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Abstract. Critical points of approximations of the Dirichlet energy à la
Sacks-Uhlenbeck are known to converge to harmonic maps in a suitable sense.

However, we show that not every harmonic map can be approximated by criti-

cal points of such perturbed energies. Indeed, we prove that constant maps and
the rotations of S2 are the only critical points of Eα for maps from S2 to S2

whose α-energy lies below some threshold. In particular, nontrivial dilations
(which are harmonic) cannot arise as strong limits of α-harmonic maps.

1. Introduction

Let (M2, g) and (Nn, h) be smooth, compact Riemannian manifolds without
boundary and let N be isometrically embedded into some Rk. (The dimension of
M is two and that of N is arbitrary.) For every u ∈ W 1,2(M,N) the Dirichlet
energy E(u) is defined by

(1.1) E(u) =
1

2

∫
M

|∇u|2 dAM =

∫
M

e(u) dAM ,

where e(u) = 1
2 |∇u|

2 is the energy density of u.
In a pioneering paper, [9], Sacks and Uhlenbeck introduced, for every α > 1 and

every u ∈ W 1,2α(M,N), the functional Eα(u) = 1
2

∫
M

(1 + |∇u|2)α dAM . For us, it
shall be more convenient to define

(1.2) Eα(u) =
1

2

∫
M

(2 + |∇u|2)α dAM .

Critical points of Eα are called α-harmonic maps and they solve the elliptic system

(1.3) div
(

(2 + |∇u|2)α−1∇u
)

+ (2 + |∇u|2)α−1A(u)(∇u,∇u) = 0,

where A is the second fundamental form of the embedding N ↪→ Rk. Critical points
of Eα are smooth (see [9]) and therefore we can differentiate the equation (1.3) to
get

(1.4) ∆u+A(u)(∇u,∇u) = −2(α− 1)(2 + |∇u|2)−1〈∇2u,∇u〉∇u.
By a remarkable result of Hélein, [6], critical points of E also turn out to be smooth
and satisfy

∆u+A(u)(∇u,∇u) = 0.

In [9], Sacks and Uhlenbeck showed that, as α ↓ 1, a sequence of α-harmonic maps
with uniformly bounded energy converges, away from a finite (possibly empty) set
of points p1, . . . , p`, to a harmonic map from M to N . Furthermore, non-trivial
bubbles (harmonic maps from the two-sphere S2) develop at each of p1, . . . , p`.
(This is far from a precise statement of the convergence that occurs but it suffices

Date: March 15, 2017.

1



2 TOBIAS LAMM, ANDREA MALCHIODI, AND MARIO MICALLEF

for our purposes.) It would be useful to associate a Morse index to a harmonic
map with bubbles. An α-harmonic map has a well-defined Morse index (see e.g.
[8], [12]) and so, it seems worthwhile to investigate whether every harmonic map
from a surface can be captured by the Sacks-Uhlenbeck limiting process. We shall
show that this is not the case, even when M and N are the round unit two-sphere
S2 ⊂ R3.

In this case the equation (1.4) simplifies to

(1.5) ∆u+ u|∇u|2 = −2(α− 1)(2 + |∇u|2)−1〈∇2u,∇u〉∇u.
For u : S2 → S2 we can define the degree of u by

(1.6) deg(u) =
1

4π

∫
S2

J(u) dAS2 ,

where
J(u) = u · e1(u) ∧ e2(u)

is the Jacobian of u, and (e1, e2) stands for a local oriented orthonormal frame of
TS2. For every u ∈W 1,2α(S2, S2) with deg(u) = 1 we can estimate

8π =

∫
S2

(1 + J(u)) dAS2

6
∫
S2

(1 + e(u)) dAS2(1.7)

6 (21−αEα(u))
1
α (4π)

α−1
α .

Hence we get

(1.8) Eα(u) > 22α+1π

for every u as above. On the other hand we have for every R ∈ SO(3) that the
map uR(x) = Rx satisfies

(1.9) Eα(uR) = 22α+1π.

From (1.7) it follows that equality in this estimate is attained only for conformal
maps u with constant energy density equal to 2. Hence the rotations are the only
minimizers of Eα among all maps with degree 1. By contrast we have the following
theorem due to Wood and Lemaire (see (11.5) in [5]).

Theorem 1.1. ([5]) The harmonic maps between 2-spheres are precisely the ratio-
nal maps and their complex conjugates (i.e., rational in z or z̄).

In particular, a rational map u has energy given by E(u) = 4π|deg(u)|, which
is the least energy that a map of this degree can have. As we shall discuss more
fully in a moment, the rational maps of degree one include dilations which are not
minimizers of the Eα energy for α 6= 1.

Theorem 1.2. There exists ε > 0 and α − 1 > 0 small such that the only critical
points uα of Eα which satisfy Eα(uα) 6 22α+1π + ε and α 6 α are the constant
maps and the rotations of the form uR(x) = Rx, R ∈ SO(3).

Remark 1.3. An upper bound on the energy is necessary in order to deduce the
conclusions of Theorem 1.2. In Section 8 we will construct critical points of Eα of
degree one that have large energy and that are not rotations.
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Our proof of Theorem 1.2 goes as follows. After recalling some basic formulas for
the Möbius group in Section 2, we prove in Section 3 that maps with low enough Eα
energy must stay close in W 1,2 to some Möbius map. We then improve this result in
Section 4 for critical points of Eα (with low energy), where we show closeness (after
a conformal pull-back) to the identity in W 2,p, where p > 4

3 is chosen suitably.
In Section 5 we show that elements in the Möbius group that are close to u as

in Theorem 1.2 lie in a compact set depending on Eα(uα). The techniques used in
this section are similar to those used by Kazdan and Warner and also in the study
of the semiclassical nonlinear Schrödinger equation; see for instance, Chapter 8.1 in
[1]. We proceed in section 6 to further improve the W 2,p-closeness, and we finally
prove our main theorem in Section 7.

In Section 8 we construct a rotationally symmetric α-harmonic map of degree one
with large energy which is not a rotation. As a byproduct we obtain the existence
of α-harmonic maps of degree one from the disk to S2 which map the boundary
circle to a point and we also obtain α-harmonic maps of degree one which map an
annulus to the sphere in such a way that the two boundary circles are mapped to
antipodal points. Note that there are no such harmonic maps.

Acknowledgements T.L. wishes to thank the University of Warwick for hav-
ing hosted him several times during the preparation of this work. A.M. has been
supported by the PRIN project Variational and perturbative aspects of nonlinear
differential problems and by the University of Warwick. M.M. acknowledges hos-
pitality from the Max-Planck-Institute for Gravitational Physics in Golm and the
University of Frankfurt.

2. The Action of the Möbius Group

Let ϕ : S2 → S2 be a holomorphic map of degree 1. Given an arbitrary map
u : S2 → S2, we shall be interested in how e(u ◦ ϕ) and Eα(u ◦ ϕ) depend on

ϕ. For this, it is convenient to identify S2 ⊂ R3 with Ĉ = C ∪ {∞} via the
stereographic projection from the north pole. If we denote the domain S2 ⊂ R3 as
{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and the target S2 ⊂ R3 as {(u1, u2, u3) ∈ R3 :

(u1)2 + (u2)2 + (u3)2 = 1}, then the stereographic identifications with Ĉ are given
by

x+ iy =
2ζ

1 + |ζ|2
, z =

|ζ|2 − 1

|ζ|2 + 1
; u1 + iu2 =

2η

1 + |η|2
, u3 =

|η|2 − 1

|η|2 + 1
.

The inverse maps are

ζ =
x+ iy

1− z
; η =

u1 + iu2

1− u3
.

2.1. The Möbius Group. The holomorphic maps of degree one from Ĉ to itself
are the so-called fractional linear transformations which are of the form

ζ 7→ aζ + b

cζ + d
, ad− bc = 1.

They form a group, called the Möbius group, which is the projective special linear
group PSL(2,C). Given M ∈ SL(2,C), let λ, λ−1, λ > 0, be the eigenvalues of
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MM∗. The singular value decomposition of matrices (see, e.g., [11]) tells us that
there exists U, V ∈ SU(2) such that,

(2.1) M = UDV ∗, where D =

(
λ1/2 0

0 λ−(1/2)

)
.

Elements of the subgroup SU(2) of SL(2,C) represent a rotation; indeed, if I
denotes the 2×2 identity matrix then, SO(3) may be identified with SU(2)/{I,−I},
which establishes SU(2) as the double cover of SO(3). The diagonal matrices of

the form

(
λ1/2 0

0 λ−(1/2)

)
represent the dilations mλ which are defined by

mλ(ζ) := λζ.

