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We consider the vorticity form of the 2D Euler equations which is per-
turbed by a suitable transport type noise and has white noise initial condition.
It is shown that stationary solutions of this equation converge to the unique
stationary solution of the 2D Navier–Stokes equation driven by the space-
time white noise.

1. Introduction. Navier–Stokes equations in dimension 2 with periodic boundary con-
ditions and additive space-time white noise

(1.1)
du + (u · ∇u + ∇p)dt = ν�udt + α dW,

divu = 0

have been the object of several investigations, [4, 5, 9, 11, 21, 24, 25] among others and,
with its first-stage renormalization, even contributed to the development of some of the ideas
around regularity structures. One of the main features is the Gaussian invariant measure for-
mally given by

(1.2) μ(dω) = Z−1 exp
(−β‖ω‖2

L2

)
dω

(β > 0 related to the constants of equations (1.1) and the domain) where we have denoted
by ω the vorticity associated to the velocity field u and where ‖ω‖2

L2 denotes the enstrophy
(hence μ is often called enstrophy measure). This equation is well posed in suitable function
spaces, even in the strong probabilistic sense. For the purpose of the next description, it is
convenient to reformulate the equation in vorticity form

(1.3) dω + u · ∇ω dt = ν�ω dt + α∇⊥ · dW,

where, as said above, ω = ∇⊥ · u and, for a vector field v, ∇⊥ · v denotes ∂2v1 − ∂1v2. Here,
W is a solenoidal vector valued cylindrical Brownian motion.

A related model is 2D Euler equations, that in vorticity form is

∂tω + u · ∇ω = 0

with ω = ∇⊥ · u, divu = 0. In the sense described in [2, 13], the enstrophy measure μ is
invariant also for this equation (for every β > 0, in this case). The same fact holds for a
stochastic version of 2D Euler equations, but with transport type noise, as described in [14,
15]:

dω + u · ∇ω dt = ∑
k

σk · ∇ω ◦ dWk,
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where σk(x) are divergence-free vector fields and Wk independent Brownian motions. We
focus our discussion on the 2D torus T2 = R

2/Z2 and choose, to fix notation,

σk(x) = 1√
2

k⊥

|k|γ ek(x), k ∈ Z
2
0,

where Z
2
0 = Z

2 \ {0}, k⊥ = (k2,−k1) and ek(x) is the orthonormal basis of sine and cosine
functions; see (2.1) below. In [14, 15], the problem has been studied for γ > 2.

The purpose of this paper is to present a rather unexpected link between stationary so-
lutions of these two models. Based on [14, 15], it is interesting to ask what happens when
γ = 2, the limiting case where certain terms diverge. For instance, the Itô–Stratonovich cor-
rection of the multiplicative noise above diverges proportionally to

∑
|k|≤N

1
|k|2 as N → ∞.

We therefore investigate whether this divergence may be compensated by an infinitesimal
coefficient in front of the noise:

(1.4) dω + u · ∇ω dt = 2
√

νεN

∑
|k|≤N

k⊥

|k|2 ek · ∇ω ◦ dWk,

where εN = (
∑

|k|≤N
1

|k|2 )−1/2 ∼ 1√
logN

. Our main result can be stated as follows (see the
next section for relevant notation and Theorem 2.13 for a more precise statement).

THEOREM 1.1. The stationary solutions of the model (1.4) with marginal (1.2) converge
to the unique stationary solution of (1.3) with α = √

2ν.

Notice that the system (1.4) is hyperbolic in nature, while (1.3) is of parabolic type. Let
us explain a vague physical intuition about this result, which however is not sufficient to
state a firm conjecture, without a due detailed investigation. Transport multiplicative noise∑

k σk · ∇ω ◦ dWk provokes a random Lagrangian displacement of “fluid particles.” Assume
that the space-covariance of the Gaussian field

∑
k σk(x)Wk

t is concentrated around zero, as it
is in the scaling limit investigated in this work. Look at fluid particles as an interacting system
of particles; the effect of the Gaussian field on different particles is almost independent, when
the distance between particles is not too small (see [8], Introduction, for related discussions).
Thus, approximatively, it is like driving each particle with an independent noise, and we
know from mean field theories that independent Brownian perturbation of particles reflects
into a Laplacian in the limit PDE. This intuitively explains the presence of the Laplacian in
the limit equation, but the presence of a white noise is less clear. The latter fact seems to be
related to the white noise structure of the stationary solutions considered here. It would be
interesting to investigate similar questions for other stationary solutions of SPDEs like [17,
18]. It seems that for other SPDE models different results are possible; see [16]. Another
interesting example of special limit with diffusion and noise can be found in [7, 12].

Let us also emphasize another nontrivial aspect that could be misunderstood. Technically
speaking, a Laplacian (or a more complicated second- order differential operator) arises when
rewriting a Stratonovich multiplicative transport noise in Itô’s form (see Section 2 below).
This does not mean that the original equation, with transport noise, is parabolic. The original
equation is hyperbolic, and the solution (when smooth enough) is the stochastic Lagrangian
transport of the initial condition. Thus it is a nontrivial fact that a truly parabolic equation is
obtained in the scaling limit investigated in the present work.

This paper is organized as follows. In Section 2, we prove the main result (Theorem 2.13)
which states that the white noise solutions of a sequence of stochastic Euler equations con-
verge weakly to the stationary solution of the Navier–Stokes equation driven by space-time
white noise. We solve in Section 3 the corresponding Kolmogorov equation by using the
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Galerkin approximation. Finally, in the first part of the Appendix we recall a decomposi-
tion formula which plays an important role in the proof, and in Section A.2 we prove the
coincidence of two different definitions of the nonlinear part in the Euler equation.

2. Convergence of the equations (1.4). First, we introduce some notation. We denote by
T

2 = R
2/Z2 the two-dimensional torus, which will be understood as [−1/2,1/2]2 endowed

with periodic boundary condition. Set

(2.1) ek(x) = √
2

{
cos(2πk · x), k ∈ Z

2+,

sin(2πk · x), k ∈ Z
2−,

x ∈ T
2,

where Z
2+ = {k ∈ Z

2
0 : (k1 > 0) or (k1 = 0, k2 > 0)} and Z

2− = −Z
2+. Then {ek : k ∈ Z

2
0} con-

stitute a CONS of L2
0(T

2), the space of square integrable functions with zero mean. Define

(2.2) σk(x) = 1√
2

k⊥

|k|2 ek(x), k ∈ Z
2
0,

with k⊥ = (k2,−k1). Let ν > 0 be fixed and, for N ≥ 1, define �N = {k ∈ Z
2
0 : |k| ≤ N}. We

rewrite the equation (1.4) as

(2.3) dωN
t + uN

t · ∇ωN
t = 2

√
2νεN

∑
k∈�N

σk · ∇ωN
t ◦ dWk

t .

Here, ωN
t = ∇⊥ · uN

t and conversely, uN
t is represented by ωN

t via the Biot–Savart law:

uN
t (x) = (

ωN
t ∗ K

)
(x) = 〈

ωN
t ,K(x − ·)〉,

with K being the Biot–Savart kernel on T
2:

K(x) = 2π i
∑
k∈Z2

0

k⊥

|k|2 e2π ik·x = −2π
∑
k∈Z2

0

k⊥

|k|2 sin(2πk · x).

We assume that the initial data ωN
0 of (2.3) is a white noise on T

2; namely, ωN
0 is a random

variable defined on some probability space (,F,P), taking values in the space of distribu-
tions C∞(T2)′ on T

2, such that, for any φ ∈ C∞(T2), 〈ωN
0 , φ〉 is a centered Gaussian random

variable with variance ‖φ‖2
L2(T2)

. From the definition, we easily deduce that

E
〈
ωN

0 , φ
〉〈
ωN

0 ,ψ
〉 = 〈φ,ψ〉L2(T2) for any φ,ψ ∈ C∞(

T
2)

.

We denote the law of ωN
0 by μ, which is also called the enstrophy measure with the

heuristic expression (1.2). It is not difficult to show that μ is supported by H−1−(T2) =⋂
s>0 H−1−s(T2), where, for any r ∈ R, Hr(T2) is the usual Sobolev space on T

2.
For any fixed N ≥ 1, following the proof of [14], Theorem 1.3, we can show that the

equation (2.3) has a white noise solution ωN ∈ C([0, T ],H−1−(T2)) (possibly defined on
a new probability space with new Brownian motions); namely, for any t ∈ [0, T ], ωN

t is
distributed as the white noise measure μ, and for any φ ∈ C∞(T2),

(2.4)

〈
ωN

t ,φ
〉 = 〈

ωN
0 , φ

〉 + ∫ t

0

〈
ωN

r ⊗ ωN
r ,Hφ

〉
dr

− 2
√

2νεN

∑
k∈�N

∫ t

0

〈
ωN

r , σk · ∇φ
〉
dWk

r

+ 4νε2
N

∑
k∈�N

∫ t

0

〈
ωN

r , σk · ∇(σk · ∇φ)
〉
dr.
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Moreover, it is easy to show that ωN is a stationary process, which is a consequence of the
same result for the stochastic point vortex dynamics proved in [14], Proposition 2.3. Our
purpose is to show that the equations (2.3) converge in some sense to

(2.5) dωt + ut · ∇ωt dt = ν�ωt dt + √
2ν∇⊥ · dWt, ω0

d∼ μ.

REMARK 2.1. Some explanations for the nonlinear term in (2.4) are necessary. For φ ∈
C∞(T2),

Hφ(x, y) := 1

2
K(x − y) · (∇φ(x) − ∇φ(y)

)
, x, y ∈ T

2,

with K being the Biot–Savart kernel and the convention that Hφ(x, x) = 0. It is well known
that, for all x ∈ T

2 \ {0}, K(−x) = −K(x) and |K(x)| ≤ C/|x| for some constant C > 0;
thus Hφ is symmetric and

(2.6) ‖Hφ‖∞ ≤ C
∥∥∇2φ

∥∥∞.

Since ωN
r is a white noise on T

2 for any r ∈ [0, T ], the quantity 〈ωN
r ⊗ ωN

r ,Hφ〉 is well
defined as a limit in L2(,P) of an approximating sequence; see [13], Theorem 8, for details.
According to the arguments in Section A.2, this definition is consistent with that defined by
the Galerkin approximation; the latter will be used in Section 3.

First, we follow the arguments in [14], Section 3, to show that the family of distributions
{QN }N≥1 of ωN on X := C([0, T ],H−1−(T2)) is tight. To this end, we need to apply the
compactness criterion proved in [22], page 90, Corollary 9. We state it here in our context.

Take δ ∈ (0,1) and κ > 5 (this choice is due to estimates below) and consider the spaces

X = H−1−δ/2(
T

2)
, B = H−1−δ(

T
2)

, Y = H−κ(
T

2)
.

Then X ⊂ B ⊂ Y with compact embeddings and we also have, for a suitable constant C > 0
and for

(2.7) θ = δ/2

κ − 1 − δ/2
,

the interpolation inequality

‖ω‖B ≤ C‖ω‖1−θ
X ‖ω‖θ

Y , ω ∈ X.

