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Abstract
Boundson theultimateprecision attainable in the estimationof aparameter inGaussianquantum
metrology are obtainedwhen the averagenumber of bosonic probes isfixed.We identify theoptimal input
probe state amonggeneric (mixed in general)Gaussian stateswith afixed averagenumberof probe
photons for the estimationof a parameter contained in a genericmultimode interferometric optical circuit,
namely, a passive linear circuit preserving the total numberof photons.TheoptimalGaussian input state is
essentially a single-mode squeezedvacuum, and theultimateprecision is achievedby ahomodyne
measurementon the singlemode.Wealso reveal thebest strategy for the estimationwhenweare givenL
identical target circuits and are allowed to applypassive linear controls in betweenwith an arbitrary
number of ancillamodes introduced.

1. Introduction

Quantum-mechanical features and quantum effects can drastically improve the accuracy ofmeasurements
[1–6]. This is known as quantummetrology, and is one of the promising future quantum technologies. In
particular, quantumopticalmeasurement schemes using photonic probes have recently been under intense
study [1, 3–6], pursuing strategies that allow to beat the standard quantum limit on themeasurement accuracy,
both theoretically [7–64] and experimentally [65–81].

In a variety of quantumopticalmetrology settings, the probe sensitivity to the target parameter canbe improved
by squeezing the state of the input light [7, 8]. Entanglement is also an important keyword in the studies of quantum
metrology [4–6]. In theseways, the state of the input probephotons is important for highprecisionmetrology.

There is an interesting class of states of light:Gaussian states. From a practical point of view, a variety of
Gaussian states are relatively easy to generate in laboratories, and various quantum information tasks have been
implemented experimentally using photons inGaussian states [82–84]. Also from a theoretical point of view,
they provide an interesting category of quantum information protocols [82–84]. For these reasons, quantum
opticalmetrologywithGaussian input probe states and/orGaussian channels has been eagerly investigated
[14, 16, 17, 19, 21, 25, 28, 29, 32, 34, 36, 43, 45–47, 49, 51, 55, 59–61, 64].

For instance, the estimationof a single-modephase shift is studiedwithpure [14] andmixed [19]Gaussian
probes, and someother single-modeGaussian channels such as squeezing and amplitude-damping are analyzedwith
generalmixedGaussianprobes [34]. The estimationof a single-modephase shiftwith generalmixedGaussianprobes
is discussed in thepresence of generalGaussiandissipation [60]. A few specific two-modeGaussian channels like two-
mode squeezing andmodemixing are studiedwith someparticular types of two-modeGaussianprobes [59]. The
ultimate precisionbound is clarified for generic two-modepassive linear circuits,whichpreserve thenumber of
photonspassing through them (they areGaussian channels) [47]. A formula for the quantumFisher information
(QFI) valid for anymultimodepureGaussian states is derived and investigatedunder the conditionof intense probe
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light (with large displacement) [25]. GeneralmultimodeGaussianunitary channels (Bogoliubov transformations) are
consideredwithpureprobe states not restricted toGaussian states and thebehavior of theQFI for largemeanphoton
numbers is discussed [46]. A formula for theQFImatrix is derived for generalmultimodeGaussian states and
multiparameterGaussianquantummetrology is discussed [61, 64].

In this paper, we study the estimation of a parameter embedded in a genericM-mode passive linear
interferometric circuit, and clarify the ultimate precision bound achievable withGaussian probes.We identify
the optimal input probe state among all Gaussian states (includingmixedGaussian states)with a fixed average
number of probe photons. Such a bound is known forM=2 [47], but is not known forM�3. The proof
strategy taken forM=2 is not helpful forM�3, and it is not a simple generalization of the previous work.

More specifically, wewill consider the setting shown infigure 1: a collection ofM photonicmodes is
employed as a probe to recover the value of an unknown parameterj, which is imprinted on the state of the
probe via the action of a passive (i.e. photon number preserving), Gaussian (i.e. mappingGaussian input into
Gaussian output), unitary transformationUjˆ . Under the assumption that the allowed input densitymatrices r̂
of theMmodes belong to the set M N,( ) of (not necessarily pure)Gaussian states with an average photon
number N , we are interested in the ultimate accuracy in the estimation ofj attainable when having full access to
the output state

U U . 1.1r r=j j jˆ ˆ ˆ ˆ ( )†

Ourmain result consists in showing that, irrespective of the explicit formofUjˆ , theminimumvalue of the
uncertainty dj on the estimation ofj is bounded frombelow by theHeisenberg-like scaling

N1 . 1.2min dj ( )

To this end, we shall focus on theQFI F j r( ∣ ˆ ) of the problem,which, via the quantumCramér–Rao inequality
[1, 4, 85–90], sets a universal bound on mindj that is independent of the adoptedmeasurement procedure,

F

1
. 1.3min dj

j r( ∣ ˆ )
( )

Wehence prove(1.2) by showing that themaximumvalue of F j r( ∣ ˆ ) attainable on the set M N,( ) is bounded
by a quantity which scales quadratically in N , namely,

F g N N M N8 1 , , . 1.42 j r r+ " Îj ( ∣ ˆ ) ( ) ˆ ( ) ( )

Here, gj  is the spectral normof theHermitianmatrix

g U
U

i
d

d
, 1.5

j
=j j

j ( )†

withUj being the unitarymatrix describing the circuit, defined in(2.2), and is independent of the input state r̂.
Moreover, we show that the bound(1.4) is sharp and can be saturated. In fact, we identify the optimal states

within M N,( ) that saturate the inequality(1.4): they are pure states opt opt optr y y= ñá∣ ∣given in(3.31).We

note that, apart from some special cases, such optimal vectors opty ñ∣ generally depend on the variablej, whose
unknown valuewewish to determine. Therefore, the possibility of using this optimal input state for achieving
the bound is not straightforward, andwould require in practice the use of iterative procedures with a sequence of
input states that approximate the optimal state. Anyway, the optimal state opty ñ∣ enables us to reach the upper
bound(1.4).

The paper is organized as follows. Themodel and the estimation problem are set up in section 2. In section 3,
themaximal precision achievable by aGaussian probe is found, first for pureGaussian states and then formixed
Gaussian states.Moreover, we explicitly find the optimal states that achieve themaximal precision. Two
differentmeasurement schemes are presented in section 4.We look at a few simple examples in section 5.

Figure 1.The generic passive linear optical circuitUjˆ withM input ports andM output ports. Our problem is to estimate a parameter
j contained in the circuitUjˆ , by sending probe photons through it andmeasuring its output.Wewill restrict ourselves toGaussian
input states r̂ with a given average number of probe photons N Ná ñ =ˆ , amongwhichwe identify the best Gaussian states reducing
the accuracy limit in the estimation ofj asmuch as possible.
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Furthermore, in section 6, we exhibit the optimal sequential strategy for the estimationwhen several target
circuits, togetherwith ancillamodes, are allowed to be used. A summary of the present work is given in section 7.
We add four appendices, containing some technical tools and proofs. In appendix Awe collect some results on
Gaussian states and operations, in appendix Bwe show the derivation of a formula for theQFI, in appendix Cwe
prove some inequalities onHermitianmatrices used in the solution of the optimization problems, and
appendixD contains the proof of the optimality of themeasurement scheme presented in section 4.

2. Themodel

Let us consider a set ofM bosonicmodes described by the operators amˆ and amˆ † satisfying the canonical
commutation relations

a a a a m n M, 0, , , 1, , . 2.1m n m n mnd= = = ¼[ ˆ ˆ ] [ ˆ ˆ ] ( ) ( )†

The passiveGaussian unitaryUjˆ offigure 1 is defined by themapping [82, 84]

U a U U a m M1, , , 2.2m
n

M

mn n
1

å= = ¼j j j
=

ˆ ˆ ˆ ( ) ˆ ( ) ( )†

or simplywritten as a aU U U=j j jˆ ˆ ˆ ˆ†
with a a aM

T
1= ˆ ( ˆ ˆ ) , whereUj is anM×M unitarymatrix, whose

functional dependence uponj is assumed to be smooth.We remind that this kind of transformation preserves
the total number of photons of the system, i.e.

