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Abstract

This note is devoted to an heuristic discussion of the merging mechanism between two
clusters of point vortices, supported by some numerical simulations. A concept of renormalized
Onsager function is introduced, elaboration of the solutions of the mean field equation. It is
used to understand the shape of the single cluster observed as a result of the merging process.
Potential implications for the inverse cascade 2D turbulence are discussed.

1 Introduction

Stationary inverse cascade in 2D fluids with small scale activation and large scale friction is observed
in experiments and quantified quite well by scaling laws, see the reviews [26], [7]. The equation
one has in mind is the Euler equations in 2D, with friction and forcing, which for theoretical
investigations is usually taken white noise in time:

dω + u · ∇ωdt = −γωdt+ dW.

Here ω = ω (x, t) is the vorticity, u = u (x, t) the velocity, with div u = 0, computed from ω by means
of Biot-Savart kernel, γ > 0 is the friction coeffi cient, W is a space-dependent Brownian motion;
see for instance [7] for a physical discussion and [3], [4], [16] among other works, for rigorous results
on invariant measures. It is expected that this equation has an invariant measure which codifies
the statistical properties of inverse cascade turbulence. However, a good statistical understanding
of the invariant measures is still incomplete, and therefore we investigate statistical properties by
other means, like those below.

Dimensional analysis for the average square velocity increments u2
r :=

〈
|u (x+ r)− u (x)|2

〉
assumes that u2

r depends only on r and the energy flux ε and has a scaling law u
2
r = Cεαrβ . Equating

[L]
2
/ [T ]

2 to [L]
2α
/ [T ]

3α · [L]
β one immediately gets α = 2

3 and β = 2
3 , namely ur = Cε1/3r1/3.

This simple argument gives a result which was never contradicted by experiments. But it does not
explain the mechanisms of the inverse cascade, it is based on assumptions which are not directly
verifiable, and it gives the same result in 3D, where experiments reveal important deviations.
Vortex structures are certainly involved in the inverse cascade. One of the mechanisms which

could be relevant is the aggregation of vortices in larger and larger clusters. This note aims to
contribute to the understanding of one fragment of this complex process, namely the merging of
two clusters of vortices into a larger one. Starting from the mean field equation of Onsager theory, we
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introduce the concept of renormalized Onsager function. It is a family of functions parametrized
by a real number β (including the negative values promoted by Onsager) which correspond to
unitary variance configurations and, properly rescaled, covers the class of all solutions of the mean
field equation. We observe that the shapes emerging in very short time (between an half and one
turnover time) from the merging of two roughly similar and close clusters of equal sign is very close
to a renormalized Onsager function; more precisely, this is true in a class of numerical experiments,
while in others there is a systematic deviation that requires further study. Finally, we speculate
how the results found here could be the starting point of a theory of inverse cascade, yelding also
ur = Cε1/3r1/3 (up to logarithmic corrections).
The ideas of the present work owe a lot to several people and their works; a full list would be

interminable, but let us mention, beyond those quoted below in the thechnical parts, [1], [3], [4],
[7], [8], [5], [6], [9], [11], [14], [15], [16], [17], [21], [24], [26].

2 Renormalized Onsager functions

Consider N point vortices X1, ..., XN in the plane, each one with circulation Γ; the vorticity field
is Γ

N

∑N
i=1 δ (x−Xi). Kinetic energy is infinite but modulated by the finite quantity (which cor-

responds to interaction energy) H := −
∑N
i,j=1
i6=j

Γ2

N2 log |Xi −Xj |, invariant for the vortex dynamics

dXi
dt =

∑
j 6=i

Γ
2π

(Xi−Xj)⊥
|Xi−Xj |2

. Two other relevant invariants are the center of mass M = 1
N

∑N
i=1Xi

and the variance V = 1
N

∑N
i=1 |Xi −M|2, (related to the moment of inertia). Given two numbers

e, σ, σ ≥ 0 and a point m ∈ R2, consider the microcanonical measure formally defined by µe,σ,mN =
δ
(
H =Γ2e,M = m,V = σ2

)
. Given a pair of parameters (α, β) (with α ≥ 0), let ρα,β (x) be the

probability density function given by ρα,β (x) = Z−1
α,βe

−βφα,β(x)−α|x|2 , Zα,β =
∫
e−βφα,β(x)−α|x|2dx,

where φα,β (x) is the solution of the mean field equation

∆φα,β (x) = −Z−1
α,βe

−βφα,β(x)−α|x|2 .