These are the preliminary assumptions of [22], page 90, Corollary 9. We consider here a
particular case:

S = Lp0(0, T ;X) ∩ W 1/3,4(0, T ;Y),

where for 0 < α < 1 and p ≥ 1,

Wα,p(0, T ;Y) =
{
f : f ∈ Lp(0, T ;Y) &

∫ T

0

∫ T

0

‖f (t) − f (s)‖p
Y

|t − s|αp+1 dt ds < ∞
}
.

The next result is taken from [14], Lemma 3.1.

LEMMA 2.2. Let δ ∈ (0,1) and κ > 5 be given. If

p0 >
12(κ − 1 − 3δ/2)

δ
,

then S is compactly embedded into C([0, T ],H−1−δ(T2)).
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PROOF. Recall that θ is defined in (2.7). In our case, we have s0 = 0, r0 = p0 and s1 =
1/3, r1 = 4. Hence sθ = (1 − θ)s0 + θs1 = θ/3 and

1

rθ
= 1 − θ

r0
+ θ

r1
= 1 − θ

p0
+ θ

4
.

It is clear that for p0 given above, it holds sθ > 1/rθ , thus the desired result follows from the
second assertion of [22], Corollary 9. �

Next, since H−1−(T2) is endowed with the Fréchet topology, one can prove the following.

LEMMA 2.3. The family {QN }N≥1 is tight in X if and only if it is tight in C([0, T ],
H−1−δ(T2)) for any δ > 0.

The proof is similar to Step 1 of the proof of [14], Proposition 2.2, and we omit it here. In
view of the above two lemmas, it is sufficient to prove that {QN }N≥1 is bounded in probability
in W 1/3,4(0, T ;H−κ(T2)) and in each Lp(0, T ;H−1−δ(T2)) for any p > 0 and δ > 0.

Before moving further, we recall some properties of the white noise which will be fre-
quently used below.

LEMMA 2.4. Let ξ : (,F,P) → C∞(T2)′ be a white noise on T
2. Then for any p > 1

and δ > 0, there exist Cp > 0, Cp,δ > 0 such that:

(1) E(|〈ξ,φ〉|p) ≤ Cp‖φ‖p∞ for all φ ∈ C∞(T2);
(2) E(‖ξ‖p

H−1−δ ) ≤ Cp,δ ;
(3) E(|〈ξ ⊗ ξ,Hφ〉|p) ≤ Cp‖∇2φ‖p∞ for all φ ∈ C∞(T2).

PROOF. The first assertion follows from the fact that 〈ξ,φ〉 is a centered Gaussian ran-
dom variable with variance ‖φ‖2

L2(T2)
. Applying this result to φ = ek , we can deduce the

second estimate from the definition of the Sobolev norm ‖ · ‖H−1−δ .
We turn to prove the last one. Let Hn

φ ,n ≥ 1 be the smooth approximations of Hφ con-
structed in [13], Remark 9, satisfying∥∥Hn

φ

∥∥∞ ≤ ‖Hφ‖∞ ≤ C
∥∥∇2φ

∥∥∞,

where the last inequality is due to (2.6). By [13], Corollary 6(i), we have

E
(∣∣〈ξ ⊗ ξ,Hn

φ

〉∣∣p) ≤ Cp

∥∥Hn
φ

∥∥p
∞ ≤ C′

p

∥∥∇2φ
∥∥p
∞.

This implies the family {〈ξ ⊗ ξ,Hn
φ 〉}n≥1 is bounded in any Lp(,P),p > 1, which, com-

bined with the fact that 〈ξ ⊗ ξ,Hn
φ 〉 converges to 〈ξ ⊗ ξ,Hφ〉 in L2(,P) (see [13], Theo-

rem 8), yields the desired result. �

We first note that, for any p > 1 and δ > 0, by (2) of Lemma 2.4,

(2.8) E

[∫ T

0

∥∥ωN
t

∥∥p

H−1−δ dt

]
=

∫ T

0
E

[∥∥ωN
t

∥∥p

H−1−δ

]
dt ≤ Cp,δT , for all N ≥ 1.

Next, similar to [14], Lemma 3.3, we can prove the following.

LEMMA 2.5. There exists C > 0 such that for any φ ∈ C∞(T2), we have

E
[〈
ωN

t − ωN
s ,φ

〉4] ≤ C(t − s)2(‖∇φ‖4∞ + ∥∥∇2φ
∥∥4
∞

)
.
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PROOF. The proof is similar to that of [14], Lemma 3.3. By (2.4), we have

(2.9)

〈
ωN

t − ωN
s ,φ

〉 = ∫ t

s

〈
ωN

r ⊗ ωN
r ,Hφ

〉
dr

− 2
√

2νεN

∑
k∈�N

∫ t

s

〈
ωN

r , σk · ∇φ
〉
dWk

r

+ 4νε2
N

∑
k∈�N

∫ t

s

〈
ωN

r , σk · ∇(σk · ∇φ)
〉
dr.

First, Hölder’s inequality leads to

(2.10)

E

[(∫ t

s

〈
ωN

r ⊗ ωN
r ,Hφ

〉
dr

)4]

≤ (t − s)3
E

[∫ t

s

〈
ωN

r ⊗ ωN
r ,Hφ

〉4 dr

]

≤ (t − s)3
∫ t

s
C

∥∥∇2φ
∥∥4
∞ dr = C(t − s)4∥∥∇2φ

∥∥4
∞,

where in the second step we used the fact that ωN
r is a white noise and Lemma 2.4(3).

Next, by Burkholder’s inequality,

E

[(
εN

∑
k∈�N

∫ t

s

〈
ωN

r , σk · ∇φ
〉
dWk

r

)4]

≤ Cε4
NE

[(∫ t

s

∑
k∈�N

〈
ωN

r , σk · ∇φ
〉2 dr

)2]

≤ Cε4
N(t − s)

∫ t

s
E

[( ∑
k∈�N

〈
ωN

r , σk · ∇φ
〉2)2]

dr.

We have by Cauchy’s inequality and Lemma 2.4(1) that

E

[( ∑
k∈�N

〈
ωN

r , σk · ∇φ
〉2)2]

= ∑
k,l∈�N

E
[〈
ωN

r , σk · ∇φ
〉2〈

ωN
r , σl · ∇φ

〉2]

≤ ∑
k,l∈�N

[
E

〈
ωN

r , σk · ∇φ
〉4]1/2[

E
〈
ωN

r , σl · ∇φ
〉4]1/2

≤ C

( ∑
k∈�N

‖σk · ∇φ‖2∞
)2

≤ C̃‖∇φ‖4∞
( ∑

k∈�N

‖σk‖2∞
)2

.

Note that, by (2.2),

∑
k∈�N

‖σk‖2∞ = ∑
k∈�N

1

|k|2 = ε−2
N ,
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hence,

E

[( ∑
k∈�N

〈
ωN

r , σk · ∇φ
〉2)2]

≤ C‖∇φ‖4∞ε−4
N .

This implies

(2.11) E

[(
εN

∑
k∈�N

∫ t

s

〈
ωN

r , σk · ∇φ
〉
dWk

r

)4]
≤ C(t − s)2‖∇φ‖4∞.

Finally, by Hölder’s inequality,

E

[(
ε2
N

∑
k∈�N

∫ t

s

〈
ωN

r , σk · ∇(σk · ∇φ)
〉
dr

)4]

≤ ε8
N(t − s)3

∫ t

s
E

[( ∑
k∈�N

〈
ωN

r , σk · ∇(σk · ∇φ)
〉)4]

dr.

Since σk · ∇σk ≡ 0, we have σk · ∇(σk · ∇φ) = Tr[(σk ⊗ σk)∇2φ]. Therefore, by Lemma 2.6
below,

∑
k∈�N

σk · ∇(σk · ∇φ) = 1

4
ε−2
N �φ.

As a result,

E

[(
ε2
N

∑
k∈�N

∫ t

s

〈
ωN

r , σk · ∇(σk · ∇φ)
〉
dr

)4]

≤ C(t − s)3
∫ t

s
E

[〈
ωN

r ,�φ
〉4]

dr ≤ C(t − s)4‖�φ‖4∞.

Combining this estimate together with (2.9)–(2.11), we obtain the desired estimate. �

LEMMA 2.6. It holds that ∑
k∈�N

σk ⊗ σk = 1

4
ε−2
N I2,

where I2 is the two-dimensional identity matrix.

PROOF. We have

QN(x) := ∑
k∈�N

σk(x) ⊗ σk(x)

= ∑
k∈�N∩Z2+

k⊥ ⊗ k⊥

|k|4
[
cos2(2πk · x) + sin2(2πk · x)

]

= ∑
k∈�N∩Z2+

1

|k|4
(

k2
2 −k1k2

−k1k2 k2
1

)

= 1

2

∑
k∈�N

1

|k|4
(

k2
2 −k1k2

−k1k2 k2
1

)
.
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So QN is independent on x. First, we have

Q
1,2
N = −1

2

∑
k∈�N

k1k2

|k|4 = 0

since we can sum the four terms involving (k1, k2), (−k1, k2), (k1,−k2) and (−k1,−k2) at
one time. Next,

Q
1,1
N = 1

2

∑
k∈�N

k2
2

|k|4 = 1

2

∑
k∈�N

k2
1

|k|4 = Q
2,2
N

since the points (k1, k2) and (k2, k1) appear in pair. Therefore,

Q
1,1
N = Q

2,2
N = 1

4

∑
k∈�N

k2
1 + k2

2

|k|4 = 1

4

∑
k∈�N

1

|k|2 = 1

4
ε−2
N .

The proof is complete. �

Applying Lemma 2.5 with φ(x) = ek(x) leads to

E
[∣∣〈ωN

t − ωN
s , ek

〉∣∣4] ≤ C(t − s)2|k|8, k ∈ Z
2
0.

As a result, by Cauchy’s inequality,

E
(∥∥ωN

t − ωN
s

∥∥4
H−κ

)
= E

[(∑
k

(
1 + |k|2)−κ ∣∣〈ωN

t − ωN
s , ek

〉∣∣2)2]

≤
(∑

k

(
1 + |k|2)−κ

)∑
k

(
1 + |k|2)−κ

E
[∣∣〈ωN

t − ωN
s , ek

〉∣∣4]

≤ C̃(t − s)2
∑
k

(
1 + |k|2)−κ |k|8 ≤ Ĉ(t − s)2,

since 2κ − 8 > 2 due to the choice of κ . Consequently,

E

[∫ T

0

∫ T

0

‖ωN
t − ωN

s ‖4
H−κ

|t − s|7/3 dt ds

]
≤ Ĉ

∫ T

0

∫ T

0

|t − s|2
|t − s|7/3 dt ds < ∞.

This implies the family {QN }N≥1 of probability measures is bounded in probability in
W 1/3,4(0, T ;H−κ(T2)).

Combining this result with (2.8) and the discussions below Lemma 2.3, we conclude that
{QN }N≥1 is tight in X = C([0, T ],H−1−(T2)).

