Σ) and is independent of the chosen factorization: a
different positive factorization of ϕ would describe a different symplectic 4-manifold who
has, nevertheless, the same contact boundary (Y, ξ).
In synthesis, open book decompositions are the boundaries of Lefschetz fibrations, and by
running through the possible positive factorizations of the monodromy it is possible to find
all the symplectic 4-manifold with a prescribed contact boundary (this holds when the genus
of Σ is zero thanks to the work of Wendl [Wen10], otherwise it is more complicated). This is
what is usually referred to as the problem of studying symplectic or Stein fillings of a given
contact 3-manifold.



This dissertation is about Stein fillings of certain contact structures on lens spaces. These
structures are understood and classified in the work of Honda [Hon00a], which is therefore
the starting point of the theory.

We review some of the basic facts about contact and symplectic topology in Chapter 1,
which serves as an introduction for all of the remaining chapters. These are independent
one from the other, and can be read separately. In Chapter 2 we focus our attention on a
specific family of lens spaces, i.e. those which arise via surgery on the Hopf link, and we
classify their Stein fillings. We will prove the following:

Theorem.
Let L be the lens space resulting from Dehn surgery on the Hopf link with framing −a1 and
−a2, with a1, a2 ≥ 2. Let ξvo be a virtually overtwisted contact structure on L. Then (L, ξvo)
has:

• a unique (up to diffeomorpism) Stein filling if a1 6= 4 6= a2;

• two homeomorphism classes of Stein fillings, distinguished by the second Betti number
b2, if at least one of a1 and a2 is equal to 4 and the corresponding rotation number is
±2. Moreover, the diffeomorphism type of the Stein filling with bigger b2 is unique. If
the rotation number is not ±2, then we have again a unique filling.

Chapter 3 is dedicated to general restrictions on the topology of minimal fillings of lens
spaces, such as the Euler characteristic and the fundamental group. Among various results,
we will show:

Theorem.
Let ξ be any tight contact structure on L(p, q). Let W be a minimal symplectic filling of
L(p, q) and let l = length(p/q). Then χ(W ) ≤ 1 + l.

Theorem.
Let W be a symplectic filling of (L(p, q), ξvo), with p = m2 and q = mk − 1, for some
m > k > 0 and (m, k) = 1. Then χ(W ) ≥ 2.

Then, inspired by an open question in the book [NS12], we look for necessary conditions
for realizing lens spaces as boundary of the Milnor fiber of a complex hypersurface singularity:
Chapter 4 deals with this problem, after recalling some algebraic geometry terminology. The
main result from this chapter is the following theorem:

Theorem.
Let ξvo be a virtually overtwisted structure on L(p, q). If we are in one of the cases below, then
(L(p, q), ξvo) is not the boundary of the Milnor fiber of any complex hypersurface singularity:

a) p/q = [a1, a2, . . . , an] and ai is odd for some i;

b) p/q = [2x1, 2x2];

c) p/q = [2x1, 2x2, . . . , 2xn], with xi > 1 for every i (n ≥ 3) and either:

i) q2 6≡ 1 (mod p) or

ii) q2 ≡ 1 (mod p) and n is even.

Finally, the concluding part of the thesis, Chapter 5, looks for connections between
contact geometry and the theory of Artin presentations.
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Chapter 1

Background notions

1.1 Generalities on contact 3-manifolds

In this opening chapter, we recall some of the basic notions of contact and symplectic
topology, following mainly the book of Özbağcı and Stipsicz [ÖS13].

Definition 1.1.
A contact structure on a 3-manifoldM is a nowhere integrable planes distribution ξ. If there
exists an embedded disk D ↪→M such that ξ agrees with TD along the boundary ∂D, then
the contact structure ξ is said to be overtwisted, otherwise it is called tight.

Definition 1.2.
Two contact 3-manifolds (Y1, ξ1) and (Y2, ξ2) are contactomorphic if there exists a diffeomor-
phism f : Y1 → Y2 such that df(ξ1) = ξ2. Two contact structures ξ and ξ′ on a 3-manifold
Y are isotopic if there is a contactomorphism f : (Y, ξ) → (Y, ξ′) which is isotopic to the
identity.

A contact structure ξ on an oriented 3-manifold Y can also be described as the kernel
of a 1-form α such that α ∧ dα 6= 0. If the orientation of Y coincides with the one given by
α∧ dα, then we say that ξ is positive. This condition is independent of the choice of α with
ξ = kerα. We will always assume that the contact structure we deal with are positive.

Definition 1.3.
The standard contact structure on R3 is the kernel of the 1-form:

αst = dz + x dy.

This extends to a well defined contact structure ξst = kerαst on S3, which we refer to as
the standard contact structure on S3.

Definition 1.4.
We say that a knot K ⊆ Y is in Legendrian position with respect to a contact structure ξ
on Y if

TxK ⊆ ξx,

for every x ∈ K. We simply refer to Legendrian knots and links when (Y, ξ) = (S3, ξst).

For a Legendrian knot K ⊆ (R3, ξst) we define the two classical invariants (invariants of
the contact isotopy type, see [ÖS13, Sections 4.1, 4.2]):

• the Thurston-Bennequin number tb(K) ∈ Z is the measure of the contact framing (i.e.
the vector field orthogonal to ξ along K) with respect to the Seifert framing of K.
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• The rotation number rot(K) ∈ Z is the winding number of TK calculated in any
trivialization of ξ along K. For this definition to make sense, we need to choose an
orientation of K (for a nullhomologous knot K in a general 3-manifold we need to fix
a Seifert surface for it, and in general rot(K) will depend on this choice).

By looking at the front projection p(K) of an oriented Legendrian knot K ⊆ (R3, ξst) to
the yz-plane, we can compute its Thurston-Bennequin number and rotation number in the
following way:

tb(K) =w(p(K))− 1

2
(cD + cU ),

rot(K) =
1

2
(cD − cU ),

where w(p(K)) is the writhe of the knot diagram, and cD and cU are respectively the number
of down and up cusps, see [ÖS13, Lemmas 4.2.3, 4.2.4]. Following [ÖS13, Section 11], we now
define an operation which is an extension to Legendrian knots of the usual Dehn surgery,
and has the effect of producing a new contact manifold out of a Legendrian knot K inside
(Y, ξ).

Definition 1.5.
Contact (±1)-surgery on K ⊆ (Y, ξ) is an integral Dehn surgery along K with framing given
by its contact framing ±1. The contact structure on Y r ν(K) extends to the solid torus
S1 × D2 glued in while performing the surgery, which is endowed with the unique tight
contact structure that makes the boundary convex (see Definition 3.16) and whose dividing
curves on the boundary agree with the ones coming from the exterior of the knot, see [ÖS13,
Section 11.2]. We refer to contact (−1)-surgery as Legendrian surgery.

Theorem ([DG04]).
Every closed contact 3-manifold is the result of contact (±1)-surgery on a Legendrian link
in the standard S3.

Contact geometry has become popular among topologists thanks to the work of Giroux
[Gir03]. Open book decompositions can be used to study contact 3-manifolds in the way that
we now describe. Given a fibered link L inside a (compact, connected, oriented) 3-manifold
Y , we look at the fibration structure of the complement

f : Y r ν(L)→ S1,

whose fiber Σ is a surface with boundary. The link L is called the binding of the open book
decomposition, and Σ is the page. This structure can be also described abstractly as a pair
(Σ, ϕ), where ϕ is the element of the mapping class group Γ(Σ) which corresponds to the
monodromy of the previous fibration. The 3-manifold Y can be recovered by capping off
the mapping torus Mϕ with solid tori, one for every boundary component (glued identifying
the boundary of the meridian disk with the S1-factor of Mϕ, so that the core curves of the
D2 × S1’s will recover the binding L).

Definition 1.6.
A contact structure ξ on Y is supported by the open book with page Σ and binding L if ξ
can be expressed as the kernel of a contact 1-form α such that L is transverse to the contact
planes, dα is a volume form on each page and α(L) > 0 with the orientation of L induced by
the pages. In particular, (Y, ξ) is said to be planar if Y admits an open book decomposition
with planar pages supporting ξ.

In the work [TW75], the authors start from such a decomposition to show that any
3-manifold has a contact forms. Later, open book decompositions appear in Giroux cor-
respondence up to the notion of stabilization: start with an abstract open book decompo-
sition (Σ, ϕ) and modify the page by attaching a 1-handle to Σ. Call Σ′ the new surface
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and consider a simple closed curve γ intersecting the cocore of the new 1-handle once. We
get another open book decomposition described by the pair (Σ′, ϕ ◦ τ±γ ), which is called a
positive/negative stabilization of (Σ, ϕ). The inverse procedure is called positive/negative
destabilization. As explained in [OS04, Chapter 9], a positive stabilization has no effect
on the associated contact 3-manifold: if (Σ, ϕ) describes (Y, ξ), then (Σ′, ϕ ◦ τγ) describes
(Y, ξ)#(S3, ξst) which is contactomorphic to (Y, ξ). On the other hand, a negative stabi-
lization corresponds to a connected sum with an overtwisted (S3, ξot), hence the resulting
contact structure will be overtwisted as well. We are now ready to state the following:

Theorem (Giroux).
On any closed oriented 3-manifold there is a one-to-one correspondence between the set
of isotopy classes of contact structures and the open book decompositions up to positive
stabilization/destabilization.

Given a Legendrian knot, there is a procedure, called stabilization (not to be con-
fused with the stabilization of an open book decomposition), which reduces its Thurston-
Bennequin number. After choosing an orientation of the knot, the stabilization can be either
positive or negative, according to the effect it has on the rotation number (see Figure 1.1).

Figure 1.1: Positive and negative stabilizations.

Recall that the rotation number of an oriented Legendrian knot in (S3, ξst) can be computed
in the front projection by the formula

rot(K) =
1

2
(cD − cU ),

In particular, a positive stabilization increases the rotation number by 1 and a negative
stabilization decreases it by 1.

As discussed above, we can present contact 3-manifolds in two different ways: via a
Legendrian link in (S3, ξst) on which to perform contact (±1)-surgery, or via an open book
decomposition (Σ, ϕ). In what follows, we give an idea of how to move from a representation
to the other, at least in the case when the link is as simple as possible, i.e. a 1-component
unknot. We start with the open book decomposition of (S3, ξst), which has an annular page
and monodromy given by a positive Dehn twist along the core curve γ, see Figure 1.2.

γ

1-handle

1-handle

Figure 1.2: Open book decomposition for (S3, ξst).

Now a Legendrian unknot K with tb = −1 in (S3, ξst) can be placed on a page of the
previous decomposition, simply by drawing a parallel copy of γ, see [Etn04]. Performing
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Legendrian surgery on K gives a contact manifold (RP 3 with its unique tight structure)
with supporting open book whose page is an annulus and whose monodromy is τγτγ (Figure
1.3).

γ

1-handle

1-handle

(a) Legendrian unknot with tb = −1. (b) Resulting page.

Figure 1.3: Placing a knot on a page.

To reduce the Thurston-Bennequin number of the unknot, we add a positive or negative
stabilization. Before drawing this Legendrian unknot K ′ on a page of an open book decom-
position of (S3, ξst) we need to attach a 1-handle to the annulus and modify the monodromy
by adding a positive Dehn twist along a curve intersecting the cocore of this new 1-handle
once. We always attach the 1-handles on a connected component of the boundary, so that
the total number of boundary components increases by one every time. Then we can draw
K ′ on the page by sliding the core curve of the annulus over the 1-handle. According to
where we attach the 1-handle, we get a positive or negative stabilization (compare with
Figure 1.4 and with [Etn04]): in order to distinguish between positive and negative, we need
to pick an orientation of K ′ on the page and we orient it in the clockwise direction.

For the rest of the work we will always use this orientation convention, specified for
diagrams of Legendrian unknots: these knot diagrams in the front projection are oriented
in the counter-clockwise direction, dwhile curves on the planar page of an open book are
oriented in the clockwise direction, as in Figure 1.3.

(a) Positive stabilization. (b) Effect on the open book.

γ

1-handle

1-handle

(c) Resulting page.

(d) Negative stabilization. (e) Effect on the open book.

γ

1-handle

1-handle

(f) Resulting page.

Figure 1.4: Placing a stabilized knot on a page.

14



1.2 The problem of understanding Stein fillings

The problem of classifying Stein (or more generally, symplectic) fillings of contact 3-manifolds
has come to the attention of topologists since the pioneering work of Eliashberg [Eli90a].
Showing that S3 with its standard tight contact structure has a unique Stein filling, which
is (D4, Jst), is the starting point of this active research area. In the last years several other
works have appeared on this subject. McDuff showed in [McD90] that L(p, 1), endowed
with the standard tight contact structure, has a unique Stein filling when p 6= 4, and two
different Stein fillings when p = 4. Later, Lisca [Lis08] extended McDuff’s results and gave
a complete list of the Stein fillings of (L(p, q), ξst). Lens spaces surely represent a class of
3-manifolds for which many results are known: it comes from the fact that, in general, even
trying to classify all the tight contact structures (up to isotopy) on a 3-manifold is hard,
but at least on lens spaces this list is available thanks to the work of Honda [Hon00a] (see
Section 1.3). Partial results about fillings are available when one considers non-standard
tight contact structures: Plamenevskaya and Van Horn-Morris [PHM10] showed that the
virtually overtwisted structures on L(p, 1) have a unique Stein filling. Another classification
result about fillings of virtually overtwisted structures on certain families of lens spaces is
due to Kaloti [Kal13].

Following the notes of Özbağcı [Özb15], we recall some definitions and results in the
theory of symplectic fillings.

Definition 1.7.
A contact 3-manifold (Y, ξ) is said to be weakly symplectically fillable if there is a compact
symplectic 4-manifold (W,ω) such that ∂W = Y as oriented manifolds, and ω|ξ > 0. In this
case we say that (W,ω) is a weak symplectic filling of (Y, ξ).

Definition 1.8.
A contact 3-manifold (Y, ξ) is said to be strongly symplectically fillable if there is a compact
symplectic 4-manifold (W,ω) such that ∂W = Y as oriented manifolds, ω is exact near the
boundary and a primitive β can be chosen in such a way that ker(β|Y ) = ξ. In this case we
say that (W,ω) is a strong symplectic filling of (Y, ξ).

Before giving the definition of a Stein fillable contact 3-manifold, recall that a Stein
manifold is a complex manifold (X, J) which admits a proper holomorphic embedding into
some CN . Let φ : X → R be a function which is proper, bounded below and such that
the associated Hermitian form Hφ is positive definite (see [Özb15, page 4]). Then, a Stein
domain (W,J) is the preimage φ−1(−∞, t], for some regular value t ∈ R, with the restricted
complex structure J = J |W .

Definition 1.9.
A contact 3-manifold (Y, ξ) is said to be Stein fillable if there is a Stein domain (W,J) such
that ∂W = Y as oriented manifolds, and ξ is isotopic to TY ∩ JTY . In this case we say
that (W,J) is a Stein filling of (Y, ξ).

We often talk about minimal fillings in the sense that the underlying smooth 4-manifold
is minimal, i.e. it does not contain smoothly embedded spheres of self-intersection equal to
−1. Stein domains are an example of minimal fillings of their contact boundary, see [ÖS13,
Theorem 10.3.1].

Remark 1.
By a result of Eliashberg and Gromov [EG91], we know that weakly fillable contact structures
are always tight. A Stein filling is in particular a strong filling where the symplectic form is
exact (i.e. an exact symplectic filling), and a strong filling is a weak filling. In the literature
there are examples of contact 3-manifolds which are:

• tight but non fillable [EH02], [LS03];
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• weakly but not strongly fillable [Eli96], [DG01];
• strongly but not Stein fillable [Ghi05].

The situation is different when we deal with a contact structure on a rational homology
sphere: in this case, a weak symplectic filling can be modified into a strong symplectic
filling, see [OO99] and [Eli04].

In this work we will study exclusively planar contact structures, for which the problem
of understanding symplectic fillings is simplifyed by the following:

Theorem ([NW11]).
If (Y, ξ) is a planar contact 3-manifold, then every weak symplectic filling (W,ω) of (Y, ξ) is
symplectically deformation equivalent to a blow up of a Stein filling of (Y, ξ).

Definition 1.10.
Let X be a 4-manifold with boundary. A Lefschetz fibration over a disk is a smooth map
f : X → D2 subject to the following conditions:

1) the map f is a submersion away from a finite set of critical points x1, . . . , xn in the
interior of X;

2) these critical points are mapped via f to pairwise different points in D2;
3) around each of these critical points there are complex coordinates (z, w) such that f ,

in this local model, looks like (z, w)→ z2 + w2.

The general fiber of f is a smooth surface Σg,b of genus g and with b boundary components.
Let {λ1, . . . , λn} be an ordered set of oriented loops based at a fixed point in the interior of
D2 r {f(x1), . . . , f(xn)}, such that λi encircles only the singular value f(xi), as in Figure
1.5.

f (xi)

f (xn)
f (x1)

λ1

λi

Figure 1.5: Loops around the singular values.

These oriented loops freely generate the fundamental group π1(D2 r {f(x1), . . . , f(xn)}).
We look at the monodromy of the fibration: consider the Σg,b-bundle over the loop λi. This
bundle has a monodromy, which is a positive or negative Dehn twist τ±γi in the mapping class
group Γg,b = Γ(Σg,b) along a simple embedded curve γi ⊆ Σg,b (see [GS99]). If all the Dehn
twists corresponding to the loops λi’s are positive, then the Lefschetz fibration f is called
positive. In this thesis we will deal only with positive Lefschetz fibrations. The product of
these ordered Dehn twists is the monodromy of f :

τγ1
τγ2
· · · τγn ∈ Γg,b.

If the curves γi for i = 1, . . . , n are all homologically non-trivial in the fiber, then the
Lefschetz fibration is said to be allowable.