Uniqueness of solution to this equation is true under the condition that the velocity∇⊥φα,β vanishes
at infinity and that φα,β is directly linked to the interaction energy H above, which reduces to the
condition φα,β (0) = − 1

2π

∫
log |x| ρα,β (x) dx.

Onsager theory [23], [13], complemented by a more explicit formulation of the mean field equa-
tion by Montgomery and Joice [22] and by various rigorous results (see for instance [10], [12], [18])
claims that ∫

R2N
dµe,σ,mN

∣∣∣∣∣ Γ

N

N∑
i=1

ϕ (xi)− Γ

∫
R2
ϕ (x) ρα,β (x−m) dx

∣∣∣∣∣
2

converges to zero for every smooth compact support test function ϕ on R2. Here the pair (α, β) (with
α ≥ 0) is uniquely prescribed by (e, σ). A dynamical theory of convergence to equilibrium is however
missing [13]. There are initial configurations, like those corresponding to rotation invariant profiles,
having a time of convergence to equilibrium that is essentially infinite. However, other initial
configurations have a much shorter relaxation time, if we accept some degree of approximation; this
is what we want to describe with the following numerical experiments.
Solutions of the mean field equation are rotationally invariant; with little abuse of notation we

shall write ρα,β (r), φα,β (r) as functions of the distance to the center of mass. They have a special

2



scaling property in α: let us call canonical case the equation with α = 1, whose solutions will
be denoted by ρβ (x), φβ (x). In this case we impose φβ (0) = 0 and ∇φβ (0) = 0, convenient for
numerical purposes (the condition∇φβ (0) = 0 is motivated by radial symmetry and differentiability
at the origin). Then a simple computation shows that

φα,β (x) = φβ
(√
αx
)

+ Cα,β , ρα,β (x) = αρβ
(√
αx
)

Zα,β = α−1e−βCα,βZβ , Cα,β =
1

2π

∫
log

√
α

|x| ρβ (x) dx.

Thus it is suffi cient to know the shapes ρβ (x), φβ (x) and rescale them as above.
However, comparing ρβ (x) for different values of β is not so useful. In examples, we are given

an initial family of vortex points with a value of (e, σ,m). We should find a pair (α, β) such that∫
ρα,β (x)φα,β (x) dx = e∫
|x|2 ρα,β (x) dx = σ2

(one can see that, with the prescriptions above, Γ2
∫
ρα,β (x−m)φα,β (x−m) dx is the contin-

uum analog of H, and obviously
∫
|x−m|2 ρα,β (x−m) dx is the continuum analog of V). Al-

though theoretically these equations are on the same ground, at a practical level the second one,∫
|x|2 ρα,β (x) dx = σ2, imposes a quite strict and stable constraint, while the first one is relatively

poor, because the typical values of E are very small and with imperceptible, logarithmic variations
for moderate changes of the initial configuration. Said differently, the value of σ is very relevant in
practice, while the value of e is less easy to use in numerical experiments. The second equation gives
us α = σ−2

∫
|x|2 ρβ (x) dx. Let us set σ2

β :=
∫
|x|2 ρβ (x) dx. Thus, given an initial configuration

with a value of σ, we may parametrize Onsager shapes directy by (σ, β):

ρα,β (x) = σ−2ρ̃β
(
σ−1x

)
, ρ̃β (x) := σ2

βρβ (σβx) .