Since we are dealing with the SDEs (2.3), we need to consider QN together with the
distribution of Brownian motions. Although we use only finitely many Brownian motions in
(2.3), here we consider for simplicity the whole family {(Wk

t )0≤t≤T : k ∈ Z
2
0}. To this end,

we assume R
Z

2
0 is endowed with the metric

d
Z

2
0
(a, b) = ∑

k∈Z2
0

|ak − bk| ∧ 1

2|k| , a, b ∈R
Z

2
0 .

Then (RZ
2
0, d

Z
2
0
) is separable and complete (see [6], page 9, Example 1.2). The distance in

Y := C([0, T ],RZ
2
0) is given by

dY(w, ŵ) = sup
t∈[0,T ]

d
Z

2
0

(
w(t), ŵ(t)

)
, w, ŵ ∈ Y,
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which makes Y a Polish space. Denote by W the law on Y of the sequence of independent
Brownian motions {(Wk

t )0≤t≤T : k ∈ Z
2
0}.

To simplify the notation, we write W· = (Wt)0≤t≤T for the whole sequence of processes
{(Wk

t )0≤t≤T : k ∈ Z
2
0} in Y . Denote by P N the joint law of (ωN· ,W·) on X ×Y,N ≥ 1. Since

the marginal laws {QN }N∈N and {W} are respectively tight on X and Y , we conclude that
{P N }N∈N is tight on X × Y . The Prohorov theorem (see [6], page 59, Theorem 5.1) im-
plies that there exists a subsequence {Ni}i∈N of integers, such that P Ni converge weakly to
some probability measure on X × Y . By Skorohod’s representation theorem ([6], page 70,
Theorem 6.7), there exist a probability space (̃, F̃, P̃) and stochastic processes (ω̃

Ni· , W̃
Ni· )

on this space with the corresponding laws P Ni , and converging P̃-a.s. in X × Y to a limit
(ω̃·, W̃·). We are going to prove that ω̃· solves equation (2.5) with a suitable cylindrical Brow-
nian motion.

First, we have the following simple result.

LEMMA 2.7. The process ω̃· is stationary with paths in X , and for every t ∈ [0, T ], the
law μt of ω̃t on H−1−(T2) is the white noise measure μ.

PROOF. Recall that, for every i ≥ 1, ω̃
Ni· has the same law as the stationary process ω

Ni·
which solves (2.3) with N = Ni , and has white noise measure μ as their marginal distribu-
tions. For every m ≥ 1 and F ∈ Cb((H

−1−(T2))m), 0 ≤ t1 < · · · < tm ≤ T and h > 0 such
that tm + h ≤ T , since ω̃

Ni· converges to ω̃· a.s. in C([0, T ],H−1−(T2)), one has

Ẽ
[
F(ω̃t1, . . . , ω̃tm)

] = lim
i→∞ Ẽ

[
F

(
ω̃

Ni
t1

, . . . , ω̃
Ni
tm

)]
= lim

i→∞ Ẽ
[
F

(
ω̃

Ni

t1+h, . . . , ω̃
Ni

tm+h

)]
= Ẽ

[
F(ω̃t1+h, . . . , ω̃tm+h)

]
,

where Ẽ is the expectation on (̃, F̃, P̃). Hence ω̃· is stationary. Similarly, for any F ∈
Cb(H

−1−(T2)),

∫
F(ω)dμt(ω) = Ẽ

[
F(ω̃t )

] = lim
i→∞ Ẽ

[
F

(
ω̃

Ni
t

)] =
∫

F(ω)dμ(ω). �

Next, we show that (ω̃
Ni· , W̃

Ni· ) satisfies an equation similar to that for (ω
Ni· ,W·). By (2.4)

and Lemma 2.6,

(2.12)

〈
ω

Ni
t , φ

〉 = 〈
ω

Ni

0 , φ
〉 + ∫ t

0

〈
ωNi

r ⊗ ωNi
r ,Hφ

〉
dr + ν

∫ t

0

〈
ωNi

r ,�φ
〉
dr

− 2
√

2νεNi

∑
k∈�Ni

∫ t

0

〈
ωNi

r , σk · ∇φ
〉
dWk

r .

For any φ ∈ C∞(T2), let {Hn
φ }n≥1 ⊂ H 2+(T2 × T

2) be an approximation of Hφ satisfying
(cf. [13], Remark 9)

lim
n→∞

∫
T2

∫
T2

(
Hn

φ − Hφ

)2
(x, y)dx dy = 0,

∫
T2

Hn
φ (x, x)dx = 0, n ≥ 1.
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Note that (ω̃
Ni· , W̃

Ni· ) has the same law as (ω
Ni· ,W·), and the latter satisfies the equation

(2.12), therefore, it is easy to show that

Ẽ

{
sup

t∈[0,T ]

∣∣∣∣〈ω̃Ni
t , φ

〉 − 〈
ω̃

Ni

0 , φ
〉 − ∫ t

0

〈
ω̃Ni

r ⊗ ω̃Ni
r ,Hφ

〉
dr

− ν

∫ t

0

〈
ω̃Ni

r ,�φ
〉
dr + 2

√
2νεNi

∑
k∈�Ni

∫ t

0

〈
ω̃Ni

r , σk · ∇φ
〉
dW̃Ni,k

r

∣∣∣∣
}

≤ Ẽ

{
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
ω̃Ni

r ⊗ ω̃Ni
r ,Hφ − Hn

φ

〉
dr

∣∣∣∣
}

+E

{
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
ωNi

r ⊗ ωNi
r ,Hφ − Hn

φ

〉
dr

∣∣∣∣
}
,

which, since both ω̃
Ni
r and ω

Ni
r are distributed as the white noise measure μ, is dominated by

2TEμ

∣∣〈ω ⊗ ω,Hφ − Hn
φ

〉∣∣ ≤ 2
√

2T

(∫
T2

∫
T2

(
Hn

φ − Hφ

)2
(x, y)dx dy

)1/2
,

where the inequality can be found in the proof of [13], Theorem 8. Letting n → ∞ yields,
P̃-a.s., for all t ∈ [0, T ],

(2.13)

〈
ω̃

Ni
t , φ

〉 = 〈
ω̃

Ni

0 , φ
〉 + ∫ t

0

〈
ω̃Ni

r ⊗ ω̃Ni
r ,Hφ

〉
dr + ν

∫ t

0

〈
ω̃Ni

r ,�φ
〉
dr

− 2
√

2νεNi

∑
k∈�Ni

∫ t

0

〈
ω̃Ni

r , σk · ∇φ
〉
dW̃Ni,k

r .

REMARK 2.8. Using the almost sure convergence of ω̃Ni to ω̃ in C([0, T ],
H−1−(T2)), we can show that the quantities in the first line of (2.13) converge respectively
in L2(̃, P̃) to

〈ω̃t , φ〉, 〈ω̃0, φ〉,
∫ t

0
〈ω̃r ⊗ ω̃r ,Hφ〉dr,

∫ t

0
〈ω̃r ,�φ〉dr;

see [14], Proposition 3.6, for details. However, the term involving stochastic integrals does
not converge strongly to the last term of (2.5). Therefore, we can only seek for a weaker form
of convergence.

Before proceeding further, we introduce some notation. By � � Z
2
0, we mean that � is

a finite subset. Let �� : H−1−(T2) → span{ek : k ∈ �} be the projection operator: ��ω =∑
l∈�〈ω,el〉el . We shall use the family of cylindrical functions below:

FC2
b = {

F(ω) = f
(〈ω,el〉; l ∈ �

)
for some �� Z

2
0 and f ∈ C2

b

(
R

�)}
,

where R
� is the (#�)-dimensional Euclidean space. To simplify the notation, sometimes

we write the cylindrical functions as F = f ◦ ��, and for l,m ∈ �, fl(ω) = (∂lf )(��ω)

and fl,m(ω) = (∂l∂mf )(��ω). Denote by L∞ the generator of the equation (2.5): for any
cylindrical function F = f ◦ �� with �� Z

2
0,

(2.14) L∞F = 4νπ2
∑
l∈�

|l|2[
fl,l(ω) − fl(ω)〈ω,el〉] − 〈

u(ω) · ∇ω,DF
〉
,

where the drift part 〈
u(ω) · ∇ω,DF

〉 = − ∑
l∈�

fl(ω)〈ω ⊗ ω,Hel
〉.



274 F. FLANDOLI AND D. LUO

Finally, we introduce the notation

(2.15) Ck,l = k⊥ · l
|k|2 , k, l ∈ Z

2
0.

Now we prove that the limit process ω̃ is a martingale solution of the operator L∞.

PROPOSITION 2.9. For any F ∈ FC2
b,

(2.16) M̃F
t := F(ω̃t ) − F(ω̃0) −

∫ t

0
L∞F(ω̃s)ds

is an F̃t = σ(ω̃s : s ≤ t)-martingale.

PROOF. Recall the CONS defined in (2.1). Taking φ = el in (2.13) for some l ∈ Z
2
0, we

have

(2.17)

d
〈
ω̃

Ni
t , el

〉 = 〈
ω̃

Ni
t ⊗ ω̃

Ni
t ,Hel

〉
dt − 4νπ2|l|2〈

ω̃
Ni
t , el

〉
dt

− 2
√

2νεNi

∑
k∈�Ni

〈
ω̃

Ni
t , σk · ∇el

〉
dW̃

Ni,k
t .

For l,m ∈ Z
2
0, we write d〈ω̃Ni

t , el〉 · d〈ω̃Ni
t , em〉 for the differential of the cross-variation of

the two processes 〈ω̃Ni
t , el〉 and 〈ω̃Ni

t , em〉. Then

d
〈
ω̃

Ni
t , el

〉 · d
〈
ω̃

Ni
t , em

〉 = 8νε2
Ni

∑
k∈�Ni

〈
ω̃

Ni
t , σk · ∇el

〉〈
ω̃

Ni
t , σk · ∇em

〉
dt.

Direct computation leads to σk · ∇el = √
2πCk,leke−l ; hence

〈
ω̃

Ni
t , σk · ∇el

〉〈
ω̃

Ni
t , σk · ∇em

〉
= 2π2Ck,lCk,m

〈
ω̃

Ni
t , eke−l

〉〈
ω̃

Ni
t , eke−m

〉
= 2π2Ck,lCk,m

[〈
ω̃

Ni
t , eke−l

〉〈
ω̃

Ni
t , eke−m

〉 − δl,m

] + 2π2δl,mC2
k,l .

As a result,

d
〈
ω̃

Ni
t , el

〉 · d
〈
ω̃

Ni
t , em

〉
= 16νπ2ε2

Ni

∑
k∈�Ni

Ck,lCk,m

[〈
ω̃

Ni
t , eke−l

〉〈
ω̃

Ni
t , eke−m

〉 − δl,m

]
dt

+ 8νπ2δl,m|l|2 dt,

where in the last step we have used Lemma A.1. To simplify the notation, we denote by

Rl,m

(
ω̃

Ni
t

) = 8νπ2
∑

k∈�Ni

Ck,lCk,m

[〈
ω̃

Ni
t , eke−l

〉〈
ω̃

Ni
t , eke−m

〉 − δl,m

]
.