2.2. Energy density in stereographic coordinates. A map u : S2 → S2 shall

also be denoted by η : Ĉ → Ĉ. However, we shall still denote by u the map to S2

that arises from identifying the domain S2 with Ĉ. We have:

• the energy density of u, e(u), is given by:

e(u)(ζ) =
(1 + |ζ|2)2

2(1 + |η|2)2
|∇0η|2

where ∇0η is the Euclidean gradient of η as a map from C to C with the
flat metrics on both domain and target.
• The area element dAS2 on the domain S2 is given by:

dAS2 =
4

(1 + |ζ|2)2
dA0

where dA0 :=
√
−1
2 dζ ∧ dζ̄ is the Euclidean area element on C.

2.3. Transformation of energy density and α-energy under composition

by a Möbius transformation. Given M ∈ SL(2,C) and a map u : Ĉ → S2, let
uM be the map defined by

uM (ζ) = u(Mζ) where, if M =

(
a b
c d

)
then, by Mζ we mean

aζ + b

cζ + d
.

We have

e(uM )(ζ) =
(1 + |ζ|2)2

2(1 + |η(Mζ)|2)2

∣∣∣∣ ddζ
(
aζ + b

cζ + d

)∣∣∣∣2 |∇0η|2(Mζ)

=
(1 + |ζ|2)2

|cζ + d|4(1 + |Mζ|2)2
(
e(u)(Mζ)

)
.

(2.2)

Now

|cζ + d|2(1 + |Mζ|2) = |aζ + b|2 + |cζ + d|2

=

∣∣∣∣(a b
c d

)(
ζ
1

)∣∣∣∣2
=

∣∣∣∣(λ1/2 0
0 λ−(1/2)

)(
ζ
1

)∣∣∣∣2 (by (2.1))

=
λ2|ζ|2 + 1

λ
.

(2.3)
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Using (2.3) in (2.2) gives

(2.4) e(uM )(ζ) =
λ2(1 + |ζ|2)2

(1 + λ2|ζ|2)2
(
e(u)(Mζ)

)
.

The transformation relation (2.4) allows us to restrict our attention to the dila-
tions mλ. Set uλ = u ◦mλ, i.e., uλ(ζ) = u(λζ) and set

(2.5) χλ(ζ) =
(1 + λ2|ζ|2)2

λ2(1 + |ζ|2)2
.

Then
e(u)(λζ) = χλ(ζ)

(
e(uλ)(ζ)

)
for every λ > 0 and therefore,

Eα(u) = 2α−1
∫
C

(
1 + e(u)(ζ)

)α 4

(1 + |ζ|2)2
dA0(ζ)

= 2α−1
∫
C

(
1 + e(u)(λζ)

)α 4λ2

(1 + |λζ|2)2
dA0(ζ)

= 2α−1
∫
C

(
1 + χλ(ζ)e(uλ)(ζ)

)α 4

χλ(ζ)(1 + |ζ|2)2
dA0(ζ),

that is,

(2.6) Eα(u) = Eα,λ(uλ) = Eα,λ−1(uλ−1)

where Eα,λ is the functional defined by

(2.7) Eα,λ(v) =
1

2

∫
S2

(
2 + χλ|∇S2v|2

)α 1

χλ
dAS2 .

Clearly u is a critical point of Eα if, and only if, uλ is a critical point of Eα,λ.
Moreover, due to the above symmetry of Eα in λ, λ−1, we assume throughout the
rest of the paper that λ > 1.

Proposition 2.1. If χλ is as in (2.5), the Euler Lagrange equation satisfied by a
critical point v of Eα,λ is

∆v + |∇v|2v + f1 + f2 = 0,

where

f1 := (α− 1)

(
χλ∇(|∇v|2) · ∇v

2 + χλ|∇v|2

)
(2.8)

and

f2 := (α− 1)

(
χλ|∇v|2∇ logχλ · ∇v

2 + χλ|∇v|2

)
.(2.9)

The proof of this proposition is just a straightforward computation.

3. Closeness to the Möbius group

The aim of this section is to prove the following proposition.

Proposition 3.1. There exists δ∗ > 0 such that, for any δ ∈ (0, δ∗) there exists
ε > 0 such that, if 1 6 α 6 2 and if Eα(u) 6 22α+1π + ε, where u is of degree 1,
then there exists M ∈ PSL(2,C) such that

‖∇(uM − Id)‖L2(S2) 6 δ.(3.1)
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Furthermore, there is a fixed constant C such that, if λ > 1 is the largest eigenvalue
of MM∗ (see (2.1)) then

(3.2) (α− 1)(log λ) min{log λ, 1} 6 Cδ.

The proof of the above proposition relies on the three lemmas below.

Lemma 3.2. Given δ > 0, there exists ε > 0, sufficiently small, with the following
property: for all α > 1, if u ∈W 1,2α(S2, S2) is of degree 1 and Eα(u) 6 22α+1π+ε,
there exists M ∈ PSL(2,C) such that

(3.3) ‖∇(uM − Id)‖L2(S2) 6 δ.

Proof. If Eα(u) 6 22α+1π + ε then by (1.7) we have

E1(u) =

∫
S2

(1 + e(u)) dAS2

6

(
21−αEα(u)

4π

) 1
α

4π

6
(

1 +
ε

22α+1π

) 1
α

8π

6 8π + ε.

If, for a contradiction, the lemma were not true, we could find a sequence εn ↓ 0, a
sequence un ∈ W 1,2(S2, S2) of degree one, with E1(un) 6 8π + εn and δ > 0 such
that

(3.4)
∥∥∇((un)M − Id

)∥∥
L2(S2)

> δ for all M ∈ PSL(2,C).

But un would then be a minimising sequence for E1 of degree one and therefore,
by Theorem 1 in [4], there exists Mn ∈ PSL(2,C) such that (un)Mn

converges
strongly in Dirichlet norm to a degree one minimiser u∞ of E1. (We remark that,
by energetic reasons, multiple splitting into maps of different degrees is excluded.)
By Theorem 1.1, u∞ is of the form ζ 7→ M∞ζ for some M∞ ∈ PSL(2,C). By the
conformal invariance of the Dirichlet integral we have that∥∥∥∇((un)MnM

−1
∞
− Id

)∥∥∥
L2(S2)

→ 0.

This then contradicts (9.5) and concludes the proof. �

We still need to establish a bound on the largest eigenvalue λ of MM∗ in the
previous lemma. The rough plan for doing this is that, because of the closeness
in Dirichlet norm provided by (3.3), Eα,λ(uM ) should be close to Eα,λ(Id). We
should then be able to explicitely describe how Eα,λ(Id) grows with λ. Recall that
the relation between Eα and Eα,λ is given by (2.7). This plan is executed in the
next two lemmas.

Lemma 3.3. If λ > 1 and 1 6 α 6 2, we have

(3.5) Eα,λ(v)− Eα,λ(Id) > −α2α−2(1 + λ2)α−1‖ |∇S2v|2 − 2 ‖L1(S2).

Proof. By the mean value theorem, there is a positive function g : S2 → R+ whose
value at p lies between |∇S2v(p)|2 and 2 = |∇S2Id|2 such that

(3.6) Eα,λ(v)− Eα,λ(Id) =
α

2

∫
S2

(2 + χλg)
α−1

(|∇S2v|2 − 2) dAS2 .
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Let

A+ := {p ∈ S2 : |∇S2v(p)|2 > 2} and A− := {p ∈ S2 : |∇S2v(p)|2 < 2}.

Then, on A+ g > 2 and on A− g 6 2. Therefore,∫
A+

(2 + χλg)
α−1

(|∇S2v|2 − 2) dAS2 > 2α−1
∫
A+

(1 + χλ)
α−1

(|∇S2v|2 − 2) dAS2

and, since (|∇S2v|2 − 2) is negative on A−,∫
A−

(2 + χλg)
α−1

(|∇S2v|2 − 2) dAS2 > 2α−1
∫
A−

(1 + χλ)
α−1

(|∇S2v|2 − 2) dAS2 .

It follows that
(3.7)∫
S2

(2 + χλg)
α−1

(|∇S2v|2 − 2) dAS2 > 2α−1
∫
S2

(1 + χλ)
α−1

(|∇S2v|2 − 2) dAS2 .