U NU N N a a, , 2.3
m

M

m m
1

å= =j j
=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

and can be constructed by using beam splitters and phase shifters.
Our problem is to estimate the actual value of the parameterj embedded inUjˆ by probing the output state

rjˆ in(1.1). Consider hence a generic positive operator-valuedmeasure (POVM) s s = P{ ˆ } [91, 92] producing
measurement outcomes swith probabilities

p s Tr . 2.4sj r= P j( ∣ ) ( ˆ ˆ ) ( )

TheCramér–Rao inequality [1, 4, 85–90] establishes that any attempt at estimatingj from the values of s is
characterized by an uncertainty

F

1

,
, 2.5


dj

j r( ∣ ˆ )
( )

with

F p s p s, ln 2.6
s

2

 åj r j
j

j=
¶
¶

⎛
⎝⎜

⎞
⎠⎟( ∣ ˆ ) ( ∣ ) ( ∣ ) ( )

being the Fisher information (FI) of the process. A stronger, universal bound on the attainable estimation error
can nowbe obtained by optimizing the right-hand side of(2.5)with respect to all possible POVMs  . This
yields the quantumCramér–Rao inequality(1.3), with

F Fmax , 2.7


j r j r=( ∣ ˆ ) ( ∣ ˆ ) ( )

being theQFI of the problem,which by construction depends only upon the input state r̂ and the circuitUjˆ
[1, 4, 85–90]. Themaximization in(2.7) can be analytically solved, yielding the following compact expression

F LTr , 2.8
2j r r= j j( ∣ ˆ ) ( ˆ ˆ ) ( )

with Ljˆ being aHermitian operator called symmetric logarithmic derivative (SLD), satisfying

L L
d

d

1

2
. 2.9

r

j
r r= +j

j j j j
ˆ

( ˆ ˆ ˆ ˆ ) ( )

The goal of the present work is to optimize the value of theQFI F j r( ∣ ˆ ) in(2.8)with respect to a special class
of allowed input states r̂. In particular, we shall restrict the analysis to the set M N,( ) ofM-modeGaussian
states with afixed average photon number N , i.e.

N NTr . 2.10r =( ˆ ˆ ) ( )

This last condition ismotivated by the fact that it is not realistic to consider probing signals with unbounded
input energy. It turns out that for generic (non-Gaussian) input states the constraint(2.10) is not strong enough
to keep theQFI F j r( ∣ ˆ ) finite (see for instance [47], where, for the casewithM= 2 inputmodes, obtaining finite

3
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optimal values for F j r( ∣ ˆ ) requires to impose an extra condition on the variance of N̂ on ;r̂ see also [27]), yet for
Gaussian inputs this suffices and theQFI F j r( ∣ ˆ ) isfinite under the constraint(2.10).

3.Optimization ofQFI

As recapitulated in appendix A, an input state r̂ belonging to theGaussian set M N,( ) is fully characterized by
a ( M M2 2´ real, symmetric, and positive-definite) covariancematrixΓwithmatrix elements

z z z z m n M
1

2
, , 1, , 2 3.1mn m n m nG = á ñ - á ñá ñ = ¼{ˆ ˆ } ˆ ˆ ( ) ( )

and a ( M2 real column) displacement vector

d z 3.2= á ñˆ ( )

which satisfy the constraint(2.10), i.e.

d N
1

2
Tr

1

2

1

2
, 3.32G - + =⎜ ⎟⎛

⎝
⎞
⎠ ( )

where z x y T=ˆ ( ˆ ˆ) is the quadrature operator vector with x a a 2m m m= +ˆ ( ˆ ˆ )† and y a a 2 im m m= -ˆ ( ˆ ˆ )†

(m M1, ,= ¼ ), and á ñ denotes the expectation value on r̂. Furthermore, sinceUjˆ is a passiveGaussian
unitary, the associated output state rjˆ obtained as(1.1) also belongs to M N,( ), and its covariancematrix Gj
and displacement vector dj depend linearly onΓ and d , as

d dR R R, , 3.4TG = G =j j j j j ( )

whereRj is the orthogonalmatrix rotating the quadrature operators according toUjˆ (see appendix A). Under
this condition, the SLD fulfilling(2.9) can be expressed as [29]

z d z d
d

z dL Tr , 3.5T
T

1

j
= - L - +

¶

¶
G - - L Gj j j j

j
j j j j
-ˆ ( ˆ ) ( ˆ ) ( ˆ ) ( ) ( )

and, accordingly, theQFI reads [29, 93]

d d
F Tr . 3.6

T
1j r

j j j
= L

¶G

¶
+

¶

¶
G

¶

¶
j

j j
j

j-
⎛
⎝⎜

⎞
⎠⎟( ∣ ˆ ) ( )

Here, Lj is the solution to

J J J J
J

i 2 i i 2 i
2 i

, 3.71 1
1

j
L - G L G = -

¶ G

¶
j j j j

j- -
-

( ) ( )
( )

( )

with J being the M M2 2´ matrix

J 0
0

, 3.8


=
-( ) ( )

known as the symplectic form.
In the remainder of this section, we shall employ these expressions to derive the inequality(1.4). The analysis

will be split into two parts, addressing first the case of the pure elements of M N,( ) and then the case of the
mixed ones. For thosewho are familiar withQFI optimization problems, this proceduremight sound
unnecessary. Indeed, due to the convexity ofQFI [4, 94], it is well-known that pure input states performbetter
thanmixed input states formetrological purposes.We cannot, however, apply the same argument in the present
case, and it is not obvious atfirst glancewhether the best state is a pure state. Indeed, even though it is true that
anymixedGaussian state can be decomposed as a convex sumof pureGaussian states, each of the constituent of
such decomposition does not necessarily satisfy the constraint(2.10) on the photon number in general. In short,
theGaussian set M N,( ) is not a convex set, and therefore we cannot use the convexity argument to optimize
theQFI. As a consequence, for the problemwe are considering here, we have to address explicitly the case of
mixed input states.

3.1.Optimization among pureGaussian inputs
For a pureGaussian state M N,yñ Î∣ ( ), the symplectic eigenvalues of its covariancematrixΓ (i.e. the
parameters , , M1s s¼{ } in the canonical decomposition (A.10) ofΓ) are all equal to 1 2ms = (m=1,K,M).
Accordingly, introducing a M M2 2´ symplectic orthogonalmatrixR (i.e. an orthogonalmatrixR satisfying
R JR JT = ) and anM×M diagonal positivematrix r, the covariancematrixΓ can be decomposed as (see the
canonical decomposition (A.10) ofΓ of a generic (mixed)Gaussian state)

4

New J. Phys. 21 (2019) 033014 TMatsubara et al



RQ R R R
1

2

1

2
e 0
0 e

, 3.9T
r

r
T2

2

G = = -( ) ( )

while the constraint(3.3) on the average number becomes

dr NTr sinh
1

2
, 3.102 2+ =( ) ( )

with d being the displacement vector of yñ∣ .
Exactly the same properties hold for the covariancematrix Gj and the displacement dj of the associated

output counterpart(1.1) of yñ∣ , which of course is also a pure element of the set M N,( ). Under this premise,
the equation (3.7) for Lj can be solved explicitly, yielding

1

4
. 3.11

1

j
L = -

¶G

¶
j

j
-

( )

TheQFI(3.6) is then reduced to [29]

d d
F

1

4
Tr , 3.12

T
1

2
1j r

j j j
= G

¶G

¶
+

¶

¶
G

¶

¶j
j j

j
j- -

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ∣ ˆ ) ( )

with the SLD (3.5) given by

z d z d
d

z dL
1

4

1

4
Tr . 3.13T

T1
1 1

j j j
=- -

¶G

¶
- +

¶

¶
G - - G

¶G

¶
j j

j
j

j
j j j

j
-

- -
⎛
⎝⎜

⎞
⎠⎟

ˆ ( ˆ ) ( ˆ ) ( ˆ ) ( )