Recall that ω̃
Ni
t is a white noise for any t ∈ [0, T ], thus by the second assertion of Proposi-

tion A.3, Rl,m(ω̃
Ni
t ) is bounded in any Lp([0, T ] × ̃),p > 1. Finally, we get

(2.18) d
〈
ω̃

Ni
t , el

〉 · d
〈
ω̃

Ni
t , em

〉 = 2ε2
Ni

Rl,m

(
ω̃

Ni
t

)
dt + 8νπ2δl,m|l|2 dt.
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By the Itô formula and (2.17), (2.18),

dF
(
ω̃

Ni
t

) = df
(〈
ω̃

Ni
t , el

〉; l ∈ �
)

= ∑
l∈�

fl

(
ω̃

Ni
t

)[〈
ω̃

Ni
t ⊗ ω̃

Ni
t ,Hel

〉 − 4νπ2|l|2〈
ω̃

Ni
t , el

〉]
dt

− 2
√

2νεNi

∑
l∈�

fl

(
ω̃

Ni
t

) ∑
k∈�Ni

〈
ω̃

Ni
t , σk · ∇el

〉
dW̃

Ni,k
t

+ ∑
l,m∈�

fl,m

(
ω̃

Ni
t

)[
ε2
Ni

Rl,m

(
ω̃

Ni
t

) + 4νπ2δl,m|l|2]
dt.

Recalling the operator L∞ defined in (2.14), the above formula can be rewritten as

(2.19) dF
(
ω̃

Ni
t

) = L∞F
(
ω̃

Ni
t

)
dt + ε2

Ni
ζ̃

Ni
t dt + dM̃

Ni
t ,

where

ζ̃
Ni
t = ∑

l,m∈�

fl,m

(
ω̃

Ni
t

)
Rl,m

(
ω̃

Ni
t

)

is bounded in Lp([0, T ] × ̃) for any p > 1, and the martingale part

dM̃
Ni
t = −2

√
2νεNi

∑
l∈�

fl

(
ω̃

Ni
t

) ∑
k∈�Ni

〈
ω̃

Ni
t , σk · ∇el

〉
dW̃

Ni,k
t .

Note that M̃
Ni
t is a martingale w.r.t. the filtration

F̃Ni
t = σ

(
ω̃Ni

s , W̃Ni
s : s ≤ t

)
,

where we denote by W̃
Ni
s = {W̃Ni,k

s }k∈Z2
0
.

Next, we show that the formula (2.19) converges as i → ∞ in a suitable sense. To this
end, we follow the argument of [10], page 232. Fix any 0 < s < t ≤ T . Take a real valued,
bounded and continuous function ϕ : C([0, s],H−1− ×R

Z
2
0) →R. By (2.19), we have

Ẽ

[(
F

(
ω̃

Ni
t

) − F
(
ω̃Ni

s

) −
∫ t

s
L∞F

(
ω̃Ni

r

)
dr − ε2

Ni

∫ t

s
ζ̃ Ni
r dr

)
ϕ

(
ω̃Ni· , W̃Ni·

)] = 0.

Since F ∈ FC2
b and ω̃

Ni
t is a white noise, all the terms in the bracket belong to Lp(P̃) for any

p > 1. Recalling that, P̃-a.s., (ω̃
Ni· , W̃

Ni· ) converges to (ω̃·, W̃·) in C([0, T ],H−1− × R
Z

2
0),

thus letting i → ∞ in the above equality yields

Ẽ

[(
F(ω̃t ) − F(ω̃s) −

∫ t

s
L∞F(ω̃r)dr

)
ϕ(ω̃·, W̃·)

]
= 0.

The arbitrariness of 0 < s < t and ϕ : C([0, s],H−1− × R
Z

2
0) → R implies that M̃F· is a

martingale with respect to the filtration G̃t = σ(ω̃s, W̃s : s ≤ t), t ∈ [0, T ]. For any 0 ≤ s <

t ≤ T , we have F̃s ⊂ G̃s , thus

Ẽ
(
M̃F

t |F̃s

) = Ẽ
[
Ẽ

(
M̃F

t |G̃s

)|F̃s

] = Ẽ
[
M̃F

s |F̃s

] = M̃F
s ,

since M̃F
s is adapted to F̃s . �

Next, we show that ω̃· solves (2.5) in a weak sense; cf. [9], Definition 4.1.



276 F. FLANDOLI AND D. LUO

PROPOSITION 2.10. There exists a family of independent standard Brownian motions
{W̃ k

t : t ≥ 0}k∈Z2
0

such that (ω̃·, W̃·) solves (2.5) in the sense of (2.25), where W̃t =∑
k∈Z2

0
W̃−k

t ek
k⊥
|k| .

PROOF. In order to identify the process ω̃t , we take some special cylinder functions F .
First, let F(ω) = 〈ω,el〉 for some l ∈ Z

2
0, then

L∞F(ω) = −4νπ2|l|2〈ω,el〉 − 〈
u(ω) · ∇ω,el

〉
.

Thus, by Proposition 2.9, the processes

M̃
(l)
t := 〈ω̃t , el〉 − 〈ω̃0, el〉 +

∫ t

0

(
4νπ2|l|2〈ω̃s, el〉 + 〈

u(ω̃s) · ∇ω̃s, el

〉)
ds, l ∈ Z

2
0

are martingales. In particular,

(2.20) d〈ω̃t , el〉 = dM̃
(l)
t − (

4νπ2|l|2〈ω̃t , el〉 + 〈
u(ω̃t ) · ∇ω̃t , el

〉)
dt, l ∈ Z

2
0.

Therefore, for l,m ∈ Z
2
0, l �= m,

d
[〈ω̃t , el〉〈ω̃t , em〉]

= 〈ω̃t , em〉dM̃
(l)
t − 〈ω̃t , em〉(4νπ2|l|2〈ω̃t , el〉 + 〈

u(ω̃t ) · ∇ω̃t , el

〉)
dt

+ 〈ω̃t , el〉dM̃
(m)
t − 〈ω̃t , el〉(4νπ2|m|2〈ω̃t , em〉 + 〈

u(ω̃t ) · ∇ω̃t , em

〉)
dt

+ d
〈
M̃(l), M̃(m)〉

t .

Equivalently, denoting by M̃t the martingale part,

(2.21)

〈ω̃t , el〉〈ω̃t , em〉

= 〈ω̃0, el〉〈ω̃0, em〉 + M̃t − 4νπ2(|l|2 + |m|2) ∫ t

0
〈ω̃s, el〉〈ω̃s, em〉ds

−
∫ t

0

[〈ω̃s, em〉〈u(ω̃s) · ∇ω̃s, el

〉 + 〈ω̃s, el〉〈u(ω̃s) · ∇ω̃s, em

〉]
ds

+ 〈
M̃(l), M̃(m)〉

t .

On the other hand, taking F(ω) = 〈ω,el〉〈ω,em〉, we have

L∞F(ω) = 〈ω,em〉(−4νπ2|l|2〈ω,el〉 − 〈
u(ω) · ∇ω,el

〉)
+ 〈ω,el〉(−4νπ2|m|2〈ω,em〉 − 〈

u(ω) · ∇ω,em

〉)
= − 4νπ2(|l|2 + |m|2)〈ω,el〉〈ω,em〉 − 〈ω,em〉〈u(ω) · ∇ω,el

〉
− 〈ω,el〉〈u(ω) · ∇ω,em

〉
.

Therefore, by (2.16), we obtain the martingale

M̃
(l,m)
t = 〈ω̃t , el〉〈ω̃t , em〉 − 〈ω̃0, el〉〈ω̃0, em〉

+ 4νπ2(|l|2 + |m|2) ∫ t

0
〈ω̃s, el〉〈ω̃s, em〉ds

+
∫ t

0

[〈ω̃s, em〉〈u(ω̃s) · ∇ω̃s, el

〉 + 〈ω̃s, el〉〈u(ω̃s) · ∇ω̃s, em

〉]
ds.
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Comparing this equality with (2.21), we deduce

(2.22)
〈
M̃(l), M̃(m)〉

t = 0, l �= m.

Next, by (2.20), we have

d
(〈ω̃t , el〉2) = 2〈ω̃t , el〉[dM̃

(l)
t − (

4νπ2|l|2〈ω̃t , el〉 + 〈
u(ω̃t ) · ∇ω̃t , el

〉)
dt

]
+ d

〈
M̃(l)〉

t ,

which implies

(2.23)
〈ω̃t , el〉2 = 〈ω̃0, el〉2 + 2

∫ t

0
〈ω̃s, el〉dM̃(l)

s + 〈
M̃(l)〉

t

− 2
∫ t

0
〈ω̃s, el〉(4νπ2|l|2〈ω̃s, el〉 + 〈

u(ω̃s) · ∇ω̃s, el

〉)
ds.

Similarly, taking F(ω) = 〈ω,el〉2, one has

L∞F(ω) = −2〈ω,el〉〈u(ω) · ∇ω,el

〉 − 8νπ2|l|2(〈ω,el〉2 − 1
)
.

Substituting this into (2.16) gives us the martingale

M̃
(l,l)
t = 〈ω̃t , el〉2 − 〈ω̃0, el〉2 + 2

∫ t

0
〈ω̃s, el〉〈u(ω̃s) · ∇ω̃s, el

〉
ds

+ 8νπ2|l|2
∫ t

0

(〈ω̃s, el〉2 − 1
)

ds.

Comparing this identity with (2.23) yields

(2.24)
〈
M̃(l)〉

t = 8νπ2|l|2t.
According to the equalities (2.22) and (2.24), if we define

W̃ l
t = 1

2
√

2νπ |l|M̃
(l)
t , l ∈ Z

2
0,

then {W̃ l}l∈Z2
0

is a family of independent standard Brownian motions. Now the formula (2.20)
becomes

d〈ω̃t , el〉 = 2
√

2νπ |l|dW̃ l
t

(2.25)
− (

4νπ2|l|2〈ω̃t , el〉 + 〈
u(ω̃t ) · ∇ω̃t , el

〉)
dt, l ∈ Z

2
0.

The above equations are the component form of the equation below,

(2.26) dω̃t + u(ω̃t ) · ∇ω̃t dt = ν�ω̃t dt + √
2ν∇⊥ · dW̃t ,

where W̃t is the vector valued white noise defined in the statement of the proposition. There-
fore, ω̃t solves the vorticity form (2.26) of the Navier–Stokes equation driven by space-time
white noise. �

We can rewrite (2.26) in the velocity variable ũ· = u(ω̃·) as follows:

(2.27) dũ + b(ũ)dt = νAũdt + √
2ν dW̃ .

Here, b(u) = P div(u ⊗ u) and Au = P�u, in which P is the orthogonal projection onto
the space of divergence-free vector fields on T

2. It is clear that ũ has trajectories in
C([0, T ],H−(T2)), that is, in C([0, T ],H−δ(T2)) for any δ > 0. As mentioned at the be-
ginning of this paper, the above equation has been studied intensively in the last two decades.
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We deduce from Lemma 2.7 and Proposition 2.10 that the process ũ is a stationary solution
to (2.27) in the sense of [9], Definition 4.1. Let us remark that this definition is based only
on the Sobolev regularity of ũ ∈ C([0, T ],H−(T2)); the definition of the nonlinear part b(ũ)

is based on the Galerkin approximation and coincides with our definition, as explained by
Theorem A.12 in terms of the vorticity variable.

