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Abstract

We show that the system of point vortices, perturbed by a certain transport type noise,
converges weakly to the vorticity form of 2D Navier–Stokes equations driven by the space-
time white noise.
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1 Introduction

The purpose of this paper is to show that a particle system of stochastic point vortices converges,
as the number of particles goes to infinity, to the vorticity form of the Navier–Stokes equations
driven by the space-time white noise:

dω + u · ∇ω dt = ∆ω dt+
√
2∇⊥ · dW, ω0

d∼ white noise on T
2. (1.1)

Here u = (u1, u2) is a divergence free vector field on the torus T2 = R
2/Z2 and ω = ∇⊥ · u =

∂2u1 − ∂1u2 is the vorticity. The equation (1.1) in velocity-pressure variables reads as

du+ (u · ∇u+∇p) dt = ∆udt+
√
2 dW,

div u = 0,

which has been studied intensively in the last two decades, see for instance [1, 5, 7, 2, 16, 3, 15,
17] among others. This equation has an invariant measure given by some Gaussian measure
µ which is supported by any Sobolev or Besov spaces of negative order. It was shown in [5,
Theorem 5.2] that, for µ-a.s. starting points in some Besov space, the above equation has a
unique solution with continuous paths; moreover, if the initial data is a random variable with
distribution µ, then the solution is a stationary process.

To motivate our study we begin by considering the vorticity form of the 2D Euler equation:

∂tω + u · ∇ω = 0, ω|t=0 = ω0.
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This is a nonlinear transport equation in which u is expressed by ω via the Biot–Savart law:

u(x) = (K ∗ ω)(x) = 〈ω,K(x− ·)〉,
where K is the Biot–Savart kernel on T

2. We refer the readers to [8, Introduction] for a list of
well posedness results on this equation. In particular, we are interested in the case when ω0 has
the form ωN

0 (dx) = 1√
N

∑N
i=1 ξiδXi

0
(dx), where ξi ∈ R and Xi

0 ∈ T
2 are some distinct points.

According to [13, Section 4.4], the above equation can be interpreted as the finite dimensional
dynamics on (T2)N :

dXi,N
t

dt
=

1√
N

N
∑

j=1,j 6=i

ξjK
(

Xi,N
t −Xj,N

t

)

(1.2)

with initial condition Xi,N
0 = Xi

0, i = 1, · · · , N . This system is not necessarily well posed: an
explicit example was given in [13, Section 4.2] which shows that three different vortex points
starting from certain positions collapse to one point in finite time. Nevertheless, the above
system of equations admits a unique solution for

(

Leb⊗N
T2

)

-a.e. starting point in (T2)N .
Based on the above result, the first author of the current paper considered the system (1.2)

with random initial data ωN
0 which converges weakly to the white noise on T

2 (see [8, Section
3.2] or the next section for the precise meaning). Denote by ωN

t = 1√
N

∑N
i=1 ξiδXi,N

t
. He proved

in [8, Theorem 24] that the family {ωN
· } has a subsequence which converges weakly to some

ω· with continuous paths in H−1−(T2) = ∩s>0H
−1−s(T2), such that ωt is a white noise on T

2

for all t > 0. Furthermore, the process ω· solves the weak vorticity formulation of 2D Euler
equations. We refer to [8, Theorem 25] for more general results and to [9] for extensions to
stochastic settings. On the other hand, we considered in the recent paper [11] the following
stochastic 2D Euler equation

dω + u · ∇ω dt = 2 εN
∑

0<|k|≤N

ek
k⊥

|k|2 · ∇ω ◦ dW k,

where k runs over Z2, εN =
(
∑

0<|k|≤N
1

|k|2
)−1/2 ∼ (logN)−1/2, {ek} is the orthonormal basis

of sine and cosine functions (see (2.2)) and {W k} are independent Brownian motions. It was
shown that this model, hyperbolic in nature, converges to the parabolic equation (1.1) above.

Motivated by the above discussions, we shall study in the current paper the stochastic point
vortex dynamics

dXi,N
t =

1√
N

N
∑

j=1,j 6=i

ξjK
(

Xi,N
t −Xj,N

t

)

dt+ 2 εN
∑

0<|k|≤N

k⊥

|k|2 ek
(

Xi,N
t

)

◦ dW k
t .

Assume the initial point vortices ωN
0 are random and converge weakly to the white noise on

T
2, we can prove that the processes ωN

t = 1√
N

∑N
i=1 ξiδXi,N

t
converge weakly to the white noise

solution of (1.1). The proof follows the general idea of [11] but we need some L2-boundedness
estimate on a sequence of functionals of ωN

0 , which is done in the appendix.

2 Convergence of the stochastic point vortex systems

First, we introduce some notations. As in [8, Section 3.2], let {ξi}i∈N be a family of i.i.d.
N(0, 1) r.v.’s, and {Xi

0}i∈N is an i.i.d. sequence of T2-uniformly distributed r.v.’s; we assume
the two families are independent. For every N ∈ N, denote by

λ0
N =

(

N(0, 1) ⊗ LebT2

)⊗N

2



the law of the random vector
(

(ξ1,X
1
0 ), . . . , (ξN ,XN

0 )
)

. Let us consider the measure-valued
vorticity field

ωN
0 =

1√
N

N
∑

i=1

ξiδXi
0
,

which can be regarded as a r.v. taking values in the space H−1−(T2) = ∩s>0H
−1−s(T2) with

the law µ0
N , where Hr(T2) (r ∈ R) is the usual Sobolev space on T

2. Denote by M(T2) the
space of signed measures on T

2 with finite variation, and

MN (T2) =
{

µ ∈ M(T2) | ∃X ⊂ T
2 such that #(X) = N and supp(µ) = X

}

.

We can define the map TN : (R× T
2)N → MN (T2) ⊂ H−1−(T2) as

(

(ξ1,X
1
0 ), . . . , (ξN ,XN

0 )
)

7→ ωN
0 =

1√
N

N
∑

i=1

ξiδXi
0
, (2.1)

then it holds that
µ0
N = (TN )#λ

0
N = λ0

N ◦ T −1
N .

It is proved in [8, Proposition 21] that, as N → ∞, ωN
0 converges in law to the white noise

ωWN on T
2.