Notice that
∫
|x|2 ρ̃β (x) dx = 1. We call ρ̃β renormalized Onsager functions. Comparing ρ̃β (x)

is the starting step to understand possible emerging shapes. In Figure 1 we compare the cases
β = −15, 0, 30 by plotting fR (r) = 2πrρα,β (r), the probability density function of the distance
from the center of mass, and FR (r), the corresponding cumulative distribution function (cdf),
which will be used below in numerical experiments.
The value of σ determines the typical distance of points from the center. The parameter β

modulates only a little bit the shape. For β = 0 the density ρ̃0 (x) = σ−2Z−1
0 e−|σ

−1x|2 is Gaussian,
the maximum entropy distribution among those with a given variance, here equal to one. For
β < 0 the unitary variance constraint is maintained by means of more points close to the center of
mass and more points far from it. For β > 0 points tend to stay closer to unitary distance from
the center of mass with respect to the Gaussian. In bounded domains the constraint of constant
variance cannot be imposed and the role of β is more striking. Here in full space it plays a role of
correction over the shape imposed by unitary variance.
Simulations of canonical Onsager mean field equation, for a given β, are made using the equation

for the radial component
1

r
φ′β (r) + φ′′β (r) = −Z−1

β e−βφβ(r)−r2
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Figure 1: Cdf of the distance from the center of mass for three examples of renormalized Onsager
shapes, β = −15, 0, 30 (pdf in the small figure).

with φβ (0) = φ′β (0) = 0, finding the right value of Zβ = 2π
∫∞

0
e−βφβ(r)−r2rdr by iteration until

the value is suffi ciently stabilized. The nonphysical (but numerically useful) condition φβ (0) = 0
is then removed by the constant Cα,β above. The cumulative distribution function of the radius is
computed as FR (r) = −2π (

√
αr)φ′β (

√
αr).

3 Merging of two clusters

In this section we investigate numerically the merging process between two clusters of point vortices,
all with the same circulation, that we normalize so that the pair of clusters is globally a probability
measure. The continuum limit, at time zero, is assumed to have the form

ω0 (x) =
1

2
ρ1

(
x− d

2
e1

)
+

1

2
ρ2

(
x+

d

2
e1

)
e1 = (1, 0), where ρ1 and ρ2 are probability denstities, hence ω0 is as well. The pdf ρ1 and ρ2 may
be different and, up to small variations, will have unitary variance. By rescaling space and time, the
understanding of this model case is representative of any size and any circulation. We approximate
ω0 (x) by two clusters of independent points

1

2N

N∑
i=1

δ (x−Xi) +
1

2N

N∑
j=1

δ (x− Yj)

with Xi (resp. Yj) distributed as ρ1

(
x− d

2e1

)
(resp. ρ2

(
x+ d

2e1

)
). When the distance d is large

compared to the size r, the two structures rotate around their center of mass (and each one around
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Figure 2: Merging process of two unitary variance Gaussian clusters at distance d = 2. The four
pictures show the initial configuration and three instances during the first turnover.

its own center of mass) like two point vortices, just experiencing some degree of deformation of
the circular structure in a roughly ellipsoidal one; this vortex-patch dynamics, approximating point
vortex one, has been well understood by [20].
On the the contrary, when d is small, typically of the order of 2 − 3 times the "radius" of the

structures, the two clusters start immediately a merging process which evolves into a new larger
cluster. Based on rigorous convergence results of point vortices to Euler equations [19], [25], we
know that

1

2N

2N∑
k=1

δ (x− Zk (t)) ∼ ρ (t, x) (1)

namely Zk (t) are distributed as the probability density ρ (t, x) which solves Euler equations with
initial condition ω0 (x). The aim of our investigation is to identify an approximate shape for ρ (t, x),
based on Onsager theory, valid for relatively small t (around one turnover time). The initial
configuration (Xi, Yj , i, j = 1, ..., N) lives on the surface H = e, V = σ2, but it is "anomalous"
with respect to the typical configurations described by ρα,β (x) with (α, β) corresponding to (e, σ).
Statistical mechanics predicts convergence to ρα,β (x). As remarked above, in principle there are
initial configurations which take too much time for convergence; what we observe numerically is a
substantial approach to ρα,β (x) in the time of one turnover or less.