As already mentioned in the introduction, Loi-Piergallini [LP01] and independently
Akbulut-Özbağcı [AÖ01] showed that Stein domains can be understood in terms of topo-
logical data: a positive allowable Lefschetz fibration over a disk has a Stein structure on its
total space, and, vice versa, any Stein domain can be given such a fibration structure.
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Giroux correspondence allows one to represent a contact 3-manifold via a compatible
open book decomposition. As a consequence, factorizing the monodromies of all the com-
patible open book decompositions into products of positive Dehn twists is a (theoretical)
solution to produce a complete list of Stein fillings for the corresponding contact 3-manifold.
In the case of planar open book decomposition, the factorization problem is easier thanks
to the following theorem of Wendl:

Theorem ([Wen10]).
If a contact structure ξ on a 3-manifold Y is supported by an open book decomposition with
planar page, then every strong symplectic filling of (Y, ξ) is symplectic deformation equivalent
to a blow-up of a positive allowable Lefschetx fibration compatible with the given open book.

Another important theorem regards the representation of Stein domain by means of surgery
diagram:

Theorem ([Eli90b], [Gom98]).
A smooth handlebody consisting of a 0-handle, some 1-handles and some 2-handles admits a
Stein structure if the 2-handles are attached to the Stein domain \(S1×D3) along Legendrian
knots in #(S1×S2, ξst) such that the attaching framing of each Legendrian knot is −1 relative
to the contact framing, and ξst refers to the standard tight contact structure on #(S1×S2).
Conversely, any Stein domain admits such a handle decomposition.

1.3 Contact structures on lens spaces

Given a pair of coprime integers p > q > 0, we consider the continued fraction expansion

p

q
= [a1, a2, . . . an] = a1 −

1

a2 − 1

. . .− 1
an

,

with ai ≥ 2 for every i. As a smooth oriented 3-manifold, L(p, q) is the integral surgery on
a chain of unknots with framings −a1,−a2, . . .− an, see Figure 1.6.

Edoardo Fossati - SNS (Pisa)!2

Lens spaces

φ

p
q

= a1 − 1
a2 − 1

⋱ − 1
an

= [a1, a2, …, an], ai ≥ 2

−an−a1 −a2 −a3 −an−1
L(p, q) = S3

L(p, q)

Figure 1.6: Surgery link producing L(p, q).

To equip L(p, q) with a tight contact structure, we put the link of Figure 1.6 into Legendrian
position with respect to the standard tight contact structure of S3, in order to form a linear
chain of Legendrian unknots. We do this in such a way that the Thurston-Bennequin number
of the ith component is −ai+1. Remember that the convention that we use here is that each
knot in the front projection is oriented in the counter-clockwise direction. The information
about the tight contact structure that we get by performing Legendrian surgery on this link
is encoded by the position of the zig-zags.

Definition 1.11.
A tight structure ξ on Y is called universally tight if its pullback to the universal cover Ỹ is
tight. The tight structure ξ is called virtually overtwisted if its pullback to some finite cover
Ŷ is overtwisted.
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Remark 2.
A consequence of the geometrization conjecture is that the fundamental group of any 3-
manifold is residually finite (i.e. any non trivial element is in the complement of a normal
subgroup of finite index), and this implies that any tight contact structure is either univer-
sally tight or virtually overtwisted, see [Hon00a].

From the classification of tight contact structures on lens spaces (see [Hon00a]), if we look
at a Legendrian realization of the link of Figure 1.6 given by a chain of Legendrian unknots,
we can tell if the resulting contact structure will be universally tight or virtually overtwisted:
if we have only stabilizations of the same type, either all positive or all negative, (i.e. zig-
zags on the same side) then the contact structure will be universally tight, otherwise, if we
have both positive and negative stabilizations, it will be virtually overtwisted (see Figure
1.7 for an example with n = 3).

Edoardo Fossati - SNS (Pisa)!3

Definition: 

a contact structure on a 3-manifold is a nowhere integrable plane field.

Contact structure on lens spaces

[tb(Ki) = − ai + 1]

• Choose a contact structure on

• Isotope the link into Legendrian position

S3 (ξ = ker(dz + xdy))
−a1 −a2 −a3 −an−1 −an

L(17,7) :

(a) A universally tight structure.

Edoardo Fossati - SNS (Pisa)!3

Definition: 

a contact structure on a 3-manifold is a nowhere integrable plane field.

Contact structure on lens spaces

[tb(Ki) = − ai + 1]

• Choose a contact structure on

• Isotope the link into Legendrian position

S3 (ξ = ker(dz + xdy))
−a1 −a2 −a3 −an−1 −an

L(17,7) :

(b) A virtually overtwisted structure.

Figure 1.7: Comparing universally tight and virtually overtwisted contact structures.

Remark 3.
In both cases, by attaching n 4-dimensional 2-handles to B4 with framing specified by the
Thurston-Bennequin number of each component (decreased by 1), we get a Stein domain
whose boundary has the contact structure specified by the Legendrian link. This shows that
every tight structure on any lens space is Stein fillable. We will often write just "filling" to
mean "Stein filling".
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Chapter 2

Contact surgery on the Hopf link:
classification of fillings

Let H ⊆ S3 be the two-components Hopf link. After choosing a Legendrian representative
of H with respect to the standard tight contact structure on S3, we perform contact (−1)-
surgery on the link itself. We get a lens space together with a tight contact structure on
it, which depends on the chosen Legendrian representative. In this chapter, we classify
its minimal symplectic fillings up to homeomorphism (and often up to diffeomoprhism),
extending the results of [Lis08] which covers the case of universally tight structures, and the
article of [PHM10] which describes the fillings of (L(p, 1), ξvo).

Theorem 2.1.
Let L be the lens space resulting from Dehn surgery on the Hopf link with framing −a1 and
−a2, with a1, a2 ≥ 2. Let ξvo be a virtually overtwisted contact structure on L. Then (L, ξvo)
has:

• a unique (up to diffeomorpism) Stein filling if a1 6= 4 6= a2;

• two homeomorphism classes of Stein fillings, distinguished by the second Betti number
b2, if at least one of a1 and a2 is equal to 4 and the corresponding rotation number is
±2. Moreover, the diffeomorphism type of the Stein filling with bigger b2 is unique. If
the rotation number is not ±2, then we have again a unique filling.

We want to classify the fillings of the virtually overtwisted structures on L(p, q) when

p

q
= [a1, a2].

Since all the tight contact structures on lens spaces are planar (see [Sch07, Theorem 3.3]),
we can apply Wendl’s result on planar contact structures [Wen10] to our case. We will prove
Theorem 2.1 by combining techniques coming from mapping class group theory with results
by Schönenberger [Sch07], Plamenevskaya-Van Horn-Morris [PHM10], Kaloti [Kal13] and
Menke [Men18].

2.1 Proof of the classification theorem

Recall from Section 1.2 that a symplectic filling is called exact if the symplectic form is exact.
Stein domains are examples of exact fillings of their boundary. In [Men18] it is proved the
following:

Theorem ([Men18]).
Let K be an oriented Legendrian knot in a contact 3-manifold (M, ξ) and let (M ′, ξ′) be
obtained from (M, ξ) by Legendrian surgery on S+S−(K), where S+ and S− are positive
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and negative stabilizations, respectively. Then every exact filling of (M ′, ξ′) is obtained from
an exact filling of (M, ξ) by attaching a symplectic 2-handle along S+S−(K).

Then we can derive an immediate corollary (everything is meant up to diffeomorphism).

Corollary.
Let (L, ξ) be obtained by Legendrian surgery on the Hopf link.

a) Suppose that both components have been stabilized positively and negatively. Then
(L, ξ) has a unique Stein filling.

b) When just one component is positively and negatively stabilized, and the other one has
topological framing different from −4, then again (L, ξ) has a unique Stein filling.

c) If only one component is positively and negatively stabilized, and the other one has
framing −4, then (L, ξ) has two distinct fillings, coming from the two Stein fillings of
(L(4, 1), ξst).

The case that does not follow from the theorem of Menke, among the virtually overtwisted
structures, is when one component of the link has all the stabilizations on one side and the
other component on the opposite side. The rest of this chapter is devoted to cover this
missing case. We will derive the classification of the fillings of the contact structures on
L(p, q) as in Figure 2.1 in various steps.

−1

−1

Figure 2.1

Step 1: place the link on a planar page

We will focus on those lens spaces L = L(p, q) with p
q = [a1, a2]. Starting from the link of

Figure 2.1, we construct a planar open book decomposition of (S3, ξst) so that the link itself
can be placed on a page inducing the same framing as the contact framing: in order to do so,
we first slide one component over the other. This changes the isotopy class of the link, but
does not change the contact type of the 3-manifold obtained by Legendrian (−1)-surgery,
see [DGS04].

Proposition 2.2.
Figure 2.2 represents the page (and the monodromy) of an open book decomposition com-
patible with the contact structure obtained by performing Legendrian surgery on the link of
Figure 2.1.

20



Proof.
Proceeding as described in Chapter 1, we start with the green curve γ around the single
inner hole s. Then the page is stabilized with the holes (and corresponding stabilizing green
curves) p1, . . . , pk by attaching Hopf bands to the outer boundary component of the page. So
nothing happens to the original curve γ, and we can place the yellow curve α going around
every hole, corresponding to the yellow component of the link of Figure 2.1. The next step
is to slide the purple curve around the yellow one in Figure 2.1, so that in the page we can
place a parallel copy of α, which is the curve β. Now β has to be stabilized negatively l
times. To do this, we attach l Hopf bands (with the corresponding stabilizing green curves)
to the interior of the hole s, and we slide the purple curve on these 1-handels. The result is
therefore what appears in Figure 2.2. 3




−1

−1
n1

nl

p1

pk

s

α

β

γ

Figure 2.2: Placing the (rolled-up) link on a page.

Call pi the stabilizing curves corresponding to the positive stabilization of the knot, and ni
the stabilizing curves corresponding to the negative ones.

This is how we can place the link (after sliding) on a planar page of an open book for
(S3, ξst), as described in [Sch07]. Here is the advantage of such a construction: performing
Legendrian surgery on the link α∪β gives the same contact 3-manifold as the one described
by the abstract open book decomposition with that page and monodromy given by post-
composing the original monodromy with τατβ , that we eventually call ϕ. Hence, by Giroux’s
correspondence, we have that the contact type of (L(p, q), ξvo) is encoded in the pair (Σ, ϕ)
with

ϕ = τατβτγτp1
· · · τpkτn1

· · · τnl , (2.1)

which in turn already describes a Stein filling of (L(p, q), ξvo).
The theorem of Wendl (that we recalled in Section 1.2) implies that it is enough to find

all the possible factorizations into positive Dehn twists of a given planar monodromy in
order to get all the Stein fillings of the contact manifold it represents.

Step 2: compute the possible homological configurations

In their work, Plamenevskaya and Van Horn-Morris [PHM10] introduce the multiplicity and
joint multiplicity of one or of a pair of holes for a given element in the mapping class group
of a planar surface which is written as a product of positive Dehn twists.

To define these numbers we need the "cap map", which is induced by capping off all but
one (respectively two) interior component, while the outer boundary component is never
capped. In the first case, we get the mapping class group of the annulus, which is isomorphic
to Z, generated by a positive Dehn twist along the core curve. In the second case, we get
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the mapping class group of a pair of pants, isomorphic to a free abelian group of rank 3,
generated by the three positive Dehn twists around each boundary component. By projecting
onto the third summand (that comes from the outer boundary component) we get the joint
multiplicity around the other two components. We denote by m(−) the multiplicity of a
single hole, and by m(−,−) the joint multiplicity of a pair of holes.

Γ(Σ)
cap
//

m(−)
$$

Γ(Σ0,2)

'
��

Z

Γ(Σ)
cap

//

m(−,−)

""

Γ(Σ0,3)

'
��

Z⊕ Z⊕ Z
pr3

��

Z
These multiplicities are independent of the positive factorization we chose for the mon-

odromy. The reason is that the lantern substitution preserves these numbers (compare with
Figure 2.3) and the commutator relation does it too. Since these relations generate all re-
lations in the planar mapping class group (see [MM09]), we can, by introducing negative
Dehn twists as well, apply them repeatedly until every curve encloses at most 2 holes.

1

32

1

2 3

m(1) = m(2) = m(3) = 2

m(1) = m(2) = m(3) = 2

m(1,2) = m(2,3) = m(1,3) = 1

m(1,2) = m(2,3) = m(1,3) = 1

1

32

1

2 3

m(1) = m(2) = m(3) = 2

m(1) = m(2) = m(3) = 2

m(1,2) = m(2,3) = m(1,3) = 1

m(1,2) = m(2,3) = m(1,3) = 1
Figure 2.3: Lantern relation and multiplicities.

We compute these numbers for the monodromy that we got from Step 1 by looking at
Figure 2.2. In that figure, the holes called ni’s are the ones corresponding to the negative
stabilizations, while the pi’s come from the positive ones and s is the starting hole of the
annulus, i.e. the one without a boundary-parallel curve around it. By applying the definition
of the cap maps, we directly compute:

• m(ni) = m(pi) = 3

• m(s) = 3

• m(ni, nj) = m(pi, pj) = 2

• m(ni, s) = m(pi, s) = 2

• m(ni, pj) = 1

Starting from this collection of numbers, we try to reconstruct the homology classes of the
curves appearing as support for the positive Dehn twists in the monodromy. We have to
distinguish two cases: the first case is when a1 6= 4 and a2 6= 4 (remember that [a1, a2] is
the continuous fraction expansion of p/q), the second case is when at least one of them is
equal to 4. We postpone this second case to Step 5.
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Proposition 2.3.
Assume a1 6= 4 and a2 6= 4. Then there is a unique homology configuration of curves
whose associated multiplicities and double multiplicities are as above, and that gives the
same monodromy we started from (Equation (2.1)). In particular, the second Betti number
of any Stein filling of the corresponding contact manifold is 2.

Proof.
We say that a simple closed curve is a multi-loop if it encloses at least two holes, in order
to distinguish it from a boundary-parallel curve.

Suppose we have another positive factorization of ϕ (see Equation 2.1), and call νpi the
number of multi-loops around the hole pi in this new factorization.

From the fact that m(pi) = m(nj) = m(s) = 3, we have the upper bound νpi , νnj , νs ≤ 3.
Moreover, m(pi, s) = m(nj , s) = 2 implies that νpi , νnj , νs ≥ 2. Hence we know

2 ≤ νpi , νnj , νs ≤ 3

for every i and j. We present in details the longest combinatorial part:

Case a1, a2 > 4. We claim that, in the case a1 > 4 (which translates into the fact that
there are at least three positive holes), there is a multi-loop encircling all the positive holes
and s. Since m(p1, s) = m(p2, s) = 2 and m(s) = 3, there must be a curve a encircling
s, p1, p2. If, by contradiction, there exists a hole pı which is not encircled by a, then by the
fact that m(s, pı) = 2, one finds other two curves b and c such that: b encircles s, pı, p2 but
not p1, and c encircles s, pı, p1 but not p2. Since m(s) = 3 and m(s, n1) = 2 we must have
one of the three curve a, b, c encircling n1 as well, say it is a; but then it is impossible to
obtain m(n1, pı) = 1 without contradicting either m(s) = 3 or m(s, n1) = 2. This shows
that there is a multi-loop β′ encircling (at least) all the positive holes and s. Similarly, there
is a multi-loop γ′ encircling (at least) all the negative holes and s.

Now there are two cases:

1) β′ and γ′ coincide, hence the multi-loop β′ = γ′ encircles all the hole (i.e. it is parallel
to the outer boundary component), and from now on it will be referred to as α′;

2) β′ and γ′ are distinct in homology, hence one sees that β′ cannot encircle negative
holes and γ′ cannot encircle positive holes (this uses the fact that a2 > 4).

We are left to see how we can place the other curves in these two cases in order to get the
multiplicities as in previous factorization (Equation (2.1)):

1) we just forget about α′ by lowering all the multiplicities by 1 and then we do again
the computation as above. We end up with a curve around the positive holes and s
(homologous to β′), and a curve around the negative holes and s (homologous to γ′).

2) We do the same computation as above, by starting with a curve around s and assuming
that there is a hole not encircled by it. We get a contradiction with m(s) = 3. This
shows that there must be a curve encircling all the holes, hence parallel to the outer
boundary component (i.e. homologous to α′).

In both cases we get νs = 3 and νpi = νnj = 2 for all i, j, and we end up with three
multi-loops α′, β′ and γ′, with α′ going around all the holes, β′ around {s, n1, . . . , nl}, γ′
around {s, p1, . . . , pk}. In this way, all the conditions on the joint multiplicities are met,
and we just need to add boundary-parallel loops around all the pi’s and nj ’s in order to get
m(nj) = m(pi) = 3 as required.
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Case a1 = 3 or a2 = 3. This case is easier from the combinatorial point of view, and
gives the same result. On the other hand, the case a1 = 4 or a2 = 4 gives rise to an extra
configuration, as discussed later in Step 5. 3

This tells us that the homology of any Stein filling for each one of these lens space is
fixed. In particular, another factorization of ϕ must be of the form

ϕ = τα′τβ′τγ′τp1
· · · τpkτn1

· · · τnl ,

where α′, β′ and γ′ are simple closed curves on Σ such that [α] = [α′], [β] = [β′], [γ] = [γ′]
in H1(Σ;Z). Notice that we do not need to worry about the pi’s and nj ’s because the fact
that they homologically enclose just one hole implies that they are boundary-parallel, and so
their homotopy (and therefore isotopy) class is already determined. Also the homotopy class
of α′ is determined (since it is boundary-parallel to the outer component) and so τα = τα′ .
Therefore, if the configuration of curves we started from is like the one of Figure 2.4a,
then we already know how to place the boundary-parallel curves appearing in any other
factorization (compare with Figure 2.4b).

In light of this, using the previous factorization of ϕ, we see that all the τpj ’s and τni ’s,
together with τα and τα′ , cancel out, leaving us with:

τβτγ = τβ′τγ′ .

This relation holds in Γ0,k+l+2 = Γ(Σ0,k+l+2), and we are asking ourselves if there can be a
pair of curves {β′, γ′} on Σ with the homological condition that [β′] = [β] and [γ′] = [γ] inside
H1(Σ0,k+l+2;Z), and such that the product of the corresponding Dehn twists is isotopic to
τβτγ . We will reduce the problem from Σ0,k+l+2 to Σ0,4.