We denote by

ek(x) =
√
2

{

cos(2πk · x), k ∈ Z
2
+,

sin(2πk · x), k ∈ Z
2
−,

x ∈ T
2, (2.2)

where Z
2
+ =

{

k ∈ Z
2
0 : (k1 > 0) or (k1 = 0, k2 > 0)

}

and Z
2
− = −Z

2
+. Then {ek : k ∈ Z

2
0}

constitute a CONS of L2
0(T

2), the space of square integrable functions with zero mean. Define

σk(x) =
1√
2

k⊥

|k|2 ek(x), k ∈ Z
2
0, (2.3)

with k⊥ = (k2,−k1). For N ≥ 1, define ΛN = {k ∈ Z
2
0 : |k| ≤ N}. Let {W k

t }k∈Z2
0
be a sequence

of independent standard Brownian motions, which are independent of {ξi}i∈N and {Xi
0}i∈N.

Consider the stochastic point vortex dynamics: for i = 1, · · · , N ,

dXi,N
t =

1√
N

N
∑

j=1,j 6=i

ξjK
(

Xi,N
t −Xj,N

t

)

dt+ 2
√
2 εN

∑

k∈ΛN

σk
(

Xi,N
t

)

◦ dW k
t (2.4)

with the initial condition Xi,N
0 = Xi

0. Denote by

∆N =
{

(x1, . . . , xN ) ∈ (T2)N : there are i 6= j such that xi = xj
}

the generalized diagonal of (T2)N and ∆c
N = (T2)N \∆N . Moreover, for any φ ∈ C∞(T2), set

Hφ(x, y) =
1

2
K(x− y) · (∇φ(x) −∇φ(y)), x, y ∈ T

2,

with the convention that Hφ(x, x) = 0. It is well known that, for all x ∈ T
2 \ {0}, K(−x) =

−K(x) and |K(x)| ≤ C/|x| for some constant C > 0; thus Hφ is symmetric and

‖Hφ‖∞ ≤ C‖∇2φ‖∞. (2.5)

We have the following result.
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Proposition 2.1. For a.s. value of
(

(ξ1,X
1
0 ), . . . , (ξN ,XN

0 )
)

, the process
(

X1,N
t , . . . ,XN,N

t

)

is
well defined in ∆c

N for all t ≥ 0, and the associated random measure-valued vorticity

ωN
t =

1√
N

N
∑

i=1

ξiδXi,N
t

satisfies the equation below: for all φ ∈ C∞(T2),

〈

ωN
t , φ

〉

=
〈

ωN
0 , φ

〉

+

∫ t

0

〈

ωN
s ⊗ ωN

s ,Hφ

〉

ds+

∫ t

0
〈ωN

s ,∆φ〉ds

+ 2
√
2 εN

∑

k∈ΛN

∫ t

0

〈

ωN
s , σk · ∇φ

〉

dW k
s .

(2.6)

The stochastic process ωN
t is stationary in time, with the law µ0

N at any time t ≥ 0.

Proof. The assertions are the same as [9, Proposition 2.3]; the only difference is that here we
can compute explicitly the second order derivative to get the Laplacian in the equation (2.6).
Indeed, (2.5) in [9] becomes

〈

ωN
t , φ

〉

=
〈

ωN
0 , φ

〉

+

∫ t

0

〈

ωN
s ⊗ ωN

s ,Hφ

〉

ds+ 2
√
2 εN

∑

k∈ΛN

∫ t

0

〈

ωN
s , σk · ∇φ

〉

dW k
s

+ 4ε2N
∑

k∈ΛN

∫ t

0

〈

ωN
s , σk · ∇(σk · ∇φ)

〉

ds.

We have σk · ∇(σk · ∇φ) = Tr
[

(σk ⊗ σk)∇2φ
]

since σk · ∇σk ≡ 0 for any k ∈ Z
2
0. The equation

(2.6) is a consequence of the following equality:

∑

k∈ΛN

σk ⊗ σk =
1

4
ε−2
N I2, (2.7)

where I2 is the (2 × 2)-unit matrix. This identity was proved in [11, Lemma 2.6]; we present
the proof here for the reader’s convenience. We have

SN (x) :=
∑

k∈ΛN

σk(x)⊗ σk(x) =
∑

k∈ΛN∩Z2
+

k⊥ ⊗ k⊥

|k|4
[

cos2(2πk · x) + sin2(2πk · x)
]

=
∑

k∈ΛN∩Z2
+

1

|k|4
(

k22 −k1k2
−k1k2 k21

)

=
1

2

∑

k∈ΛN

1

|k|4
(

k22 −k1k2
−k1k2 k21

)

.

So SN is independent of x. First, we have

S1,2
N = −1

2

∑

k∈ΛN

k1k2
|k|4 = 0

since we can sum the four terms involving (k1, k2), (−k1, k2), (k1,−k2), (−k1,−k2) at one time.
Next,

S1,1
N =

1

2

∑

k∈ΛN

k22
|k|4 =

1

2

∑

k∈ΛN

k21
|k|4 = S2,2

N

4



since the points (k1, k2) and (k2, k1) appear in pair. Therefore,

S1,1
N = S2,2

N =
1

4

∑

k∈ΛN

k21 + k22
|k|4 =

1

4

∑

k∈ΛN

1

|k|2 =
1

4
ε−2
N .

Hence we obtain (2.7).

Let QN be the law of ωN
· on X = C

(

[0, T ],H−1−(T2)
)

, N ≥ 1. We want to show that the
family {QN}N≥1 is tight in X , for which we need the following integrability properties of ωN

t

that are proved in [8, Lemma 23] (except the second estimate which can be proved similarly
to the first one).

Lemma 2.2. Assume f : T2 × T
2 → R and g : T2 → R are bounded and measurable, and f is

symmetric. Then, for every p ≥ 1 and δ > 0, there are constants Cp, Cp,δ > 0 such that for all
N ≥ 1 and t ∈ [0, T ],

E
[
∣

∣

〈

ωN
t ⊗ ωN

t , f
〉
∣

∣

p] ≤ Cp‖f‖p∞, E
[
∣

∣

〈

ωN
t , g

〉
∣

∣

p] ≤ Cp‖g‖p∞, E
[
∥

∥ωN
t

∥

∥

p

H−1−δ

]

≤ Cp,δ.

Moreover,

E
[〈

ωN
t ⊗ ωN

t , f
〉2]

=
3

N

∫

f2(x, x) dx+
N − 1

N

[
∫

f(x, x) dx

]2

+
2(N − 1)

N

∫ ∫

f2(x, y) dxdy.