Now sup
S2

χλ = λ2 and therefore,

(3.8)

∣∣∣∣∫
S2

(1 + χλ)
α−1

(|∇S2v|2 − 2) dAS2

∣∣∣∣ 6 (1 + λ2)α−1‖ |∇S2v|2 − 2 ‖L1(S2).

Estimate (3.5) is established by putting together (3.6), (3.7) and (3.8). �

The next lemma describes how Eα,λ(Id) grows with λ.

Lemma 3.4. We have that

Eα,λ(Id) = Eα(mλ−1) = Eα(mλ).(3.9)

Moreover, by letting

(3.10) ξ(α, λ) := Eα(mλ)− 22α+1π,

there exists a fixed constant C such that, for 1 < α 6 2,

(3.11) ξ(α, λ) >


Cλ2α−2, if (α− 1) log λ > 2,

C(α− 1) log λ, if (α− 1) 6 (α− 1) log λ 6 2

C(α− 1)(log λ)2, if 0 6 log λ 6 1.

Additionally, Eα(mλ) is increasing in λ and we have for 0 6 (α− 1) log λ 6 2 that

(3.12)
∂

∂ log λ
Eα(mλ) =

∂

∂ log λ
Eα,λ(Id) > C(α− 1)

| log λ|
1 + | log λ|

.

Proof. We start by obtaining an explicit formula for Eα(mλ): set r := |ζ| and then,
as we saw in §2,

e(mλ)(ζ) = λ2
(1 + r2)2

(1 + λ2r2)2
=

1

χλ(ζ)
.

So,

Eα(mλ) = 2α−18π

∫ ∞
0

(
1 +

λ2(1 + r2)2

(1 + λ2r2)2

)α
r

(1 + r2)2
dr.

We make the change of variable

w := λ
1 + r2

1 + λ2r2
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for which

dw = 2λr
1− λ2

(1 + λ2r2)2
dr

and obtain

Eα(mλ) = 2α+1π
λ

λ2 − 1

∫ λ

1/λ

(1 + w2)αw−2 dw.

Setting λ := eτ and w := et yields:

Eα(meτ ) = 2α+1π
eτ

e2τ − 1

∫ τ

−τ
(1 + e2t)αe−t dt

=
2απ

sinh τ

∫ τ

−τ
(e−t + et)αe(α−1)t dt

=
22α+1π

sinh τ

∫ τ

0

(cosh t)α cosh((α− 1)t) dt(3.13)

where we have used∫ 0

−τ
(e−t + et)αe(α−1)t dt =

∫ τ

0

(e−t + et)αe−(α−1)t dt .

It is immediate from this expression for Eα(mλ) that Eα(mλ) = Eα(mλ−1) and the
relation (3.9) then follows by taking (2.6) into account.

As expected we have E1(meτ ) = 8π ∀ τ ∈ R and Eα(m1) = 22α+1π.

It will be convenient to set

β := (α− 1),

to make the change of variables

s := βt, σ := βτ = (α− 1) log λ

and to introduce the functions

g(s) := (cosh(s/β))β cosh s

and

G(σ) :=
1

β sinh(σ/β)

∫ σ

0

(cosh(s/β))g(s) ds.

(3.14)

Then (3.13) becomes

(3.15) Eα(me(σ/β)) =
22α+1π

β sinh(σ/β)

∫ σ

0

(cosh(s/β))g(s) ds = 22α+1πG(σ).

The lower bound cosh t > 1
2e
t yields

g(s) >

(
es/β

2

)β
es

2
=
e2s

2α
.



LIMITS OF α-HARMONIC MAPS 9

We shall now prove the first inequality in (3.11). So, we assume that σ > 2 and
1 < α 6 2 and estimate G from below as follows:

G(σ) >
1

β sinh(σ/β)

∫ σ

σ−1
(cosh(s/β))g(s) ds

>
1

2αβ sinh(σ/β)

∫ σ

σ−1
(cosh(s/β))e2s ds

>
e(2σ−2)

2α
1

β sinh(σ/β)

∫ σ

σ−1
(cosh(s/β)) ds

>
e2σ

2e2
sinh(σ/β)− sinh((σ − 1)/β)

sinh(σ/β)
.

Keeping in mind that 0 6 β 6 1, we have,

sinh(σ/β)− sinh((σ − 1)/β) >
eσ/β

2
(1− e−1/β) > sinh(σ/β)

(
e− 1

e

)
.

It follows that

G(σ)− 1 > e2σ
(
e− 1

2e3
− 1

e4

)
,

i.e., if (α− 1) log λ > 2 and 1 < α 6 2 then

ξ(α, λ) > 22α+1π

(
e2 − e− 2

2e4

)
λ2α−2

as claimed.

To estimate G(σ)− 1 from below for σ ∈ [0, 2], we calculate G′(σ) from (3.14):

G′(σ) =
cosh(σ/β)

β sinh(σ/β)
g(σ)− cosh(σ/β)

β2 sinh2(σ/β)

∫ σ

0

(cosh(s/β))g(s) ds.

Now

1

β sinh(σ/β)

∫ σ

0

(cosh(s/β))g(s) ds = g(σ)− 1

sinh(σ/β)

∫ σ

0

(sinh(s/β))g′(s) ds.

Differentiating the expression for g from (3.14) gives

g′(s) = (cosh(s/β))β−1(sinh(s/β) cosh s+ cosh(s/β) sinh s)

= (cosh(s/β))β−1 sinh(αs/β).

Therefore, we obtain:

(3.16) G′(σ) =
cosh(σ/β)

β sinh2(σ/β)

∫ σ

0

(sinh(s/β))(cosh(s/β))β−1 sinh(αs/β) ds.

We shall estimate G′ from below differently in the two regimes 0 6 σ 6 β and
0 < β 6 σ 6 2. We start with the latter case for which we shall show that G′ is
bounded below by a positive constant, independent of β.

Using
cosh(σ/β)

sinh(σ/β)
> 1 and

sinh(αs/β)

cosh(s/β)
> tanh(αs/β) in (3.16), we obtain, for

θ ∈ (0, 1) and β 6 σ,
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G′(σ) >
1

sinh(σ/β)

∫ σ

θβ

( 1
β sinh(s/β))(cosh(s/β))β tanh(αs/β) ds

> tanh θ
cosh(σ/β)− cosh θ

sinh(σ/β)

> tanh θ

(
1− cosh θ

sinh 1

)
,

where we also used that tanh(αθ) > tanh θ and cosh(s/β) > 1 in the second
estimate.

We now choose θ > 0 so that cosh θ 6 1
2 sinh 1 and deduce that there exists

C > 0, independent of anything, such that if α > 1 and λ > e, i.e., τ > 1 and
0 < β 6 σ then

G′(σ) > C > 0.(3.17)

It follows that for 0 < β 6 σ we get

(3.18) G(σ) > G(β) + C(σ − β).

The lower bound on G′ for σ ∈ (0, β] is straightforward. First use the inequality
cosh(σ/β)(cosh(s/β))β−1 > (cosh(s/β))β > 1 for every s ∈ [0, σ] in (3.16) to get

G′(σ) >
1

β sinh2(σ/β)

∫ σ

0

(sinh(s/β)) sinh(αs/β) ds.

Next, use (sinh(s/β)) sinh(αs/β) > s2

β2 and the inequality sinhx 6 x(coshx) for
x > 0 to get

G′(σ) >
1

β(cosh(σ/β))2σ2

∫ σ

0

s2 ds

>
σ

3β(cosh 1)2
; we have used 0 6 σ/β 6 1.(3.19)

It follows that,

(3.20) for 0 6 σ 6 β, G(σ)−G(0) >
σ2

6β(cosh 1)2
>

(α− 1)(log λ)2

6(cosh 1)2
.

We can now establish the last two estimates in (3.11). If α−1 6 (α−1) log λ 6 2
then, by (3.18) and (3.20) we have that

ξ(α, λ) > 22α+1π
((
G(α− 1)− 1

)
+ C(α− 1)(log λ− 1)

)
> C(α− 1) log λ.

If log λ 6 1 then, we obtain again from (3.20) that

ξ(α, λ) >
22α+1π

6(cosh 1)2
(α− 1)(log λ)2.

Finally, Eα(mλ) increases with λ because, from (3.16), G′ is evidently positive.
Moreover, in order to show (3.12) we note that it follows from (3.15) that

∂

∂ log λ
Eα,λ(Id) = (α− 1)22α+1πG′((α− 1) log λ).