Step 3: reduce the number of boundary components

Definition 2.4.
A diffeomorphism f : Σ → Σ which restricts to the identity on ∂Σ is said to be right-
veering if f(η) is to the right of η at its starting point (or f(η) = η), for every properly
embedded oriented arc η ⊆ Σ, isotoped (relative to the boundary) to minimize the number
of intersection points of η ∩ f(η).

In [HKM07] it is proved that any positive Dehn twist is right-veering, and that the com-
position of right-veering homeomorphisms is still right-veering. Consider the green arcs ηj
drawn in Figure 2.4c. The dashed curves γ′ and β′ are drawn like that just to indicate their
homology class, while the isotopy classes are still unknown.

The arcs are disjoint from β ∪ γ, therefore τβτγ(ηj) = ηj . If any of the curves {β′, γ′}
(respectively purple and green) crosses one of the ηj ’s, say γ′, then we would need τβ′ to
move the arc back to the initial position, since

ηj = τβτγ(ηj) = τβ′τγ′(ηj).

But this is impossible because τβ′ is right-veering as well: the tangent vector at the
starting points of τγ′(ηj) is to the right of the tangent vector at ηj(0), and when we apply
τβ′ we move the first vector further to the right (or we leave it where it is, depending on
whether β′ intersects τγ′(ηj)). This implies that τβ′τγ′(ηj) cannot be isotopic to ηj .

Therefore all the arcs ηj ’s are disjoint from β′ ∪ γ′ as well. So we cut along these arcs
and look for a configuration of {β′, γ′} on the resulting surface, which has still genus zero
but now has just 4 boundary components (compare with Figure 2.4d). We are left with:

τβτγ = τβ′τγ′ ∈ Γ0,4.
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(a) Original configuration of curves.
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(b) Boundary parallel curves.
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(c) Cutting the surface along arcs.
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(d) Resulting surface and curves.

Figure 2.4: Configuration of curves.

Step 4: identify the possible geometric configurations

To conclude the argument for the uniqueness of the filling we need a result which is proved
by Kaloti:

Lemma ([Kal13]).
Suppose there are two simple closed curves β′, γ′ on Σ0,4 with [β′] = [β] ∈ H1(Σ0,4;Z), [γ′] =
[γ] ∈ H1(Σ0,4;Z) and such that τβτγ = τβ′τγ′ ∈ Γ0,4. Then there exists a diffeomorphism
Γ0,4 taking β 7→ β′ and γ 7→ γ′.

The consequence of this lemma is that the two curves β′ and γ′ are, up to diffeomorphism,
the same as β and γ, and therefore the filling that the pair {β′, γ′} describes, together with
the boundary-parallel curves, is the one described by Figure 2.1.

Step 5: the extra filling when ai = 4 for i ∈ {1, 2}
When a2 (or a1) is equal to 4, then, as expected, there is another homology configuration
which is coherent with the single and joint multiplicities computed above. It is given by
applying the lantern relation to the original configuration. This has the effect of reducing by
one the total number of curves appearing in the factorization (hence b2 of the corresponding
filling is 1 and not 2).

Proposition 2.5.
If a2 = 4, then there are two possible homology configurations of curves respecting the single
and double multiplicities computed above.

Proof.
If we go through the computation of homological configurations of curves as we did in
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Proposition 2.3, we find this time two of them, due to the possibility of performing a lantern
substitution once (notice in fact that the case when a1 = a2 = 4 allows again just two con-
figurations, and not three, because applying the first substitution changes the configuration
preventing the second-one from being possible).

One configuration has been already described element-wise in Proposition 2.3 and cor-
responds to a Stein filling with b2 = 2 (unique up to diffeomorphism).

The other one is homologous (curve by curve) to the configuration we get after applying
the lantern substitution to Figure 2.2 with l = 2 (i.e. a2 = 4); the proof of its homology
uniqueness is derived as in the proof of Proposition 2.3, and it is omitted here. 3

Then we proceed as above: all the boundary-parallel curves are placed and ignored,
since, again, their homology classes determine their isotopy classes. Therefore, we can cut
along appropriate arcs and reduce the number of holes appearing in the factorization, which,
in turn, is the same thing as starting with a Legendrian knot whose Thurston-Bennequin
number is smaller. So we can focus on the minimal possible example (after having cut
along the maximal system of arcs), which has [a1, a2] = [3, 4], producing L(11, 4), by the
computation 3− 1

4 = 11
4 , with the contact structure specified by Figure 2.5a whose compatible

open book decomposition has page as in Figure 2.5b. Here we immediately see that we can
(uniquely) apply the lantern relation on the set of four curves given by the yellow one, the
red one and the two boundary-parallel green curves (compare with Figure 2.6a). After the
substitution we get a Stein filling with χ = 2.

−1

−1

(a)

−1

−1

(b)

Figure 2.5: Tight structure on L(11, 4) with two fillings.

Proposition 2.6.
Let X be a Stein filling of the contact 3-manifold described by Figure 2.5a, with χ(X) = 2.
Then the homeomorphism type of X is unique.

Proof.
In order to derive our statement we need three facts:

1) since we have determined the homology configuration of curves appearing in the fac-
torization of the monodromy, we can use Figure 2.6a to compute H1(X): the holes
of the surface correspond to the 1-handles of X, and the curves themselves are the
attaching circles of the 2-handles. It is immediate to see that H1(X) = 0, hence π1(X)
is perfect. But π1(X) is a quotient of Z/11Z ' π1(L(11, 4)), see [ÖS13, page 216],
hence it is abelian. We conclude that X is simply connected.

2) The intersection form of X is characterized by the homological configuration of curves
in the open book decomposition, hence it is uniquely determined (and it is isomorphic
to [−11]).

3) The fundamental group of the boundary of X is π1(L(11, 4)) ' Z/11Z.
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Then [Boy86, Proposition 0.6] applies and tells that X is unique up to homeomorphism,
as claimed. The reason why we cannot describe all the (potential) diffeomorphism types is
because, after applying the lantern substitution, we cannot solve explicitly the geometric
configuration problem on Σ0,5 with the curves we got (see Figure 2.6a), and, moreover, there
is no arc which is disjoint from these curves and on which to cut open in order to reduce
the number of boundary components. 3

2.2 Final remark

Starting from the explicit configuration of curves corresponding to L(11, 4) with the contact
structure of Figure 2.5a, we can apply the lanter substitution (see Figure 2.6a) and then
draw a Kirby diagram of the corresponding Stein domain (X, J), see Figure 2.6b.

−1

−1

−1

−1
−1

(a) The configuration of curves after lantern
substitution.

−1

−1

−1

−1
−1

(b) The corresponding 4-manifold X.

Figure 2.6: Description of the filling with χ = 2.

By performing handle calculus we get a new diagram of X which is simpler in the
following sense: this smooth handle decomposition of X consists of a 0-handle and a single
2-handle, attached along the torus knot of type (−5, 2), pictured in Figure 2.7, with framing
−11.

−11

Figure 2.7: Torus knot T (−5, 2).

In order to encode the Stein structure of (X, J) in this handle decomposition we need
a Legendrian representative of T (−5, 2) with Thurston-Bennequin number equal to −10:
combining [EH01, Theorem 4.3] and [EH01, Theorem 4.4] we see that there are just two
such Legendrian isotopy classes which maximize the Thurston-Bennequin number (equal
to −10), distinguished by the rotation numbers, respectively ±1 and ±3 depending on the
orientations (see Figure 2.8). We want to understand which one suits to our case. Let J1

and J2 be the two Stein structures on X described respectively by Figures 2.8a and 2.8b.
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(a) Virtually overtwisted structure. (b) Universally tight structure.

Figure 2.8: Different Legendrian representatives of T (−5, 2).

Proposition 2.7.
The Stein domain (X, J) with a handle decomposition consisting of a single 2-handle is the
one described by Figure 2.8a, i.e. J = J1.

Proof.
Call ξ the contact structure described by Figure 2.5. Remember that the two open book
decompositions of Figures 2.5b and 2.6a represent the same contact structure. To prove the
proposition, it is enough to check that the induced contact structure on ∂(X,J1) is isotopic
to ξ. This is achieved by computing the 3-dimensional invariant:

d3(∂(X, J1)) =
1

4
(c1(X, J1)2 − 3σ(X)− 2χ(X)).

If we call K the Legendrian knot of Figure 2.8a, then the first summand is given by

rot(K) · [−11]−1 · rot(K),

while σ(X) = −1 and χ(X) = 2. By putting everything together we obtain

d3(∂(X, J1)) = − 3

11
.

On the other hand, the link of Figure 2.5a gives a Stein filling (W,J0) of (L(11, 4), ξ) with
two 2-handles such that

c1(W,J0)2 = [1,−2] ·Q−1
W · [1,−2]T , σ(W ) = −2, χ(W ) = 3,

where QW is the matrix of the intersection form, which is just the linking matrix[
−3 1
1 −4

]
.

The computation shows again that

d3(∂(W,J0)) = − 3

11
.

Moreover, in the case when the rotation number of the second component of the Legendrian
link is 0, the d3 invariant of the resulting contact structure is −1/11. According to Honda’s
classification of tight contact structures on L(11, 4), this computation covers all the three (up
to contactomorphism) possible cases, see next paragraph for computation in the universally
tight case.
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Therefore, we conclude that

(L(11, 4), ξ) = ∂(W,J0) = ∂(X, J1).

Hence J = J1, as wanted. 3

To conclude, we check that the other Legendrian representative of the torus knot T (−5, 2)
with Thurston-Bennequin number −10 gives a different contact structure: by performing
contact (−1)-surgery on the Legendrian knot of Figure 2.8b, we get L(11, 4) with a univer-
sally tight structure. This is proved by comparing its d3 invariant with the one computed
from Figure 2.9.

−1

−1

Figure 2.9: Universally tight contact structure on L(11, 4).

In both cases we get

d3 = − 5

11
.

Therefore the two different Stein fillings of (L(11, 4), ξut) are described by the handle dia-
grams of Figures 2.9 and 2.8b.

Further generalization problems

One can imagine of following the steps of Section 2.1 to produce and classify the Stein fillings
of those virtually overtwisted contact structure on lens spaces obtained from Legendrian
surgery on a 3-components chain of unknots, or even on a longer one. Extending Proposition
2.3 is just a matter of carefully studying the combinatorics of the multiplicities numbers,
but no substantial difficulty should arise here, at least in the case of length(p/q) = 3. The
critical point of the proof that we presented is Kaloti’s lemma of Section 2.1, which has no
known analogous for surfaces with more boundary components. If a result which identifies
a unique configuration of curves in a base case were available, one might try to reproduce
the steps in the proof of the classification theorem and extend Theorem 2.1 to lens spaces
L(p, q) with length(p/q) = 3.
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Chapter 3

Topological constraints for Stein fillings

As discussed in Section 1.2, classifying symplectic fillings (up to homeomorphism, diffeo-
morphism or symplectic deformation equivalence) of a given contact 3-manifold can be a
very hard task, even though some progress has been made in the last years. A more modest
approach is trying to give some constraints on the topological invariants of the Stein fillings,
even if a complete classification is missing. If we restrict to planar contact structures, then
studying Stein fillings is enough if we want to understand weak symplectic fillings, since these
are symplectically deformation equivalent to blow ups of Stein fillings, see [NW11, Theorem
2]. Some topological constraints for Stein fillings of planar contact structures have already
been found (see for example [Etn04], [OSS05], [Wen10], [Wan12]), and here we specifically
focus on lens spaces (L(p, q), ξ).

Throughout this chapter we often refer to the length l = length(p/q) of the expansion
p
q = [a1, a2, . . . , al]. To this expansion we can associate a negative linear graph Λ(p, q) and a
corresponding negative definite 4-manifold XΛ(p,q) realized as a plumbing. We give a sharp
upper bound on the possible values of the Euler characteristic for a minimal symplectic
filling of a tight contact structure on a lens space:

Theorem 3.1.
Let ξ be any tight contact structure on L(p, q). Let W be a minimal symplectic filling of
L(p, q) and let l = length(p/q). Then

χ(W ) ≤ 1 + l.

This estimate is obtained by looking at the topology of the spaces involved, extending
this way what we already knew from the universally tight case to the virtually overtwisted
one. Moreover, the upper bound is always realized by a minimal symplectic filling (XΛ(p,q)

itself supports a Stein structure inducing the prescribed contact structure on its boundary)
whose intersection form and fundamental group are uniquely determined:

Theorem 3.2.
Let ξ be any tight contact structure on L(p, q) and let l = length(p/q). Let X be a minimal
symplectic filling of (L(p, q), ξ) with b2(X) = l. Then the intersection form QX is isomorphic
to the intersection form of XΛ(p,q). Moreover, X is simply connected.

We also prove the following corollary, regarding the uniqueness (in certain cases) of the
filling with maximal Euler characteristic:

Corollary 3.3.
Let ξ be a tight contact structure on L(p, q) and let l = length(p/q). Let X be a minimal
symplectic filling of (L(p, q), ξ) with b2(X) = l. Assume that p ∈ {2, 4, sn, 2sn}, for some
odd prime s and positive integer n. Then X is homeomorphic to XΛ(p,q).
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On the other hand, the first and third Betti numbers of a Stein filling W of a lens space
L(p, q) are always zero [ÖS13, page 216], hence we have an obvious lower bound on the value
χ(W ), which is χ(W ) = b0(W ) = 1: this is realized precisely when (L(p, q), ξ) bounds a
Stein rational homology ball. Lisca proved in [Lis07] that, in order to guarantee the existence
of rational balls with boundary a lens space, the numbers p and q must fall into one of three
families with specific numerical conditions.

Among those, we restrict to the case when p and q are of the form p = m2 and q = mk−1,
for some m > k > 0 with (m, k) = 1. It is known [Lis08, Corollay 1.2c] that L(m2,mk − 1)
endowed with a universally tight contact structure bounds a Stein rational ball and we use
this fact to prove that in the virtually overtwisted case this never happens, concluding that:

Theorem 3.4.
Let W be a symplectic filling of (L(p, q), ξvo), with p = m2 and q = mk − 1, for some
m > k > 0 and (m, k) = 1. Then χ(W ) ≥ 2.

Theorem 3.4 can be generalized to the other families of lens spaces which are known to
bound a smooth rational homology ball: these balls do not support any symplectic structure,
i.e. none of the virtually overtwisted contact structures can be filled by a Stein rational ball,
see [GS19, Proposition A.1].

Then we turn our attention to covering maps: since an overtwisted disk lifts to an
overtwisted disk, all the coverings of a universally tight structure are themselves tight. The
situation is less clear when we consider virtually overtwisted structures. By starting with
such a structure on a lens space, we know that it lifts to an overtwisted structure on S3,
but what happens to all the other intermediate coverings?

One of the problems we faced when studying contact structures along covering maps is
the mysterious behavior of numbers: for example, there is no understanding on how the
lengths of p/q and p′/q are related, if p′ is a divisor of p. This makes the problem hard even
to organize, since we could not glimpse any clear scheme or pattern for stating reasonable
guesses. Theorem 3.5 is the only stance of a general result which does not depend on specific
examples.

Theorem 3.5.
Let p, q and d be such that q < p < dq. Then every virtually overtwisted contact structure
on L(p, q) lifts along a degree d covering to a structure which is overtwisted.

In Section 3.3 we give a series of examples using the description of tight structures given
by Honda in [Hon00a] to study explicit cases of covering maps between contact lens spaces.
The last part of this chapter is dedicated to the study of the fundamental group of Stein
fillings of virtually overtwisted structures on lens spaces, combining the results above about
Euler characteristic with what we developed on the behavior of coverings. Recall that the
fundamental group of any Stein filling is a quotient of the fundamental group of its boundary,
see Remark 4. As a consequence of Theorem 3.1, we will prove Theorem 3.6 and provide
some specific examples and applications.

Theorem 3.6.
Let X be a Stein filling of (L(p, q), ξ) with π1(X) = Z/dZ, for p = dp′. Then

χ(X) ≤ 1 + l′

d
,

where l′ = length(p′/q′), with q′ ≡ q (mod p′).

3.1 Upper bound for the Euler characteristic

The goal of this section is to prove Theorems 3.1 and 3.2. First, recall that a vertex v of a
weighted graph is a bad vertex if

w(v) + d(v) > 0,
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where w(v) and d(v) are respectively the weight and the degree (i.e. the number of edges
containing v) of the vertex.

Graphs with no (or at most one) bad vertex are studied in the context of Heegaard Floer
homology, links of singularities and planar contact structures, in several works including for
example [OS03], [Ném99], [Ném17] and [GGP17].

We show that:

Theorem 3.7.
Let Γ be a negative definite plumbing tree with k vertices, none of which is a bad vertex. Call
Y the plumbed 3-manifold associated to Γ and assume that Y is a rational homology sphere.
Denote by Y the manifold with the opposite orientation. Let X be a negative definite smooth
4-manifold with no (−1)-class in H2(X;Z) such that ∂X = Y . Then

b2(X) ≤ 1 +

k∑
i=1

(|w(vi)| − 2).

Proof.
Let P = PΓ the plumbed 4-manifold associated to Γ, whose oriented boundary is Y , and
whose intersection form is QP = QΓ. Form the closed manifold W = X ∪∂ P by gluing the
two manifolds along the boundary, see Figure 3.1.

XΛνXΛ

L

PX

Figure 3.1: The closed manifold W = X ∪∂ P .

We get a closed smooth 4-manifold W whose intersection form QW is negative definite,
and hence, by Donaldson’s theorem [Don87], isomorphic to 〈−1〉r, for some r. Since Y is a
rational homology sphere, we have that

rank(QX) + rank(QΓ) = b2(X) + b2(P ) = b2(X) + k = r.

A priori, QX is a sub-lattice of finite index n, for some n > 0:

QX ≤ (QΓ)⊥,

but the following lemma shows that they coincide.

Lemma 3.8.
In the setting of above we have an isomorphism QX ' (QΓ)⊥.