With these estimates in hand, we can follow the arguments at the beginning of [9, Section
3] to show the tightness of {QN}N≥1 in X . To this end, we need to prove that {QN}N≥1 is
bounded in probability in W 1/3,4

(

0, T ;H−κ(T2)
)

for some κ > 5, and in Lp0
(

0, T ;H−1−δ(T2)
)

for any p0 > 0 and δ > 0.
First, by Lemma 2.2, for all N ∈ N,

E

[
∫ T

0

∥

∥ωN
t

∥

∥

p0
H−1−δ dt

]

=

∫ T

0
E
[
∥

∥ωN
t

∥

∥

p0
H−1−δ

]

dt ≤ Cp0,δT. (2.8)

This implies the boundedness in probability of {QN}N≥1 in Lp0
(

0, T ;H−1−δ(T2)
)

for any p0 > 0
and δ > 0.

Next, to show that {QN}N≥1 is bounded in probability in W 1/3,4
(

0, T ;H−κ(T2)
)

with
κ > 5, it suffices to prove

sup
N≥1

E

[
∫ T

0

∥

∥ωN
t

∥

∥

4

H−κ dt+

∫ T

0

∫ T

0

∥

∥ωN
t − ωN

s

∥

∥

4

H−κ

|t− s|7/3 dtds

]

< ∞.

The expectation of the first part is finite by the estimate (2.8), thus we focus on the second
part. We need the following result whose proof looks very similar to [11, Lemma 2.5]. The
difference between them is that here the processes ωN

t are random point vortices, while the
processes in [11, Lemma 2.5] have white noise as marginal distribution.

Lemma 2.3. There exists C > 0 such that for any N ≥ 1 and φ ∈ C∞(T2), we have

E
[〈

ωN
t − ωN

s , φ
〉4] ≤ C(t− s)2

(

‖∇φ‖4∞ + ‖∇2φ‖4∞
)

.

Proof. By (2.6), one has

〈

ωN
t − ωN

s , φ
〉

=

∫ t

s

〈

ωN
r ⊗ ωN

r ,Hφ

〉

dr +

∫ t

s
〈ωN

r ,∆φ〉dr

+ 2
√
2 εN

∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇φ

〉

dW k
r .

(2.9)
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First, Hölder’s inequality leads to

E

[(
∫ t

s

〈

ωN
r ⊗ ωN

r ,Hφ

〉

dr

)4]

≤ (t− s)3 E

[
∫ t

s

〈

ωN
r ⊗ ωN

r ,Hφ

〉4
dr

]

≤ (t− s)3
∫ t

s
C‖∇2φ‖4∞ dr = C(t− s)4‖∇2φ‖4∞,

(2.10)

where in the second step we used Lemma 2.2 and (2.5). In the same way,

E

[(
∫ t

s
〈ωN

r ,∆φ〉dr
)4]

≤ (t− s)3 E

[
∫ t

s
〈ωN

r ,∆φ〉4 dr
]

≤ C(t− s)4‖∆φ‖4∞. (2.11)

Next, by Burkholder’s inequality,

E

[(

εN
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇φ

〉

dW k
r

)4]

≤ Cε4NE

[(
∫ t

s

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
dr

)2]

≤ Cε4N (t− s)

∫ t

s
E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
)2]

dr.

Cauchy’s inequality and Lemma 2.2 imply that

E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
)2]

=
∑

k,l∈ΛN

E
[〈

ωN
r , σk · ∇φ

〉2〈
ωN
r , σl · ∇φ

〉2]

≤
∑

k,l∈ΛN

[

E
〈

ωN
r , σk · ∇φ

〉4]1/2[
E
〈

ωN
r , σl · ∇φ

〉4]1/2

≤ C

(

∑

k∈ΛN

‖σk · ∇φ‖2∞
)2

≤ C̃‖∇φ‖4∞
(

∑

k∈ΛN

‖σk‖2∞
)2

.

Note that
∑

k∈ΛN

‖σk‖2∞ =
∑

k∈ΛN

1

|k|2 = ε−2
N ,

hence,

E

[(

∑

k∈ΛN

〈

ωN
r , σk · ∇φ

〉2
)2]

≤ C‖∇φ‖4∞ ε−4
N .

This implies

E

[(

εN
∑

k∈ΛN

∫ t

s

〈

ωN
r , σk · ∇φ

〉

dW k
r

)4]

≤ C(t− s)2‖∇φ‖4∞.

Combining this estimate with (2.9)–(2.11), we obtain the desired result.

Applying Lemma 2.3 with φ(x) = ek(x) leads to

E
[∣

∣

〈

ωN
t − ωN

s , ek
〉∣

∣

4] ≤ C(t− s)2|k|8, k ∈ Z
2
0.

As a result, by Cauchy’s inequality,

E
(
∥

∥ωN
t − ωN

s

∥

∥

4

H−κ

)

= E

[(

∑

k

(

1 + |k|2
)−κ∣

∣

〈

ωN
t − ωN

s , ek
〉
∣

∣

2
)2]

≤
(

∑

k

(

1 + |k|2
)−κ

)

∑

k

(

1 + |k|2
)−κ

E
[∣

∣

〈

ωN
t − ωN

s , ek
〉∣

∣

4]

≤ C̃(t− s)2
∑

k

(

1 + |k|2
)−κ|k|8 ≤ Ĉ(t− s)2,

6



since 2κ− 8 > 2 due to the choice of κ. Consequently,

E

[
∫ T

0

∫ T

0

∥

∥ωN
t − ωN

s

∥

∥

4

H−κ

|t− s|7/3 dtds

]

≤ Ĉ

∫ T

0

∫ T

0

|t− s|2
|t− s|7/3 dtds < ∞.

The proof of the boundedness in probability of
{

QN
}

N≥1
in W 1/3,4

(

0, T ;H−κ(T2)
)

is complete.

Combining this result with (2.8) and the discussions below Lemma 2.2, we conclude that
{QN}N≥1 is tight in X = C

(

[0, T ],H−1−(T2)
)

.
Since we are dealing with the SDEs (2.6), we need to consider QN together with the

distribution of Brownian motions. Although we use only finitely many Brownian motions in
(2.6), here we consider for simplicity the whole family

{

(W k
t )0≤t≤T : k ∈ Z

2
0

}

. To this end, we

assume R
Z2
0 is endowed with the metric

d
Z2
0
(a, b) =

∑

k∈Z2
0

|ak − bk| ∧ 1

2|k|
, a, b ∈ R

Z
2
0 .