A further simplification can then be obtained by invoking(3.4), which expresses the functional dependence of
Gj and dj in terms of the symplectic orthogonalmatrixRj representing the passiveGaussian unitary

transformationUjˆ . Specifically, we get

d dF G G G G G
1

2
Tr , 3.14T1 2 1j r = G G - + Gj j j j j

- -( ∣ ˆ ) ( ) ( )

and

z d z d d z dL R G R G R
i

4
, i , 3.15T T T T T1 1= - G - + G -j j j j j j

- -ˆ ( ˆ ) [ ]( ˆ ) ( ˆ ) ( )

where

G R
R

i
d

d
3.16T

j
=j j

j ( )

is the generator ofRj.
Our problem is, therefore, tomaximize theQFI F j r( ∣ ˆ ) in(3.14)with respect toΓ and d , keeping inmind

the parameterization(3.9) and the constraint(3.10). For this purpose, we start bounding the first term F 1 j r( ∣ ˆ )( )

in the sum(3.14). By plugging the symplectic decomposition(3.9) ofΓ, and using the parameterization(A.12)
forR as well as the structure(A.21) of the generatorGj, we get (see appendix B for the derivation)

F G G G

U g U r U g U r U g U r g

1

2
Tr

Tr cosh 2 Tr sinh 2 sinh 2 Tr 3.17T

1 1 2

2 2

^j r = G G -

= + -

j j j

j j j j

-

* *

( ∣ ) ( )

[( ) ] ( ) ( ) ( )

( )

† †

where gj is the generator of the unitarymatrixUj as introduced in (1.5) and involved in the structure ofGj in
(A.21), whileU is the unitarymatrix appearing in the parameterization ofR in (A.12). This quantity can be
bounded from above as

F U g U r U g U r g

U g U r

g r

Tr cosh 2 Tr sinh 2 Tr

2Tr sinh 2

2 Tr sinh 2 , 3.18

1 2 2 2 2 2

2 2

2 2

^ 



j r + -

=
j j j

j

j 

( ∣ ) [( ) ] [( ) ] ( )

[( ) ]

( )

( ) † †

†

wherewe have used the inequalities

AB A BTr Tr , 3.192 2 2[( ) ] ( ) ( )
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A B AB A BTr Tr , 3.20T T 2 2( ) ( ) ( )

valid forHermitianmatricesA andB, and

AB A BTr Tr , 3.21  ( ) ( )

valid forHermitian andpositive semi-definitematricesA andB (see appendixC for their proofs).Note that gj is
Hermitian andhence U g U 2

j( )† is positive semi-definite, and its norm is givenby U g U g2 2=j j   ( )† . The

equality in(3.19)holds if andonly if A B, 0=[ ] , while the equality in(3.20) is obtained if andonly if AB AB T= ( ) .
The second term F 2 j r( ∣ ˆ )( ) in(3.14), on the other hand, can be bounded from above as

d d

d d

d

d

d

F G G

G RQ R G

G RQ R G

G Q

g

2

2

2

2 e , 3.22

T

T T

T

r

2 1

2

2 2

2 2 2

2 2 2




j r = G

=

=

j j

j j

j j

j

j

-

-

-

-

 
   
   

( ∣ ˆ )

( )

( )

wherewe have assumed, without loss of generality, that r 0m  (m=1,K,M).
Exploiting these results, we can then bound theQFI(3.14) as

d

d

d

d

d

F g r

g r r

g r r r

g r r r

g r r r

2 Tr sinh 2 e

2 4 Tr sinh 4 Tr sinh e

2 4 Tr sinh 4 Tr sinh 2 cosh 2

2 4 Tr sinh 4 Tr sinh 4 sinh 2

2 4 Tr sinh 4 Tr sinh 4 Tr sinh 2 , 3.23

r

r

2 2 2 2

2 2 4 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

^ 





j r +

= + +

+ +

= + + +

+ + +

j

j

j

j

j

   

   

   

   

 

( ∣ ) ( )

( )

[ ( ) ]

[ ( ) ( ) ]

[ ( ) ( ) ] ( )

wherewe have used the inequality

A ATr Tr , 3.242 2( ) ( ) ( )

valid for a positive semi-definitematrixA, which is saturated if and only if only one of the eigenvalues ofA is
nonvanishing and it is not degenerate (see appendix C for its proof). Imposing hence the constraint(3.10), this
finally gives us

dF g N N g N N8 1
1

4
8 1 , 3.252 4 2 j r + - +j j   ⎜ ⎟⎛

⎝
⎞
⎠( ∣ ˆ ) ( ) ( ) ( )

which proves the inequality(1.4) for the case of pure inputGaussian states. This result reproduces the bounds
previously known forM=1 (single-mode phase shift) [14, 19, 34, 40, 59] and forM=2 (general two-mode
passive linear circuits) [47], and generalizes them to M 3 .

3.1.1. Optimal states
The above derivation of the bound not only proves that the inequality(1.4)holds at least for the pure input states
of the set M N,( ), but also that the bound is saturated by a proper choice of the inputs, i.e.by properly tuning
the parameters inΓ and d . Let us identify such input states.

(i) In order to saturate the last inequality in(3.25), the necessary and sufficient condition is

d 0. 3.26= ( )

(ii) Then, the last inequality in(3.23) is automatically saturated, and the second inequality in(3.23) is saturated
if and only if only one (e.g. the first) of the squeezing parameters r r, , M1 ¼{ }of thematrix r is nonvanishing.
Let us put the nonvanishing squeezing parameter r 00 >( ) in thefirstmode,

r

r
0

0

. 3.27

0

=


⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

(iii) The equality in(3.22) is trivially satisfied, since d is required to be vanishing in(3.26).

(iv) The last inequality in(3.18) is saturated if and only if the vector 1 0 0 T( ) , corresponding to the first
mode, belongs to the eigenspace of U g U 2

j( )† associatedwith its largest eigenvalue. The choice

6
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U V , 3.28= j ( )

withVj introduced in(A.23) to diagonalize gj, suffices to fulfill this condition. Note that the eigenvalues
, , M1e e¼{ }of gj in(A.23) are ordered in descending order in theirmagnitudes.

(v) Thefirst inequality in(3.18) is saturated if and only if both conditions

U g U r

U g U r U g U r

, cosh 2 0,

sinh 2 sinh 2
3.29

T

=

=
j

j j

⎪

⎪

⎧
⎨
⎩

[ ]

( )
( )

†

† †

are satisfied: recall the conditions for the equalities in(3.19) and(3.20). These conditions are already
satisfiedwith the above tunings of r andU in(3.27) and(3.28).

(vi) Finally, since d 0= , all the photons are spent for the squeezing r0 in the first mode. The constraint on the
mean photon number N in(3.10) yields

r N Nln 1 . 3.300 = + +( ) ( )

Putting all these conditions together, it follows that the state achieving the upper bound in(3.25) among the
pureGaussian input states of M N,( ) is a single-mode squeezed vacuumwith zero displacement(3.26) and a
squeezing r given by(3.27) and (3.30), and rotated by the unitary(3.28), i.e.the vector

V S r 0 , 3.31opt 1 0y ñ = ñj∣ ˆ ˆ ( )∣ ( )

with 0ñ∣ the vacuum state and S e a a
1

1
2 1

2
1
2*x = x x-ˆ ( ) ( ˆ ˆ )†
the squeezing operator on the firstmode.