Proof.
Look at the exact sequence of the pair (W,X):

H3(W,X)→ H2(X)→ H2(W )→ H2(W,X)

and notice that, by excision and Poincaré-Lefschetz duality

H3(W,X) ' H3(P, ∂P ) ' H1(P ) = 0

and similarly
H2(W,X) ' H2(P, ∂P ) ' H2(P ).
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The latter is free, because its torsion comes from H1(P ), which is 0. Therefore, the inclusion
H2(X) ↪→ H2(W ) has a free quotient, being this a subgroup of the free group H2(W,X).
Hence, if we take a class α ∈ H2(W ) with the property that nα is inside H2(X), we
automatically get α ∈ H2(X). In particular, if α ∈ (QΓ)⊥, then nα ∈ (H2(X), QX), with n
equal to the index QX ≤ (QΓ)⊥, and hence α ∈ (H2(X), QX). So QX ' (QΓ)⊥ 3

The isomorphism
QX ' (QΓ)⊥

implies that we have an embedding Γ ↪→ 〈−1〉r with the property that there is no (−1)-class
in the orthogonal, otherwise this would come from X, which, by assumption, does not have
any. We call such an embedding irreducible. Notice that, up to isomorphism, there is a
unique maximal irreducible embedding

Γ ↪→ 〈−1〉t,

where by maximal we mean that the dimension t (which, by the argument below, is finite)
of the ambient lattice cannot be bigger. First of all notice that at least one irreducible
embedding exists: we will explicitly describe the construction of one of them, which turns
out to be the maximal one. Since the sum of the weights of the graph is finite, t is itself
finite. To embed the graph Γ in such a way that there is no (−1)-class in the orthogonal
complement implies that all the elements in the canonical basis {e1, . . . , et} of 〈−1〉t appear
in the image of some vertex of the graph. Therefore, to obtain the maximal such t, we have
to impose only the requirements that:

1) the ith vertex is sent to a combination of |wi| distinct basis elements and

2) any two adjacent vertices of Γ share, via the embedding, exactly one element ej .

If one of these conditions is not satisfied, then we end up with (at least) one line 〈ej〉 which
is not hit by the image of Γ and that will produce an element in the orthogonal with square
−1. So the image of the first vertex with weight w1 must be a sum of |w1| distinct elements
ei. The second vertex is sent to a combination of |w2| elements, among which exactly one
has already appeared in the image of the first vertex, and so on.

The fact that the there are no bad vertices guarantees that it is possible to go on with
this recipe and send every vertex with weight wi into a combination of |wi| distinct basis
elements, where the repetitions between the images of different vertices occur exactly in
correspondence of the edges. This provides a way to construct an irreducible embedding
Γ ↪→ 〈−1〉t, which is unique up to isomorphism. Hence we find

t = 1 +

k∑
i=1

(|w(vi)| − 1).

Therefore, since the dimension of the maximal irreducible embedding of Γ is as above, we
have r = k + b2(X) ≤ t. We conclude:

b2(X) ≤ t− k = 1 +

k∑
i=1

(|w(vi)| − 1)− k = 1 +

k∑
i=1

(|w(vi)| − 2).

3

Corollary 3.9.
In the setting above, the intersection form of the the manifolds with boundary Y and maximal
b2 is uniquely determined, up to isomorphism.

Proof.
Assume that X1, X2 are negative definite with no (−1)-class, ∂X1 = ∂X2 = Y and with
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b2(Xi) maximal. Then, by uniqueness of the maximal irreducible embedding Γ ↪→ 〈−1〉t,
we have that

QX1 ' QX2 ' Γ⊥ ⊆ 〈−1〉t.
3

Now we specialize to the case of lens spaces. Start with L(p, q) and take the expansion
p/q = [a1, a2, . . . , al], where all the ai’s are ≥ 2. Call Λ = Λ(p, q) the associated negative
definite lattice with l vertices (where l = length(p/q)):

Λ =
−a1 −a2 −a3 −al−1

. . .
−al

We apply Riemenschneider’s dots method [Rie74] to build a negative definite 4-manifold
with boundary L(p, p − q) whose intersection lattice will be called Λν . This is obtained by
reading column-wise the entries of Table 3.1.

a1−1︷ ︸︸ ︷
• • · · · •

• • · · · •
. . .

• • · · · •︸ ︷︷ ︸
a2−1

︸ ︷︷ ︸
al−1

Table 3.1: Riemenschneider’s dots method.

If we call lν the number of columns and set

cj = 1 + #{dots in the jth column},

then we obtain the continued fraction expansion of p/(p− q) as
p

p− q
= [c1, c2, . . . , clν ].

Before proving Theorem 3.1, we need a lemma.

Lemma 3.10.

length(p/q) + length(p/(p− q)) = 1 +

l∑
i=1

(ai − 1).

Proof.
We know that length(p/q) = l, so we compute length(p/(p− q)). This is just the number lν
of columns:

lν =(a1 − 1) + (a2 − 2) + . . .+ (al − 2)

=

l∑
i=1

(ai − 2) + 1

=

l∑
i=1

(ai − 1)− l + 1.

Therefore length(p/q) + length(p/(p− q)) = 1 +
∑l
i=1(ai − 1). 3
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By switching the roles of p/q and p/(p− q), it is clear from Lemma 3.10 that

length(p/q) + length(p/(p− q)) = rank(Λ) + rank(Λν)

= l + lν

= 1 +

l∑
i=1

(ai − 1)

= 1 +

lν∑
i=1

(ci − 1).

Remark 4.
In the book [ÖS13, Section 12.3] the authors made the following observation, which we will
often use in this work. If X is a Stein filling of Y , then the morphism π1(Y ) → π1(X),
induced by the inclusion, is surjective since X can be built on Y × [0, 1] by attaching 2-, 3-
and 4-handles only. In particular, b1(X) ≤ b1(Y ) and if Y is a lens space, then b1(X) = 0.

Theorem 3.1 follows now from Theorem 3.7:

Proof (of Theorem 3.1).
Let Y = L(p, q), so that Y is the 3-manifold associated to Λν , with Λν playing the role of
Γ. The setting for lens spaces is coherent with the hypotheses of Theorem 3.7:

• lens spaces arise as plumbings on trees with no bad vertices;

• lens spaces are rational homology spheres;

• contact structures on lens spaces are planar ([Sch07, Theorem 3.3]), and therefore
b2(X) = b−2 (X) for any minimal filling X ([Etn04]);

• minimal fillings of planar contact structures have no (−1)-class, as proved in [GGP17,
Corollary 1.8];

Therefore, since any minimal filling X of (Y, ξ) has b1 = 0, as seen in Remark 4, we have:

χ(X) =1 + b2(X)

≤ 1 +

(
1 +

lν∑
i=1

(ci − 2)

)

= 1 +

(
1 +

lν∑
i=1

(ci − 1)− lν
)

= 1 + (l + lν − lν)

= 1 + l.

3

Proof (of Theorem 3.2).
The fact that the intersection form is uniquely determined is just a special case of Corollary
3.9. For the fundamental group, let X be a filling with b2(X) = l = length(p/q). We know
that

QX ' QXΛ(p,q)
,

and we look at the long exact sequence of the pair (X, ∂X), with ∂X = L(p, q):

H2(L(p, q)) // H2(X)
QX // H2(X,L(p, q)) // H1(L(p, q)) // H1(X) // H1(X,L(p, q))

Notice that:
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1) H2(L(p, q)) ' H1(L(p, q)) = 0;

2) H2(X) ' Zl;

3) H2(X,L(p, q)) ' H2(X) ' Zl ⊕H1(X);

4) H1(L(p, q)) ' Z/pZ;

5) H1(X,L(p, q)) ' H3(X) = 0;

6) det(QX) = p.

Therefore, by substituting everything, it follows that H1(X) = 0. But since, by Remark 4,
π1(X) is abelian, we have that π1(X) = 0, as wanted. 3

We can now give a proof of Corollary 3.3.

Proof (of Corollary 3.3).
To prove this corollary we need three facts:

1) X and XΛ(p,q) are both simply connected by Theorem 3.2;

2) X and XΛ(p,q) have isomorphic intersection forms by Theorem 3.2;

3) the fundamental group of their boundary is π1(Y ) ' Z/pZ, with p ∈ {2, 4, sn, 2sn},
for some odd prime s and positive integer n.

Then [Boy86, Proposition 0.6] applies and tells that X and XΛ(p,q) are homeomorphic. 3

3.2 Lower bound for the Euler characteristic

The goal of this section is to prove Theorem 3.4, i.e. that, among the virtually overtwisted
structures on the lens spaces of the form L(m2,mk − 1) with (m, k) = 1, none of these can
be filled by a Stein rational homology ball.

The first thing to notice is that, thanks to Honda’s classification result [Hon00a], each
tight contact structure on a lens space has a Legendrian surgery presentation which comes
from placing the corresponding chain of unknots into Legendrian position with respect to
the standard contact structure of S3. So, by varying the rotation numbers of the various
components of the link, we can describe all the tight contact structures that a lens space
supports, up to isotopy.

Let (Y, ξ) be a contact 3-manifold with c1(ξ) a torsion class. Then, in [Gom95], Gompf
defined the invariant

d3(Y, ξ) =
1

4
(c1(X, J)2 − 3σ(X)− 2χ(X)) ∈ Q,

where (X,J) is any almost complex 4-manifold with boundary ∂X = Y such that ξ is
homotopic to TY ∩ JTY (compare with Lemma 6.2.6 of [ÖS13]).

Lemma 3.11.
If (Y, ξ) bounds a Stein rational homology ball, then d3(Y, ξ) = − 1

2 .

Proof.
The quantity d3 = 1

4 (c21 − 3σ − 2χ) does not depend on the chosen filling, and if (Y, ξ) =
∂(X,J) with H2(X;Q) = H1(X;Q) = 0, then

d3(Y, ξ) =
1

4
(c1(X, J)2 − 3σ(X)− 2χ(X)) =

1

4
(0− 0− 2) = −1

2
.

3
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In the case of lens spaces, the computation of the d3 invariant is as follows:

d3 =
1

4
(c21 − 3σ − 2(1− σ)) =

1

4
(c21 − σ − 2),

because all the Stein fillings have b1 = b3 = 0 (see Remark 4) and b2 = b−2 by [Etn04]. This
means that, if (L(p, q), ξ) bounds a Stein rational ball, then for any other filling (X, J) we
have:

−1

2
=

1

4
(c1(J)2 − σ(X)− 2)

and hence
c1(J)2 = σ(X). (3.1)

We want to compute c1(J)2 for the filling (X, J) of (L(p, q), ξ) realized as the plumbing
described by the linear graph of the expansion p/q. To do this, we need to specify the vector
r of rotation numbers for the components of the linear plumbing. If

p

q
= [v1, v2, . . . vn] = v1 −

1

v2 − 1

. . .− 1
vn

,

with all vi ≥ 2, then the quantity c1(J)2 is given by

rT (Q)−1r, (3.2)

where Q is the matrix

Q =



−v1 1

1
. . . . . .
. . . . . . . . .

. . . . . . 1
1 −vn


,

which represents the intersection form of X in the basis corresponding to the linear graph,
where each vertex is a generator. According to [Hon00a], there are two universally tight
contact structure on L(p, q) up to isotopy (and just one on L(p, p− 1)). Honda also charac-
terizes the rotation number of each component of the link given by the chain of Legendrian
unknots, whose associated Legendrian surgered manifold is (L(p, q), ξst).

Let y = (−v1 + 2,−v2 + 2, . . . ,−vn + 2) be the vector of these rotation numbers, i.e. the
vector corresponding to one of the two universally tight (standard) structures on L(p, q),
the other one being −y. By construction, the rotation vectors representing the virtually
overtwisted structures have components xi satisfying

|xi| ≤ |yi|,

with at least one index ı for which |xı| < |yı|.
Consider the function f : Rn → R given by z 7→ ‖z‖Q−1 = zT (Q)−1z and notice that, by
Equalities (3.2) and (3.1),

f(y) = σ(P ) = −n.

Theorem 3.4 follows directly from Proposition 3.13 below, but first we need:

Lemma 3.12.
All the entries of the matrix Q−1 are strictly negative (in short: Q−1 � 0).
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Proof.
The condition Q−1 � 0 is true if we show that Q−1x � 0 holds whenever x is a non-zero
vector with non-negative components, i.e. 0 6= x�0 (this is just a consequence of the fact
that the columns of Q−1 are the images of the vectors of the canonical basis).

So we need to check that: 0 6= x � 0 implies Q−1x � 0. Rephrased in a different way
(using the fact that Q is a bijection), we will show that

0 6= Qx� 0⇒ x� 0.

The condition Qx� 0 gives us a system
−v1x1 + x2 ≥ 0

x1 − v2x2 + x3 ≥ 0

. . .

xn−1 − vnxn ≥ 0

where all the vi’s are ≥ 2. Let k be an index with

xk = max
i
{xi}i.

We want to show that xk < 0. Suppose that 1 < k < n. Then

xk−1 − vkxk + xk+1 ≥ 0

xk−1 + xk+1 ≥ vkxk

and therefore

2xk
(a)

≥ xk−1 + xk+1 ≥ vkxk
(b)

≥ 2xk.

The inequality (a) follows by the definition of xk, while (b) is true if xk ≥ 0 (if it is < 0 then
we would be already done). This implies that xk−1 = xk+1 = xk and so we can assume, by
iterating this argument, that k = 1 (the case k = n is the same). We have:

−v1x1 + x2 ≥ 0

x2 ≥ v1x1

and again, as before
x1 ≥ x2 ≥ v1x1 ≥ 2x1.

Therefore x1 ≥ 2x1, so x1 ≤ 0. To exclude x1 = 0 just notice that if this were the case, then
from −v1x1 + x2 ≥ 0 it would follow that x2 = 0 (being x1 = 0 the maximum among the
xi’s), and consequently all the remaining x3 = . . . = xn = 0, contradicting the assumption
Qx 6= 0. 3

Proposition 3.13.
For any rotation vector x corresponding to a virtually overtwisted structure (i.e. with com-
ponents |xi| ≤ |yi|, with at least one strict inequality) we have

f(x) > f(y).

Proof.
Inside Rn we look at the region D = {(x1, . . . , xn), |xi| ≤ |yi| ∀i}. The goal is to show that
the minimum of f |D : D → R is realized on the vectors which correspond to the universally
tight structures y and −y, lying on ∂D.

Since Q (and hence Q−1) is negative definite, f is concave. Being f a negative definite
norm, we know that it is has a unique maximum, which is the origin. Moreover, the minimum
of f |D is reached on the boundary ∂D. The fact that it is realized on y and −y follows from
Lemma 3.12. 3
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This implies that the contact structures encoded by the vector x cannot bound any Stein
rational ball:

Proof (of Theorem 3.4).
Let (X, J) be the Stein filling of (L(p, q), ξvo) described by the Legendrian realization of the
chain of unknots associated with the vector of rotation numbers x. If p and q are of the
form p = m2 and q = mk − 1 as in the hypothesis, then we know that the universally tight
contact structure (corresponding to the rotation vector y) admits a Stein rational ball filling
it, so f(y) = σ(X). By Proposition 3.13 we know that f(x) > f(y), hence

c1(X,J)2 = f(x) > f(y) = σ(X).

Since Equality (3.1) is not satisfied, (L(p, q), ξvo) does not bound a Stein rational homology
ball. 3

3.3 Coverings of tight structures on lens spaces and applications

In general, it can be hard to tell if the pullback of a tight contact structure on a 3-manifold
along a given covering map is again tight. The situation is much easier if we restrict to lens
spaces because of two reasons:

1) tight structures are classified;

2) the fundamental group is finite cyclic, hence it is straightforward to determine their
coverings.

If we start with a virtually overtwisted structure ξvo on L(p, q) we get an overtwisted struc-
ture π∗ξvo on S3, where π : S3 → L(p, q) is the universal cover. If p is a prime number, then
this is the only cover that L(p, q) has, otherwise there is a bigger lattice of covering spaces
depending on the divisors of p.

Studying the behavior of coverings of a contact 3-manifold gives information about the
fundamental group of its fillings:

Theorem 3.14.
Let Y be a closed and connected 3-manifold whose fundamental group π1(Y ) is simple. Let
ξ be a virtually overtwisted contact structure on Y , and (X, J) a Stein filling of (Y, ξ). Then
X is simply connected.

Proof.
Let i : Y ↪→ X be the inclusion of the boundary Y = ∂X. Being (X, J) a Stein filling of
(Y, ξ), the induced morphism i∗ : π1(Y ) → π1(X) is surjective. Moreover, by simplicity of
π1(Y ), we have that ker i∗ can either be:

• ker i∗ = 1 :

In this case, take a finite cover p : (Ŷ , ξot) → (Y, ξ) for which ξot is overtwisted. Call
n the degree of such cover. Define the group

G = i∗p∗π1(Ŷ ) ≤ π1(X),

consider the covering space of X associated to G which is connected and call it X̂G.
Since deg(X̂G → X) = n, we have that X̂G is compact. We are in the case where i∗
is an isomorphism and so ∂X̂G contains a diffeomorphic copy of Ŷ . But by lifting the
Stein structure from X to X̂G we get a Stein structure on X̂G which fills the connected
contact boundary: note that any Stein semi-filling of a lens space is actually a filling,
i.e. its boundary is connected (this comes from the more general result [OS04, Theorem
1.4]). Therefore we obtained a Stein filling of ∂X̂G = (Ŷ , ξot). This is not possible since
the overtwisted contact structures are not fillable (as proved in [Eli90a] and [Gro85]).
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• ker i∗ = π1(Y ) :

This tells us that i∗ is identically zero, and so that, by surjectivity, π1(X) = 1 as
wanted.

3

Corollary 3.15.
Let ξ be a virtually overtwisted structure on L(p, q) with p prime and let (X, J) be one of its
Stein fillings. Then π1(X) = 1.

Now we want to study more carefully the behavior of the virtually overtwisted con-
tact structures under covering maps, in order to derive some consequences on the possi-
ble fundamental groups of the fillings. The driving condition is the following observation:
let p : Ŷ → Y be a covering map between compact and connected 3-manifolds, and let
i : Y ↪→ X be the inclusion of the boundary Y = ∂X. Then, by covering theory:

∃ covering X̂ → X that restricts to a covering ∂X̂ → Ŷ

m

ker i∗ ≤ p∗π1(Ŷ ).