Similar to the arguments in [20], Section 3.5, we can prove the following.

PROPOSITION 2.11. The uniqueness in law holds for stationary solutions to (2.27).

PROOF. By [19], Theorem 3.14, it is sufficient to show that the pathwise uniqueness
holds for stationary solutions of (2.27). Let ui (i = 1,2) be two stationary solutions to the
equation (2.27) in the sense of [9], Definition 4.1, which are defined on the same probabil-
ity space (,F,P), with the same initial data u1(0) = u2(0) = u(0) (P-a.s.) and the same
cylindrical Brownian motion W(t), 0 ≤ t ≤ T . Then, for i = 1,2, P-a.s.,

ui(t) = u(0) −
∫ t

0
b
(
ui(s)

)
ds + ν

∫ t

0
Aui(s)ds + √

2νW(t), 0 ≤ t ≤ T .

These equations can be rewritten as

ui(t) = eνtAu(0) −
∫ t

0
eν(t−s)Ab

(
ui(s)

)
ds + √

2ν

∫ t

0
eν(t−s)A dW(s).

We extend W(·) to be a two-sided cylindrical Brownian motion on R (possibly at the price of
enlarging (,F,P)) and define

Z(t) = √
2ν

∫ t

−∞
eν(t−s)A dW(s).

It is well known that Z is a stationary process with paths in C([0, T ],Bσ
p,ρ) for any σ < 0,

ρ ≥ p ≥ 2 (cf. the last line on page 196 of [9]). Here, for any s ∈ R, Bs
p,ρ is the Besov space

on T
2. Note that

√
2ν

∫ t

0
eν(t−s)A dW(s) = Z(t) − eνtAZ(0),

we arrive at

(2.28) ui(t) − Z(t) = eνtA(
u(0) − Z(0)

) −
∫ t

0
eν(t−s)Ab

(
ui(s)

)
ds, i = 1,2.

As in [9], Theorem 5.2, page 196, let α, β , p, ρ, σ be such that

2

p
> α > −σ > 0, ρ = p ≥ 2, β ≥ 1, −1

2
+ 1

p
<

α

2
− 1

β
<

σ

2
.

Using these parameters, we define the following space:

E = Lβ(
0, T ;Bα

p,ρ

) ∩ C
([0, T ],Bσ

p,ρ

)
.

Since for any t ∈ [0, T ], ui(t) is distributed as

N
(
0, (−A)−1) = ⊗

k∈Z2
0

N
(
0,1/

(
4π2|k|2))

,

one has ui(t) ∈ Bσ
p,ρ,P-a.s. (see [4], Proposition 3.1). We also have Z(0) ∈ Bσ

p,ρ (P-a.s.),
thus by [9], Lemma 6.1, we obtain that, P-a.s., [0, T ] � t �→ eνtA(u(0)−Z(0)) ∈ E . Next, for
any γ ≥ 1 and ε > 0, since

E

(∫ T

0

∥∥b(
ui(t)

)∥∥γ

H−1−ε dt

)
=

∫ T

0
E

(∥∥b(
ui(t)

)∥∥γ

H−1−ε

)
dt,
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using estimates on the operator b(·) and the regularity provided by the Gaussian marginal of
ui(·), we can prove b(ui(·)) ∈ Lγ (0, T ;H−1−ε) (P-a.s.); see the arguments on the top of page
197 in [9] for details. Therefore, [9], Lemma 6.2, gives us that

∫ t
0 eν(t−s)Ab(ui(s))ds ∈ E .

Combining these discussions with the equations (2.28), we deduce that ui − Z ∈ E (P-a.s.)
for i = 1,2. By [9], Theorem 5.2, page 196 (see, in particular, the arguments on page 200
after the proof), we obtain u1(t) = u2(t) for all t ∈ [0, T ] P-a.s. Thus the pathwise uniqueness
holds for stationary solutions to (2.27). �

REMARK 2.12. Recently, R. Zhu and X. Zhu proved in [25], Section 4, the strong Feller
property for the semigroup associated to the equation (2.27). Combining this result with the
existence of a unique solution of (2.27) for a.e. initial condition in the Besov space Bσ

p,ρ (see
[9], Theorem 5.2), one can show that this equation actually admits a unique solution for all
initial data in Bσ

p,ρ . In the proof of Proposition 2.11, we are dealing only with the pathwise
uniqueness of stationary solutions of (2.27), for which we do not need the latter stronger
existence result.

Recall that ωN
t is the stationary solution of (2.3), and {QN }N≥1 are the laws of (ωN

t )0≤t≤T .
Now we can prove the main result of this paper.

THEOREM 2.13. The whole sequence {QN }N≥1 converges weakly to the law of the so-
lution to (2.26).

PROOF. Proposition 2.11 implies that the stationary solutions to (2.26) are unique in law,
thus we deduce the assertion from the tightness of the family {QN }N≥1. �

REMARK 2.14. Denote by LNS the Kolmogorov operator associated to (2.27). Under an
explicit condition on the lower bound of ν, it is shown in [21], Corollary 1, page 572, that the
operator (LNS,FC2

b) is L1-unique, which implies that its closure (LNS,D(LNS)) generates
a C0-semigroup of contractions {Pt }t≥0 in L1(μ) and μ is invariant for Pt . According to [24],
Remark 1.2, the martingale problem associated to (LNS,FC2

b) has a unique solution.
For other weaker uniqueness results on (LNS,FC2

b) see, for example, [1, 3, 23]. A similar
L1-uniqueness result was proved in [24], Theroem 1.1, with less precise estimate on the lower
bound of ν.

3. The Kolmogorov equation corresponding to (2.5). The purpose of this section is to
solve the Kolmogorov equation associated to the vorticity form of the Navier–Stokes equation
(2.5) driven by the space-time white noise. To simplify notation, we write H−1− instead of
H−1−(T2). The main result is the following.

THEOREM 3.1. Let ρ0 ∈ L2(H−1−,μ). Then there exists a measurable function ρ ∈
L∞(0, T ;L2(H−1−,μ)) which solves

(3.1) ∂tρt = L∗∞ρt , ρ|t=0 = ρ0.

More precisely, for any cylindrical function F = f ◦ �� and α ∈ C1([0, T ],R) satisfying
α(T ) = 0, one has

(3.2)

0 = α(0)

∫
H−1−

Fρ0 dμ +
∫ T

0

∫
H−1−

ρt

(
α′(t)F − α(t)

〈
u(ω) · ∇ω,DF

〉)
dμdt

+ 4νπ2
∑
l∈�

|l|2
∫ T

0

∫
H−1−

α(t)ρt

[
fl,l(ω) − fl(ω)〈ω,el〉] dμdt.
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REMARK 3.2. Unlike [15], Theorem 1.1, we do not have result on 〈σk · ∇ω,Dρt 〉(k ∈
Z

2
0); see Remark 3.6 below for details.

We can prove Theorem 3.1 by following the line of arguments in [15]. Due to a technical
problem which will become clear in the proof of Theorem 3.1, as in [15], Section 4, we
consider an equation slightly different from (2.3):

(3.3) dωN
t + uN

t · ∇ωN
t = 2

√
2νε̃N

∑
k∈�N

σk · ∇ωN
t ◦ dWk

t ,

where �N = {k ∈ Z
2
0 : |k| ≤ N/3} and

(3.4) ε̃N =
( ∑

k∈�N

1

|k|2
)−1/2

.

The generator of (3.3) is given as below: for F ∈FC2
b,

LNF(ω) = 4νε̃2
N

∑
k∈�N

〈
σk · ∇ω,D〈σk · ∇ω,DF 〉〉

− 〈
u(ω) · ∇ω,DF

〉
.

(3.5)

For any cylindrical function F ∈ FC2
b, we denote by

(3.6) L0
NF(ω) := 1

2

∑
k∈�N

〈
σk · ∇ω,D〈σk · ∇ω,DF 〉〉,

then

LNF(ω) = 8νε̃2
NL0

NF(ω) − 〈
u(ω) · ∇ω,DF

〉
.

Now we need the decomposition formula proved in Proposition A.3. Replacing �N there by
�N , we obtain the following.

PROPOSITION 3.3. For any F ∈ FC2
b, it holds that

lim
N→∞LNF = L∞F in L2(

H−1−,μ
)
.

With this result in hand, we will define the Galerkin approximation of the operator L∞
for which we need some notation (see [15] for details). Let HN = span{ek : k ∈ �N } and
�N : H−1−(T2) → HN be the projection operator, which is an orthogonal projection when
restricted to L2(T2). We project the drift term u(ω) · ∇ω in (3.5) as follows:

bN(ω) := �N

(
u(�Nω) · ∇(�Nω)

)
, ω ∈ H−1−(

T
2)

,

where u(�Nω) is obtained from the Biot–Savart law:

u(�Nω)(x) =
∫
T2

K(x − y)(�Nω)(y)dy.

We shall consider bN as a vector field on HN whose generic element is denoted by ξ =∑
k∈�N

ξkek . Thus

bN(ξ) = �N

(
u(ξ) · ∇ξ

)
, ξ ∈ HN.

Analogously, we define the projection of the diffusion coefficient σk · ∇ω in (3.5):

Gk
N(ξ) = �N(σk · ∇ξ), ξ ∈ HN.
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It can be shown that bN and Gk
N are divergence-free with respect to the standard Gaussian

measure μN on HN . With the above preparations, we can define the Galerkin approximation
of the operator L∞ as

L̃Nφ(ξ) = 4νε̃2
N

∑
k∈�N

〈
Gk

N,∇N

〈
Gk

N,∇Nφ
〉
HN

〉
HN

(ξ) − 〈bN,∇Nφ〉HN
(ξ).

Consider the Kolmogorov equation on HN :

(3.7) ∂tρ
N
t = L̃∗

NρN
t , ρN |t=0 = ρN

0 ∈ C2
b(HN),

where L̃∗
N is the adjoint operator of L̃N with respect to μN . We slightly abuse the notation

and denote by ρN
t (ω) = ρN

t (�Nω), N ≥ 1. It is easy to show that, for all t ∈ [0, T ],
∥∥ρN

t

∥∥2
L2(μ) + 8νε̃2

N

∑
k∈�N

∫ t

0

∫
H−1−

〈
σk · ∇(�Nω),DρN

s

〉2
L2(T2) dμds

= ∥∥ρN
0

∥∥2
L2(μ).

(3.8)

For k /∈ �N , we set 〈σk · ∇(�Nω),DρN
s 〉L2(T2) ≡ 0. Here are two simple observations.

PROPOSITION 3.4.

(1) The sequence {ρN }N∈N of functions is bounded in L∞(0, T ;L2(H−1−,μ));
(2) the family{

ε̃N

〈
σk · ∇(�Nω),DρN

t

〉
L2(T2) : (k, t,ω) ∈ Z

2
0 × [0, T ] × H−1−}

N∈N

is bounded in the Hilbert space L2(Z2
0 ×[0, T ]×H−1−,#⊗ dt ⊗μ), where # is the counting

measure on Z
2
0.