For 1 6 log λ 6 2(α− 1)−1 we use (3.17) in order to get

∂

∂ log λ
Eα,λ(Id) > C(α− 1) > C(α− 1)

| log λ|
1 + | log λ|

.
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For 0 < log λ 6 1 we use (3.19) to conclude

∂

∂ log λ
Eα,λ(Id) > C(α− 1) log λ > C(α− 1)

| log λ|
1 + | log λ|

.

The proof of Lemma 3.4 is complete. �

We can now give the

Proof of Proposition 3.1. Having proved Lemma 3.2, it only remains to establish
(3.2). Apply Lemma 3.3 with v = uM , M as provided by (3.3) and λ > 1 equal to
the largest eigenvalue of MM∗. Then, with δ as in (3.3), we have

(3.21) 22α+1π + ε > Eα(u) = Eα,λ(uM ) > Eα,λ(Id)− απ22α+1λ2α−2δ,

where we used that

‖|∇S2uM |2 − 2 ‖L1(S2) 6 ‖∇(uM − Id)‖L2(S2) ‖∇(uM + Id)‖L2(S2)

6δ
√

(8π + ε)(8π) 6 δ(16π).

Recall that

Eα,λ(Id) = Eα(mλ) = 22α+1π + ξ(α, λ)

and observe that ε in Lemma 3.2 can be chosen no larger than δ. Therefore, (3.21)
can be rewritten as

(3.22) δ(1 + C ′λ2α−2) > ξ(α, λ).

If (α − 1) log λ > 2, i.e. λ2α−2 > e4, then (3.11) provides the lower bound
ξ(α, λ) > Cλ2α−2. So, (3.22) cannot hold if 0 6 δ < δ∗ := min{ C

2C′ ,
C
2 e

4}. There-

fore, λ2α−2 must be less than e4 and so, from (3.11) and (3.22), we deduce that

δ(1 + C ′e4) > C(α− 1)(log λ) min{log λ, 1}.
�

4. Closeness in the W 2,p-norm

In this section we prove a refinement of Proposition 3.1, showing closeness be-
tween uM and the identity in W 2,p, p ∈ ( 4

3 ,
3
2 ]. The reason for this range of p will

become apparent in Proposition 5.1.

Proposition 4.1. There exist 1 < α0, δ0 > 0 and a constant C depending only on
α0 and δ0 such that, for every 1 < α 6 α0, every 0 < δ 6 δ0 and every critical point
v ∈W 1,2α(S2, S2) of Eα,λ satisfying (3.1) and (3.2) we have, for any p ∈ ( 4

3 ,
3
2 ],

(4.1) ‖v − Id‖L∞(S2) + ‖∇(v − Id)‖W 1,p(S2) 6 C(δ + α− 1).

Proof. We define a map ψ : S2 → R3 by

v = Id+ ψ

and we obtain from Proposition 3.1 that

‖∇ψ‖L2(S2) 6 δ.

By Proposition 2.1, ψ satisfies

∆ψ =− 2ψ − 2〈∇ψ,∇Id〉Id− |∇ψ|2ψ − 2〈∇ψ,∇Id〉ψ − |∇ψ|2Id− f1 − f2.
(4.2)
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We shall first estimate the average of ψ by integrating this equation and observing
from (2.8) that

(4.3) |f1(ζ)| 6 C(α− 1)|∇2v(ζ)| 6 C(α− 1)(1 + |∇2ψ(ζ)|)

and that

(4.4) |f2(ζ)| 6 C(α− 1)|(∇ logχλ)(ζ)| |∇v(ζ)|.

When integrating (4.2), keep also in mind that ‖ψ‖L∞(S2) 6 2 and make use of
Proposition 3.1 and Lemma A.1 to conclude that

|
∫
−
S2

ψ dAS2 | 6Cδ + C(α− 1)‖∇2v‖L1(S2) + C(α− 1)‖∇v‖L2(S2)‖∇ logχλ‖L2(S2)

6C(δ + α− 1) + C(α− 1)‖∇2ψ‖L1(S2).(4.5)

This estimate on the average of ψ allows us to use standard Lp-estimates for the
Laplacian and the Sobolev-Poincaré inequality to conclude that, for every p ∈ ( 4

3 ,
3
2 ],

‖∇ψ‖W 1,p(S2) 6C
(
‖∆ψ‖Lp(S2) + ‖ψ‖Lp(S2)

)
6C

(
‖∆ψ‖Lp(S2) + ‖∇ψ‖L2(S2) + |

∫
−
S2

ψ dAS2 |
)

6C
(
‖∆ψ‖Lp(S2) + δ + α− 1 + (α− 1)‖∇2ψ‖Lp(S2)

)
.

By picking α0 > 1 sufficiently close to 1 so that C(α0 − 1) 6 1
2 we get

(4.6) ‖∇ψ‖W 1,p(S2) 6 C
(
‖∆ψ‖Lp(S2) + δ + α− 1

)
.

The plan now is to estimate ‖∆ψ‖Lp(S2), by using (4.2). The Lp norm of the right

hand side of (4.2) requires us to estimate the L2p-norm of ∇ψ which we do by
means of the Gagliardo-Nirenberg interpolation inequality:

‖∇ψ‖2L2p(S2) 6 C‖∇ψ‖L2(S2)

(
‖∇2ψ‖Lp(S2) + ‖∇ψ‖L2(S2)

)
.

Using (4.2), (4.5), a Poincaré-type inequality, Hölder’s inequality, the Gagliardo-
Nirenberg estimate from above, (4.3), (4.4) and Lemma A.1, we get

‖∆ψ‖Lp(S2) 6C(‖ψ −
∫
−
S2

ψ dAS2‖Lp(S2) + |
∫
−
S2

ψ dAS2 |+ ‖∇ψ‖L2(S2)

+ ‖∇ψ‖2L2p(S2) + ‖f1‖Lp(S2) + ‖f2‖L2(S2))

6C(δ + α− 1)(1 + C(α− 1 + δ)‖∇2ψ‖Lp(S2).

We can insert this estimate into (4.6) and then choose α0− 1 and δ0 small in order
to get

‖∇ψ‖W 1,p(S2) 6 C(δ + α− 1).

Using once more (4.5) and the Sobolev embedding theorem, we get, for any p ∈
( 4
3 ,

3
2 ],

‖ψ‖L∞(S2) 6 C‖ψ −
∫
−
S2

ψ dAS2‖W 2,p(S2) + C

∣∣∣∣∫−
S2

ψ dAS2

∣∣∣∣ 6 C(δ + α− 1).

This concludes the proof. �
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5. A Bound on λ

In this section we shall show how the estimates (4.1) and (3.2) imply a very slow
growth on ∂

∂ log λEα,λ(Id) which, when coupled with (3.12), implies a bound on λ,

independent of how close α is to 1. We start by computing d
dλEα,λ(v) directly from

(2.7) and (2.5):

log(χλ(ζ)) = 2 log(1 + λ2|ζ|2)− 2 log λ− 2 log(1 + |ζ|2)

d

dλ
log(χλ(ζ)) =

4λ|ζ|2

1 + λ2|ζ|2
− 2

λ

d

d log λ
log(χλ(ζ)) =

2(λ2|ζ|2 − 1)

λ2|ζ|2 + 1
.

d

d log λ
Eα,λ(v) =

1

2

d

d log λ

∫
S2

(
2 + χλ|∇S2v|2

)α 1

χλ
dAS2

=

∫
S2

(2 + χλ|∇S2v|2)α−1
(

(α− 1)|∇S2v|2 − 2

χλ
)

)
z(λζ) dAS2

where, as in section 2, z(ζ) :=
|ζ|2 − 1

|ζ|2 + 1
∈ [−1, 1).

We wish to estimate
d

d log λ
Eα,λ(Id) − d

d log λ
Eα,λ(v) in terms of a suitable

norm of the difference between Id and v.
d

d log λ
Eα,λ(Id) − d

d log λ
Eα,λ(v)

= −
∫
S2

(
(2 + 2χλ)α−1 − (2 + χλ|∇S2v|2)α−1

)2z(λζ)

χλ
dAS2(5.1)

+ (α− 1)

∫
S2

(
2 (2 + 2χλ)α−1 − |∇S2v|2 (2 + χλ|∇S2v|2)α−1

)
z(λζ) dAS2 .