Then
(

R
Z
2
0 , dZ2

0

)

is separable and complete (see [4, Example 1.2, p.9]). The distance in Y :=

C
(

[0, T ],RZ2
0

)

is given by

dY(w, ŵ) = sup
t∈[0,T ]

d
Z2
0
(w(t), ŵ(t)), w, ŵ ∈ Y,

which makes Y a Polish space. Denote by W the law on Y of the sequence of independent
Brownian motions

{

(W k
t )0≤t≤T : k ∈ Z

2
0

}

.
To simplify the notations, we write W· = (Wt)0≤t≤T for the whole sequence of processes

{

(W k
t )0≤t≤T : k ∈ Z

2
0

}

in Y. Denote by PN the joint law of
(

ωN
· ,W·

)

on X ×Y, N ≥ 1. Since
the marginal laws

{

QN
}

N∈N and {W} are respectively tight on X and Y, we conclude that
{

PN
}

N∈N is tight on X×Y. By Skorokhod’s representation theorem, there exist a subsequence

{Ni}i∈N of integers, a probability space
(

Θ̂, F̂ , P̂
)

and stochastic processes
(

ω̂Ni· , ŴNi·
)

on this

space with the corresponding laws PNi , and converging P̂-a.s. in X ×Y to a limit
(

ω̂·, Ŵ·
)

. We
are going to prove that ω̂·, or more precisely another closely related process, solves the vorticity
form of the Navier–Stokes equation with a suitable cylindrical Brownian motion.

We want to identify the approximating processes on the new probability space as random
point vortices. For this purpose, we follow the discussions above [8, Lemma 28] and enlarge
the probability space

(

Θ̂, F̂ , P̂
)

, so that it contains certain independent r.v.’s we need. The
rough idea is to apply a random permutation to an (R × T

2)N -valued r.v. which corresponds,
via the mapping (2.1), to a r.v. with values in MN (T2), see the end of Step 1 in the proof of
[8, Lemma 28] for more details. Denote by

(

Θ̃, F̃ , P̃
)

a probability space on which, for every

N ≥ 1, we define a uniformly distributed random permutation s̃N : Θ̃ → ΣN , where ΣN is the
permutation group of order N . Define the product probability space

(Θ,F ,P) =
(

Θ̂× Θ̃, F̂ ⊗ F̃ , P̂ ⊗ P̃
)

(2.12)

and the new processes

(

ωNi ,WNi
)

=
(

ω̂Ni , ŴNi
)

◦ π1, (ω,W ) =
(

ω̂, Ŵ
)

◦ π1, sN = s̃N ◦ π2,

where π1 and π2 are the projections on Θ̂ × Θ̃. Here, we slightly abuse the notations by
denoting the final probability spaces and processes like the original ones. In the sequel we
always consider the processes on the new probability space.

First, by Proposition 2.1, it is easy to show
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Lemma 2.4. The new process ω· is stationary and for every t ∈ [0, T ], the law µt of ωt on
H−1−(T2) is the white noise measure µ.

Similarly to [9, Lemma 3.5], we can identify the structure of ωNi
t as a sum of Dirac masses.

Lemma 2.5. The process ωNi
t on the new probability space can be represented in the form

1√
Ni

∑Ni

j=1 ξjδXj,Ni
t

, where
((

ξ1,X
1,Ni

0

)

, . . . ,
(

ξNi
,XNi,Ni

0

))

(2.13)

is a random vector with law λ0
Ni

and
(

X1,Ni

t , . . . ,XNi,Ni

t

)

solves the stochastic system (2.4)

with the initial condition
(

X1,Ni

0 , . . . ,XNi,Ni

0

)

and new Brownian motions
{(

WNi,k
t

)

: k ∈ ΛNi

}

defined above.

As a consequence (cf. Proposition 2.1), for any i ∈ N and φ ∈ C∞(T2), the new process
ωNi· satisfies P-a.s., for all t ∈ [0, T ],

〈

ωNi
t , φ

〉

=
〈

ωNi

0 , φ
〉

+

∫ t

0

〈

ωNi
s ⊗ ωNi

s ,Hφ

〉

ds+

∫ t

0

〈

ωNi
s ,∆φ

〉

ds

+ 2
√
2 εNi

∑

k∈ΛNi

∫ t

0

〈

ωNi
s , σk · ∇φ

〉

dWNi,k
s .

(2.14)

Remark 2.6. Using the a.s. convergence of ωNi to ω in C
(

[0, T ],H−1−(T2)
)

, we can show
that the quantities in the first line of (2.14) converge respectively in L2(Θ,P) to

〈ωt, φ〉, 〈ω0, φ〉,
∫ t

0

〈

ωr ⊗ ωr,Hφ

〉

dr,

∫ t

0
〈ωr,∆φ〉dr,

see [9, Proposition 3.6] for details. However, the term involving stochastic integrals does not
converge strongly to some limit. Therefore, we can only seek for a weaker form of convergence.

Before proceeding further, we introduce some notations. By Λ ⋐ Z
2
0 we mean that Λ is

a finite set. Let ΠΛ : H−1−(T2) → span{ek : k ∈ Λ} be the projection operator: ΠΛω =
∑

l∈Λ〈ω, el〉el. We shall use the family of cylindrical functions below:

FC2
b =

{

F (ω) = f(〈ω, el〉; l ∈ Λ) for some Λ ⋐ Z
2
0 and f ∈ C2

b

(

R
Λ
)}

,

where R
Λ is the (#Λ)-dimensional Euclidean space. To simplify the notations, sometimes

we write the cylindrical functions as F = f ◦ ΠΛ, and for l,m ∈ Λ, fl(ω) = (∂lf)(ΠΛω) and
fl,m(ω) = (∂l∂mf)(ΠΛω). Denote by L∞ the generator of the equation (1.1): for any cylindrical
function F = f ◦ ΠΛ with Λ ⋐ Z

2
0,

L∞F = 4π2
∑

l∈Λ
|l|2

[

fl,l(ω)− fl(ω)〈ω, el〉
]

− 〈u(ω) · ∇ω,DF 〉, (2.15)

where the drift part

〈u(ω) · ∇ω,DF 〉 = −
∑

l∈Λ
fl(ω)

〈

ω ⊗ ω,Hel

〉

.

Finally we introduce the notation

Ck,l =
k⊥ · l
|k|2 , k, l ∈ Z

2
0. (2.16)
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We have the following useful identity (cf. [10, Lemma 3.4] for the proof):

∑

k∈ΛN

C2
k,l =

1

2
ε−2
N |l|2 (2.17)

Now we prove that the limit ω is a martingale solution of the operator L∞.

Proposition 2.7. For any F ∈ FC2
b ,

MF
t := F (ωt)− F (ω0)−

∫ t

0
L∞F (ωs) ds (2.18)

is an Ft = σ(ωs : s ≤ t)-martingale.