As a consequence, we obtain the following.

COROLLARY 3.5. Assume ρ0 ∈ L2(H−1−,μ). Then the family {ρN }N∈N has a subse-
quence which converges weakly-∗ to some measurable function ρ ∈ L∞(0, T ;L2(H−1−,μ)).

REMARK 3.6. Unlike [15], Theorem 3.2, we are unable to show that 〈σk · ∇ω,Dρt 〉
exists in the distributional sense, and the gradient estimate below holds:

∑
k∈Z2

0

∫ T

0

∫
H−1−

〈σk · ∇ω,Dρt 〉2 dμdt ≤ ‖ρ0‖2
L2(μ)

.

We repeat the proof of [15], Theorem 3.2, to see the difference. Recall that, by convention,〈
σk · ∇(�Nω),DρN

s

〉
L2(T2) ≡ 0, k /∈ �N.

By Proposition 3.4, there exists a subsequence {Ni}i∈N such that:

(a) ρNi converges weakly-∗ to some ρ in L∞(0, T ;L2(H−1−,μ));
(b) ε̃Ni

〈σk · ∇(�Ni
ω), Dρ

Ni
t 〉L2(T2) converges weakly to some ϕ ∈ L2(Z2

0 × [0, T ] ×
H−1−,# ⊗ dt ⊗ μ).
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Let α ∈ C([0, T ],R) and β ∈ L2(Z2
0 × H−1−,# ⊗ μ) such that βk ∈ FC2

b for all k ∈ Z
2
0.

By the assertion (b),

lim
i→∞

∑
k∈Z2

0

∫ T

0

∫
H−1−

ε̃Ni

〈
σk · ∇(�Ni

ω),Dρ
Ni
t

〉
L2(T2)α(t)βk dμdt

= ∑
k∈Z2

0

∫ T

0

∫
H−1−

ϕk(t)α(t)βk(t)dμdt.

Fix some k ∈ Z
2
0, we assume that βj ≡ 0 for all j �= k and βk = βk ◦ �� for some � � Z

2
0.

Then the above limit reduces to

(3.9)
lim

i→∞ ε̃Ni

∫ T

0

∫
H−1−

〈
σk · ∇(�Ni

ω),Dρ
Ni
t

〉
L2(T2)α(t)βk dμdt

=
∫ T

0

∫
H−1−

ϕk(t)α(t)βk dμdt.

For all big Ni such that � ⊂ �Ni
, we have∫ T

0

∫
H−1−

〈
σk · ∇(�Ni

ω),Dρ
Ni
t

〉
L2(T2)α(t)βk(ω)dμdt

=
∫ T

0

∫
HNi

〈
Gk

Ni
,∇Ni

ρ
Ni
t

〉
HNi

(ξ)α(t)βk(ξ)dμNi
dt

= −
∫ T

0

∫
HNi

ρ
Ni
t (ξ)α(t)

〈
Gk

Ni
,∇Ni

βk

〉
HNi

(ξ)dμNi
dt

= −
∫ T

0

∫
H−1−

ρ
Ni
t (ω)α(t)

〈
σk · ∇(�Ni

ω),Dβk

〉
L2(T2) dμdt.

Since k ∈ Z
2
0 is fixed, if Ni is big enough, we have

(3.10)

〈
σk · ∇(�Ni

ω),Dβk

〉
L2(T2) = −〈

�Ni
ω,σk · ∇(Dβk)

〉
= −〈

ω,σk · ∇(Dβk)
〉 = 〈σk · ∇ω,Dβk〉.

Therefore,

ε̃Ni

∫ T

0

∫
H−1−

〈
σk · ∇(�Ni

ω),Dρ
Ni
t

〉
L2(T2)α(t)βk dμdt

= −ε̃Ni

∫ T

0

∫
H−1−

ρ
Ni
t α(t)〈σk · ∇ω,Dβk〉dμdt

→ −0 ·
∫ T

0

∫
H−1−

ρtα(t)〈σk · ∇ω,Dβk〉dμdt = 0,

where the second step is due to (a). Combining this limit with (3.9) yields∫ T

0

∫
H−1−

ϕk(t)α(t)βk dμdt = 0.

By the arbitrariness of α ∈ C([0, T ]) and βk ∈ FC2
b, we see that

ϕk(t) = 0 for all k ∈ Z
2
0.

Now we are ready to present the following.
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PROOF OF THEOREM 3.1. Recall that μN is the standard Gaussian measure on HN . Let
F ∈ FC2

b and α ∈ C1([0, T ],R) satisfying α(T ) = 0. For all N large enough, we can regard
F as a smooth function on HN . Multiplying both sides of (3.7) by α(t)F and integrating by
parts with respect to μN , we obtain

0 = α(0)

∫
HN

FρN
0 dμN +

∫ T

0

∫
HN

ρN
s

[
α′(s)F + α(s)L̃NF

]
dμN ds.

We transform the integrals to those on H−1−(T2) and obtain

0 = α(0)

∫
H−1−

FρN
0 dμ

+
∫ T

0

∫
H−1−

ρN
s

[
α′(s)F − α(s)

〈
u(�Nω) · ∇(�Nω),DF

〉]
dμds(3.11)

+ 4νε̃2
N

∑
k∈�N

∫ T

0

∫
H−1−

ρN
s α(s)

〈
σk · ∇(�Nω),D

〈
σk · ∇(�Nω),DF

〉〉
dμds.

Assume F has the form f ◦ ��; in this case we say that F is measurable with respect
to H� = span{ek : k ∈ �}, or H�-measurable. Of course, F is also H�′ -measurable for any
�′ ⊃ �. When N is big enough, we have � ⊂ �N = �N/3. For all k ∈ �N , analogous to
(3.10), 〈

σk · ∇(�Nω),DF
〉 = −〈

�Nω,σk · ∇(DF)
〉

= −〈
ω,σk · ∇(DF)

〉
= 〈σk · ∇ω,DF 〉.

We see that 〈σk · ∇ω,DF 〉 is H�2N/3 -measurable. In the same way, we have〈
σk · ∇(�Nω),D

〈
σk · ∇(�Nω),DF

〉〉 = 〈
σk · ∇(�Nω),D〈σk · ∇ω,DF 〉〉

= 〈
σk · ∇ω,D〈σk · ∇ω,DF 〉〉,

which is H�N
-measurable. Therefore, by (3.6),

1

2

∑
k∈�N

〈
σk · ∇(�Nω),D

〈
σk · ∇(�Nω),DF

〉〉 = L0
NF(ω),

and (3.11) becomes

0 = α(0)

∫
H−1−

FρN
0 dμ +

∫ T

0

∫
H−1−

ρN
s

[
α′(s)F − α(s)

〈
u(�Nω) · ∇(�Nω),DF

〉]
dμds

+ 8νε̃2
N

∑
k∈�N

∫ T

0

∫
H−1−

ρN
s α(s)L0

NF(ω)dμds.

By Proposition A.3, changing N into Ni and letting i → ∞, we arrive at

0 = α(0)

∫
H−1−

Fρ0 dμ +
∫ T

0

∫
H−1−

ρs

[
α′(s)F − α(s)

〈
u(ω) · ω,DF

〉]
dμds

+ 4νπ2
∑
l∈�

|l|2
∫ T

0

∫
H−1−

α(s)ρs

[
fl,l(ω) − fl(ω)〈ω,el〉] dμds.

The proof is complete. �
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APPENDIX

A.1. Decomposition of the diffusion part (A.2). For the reader’s convenience, we re-
call some useful results which were proved in [15]. First, recall that Ck,l is defined in (2.15)
and �N = {k ∈ Z

2
0 : |k| ≤ N}. The following identity is taken from [15], Lemma 3.4.

LEMMA A.1. It holds that

(A.1)
∑

k∈�N

C2
k,l = 1

2
ε−2
N |l|2 with εN =

( ∑
k∈�N

1

|k|2
)−1/2

.

PROOF. Denoting by Dk,l = k·l
|k|2 , then

C2
k,l + D2

k,l = (k⊥ · l)2

|k|4 + (k · l)2

|k|4 = 1

|k|2
[(

k⊥

|k| · l
)2

+
(

k

|k| · l
)2]

= |l|2
|k|2 .

The transformation k → k⊥ is 1–1 on the set �N = {k ∈ Z
2
0 : |k| ≤ N}, and preserves the

norm | · |. As a result,

∑
k∈�N

C2
k,l = ∑

k∈�N

(k⊥ · l)2

|k|4 = ∑
k∈�N

((k⊥)⊥ · l)2

|k⊥|4 = ∑
k∈�N

(k · l)2

|k|4 = ∑
k∈�N

D2
k,l .

Combining the above two equalities, we obtain

∑
k∈�N

C2
k,l = 1

2

∑
k∈�N

(
C2

k,l + D2
k,l

) = 1

2
|l|2 ∑

k∈�N

1

|k|2 = 1

2
ε−2
N |l|2.

�

Next, we recall a decomposition formula of the operator

(A.2) L0
NF(ω) = 1

2

∑
k∈�N

〈
σk · ∇ω,D〈σk · ∇ω,DF 〉〉, F ∈ FC2

b,

which was proved in [15], Proposition 4.2. To this end, we need the following simple result.

LEMMA A.2. Assume that F = f ◦ �� for some finite set � ⊂ Z
2
0. We have

(A.3)

L0
NF(ω) = π2

∑
k∈�N

∑
l,m∈�

Ck,lCk,mfl,m(ω)〈ω,eke−l〉〈ω,eke−m〉

− π2
∑

k∈�N

∑
l∈�

C2
k,lfl(ω)

〈
ω,e2

kel

〉
.

PROOF. Note that DF(ω) = ∑
l∈�(∂lf )(��ω)el = ∑

l∈� fl(ω)el ; therefore,

〈σk · ∇ω,DF 〉 = ∑
l∈�

fl(ω)〈σk · ∇ω,el〉

= − ∑
l∈�

fl(ω)〈ω,σk · ∇el〉

= −√
2π

∑
l∈�

Ck,lfl(ω)〈ω,eke−l〉.
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Furthermore,

D〈σk · ∇ω,DF 〉 = −√
2π

∑
l∈�

Ck,l

(〈ω,eke−l〉D[
fl(ω)

] + fl(ω)eke−l

)

= −√
2π

∑
l,m∈�

Ck,l〈ω,eke−l〉fl,m(ω)em

− √
2π

∑
l∈�

Ck,lfl(ω)eke−l .

As a result,

(A.4)

〈
σk · ∇ω,D〈σk · ∇ω,DF 〉〉

= −√
2π

∑
l,m∈�

Ck,lfl,m(ω)〈ω,eke−l〉〈σk · ∇ω,em〉

− √
2π

∑
l∈�

Ck,lfl(ω)〈σk · ∇ω,eke−l〉.

We have 〈σk · ∇ω,em〉 = −〈ω,σk · ∇em〉 = −√
2πCk,m〈ω,eke−m〉 and

〈σk · ∇ω,eke−l〉 = −〈
ω,σk · ∇(eke−l)

〉 = √
2πCk,l

〈
ω,e2

kel

〉
.