A couple of comments are in order. First, recall thatVĵ is the passive linear transformation characterized by

a aV V V=j j jˆ ˆ ˆ ˆ†
with theM×M unitarymatrixVj diagonalizing the generator gj of the circuit as in(A.23). It

redefines themodes of the system in away that allows us to describe the optimal state as a configurationwith all
the photons injected into thefirstmode only (i.e. the onewith the largest (inmagnitude) eigenvalue of gj).We
stress, however, that even after this ‘reorganization’ themodes other than the first one are not free from the
target parameterj in general, due to the subsequent propagation induced byUjˆ , and the problem is not reduced
to a single-mode problem. It remains intrinsically amultimode problem, andwe cannot simply apply the results
known for single-mode estimation problems. Second, as indicated by the notation, the transformation Vĵmay

depend upon the target parameterj for a generic choice ofUjˆ , and somay do the optimal state opty ñ∣ . Therefore,
if that is the case, it would not be easy to prepare this optimal state opty ñ∣ without knowing the value of the
parameterj, whichwe intend to estimate, and an adaptive strategy updating the estimate ofjwould be required
in practice.

3.2.Optimization amongmixedGaussian inputs
Wehave just shown that the inequality(1.4) holds at least for the pure elements of the set M N,( ). Here, we are
going to generalize this by showing that the same result holds for themixed elements of the set M N,( ).

Wefirst point out that anymixedGaussian state d,rGˆ , characterized by a covariancematrixΓ and a
displacement d , can be expressed as amixture of pureGaussian states d,0

r xG -ˆ as

Pd 3.32d d
M

,
2

,0ò x xr r= xG G G -ˆ ( ) ˆ ( )

with aGaussian probability distribution

P
e

2 det
. 3.33

M2
0

T1
2 0

1

x
p

=
G - G

x x

G

- G-G -

( )
( ) ( )

( )
( )

In these expressions, 0G is the pure state covariancematrix obtained by taking the symplectic decomposi-
tion(A.10) of the original covariancematrixΓ and replacing all the symplectic eigenvalues , , M1s s¼{ }of the
latter with 1/2, i.e.

RQ R
1

2
, 3.34T

0
2G = ( )

keeping the squeezingmatrixQ and the symplectic orthogonalmatrixR ofΓ unchanged. By construction, it
follows that

0, 3.350 G - G ( )

since all the symplectic eigenvalues , , M1s s¼{ }of anyΓ are greater than or equal to 1/2. The convex
decomposition(3.32) can be verified by looking at the characteristic function d, hcG ( ) for theGaussian state d,rGˆ
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in(A.8): by direct computation, we can check that

Pd , 3.36d d
M2

, ,0ò x x h hc c=xG G - G( ) ( ) ( ) ( )

which is equivalent to (3.32). Note that the pureGaussian states d,0
r xG -ˆ in the convex sum(3.32) do not satisfy

the constraint(3.3) on themean photon number in general, while the originalmixed state d,rGˆ should do. Yet,
by using the convexity of theQFI and the last inequality appearing in(3.23), which holds for pureGaussian
states, and by recalling the expressions for themean photon number in(3.3) and(3.10), we canwrite

d

d d

d

d d

d

F P F

g P

g

g N N

g N N

d

8 d
1

2
Tr

1

2

1

4
Tr

1

2

1

4

8
1

2
Tr

1

2

1

4
Tr

1

2

1

4
Tr

8 1
1

4
Tr

8 1 . 3.37

d d
M

M

,
2

,

2 2
0

2

0
2

2
4

2 2

2
2

0
2 2

2
0

2 2

2

0






ò

ò

x x

x x x

x x

j r j r

G - + -

+ G - + - - -

= G - +

+ G - + - G - G +

= + - G - G +

+

x

j

j

j

j

G G G -

G 

 

 

 

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭
⎛
⎝

⎞
⎠

( ∣ ˆ ) ( ) ( ∣ ˆ )

( ) ( )

( ) ( )

[ ( ) ]

( ) [ ( ) ]

( ) ( )

For thefirst equality, we have used themoments of theGaussian distribution P xG( ) in (3.33), i.e.,
Pd 0M2ò x x x =G( ) and Pd TrM2 2

0ò x x x = G - GG( ) ( ). The inequality(3.37) proves that(1.4) holds irrespec-
tive of the purity of the input states. Furthermore, we notice that the last inequality is saturated if and only if

dTr 0 and 0. 3.380G - G = =( ) ( )
Due to(3.35), thefirst condition requires

, 3.390G = G ( )
implying that the only elements of M N,( )which saturate the bound(1.4) are the pure ones, given in(3.31).

4.Measurements

In this section, we focus on themeasurement  that attains themaximumon the right-hand side of(2.7)
yielding theQFI. As it is the case for the optimal input state opty ñ∣ analyzed in the previous section, we shall see
that the optimal POVMalso exhibits in general a nontrivial dependence on the target parameterj, making it
problematic to use it in realistic situations. Still, determining the optimal POVMexplicitly is a well-defined
problemwhich deserves to be addressed.

As a starting point of our study, we use thewell-known fact that a POVM  thatmaximizes the FI of the
problem can always be constructed by looking at the set of the eigenprojections of the SLD Lj of themodel [89].
We have given an SLD Lj for a generic Gaussian state rjˆ in(3.5), which for a pureGaussian state reduces
to(3.13). For our problem, inwhich the parameterj is embedded in the probe state via a passive linear circuit, it
reduces further to(3.15), which depends on the input state, i.e.its covariancematrixΓ and displacement d , and
the generatorGj of the circuit. Specifying this expression in the case of the optimal input opty ñ∣ in(3.31), we get

L r U V a a V Ui sinh 2 , 4.11 0 1
2

1
2e= -j j j j j

ˆ ˆ ˆ ( ˆ ˆ ) ˆ ˆ ( )† † †

with a1̂being the annihilation operator of the first probingmode, and 1e being the largest (inmagnitude)
eigenvalue ofGj, which is put in thefirstmode after the diagonalization ofGj byVĵ (see (A.21)–(A.24); recall
also the discussion around (3.28)).

Notice, however, that SLD is not uniquewhen the density operator rjˆ is not of full rank: see(2.9). Indeed,
there is a different and simple construction of SLD for a pure state. Since a pure state rjˆ satisfies 2r r=j jˆ ˆ , its

derivative yields an SLD L 2d d^ r̂ j=j j
¢

/ , which for our problemwith the optimal Gaussian input state opty ñ∣
reads

L U G U2i , , 4.2opt opty y¢ = - ñáj j j j
ˆ ˆ [ ˆ ∣ ∣] ˆ ( )†
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where

G U
U

i
d

d
4.3

j
=j j

jˆ ˆ
ˆ

( )†

is the generator of the target circuitUjˆ , which is quadratic in the canonical operators â and â†. This SLD L ¢
j

ˆ is of
rank 2, and its eigenbasis includes the two orthogonal eigenvectors

U
1

2
i 4.4opt optf y yñ = ñ ñj

^∣ ˆ (∣ ∣ ) ( )

belonging to the twononvanishing eigenvalues G2 opt D j( ) , where

G
G G

1
, 4.5opt

opt
opt opty yñ =

D
- á ñ ñ

j
j j

^∣
( )

( ˆ ˆ )∣ ( )

with G Gopt opt opt
^ ^y y=j j⟨ ⟩ ⟨ ∣ ∣ ⟩ and G G Gopt

2 2
opt opt

2D = á ñ - á ñj j j( ) ˆ ˆ , is a state orthogonal to opty ñ∣ , i.e.

 0opt opty yá ñ =^∣ . Therefore, themeasurement  with the POVM

, , 4.6f f f f f f f fñá ñá - ñá - ñá+ + - - + + - -{∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣} ( )

will achieve the upper bound of theQFI in(1.4). This is a generalization of the result given in [14], from a single-
mode phase shift to a genericmultimode passive linear circuit.