Proof. The proof below is analogous to that of [11, Proposition 2.9], but the processes ω̃Ni
t

involved there are processes of white noises on T
2, while here ωNi

t are random point vortices.
Recall the CONS defined in (2.2). Taking φ = el in (2.14) for some l ∈ Z

2
0, we have

d
〈

ωNi
t , el

〉

=
〈

ωNi
t ⊗ ωNi

t ,Hel

〉

dt− 4π2|l|2
〈

ωNi
t , el

〉

dt

+ 2
√
2 εNi

∑

k∈ΛNi

〈

ωNi
t , σk · ∇el

〉

dWNi,k
t . (2.19)

Therefore, for l,m ∈ Z
2
0,

d
〈

ωNi
t , el

〉

· d
〈

ωNi
t , em

〉

= 8ε2Ni

∑

k∈ΛNi

〈

ωNi
t , σk · ∇el

〉〈

ωNi
t , σk · ∇em

〉

dt.

It is easy to show that σk · ∇el =
√
2πCk,leke−l; hence

〈

ωNi
t , σk · ∇el

〉〈

ωNi
t , σk · ∇em

〉

= 2π2Ck,lCk,m

〈

ωNi
t , eke−l

〉〈

ωNi
t , eke−m

〉

= 2π2Ck,lCk,m

[

〈

ωNi
t , eke−l

〉〈

ωNi
t , eke−m

〉

− δl,m

]

+ 2π2δl,mC2
k,l.

As a result,

d
〈

ωNi
t , el

〉

· d
〈

ωNi
t , em

〉

= 16π2ε2Ni

∑

k∈ΛNi

Ck,lCk,m

[

〈

ωNi
t , eke−l

〉〈

ωNi
t , eke−m

〉

− δl,m

]

dt

+ 8π2δl,m|l|2 dt,

where in the last step we have used (2.17). To simplify the notations, we denote by

Rl,m

(

ωNi
t

)

= 8π2
∑

k∈ΛNi

Ck,lCk,m

[

〈

ωNi
t , eke−l

〉〈

ωNi
t , eke−m

〉

− δl,m

]

.

Recall that ωNi
t has the law µ0

Ni
for any t ∈ [0, T ], thus Rl,m

(

ωNi
t

)

is bounded in L2
(

[0, T ]×Θ
)

by Proposition 3.1 in the appendix. Finally, we get

d
〈

ωNi
t , el

〉

· d
〈

ωNi
t , em

〉

= 2ε2Ni
Rl,m

(

ωNi
t

)

dt+ 8π2δl,m|l|2 dt. (2.20)
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By the Itô formula and (2.19), (2.20),

dF
(

ωNi
t

)

= df
(〈

ωNi
t , el

〉

; l ∈ Λ
)

=
∑

l∈Λ
fl
(

ωNi
t

)

[

〈

ωNi
t ⊗ ωNi

t ,Hel

〉

− 4π2|l|2
〈

ωNi
t , el

〉

]

dt

+ 2
√
2 εNi

∑

l∈Λ
fl
(

ωNi
t

)

∑

k∈ΛNi

〈

ωNi
t , σk · ∇el

〉

dWNi,k
t

+
∑

l,m∈Λ
fl,m

(

ωNi
t

)[

ε2Ni
Rl,m

(

ωNi
t

)

+ 4π2δl,m|l|2
]

dt.

Recalling the operator L∞ defined in (2.15), the above formula can be rewritten as

dF
(

ωNi
t

)

= L∞F
(

ωNi
t

)

dt+ ε2Ni
ζNi
t dt+ dMNi

t , (2.21)

where, by Proposition 3.1,

ζNi
t =

∑

l,m∈Λ
fl,m

(

ωNi
t

)

Rl,m

(

ωNi
t

)

is bounded in L2
(

[0, T ] ×Θ
)

since {fl,m}l,m∈Λ are bounded, and the martingale part

dMNi
t = 2

√
2 εNi

∑

l∈Λ
fl
(

ωNi
t

)

∑

k∈ΛNi

〈

ωNi
t , σk · ∇el

〉

dWNi,k
t .

Note that MNi
t is a martingale w.r.t. the filtration

FNi
t = σ

(

ωNi
s ,WNi

s : s ≤ t
)

,

where we denote by WNi
s =

{

WNi,k
s

}

k∈Z2
0

.

Next, we show that the formula (2.21) converges as i → ∞ in a suitable sense. To this end,
we follow the argument of [6, p. 232]. Fix any 0 < s < t ≤ T . Take a real valued, bounded
and continuous function ϕ : C

(

[0, s],H−1− ×R
Z2
0

)

→ R. By (2.21), we have

E

[(

F
(

ωNi
t

)

− F
(

ωNi
s

)

−
∫ t

s
L∞F

(

ωNi
r

)

dr − ε2Ni

∫ t

s
ζNi
r dr

)

ϕ
(

ωNi
· ,WNi

·
)

]

= 0.

Since F ∈ FC2
b and ωNi

t has the law µ0
Ni

for all t ∈ [0, T ], by Lemma 2.2, all the terms in the

round bracket are square integrable. Recall that, P-a.s.,
(

ωNi· ,WNi·
)

converges to
(

ω·,W·
)

in

C
(

[0, T ],H−1−×R
Z
2
0

)

. Repeating the treatment of the term INk

3 in the proof of [9, Proposition
3.6], we can show the convergence of the term involving the nonlinear part in L∞F ; the other
terms are simple. Thus, letting i → ∞ in the above equality yields

E

[(

F (ωt)− F (ωs)−
∫ t

s
L∞F (ωr) dr

)

ϕ
(

ω·,W·
)

]

= 0.

The arbitrariness of 0 < s < t and ϕ : C
(

[0, s],H−1− × R
Z
2
0

)

→ R implies that MF
· is a

martingale with respect to the filtration Gt = σ
(

ωs,Ws : s ≤ t
)

, t ∈ [0, T ]. For any 0 ≤ s < t ≤
T , we have Fs ⊂ Gs, thus

E
(

MF
t

∣

∣Fs

)

= E

[

E
(

MF
t

∣

∣Gs

)∣

∣Fs

]

= E
[

MF
s

∣

∣Fs

]

= MF
s ,

since MF
s is adapted to Fs.
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At this stage, taking the cylinder functions F (ω) = 〈ω, el〉 and F (ω) = 〈ω, el〉〈ω, em〉 (l,m ∈
Z
2
0) and using Lévy’s characterization of Brownian motions, it is easy to show that (see [11,

Proposition 2.10] for details)

Proposition 2.8. There exists a family of independent standard Brownian motions
{

W k
t : t ≥

0
}

k∈Z2
0

such that (ω·,W·) solves (1.1), where Wt =
∑

k∈Z2
0
W−k

t ek
k⊥

|k| .