Substituting these facts into (A.4) and summing over k yield the desired result. �

Now we can rewrite L0
NF(ω) as the sum of two parts, in which one part is convergent

while the other is in general divergent.

PROPOSITION A.3. It holds that

(A.5)

L0
NF(ω) = π2

∑
l,m∈�

fl,m(ω)
∑

k∈�N

Ck,lCk,m

(〈ω,eke−l〉〈ω,eke−m〉 − δl,m

)

+ 1

2
π2ε−2

N

∑
l∈�

|l|2[
fl,l(ω) − fl(ω)〈ω,el〉].

Moreover, for any l,m ∈ Z
2
0, the quantity

(A.6) Rl,m(N) = ∑
k∈�N

Ck,lCk,m

(〈ω,eke−l〉〈ω,eke−m〉 − δl,m

)

is a Cauchy sequence in Lp(H−1−,μ) for any p > 1.

PROOF. The proof of the second assertion is quite long and can be found in the Appendix
of [15]. Here, we only prove the equality (A.5). We have, by Lemma A.1,

(A.7)

∑
k∈�N

∑
l,m∈�

Ck,lCk,mfl,m(ω)〈ω,eke−l〉〈ω,eke−m〉

= ∑
l,m∈�

fl,m(ω)
∑

k∈�N

Ck,lCk,m

(〈ω,eke−l〉〈ω,eke−m〉 − δl,m

)

+ 1

2
ε−2
N

∑
l∈�

|l|2fl,l(ω).
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Next, note that C−k,l = −Ck,l and e2
k + e2−k ≡ 2 for all k ∈ Z

2
0, we have∑

k∈�N

C2
k,l

〈
ω,e2

kel

〉 = ∑
k∈�N,k∈Z2+

[
C2

k,l

〈
ω,e2

kel

〉 + C2−k,l

〈
ω,e2−kel

〉]

= ∑
k∈�N,k∈Z2+

2C2
k,l〈ω,el〉 = 1

2
ε−2
N |l|2〈ω,el〉,

where the last step is due to Lemma A.1. Therefore,

∑
k∈�N

∑
l∈�

C2
k,lfl(ω)

〈
ω,e2

kel

〉 = 1

2
ε−2
N

∑
l∈�

|l|2fl(ω)〈ω,el〉.

Combining this equality with (A.3) and (A.7) leads to the identity (A.5). �

A.2. Coincidence of nonlinear parts. Our purpose in this part is to show that the non-
linear term in the vorticity form of the Euler equation defined in [13], Theorem 8, agrees with
that defined by Galerkin approximation; therefore, we can freely use any of them. Although
we mainly work in the real setting, it is sometimes convenient to use the canonical complex
orthonormal basis {ẽk}k∈Z2 of L2(T2,C). Note that {ẽk ⊗ ẽl}k,l∈Z2 is an orthonormal basis of
L2((T2)2,C).

LEMMA A.4. Assume f ∈ C∞((T2)2,R) is a symmetric function and
∫
T2 f (x, x)dx =

0. Then

〈ω ⊗ ω,f 〉 = ∑
k,l∈Z2

fk,l〈ω, ẽk〉〈ω, ẽl〉 holds in L2(
H−1−,μ

)
,

where

fk,l = 〈f, ẽk ⊗ ẽl〉 =
∫
(T2)2

f (x, y)ẽk(x)ẽl(y)dx dy.

PROOF. Denote by

(A.8) �̂N = {
k ∈ Z

2 : |k| ≤ N
} = �N ∪ {0}.

Since f ∈ C∞((T2)2), the partial sum of the Fourier series

fN(x, y) := ∑
k,l∈�̂N

fk,l ẽk(x)ẽl(y)

converges to f , uniformly on (T2)2 and in L2((T2)2). In particular,

(A.9) lim
N→∞

∫
T2

fN(x, x)dx =
∫
T2

f (x, x)dx = 0.

It is obvious that fN(x, y) is smooth and symmetric. By [13], Corollary 6(ii), (iii),

Eμ

[(
〈ω ⊗ ω,f − fN 〉 +

∫
T2

fN(x, x)dx

)2]
= 2

∫
(T2)2

(f − fN)2(x, y)dx dy.

As a result,

Eμ

[〈ω ⊗ ω,f − fN 〉2]
≤ 4

∫
(T2)2

(f − fN)2(x, y)dx dy + 2
[∫

T2
fN(x, x)dx

]2
.

(A.10)
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Next, note that

〈ω ⊗ ω,fN 〉 = ∑
k,l∈�̂N

fk,l〈ω, ẽk〉〈ω, ẽl〉.

Therefore, by (A.10),

Eμ

[(
〈ω ⊗ ω,f 〉 − ∑

k,l∈�̂N

fk,l〈ω, ẽk〉〈ω, ẽl〉
)2]

≤ 4
∫
(T2)2

(f − fN)2(x, y)dx dy + 2
[∫

T2
fN(x, x)dx

]2
.

Thanks to (A.9), the desired result follows by letting N → ∞. �

We need the following simple equality.

LEMMA A.5. Let {ak,l}k,l∈�̂N
⊂ C be satisfying ak,l = al,k , ak,l = a−k,−l . Then

(A.11) Eμ

[∣∣∣∣ ∑
k,l∈�̂N

ak,l〈ω, ẽk〉〈ω, ẽl〉 − ∑
k∈�̂N

ak,−k

∣∣∣∣2
]

= 2
∑

k,l∈�̂N

|ak,l|2.

PROOF. It is clear that
∑

k,l∈�̂N
ak,l〈ω, ẽk〉〈ω, ẽl〉 is real and

∑
k∈�̂N

ak,−k = Eμ

( ∑
k,l∈�̂N

ak,l〈ω, ẽk〉〈ω, ẽl〉
)
.

Following the arguments of [15], Lemma 5.1, we can prove the desired equality. �

Recall the expression of Hφ for φ ∈ C∞(T2) in Remark 2.1. Now we can prove the inter-
mediate result below.

PROPOSITION A.6. For any j ∈ Z
2
0,

〈ω ⊗ ω,Hej
〉 = ∑

k,l∈Z2

〈Hej
, ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉 holds in L2(

H−1−,μ
)
,

where ej is defined in (2.1).

PROOF. Let Hn
ej

be the smooth approximating functions of Hej
constructed in [13], Re-

mark 9, which satisfy the conditions in Lemma A.4. Recall the definition of �̂N in (A.8). To
simplify the notation, we introduce

ω̂N = �̂Nω = ∑
k∈�̂N

〈ω, ẽk〉ẽk, ω ∈ H−1−.

Then

〈ω̂N ⊗ ω̂N ,Hej
〉 = ∑

k,l∈�̂N

〈Hej
, ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉
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is the partial sum of the series. We have

(A.12)

Eμ

[(〈ω ⊗ ω,Hej
〉 − 〈ω̂N ⊗ ω̂N ,Hej

〉)2]
≤ 3Eμ

[〈
ω ⊗ ω,Hej

− Hn
ej

〉2]
+ 3E

[(〈
ω ⊗ ω,Hn

ej

〉 − 〈
ω̂N ⊗ ω̂N ,Hn

ej

〉)2]
+ 3Eμ

[〈
ω̂N ⊗ ω̂N ,Hn

ej
− Hej

〉2]
.

We estimate the three terms one-by-one. By the proof of [13], Theorem 8,

(A.13) Eμ

[〈
ω ⊗ ω,Hej

− Hn
ej

〉2] ≤ 2
∫
(T2)2

(
Hej

− Hn
ej

)2
(x, y)dx dy.

Next, by Lemmas A.7 and A.8 below (see also [15], Lemma 5.3), we have Eμ〈ω̂N ⊗
ω̂N ,Hej

〉 = 0. Moreover, for any fixed n ≥ 1, Lemma A.4 implies

(A.14) Eμ

[(〈
ω̂N ⊗ ω̂N ,Hn

ej

〉 − 〈
ω ⊗ ω,Hn

ej

〉)2] → 0 as N → ∞.

It remains to deal with the last term on the right-hand side of (A.12). As a result of (A.14),

(A.15) lim
N→∞Eμ

〈
ω̂N ⊗ ω̂N ,Hn

ej

〉 = Eμ

〈
ω ⊗ ω,Hn

ej

〉 = ∫
T2

Hn
ej

(x, x)dx = 0,

where the second step is due to [13], Corollary 6(ii). By (A.11),

Eμ

[(〈
ω̂N ⊗ ω̂N ,Hn

ej
− Hej

〉 −Eμ

〈
ω̂N ⊗ ω̂N ,Hn

ej
− Hej

〉)2]
= 2

∑
k,l∈�̂N

∣∣〈Hn
ej

− Hej
, ẽk ⊗ ẽl

〉∣∣2

≤ 2
∫
(T2)2

(
Hn

ej
− Hej

)2
(x, y)dx dy.

Therefore,

Eμ

[〈
ω̂N ⊗ ω̂N ,Hn

ej
− Hej

〉2]
≤ 4

∫
(T2)2

(
Hn

ej
− Hej

)2
(x, y)dx dy + 2

[
Eμ

〈
ω̂N ⊗ ω̂N ,Hn

ej
− Hej

〉]2

= 4
∫
(T2)2

(
Hn

ej
− Hej

)2
(x, y)dx dy + 2

[
Eμ

〈
ω̂N ⊗ ω̂N ,Hn

ej

〉]2
,

where we used again Eμ〈ω̂N ⊗ ω̂N ,Hej
〉 = 0. Thanks to (A.15),

lim sup
N→∞

E
[〈
ω̂N ⊗ ω̂N ,Hn

ej
− Hej

〉2] ≤ 4
∫
(T2)2

(
Hn

ej
− Hej

)2
(x, y)dx dy.

Combining the above inequality with (A.12)–(A.14), first letting N → ∞ in (A.12) yield

lim sup
N→∞

E
[(〈ω ⊗ ω,Hej

〉 − 〈ω̂N ⊗ ω̂N ,Hej
〉)2]

≤ 18
∫
(T2)2

(
Hn

ej
− Hej

)2
(x, y)dx dy.

We complete the proof by sending n → ∞. �

It remains to prove the following.
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LEMMA A.7. For any j ∈ Z
2
0,

〈Hej
, ẽk ⊗ ẽl〉 = 0 for k = 0 or l = 0.

PROOF. We have

(A.16) Hej
(x, y) = π

(
e−j (x) − e−j (y)

)
j · K(x − y), (x, y) ∈ T

2 ×T
2.

Without loss of generality, we assume j ∈ Z
2+ thus −j ∈ Z

2− and

(A.17) e−j (x) = 1√
2i

[
ẽ−j (x) − ẽj (x)

]
.

Recall that

(A.18) ẽk ∗ K = 2π iδk �=0
k⊥

|k|2 ẽk for all k ∈ Z
2.

Case 1: k = l = 0. We have∫
(T2)2

Hej
(x, y)dx dy = πj ·

∫
(T2)2

(
e−j (x) − e−j (y)

)
K(x − y)dx dy

= −2πj ·
∫
T2

(e−j ∗ K)(x)dx.