Another example of an optimal POVMcan be obtained by considering the scheme depicted infigure 2 (the
circuit infigure 2 includes both the preparation stage for the optimal input state opty ñ∣ in (3.31) and the probing
stage together with the circuitUjˆ ). Themeasurement is tofirst undo the circuitUjˆ as well as the transformation

Vĵ applied to prepare the optimal input state opty ñ∣ in(3.31), and then to perform the homodynemeasurement

on thefirstmode along the quadrature x x x ye e cos sina a a a
1

i
1

i
1 1

1 1 1 1 q q= = +q q q-ˆ ˆ ˆ ˆ( ) ˆ ˆ ˆ ˆ† †
with tan e r1 2 0q =  - .

Accordingly, the elements xP{ ˆ }of the POVM for thismeasurement can be expressed as

U V x x V Ue e , 4.7x
a a a ai i1 1 1 1^ ^ ^ ^ ^^ ^ ^ ^ P = Ä Ä Äj j
q q

j j
-(∣ ⟩⟨ ∣ ) ( )† †† †

where xñ∣ is the eigenvector of the quadrature operator x1̂ such that x x x x1 ñ = ñˆ ∣ ∣ , normalized as
x x x xdá ¢ñ = - ¢∣ ( ). Indeed, the FI by this POVM xP{ ˆ } for the optimal input opty ñ∣ in(3.31) coincides with the
upper bound of theQFI in(1.4). See appendixD for the proof. This is a generalization of the result given in [19],
from a single-mode phase shift to a genericmultimode passive linear circuit.

5. Simple examples

Let us look at a few simple examples, i.e.the two- and three-mode circuits shown infigure 3, to see in particular
how the unitaryVĵ involved in the optimal inputGaussian state(3.31) looks like. The optimal inputGaussian
states opty ñ∣ and themaximalQFIs F optj y ñ( ∣∣ ) for those examples are summarized in table 1.

Figure 2.Anoverall circuit to achieve the ultimate precision bound in(1.4), including the preparation stage for the optimal input
state opty ñ∣ in(3.31) and themeasurement stage, where x xñá∣ ∣ represents the homodynemeasurement on thefirstmode along the
quadrature x a a 21 1 1= +ˆ ( ˆ ˆ )† and the phase shift θ is tuned to tan e r1 2 0q =  - . Note thatj ofUjˆ is the target parameter to be

estimated, which is not under our control, while j¢ of Vj¢ˆ ,U
1

j¢
-ˆ , and V

1
j¢
-ˆ is decided by ourselves. Tuning j¢ to the true valuej

provides uswith the optimal strategy. The perfect cancellation ofUjˆ byU
1

j¢
-ˆ tells us that our guessed value j¢ perfectlymatches the

true valuej, and a small deviation can be sensitively detected by the strategy shownhere with j j¢ = .
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5.1.Mach-Zehnder (MZ) interferometer I
Wefirst consider theMZ interferometer infigure 3(a). Our target is the phase shiftj in one of the two arms of
the interferometer. The state of the probe photons going through thisMZ interferometer is transformed by the
unitary transformation

U U Ue , 5.1a a
12 4

i
12 4

1 1=j
p j p-( ) ( )ˆ ˆ ˆ ( )† ˆ ˆ†

where

U e 5.2mn
a a a an m m nq = q -ˆ ( ) ( )( ˆ ˆ ˆ ˆ )† †

describes a beam splitter formodesm and n, which acts on the canonical operators as

U a U

U a U

a
a

U
a
a

cos sin
sin cos

, 5.3mn m mn

mn n mn

m

n
mn

m

n

q q

q q

q q
q q

q= - =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )ˆ ( ) ˆ ˆ ( )

ˆ ( ) ˆ ˆ ( )

ˆ
ˆ ( ) ˆ

ˆ ( )
†

†

with θ characterizing its transmissivity. In particular,Umn 4

p( )ˆ describes a balanced beam splitter. The generator

of this two-mode circuit reads

G U
U

U a a Ui
d

d
. 5.412 4 1 1 12 4j

= =j j
j p p( ) ( )ˆ ˆ

ˆ
ˆ ˆ ˆ ˆ ( )† † †

The unitarymatrixUj related to the unitary transformationUjˆ through(2.2) is given by

U U Ue 0
0 1

, 5.512 4

i
12 4

=j
p j p-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )†

Figure 3. (a)–(b)Twodifferent arrangements of theMZ interferometer. (c)Two-modemixing circuit. (d)Three-modemixing circuit.

Table 1.The optimalGaussian input state opty ñ∣ and themaximalQFI F optj y ñ( ∣∣ ) for
the estimation of the parameterj in each of the circuits shown infigure 3.

opty ñ∣ F optj y ñ( ∣∣ )

MZ interferometer I U S r 012 4 1 0 ñp( )ˆ ˆ ( )∣†
N N8 1+( )

MZ interferometer II U S r 012 4 1 0 ñp( )ˆ ˆ ( )∣†
N N2 1+( )

Two-modemixing U S re 0a a a a
12 4 1 0

i
4 1 1 2 2 ñp-p ( )ˆ ˆ ( )∣( ˆ ˆ ˆ ˆ ) †† †

N N8 1+( )
Three-modemixing U U U S re 0a a

12 31 4 12 4 1 0
i

2 2 2j ñp pp ( ) ( )ˆ ( ) ˆ ˆ ˆ ( )∣† ˆ ˆ†
N N16 1+( )
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and its generator reads

g U
U

U Ui
d

d
1 0
0 0

. 5.612 4 12 4j
= =j j

j p p( )( ) ( ) ( )† †

We thus have

g 1. 5.7=j  ( )

The unitary operatorVĵ corresponding to the unitarymatrix diagonalizing gj in (5.6) (compare it with (A.23)) is

V U . 5.812 4
=j

p( )ˆ ˆ ( )†

Therefore, the optimal Gaussian input state(3.31) for thisMZ interferometer is given by

U S r 0 , 5.9opt 12 4 1 0y ñ = ñp( )∣ ˆ ˆ ( )∣ ( )†

with the squeezing parameter r0 given in(3.30). By this choice, theQFI reaches the upper bound in(1.4),
yielding

F N N8 1 . 5.10optj y ñ = +( ∣∣ ) ( ) ( )

Notice that, in this case, the optimal input state opty ñ∣ in(5.9) is independent of the target parameterj. Note
also that the same expression as(5.10) is found e.g.in [14, 19, 34, 40, 59], but it is found there as the optimalQFI
for the estimation of the single-mode phase shift with aGaussian probe.Here, (5.10) is presented as the optimal
QFI for the two-mode circuit infigure 3(a).

The unitary transformationU12 4

p( )ˆ †
in the optimal input state(5.9) ‘unfolds’ thefirst beam splitterU12 4

p( )ˆ of

theMZ interferometer. Thus, the best strategy effectively consists in sending the single-mode squeezed vacuum

r S r 00 1 0ñ = ñ∣ ˆ ( )∣ directly to the phase shifter without thefirst beam splitterU12 4

p( )ˆ . The second beam splitter

U12 4

p( )ˆ †
of theMZ interferometer is also unfolded byU12 4

p( )ˆ performed in the optimalmeasurements (see (4.4)

and (4.7),whereUjˆ containsU12 4

p( )ˆ †
, whoseHermitian conjugateU12 4

p( )ˆ inUj
ˆ †

acts on the output probe state

first in themeasurement process, canceling the second beam splitterU12 4

p( )ˆ †
).