We report several experiments. The first one is the case of two Gaussian clusters of unitary
variance at distance d = 2. Turnover time is of the order of 20 sec (if space is measured in meters).
The empitical cdf (ecdf), already between one-half and one turnover time, is very close to the class
of Onsager functions, precisely to the Gaussian shape itself, β = 0. In Figure 2 we show vortex
configurations at subsequent instants in the first turnover period of time, proving convergence
towards a shape substantially invariant by rotations. In Figure 3 we show the ecdf even before the
first turnover time (later on it is substantially the same) superimposed to Onsager functions; we
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Figure 3: Comparison between empirical cdf (of the distance from the center of mass) and Onsager
renormalized functions for β = −15, 0.30, for the data of Figure 2.
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Figure 4: An example with moderately different size of the initial clusters.
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introduce the display, used also below, of the ecdf and, in small boxes the configurations at initial
and final time.
This picture is partially stable under certain perturbations. In Figure 4 we show the case of two

unequal initial Gaussian clusters. Here we clearly observe the choice, by the system, of negative β.
In general negative β arise when, in the initial configuration, there is a remarkable quantity of vortex
points more distant from the center of mass than the bulk of points. Under such conditions the
system has a tendency to develop wings, namely to loose the boudary points through filamentary
structures; while the bulk concentrates more, to compensate the distant points (due to conservation
of variance). As remarked above when we discussed how renormalized Onsager functions change
with β, this behavior corresponds to negative β.

3.1 Deviation from renormalized Onsager functions

The previous picture of the vortex merging mechanism should be investigated much more, with
better numerical simulations and more rigorous arguments. What we have described above have
been stable results over several simulations but we have also identified others where the results were
different. Let us mention two of them.
When the distance between the two clusters is larger than the one of the previous examples,

but still so small to produce merging, the ecdf is vaguely similar to Onsager functions with β < 0
but it shows also a systematic deviation. The phenomenology is similar to the one described above:
wings of dispersed points and a strong kernel to compensate for the constant variance. But the
shape is not Onsager anymore. We have not discovered yet a variation of Onsager theory which
may incorporate this case. However, if we eliminate the extreme parts of the wings we observe
again a good level of coincidence with renormalized Onsager functions.
When we perform the simuation with clusters made of a very large number of vortices, which

in principle should give more precise results, the merging process (Figure 2) is the same, but
the deviation from Onsager shape increases a bit. We do not understand this fact, because the
match with Onsager shape in the simulations above, with a moderate number of vortices, are very
stable (under repetition of the experiement, little change of configuration, change of time-step in
the simulation). This is probably the most important issue to be addressed in future work to
understand the limits of validity of the results above.

4 Potential relevance for inverse cascade

Aggregation of vortex structures from smaller to larger ones is a well known phenomenon, clearly
related to a cascade of energy from smaller to larger scales. What we may speculate after the
observations of the previous sections is that a turbulent fluid may be composed, up to a disordered
low-intensity component (which presumably includes the extremal parts of the wings formed during
stretching processes), of localized intense vortex structures having approximatively a shape invariant
by rotation and with radial distribution approximatively equal to a renormalized Onsager shape,
rescaled by the standard deviation of the structure. These kind of structures are self-consistent, in
the sense that two smaller ones merge into a larger one. The parameter β may vary and sometimes
the Onsager shape can be attributed only to the bulk of the structure, dispersing the wings into
the disordered background.
Assume the fluid is maintained in a stationary regime by injection of vortex structures at very

small scale and dissipation by friction. Around every scale r0 we may assume to observe structures
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approximatively of that size, namely of the form r−2
0 ρ̃β0

(
r−1
0 x

)
where ρ̃β0 is a renormalized Onsager

function. When two such structures (with the same sign of circulation) are suffi ciently close, they
will merge into a new structure of the form r−2