In the remaining part of this section, we follow the arguments at the end of [11, Section 2].
We can rewrite (1.1) in the velocity variable ũ· = u(ω̃·) as follows:

dũ+ b(ũ) dt = νAũdt+
√
2ν dW̃ . (2.22)

Here, b(u) = Pdiv(u⊗u) and Au = P∆u, in which P is the orthogonal projection onto the space
of divergence free vector fields on T

2. It is clear that ũ has trajectories in C
(

[0, T ],H−(T2)
)

,
that is, in C

(

[0, T ],H−δ(T2)
)

for any δ > 0. As mentioned at the beginning of this paper, the
above equation has been studied intensively in the last two decades. We deduce from Lemma
2.4 and Proposition 2.8 that the process ũ is a stationary solution to (2.22) in the sense of
[5, Definition 4.1]. Let us remark that this definition is based only on the Sobolev regularity
of ũ ∈ C

(

[0, T ],H−(T2)
)

; the definition of the nonlinear part b(ũ) is based on the Galerkin
approximation and coincides with our definition, as explained by [11, Theorem A.12] in terms
of the vorticity variable.

Similarly to the arguments in [14, Section 3.5], we can prove

Proposition 2.9. The uniqueness in law holds for stationary solutions to (2.22).

Proof. By [12, Theorem 3.14], it is sufficient to show that the pathwise uniqueness holds for
stationary solutions of (2.22). Let ui (i = 1, 2) be two stationary solutions to the equation
(2.22) in the sense of [5, Definition 4.1], which are defined on the same probability space
(Θ,F ,P), with the same initial data u1(0) = u2(0) = u(0) (P-a.s.) and the same cylindrical
Brownian motion W (t), 0 ≤ t ≤ T . Then, for i = 1, 2, P-a.s.,

ui(t) = u(0)−
∫ t

0
b(ui(s)) ds +

∫ t

0
Aui(s) ds+

√
2W (t), 0 ≤ t ≤ T.

These equations can be rewritten as

ui(t) = etAu(0) −
∫ t

0
e(t−s)Ab(ui(s)) ds+

√
2

∫ t

0
e(t−s)A dW (s).

We extend W (·) to be a two-sided cylindrical Brownian motion on R (possibly at the price of
enlarging (Θ,F ,P)) and define

Z(t) =
√
2

∫ t

−∞
e(t−s)A dW (s).

It is well known that Z is a stationary process with paths in C
(

[0, T ], Bσ
p,ρ

)

for any σ < 0, ρ ≥
p ≥ 2 (cf. the last line on p.196 of [5]). Here, for any s ∈ R, Bs

p,ρ is the Besov space on T
2.

Note that √
2

∫ t

0
e(t−s)A dW (s) = Z(t)− etAZ(0),

we arrive at

ui(t)− Z(t) = etA(u(0) − Z(0)) −
∫ t

0
e(t−s)Ab(ui(s)) ds, i = 1, 2. (2.23)
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As in [5, Theorem 5.2, p.196], let α, β, p, ρ, σ be such that

2

p
> α > −σ > 0, ρ = p ≥ 2, β ≥ 1, −1

2
+

1

p
<

α

2
− 1

β
<

σ

2
.

Using these parameters, we define the following space

E = Lβ
(

0, T ;Bα
p,ρ

)

∩ C
(

[0, T ], Bσ
p,ρ

)

.

Since for any t ∈ [0, T ], ui(t) is distributed as N (0, (−A)−1) = ⊗k∈Z2
0
N
(

0, 1/(4π2|k|2)
)

, one

has ui(t) ∈ Bσ
p,ρ, P-a.s. (see [2, Proposition 3.1]). We also have Z(0) ∈ Bσ

p,ρ (P-a.s.), thus by

[5, Lemma 6.1], we obtain that, P-a.s., [0, T ] ∋ t 7→ etA(u(0) − Z(0)) ∈ E . Next, for any γ ≥ 1
and ε > 0, since

E

(
∫ T

0
‖b(ui(t))‖γH−1−ε dt

)

=

∫ T

0
E
(

‖b(ui(t))‖γH−1−ε

)

dt,

using estimates on the operator b(·) and the regularity provided by the Gaussian marginal of
ui(·), we can prove b(ui(·)) ∈ Lγ

(

0, T ;H−1−ε
)

(P-a.s.), see the arguments on the top of p.197

in [5] for details. Therefore, [5, Lemma 6.2] gives us that
∫ t
0 e

(t−s)Ab(ui(s)) ds ∈ E . Combining
these discussions with the equations (2.23), we deduce that ui−Z ∈ E (P-a.s.) for i = 1, 2. By
[5, Theorem 5.2, p.196] (see in particular the arguments on p.200 after the proof), we obtain,
P-a.s., u1(t) = u2(t) for all t ∈ [0, T ]. Thus the pathwise uniqueness holds for stationary
solutions to (2.22).

Recall that {QN}N≥1 are the distributions of
(

ωN
t

)

0≤t≤T
. Now we can prove the main

result of this paper.

Theorem 2.10. The whole sequence {QN}N≥1 converges weakly to the distribution of solution
to (1.1).

Proof. Proposition 2.9 implies that the stationary solutions to (1.1) are unique in law, thus we
deduce the assertion from the tightness of the family {QN}N≥1.

3 Appendix

Recall the expressions of ωN
0 in (2.1) and of Ck,l in (2.16). In this part we prove the following

technical result.

Proposition 3.1. For any l,m ∈ Z
2
0 fixed, the sequence of random variables

Rl,m(ωN
0 ) =

∑

k∈ΛN

Ck,lCk,m

(

〈ωN
0 , ekel〉〈ωN

0 , ekem〉 − δl,m
)

is bounded in L2(Θ,F ,P).

The proof of the above assertion follows the idea of [10, Appendix 6], with some combina-
torial flavor here. Since l,m are fixed, we write RN instead of Rl,m(ωN

0 ) for simplicity. We deal
with the two cases l 6= m and l = m in the two subsections separately.
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3.1 Case 1: l 6= m

The definition of ωN
0 yields

RN =
1

N

∑

k∈ΛN

Ck,lCk,m

N
∑

r,s=1

ξrξs(ekel)(X
r
0 )(ekem)(Xs

0),

therefore,

R2
N =

1

N2

∑

k,k′∈ΛN

N
∑

r,s,r′s′=1

Ck,lCk,mCk′,lCk′,mξrξsξr′ξs′

× (ekel)(X
r
0 )(ekem)(Xs

0)(ek′el)(X
r′

0 )(ek′em)(Xs′

0 ).