5.2.MZ interferometer II
Let us look at theMZ interferometer in the slightly different configuration shown infigure 3(b). This setup
induces the unitary transformation

U U Ue , 5.11a a a a
12 4

i
12 4

2 1 1 2 2=j
p p- -j( ) ( )ˆ ˆ ˆ ( )† ( ˆ ˆ ˆ ˆ )† †

and its generator is given by

G U a a a a U
1

2
. 5.1212 4 1 1 2 2 12 4

= -j
p p( ) ( )ˆ ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( )† † †

The unitarymatrixUj corresponding to the unitary operatorUjˆ in (5.11) is given by

U U Ue 0
0 e

, 5.1312 4

i 2

i 2 12 4
=j

p j

j
p-⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )†

while theHermitianmatrix gj corresponding to the generator Gjˆ in (5.12) reads

g U U
1 2 0

0 1 2
. 5.1412 4 12 4

=
-j

p p⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )† /

/

We thus have

g
1

2
. 5.15=j  ( )

The optimalGaussian input state for thisMZ interferometer is the same as the one given in(5.9), while the
maximalQFI achievable by the optimal input state is

F N N2 1 . 5.16optj y ñ = +( ∣∣ ) ( ) ( )

ThisQFI is lower than the previous one in(5.10) for the otherMZ interferometer, even though the relative
phasesj to be estimated in the twoMZ interferometers are the same. This is because injecting all the resources to
one of the two arms of the interferometer is optimal if we stick toGaussian probes, and only one of the two phase
shifters infigure 3(b) is probed. It would beworth noticing that our estimation problem implicitly assumes the
presence of an external phase reference.Without the reference beam, the twoMZ interferometers infigures 3(a)
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and (b) are equivalent, since only the relative phase between the two armsmatters in such a case. See the
discussion in [26].

5.3. Two-modemixing
Let us look at another two-mode example: the estimation of the parameterj characterizing the transmissivity of
the beam splitter represented by the unitary transformation

U U . 5.1712 j=jˆ ˆ ( ) ( )

See figure 3(c). Its generator reads

G a a a ai , 5.182 1 1 2= -jˆ ( ˆ ˆ ˆ ˆ ) ( )† †

which can be rewritten as

G U a a a a Ue e . 5.19a a a a a a a a
12 4 1 1 2 2 12 4

i
4 1 1 2 2

i
4 1 1 2 2= -j

p p- - -p p( ) ( )ˆ ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( )( ˆ ˆ ˆ ˆ ) † † † ( ˆ ˆ ˆ ˆ )† † † †

It is unitarily equivalent to the generator Gjˆ in(5.12), apart from the numerical proportionality constant 1/2.
We thus have

g 1, 5.20=j  ( )

and themaximalQFI is given by

F N N8 1 . 5.21optj y ñ = +( ∣∣ ) ( ) ( )

This is reached by the input state

U S re 0 , 5.22a a a a
opt 12 4 1 0

i
4 1 1 2 2y ñ = ñp-p ( )∣ ˆ ˆ ( )∣ ( )( ˆ ˆ ˆ ˆ ) †† †

with the squeezing parameter r0 given in(3.30). This optimal state is again independent of the target
parameterj.

The same estimation problem, i.e.the estimation ofj in the two-modemixing channel (5.17), is studied in
[59], but themaximalQFI (5.21) and the optimalGaussian input state (5.22) are not identified there.

5.4. Three-modemixing
Let us also look at a three-mode example.We consider the circuit shown infigure 3(d), composed of two beam
splitters of the same transmissivity characterized by the parameterj. Our problem is to estimate the single
parameterj in the three-modemixing circuit represented by the unitary transformation

U U U . 5.2323 12j j=jˆ ˆ ( ) ˆ ( ) ( )

Its generator reads

G U a a a a a a a a U

V a a a a V

i

2 , 5.24

12 3 2 2 3 2 1 1 2 12

1 1 2 2

j j= - + -

= -

j

j j

ˆ ˆ ( )( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ˆ ( )
ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( )

† † † † †

† † †

with

V U U Ue . 5.25a a
12 31 4 12 4

i
2 2 2j=j

p pp ( ) ( )ˆ ˆ ( ) ˆ ˆ ( )† ˆ ˆ†

Wehave

g 2 , 5.26=j  ( )

and themaximalQFI is given by

F N N16 1 . 5.27optj y ñ = +( ∣∣ ) ( ) ( )

This is reached by the input state

U U U S re 0 , 5.28a a
opt 12 31 4 12 4 1 0

i
2 2 2y jñ = ñp pp ( ) ( )∣ ˆ ( ) ˆ ˆ ˆ ( )∣ ( )† ˆ ˆ†

with the squeezing parameter r0 given in(3.30). In this case, the optimal input state depends on the target
parameterj.

If our guessj¢ is not precise and does notmatch the true valuej, the input state (3.31) and the
measurement, e.g.(4.6) or (4.7), prepared and performedwith the guessed valuej¢ in place ofj (see e.g. the
circuit infigure 2) are not optimal, and the FI for such a nonoptimal probing deviates from themaximalQFI
in(1.4). Sincewe assume that the functional dependence ofUjˆ uponj is smooth, the FI is a smooth function of
j¢, and therefore, the deviation of FI from themaximalQFI is only quadratic around the optimal pointj j¢ = .
In this sense, the FI is robust to a small error in the guess ofj.
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6. Sequential strategy

If we are allowed to usemultiple (identical) target circuitsUjˆ at the same time, we could do better. Suppose that

we are given L identicalM-mode passive linear circuitsUjˆ . A paradigmatic scheme for the quantummetrology is
the parallel scheme infigure 4(a)with an entangled input r̂ [2, 4]. The result in section 3 suggests, however, that,
if we stick toGaussian inputs, this parallel setup does not help improve themaximalQFI found in(1.4), since the
best strategy is to inject all the resources into a single-mode of the overall LM-mode passive linear circuit in
figure 4(a): only one of the L circuits is probedwith the others irrelevant. See(3.31). On the other hand, if we are
allowed to perform some operations U U, , L1 1¼ -{ ˆ ˆ }between the target gatesUjˆ with ancillamodes introduced

as infigure 4(c), we can hope to do better. Let us restrict ourselves to passive linear controls U U, , L1 1¼ -{ ˆ ˆ }, and
seek for the optimal strategy with aGaussian input K N,r Îˆ ( ), where K LM .

The circuit infigure 4(c) is described by the unitary

U U U U U U U . 6.1L 1 2 1 =j j j j j- ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

Note that there are K LM( )modes in total in the overall circuit, and the unitary operatorsUjˆ act only on the

firstMmodes, i.e.U Äjˆ . By abuse of notation,U Äjˆ is simply denoted byUjˆ in(6.1). The overall circuit is a
K-mode passive linear circuit, and the orthogonalmatrixj which rotates the quadrature operators ẑ in phase

space according to the transformation jˆ is given by

W W
0

0
6.2

*





=j

j

j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )†

with

U U U U U U U , 6.3L 1 2 1 =j j j j j-  ( )

whereUj andUℓ ( L1, , 1= ¼ -ℓ ) areK×K unitarymatrices corresponding toU Äjˆ and Ûℓ, respectively.
The quantity relevant to themaximalQFI is the spectral normof the generator of this orthogonal transformation
j (see (1.4)), i.e.the largest (inmagnitude) eigenvalue of

U U U U g U U U Ui
d

d
, 6.4

L

0

1

1 1 


åj
= =j j

j
j j j j j

=

-

  ( )
ℓ

ℓ ℓ
† † † † †

where

g U
U

i
d

d
. 6.5

j
=j j

j ( )†

The spectral normof the generator j is bounded from above as

U U U U g U U U U

U U U U g U U U U L g . 6.6

L

L

0

1

1 1

0

1

1 1





å

å

=

=

j j j j j j

j j j j j j

=

-

=

-

   

      ( )

ℓ
ℓ ℓ

ℓ
ℓ ℓ

† † † †

† † † †

This inequality is saturated if

g U U L, 0 1, , 1 . 6.7= = ¼ -j j ℓ[ ] ( ) ( )ℓ

A sufficient and general solution is given by

U U L1, , 1 6.8= = ¼ -j ℓ( ) ( )ℓ
†

Figure 4.The parallel scheme in (a) is equivalent to the sequential scheme in (b)with the target circuitsUjˆ swapped by SWAP gates,
which is a particular case of the sequential scheme in (c)with generic gates Ûℓ entangling themain probes with additional ancillas.
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(see [95]). By this choice, the generator of the overall circuit jˆ is reduced to Lg =j j, and the upper bound on

theQFI by the sequential strategy with aGaussian input K N,r Îˆ ( ) is given by

L g N N8 1 . 6.92 2 j r +j ( ∣ ˆ ) ( ) ( )

This upper bound is saturated by the input state

0 , 6.10opt optyY ñ = ñ Ä ñ∣ ∣ ∣ ( )

with opty ñ∣ given in(3.31) for thefirstMmodeswhile vacuum for the rest.
The results in(6.8) and(6.10) show that the ancillamodes are not necessary for the optimal strategy.We

note that in general the optimal controls(6.8) and the optimal input state(6.10) depend on the target
parameterj.