1 ρ̃β1
(
r−1
1 x

)
with r1 > r0 and some β1 (possibly up to

elimination of extreme parts of wings). Admitting the unjustified simplicity of the next argument,
let us assume we have an injection scale rinjection and, instead of a continuum of scales, only discrete
scales

rinjection = rlinj < ... < rl+1 < rl < ... < r0

and that only merging events occur between structures of the same scale rl+1 (for some l) producing
structures of scale rl; and finally that there is a characteristic circulation Γl associated to scale l.
The vorticity field has the form (up to a low-intensity disordered backgound)

ω (x) =
∑
l

Γl
∑
i∈Λl

r−2
l ρ̃βi

(
r−1
l

(
x− x0

i

))
(2)

where Λl indexes the set of structures of level l. Typical velocity at scale l is ul = Γl
rl
(from Biot-

Savart relation u (x) = 1
2π

∫ (x−y)⊥

|x−y|2 ω (y) dy). If we discover a relation between Γl and rl, we find a

formula for ul as a function of rl, to compare with the scaling law ur = Cε1/3r1/3.
Here ε is the energy per unit of space-time injected at scale rlinj through the creation of the

smaller vortex blobs. The system behaves like a stationary linear queuing network, with the same
energy flux at each level l, and the rule ε = λl · εl, where εl is the kinetic energy of one structure of
level l, while λl is the average number of "events" at level l in unit of space-time (either we choose
to consider events the new arrivals, or we choose the departures, it is equivalent). Using the formula∫ ∫

log |x− y|Γlρl (x) Γlρl (y) dxdy, where we have abbreviated ρl (x) = r−2
l ρ̃βi

(
r−1
l

(
x− x0

i

))
, we

find εl ∼ Γ2
l log 1

rl
. Hence ε ∼ λl · Γ2

l log 1
rl
. In queuing theory λl is the throughput, or average

arrival/departure rate. A version of Little’s law states that λl = nl
τl
where nl is the average number

of structures involved in potential merging events and τl is the merging time. By equilibrium
considerations (nlr2

l ∼ area occupied by merging structures) it is reasonable to assume that nl ∼ C
r2l

(this detail is more intricate than others and requires deeper investigation). The merging time at

scale l for structures with circulation Γl is of the order τl ∼ r2l
Γl
, by a simple computation based

on the rescaling ω (t, x) :=
r2l
2Γl

ωrl

(
r2l
Γl
t, rlx

)
; but essential is to assume that the merging time at

unitary scale is unitary (up to a constant), fact that we observed in the numerical simulations
above.
Collecting these facts we have ε = nl

τl
εl ∼ C Γ3l

r4l
log 1

rl
. It follows

Γl ∼ Cε1/3r4/3
l / log1/3 1

rl

hence ul ∼ Cε1/3r
1/3
l (up to logarithmic corrections in rl) which gives the correct scaling law

(logarithmic corrections have been invoked in the literature [7], but experiments do not clarify this
issue, due to few scales).
Turbulence is a non-equilibrium time-stationary system. The previous picture restores a very

weak form of local equilibrium. In the classical form of local equilibrium, arbitrarily small macro-
scopic portions of the medium go to equilibrium in arbitrary short time. Here, convergence to
equilibrium holds only for small but well defined portions of fluid and requires a macroscopic time,
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which does not go to zero with the size (it is an obvious consequence of the fact that particles, the
point vortices, move at speed comparable to the macroscopic time). However this time is short,

τl ∼ r2l
Γl
∼ ε−1/3r

2/3
l log1/3 1

rl
as discussed above, for vorticity configurations made of two close small

vortex blobs.
As a final remark, from this picture emerges an approximate self-similar picture of the form (2)

with suitable scaling laws of the parameters. We do not claim here that there is full self-similarity,
this issue requires closer investigation, but it is not unreasonable. This structure, in the limit
linj → ∞, could be useful to investigate more advanced properties like the SLE structure of level
lines [2]; the Poissonian structure emerging from the present description, by analogy with critical
percolation, seems to be in favour of the conjecture SLE(6).
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