The way we want to apply this is to deduce that ker i∗ should be big enough not to be
contained in those subgroups of π1(Y ) for which we can associate an overtwisted cover. For
example, if X is a Stein filling of Y and we are able to construct overtwisted coverings of
Y associated to every maximal subgroups of π1(Y ), then the kernel of i∗ is forced to be
the whole π1(Y ), being this one the only subgroup of π1(Y ) not contained in any maximal
subgroups. By surjectivity of i∗ we would then conclude that X is simply connected.

This looks to be promising because in the case of lens spaces it is easy to determine all
the maximal subgroups of the fundamental group. It is nevertheless not so immediate to
understand the behavior of the contact structure under the pullback map of a covering, but
in certain cases we can use a necessary condition of compatibility of Euler classes to get
some results. To better explain this, let us consider the following:

Example.
Let (L(34, 7), ξvo) be obtained by contact (−1)-surgery on the Legendrian link of Figure 3.2.
If we orient the two components in the counter-clockwise direction we get rotation numbers
respectively +3 and −5.

After factoring 34 = 17 · 2, we see that there are just two coverings:

L(17, 7)→ L(34, 7), L(2, 7) ' L(2, 1)→ L(34, 7).

We will show that the given contact structure ξvo on L(34, 7) lifts in both cases to an
overtwisted structure. This tells us that, given any Stein filling X of L(34, 7), the kernel
on the inclusion map at the level of fundamental groups cannot be contained in Z/17Z nor
Z/2Z and therefore is the whole Z/34Z, so X is necessarily simply connected.

• The lift of ξvo to L(2, 1) is overtwisted, because the only tight structure on L(2, 1) is
universally tight and this one pulls backs to the tight structure on S3, but since ξvo is
virtually overtwisted the lift to S3 must be overtwisted.

• To exclude that ξvo pulls back to a tight structure on L(17, 7) we analyze the possible
tight structures supported there. The fraction expansion of 17/7 is

17

7
= [3, 2, 4]

and so we see that there are 6 tight structures on L(17, 7) up to isotopy (and 3 up to
contactomorphism, which are exhibited in Figure 3.3).
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−5 −7

Figure 3.2: Contact (−1)-surgery producing L(34, 7).

For these structures we compute the Poincaré dual of the Euler class, viewed as an
element of Z/17Z ' H1(L(17, 7);Z). The previous isomorphism is realized by choosing
as a generator the meridional curve µ1 of the yellow curve with Thurston-Bennequin
number −2.
Let ξ be any of the three tight contact structures on L(17, 7) of Figure 3.3.
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(c) ξ3

Figure 3.3: Tight structures on L(17, 7).

The class PD(e(ξ)) is the image via the boundary map

∂ : H2(W,∂W )→ H1(∂W ) ' H1(L(17, 7))

of the Poincaré dual of the relative first Chern class of the Stein structure on W , where
W is the Stein domain described by the corresponding diagram of Figure 3.3. The
Poincaré dual of the relative first Chern class is (see [ÖS13, Proposition 8.2.4])

rot(K1)[D1, ∂D1] + rot(K2)[D2, ∂D2] + rot(K3)[D3, ∂D3],

where the Ki’s are the three components of the link and the [Di, ∂Di]’s are the relative
homology classes of the meridian disks of the 4-dimensional 2-handles attached to form
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the Stein filling W . Calling µi = ∂[Di, ∂Di] = [∂Di], for i ∈ {1, 2, 3}, the meridians of
the attaching circles of these handles, we have

PD(e(ξ)) = rot(K1)µ1 + rot(K2)µ2 + rot(K3)µ3.

Let Q be the matrix describing the intersection form of W , which is the same as the
linking matrix −3 1 0

1 −2 1
0 1 −4

 .
From the exact sequence

H2(W )
Q
// H2(W,∂W )

∂ // H1(∂W ) ' H1(L(17, 7)) ,

we get three linear relations 
−3µ1 + µ2 = 0

µ1 − 2µ2 + µ3 = 0

µ2 − 4µ3 = 0.

which tell us that µ2 = 3µ1 and µ3 = 2µ2 − µ1 = 5µ1. By putting everything together
we get:

PD(e(ξ)) = ∂(PD(c1(W,J)))

= ∂(rot(K1)[D1, ∂D1] + rot(K2)[D2, ∂D2] + rot(K3)[D3, ∂D3])

= rot(K1)µ1 + rot(K2)µ2 + rot(K3)µ3

= (rot(K1) + 3 rot(K2) + 5 rot(K3))µ1.

If we substitute the values of the rotation numbers for the three different contact
structures of Figure 3.3 we find:

PD(e(ξ1)) = 11µ1, PD(e(ξ2)) = µ1, PD(e(ξ3)) = 8µ1.

The contact structure described in Figure 3.2 we started from has

PD(e(ξ)) = 12µ,

with µ being the meridian of the yellow curve of Figure 3.2.
Notice that µ is the image of the curve µ1 under the covering map p : L(17, 7) →
L(34, 7). This is clear if we take the meridian curves of the single-component unknots
with rational framing −17/7 and −34/7: in this case, the meridian of the curve upstairs
is sent to the meridian downstairs, and when we expand from rational to integer surgery
representation, we just glue in a series of thickened annuli to the neighborhood of the
first component (before the final solid torus is attached), so that previous meridional
curves still correspond via the covering map. This is well described in [Sav11, Section
2.3]. This explains why µ1 is sent to µ by the covering map.
At the level of the homology group H1 the covering map is a multiplication by 2 (the
degree of the covering) and by naturality we need to find

p∗(PD(e(p∗(ξ)))) = 2 PD(e(ξ)) ∈ H1(L(34, 7)).

But

2 · 11 6= ±2 · 12 ∈ Z/34Z, 2 · 1 6= ±2 · 12 ∈ Z/34Z, 2 · 8 6= ±2 · 12 ∈ Z/34Z,
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therefore we have that none of the three structures of Figure 3.3 is the pullback of our
starting structure of Figure 3.2. But those were the only (up to contactomorphism)
tight structures on L(17, 7), so we conclude that the pullback is necessarily overtwisted,
as wanted.
Note that we could have excluded a priori the contact structure ξ1 of Figure 3.3a, this
being universally tight.

Similar computations can be done if we start with a Legendrian representation of the Hopf
link of Figure 3.4 with rotation numbers ±(−3, 1), ±(−3, 3), ±(−3, 5), ±(−1, 1), ±(−1, 3),
±(−1, 5). We made use of the software Mathematica to carry out the computations and
check that there is no tight structure on the double cover L(17, 7) with compatible Euler
class.

−5 −7

Figure 3.4: Hopf link for L(34, 7).

The fact that the Stein fillings of these virtually overtwisted structure on L(34, 7) are simply
connected can be deduced, as we just did, simply by looking at the two different coverings.
This is something we already knew from the classification of fillings of those lens spaces
obtained by contact surgery on the Hopf link, since the fraction expansion of 34/7 has
length 2, see Theorem 2.1.

Example.
Sometimes, an even quicker argument can be used to understand the behavior of a contact
structure along certain covering maps. Let’s take as an example L(52, 11), whose associated
fraction expansion has length 3:

−52

11
= [−5,−4,−3].

The two maximal subgroups of Z/52Z are Z/4Z and Z/26Z, and again, by running the
computation of the Euler classes as above, we can determine which virtually overtwisted
contact structure on the base cannot lift to a tight structure. But if we look at the covering
of degree 13, we find L(4, 11) ' L(4, 3) as total space, and since

−4

3
= [−2,−2,−2],

we see that the only tight structure it supports is universally tight. Similarly, if we consider
the covering L(13, 11)→ L(52, 11) which has degree 4, we notice that

−13

11
= [−2,−2,−2,−2,−2,−3]

and hence also L(13, 11) supports only universally tight structures, among the tight ones.
In the covering lattice of L(52, 11) it remains to study just the case of L(26, 11), for which
the behavior can be more subtle (see next section, Theorem 3.18).
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(L(13, 11), ξot)
2:1 // (L(26, 11), ξ?)

2:1
((

(S3, ξot)

13:1

77

2:1
// (L(2, 11), ξot)

13:1

66

2:1
((

(L(52, 11), ξvot)

(L(4, 11), ξot)

13:1

66

A closer look to the coverings between lens spaces

The test we made with the Poincaré duals gives only a necessary condition that does not
guarantee that the pullback of a given tight contact structure is a tight contact structure
simply because characteristic classes match. So what can be said when there is compatibility
between the Euler class of the contact structures of the base and of the covering? We will
try to present the idea of this subsection by starting from an example.

Again, we choose to describe the double cover of L(34, 7). This time we fix the virtually
overtwisted structure ξ on L(34, 7) where the components of the link have rotation numbers
+3 and +1 respectively, see Figure 3.5a. The computation shows that the Poincaré dual
of the Euler class of ξ is +8 ∈ Z/34Z (via the same identification of H1(L(34, 7)) ' Z/34Z
as before). On the double cover L(17, 7) we take the tight structure ξ̂ corresponding to the
rotation vector (1, 0,−2), as showed in Figure 3.5b.
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PD(e(ξ))

T2 × I

T2 × {0}

T2 × {1} (a, b)

slope of dividing set

(a) Contact structure on L(34, 7).
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PD(e(ξ))

T2 × I

T2 × {0}

T2 × {1} (a, b)

slope of dividing set

(b) Contact structure on L(17, 7).

Figure 3.5

By running the computation, we find that PD(e(ξ̂)) = +8 ∈ Z/17Z, so that the covering
map

p : L(17, 7)→ L(34, 7)

takes PD(e(ξ̂)) to 16 = 2 PD(e(ξ)), as it should certainly happen if ξ̂ were isotopic to p∗ξ.
But we will show that this is not the case, and argue that p∗ξ is instead overtwisted.

To do this, we need to use the description of tight structures on lens spaces of [Hon00a],
which we recall after the following definition:

Definition 3.16.
Given a contact 3-manifold (Y, ξ), a contact vector field v on Y is a vector field whose flow
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preserves the contact planes. A smooth surface Σ ⊆ (Y, ξ) is convex if there exists a contact
vector field v on Y transverse to Σ. The dividing set of v on Σ is defined as

Γ = {x ∈ Σ | v(x) ∈ ξx}.

Giroux proved in [Gir91] that the dividing set is a 1-dimensional submanifold, whose
isotopy type is independent of the choice of the contact vector field. We now focus on the
case when Σ = T 2. If the contact structure is tight in a neighborhood the torus, then the
diving set for a convex torus consists of an even number of parallel circles. By identifying
T 2 with R2/Z2, we can talk about the slope of these circles as a pair of numbers, which
depends on the choice of the identification: when T 2 = ∂D2×S1, we use the meridian curve
as one direction.

Honda’s algorithm. In [Hon00a, Section 4.3] it is explained how to cut a lens space,
endowed with a tight contact structure, into two standard solid tori and other pieces called
basic slices. With standard solid torus we mean a small tubular neighborhood of a Legen-
drian knot, with standard coordinates on its boundary, see [Etn08, Section 2]. On the other
hand, a basic slice is an oriented thickened torus T 2 × I with a tight contact structure on
it, such that

• the two boundary components are convex;

• the minimal integral representatives of Z2 corresponding to the slopes at the extremes
form a Z–basis of Z2;

• every convex torus parallel to the boundary has slope between the slopes of the ex-
tremes.

Each basic slice supports a unique tight contact structure, up to contactomorphism, but up
to isotopy there are two classes: the isotopy class is determined by the sign of the (Poincaré
dual of the) Euler class of the contact structure restricted to that basic slice. We always
assume that the boundary tori are oriented according to the initial orientation on T 2 × I.
A schematic picture of a basic slice is represented in Figure 3.6.
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−1

−1

PD(e(ξ))

T2 × I

T2 × {0}

T2 × {1} (a, b)

slope of dividing set

Figure 3.6: Anatomy of a basic slice.

The contact structure on the lens space is then encoded in the sequence of slopes on each
basic slice and in the corresponding signs. We recall how the algorithm of Honda works for
the lens space L(p, q):
we start from the expansion −p/q = [−a1, . . . ,−an], with ai ≥ 2 for every i. Then we
compute

−p1/q1 :=[−a1, . . . ,−an + 1]

−p2/q2 :=[−a1, . . . ,−an + 2]

−p3/q3 :=[−a1, . . . ,−an + 3]

...
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until we get, after k = an−1 steps, to a rational number such that the length of its expansion
is a number m, smaller than n, say

−pk/qk = [−b1, . . . ,−bm].

This first set of numbers {−p1/q1, . . . ,−pk/qk} will constitute the first block. Then we
continue

−pk+1/qk+1 :=[−b1, . . . ,−bm + 1]

−pk+2/qk+2 :=[−b1, . . . ,−bm + 2]

...

until we get, after h = bm − 1 steps, to a rational number −ph/qh such that the length of
its expansion is less than m. This set of numbers {−pk/qk, . . . ,−ph/qh} will constitute the
second block. We go on this way until we reach the rational number −1/1.

In total, we will produce an ordered set of blocks of ordered rational numbers which
increase from −p1/q1 to −1/1, such that the numbers in each block have an associated
continued fraction expansion of the same length. The boundary numbers, i.e. those which
determine a change of length, appear twice: once at the bottom of a block, and then imme-
diately after at the top of the following block. For example, the number −14/3 can appear
twice, once as [−5,−4,−1] and once as [−5,−3]. The expansion [−5,−4,−1] determines the
end of the block with length 3, while [−5,−3] determines the start of the block of length
2. We record these rational numbers −pi/qi as pairs of coprime integers (−qi, pi). These
numbers correspond to the slope of the dividing sets of the contact structure under analysis,
when restricted to the corresponding basic slice.

Then we remove a standard torus from the lens space (L(p, q), ξ) and we picture what is
left in the following way: we draw the basic slices starting from the slope −p1/q1 until −1/1,
divided into the blocks as described above. At the end of this thickened torus we draw the
other basic torus.

As we explained, every basic slice comes equipped with boundary slopes described by
two rational numbers, which are represented by pairs (−q, p) and (−q′, p′). Honda proved
that taking the difference of these values gives the Poincaré dual of the Euler class restricted
there, up to sign, as an element of H1(T 2) ' Z⊕Z, written in the basis (∂D2, S1) specified
by the lower solid torus (see [Hon00a, Section 4.7.1]). As mentioned above, the isotopy class
of the unique (up to contactomorphism) contact structure on each basic slice is specified by
the sign of the restriction of the Poincaré dual of the Euler class. Within a single block of
basic slices, the only thing that matters is how many positive and negative signs we have,
but not where these are placed: this is a consequence of a property of shuffling, which says
that rearranging the signs within a block gives an isotopic contact structure, see [Hon00a,
Section 4.4.5]. This is coherent with the fact that, when drawing a Legendrian unknot with
its stabilizations, we don’t need to remember if we first stabilized positively or negatively,
but just the final result.

To sum up: if we start from a chain of n Legendrian unknots, we get n blocks (one for
every component) of ai − 2 basic slices each (where −p/q = [−a1, . . . ,−an]). Every posi-
tive/negative stabilization that we see in the Legendrian link corresponds to a plus/minus
sign in the corresponding block. Notice that when a coefficient in the expansion is −2, then
its corresponding block will be empty, reflecting the fact that there is no choice of placing
stabilizations in a Legendrian knot with Thurston-Bennequin number −1.

For example, see Figure 3.7a: the algorithm applied to L(34, 7) gives two blocks of 5
and 3 basic slices respectively, where the slopes of the dividing sets on the boundary are
indicated there.

From this picture it is also easy to calculate the Poincaré dual of the Euler class of the
structure we choose according to the signs of each basic slice (indicated with colors blue and
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(a) Subdivision into basic slices.
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Figure 3.7: Description of the contact structure ξ on L(34, 7).

red in Figure 3.7b). By capping off with the solid torus below, we make the first S1-factor of
T 2× I nullhomologous, so we can just focus on the second entry in homology. The Poincaré
dual of the Euler class of the structure is finally understood in the first homology group of
the lens space once we glue the other solid torus (above). The structure in Figure 3.7 has
PD(e) given by

5 + 5 + 5− 5− 5 + 1 + 1 + 1 = 8 ∈ Z/34Z, (3.3)

and it is exactly the one resulting from contact (−1)-surgery on the Legendrian Hopf link
of Figure 3.5a, where the component with Thurston-Bennequin number −4 has rotation +3
(corresponding to the three pluses in the lower block), and the other one has rotation +1
(corresponding to the upper block with three pluses and two minuses).

Now we look at the double covering map, which, on every basic slice, looks like

(z, w)→ (z, w2),
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where z is the coordinate corresponding to ∂D2 (which will be capped off when the lower
solid torus is glued), and w is the coordinate of the other S1-factor. We split L(17, 7) with
a tight structure into two solid tori: the first one is pictured in Figure 3.8a, and subdivided
into a block of two basic slices, plus a single basic slice, plus a standard solid torus; the
other solid torus is a standard torus which will be glued on top of the uppermost basic slice
and which is not pictured.
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Figure 3.8: Description of a contact structure on L(17, 7).

All the tight contact structures on L(17, 7) are encoded in the decomposition of the
represented solid torus into these pieces: by choosing the sign of the basic slices we produce
all the different (up to isotopy) 6 tight structures that L(17, 7) supports. As a double check,
one can think at the different Legendrian representatives of the 3-components link made by
a chain of unknots with Thurston-Bennequin numbers −2, −1 and −3 (notice indeed that
−17/7 = [−3,−2,−4]). The candidate tight contact structure on L(17, 7) which should be
the pullback of the one on L(34, 7) described by Figure 3.7a has the single basic slice with
positive sign, and the other two in the block with negative signs. This corresponds to the
choice of the rotation numbers for the components of the link to be +1, 0 and −2: the
link on which contact (−1)-surgery should give the pullback structure on L(17, 7) along the
covering map is pictured in Figure 3.5b. The reason why this is the correct candidate is
because, among the 3 different (up to contactomorphism) contact structures on L(17, 7),
this is the only case where we have compatibility of Euler classes: the computation (which
can be performed in two different ways) shows that the Poincaré dual of the Euler class
upstairs is −9 ≡ 8 (mod 17), which gets sent to 16 = 2 · 8 ∈ Z/34Z, which, as we already
computed in Equation (3.3), is the double of the Poincaré dual of the Euler class downstairs.