Using (A.17) and (A.18), we obtain∫
(T2)2

Hej
(x, y)dx dy

= −2πj ·
∫
T2

1√
2i

(
2π i

(−j)⊥

|j |2 ẽ−j (x) − 2π i
j⊥

|j |2 ẽj (x)

)
dx = 0.

Case 2: k = 0 and l �= 0. Then

〈Hej
, ẽ0 ⊗ ẽl〉 =

∫
(T2)2

Hej
(x, y)ẽl(y)dx dy

= πj ·
∫
(T2)2

(
e−j (x) − e−j (y)

)
K(x − y)ẽl(y)dx dy.

We divide the right-hand side into two terms I1 and I2. We have, by (A.18),

I1 = πj ·
∫
T2

e−j (x)(K ∗ ẽl)(x)dx = 2π2i
j · l⊥
|l|2

∫
T2

e−j (x)ẽl(x)dx.

According to (A.17), it is clear that if l �= ±j , then I1 = 0. On the other hand, if l = j or
l = −j , we still have I1 = 0.

Next, we deal with I2. Again by (A.17),

(A.19)

I2 = − π√
2i

j ·
∫
(T2)2

[
ẽ−j (y) − ẽj (y)

]
K(x − y)ẽl(y)dx dy

= − π√
2i

j ·
∫
T2

[
(K ∗ ẽl−j )(x) − (K ∗ ẽl+j )(x)

]
dx.

If l = j , then by (A.18),

I2 = π√
2i

j ·
∫
T2

2π i
(2j)⊥

|2j |2 ẽ2j (x)dx = 0.
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Similarly, I2 = 0 if l = −j . Finally, if l �= ±j , then we deduce easily from (A.18) and (A.19)
that I2 = 0.

Summarizing these computations, we conclude that 〈Hej
, ẽ0 ⊗ ẽl〉 = 0 for all l ∈ Z

2
0.

Case 3: k �= 0 and l = 0. The arguments are similar as in the second case and we omit it
here. We can also deduce the result by using the symmetry property of Hej

. �

We also used the following result in the proof of Proposition A.6.

LEMMA A.8. For all j, k, l ∈ Z
2
0,

〈Hej
, ẽk ⊗ ẽl〉 = √

2π2
(

j · l⊥
|l|2 + j · k⊥

|k|2
)

×
{
δj,k+l − δj,−k−l , j ∈ Z

2+;
i(δj,k+l + δj,−k−l), j ∈ Z

2−.

PROOF. Assume j ∈ Z
2+. By (A.16),

〈Hej
, ẽk ⊗ ẽl〉 = πj ·

∫
T2

e−j (x)ẽk(x)(K ∗ ẽl)(x)dx

+ πj ·
∫
T2

e−j (y)ẽl(y)(K ∗ ẽk)(y)dy.

We denote the two terms by J1 and J2. By (A.18) and (A.17),

J1 = 2π2i
j · l⊥
|l|2

∫
T2

e−j (x)ẽk(x)ẽl(x)dx = √
2π2 j · l⊥

|l|2 (δj,k+l − δj,−k−l).

Similarly,

J2 = √
2π2 j · k⊥

|k|2 (δj,k+l − δj,−k−l).

The proof is complete. �

Recall that we have defined in Section 3 the projection

ωN = �Nω = ∑
k∈�N

〈ω,ek〉ek = ∑
k∈�N

〈ω, ẽk〉ẽk,

where the last step follows by a simple computation. According to (A.8), we have ω̂N =
ωN + 〈ω,1〉. Taking into account Lemma A.7 above, we conclude that, for any j ∈ Z

2
0,

(A.20) 〈ω̂N ⊗ ω̂N ,Hej
〉 = 〈ωN ⊗ ωN,Hej

〉 for all N ≥ 1.

Now we can prove the first main result of this part.

THEOREM A.9. For any j ∈ Z
2
0,

〈ω ⊗ ω,Hej
〉 = lim

N→∞〈ωN ⊗ ωN,Hej
〉 holds in L2(

H−1−,μ
)
.

Moreover,

E
[〈ω ⊗ ω,Hej

〉2] = 2
∫
(T2)2

H 2
ej

(x, y)dx dy

= 2
∑

k,l∈Z2
0

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2.(A.21)
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PROOF. The first assertion follows from Proposition A.6 and (A.20). Next, by Lem-
ma A.8 above,

〈Hej
, ẽk ⊗ ẽ−k〉 = 0 for all k ∈ Z

2.

Hence, Lemma A.5 and (A.20) imply

E
[〈ωN ⊗ ωN,Hej

〉2] = E

[∣∣∣∣ ∑
k,l∈�N

〈Hej
, ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉

∣∣∣∣2
]

= 2
∑

k,l∈�N

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2.
Letting N → ∞ yields the second result. �

In the following, we denote formally by

(A.22) b(ω) = u(ω) · ∇ω,bN(ω) = �N

[
u(ωN) · ∇ωN

]
, N ≥ 1.

We shall prove that b is well defined as an element in L2(H−1−,μ;H−2−) and bN → b w.r.t.
the norm of this space as N → ∞. This assertion is consistent with [9], Proposition 3.1 and
[4], Proposition 3.2.

For any j ∈ Z
2
0, by Theorem A.9,

(A.23)
〈
b(ω), ej

〉 = −〈ω ⊗ ω,Hej
〉 = − ∑

k,l∈Z2
0

〈Hej
, ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉.

Lemma A.8 implies that

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2 = 2π4
(

j · l⊥
|l|2 + j · k⊥

|k|2
)2

(δj,k+l + δj,−k−l)

= 2π4δj,±(k+l)

(
j · l⊥
|l|2 + j · k⊥

|k|2
)2

.

Using the fact j = ±(k + l), we obtain

(A.24)
∣∣〈Hej

, ẽk ⊗ ẽl〉
∣∣2 = 2π4δj,±(k+l)

(
j · k⊥)2

(
1

|l|2 − 1

|k|2
)2

.

The next estimate will play a key role in the sequel.

LEMMA A.10. There exists C > 0 such that for all |j | ≥ 2,∑
k,l∈Z2

0

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2 ≤ C|j |2 log |j |.

PROOF. Thanks to (A.24), we have

∑
k,l∈Z2

0

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2 = 2π4
∑

k∈Z2
0\{j}

(
j · k⊥)2

(
1

|j − k|2 − 1

|k|2
)2

+ 2π4
∑

k∈Z2
0\{−j}

(
j · k⊥)2

(
1

|j + k|2 − 1

|k|2
)2
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which is easily seen to be convergent. We denote the two quantities on the r.h.s. by I1 and I2,
respectively. Note that(

1

|j − k|2 − 1

|k|2
)2

= (|j |2 − 2j · k)2

|j − k|4|k|4 ≤ 2
|j |4 + 4(j · k)2

|j − k|4|k|4 ,

thus

I1 ≤ 4π4|j |4 ∑
k∈Z2

0\{j}

(j · k⊥)2

|j − k|4|k|4 + 16π4
∑

k∈Z2
0\{j}

(j · k⊥)2(j · k)2

|j − k|4|k|4

=: I1,1 + I1,2.

We have

I1,1 = 4π4|j |4 ∑
k∈Z2

0\{j}

((j − k) · k⊥)2

|j − k|4|k|4

≤ 4π4|j |4 ∑
k∈Z2

0\{j}

1

|j − k|2|k|2 ≤ C|j |2 log |j |,

where the last step is due to [4], Proposition A.1. Similarly,

I1,2 = 16π4
∑

k∈Z2
0\{j}

(j · (k − j)⊥)2(j · k)2

|j − k|4|k|4

≤ 16π4|j |4 ∑
k∈Z2

0\{j}

1

|j − k|2|k|2 ≤ C|j |2 log |j |.

Therefore, we obtain

(A.25) I1 ≤ C|j |2 log |j |.
In the same way, we have I2 ≤ C|j |2 log |j | which, together with (A.25), implies the result.

�

REMARK A.11. Recall the definition of L∞. The above estimate shows that the nonlin-
ear part in L∞ is not dominated by the diffusion part. Indeed, taking F(ω) = 〈ω,ej 〉, |j | ≥ 2,
then by (A.23), Theorem A.9 and Lemma A.10,

Eμ

[〈
b(ω),DF

〉2] = Eμ

[〈ω ⊗ ω,Hej
〉2] ≤ C|j |2 log |j |.

Note that the factor log |j | cannot be eliminated. On the other hand, regarding the diffusion
part LD∞ in L∞, we have

−Eμ

[
FLD∞F

] = 4π2|j |2.
As a result, the Lions approach does not work here to give us the uniqueness of solutions to
(3.1).

Now we can prove the second main result of this part.

THEOREM A.12. For any δ > 0,

lim
N→∞Eμ

(∥∥bN(ω) − b(ω)
∥∥2
H−2−δ(T2)

) = 0.
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PROOF. Note that∥∥bN(ω) − b(ω)
∥∥2
H−2−δ(T2) = ∑

j∈Z2
0

1

|j |4+2δ

(〈
bN(ω), ej

〉 − 〈
b(ω), ej

〉)2

and by (A.22), 〈
bN(ω), ej

〉 = −1�N
(j)〈ωN ⊗ ωN,Hej

〉
= −1�N

(j)
∑

k,l∈�N

〈Hej
, ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉.

Therefore, ∥∥bN(ω) − b(ω)
∥∥2
H−2−δ(T2) = ∑

j∈�N

1

|j |4+2δ

(〈
bN(ω), ej

〉 − 〈
b(ω), ej

〉)2

+ ∑
j∈�c

N

〈b(ω), ej 〉2

|j |4+2δ
.

Denote the two quantities by J1,N and J2,N , respectively.
First, by Theorem A.9 and (A.23), we have

EJ2,N = ∑
j∈�c

N

E〈b(ω), ej 〉2

|j |4+2δ

= 2
∑

j∈�c
N

1

|j |4+2δ

∑
k,l∈Z2

0

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2

≤ C
∑

j∈�c
N

log |j |
|j |2+2δ

,

where the last inequality follows from Lemma A.10. Therefore,

(A.26) lim
N→∞EJ2,N = 0.

Recalling (A.23) and denoting by �c
N,N = (Z2

0 ×Z
2
0) \ (�N × �N), we arrive at〈

bN(ω), ej

〉 − 〈
b(ω), ej

〉 = ∑
(k,l)∈�c

N,N

〈Hej
, ẽk ⊗ ẽl〉〈ω, ẽk〉〈ω, ẽl〉, j ∈ �N.

Analogous to (A.21),

E
(〈
bN(ω), ej

〉 − 〈
b(ω), ej

〉)2 = 2
∑

(k,l)∈�c
N,N

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2.
As a result,

EJ1,N = 2
∑

j∈�N

1

|j |4+2δ

∑
(k,l)∈�c

N,N

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2

≤ 2
∑
j∈Z2

0

1

|j |4+2δ

∑
(k,l)∈�c

N,N

∣∣〈Hej
, ẽk ⊗ ẽl〉

∣∣2.
By Lemma A.10 and the dominated convergence theorem, we obtain

lim
N→∞EJ1,N = 0.

Combining this limit with (A.26), we complete the proof. �
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