Recall that the two families {ξr}r≥1 and {Xr
0}r≥1 are independent, and {ξr}r≥1 is an i.i.d.

sequence of N(0, 1) r.v.’s, while {Xr
0}r≥1 consists of i.i.d. T2-valued uniform r.v.’s. We have

ER2
N =

1

N2

∑

k,k′∈ΛN

N
∑

r,s,r′,s′=1

Ck,lCk,mCk′,lCk′,mE(ξrξsξr′ξs′)

× E
[

(ekel)(X
r
0 )(ekem)(Xs

0)(ek′el)(X
r′
0 )(ek′em)(Xs′

0 )
]

and by the Isserlis–Wick theorem,

E(ξrξsξr′ξs′) = E(ξrξs)E(ξr′ξs′) + E(ξrξr′)E(ξsξs′) + E(ξrξs′)E(ξsξr′)

= δr,sδr′,s′ + δr,r′δs,s′ + δr,s′δs,r′ .

As a result, we can write
ER2

N = S1 + S2 + S3. (3.1)

3.1.1 The quantity S1

We have

S1 =
1

N2

∑

k,k′∈ΛN

N
∑

r,r′=1

Ck,lCk,mCk′,lCk′,mE
[

(e2kelem)(Xr
0 )(e

2
k′elem)(Xr′

0 )
]

.

Note that Xr
0 and Xr′

0 are independent if r 6= r′, hence

S1 =
1

N2

∑

k,k′∈ΛN

∑

1≤r 6=r′≤N

Ck,lCk,mCk′,lCk′,mE
[

(e2kelem)(Xr
0 )
]

E
[

(e2k′elem)(Xr′

0 )
]

+
1

N2

∑

k,k′∈ΛN

N
∑

r=1

Ck,lCk,mCk′,lCk′,mE
[

(e2ke
2
k′e

2
l e

2
m)(Xr

0 )
]

.

(3.2)

We denote the two terms by S1,1 and S1,2, respectively.
First, since Xr

0 (r ∈ N) is a uniformly distributed r.v. on the torus T2, we obtain

S1,1 =
1

N2

∑

k,k′∈ΛN

∑

1≤r 6=r′≤N

Ck,lCk,mCk′,lCk′,m

∫

e2kelem dx

∫

e2k′elem dx

=
N2 −N

N2

∑

k,k′∈ΛN

Ck,lCk,mCk′,lCk′,m

∫

e2kelem dx

∫

e2k′elem dx

=

(

1− 1

N

)(

∑

k∈ΛN

Ck,lCk,m

∫

e2kelem dx

)2

.
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Note that C−k,l = −Ck,l and e2k + e2−k ≡ 2 for any k ∈ Z
2
0, we have

∑

k∈ΛN

Ck,lCk,me2k =
∑

k∈ΛN∩Z2
+

(

Ck,lCk,me2k + C−k,lC−k,me
2
−k

)

= 2
∑

k∈ΛN∩Z2
+

Ck,lCk,m (3.3)

is a constant. This implies
S1,1 = 0 (3.4)

since
∫

elem dx = 0 for l 6= m.
Regarding the term S1,2, we have

S1,2 =
1

N2

∑

k,k′∈ΛN

N
∑

r=1

Ck,lCk,mCk′,lCk′,m

∫

e2ke
2
k′e

2
l e

2
m dx

=
1

N

∑

k,k′∈ΛN

Ck,lCk,mCk′,lCk′,m

∫

e2ke
2
k′e

2
l e

2
m dx.

As |ek(x)| ≤
√
2 for all x ∈ T

2 and k ∈ Z
2
0, we deduce that

|S1,2| ≤
16

N

∑

k,k′∈ΛN

|l|2|m|2
|k|2|k′|2 =

16

N
|l|2|m|2

(

∑

k∈ΛN

1

|k|2
)2

≤ C(l,m)
(logN)2

N
.

Combining the above estimate with (3.2) and (3.4), we arrive at

|S1| ≤ C1
(logN)2

N
for all N ≥ 2. (3.5)

3.1.2 The quantity S2

We have

S2 =
1

N2

∑

k,k′∈ΛN

N
∑

r,s=1

Ck,lCk,mCk′,lCk′,mE
[

(ekek′e
2
l )(X

r
0 )(ekek′e

2
m)(Xs

0)
]

.

Similar to (3.2), the above quantity can be decomposed as

S2 =
1

N2

∑

k,k′∈ΛN

∑

1≤r 6=s≤N

Ck,lCk,mCk′,lCk′,mE
[

(ekek′e
2
l )(X

r
0 )
]

E
[

(ekek′e
2
m)(Xs

0)
]

+
1

N2

∑

k,k′∈ΛN

N
∑

r=1

Ck,lCk,mCk′,lCk′,mE
[

(e2ke
2
k′e

2
l e

2
m)(Xr

0 )
]

,

which are denoted as S2,1 and S2,2. Note that

|S2,2| = |S1,2| ≤ C1
(logN)2

N
for all N ≥ 2.

Next, using the fact that Xr
0 is uniformly distributed on T

2 and the Cauchy inequality,

|S2,1| =
∣

∣

∣

∣

(

1− 1

N

)

∑

k,k′∈ΛN

Ck,lCk,mCk′,lCk′,m

∫

ekek′e
2
l dx

∫

ekek′e
2
m dx

∣

∣

∣

∣

≤
[

∑

k,k′∈ΛN

C2
k,lC

2
k′,l

(
∫

ekek′e
2
l dx

)2
]1/2[

∑

k,k′∈ΛN

C2
k,mC2

k′,m

(
∫

ekek′e
2
m dx

)2
]1/2

.
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It suffices to estimate one of the two terms. Intuitively, the quantity

IN :=
∑

k,k′∈ΛN

C2
k,lC

2
k′,l

(
∫

ekek′e
2
l dx

)2

(3.6)

is bounded as N → ∞ due to the fact that the integral
∫

ekek′e
2
l dx 6= 0 imposes a constraint

on k and k′, e.g. k = k′ or 2l = k+ k′. Such constraint reduces the degree of freedom of k and
k′, and implies

IN ≤ Cl

∑

k∈ΛN

1

|k|4 ≤ Cl

∑

k∈Z2
0

1

|k|4 for all N ≥ 1.