As in the proof of Lemma 3.3, there is a positive function g : S2 → R+ whose value
at p lies between |∇S2v(p)|2 and 2 = |∇S2Id|2 such that(

(2 + 2χλ)α−1 − (2 + χλ|∇S2v|2)α−1
)

= (α− 1)(2 + gχλ)α−2χλ(2− |∇S2v|2).

Similarly,

2 (2 + 2χλ)α−1 − |∇S2v|2 (2 + χλ|∇S2v|2)α−1

= (2 + 2χλ)α−1(2− |∇S2v|2)

+ (α− 1)(2 + gχλ)α−2χλ(2− |∇S2v|2)|∇S2v|2 .
If α 6 2,

(2 + gχλ)α−2 6 1.

Moreover,

χλ|∇S2v|2

2 + gχλ
6

{
1
2 |∇S2v|2, if |∇S2v|2 > 2

1, if |∇S2v|2 6 2,

6 1 + |∇S2v|2

and

(2 + 2χλ)α−1 6 4α−1λ2α−2, (2 + gχλ)α−1 6 4α−1λ2α−2(1 + |∇S2v|2α−2).
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Therefore, using that |z| 6 1,

(5.2)

∣∣∣∣((2 + 2χλ)α−1 − (2 + χλ|∇S2v|2)α−1
)2z(λζ)

χλ

∣∣∣∣ 6 2(α− 1)|2− |∇S2v|2|

and ∣∣(2 (2 + 2χλ)α−1 − |∇S2v|2 (2 + χλ|∇S2v|2)α−1
)
z(λζ)

∣∣
6 Cλ2α−2

∣∣2− |∇S2v|2
∣∣ (1 + (α− 1)|∇S2v|2α).(5.3)

Using (5.2) and (5.3) in (5.1) we can finally estimate

d

d log λ
Eα,λ(Id) − d

d log λ
Eα,λ(v)

6 C(α− 1)(1 + λ2α−2)

∫
S2

∣∣2− |∇S2v|2
∣∣ (1 + (α− 1)|∇S2v|2α) dAS2

6 C(α− 1)(1 + λ2α−2)‖∇(v − Id)‖L2(S2)( ‖∇Id‖L2(S2) + ‖∇v‖L2(S2))(5.4)

+ C(α− 1)2(1 + λ2α−2)‖∇(v − Id)‖L2α+2(S2)

· ( ‖∇Id‖L2α+2(S2) + ‖∇v‖L2α+2(S2))‖∇v‖2αL2α+2(S2).

Proposition 5.1. There exist 1 < α0, δ0 > 0, possibly smaller than those in
Proposition 4.1, such that if v ∈W 1,2α(S2, S2) is a critical point of Eα,λ satisfying
(3.1) and (3.2), 1 < α 6 α0, 0 < δ 6 δ0, then

(5.5) log λ 6 C(δ + α− 1).

Proof. As in Proposition 4.1, we set ψ := v − Id. By the Sobolev embedding,

‖∇ψ‖L2α+2(S2) 6 C(α)‖∇ψ‖W 1,p(S2), p :=
2α+ 2

α+ 2
.

Note that, since we may assume α0 6 2, we have that p ∈ ( 4
3 ,

3
2 ], as in Proposition

4.1. Moreover, C(α) can then be chosen independent of α. So, taking α0 and δ0 as
in Proposition 4.1, we get, from (4.1),

(5.6) ‖∇ψ‖L2α+2(S2) 6 C(δ + α− 1).

In particular, ‖∇v‖L2α+2(S2) 6 ‖∇ψ‖L2α+2(S2) + ‖∇Id‖L2α+2(S2) 6 C.
By (3.2) we have

(5.7) λ2α−2 < max{e2Cδ, e2α0−2}.

Since v is a critical point of Eα,λ we have d
d log τ

∣∣∣
τ=λ

Eα,τ (v) = 0. In order to

see this we note that

Eα,τ (v) = Eα,λ(vλτ−1)

which gives

d

d log τ
Eα,τ (v)|τ=λ =

(
τ
d

dτ
Eα,τ (v)

)
|τ=λ = E′α,λ(v)(w),

where w is the vector field along v given by

w =

(
τ
d

dτ
vλτ−1

)
|τ=λ.

But v is a critical point of Eα,λ and therefore E′α,λ(v) = 0.



LIMITS OF α-HARMONIC MAPS 15

It then follows from (3.12), (5.4), (5.6) and (5.7) that

(5.8) C ′ −1(α− 1)
log λ

1 + log λ
6

d

d log λ
Eα,λ(Id) 6 C(α− 1)(δ + α− 1).

The estimate (5.5) now follows by taking α0 − 1 and δ0 sufficiently small. �

6. Optimal λ and Better Closeness in the W 2,p-norm

Of course, we wish to prove that λ = 1. However, the choice of λ provided by
Proposition 3.1 has some flexibility and therefore, at the moment, we cannot hope
to do better than (5.5). So we have to choose λ optimally, which we do as follows.

Proposition 3.1 suggests that we should choose M so as to minimize ‖∇(uM −
Id)‖2L2(S2) = ‖∇(u − M−1)‖2L2(S2). This minimization is possible because, as

M → ∞ in the Möbius group PSL(2,C), ‖∇(u −M−1)‖2L2(S2) → ‖∇u‖
2
L2(S2) +

‖∇Id‖2L2(S2) > 16π and therefore, we only need to minimize ‖∇(uM − Id)‖2L2(S2)

over a compact subset of PSL(2,C). In order to see this we note that up to ro-
tations, M can only go to infinity if it approaches a dilation from the south pole
towards the north pole by a huge factor λ, so that the energy of mλ is concentrated
on a small disk D centred at the south pole. Take D so small that the energy of u
on D is less than ε and the energy of mλ outside of D is less than ε. By breaking
up the integral for

‖∇(u−M−1)‖2L2(S2) = ‖∇u‖2L2(S2) + 2〈∇u,∇M−1〉L2(S2) + ‖∇M−1‖2L2(S2)

into the contributions from D and its complement, we see that

〈∇u,∇M−1〉L2(S2)

is small and noting that by conformal invariance ‖∇M−1‖L2(S2) = ‖∇Id‖L2(S2),
the claim follows.

From now on, we shall assume that M does minimize ‖∇(uM − Id)‖L2(S2). Of
course, all the estimates proved so far still hold.

As usual, we set v := uM and assume that v satisfies the hypotheses of Propo-
sition 5.1. We notice that, by (4.1), v approaches the identity map pointwise as δ
and (α− 1) tend to zero. So we may write

v = Id+ ψ = expId ψ̂ (= Id+ ψ̂ +O(|ψ̂|2)); ψ̂ ∈ TIdW 1,2α(S2, S2).

More explicitly, if x = (x, y, z) ∈ S2 ⊂ R3, then

v(x) = x

√
1− |ψ̂(x)|2 + ψ̂(x), ψ̂(x) · x ≡ 0.

ψ̂(x) = ψ(x) + 1
2 |ψ(x)|2x , ψ(x) = ψ̂(x)−

(
1−

√
1− |ψ̂(x)|2

)
x,(6.1)

|ψ̂|2 = |ψ|2(1− 1
4 |ψ|

2) 6 |ψ|2 = 2(1−
√

1− |ψ̂|2).

It follows that

|∇ψ −∇ψ̂| = O(|ψ̂| |∇ψ̂|) +O(|ψ̂|2) = O(|ψ| |∇ψ|) +O(|ψ|2),

|∇2ψ −∇2ψ̂| = O(|ψ̂||∇2ψ̂|) +O(|∇ψ̂|2) +O(|ψ̂|2) = O(|ψ||∇2ψ|) +O(|∇ψ|2) +O(|ψ|2)

(6.2)
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and therefore, we derive the following equation for ψ̂ by taking the component of
(4.2) orthogonal to the identity:

(∆ψ̂)T + 2ψ̂ =− 2〈∇ψ̂,∇Id〉ψ̂ − fT1 − fT2 +O(|∇ψ̂|2) +O(|ψ̂|2)(6.3)

where T denotes orthogonal projection of a vector at x ∈ S2 onto TxS
2, i.e. onto

the orthogonal complement of x, and f1 and f2 are given by (2.8) and (2.9).
Next, we let e1, e2 be an orthonormal basis for TxS

2 so that Deiej(x) = 0, where
D is the covariant derivative on TS2. We calculate at x:

Dei ψ̂(x) = ei(ψ̂)(x)− ((ei(ψ̂) · x)x = ei(ψ̂)(x) + (ψ̂(x) · ei(x))x

and, since ψ̂(x) =
∑2
i=1(ψ̂(x) · ei)ei, we conclude that

(∆ψ̂)T + ψ̂ = ∆TS2 ψ̂

where ∆TS2 is the (rough) connection Laplacian on vector fields on S2. Next it
follows from [3], Proposition A3, that

∆H ψ̂ = ∆TS2 ψ̂ − ψ̂,

where ∆H is the (negative semi-definite) Hodge Laplacian. Furthermore, it was
calculated in [10] that

−∆TS2 ψ̂ − ψ̂ = −(∆ψ̂)T − 2ψ̂ = Jψ̂

where J is the Jacobi operator of the energy functional at the identity on S2. By
standard Hodge theory, the spectrum of ∆TS2 is the same as the spectrum of ∆
on functions shifted up by 1, i.e., the spectrum of ∆TS2 is {−1,−5, . . . }. Indeed, if
∆φ+ cφ = 0 then ∆TS2(∇φ) + (c− 1)∇φ = 0 and ∆TS2(∗∇φ) + (c− 1)(∗∇φ) = 0
where ∗ is rotation by 90◦ in TS2. These two equations follow from the above
relation between ∆H and ∆TS2 and the facts that the exterior derivative d and
∗ both commute with ∆H ; the second equation follows from the first and the
conformal invariance of the Dirichlet integral in two dimensions. So, the kernel of
J consists precisely of the span of the gradient of the linear functions on S2 and
their 90◦ rotations. But this is precisely the tangent space Z of the Möbius group
at the identity; the flow of the gradient of a linear function is a dilation and the
flow of a 90◦ rotation of the gradient of a linear function is a rotation.

We shall be making use of the elliptic estimate

‖ψ̂‖W 2,p 6 C(‖Jψ̂‖Lp + ‖ψ̂0‖Lp)

where ψ̂0 is the orthogonal projection of ψ̂ onto the kernel of J with respect to

the inner product on L2(S2). We start by estimating ψ̂0. From the minimizing
property of ‖∇(v − Id)‖2L2(S2) it follows that

−
∫
S2

∇v · ∇ξ dAS2 +

∫
S2

∇Id · ∇ξ dAS2 = 0 ∀ ξ ∈ Z.

Now ∇Id · ∇ξ = div ξ and
∫
S2(div ξ) dAS2 = 0. Therefore

(6.4)

∫
S2

v ·∆ξ dAS2 = 0 ∀ ξ ∈ Z.

We have

∆ξ(x) = (∆ξ)T (x) + (∆ξ · x)x
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and, since ξ ∈ Z, (∆ξ)T = −2ξ. If, as before, e1, e2 is an orthonormal basis for
TxS

2 so that Deiej(x) = 0, then

∆ξ · x =

2∑
i=1

(
ei
(
ei(ξ) · x

)
−
(
ei(ξ) · ei

)
(x)

)

= −
2∑
i=1

(
ei(ξ · ei)(x) +

(
ei(ξ) · ei

)
(x)

)

= −
2∑
i=1

((
ei
(
ξ) · ei

)
(x) +

(
ei(ξ) · ei

)
(x)

)
= −2 div ξ(x)

where we used ξ · x = 0 in the second line and ξ · ei(ei) = ξ ·Deiei = 0 in the third
line. Using these calculations of ∆ξ in (6.4) yields∫

S2

v · ξ dAS2 +

∫
S2

(v · x)(div ξ) dAS2 = 0,

and, taking into account (6.1), the fact that ξ is tangent to S2 and
∫
S2(div ξ) dAS2 =

0, we obtain∫
S2

ψ̂ · ξ dAS2 = −
∫
S2

√
1− |ψ̂|2(div ξ) dAS2 =

∫
S2

(
1−

√
1− |ψ̂|2

)
(div ξ) dAS2 .

We now choose ξ = ψ̂0 and get

‖ψ̂0‖2L2(S2) 6 ‖ψ̂‖
2
L∞(S2)

∫
S2

|∇ψ̂0| dAS2 .

But (∆ψ̂0)T = −2ψ̂0 because ψ̂0 ∈ Z and therefore∫
S2

|∇ψ̂0| dAS2 6C

(∫
S2

|∇ψ̂0|2 dAS2

)1/2

= 2C

(∫
S2

−∆ψ̂0 · ψ̂0 dAS2

)1/2

=2C‖ψ̂0‖L2(S2).

We have proved that, for p ∈ [ 43 ,
3
2 ],

(6.5) ‖ψ̂0‖Lp(S2) 6 C‖ψ̂0‖L2(S2) 6 C‖ψ̂‖2L∞(S2) 6 C‖ψ̂‖L∞(S2)‖ψ̂‖W 2,p .

We next estimate ‖Jψ̂‖Lp by estimating the Lp norm of the right hand side of
(6.3).

From (4.4), (A.2) and (5.5) we have,

|f2| 6 C(α− 1) (sup |∇ logχλ|) |∇v| 6 C(α− 1)(log λ)|∇v|,

where we have used (λ− 1) 6 C(log λ) which holds because of the bound (5.5) on
λ. Therefore,

(6.6) ‖fT2 ‖Lp(S2) 6 C(α− 1)(log λ)‖∇v‖Lp(S2).

To estimate ‖f1‖Lp(S2) we recall that

|∇v|2 = |∇Id|2 + 2〈∇Id,∇ψ〉+ |∇ψ|2 = 2 + 2 divψ + |∇ψ|2

and therefore, ∣∣∇(|∇v|2)
∣∣ 6 C |∇2ψ| (1 + |∇v|).
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It follows from (2.8) and the estimate

χλ|∇v|(1 + |∇v|)
2 + χλ|∇v|2

6
1

2

√
χλ + 1 6 1 + λ 6 C

that

(6.7) |f1| 6 C(α− 1)|∇2ψ|
(
χλ|∇v|(1 + |∇v|)

2 + χλ|∇v|2

)
6 C(α− 1)|∇2ψ|

where we have used χλ < λ2 and the bound (5.5) on λ.
Using these bounds on f1 and f2 and (6.2) in (6.3), keeping in mind that

‖∇v‖Lp(S2) is bounded by the energy of v, we see, also using (6.5), that

‖ψ̂‖W 2,p 6 C(‖Jψ̂‖Lp + ‖ψ̂0‖Lp)

6 C‖ψ̂‖L∞(S2)‖∇ψ̂‖Lp(S2) + C(α− 1)
(
‖∇2ψ̂‖Lp(S2) + (log λ)

)
+ C‖∇ψ̂‖2L2p(S2) + C‖ψ̂‖L∞(S2)‖ψ̂‖W 2,p .

We now appeal to the Gagliardo-Nirenberg interpolation inequality

‖∇ψ̂‖2L2p(S2) 6 C‖∇ψ̂‖L2(S2)‖∇ψ̂‖W 1,p(S2)

and use (4.1) with δ0 and α0 − 1 sufficiently small, to conclude that

(6.8) ‖ψ̂‖W 2,p 6 C(α− 1)(log λ).

7. Proof of Theorem 1.2

We start with a classification result for α-harmonic maps of degree 0 with “small”
energy.

Proposition 7.1. Fix η > 0. Then there exists α− 1 > 0 small, α depending only
on η, such that if 1 < α 6 α and u : S2 → S2 is α-harmonic, of degree zero and
E(u) 6 8π − η, then u is constant.

Proof. If the proposition is not true, then we can find a sequence αj ↘ 1 and
a sequence of non-constant maps uj : S2 → S2 such that deg(uj) = 0, uj is αj-
harmonic and E(uj) 6 8π − η ∀ j ∈ N. By the results of Sacks-Uhlenbeck [9] we
know that two possibilities can occur:

(i) uj converges smoothly to a harmonic map u∗ : S2 → S2 of degree zero
which is therefore constant, or

(ii) there exist two harmonic maps u∗ : S2 → S2 and uB : S2 → S2 and a
point p ∈ S2 such that, a subsequence of uj (still denoted by uj) converges
smoothly on compact subsets of S2 \ {p} to u∗ and a nontrivial bubble uB

develops at p. Since E(uB) < 8π we have |deg(uB)| = 1. By choosing the
orientation of the domain S2 relative to that of the image S2 appropriately,
we may, and we will, assume that 4π deg(uB) = E(uB) = 4π. (It follows
that u∗ is constant, but this is not of direct importance to us.)