But now we argue that there cannot be compatibility in the signs of the basic slices of
L(34, 7) and L(17, 7). Indeed, once a sign for a basic slice downstairs is chosen, then its
lift should have the same sign, see [Hon00b, Section 1.1.4]. By lifting the dividing sets of
the various convex tori we see where the different basic slices go: Figure 3.9 is describing
this by means of colors. Computations show that the lowest basic slice of L(34, 7) is pulled
back inside the standard torus, and the same is true for the uppermost slice. Therefore the
behavior of the contact structure upstairs is regulated by what happens to the central slices,
i.e. from the yellow line (−1, 2) to the red line (−5, 24).
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Figure 3.9: Behavior of slices under the covering map.

But here we finally see the contradiction. While:

1) the positive slices from yellow (−1, 2) to green (−1, 4) lift to a positive slice in L(17, 7)
and

2) the negative slices from green (−1, 4) to blue (−3, 14) lift to a negative slice in L(17, 7),
we have that

3) the positive slices from blue (−3, 14) to red (−5, 24) lift to a negative slice in L(17, 7)

and this is not possible. No matter how we decide to shuffle the basic slices in each single
block (see [Hon00a, Section 4.4.5]), we always end up with a contradicting situation (as
proved in Theorem 3.17).

This tells us that, even if there is a tight virtually overtwisted structure on L(17, 7) whose
Euler class is compatible with the structure ξ we chose on L(34, 7), the pullback of ξ along
the double covering map is overtwisted, as claimed.
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Theorem 3.17.
Any virtually overtwisted structure on L(34, 7) lifts to an overtwisted one along the double
cover

L(17, 7)→ L(34, 7).

Proof.
We argue here using the behavior of the basic slices described in Figure 3.9. Look at the
three basic slices in L(17, 7), Figure 3.9b, regardless of the signs. Call ξ̂ the pullback of a
given ξ on L(34, 7) and compare the Poincaré dual of their Euler classes. Assuming that the
structures are both tight, we see that the choice of the sign of the red basic slice in L(17, 7)

contributes to a ±5 for PD(ξ̂) and, pushed down, to a ±10 for PD(ξ). The same is true for
the light blue slice, while the green slice gives a ±1 for PD(ξ̂) and a ±2 for PD(ξ). Moreover,
inside L(34, 7) we have two extra slices (dark green and yellow in Figure 3.9a), whose signs
can be chosen independently. Requiring compatibility of Euler classes means to impose

PD(ξ) ≡ PD(ξ̂) (mod 17).

Therefore, according to what we have just said:

±10±10±2±5±1 ≡ ±5±5±1 (mod 17)

which is the same as
±5±5±1±5±1 ≡ 0 (mod 17).

Clearly, this can be done only in two ways, namely by choosing all pluses or all minuses.
And these correspond exactly to the two universally tight structures, for which we already
knew that there is compatibility. Therefore, among the virtually overtwisted structures there
cannot be a coherent choice of signs resulting in compatible Euler classes. 3

Theorem 3.18.
Any virtually overtwisted structure on L(52, 11) lifts to an overtwisted one along all of its
non-trivial covers.

Proof.
At the end of previous section we argued that in the covering lattice of L(52, 11) the only
case which was more subtle to describe was the double cover

L(26, 11)→ L(52, 11),

because otherwise we already knew that virtually overtwisted structures on the base would
lift to overtwisted structures. We analyze this remaining case as we did before, by looking
for compatibility between the signs of the basic slices and the count of the possible Euler
classes. Figure 3.10 shows where the basic slices go, from L(26, 11) to L(52, 11). The count
of the Poincaré duals of the two Euler classes gives

±10±2±19±1 ≡ ±5±1 (mod 26)

which is the same as
±5±1±19±1 ≡ 0 (mod 26).

Again, we see that this can be done only in two ways, namely by choosing all pluses or all
minuses, which correspond exactly to the two universally tight structures. Therefore, among
the virtually overtwisted structures there cannot be a coherent choice of signs resulting in
compatible Euler classes. 3

We can finally give a proof of Theorem 3.5, which stated that every virtually overtwisted
contact structure on L(p, q) lifts along a degree d covering to a structure which is overtwisted,
if q < p < dq.
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Figure 3.10: Behavior of slices under the covering map.

Proof (of Theorem 3.5).
If the pullback of the contact structure were tight, it should fit with the description of tight
structures according to the basic slices subdivision. We claim that the lower solid torus H1

until the level −p/q gets all pulled back into the standard solid torus whose dividing set has
slope −1/1. This comes from the fact that the curve with slope (−q, p) pulls back to the
one with slope (−dq, p), according to the behavior

− p
dq

� ·d // −pq .

But by assumption − 1
1 < −

p
dq , and since the slopes of the dividing sets are increasing when

read from top to bottom (compare with Figure 3.7a), the claim follows.
Since we are considering a virtually overtwisted structure on L(p, q), the pullback of H1

cannot be tight, otherwise it would be universally tight, being it a subset of a solid torus in
standard coordinates (which does not support virtually overtwisted structures). Therefore,
we must have here an overtwisted disk, as wanted. 3

Corollary 3.19.
Let p1, p2 be prime numbers, not necessarily distinct, and let q be an integer such that
pi < q < p1p2 for i = 1, 2. Then each non-trivial covering of (L(p1p2, q), ξvo) is overtwisted,
for any virtually overtwisted structure ξvo.
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Proof.
It is a direct consequence of previous theorem, since

p1p2 < dq,

where d is either p1 or p2 (which are the only possible degrees for a non-trivial covering). 3

Remark 5.
The hypothesis of Theorem 3.5 can be relaxed by just requiring that p′ < dq′, where p′ and
q′ are determined as follows: let

−p
q

= [−a1, . . . ,−an]

be the continuous fraction expansion, with ai ≥ 2 for each i = 1, . . . , n. Then define p′ and
q′ as

[−a1, . . . ,−an + 1] = −p
′

q′
.

In this way we have

−p
q
< −p

′

q′

so that the requirement −1 < −p′/q′ is less restrictive. The reason why Theorem 3.5 stays
true with this weaker assumption is that the description of a contact structure via basic
slices shows as the smallest slope (hence on top of the uppermost block) precisely the slope
−p′/q′ (see [Hon00a, Section 4.6]). To ask that, from this level down, the solid torus is pulled
back inside the standard torus in the covering guarantees the existence of an overtwisted
disk in the covering space, as argued in the proof of Theorem 3.5.
There is another description of the two numbers p′ and q′ which is intrinsic in the sense that
does not involve the computation of the continued fraction expansion: given p and q, let q∗
be the multiplicative inverse of q, modulo p, i.e. 0 < q∗ < p and

q∗q ≡ 1 (mod p).

If we put p′ = p+ q∗, then q′ is the multiplicative inverse of q∗, modulo p′, i.e.

q′q∗ ≡ 1 (mod p′).

Comparing π1 and χ of a filling

The goal of this section is to see some applications to concrete examples of Theorem 3.6,
which is proved below.

Proof (of Theorem 3.6).
Take the universal covering X̃ → X, which has degree d, whose boundary is the (connected)
covering L(p′, q′)→ L(p, q) of degree d. The Euler characteristics of the fillings satisfy

χ(X̃) = dχ(X)

and hence, by Theorem 3.1,

χ(X) =
χ(X̃)

d
≤ 1 + l′

d
.

3

Corollary 3.20.
Let X be a Stein filling of a lens space L(p, q) with a virtually overtwisted structure, and let
d be a divisor of p. If

2d > 1 + length((p/d)/q),

then the fundamental group of X cannot be Z/dZ.
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Proof.
It follows by contradiction from Theorem 3.6 if we look at the associated d-covering X̂ → X
and remember that 2 ≤ χ(X), as proved in Section 3.2 and [GS19, Proposition A.1]. The
number length((p/d)/q) has to computed after reducing q modulo p/d. 3

Sometimes, depending on the arithmetic of the rational numbers, it happens that the
behavior of the basic slices of a covering is never compatible with the choice of signs deter-
mining the Euler classes, and this guarantees the covering itself to be overtwisted, which
in turn implies that all the fillings are simply connected. But there are cases where a non-
trivial cover of a tight virtually overtwisted structure stays as such, and so we need other
arguments to calculate the fundamental group of a filling.

A compatible case is illustrated for example by Figure 3.11, which represents the double
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(b) L(28, 15)

Figure 3.11: Compatible choice of signs for a covering map.

cover

L(28, 15)→ L(56, 15),

where the contact structures on the two lens spaces are specified by Figure 3.12.

If we look at the lattice of coverings of L(56, 15) we see that this contact structure ξ
(Figure 3.12a) lifts to an overtwisted one along some (at least one) covering maps:
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Figure 3.12: Contact surgery producing lens spaces.

(L(7, 1), ξ?)
2:1 // (L(14, 1), ξ?)

2:1 // (L(28, 15), ξvot)

2:1

((

(S3, ξot)

7:1

77

2:1
''

(L(56, 15), ξvot)

(L(2, 1), ξot))
2:1
//

7:1

>>

(L(4, 3), ξot)
2:1

//

7:1

==

(L(8, 7), ξot)

7:1

66

Therefore we cannot apply directly the criterion of previous section to conclude that
the Stein fillings of (L(56, 15), ξ) are simply connected. By the fact that lifting ξ to L(8, 7)
results in an overtwisted structure, we get that the kernel of i∗ cannot be contained in Z/8Z,
where

i : L(56, 15) ↪→ X

is the inclusion of the boundary of any Stein filling X. We have that

π1(X) =
Z/56Z
ker i∗

,

so the possibilities are:

• ker i∗ = Z/7Z, which gives π1(X) = Z/8Z,

• ker i∗ = Z/14Z, which gives π1(X) = Z/4Z,

• ker i∗ = Z/28Z, which gives π1(X) = Z/2Z,

• ker i∗ = Z/56Z, which gives π1(X) = 1. The following proposition proves that this is
the only possibility.

Proposition 3.21.
Let X be a Stein filling of (L(56, 15), ξ), with ξ described by the diagram of Figure 3.12a.
Then π1(X) = 1.
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Proof.
Consider the Stein filling XΛ of (L(56, 15), ξ) described by the diagram of Figure 3.12a. We
want to compute the d3 invariant of the contact structure on the boundary:

d3(ξ) =
1

4
(c1(XΛ)2 − 3σ(XΛ)− 2χ(XΛ)).

The first Chern class c1(XΛ) is zero, because it evaluates as roti = 0 on the three generators
of H2(XΛ). Moreover, σ(XΛ) = −3 and χ(XΛ) = 4. Therefore

d3(ξ) =
1

4
.

Notice that c1(ξ) = 0 because it is the restriction of c1(XΛ), which is 0 itself. Being any
contact structure on a lens space planar [Sch07], we can apply [OSS05, Corollary 1.5] and
conclude that any Stein filling of (L(56, 15), ξ) has vanishing c1.

We want to compute d3(ξ) using the Stein filling X. For what we have just said c1(X)2 =
0 and we also have σ(X) = 1− χ(X). So:

1

4
= d3(ξ) =

1

4
(c1(X)2 − 3σ(X)− 2χ(X)) =

1

4
(−3 + χ(X)).

This tells us that
χ(X) = 4.

Now we analyze the possibilities for its fundamental group case by case.

i) Suppose that π1(X) = Z/8Z. Then we pass to the universal covering X̃ → X, of
degree 8, whose boundary is the (connected) degree-8 covering L(7, 1) → L(56, 15).
By Theorem 3.6 we have

χ(X) ≤ 1 + length(7/1)

8
=

1 + 1

8
=

1

4
,

which is impossible. So π1(X) 6= Z/8Z.

ii) If π1(X) = Z/4Z, we pass to the universal covering and since length(14/1) = 1, we
get χ(X) ≤ 1/2. This is not possible, hence π1(X) 6= Z/4Z.

iii) Again, we take the universal covering X̃ → X, of degree 2, whose boundary is the
(connected) degree-2 covering L(28, 15)→ L(56, 15). By Theorem 3.6, we have

χ(X) ≤ 1 + length(28/15)

2
=

1 + 3

2
= 2

and hence χ(X) ≤ 2, which is not possible. Hence π1(X) 6= Z/2Z.

iv) We conclude that any Stein filling of (L(56, 15), ξ) is simply connected. (Note that by
[Men18, Theorem 1.3] we already know that in fact there is a unique filling obtained
by attaching three 2-handles to B4 along the link of Figure 3.12a).

3

The result proved in Theorem 3.6 is that somehow for a Stein filling X of (L(p, q), ξvo)
"the bigger π1(X) is, the smaller its Euler characteristic is forced to be". Of course this
is in general spoiled by the quantity l′, appearing in the statement, which depends on the
numbers p/d and q (one should first reduce q modulo p/d, in case it were bigger).

On the other hand, if p is small, then by Theorem 3.5 we have a bigger chance of
finding coverings of L(p, q) which are overtwisted, and hence apply our criterion to bound
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the cardinality of π1(X). Despite this, there are examples (found by Marco Golla) of fillings
with non-trivial fundamental group: let

−p
q

= [−4,−2n,−4], n > 1,

and consider the Legendrian representative of the 3-components link associated to this con-
tinued fraction expansion where the first and third components have rotation number +2,
while the middle one has rotation number 0. The fillings of this virtually overtwisted struc-
ture can be completely described by using, for example, the works of [Men18] and [McD90].
In particular, there is a filling which is obtained from a boundary connected sum of two ra-
tional homology balls with π1 = Z/2Z (corresponding to the two −4) by attaching a single
Weinstein 2-handle (corresponding to the central −2n): this handle attachment does not
kill the whole Z/2Z ∗ Z/2Z, resulting in a non simply-connected filling.
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Chapter 4

Hypersurface singularities and contact
structures

It is known that the lens space L(2n, 1) supports a virtually overtwisted contact structure
arising as the boundary of the Milnor fiber of a complex hypersurface singularity [MPW09].
In this chapter we study the problem of realizing other (L(p, q), ξ) in such a way, obtaining
a series of necessary conditions for this to happen. The driving question of this chapter is
therefore:

Are the virtually overtwisted structures on lens spaces realizable as the boundary of the
Milnor fiber of some complex hypersurface singularity?

Following [NS12], we review some terminology of singularity theory. Let f : (C3, 0) →
(C, 0) be the germ of a complex analytic function with a singularity at the origin, and let

K = f−1(0) ∩ Sε

be the link of the singularity, where Sε is the sphere of radius ε centered at the origin. Milnor
proved in [Mil16] that there exists ε0 > 0 such that ∀ 0 < ε < ε0 the map

f/|f | : Sε rK → S1 = {z ∈ C : |z| = 1}

is a smooth fibration. For any such ε there exists δε so that ∀ 0 < δ < δε the restriction

f : Bε ∩ f−1(∂Dδ)→ ∂Dδ

is a smooth fibration, whose diffeomorphism type does not depend on ε and δ (where Bε
denotes the open ball centered in 0 with radius ε, and Dδ denotes the closed ball centered
in 0 with radius δ). This is what we refer to as the Milnor fibration of f . The fiber

F = Fε,δ = Bε ∩ f−1(δ)

is the Milnor fiber of f (we omit ε and δ from the notation of F ). If f is the germ of an
isolated singularity, then we have a diffeomorphism ∂F ' K, but in the case of non-isolated
singularity K is not smooth (while F and ∂F are always smooth manifolds). The boundary
of the Milnor fiber comes with an extra structure, as explained below.

Contact topology shows up in singularity theory in the following way: the Milnor fiber F
of a singularity comes with a Stein structure J which makes it a Stein filling of its boundary
∂F equipped with the contact structure

ξ = T∂F ∩ JT∂F,

which is always tight, see [Eli90a]. Therefore, from a complex germ f : (C3, 0)→ (C, 0) we
obtain a contact 3-manifold (∂F, ξ) with a Stein filling (F, J). We have a dichotomy:
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• the singularity is isolated. In this case the structure ξ is universally tight, see [LÖ10].
Another work on this topic is [AHKNS16], where the authors show that the link of
the hypersurface singularity

zp + xy = 0

is L(p, p− 1) with its unique tight contact structure (universally tight). We will prove
(see Corollary 4.9) that this is the only lens space arising as the link of an isolated
hypersurface singularity.

• The singularity is not isolated. By contrast with previous point, this is the only case
where a virtually overtwisted contact structure could arise. A good source of examples
is given by the Hirzebruch singularity

z2 + xyn = 0

with n > 1, for which the boundary of the associated Milnor fiber is L(2n, 1). This
type of singularity is studied in [MPW09, Section 6].

We study those lens spaces L(p, q) with a tight contact structure ξ arising as the boundary
of the Milnor fiber of a hypersurface singularity f : (C3, 0) → (C, 0). Theorem 4.1 gives a
partial answer to a question raised by [NS12, open problems 24.4.2].

Theorem 4.1.
Let ξvo be a virtually overtwisted structure on L(p, q). If we are in one of the cases below, then
(L(p, q), ξvo) is not the boundary of the Milnor fiber of any complex hypersurface singularity:

a) p/q = [a1, a2, . . . , an] and ai is odd for some i;

b) p/q = [2x1, 2x2];

c) p/q = [2x1, 2x2, . . . , 2xn], with xi > 1 for every i (n ≥ 3) and either:

i) q2 6≡ 1 (mod p) or
ii) q2 ≡ 1 (mod p) and n is even.