7. Summary

Wehave clarified the universal bound(1.4) on the precision of the estimation (QFI) of a parameter embedded in
a genericmultimode passive (photon number preserving) linear optical circuit by usingGaussian probes with a
given average number of probe photons N .We have identified the inputGaussian state(3.31) that yields the
QFI saturating the bound(1.4): it is a single-mode squeezed vacuum in an appropriate basis.We have also found
measurements (POVMs)(4.6) and(4.7) bywhich FI reachesQFI. The best (sequential) strategy whenwe are
givenmultiple identical target circuits and are allowed to apply passive linear controls in betweenwith the help
of an arbitrary number of ancillamodes has been revealed: no ancillamode is actually needed for the best
strategy6.

Even though the optimal input state(3.31) and the optimalmeasurements(4.6) and(4.7), as well as the
optimal controls(6.8) in the sequential strategy, depend on the target parameter to be estimated in general and
adaptive adjustments of the input, themeasurement, and the controls would be required to achieve the precision
bound in practice, the above result shows that the bound is sharp and covers various specific setups composed of
phase shifters and beam splitters, including the standardMZ interferometer, providing the universal bound that
cannot be beaten by anyGaussian inputs and any passive controls.

The present work has focussed on passive linear circuits. Bounds onmore general Gaussianmetrology, for
general Gaussian channels including amplitude-damping channels and channels involving squeezing, etc., have
not been thoroughly understood yet, beyond analyses on specific setups. Entanglement with ancillamodes
would be useful for such generic Gaussianmetrology [17] and it would be interesting to explore.
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AppendixA. Gaussian states and operations

In order to introduce a proper definition of theGaussian set M N,( ), we find it useful to introduce the
quadrature operators xmˆ and ym̂ for each of theMmodes,

x

y
m M1, , . A.1

m
a a

m
a a

2

2 i

m m

m m

^

^

^ ^

^ ^

=

=
= ¼

+

-

⎧
⎨⎪
⎩⎪

( ) ( )

†

†

6
There areworks in the literature which discuss the unnecessity ofmode entanglement [5, 39, 40, 50, 53, 55, 96, 97]. Note, however, that in

thoseworks the probe states are not restricted toGaussian states and in addition just the achievability of theHeisenberg scaling (quadratic in
N ) is discussed. The chosen probe states are not necessarily the optimal ones, even though they actually yieldsQFIs scaling quadratically in
N (their coefficients are not necessarily the optimal). On the other hand, in the present work, we look at the optimal state which yields the
maximalQFI.
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Aligning these operators as a column vector

z
x
y

x

x
y

y

, A.2
M

M

1

1
= =





⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

ˆ ˆ
ˆ

ˆ

ˆ
ˆ

ˆ

( )

the above relation (A.1) can be expressed as

a
a

x
y

W A.3=⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ˆ
ˆ

ˆ
ˆ ( )†

with a M M2 2´ unitarymatrix

W
1

2
i
i

. A.4 
 

=
-( ) ( )

The canonical commutation relations(2.1) can then be expressed in the compact form

z z J m n M, i , 1, , 2 , A.5m n mn= = ¼[ ˆ ˆ ] ( ) ( )

with Jbeing the M M2 2´ realmatrix

J 0
0

. A.6


=
-( ) ( )

A.1. Gaussian states
AGaussian state r̂ is fully characterized by its covariancematrixΓ and its displacement d , defined by

z z z z d z m n M
1

2
, , , 1, , 2 , A.7mn m n m n m mG = á ñ - á ñá ñ = á ñ = ¼{ˆ ˆ } ˆ ˆ ˆ ( ) ( )

where á ñ denotes the expectation value on r̂. In particular, its characteristic function reads as

e e . A.8z di iT1
2hc = á ñ =h h h h- G +( ) ( )·ˆ ·

Furthermore, r̂ is an element of M N,( )when itsmean photon number is equal to N , i.e.

dN N
1

2
Tr

1

2
, A.92á ñ = G - + =⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ˆ ( )

where the number operator N̂ is defined in(2.3). The covariancematrixΓ is real, symmetric, and positive-
definite, and hence, according toWilliamson’s theorem it admits the canonical decomposition [83, 84]

RQR R QR , A.10T TG = ¢S ¢ ( )
where

Q0
0

, e 0
0 e

, A.11
r

r
s

s
S = = -( )( ) ( )

R W
U

U
W R W U

U
W

0
0

, 0
0

, A.12
* *

= ¢ = ¢
¢

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )† †

withM×M diagonal submatrices

r
r

r
, , A.13

M M

1 1

s
s

s
= = 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

andM×M unitary submatricesU andU ¢7. The M M2 2´ matricesR and R¢ are real orthogonalmatrices, and
we have R R RT 1= = -† and R R RT 1¢ = ¢ = ¢-† . The parameters , , M1s s¼{ }are the symplectic eigenvalues of
Γ, which control the purity p r( ˆ ) of theGaussian state r̂ through [84]

7
Note thatU* is not theHermitian conjugateU † of theM×MmatrixU, but is obtained by taking the complex conjugate of eachmatrix

element ofU. In other words, it isU U UT T* = =( ) ( )† †, withT denoting thematrix transpose. ThisU* is necessary in the structure ofR in
(A.12), for the symplectic character ofR.
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p Tr
1

det 2

1

2
, A.14

m

M

m

2

1
r r

s
= =

G
=

=

( ˆ ) ˆ
( )

( )

while r r, , M1 ¼{ }are the squeezing parameters. The symplectic eigenvalues are bounded frombelow by
1 2m s (m=1,K,M) due to the uncertainty principle [83, 84]. TheGaussian state r̂ is pure, p 1r =( ˆ ) , if

and only if all the symplectic eigenvalues saturate the lower bounds 1 2ms = (m=1,K,M).Without loss of
generality, we assume that

r r r
1

2
, 0. A.15M M1 2 1 2       s s s  ( )

This reordering can always be done by arranging properlyR and R¢. ThematricesR and R¢ are symplectic and
orthogonal, characterized by the structure(A.12)with the unitarymatricesU andU ¢. The squeezingmatrixQ is
also symplectic. The symplectic character of thesematrices is characterized by

R JR J R JR J Q JQ J, , . A.16T T T= ¢ ¢ = = ( )

A.2.M-mode passiveGaussian unitary
Our target circuitUjˆ is a genericM-mode passiveGaussian unitary, whose action is characterized by theM×M
unitarymatrixUj introduced in(2.2). In terms of the quadrature operators zmˆ , it is rephrased as

U z U R z m M1, , 2 , A.17m
n

M

mn n
1

2

å= = ¼j j j
=

ˆ ˆ ˆ ( ) ˆ ( ) ( )†

or simplywritten as z zU U R=j j jˆ ˆ ˆ ˆ†
, withRj being the M M2 2´ orthogonalmatrix defined by

R W
U

U
W

0

0
. A.18

*
=j

j

j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )†

As is clear from this structure, thematrixRj is symplectic and orthogonal, and the passive linear transformation
Ujˆ is a rotation on the phase space.