In case (i), E(uj) → 0 as j → ∞. But then, by Theorem 3.3 in Sacks-Uhlenbeck
[9], there exists ε > 0 and α0 > 1 such that, if v is α-harmonic, 1 6 α < α0

and E(v) < ε then v is constant. In particular, uj is constant for large enough j,
contrary to our assumption.
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In case (ii), we can find a sequence Dj of discs centred at p, whose radii rj
decrease to 0 and a sequence σj ↘ 0 such that σj/rj ↑ +∞ and, if

vj(z) := uj(rjz), |z| < σj/rj ,

then

sup
|z|<σj/rj

(|vj(z)− uB(z)|+ |∇vj(z)−∇uB(z)|)→ 0 as j →∞.

In particular, ∫
Dj

J(uj) dAS2 → 4π deg(uB) = 4π as j →∞

and ∫
Dj

|∇uj |2 dAS2 →
∫
S2

|∇uB |2 dAS2 = 8π as j →∞.

But then, for large enough j,∫
S2

J(uj) dAS2 =

∫
Dj

J(uj) dAS2 +

∫
S2\Dj

J(uj) dAS2

> (4π − 1
4η)− 1

2

∫
S2\Dj

|∇uj |2 dAS2

> (4π − 1
4η)−

(
(8π − η)− (4π − 1

4η)
)

= 1
2η > 0.

Therefore, for large enough j, uj has nonzero degree, which is again contrary to
our assumption. �

Proof of Theorem 1.2. Since we have Proposition 7.1 at our disposal, we only need
to classify the α-harmonic maps of degree 1 which satisfy the assumptions of The-
orem 1.2.

In order to do this, we go back to the proof of Proposition 5.1, using our improved
estimate (6.8) to obtain

‖∇ψ‖L2α+2(S2) 6 C(α− 1)(log λ).

The string of inequalities in (5.8) now becomes

C ′ −1(α− 1)
log λ

1 + log λ
6

d

d log λ
Eα,λ(Id) 6 C(α− 1)2(log λ).

By demanding that α be suffciently close, but not equal, to 1, we conclude that

λ = 1. But, by (6.8) this implies that ψ̂ must vanish, that is, v is the identity
and the Möbius transformation M which minimizes ‖∇(uM − Id)‖2L2(S2) must be

a rotation. So u is a rotation, as claimed. �

8. Other α-harmonic maps of degree 1

In this section we shall construct rotationally symmetric α-harmonic maps of
degree 1 that are not rotations. Of course, their α-energy will be strictly bigger
than 22α+1π. We shall also construct α-harmonic maps of degree 1 from the disk
to the sphere which map the boundary circle to a point. This was proved to not
be possible for a harmonic map by Lemaire (see, for instance, (12.6) in [5]). We
shall further construct a map of degree 1 from the annulus to the sphere which is
α-harmonic and which maps the boundary circles to antipodal points.
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8.1. Rotationally symmetric maps. For n ∈ N, r ∈ [nπ, (n + 1)π] and θ ∈
[0, 2π], we consider a parameterisation of S2 given by

(r, θ) 7→ (sin r cos θ, sin r sin θ, cos r).

This parameterisation is orientation preserving if n is even and orientation reversing
if n is odd. In these coordinates, the metric on S2 is given by

dr2 + (sin r)2dθ2.

We shall be interested in maps uf from S2 to itself which are of the form

(r, θ) 7→ (sin(f(r)) cos θ, sin(f(r)) sin θ, cos(f(r)))

with
f : [0, π]→ R, f(0) = 0, f(π) = nπ.

These maps are rotationally symmetric and, for n > 1, wrap over S2 more than
once; the degree is zero if n is even and one if n is odd. The energy density e(uf )
of such a map is given by

e(uf ) =
1

2

(
(f ′)2 +

(sin f)2

(sin r)2

)
and, in order to express the α-harmonic map operator (1.5) at uf , we compute:

∂uf
∂r

= f ′(r)
(

cos(f(r)) cos θ, cos(f(r)) sin θ, − sin(f(r))
)
,

∂uf
∂θ

=
(
− sin(f(r)) sin θ, sin(f(r)) cos θ, 0

)
,

∂2uf
∂r2

=
f ′′(r)

f ′(r)

∂uf
∂r
− (f ′(r))2uf ,

∂2uf
∂θ2

= − sin(f(r))(cos θ, sin θ, 0) = − sin(f(r))

(
sin(f(r))uf +

cos(f(r))

f ′(r)

∂uf
∂r

)
.

The Laplacian on S2 is given by ∆ = ∂2

∂r2 + cos r
sin r

∂
∂r + 1

(sin r)2
∂2

∂θ2 and so,

∆uf + |∇uf |2uf + (α− 1)(2 + |∇uf |2)−1∇(|∇uf |2) · ∇uf

=
f ′′(r)

f ′(r)

∂uf
∂r
− (f ′(r))2uf +

cos r

sin r

∂uf
∂r

− sin(f(r))

(sin r)2

(
sin(f(r))uf +

cos(f(r))

f ′(r)

∂uf
∂r

)

+

(
(f ′)2 +

(sin f)2

(sin r)2

)
uf +

(α− 1)

(2 + |∇uf |2)

∂|∇uf |2

∂r

∂uf
∂r

=
1

f ′(r)

∂uf
∂r

(f ′′(r) +
cos r

sin r
f ′(r)− (cos f(r))(sin f(r))

(sin r)2

+
(α− 1)

(2 + |∇uf |2)

∂|∇uf |2

∂r
).

Thus uf is α-harmonic if

(8.1) f ′′(r) +
cos r

sin r
f ′(r)− (cos f(r))(sin f(r))

(sin r)2
+

(α− 1)

(2 + |∇uf |2)

∂|∇uf |2

∂r
= 0.
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8.2. Construction of rotationally symmetric α-harmonic maps. We shall
specialise to the case n = 3 (though our arguments will work for any other integer
value of n) and we define

X := {f : [0, π]→ R : uf ∈W 1,2α(S2,R3), f(0) = 0, f(π) = 3π}.

Let Λ := inff∈X I(f) where

I(f) := Eα(uf ) = π

∫ π

0

(
2 + (f ′)2 +

(sin f)2

(sin r)2

)α
sin r dr.

A direct calculation shows that f ∈ X is a critical point of I if, and only if, uf is
an α-harmonic map, i.e., if, and only if, f satisfies (8.1). This is a manifestation of
the principle of symmetric criticality of Palais; see, for example, Remark 11.4(a) in
[2]. The symmetry group in question here is the group O(2) of the rotations about
the axis (0, 0, z) and reflections in planes containing the line (0, 0, z).

If fj is a sequence in X, we shall write uj instead of ufj . Let fj be a sequence

in X such that I(fj) ↓ Λ. Then uj is a bounded sequence in W 1,2α(S2,R3) and
therefore, a subsequence, still denoted by uj , converges weakly in W 1,2α(S2,R3)
and uniformly in C0(S2,R3) to u∗ := uf∗ for some f∗ ∈ X.1 By the lower semi-
continuity of Eα with respect to weak convergence in W 1,2α(S2,R3), we have that
I(f∗) = Eα(u∗) = Λ. Thus u∗ is an α-harmonic map of degree 1 which is not a
rotation. We get a lower bound on Eα(u∗) by arguing as in (1.7) and (1.8):

Eα(u∗) = π

∫ π

0

(
2 + (f∗′)2 +

(sin f∗)2

(sin r)2

)α
sin r dr

> π

(∫ π

0

(
2 + (f∗′)2 +

(sin f∗)2

(sin r)2

)
sin r dr

)α(∫ π

0

sin r dr

)1−α

> 21−απ

(∫ π

0

(2 sin r + 2|f∗′(sin f∗)|) dr
)α

.

There exist r1, r2 ∈ (0, π) such that f∗(r1) = π and f∗(r2) = 2π. Then∫ π

0

|f∗′(sin f∗)| dr >
∫ r1

0

f∗′(sin f∗) dr −
∫ r2

r1

f∗′(sin f∗) dr +

∫ π

r2

f∗′(sin f∗) dr

= − cos f∗(r)|r10 + cos f∗(r)|r2r1 − cos f∗(r)|πr2
= 6.

It follows that

Eα(u∗) > 23α+1π.

Let D1 be the geodesic disc in S2 of radius r1 and centred at (0, 0, 1), let D2

be the geodesic disc in S2 of radius r2 and centred at (0, 0,−1) and let A be the
annulus between D1 and D2. Then the restriction of u∗ to D1 is an α-harmonic
map of degree 1 onto all of S2 which maps all of the boundary of D1 to (0, 0,−1).
Similarly, the restriction of u∗ to A is an α-harmonic map of degree 1 onto all of
S2 which maps the two boundaries of A to antipodal points of S2.