The first step in proving this theorem is to characterize those contact structures ξ which
can appear in the context of hypersurface singularity: the fact that c1(ξ) vanishes imposes
certain conditions on the coefficients of the continued fraction expansion of p/q, which allow
us to prove part (a) of Theorem 4.1. Section 4.1 deals with these numerical restrictions,
adapted to the language of contact geometry. To prove parts (b) and (c) we need to look
closely at the topology of the Milnor fibration and analyze its monodromy. In order to
derive our statements we study the integral orthogonal group of the intersection form of the
Milnor fiber, imposing a further restriction coming from a theorem of A’Campo [A’C73].
This is explained in Section 4.2. The chapter ends with an open question which focuses on
the limits of Theorem 4.1: where are these techniques failing?

4.1 Vanishing of the rotation numbers

The goal of this section is to prove Theorem 4.2, which is a special case of [OSS05, Corollary
1.5]. We prove it using elementary techniques that do not involve the Ozsváth-Szabó contact
invariant (defined in [OS05]). Theorem 4.2 will be the starting point in the proof of Theorem
4.1.

Theorem 4.2.
Let L be a linear chain of Legendrian unknots in the standard contact S3 and let (L(p, q), ξ)
be the contact 3-manifold obtained by Legendrian surgery on L. If c1(ξ) = 0, then rot(Li) = 0
for every component Li of the link L.
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To prove Theorem 4.2 we need some notation that makes the computation easier, and a
few more results. Let

p

q
= [a1, a2, . . . , an],

and let Q be the intersection form of the plumbed 4-manifold associated to the linear graph

−a1 −a2 −a3 −an−1
. . .

−an

written in the ordered basis given by the meridian of each attaching circle. We know that

H2(L(p, q)) 3 c1(ξ) = 0⇔ PD(c1(ξ)) = 0 ∈ H1(L(p, q)),

and we express

PD(c1(ξ)) =

n∑
i=1

riµi,

where ri and µi are respectively the rotation number rot(Li) and the meridian of the ith
component of the Legendrian link describing (L(p, q), ξ) (compare with [ÖS13, Proposition
8.2.4]). By looking at the linear plumbing graph, we can find relations among the µi’s and
get a set of equations coming from Q, which hold in H1(L(p, q)):

−a1µ1 + µ2 = 0

µ1 − a2µ2 + µ3 = 0
...
µj − aj+1µj+1 + µj+2 = 0
...
µn−1 − anµn = 0.

We choose µ1 ∈ H1(L(p, q)) as a generator and we lift it from Z/pZ ' H1(L(p, q)) to Z.
Hence, from now on, we identify µ1 with 1 ∈ Z and all the other µi’s with integer numbers
according to the recursive expressions:

µ1 = 1

µ2 = a1

µi = ai−1µi−1 − µi−2.

Thanks to Lemma 4.3, we do not need to make computations in Z/pZ, hence we can use
previous relations, which hold over Z. Then c1(ξ) is 0 exactly when

n∑
i=1

riµi ≡ 0 (mod p). (4.1)

Define 
∆[−1] = 0;

∆[0] = 1;

∆[i] = −ai∆[i− 1]−∆[i− 2]

and note that

• det(Q) = ∆[n] = ±p;

• sign(∆[i]) = (−1)i, hence ∆[i] = (−1)i|∆[i]|;

• µi > µi−1;
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• |ri| ≤ ai − 2 and ri ≡ ai (mod 2);

• ∆[i] = (−1)iµi+1 (proved by induction), therefore |∆[i]| > |∆[i− 1]|.

Lemma 4.3.
Equation (4.1) is satisfied in Z/pZ if and only if it is satisfied in Z.

Proof.
We prove by induction on n that

p >
∣∣∣ n∑
i=1

riµi

∣∣∣. (4.2)

This will tell that Equation (4.1) can only be satisfied with∣∣∣ n∑
i=1

riµi

∣∣∣ = 0.

If n = 1 then the two sides of Inequality (4.2) are respectively |a1| and |r1|, so it is true.
The first interesting case is then n = 2:

a2a1 − 1 > r1 + r2a1?

We have:

r1 + r2a2 <(a1 − 2) + (a2 − 2)a1

=a1a2 − a1 − 2

<a1a2 − 1. X

The general case now:∣∣∣ n∑
i=1

riµi

∣∣∣ =
∣∣∣ n∑
i=1

ri(−1)i−1∆[i− 1]
∣∣∣

≤

(∣∣∣n−1∑
i=1

ri(−1)i−1∆[i− 1]
∣∣∣)+ |rn∆[n− 1]|

<|∆[n− 1]|+ |rn∆[n− 1]| (induction)
≤|∆[n− 1]|+ |(an − 2)∆[n− 1]|.

There are two possibilities for the right-hand side, according to the parity of n.

1) n is even (hence ∆[n] > 0):

|∆[n− 1]|+ |(an − 2)∆[n− 1]| =−∆[n− 1]− an∆[n− 1] + 2∆[n− 1]

=− an∆[n− 1] + ∆[n− 1]

<− an∆[n− 1]−∆[n− 2] (because n is even)
=∆[n]

=|det(Q)| = p.

2) n is odd (hence ∆[n] < 0):

|∆[n− 1]|+ |(an − 2)∆[n− 1]| =an∆[n− 1]−∆[n− 1]

<an∆[n− 1] + ∆[n− 2] (because n is odd)
=−∆[n]

=|det(Q)| = p.
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3

Lemma 4.4.

anµn − an−1µn−1 > 0.

Proof.
We prove it by induction on n. If n = 2 then the formula is just

a2µ2 − a1µ1 = a2a1 − a1 > 0. X

In general, assuming the result true for n− 1, we have

anµn − an−1µn−1 =an(an−1µn−1 − µn−2)− an−1µn−1

=an−1µn−1(an − 1)− anµn−2

>an−2µn−2(an − 1)− anµn−2 (induction)
=(an−2an − an−2 − an)µn−2

≥0.

3

Lemma 4.5.
If rn 6= 0, then we have

|rnµn| − |rn−1µn−1| > 0.

Proof.

|rnµn| − |rn−1µn−1| >|µn| − (an−1 − 2)µn−1

=an−1µn−1 − µn−2 − an−1µn−1 + 2µn−1

=2µn−1 − µn−2

>0.

3

Lemma 4.6.
If rn 6= 0, then we have

|rnµn| −
∣∣∣n−1∑
i=1

riµi

∣∣∣ > 0.

Proof.
We prove it by induction on n. If n = 2, the formula is the same as the one of Lemma 4.5,
and so we know it holds. Now we do the general case. Assume the inequality holds for n−1
and let j ≤ n − 2 be the biggest integer such that rj 6= 0 (note that if ri = 0, ∀i ≤ n − 2,
then by Lemma 4.5 we would be done after the second line in the following computation).
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We have

|rnµn| −
∣∣∣n−1∑
i=1

riµi

∣∣∣ >|µn| − ∣∣∣j−1∑
i=1

riµi

∣∣∣− |rn−1µn−1|

>µn − |rjµj | − |rn−1µn−1| (induction)
≥µn − (aj − 2)µj − (an−1 − 2)µn−1

=an−1µn−1 − µn−2 − (aj − 2)µj − (an−1 − 2)µn−1

=2µn−1 − µn−2 − (aj − 2)µj

>µn−1 − (aj − 2)µj

=µn−1 + µj + µj − ajµj
>µj+1 + µj−1 + µj−1 − ajµj (n− 2 ≥ j ⇒ n− 1 ≥ j + 1)

=µj−1 (µj+1 + µj−1 = ajµj)

>0.

3

Lemma 4.7.

n∑
i=1

riµi = 0 =⇒ ri = 0, ∀i.

Proof.

n∑
i=1

riµi = 0 =⇒ rnµn = −
n−1∑
i=1

riµi =⇒ |rnµn| =
∣∣∣n−1∑
i=1

riµi

∣∣∣.
But if rn 6= 0, then we should have a strict inequality by Lemma 4.6, hence rn = 0. By
applying this repeatedly we get to

rn = rn−1 = . . . = r1 = 0.

3

We can finally give the following:

Proof (of Theorem 4.2).
By combining Lemmas 4.3 and 4.7, we have that

c1(ξ) = 0⇐⇒
n∑
i=1

riµi ≡ 0 (mod p) ⇐⇒
n∑
i=1

riµi = 0⇐⇒ ri = 0∀i,

where ri = rot(Li). 3

4.2 Proof of Theorem 4.1

In the universally tight case for lens spaces we know (see [NPP10] and [BÖ13]) that all the
fillings come from algebraic geometry, and Choi and Park show in the article [CP19] that the
theory of surface singularities describes all the fillings of small Seifert 3-manifold equipped
with the canonical contact structure.

Key fact: suppose there is a polynomial function f : (C3, 0)→ (C, 0) such that

∂(F, J) = (L(p, q), ξ),
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where (F, J) is the Milnor fiber of f and ξ is the contact structure on the boundary induced
by complex tangencies, as explained above. The Legendrian link representation of (L(p, q), ξ)
describes more than a contact 3-manifold: the components Li of the link can be thought of
as the attaching circles of the 2-handles of the Stein domain (F, J), as Corollary 4.8 explains.
The first Chern class c1(F, J) ∈ H2(F ;Z) evaluates on each 2-handle as the correspondent
rotation number, and c1(ξ) is the restriction of c1(F, J). But the tangent bundle of F is
stably trivial (since the normal bundle of a complex hypersurface of C3 is trivial), hence
c1(F, J) = 0, and also c1(ξ) = 0 on the boundary L(p, q).

Proof (of Theorem 4.1a).
If (L(p, q), ξvo) is the boundary of the Milnor fiber of a complex hypersurface singularity,
then c1(ξvo) = 0 and, by Theorem 4.2, all rot(Li) are zero.
Let p/q = [a1, a2, . . . , an] and remember that

ai ≡ rot(Li) (mod 2).

Since all the rotation numbers are zero, the conclusion follows. 3

Theorem 4.2 implies also the following corollary, which will be used later.

Corollary 4.8.
If (L(p, q), ξ) is the boundary of the Milnor fiber of a hypersurface singularity, then it has a
unique Stein filling, which is the Milnor fiber itself.

Proof.
The fact that rot(Li) = 0 for every i implies, by [Men18, Theorem 1.3], that from the chain
of Legendrian unknots producing (L(p, q), ξ) we can forget about those components with
tb(Li) 6= −1 and look for Stein fillings of the 3-manifold Y which is left. Then, all the Stein
fillings of (L(p, q), ξ) will be uniquely obtained by attaching the 2-handles (corresponding to
the forgotten components) to the Stein fillings of Y . From the link diagram of (L(p, q), ξ)
we see that Y is a connected sum of (L(nj , nj − 1), ξst), where each of the prime factor
corresponds to a string of −2 in the expansion of p/q. By [CE12, Theorem 16.9], Y admits
a unique Stein filling, because each factor (L(nj , nj − 1), ξst) does (by the work of Lisca
[Lis08]). This concludes the proof. 3

Another consequence of Theorem 4.2 is:

Corollary 4.9.
Let (L(p, q), ξ) be a lens space with a contact structure arising as the link of an isolated
hypersurface singularity. Then q = p− 1.

Proof.
From Theorem 4.2 we have that all the rotation numbers are zero and [LÖ10, Theorem
2.1] says that ξ is universally tight. By the work of [Hon00a] we know that a universally
tight structure on a lens space is the result of contact (−1)-surgery on a link where all
the stabilizations appear on the same side, i.e. when the (absolute values of the) rotation
numbers are maximal. Therefore, every Legendrian knot must have Thurston-Bennequin
number equal to −1:

−p
q

= [−2,−2, . . . ,−2] ⇒ q = p− 1.

3

Proof of Theorem 4.1b

Corollary 4.8 says that if (L(p, q), ξvo) arises as ∂(F, J), then the Stein filling F is uniquely
determined: topologically it is given by the plumbing of spheres according to the expansion
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of p/q. The monodromy ϕ of the Milnor fibration induces, in cohomology, a homomorphism

ϕ∗ : H∗(F ;Z)→ H∗(F ;Z)

such that the alternating sum of the traces is zero, by [A’C73, Theorem 1]:

tr(ϕ∗0)− tr(ϕ∗1) + tr(ϕ∗2)− tr(ϕ∗3) + tr(ϕ∗4) = 0.

In our case, the Stein fillings of those lens spaces with c1(ξ) = 0 are simply connected, hence
ϕ∗1 = ϕ∗3 = 0. Moreover, ϕ∗0 : Z → Z is the identity and ϕ∗4 = 0. Hence, previous equation
simply reads as:

1 + tr(ϕ∗2) = 0. (4.3)

The intersection form of F must be preserved by the homomorphism ϕ∗2 and we are therefore
led to study its isometry group. If in this group there is no element whose trace is −1,
then Equality (4.3) cannot be satisfied, and we conclude that the polynomial function f :
(C3, 0)→ (C, 0) with (∂F, ξ) = (L(p, q), ξvo) does not exist.

Proof (of Theorem 4.1b).
Our goal is to prove that there is no f : (C3, 0)→ (C, 0) with non-isolated singularity at the
origin, whose Milnor fiber has boundary L(p, q). Note that

x1x2 > 1,

otherwise the induced contact structure is universally tight.
Assume by contradiction that such f exists. Then, by Corollary 4.8, we know that the

Milnor fiber F has negative-definite intersection form isomorphic to

−M =

[
−2x1 1

1 −2x2

]
.

By Equality (4.3), we must have tr(ϕ∗2) = −1. The morphism ϕ∗2 : H2(F ;Z) → H2(F ;Z)
is induced by a diffeomorphism which preserves the intersection form and therefore it is
represented by an integral matrix A with{

|det(A)| = 1

tr(A) = −1

and such that
A(−M)AT = −M.

We show now that such matrix cannot exist. We change sign to work with a positive definite
matrix:

AMAT = M =⇒
[
a1 a2

a3 a4

] [
2x1 −1
−1 2x2

] [
a1 a3

a2 a4

]
=

[
2x1 −1
−1 2x2

]
.

We get equations: {
2x1a

2
1 − 2a1a2 + 2x2a

2
2 = 2x1

2x1a
2
3 − 2a3a4 + 2x2a

2
4 = 2x2

that can be rewritten as{
(2x1 − 1)a2

1 + (a1 − a2)2 + (2x2 − 1)a2
2 = 2x1

(2x1 − 1)a2
3 + (a3 − a4)2 + (2x2 − 1)a2

4 = 2x2.

(4.4a)

(4.4b)

From Equations (4.4a) and (4.4b) it follows that a2
1 ≤ 1 and a2

4 ≤ 1. But since tr(A) =
a1 + a4 = −1, we have that either{

a1 = 0

a4 = −1
or

{
a1 = −1

a4 = 0.
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We do the first case (a1 = 0, a4 = −1), the other one is the same. From AMAT = M we
also get [

0 a2

] [2x1 −1
−1 2x2

] [
a3

−1

]
= −1,

which gives the equation a2(a3 + 2x2) = 1. Hence a2 = a3 + 2x2 = 1 (or both −1, but the
conclusion is the same). From Equation (4.4a) we have x2a

2
2 = x1, which gives x2 = x1.

Then

±1 = det(A) = det

[
0 ±1
a3 −1

]
=⇒ a3 = ±1.

We are in the case where a3 + 2x2 = 1, so either x1 = x2 = 0 or x1 = x2 = 1, which are
both contradicting the condition x1x2 > 1. 3

Proof of Theorem 4.1c

Remember that in order to have c1(ξ) = 0 we need all the rotation numbers to be zero
and, in particular, all the coefficients in the expansion to be even. Let −M be the negative
definite intersection lattice associated to the linear plumbing of spheres

−2x1 −2x2 −2x3 −2xn−1
. . .

−2xn

We are looking for a matrix A representing the monodromy of a Milnor fibration on
the second cohomology group, that respect the intersection form of the Milnor fiber (i.e.
A(−M)AT = M) and whose trace is −1.

What we need to understand is the integral orthogonal group OZ(−M) of the negative
definite lattice (Zn,−M), which is isomorphic to OZ(M). The latter is studied in the article
[Ger95], where the following theorem is proved:

Theorem ([Ger95]).
Let M be the integer matrix 

2x1 −1

−1
. . . . . .
. . . . . . . . .

. . . . . . −1
−1 2xn


with n ≥ 2 and 2xi ≥ 3 ∀i.

i) If xi 6= xn+1−i for some i, then OZ(M) = {± id}.

ii) If xi = xn+1−i for every i = 1, . . . , n, then OZ(M) = {± id,±ρ}, where ρ is the
isometry that inverts the order of a basis.

Therefore we can derive:

Proof (of Theorem 4.1c).
The condition q2 6≡ 1 (mod p) can be rephrased in terms of the coefficients of the expansion
by saying that xi 6= xn+1−i for some i, see [OW77, Appendix]. On the other hand, xi =
xn+1−i for all i if and only if q2 ≡ 1 (mod p).

In the first case, the theorem of Gerstein quoted above tells us that if there is an integer
matrix A with AMAT = M , then A = ± id. Since this does not have trace −1, there cannot
be a hypersurface singularity whose Milnor fiber has boundary (L(p, q), ξvo), otherwise we
would have a contradiction with A’Campo’s Equality (4.3).
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In the second case, again A’Campo’s formula cannot be satisfied because a hypersurface
singularity would produce a Milnor fibration with monodromy A ∈ {± id,±ρ}:

ρ =


1

1
...

1


and, if n is even, then tr(ρ) = 0 6= −1. 3

Question.
There are cases which are not covered by Theorem 4.1: every time that in the continued
fraction expansion of −p/q there is a −2, the orthogonal group OZ(M) is harder to under-
stand. Nevertheless, in the easier case when q2 ≡ 1 (mod p) we have a complete description
of OZ(M), but inside this group there is a matrix with trace −1 if the length of the expansion
is odd. A simple case is for example

−p
q

= −12

7
= [−2,−4,−2].

Our techniques indeed do not exclude that the isometry

−ρ =

 0 0 −1
0 −1 0
−1 0 0


is the morphism induced by the monodromy of the Milnor fibration of a certain non-isolated
hypersurface singularity producing L(12, 7) with the virtually overtwisted contact structure
represented by a Legendrian link with the rotation numbers of the three components equal to
zero. How can we deal with cases like this and exclude the existence of such a monodromy?
Further works will hopefully clarify this problem and either find the polynomial function or
rule out this possibility as well.
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Chapter 5

Artin presentations and contact
geometry

We present in this final chapter an interesting approach to 3-manifolds, through the theory
of Artin presentations. As we will see, to the datum of such a presentation it is possible
to associate a (planar) open book decomposition of a 3-manifold and therefore a contact
structure on it. We highlight the main results of the theory and derive some consequences
related to contact geometry, see Section 5.4. What follows is the result of several discussions
held in Budapest between the author and Fabio Gironella.