By construction the transformationUjˆ maps the set M N,( ) into itself. In particular, given M N,r Îˆ ( ),
the covariancematrix Gj and the displacement dj of the associatedGaussian output state rjˆ in(1.1) are
obtained by rotating the covariancematrixΓ and the displacement d of the input state r̂ as

d dR R R, . A.19TG = G =j j j j j ( )

Note that they still fulfill the constraint(A.9) due to the fact thatRj is orthogonal.
An important role on our problem is played by the generator of the transformationUjˆ , i.e.by the operator

G U
U

i
d

d
, A.20

j
=j j

jˆ ˆ
ˆ

( )†

whose equivalent on the phase space reads

G R
R

W
g

g
Wi

d

d

0

0
A.21T

*j
= =

-j j
j j

j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )†

with

g U
U

i
d

d
. A.22

j
=j j

j ( )†

This gj is anM×MHermitianmatrix, that can be diagonalized bymeans of anM×M unitarymatrixVj,

g V V , , A.23
M

1

e e
e

e
= =j j j j j 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )†

where, without loss of generality, themagnitudes of the eigenvalues me of gj are ordered in decreasing order

. A.24M1 2  e e e∣ ∣ ∣ ∣ ∣ ∣ ( )
The generatorGj is accordingly diagonalized as

G P W WP P J P
0

0
i , A.25T T

e
e

=
-

=j j
j

j
j j j j

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )†
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where

P W
V

V
W

0

0
,

0

0
. A.26

*


e
e

= =j
j

j
j

j

j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟ ( )†

Appendix B.Derivation of the expression (3.17) for F 1 ^j r( ∣ )( )

Here, we show the derivation of the expression for F 1 j r( ∣ ˆ )( ) in (3.17). Notice first thatR in (A.12) is a real
matrix, and hence,

R R R W U
U

W0
0

. B.1T
T

1= = =-
⎛
⎝⎜

⎞
⎠⎟ ( )† †

†

Inserting this into (3.9), the covariancematrixΓ of a pureGaussian state is expressed as

W U
U

W W U
U

W

W U r U U r U
U r U U r U

W

1

2
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0
e 0
0 e

0
0

1

2
cosh 2 sinh 2
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,

B.2

r

r T

T
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2
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=

* -

* *

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

† †
†

†
†

†

andwe have

W U r U U r U
U r U U r U

W2 cosh 2 sinh 2
sinh 2 cosh 2

. B.3
T

T
1

* *
G = -

-
-

⎛
⎝⎜

⎞
⎠⎟ ( )†

†

†

Then, inserting these and (A.21) into thefirst line of (3.17), we get

F G G G

U g U r r U g U

U g U r U g U r g g

1

2
Tr

1

2
Tr cosh 2

1

2
Tr cosh 2

Tr sinh 2 sinh 2
1

2
Tr

1

2
Tr . B.4

T

T

1 1 2

2 2

2 2

* *

* * *

j r = G G -

= +

+ - -

j j j

j j

j j j j

-( ∣ ˆ ) ( )

[( ) ] [( ) ]

( ) ( ) ( ) ( )

( )

†

†

Since gj isHermitian and hence g g T* =j j , this is simplified to the expression in (3.17), noting A ATr TrT =( ) for

anymatrixA.

AppendixC. Someuseful inequalities

Lemma1. ForHermitianmatricesA andB,

AB A BTr Tr . C.12 2 2[( ) ] ( ) ( )

The equality holds if and only if A B, 0=[ ] .

Proof. Since AB BAi -( ) isHermitian,

AB BA

AB A B

0 Tr i

2 Tr 2 Tr . C.2

2

2 2 2

 -
=- +

{[ ( )] }
[( ) ] ( ) ( )

Therefore, the inequality(C.1) follows. The equality holds if and only if AB BA 0- = . ,

Lemma2. ForHermitianmatricesA andB,

A B AB A BTr Tr . C.3T T 2 2( ) ( ) ( )

The equality holds if and only if AB AB T= ( ) .

Proof.By noting theHermitianity ofA andB,

AB AB AB AB

A B A B AB

0 Tr

2 Tr 2 Tr . C.4

T T

T T2 2

 - -
= -

{[ ( ) ] [ ( ) ]}
( ) ( ) ( )

†

Therefore, the inequality(C.3) follows. The equality holds if and only if AB AB 0T- =( ) . ,

17

New J. Phys. 21 (2019) 033014 TMatsubara et al



Lemma3. ForHermitian and positive semi-definitematricesA andB,

AB A BTr Tr , C.5  ( ) ( )

where A  is the spectral norm ofA, given by its largest eigenvalue. The equality holds if and only if the support ofB (
i.e. the orthogonal complement of its kernel) is contained in the eigenspace ofA belonging to its largest eigenvalue.

Proof.Consider the spectral decomposition of theHermitian and positive semi-definitematrixA,

v vA , 0. C.6
n

n n n n å l l= ( )†

Then, by noting the fact that u uB 0† for any vector u,

v v v vAB B B BTr Tr , C.7
n

n n n
n

n nmax maxå ål l l= =( ) ( )† †

which proves the statement. The equality holds if and only if v vB 0n n nmaxl l- =( ) † for all n, i.e.if and only if
v vB 0k k =† for all vk belonging to the eigenvalues kl ofA strictly smaller than maxl . This, in turns, is equivalent
to the condition that the support ofB is in the eigenspace ofA belonging to its largest eigenvalue maxl . ,

Lemma4. ForHermitian and positive semi-definitematrixA,

A ATr Tr . C.82 2( ) ( ) ( )

The equality holds if and only if only one of the eigenvalues ofA is nonvanishing and it is not degenerate.

Proof.The eigenvalues nl ofA are positive semi-definite, 0n l . Then,

A ATr Tr . C.9
n

n
n

n
2 2

2

2å ål l= =
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

The equality holds if and only if 0m nl l = for all pairs with m n¹ , namely, only one of the eigenvalues nl is
nonvanishing and it is not degenerate. ,

AppendixD. Proof of the optimality of themeasurement infigure 2

Here, we show that the FI by the optimal input opty ñ∣ in(3.31) and the POVM xP{ ˆ } in(4.7) (the circuit in
figure 2) coincides with the upper bound of theQFI in(1.4). To see this, observe that the probability of
measuring the value x by thismeasurement in the output state of the circuit infigure 2 is given by

p x S r V U U V x x V U U V S r0 e e 0 , D.1a a a a
1 0

i
1 1

i
1 01 1 1 1^ ^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^j =
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q q

j j j j
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¢
¢ ¢

¢ ¢
¢( ∣ ) ⟨ ∣ ( ) ∣ ⟩ ⟨ ∣ ( )∣ ⟩ ( )† † † † †† †

where the parameterj¢ used in the input state and in themeasurement will be setj j¢ = later. It is themarginal
of theWigner function of the output state along the quadrature x a a 21 1 1= +ˆ ( ˆ ˆ )† . Its characteristic function
c x j( ∣ ) is computed to be

x p x
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d e
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† †

where
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with V U U V 11j j j j¢ ¢ ¢( )† † being the (1, 1) element of thematrixV U U Vj j j j¢ ¢ ¢
† † . Its Fourier transform yields
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Then, using (A.22) and (A.23), the associated FI defined by(2.6) becomes

F x p x p x

x

r

, d ln

1

2
ln

2 sinh 2
4 sin cos

e cos e sin

D.5

r r

opt

2

2
2

1
2 2

0

2 2

2 2 2 2 20 0

òj y j
j

j
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e
q q

q q

=
¶
¶

=
¶
¶

D

=
+

q

-¥

¥

-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ∣ ∣ ⟩) ( ∣ ) ( ∣ )

( )

( )

( )

atj j¢ = , which can bemaximized by setting tan e r1 2 0q =  - to get

F r N N, 2 sinh 2 8 1 . D.6opt 1
2 2

0 1
2j y e eñ = = +( ∣ ∣ ) ( ) ( )

This coincides with the upper bound of theQFI in(1.4), and proves the optimality of the circuit infigure 2.
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