1This uniform convergence in C0 fails when α = 1 and this is precisely why this construction
does not yield harmonic maps of the type considered in this section.
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9. ε-approximation

In this section we study a fourth order approximation

Eε(u) :=
1

2

∫
S2

(|∇u|2 + ε|∆u|2) dAS2

of the Dirichlet energy. This approximation was first studied in [7] and it was shown
that smooth critical points exist for every ε > 0 and that sequences of critical points,
for ε→ 0, satisfy the same bubbling picture as the α-harmonic maps studied earlier.
As in section 2 we also define the energy

Eε,λ(u) :=
1

2

∫
S2

(|∇u|2 + εχλ|∆u|2) dAS2

and it follows that u is a critical point of Eε iff uλ is a critical point of Eε,λ.
Note that critical points of Eε,λ satisfy the PDE

−∆u+ ε∆(χλ∆u) = u
(
|∇u|2 − ε∆(χλ|∇u|2)− 2εdiv〈χλ∆u,∇u〉+ εχλ|∆u|2

)
.

Next we note that for every map u ∈ C∞(S2, S2) with deg(u) = 1 we have

4π(1 + 2ε) =

∫
S2

J(u) dAS2 +
ε

2π
(

∫
S2

J(u) dAS2)2

6 E(u) +
ε

8π
(

∫
S2

|∇u|2 dAS2)2

6 E(u) +
ε

2

∫
S2

|∇u|4 dAS2

6 Eε(u),

where we used that ∆u = (∆u)T − u|∇u|2 and therefore∫
S2

|∇u|4 dAS2 6
∫
S2

|∆u|2 dAS2

with equality iff u is harmonic. Hence we also see that equality holds in the above
estimate iff u is harmonic with constant energy density and therefore if it is a
rotation. (Note that −∆Id = 2Id and therefore Eε(Id) = 4π(1 + 2ε).)

Next we calculate

Eε(mλ) = Eε,λ(Id) = 4π + 2ε

∫
S2

χλ dAS2

= 4π + 2ε

∫
C

(1 + λ2|ξ|2)2

λ2(1 + |ξ|2)2
4

(1 + |ξ|2)2
dA0(ξ)

= 4π + 16πε

∫ ∞
0

(1 + λ2r2)2

λ2(1 + r2)2
r

(1 + r2)2
dr

= 4π + 8πε
λ

λ2 − 1

∫ λ

λ−1

w2 dw

= 4π
(
1 +

2ε

3
(λ2 + 1 + λ−2)

)
,(9.1)

where we used the substitution w = 1+λ2r2

λ(1+r2) .
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Differentiating this explicit expression for Eε(mλ) with respect to log λ yields

d

d log λ
Eε(mλ) =

16πε

3
(λ2 − λ−2)

=
16πε

3
(λ2 − 1)

λ2 + 1

λ2

> Cε(λ2 − 1).(9.2)

The proposition analogous to Proposition 3.1 in this setting is

Proposition 9.1. There exists δ∗ > 0 such that, for any δ ∈ (0, δ∗) there exists
µ > 0 such that, if 0 6 ε 6 1 and if Eε(u) 6 4π(1 + 2ε) + µ, where u is a critical
point of Eε of degree 1, then there exists M ∈ PSL(2,C) such that

‖∇(uM − Id)‖L2(S2) +
√
ε ‖√χλ ∆(uM − Id)‖L2(S2) 6 δ.(9.3)

Furthermore, there is a fixed constant C such that, if λ > 1 is the largest eigenvalue
of MM∗ (see (2.1)) then

(9.4) ε(λ2 − 1) 6 Cδ.

Proof. As for Lemma 3.2, we shall prove (9.3) by contradiction. However, instead
of appealing to Theorem 1 in [4], we shall use Theorem 1.1 in [7]. More specifically
if, for a contradiction, (9.3) were not true, then we could find a sequence µn ↓ 0,
a sequence εn ∈ [0, 1], a sequence un ∈ W 2,2(S2, S2) of critical points of Eεn of
degree one, with Eεn(un) 6 4π(1 + 2εn) + µn and δ > 0 such that

(9.5)
∥∥∇((un)M − Id

)∥∥
L2(S2)

+
√
εn
∥∥√χλ ∆

(
(un)M − Id

)∥∥
L2(S2)

> δ

for all M ∈ PSL(2,C). Now we have to consider two cases:

1) εn → 0
In this case it was shown in Theorem 1.1 in [7] that we get a similar

contradiction as in the proof of Lemma 3.2. Note that here λ corresponds
to the reciprocal of the energy concentration radius which is relevant for
constructing the blow-up map uM in this situation.

2) ε0 → ε∞ ∈ (0, 1]
Here we have, at least for n large enough, a uniform W 2,2-bound for the

sequence un. Hence we conclude that un converges strongly in W 2,2 to a
limiting map u∞ which is a critical point of Eε∞ and which satisfies

Eε∞(u∞) = 4π(1 + 2ε∞).

By the discussions above this implies that u∞ is a rotation, contradicting
(9.5).

To establish (9.4), we set v := uM and calculate as in section 5 to obtain

0 =
d

d log λ
Eε,λ(v) = 2ε

∫
S2

χλz(λ·)|∆v|2 dAS2 .
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Since ‖z‖L∞(S2) 6 1 we conclude further from the estimate (9.2) that

Cε(λ2 − 1) 6
d

d log λ
Eε,λ(Id)− d

d log λ
Eε,λ(v)

= 2ε

∫
S2

χλz(λ·)(|∆Id|2 − |∆v|2) dAS2

6 2
√
ε‖√χλ∆(v − Id)‖L2(S2)

√
ε
(
‖√χλ∆v‖L2(S2) + ‖√χλ∆Id‖L2(S2)

)
.(9.6)

Now, by assumption,

4π(1 + 2ε) + µ > Eε(u) = Eε,λ(uM ) = Eε,λ(v)

> 4π +
ε

2

∫
S2

χλ|∆v|2 dAS2

where, in the second inequality, we have used

1

2

∫
S2

|∇v|2 dAS2 > 4π

which holds because deg(v) = 1. So,

(9.7) ε‖√χλ∆v‖2L2(S2) 6 16πε+ 2µ.

By the triangle inequality,

(9.8)
√
ε‖√χλ∆Id‖L2(S2) 6

√
ε
(
‖√χλ∆(Id− v)‖L2(S2) + ‖√χλ∆v‖L2(S2)

)
.

So, using (9.3), (9.7) and (9.8) in (9.6), and thus we get

ε(λ2 − 1) 6 Cδ.

�

Here we see that in the replacement for Proposition 4.1 we need to get
an estimate for ‖∆(v − Id)‖L2(S2) which is independent of ε (see Lemma
2.6 in [7]).

Appendix A. An Estimate for the function χλ

Lemma A.1. There is a constant C > 0, independent of λ > 1, such that

(A.1) ‖∇ logχλ‖L2(S2) 6

{
C(log λ) for 0 6 log λ 6 1;

C(log λ)
1
2 for log λ > 1.

Proof. First of all we note that

(A.2)
d

dr
logχλ(r) = 4

(
λ2r

1 + λ2r2
− r

1 + r2

)
=

4r(λ2 − 1)

(1 + r2)(1 + λ2r2)
,

and hence we estimate

‖∇ logχλ‖L2(S2) =4(λ2 − 1)

(
8π

∫ ∞
0

r3

(1 + λ2r2)2(1 + r2)4
dr

)1/2

64(λ2 − 1)(8π)1/2(∫ 1/λ

0

r3dr +
1

λ4

∫ 1

1/λ

1

r
dr +

1

λ4

∫ ∞
1

1

r9
dr

)1/2

.
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So,

‖∇ logχλ‖L2(S2) 6 4(8π)1/2
(
λ+ 1

λ

)(
λ− 1

λ

)(
1

4
+

1

8
+ log λ

)1/2

.

Now, for 1 6 λ 6 e, we have

λ− 1

λ
6 log λ and ( 1

4 + 1
8 + log λ)1/2 6

√
2

and, for log λ > 1, we have

λ− 1

λ
( 1
4 + 1

8 + log λ)1/2 6
√

2(log λ)1/2

which yield the desired estimate (A.1). �
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