A group presentation is called Artin presentation (of length n) if it is of the form

pn = 〈x1, . . . , xn | r1, . . . , rn〉,

for some n, with the requirement that, in the free group on n generators {x1, . . . , xn}, the
following equality holds:

n∏
i=1

xi =

n∏
i=1

r−1
i xiri.

Such group presentations came to the attention of topologists when it was proved that a
group G admits an Artin presentation if and only if G is the fundamental group of a closed
oriented 3-manifold, see [Win02]. More specifically, the datum of an Artin presentation pn
corresponds to a pair (Σn+1, ϕ), where Σn+1 is a planar surface with n+1 boundary compo-
nents and ϕ is an element in the mapping class group Γ(Σn+1), where homeomorphisms are
the identity on the boundary and isotopies are relative to the boundary. Vice versa, given
such a pair, it is possible to construct an Artin presentation. In what follows, we highlight
the steps in the construction of this bijection.

5.1 From (Σ, ϕ) to p

Let si be the oriented arc starting on the outer component with endpoint on the ith inner
component, as in Figure 5.1a. Denote by xi the oriented loops as in Figure 5.1b, which
generate the fundamental group π1(Σ) ' Fn for i = 1, . . . , n, and are based at xi(0). From
now on, we will consider the fundamental group of Σ based at x = xi(0).

Now define the ith relation ri(ϕ) by looking at the action of the diffeomorphism ϕ on
π1(Σ, x) (notice that this is possible because ϕ is the identity near the boundary of Σ):

ri = ri(ϕ) = si ∗ ϕ(s−1
i ),

written as a word in the alphabet {x±1
1 , . . . , x±1

n }, where ∗ denotes the concatenation of
paths (read from left to right). This way we get a collection of words r1, . . . , rn which
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⋯
si

⋯
xi

⋯∂i

⋯
γst

(a) The arc si.

⋯
si

⋯
xi

⋯∂i

⋯
γst

(b) The loop xi.

Figure 5.1

produces the Artin presentation 〈x1, . . . , xn | r1, . . . , rn〉, compare with [Win02]. We denote
the Artin presentation obtained this way as p = p(ϕ).

The set of Artin presentations Pn of length n can be endowed with the following opera-
tion, see [Win02, page 227]. Take two Artin presentations p, p′ ∈ Pn and inside the relations
r′j of p′ substitute each x′i with r

−1
i xiri, for all i, j = 1, . . . , n. Denote by Rj the new set of

relations produced this way (which are now written in the alphabet {x±1
1 , . . . , x±1

n }). Finally,
set the product p · p′ to be:

p · p′ = 〈x1, . . . , xn | r1R1, . . . , rnRn〉.

Proposition 5.1.
The above operation is compatible with the group operation of the mapping class group:

p(ϕ ◦ ψ) = p(ϕ) · p(ψ).

Proof.
The operation in the mapping class group (i.e. the composition of diffeomorphisms) is to
be read from right to left, as usual. Before doing the computation, notice that from the
definition of the ith relation ri(ψ) associated to ψ, we have:

ψ(s−1
i ) = s−1

i ∗ ri(ψ). (5.1)

Moreover, since xj can be written as sj ∗ ∂j ∗ s−1
j , with ∂j being the jth inner boundary

component run around in the clockwise direction, we get that:

ϕ(xj) = r−1
j (ϕ) · xj · rj(ϕ) (5.2)

Then we compute:

ri(ϕ ◦ ψ) =si ∗ (ϕ ◦ ψ)(s−1
i )

=si ∗ ϕ(s−1
i ) ∗ ϕ(ri(ψ)), using Equality (5.1)

=ri(ϕ) · ϕ(ri(ψ)), using Equality (5.2)
=ri(ϕ) ·Ri
=(r(ϕ) · r(ψ))i.

3

This proposition will be used in the coming section, where we construct a pair (Σ, ϕ)
from a given Artin presentation p, with the property that p(ϕ) is again p.

5.2 From p to (Σ, ϕ)

Lemma 5.2.
The Artin presentation associated to the (positive) Dehn twist around the ith boundary-
parallel inner component is:

p(τ∂i) = 〈x1, . . . , xn | 1, . . . , 1, xi, 1, . . . , 1〉.
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Proof.
The calculation follows from Figure 5.2: note that the arc sj is disjoint from the curve ∂i
for j 6= i, hence τ∂i(sj) = sj and rj = sj ∗ s−1

j = 1. On the other hand, the relation ri
is computed by concatenating the arc si with the path starting at si(1), going around the
ith hole and going back to si(0). This concatenation is precisely the generator xi in the
fundamental group, hence ri = xi.

⋯
si

⋯
xi

⋯∂i

⋯
γst

Figure 5.2

3

Remark 6.
Lemma 5.2 can be easily generalized for an arbitrary power τk∂i , producing an Artin pre-
sentation where the only non-trivial relation is the ith one, namely ri(τk∂i) = xki . Another
consequence of Lemma 5.2 is that composing a diffeomorphism ϕ with a such a Dehn twist
has the effect of modifying the Artin presentation, according to the operation described in
previous section, as follows:

p(τ∂i ◦ ϕ) = p(τ∂i) · p(ϕ) = 〈x1, . . . , xn | r1(ϕ), . . . , xiri(ϕ), . . . , rn(ϕ)〉.

This means that every relation except the ith one remains the same, while ri(τ∂i ◦ ϕ) is
simply the concatenation xiri(ϕ).

Starting from an Artin presentation p of length n, we define a group automorphism

π1(p) : Fn ' π1(Σn+1)→ Fn ' π1(Σn+1)

by sending the generator xi to r−1
i xiri. This uniquely defines the morphism π1(p) and, con-

sequently, a continuous map (unique up to homotopy, which is not relative to the boundary)

ϕ′ : Σn+1 → Σn+1

which induces the prescribed action on the fundamental group (xi 7→ r−1
i xiri). This is true

because the surface Σn+1 is a classifying space for Fn. By [Art65], we can actually choose
ϕ′ to be a diffeomorphism of Σn+1, which is the identity on the boundary. We still have
to modify the map ϕ′ close to the boundary, to find the mapping class of a diffeomorphism
whose associated Artin presentation is precisely p:

Proposition 5.3.
There is a unique element ϕ ∈ Γ(Σn+1) such that p(ϕ) = p.

Proof.
We modify ϕ′ preserving the fact that the generators xi are sent to r−1

i xiri for i = 1, . . . , n.
To this end, notice that the Dehn twists τ∂1

, . . . , τ∂n act as the identity on π1(Σ, x).
Write the relations ri of p and the relations associated to ϕ′ minimally as

ri =xaii νi with νi not starting with x±1
i ,

ri(ϕ
′) =xbii µi with µi not starting with x±1

i .
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We impose:
r−1
i xiri = ri(ϕ

′)−1xiri(ϕ
′) ∈ π1(Σ, x).

Since we are in a free group, the equality ν−1
i xiνi = µ−1

i xiµi implies νi = µi. Hence

ri(ϕ
′)r−1

i = xbii x
−ai
i = xbi−aii =⇒ ri(ϕ

′) = xbi−aii ri.

So we see that by composing ϕ′ with a suitable power of a boundary-parallel Dehn twist,
using Lemma 5.2, we get:

ri(τ
ai−bi
∂i

◦ ϕ′) = ri(τ
ai−bi
∂i

)ri(ϕ
′) = xai−bii xbi−aii ri = ri.

In this way, we see that the composition

ϕ = τa1−b1
∂1

◦ . . . ◦ τan−bn∂n
◦ ϕ′

is the required element in the mapping class group Γ(Σn+1) with p(ϕ) = p. Uniqueness comes
from the fact that homotopic diffeomorphisms of a surface are isotopic ([Eps66, Theorem
6.3]), and from the following observation: notice that if we take a diffeomorphism f ∈
Γ(Σn+1) inducing the identity on π1(Σ, x) and cap n boundary components with punctured
disks and one with a disk, then the class of f is trivial in the pure mapping class group
(see [Bir69, Theorem 4]), hence a product of boundary parallel Dehn twists around those
n boundary components (by Birman exact sequence [FM11, Theorem 4.6]). So, if we had
picked a map ϕ′′ different from ϕ′ in the first instance, then

ϕ′ ◦ (ϕ′′)−1 = τm1

∂1
· · · τmn∂n

,

because ϕ′ and ϕ′′ induce the same action on π1(Σ, x). Hence correcting ϕ′′ through the
algorithm above would produce the same ϕ. 3

5.3 Matrix of relations and matrix of multiplicities

The first step to start dealing with Artin presentations through the lens of contact geom-
etry is to identify the matrix of relations (Definition 5.4) with the matrix of multiplicities
(Definition 5.5).

Definition 5.4.
Given an Artin presentation p ∈ Pn we define an n × n matrix A(p) by setting A(p)i,j
equal to the total exponent of xi in the relation rj . The matrix A(p) is called the matrix of
relations of the Artin presentation p.

Recall that in Section 2.1 we defined the capping maps

Γ(Σ)
cap
//

m(−)
$$

Γ(Σ0,2)

'
��

Z

Γ(Σ)
cap

//

m(−,−)

""

Γ(Σ0,3)

'
��

Z⊕ Z⊕ Z
pr3

��

Z
which are induced by capping off all but one (respectively two) interior component. In the
first case we get the mapping class group of the annulus, which is isomorphic to Z, generated
by a positive Dehn twist along the core curve. In the second case we get the mapping class
group of a pair of pants, isomorphic to a free abelian group of rank 3. By projecting onto
the third summand (that takes the role of the outer boundary component) we get the joint
multiplicity around the other two components. We denote by m(−) the multiplicity of a
single hole, and by m(−,−) the joint multiplicity of a pair of holes.
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Definition 5.5.
Given a diffeomorpshim class ϕ ∈ Γ(Σn+1) of a planar surface, we define the matrix of
multiplicities A(ϕ) as an n× n matrix by setting A(ϕ)i,j = m(i, j) for i 6= j, and A(ϕ)i,i =
m(i).

In Section 2.1 (Step 2) we showed how to calculate the matrix of multiplicities starting
from a factorization of ϕ as a product of positive and negative Dehn twists.

Theorem 5.6.
Given ϕ ∈ Γ(Σn+1), consider the associated Artin presentation p(ϕ) ∈ Pn and the matrices
A(p(ϕ)) and A(ϕ). Then:

A(p(ϕ)) = A(ϕ).

Proof.
By [Win02] we have that, given two Artin presentations p, p′ ∈ Pn, the matrices of relations
satisfy the following equality:

A(p · p′) = A(p) +A(p′). (5.3)

Similarly, given two diffeomorphisms ϕ,ϕ′ ∈ Γ(Σ) it follows from Definition 5.5 that

A(ϕ ◦ ϕ′) = A(ϕ) +A(ϕ′). (5.4)

Therefore, thanks to the Equalities (5.3) and (5.4), it is enough to prove the theorem in
the case when ϕ is a Dehn twist (around an arbitrary curve γ). Notice that A(p(ϕ−1)) =
−A(p(ϕ)), from

A(p(ϕ−1)) +A(p(ϕ)) = A(p(ϕ−1) · p(ϕ)) = A(p(ϕ−1 ◦ ϕ)) = A(p(id)) = 0n×n.

Further, we reduce to the case when γ is a curve as the ones drawn in Figure 5.3, that we
refered to as standard. The curves γst are realized as the union of the green arcs together
with a choice, at every inner boundary component, of an orange or purple arc (for a total of
2n standard curves). This way we see that for any simple closed curve on the surface Σn+1,
there is a standard representative in the same homology class.

⋯
si

⋯
xi

⋯∂i

⋯
γst

Figure 5.3: Standard curves on Σn+1.

Notice that A(p(τγ)) and A(τγ) are independent of the free homotopy type of γ, they just
depends on the homology class of γ, as the following argument shows: we can change
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coordinates through a diffeomorphism f and get

A(p(τγ)) =A(p(fτγstf
−1))

=A(p(f)p(τγst)p(f
−1))

=A(p(f)) +A(p(τγst)) +A(p(f−1))

=A(p(τγst)).

A(τγ) =A(fτγstf
−1)

=A(f) +A(τγst) +A(f−1)

=A(τγst).

Hence, it remains to check that the theorem holds for ϕ = τγst .
We calculate A(p(τγst)) in one specific case (Figure 5.4). This has nothing special, but

it makes the general argument clear.

 

s1
s2

s3

s2 s4

B2 B4

B1

β α

B3

Figure 5.4

To this end, we start by noticing that r2(τγst) = r4(τγst) = 1, being the curve disjoint
from the arcs s2 and s4. Now, since we are only interested in the matrix of relations
A(p(τγst)) we change the homotopy representative of γst and keep its homology class fixed:
this result in the new curve (see Figure 5.5) which we use to determine the three relations
r1, r3 and r5.

 

s1
s2

s3

s2 s4

B2 B4

B1

β α

B3

Figure 5.5

Then one computes r1 = r3 = r5 = x1x3x5. These are not the relations of p(τγst), but
the exponential count of generators appearing there is the same as the entries of A(p(τγst)).
From Figure 5.4 it is easy to calculate the matrix of multiplicities A(τγst), and therefore we
conclude:

A(p(τγst)) =


1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1

 X
= A(τγst).
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3

Corollary 5.7.
The matrix of relations A(p) is symmetric for any Artin presentation p.

Proof.
Take a diffeomorphism ϕ ∈ Γ(Σ) with p(ϕ) = p. By Theorem 5.6, we have

A(p) = A(p(ϕ)) = A(ϕ)

and A(ϕ) is symmetric. 3

5.4 Connection with contact geometry

The bridge to contact geometry is Giroux correspondence [Gir03], which produces a contact
3-manifold (Y, ξ) out of an open book decomposition (Σ, ϕ). Since the theory of Artin
presentations deals with planar surfaces, we always get planar contact structures. One
might be interested in understanding certain properties of ξ, such as fillability, through the
Artin presentation itself.

A planar contact structure ξ on a 3-manifold Y is Stein fillable if and only the monodromy
of a compatible (planar) open book decomposition admits a factorization into positive Dehn
twists, as proved by [Wen10]. This can be translated in the language of Artin presentation:

The Artin presentation p ∈ Pn corresponds to a Stein fillable contact 3-manifold if and
only if p is quasi-positive, i.e. it can be written as a product of conjugated of p(τγst).

Given the datum of an Artin presentation p, we can test quickly whether it can correspond
to a Stein fillable contact 3-manifold in the following way.

Proposition 5.8.
Let p be an Artin presentation that determines the contact 3-manifold (Y, ξ) and assume
that (Y, ξ) is Stein fillable. Then

A(p)i,i ≥ A(p)i,j ≥ 0, ∀i, j.

Proof.
Remember that p can be realized as p(ϕ) for a unique element ϕ ∈ Γ(Σ). The contact
3-manifold (Y, ξ) is Stein fillable if and only if ϕ admits a factorization into positive Dehn
twists. If this happens, then the matrix of multiplicities A(ϕ) would be a sum of A(τγst)
for some standard curves. But such matrices have the property that their entries are all
non-negative and that the diagonal elements are the biggest among the ones on that same
row (and column), and this property is stable under the composition of homeomorphisms,
which in turns translate to a sum of the corresponding matrices. And we know by Theorem
5.6 that A(p) = A(ϕ). This concludes the proof. 3

Example.
The result of [CKK16, Theorem 1.3] is an example of an infinite family of planar contact
3-manifolds which are hyperbolic, universally tight, with vanishing Heegaard Floer contact
invariant but not fillable. To rule out the fillability property the authors use two theorems
of [NW11] and [Bal13] which deal with holomorphic curves and Heegaard-Floer theory. Our
tools represent a low-tech solution that gives the same conclusion: the family of monodromies
that the authors deal with in [CKK16] is

ϕ = τ−n1−1
α τpβτ

n1

B1
τn2

B2
τn3

B3
τn4

B4
∈ Γ(Σ4),
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B1

β α

B3

Figure 5.6: Curves configuration.

with the supporting curves as in Figure 5.6.

We compute the matrix of multiplicities A(ϕ) by looking at Figure 5.6 and at the definition
of ϕ. For example, A(ϕ)1,1 is the sum of the multiplicities of the curves B2, β and B1, which
are respectively n2, p and n1. We check that the matrix does not satisfy the necessary
condition for being fillable (the element in position (2, 3) is negative):

A(ϕ) =

n1 + n2 + p p+ n1 n1

p+ n1 n3 + p− 1 −1
n1 −1 n4 − 1

 .
Example.
In [Win02], Winkelnkemper proves that the only Artin presentations of length 2 are of the
form

pa,b,c = 〈x1, x2 | xa1(x1x2)a+c, xb2(x1x2)b+c〉,

with a, b, c ∈ Z. This is consistent with the fact that the mapping class group Γ(Σ3) is
isomorphic to Z3, generated by the three Dehn twists around the boundary components, see
Figure 5.7.
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s3

s2 s4

B2 B4
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β α
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Figure 5.7: Curves generating Γ(Σ3).

We see also that
pa,b,c = p(τ c∂0

τa∂1
τ b∂2

)

and that
A(pa,b,c) = A(τ c∂0

τa∂1
τ b∂2

) =

[
a+ c c
c b+ c

]
.

It is therefore clear that pa,b,c corresponds to a Stein fillable contact 3-manifold if and
only if a ≥ 0, b ≥ 0 and c ≥ 0. One could have noticed that τ c∂0

τa∂1
τ b∂2

is right-veering if
and only if a, b, c ≥ 0. Since right-veering-ness is a necessary condition for tightness (and
hence fillability), this gives us the same conclusion. The advantage of working with Artin
presentation is that we just have to deal with matrices instead of drawing curves and arcs.
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