We refer the readers to [10, Section 6.1.2] for details.
To summarize, we obtain

|S2| ≤ C2

(

1 +
(logN)2

N

)

. (3.7)

3.1.3 The quantity S3

Similar computations as above lead to

S3 =
1

N2

∑

k,k′∈ΛN

N
∑

r,s=1

Ck,lCk,mCk′,lCk′,mE
[

(ekek′elem)(Xr
0 )(ekek′elem)(Xs

0)
]

=
1

N2

∑

k,k′∈ΛN

∑

1≤r 6=s≤N

Ck,lCk,mCk′,lCk′,mE
[

(ekek′elem)(Xr
0 )
]

E
[

(ekek′elem)(Xs
0)
]

+
1

N2

∑

k,k′∈ΛN

N
∑

r=1

Ck,lCk,mCk′,lCk′,mE
[

(e2ke
2
k′e

2
l e

2
m)(Xr

0 )
]

.

Again, the last quantity is dominated by a constant multiple of (logN)2/N . The first one on
the right hand side is equal to

(

1− 1

N

)

∑

k,k′∈ΛN

Ck,lCk,mCk′,lCk′,m

(
∫

ekek′elem dx

)2

,

which, due to the same reason as for the term (3.6), is bounded in N . Therefore, we still have

|S3| ≤ C3

(

1 +
(logN)2

N

)

.

Combining the above inequality with (3.1), (3.5) and (3.7), we conclude the assertion in
the first case l 6= m.

3.2 Case 2: l = m

In this case,

RN =
∑

k∈ΛN

C2
k,l

(

〈ωN
0 , ekel〉2 − 1

)

.

Consequently,

ER2
N =

∑

k,k′∈ΛN

C2
k,lC

2
k′,l E

(

〈ωN
0 , ekel〉2〈ωN

0 , ek′el〉2 − 〈ωN
0 , ekel〉2 − 〈ωN

0 , ek′el〉2 + 1
)

. (3.8)
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By the definition of ωN
0 ,

E
(

〈ωN
0 , ekel〉2

)

=
1

N

N
∑

r,s=1

E(ξrξs)E
[

(ekel)(X
r
0 )(ekel)(X

s
0)
]

=
1

N

N
∑

r=1

E
[

(e2ke
2
l )(X

r
0 )
]

=

∫

e2ke
2
l dx.

As a result,

∑

k,k′∈ΛN

C2
k,lC

2
k′,l E

(

〈ωN
0 , ekel〉2

)

=

(

∑

k′∈ΛN

C2
k′,l

)

∑

k∈ΛN

C2
k,l

∫

e2ke
2
l dx. (3.9)

Similar to (3.3),
∑

k∈ΛN

C2
k,le

2
k = 2

∑

k∈ΛN∩Z2
+

C2
k,l =

∑

k∈ΛN

C2
k,l =

1

2
ε−2
N |l|2, (3.10)

where the last step is due to (2.17). Substituting this result into (3.9) yields

∑

k,k′∈ΛN

C2
k,lC

2
k′,l E

(

〈ωN
0 , ekel〉2

)

=
1

4
ε−4
N |l|4.

Analogously,
∑

k,k′∈ΛN

C2
k,lC

2
k′,l E

(

〈ωN
0 , ek′el〉2

)

=
1

4
ε−4
N |l|4.

Combining these facts with (3.8), we obtain

ER2
N =

∑

k,k′∈ΛN

C2
k,lC

2
k′,l E

(

〈ωN
0 , ekel〉2〈ωN

0 , ek′el〉2
)

− 1

4
ε−4
N |l|4. (3.11)

Now we compute the expectation on the right hand side of (3.11). We have

〈ωN
0 , ekel〉2〈ωN

0 , ek′el〉2 =
1

N2

N
∑

r,s,r′,s′=1

ξrξsξr′ξs′(ekel)(X
r
0 )(ekel)(X

s
0)(ek′el)(X

r′
0 )(ek′el)(X

s′
0 ).

The Isserlis–Wick theorem implies

E
(

〈ωN
0 , ekel〉2〈ωN

0 , ek′el〉2
)

=
1

N2

N
∑

r,r′=1

E
[

(e2ke
2
l )(X

r
0 )(e

2
k′e

2
l )(X

r′
0 )

]

+
2

N2

N
∑

r,s=1

E
[

(ekek′e
2
l )(X

r
0 )(ekek′e

2
l )(X

s
0)
]

=:J1 + J2.

(3.12)

First,

J1 =
1

N2

∑

1≤r 6=r′≤N

E
[

(e2ke
2
l )(X

r
0 )
]

E
[

(e2k′e
2
l )(X

r′

0 )
]

+
1

N2

N
∑

r=1

E
[

(e2ke
2
k′e

4
l )(X

r
0 )
]

16



which are denoted by J1,1 and J1,2, respectively. Note that

J1,1 =

(

1− 1

N

)
∫

e2ke
2
l dx

∫

e2k′e
2
l dx

and

J1,2 =
1

N

∫

e2ke
2
k′e

4
l dx ≤ 16

N
.

Moreover,

∑

k,k′∈ΛN

C2
k,lC

2
k′,l · J1,1 =

(

1− 1

N

)(

∑

k∈ΛN

C2
k,l

∫

e2ke
2
l dx

)2

=
1

4

(

1− 1

N

)

ε−4
N |l|4,

where the last step is due to (3.10). Therefore,

∑

k,k′∈ΛN

C2
k,lC

2
k′,l · J1 =

1

4
ε−4
N |l|4 +O

(

(logN)2

N

)

. (3.13)

It remains to estimate J2 in (3.12). Similarly,

J2 =
2

N2

∑

1≤r 6=s≤N

E
[

(ekek′e
2
l )(X

r
0 )
]

E
[

(ekek′e
2
l )(X

s
0)
]

+
2

N2

N
∑

r=1

E
[

(e2ke
2
k′e

4
l )(X

r
0 )
]

.

We write J2,1 and J2,2 for the two terms. We still have

J2,2 =
2

N

∫

e2ke
2
k′e

4
l dx ≤ 32

N
.

Next,

J2,1 = 2

(

1− 1

N

)(
∫

ekek′e
2
l dx

)2

.

As a result,

∑

k,k′∈ΛN

C2
k,lC

2
k′,l · J2 = 2

(

1− 1

N

)

∑

k,k′∈ΛN

C2
k,lC

2
k′,l

(
∫

ekek′e
2
l dx

)2

+O

(

(logN)2

N

)

.

Note that the sum in the first quantity is equal to IN defined in (3.6). Therefore,
∣

∣

∣

∣

∑

k,k′∈ΛN

C2
k,lC

2
k′,l · J2

∣

∣

∣

∣

≤ C4 +O

(

(logN)2

N

)

.

Combining this estimate with (3.11)–(3.13), we finally get

ER2
N ≤ C4 +O

(

(logN)2

N

)

.

The proof is complete.
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