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Abstract

In coupled cluster methods, the electronic states are biorthonormal in the sense

that the left states are orthonormal to the right states. Here we present an extension

of this formalism to a left and right total molecular wave function. Starting from left

and right Born-Huang expansions, we derive projected Schrödinger equations for the

left and right nuclear wave functions. Observables may be extracted from the resulting

wave function pair using standard expressions. The formalism is shown to be invariant

under electronic basis transformations, such as normalization of the electronic states.

Consequently, the nonadiabatic coupling elements can be expressed with biorthonormal

wave functions. Calculating normalization factors that scale as full-CI is therefore not

necessary, contrary to claims in the literature. For nuclear dynamics, we therefore need

expressions for the vector and scalar couplings in the biorthonormal formalism. We

derive these expressions using a Lagrangian formalism.
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Introduction

Nonadiabatic coupling elements account for electron-nucleus interactions that are neglected

in the Born-Oppenheimer1 (BO) approximation. These elements couple different electronic

states through the nuclear kinetic energy operator. While mostly negligible in ground state

chemistry, coupling elements are required when considering molecular dynamics in excited

electronic states. Excited state dynamics often involves regions of nuclear space where elec-

tronic states are nearly or exactly degenerate, causing a breakdown of the BO separation.2,3

Accurately describing nonadiabatic coupling elements is therefore important for reliable pre-

dictions in photochemistry.

The coupled cluster method is one of the most accurate electronic structure methods,

both for ground and excited state properties,4–7 but it has not found widespread use for pre-

dicting excited state dynamics. This is primarily because standard coupled cluster methods

give a nonphysical description of regions close to electronic degeneracies, or conical intersec-

tions.8–10 This issue can be traced to the method’s non-Hermiticity, which seems to imply

that coupled cluster methods cannot be used for nonadiabatic dynamics. However, this is

not the case. As we have shown in recent work, the method can be constrained to give a

correct physical description of excited state conical intersections while retaining the standard

non-Hermitian formalism and presumably its accuracy.11,12 These developments may lead to

renewed interest in coupled cluster dynamics.

Nonadiabaticity, as described by coupled cluster methods, has been considered by several

authors. The formula for the vector coupling was first derived by Christiansen,13 who applied

the Z-vector substitution method14 on a biorthonormal expression for the vector coupling,

F I
mn = 〈ψ̃m |∇Iψn〉, 〈ψ̃m |ψn〉 = δmn, (1)

where (ψ̃k, ψk) refers to the left and right kth electronic states, and I to a nucleus. However,

Christiansen’s paper13 did not include an implementation of the coupling. The vector cou-
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pling was later rederived by Tajti and Szalay15 by differentiating the corresponding m-to-n

transition element of the electronic Hamiltonian. Their derivation is closely related to that

given by Ichino et al.16 for the quasidiabatic interstate coupling. Tajti and Szalay15 also gave

an implementation of the vector coupling at the singles and doubles level (CCSD17). These

papers on the vector coupling13,15 did not include a discussion of the nuclear Schrödinger

equations in coupled cluster theory, where the coupling elements enter.

The correct formula for the vector coupling has been a subject of some controversy.

Tajti and Szalay15 argued that the biorthonormal formula in Eq. (1) is incorrect. As they

correctly noted, the vector coupling changes with the norm of the left and right states. A

similar observation had been made in an earlier paper on the diagonal BO correction.18

Since the vector coupling varies with the norm of the states, the full-CC vector coupling is

different from the full configuration interaction (CI) limit, where left and right states are

identical and usually normalized. They therefore suggested that normalizing the states was

necessary. Furthermore, since the derivative can either act on the left or on the right state,

they suggested using an average of the two.15 If true, these observations are troubling: they

imply that computing the vector coupling has a computational cost that scales as full-CI

due to the normalization factors for the right states. In practice, the normalization factors

are therefore approximated. However, it is unfortunate if one must resort to approximations

other than the truncation level of the coupled cluster method (e.g., singles and doubles).

The need for normalization factors was also assumed in the recent CCSD implementation

by Faraji et al.19

One of the main objectives of the present paper is to establish that normalization is not

necessary. The reason is that normalization is a special case of an invertible transformation

of the electronic basis. Such transformations do not change the expansion space in the Born-

Huang expansion20 and therefore do not change the molecular wave function. In particular,

the coefficients in the Born-Huang expansion—that is, the nuclear wave functions—absorb

the transformation of the electronic states. In a recent paper, Shamasundar21 also noted that
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the predicted dynamics must not depend on the normalization of the underlying electronic

wave functions. The vector coupling does depend on normalization, but this should not be

considered a problem because this quantity is not an observable. Since normalization of

wave functions is not necessary, the biorthonormal formula in Eq. (1) is a valid option. In

this work, we derive the biorthonormal coupled cluster vector and scalar couplings using the

Lagrangian approach developed by Hohenstein.22

The second main objective of the paper is to give a framework for nonadiabatic dynamics

using coupled cluster methods. In particular, we argue that the biorthonormal formalism for

electronic wave functions implies a biorthonormal formalism for the molecular wave function.

Hence, we must determine left and right nuclear wave functions and the nuclear motion is

described by two sets of nuclear Schrödinger equations. The result is a molecular wave func-

tion pair (Ψ̃,Ψ), where observable quantities are given by the usual biorthonormal formulas.

In this contribution, we describe theoretical aspects relevant for nonadiabatic dynamics.

Implementation of the various quantities is postponed to a future publication.

Theory

The total wave function of a molecular system can be expressed as an expansion over the

electronic wave functions. The coefficients of this Born-Huang expansion defines the nuclear

wave functions. These are determined by inserting the expansion in the Schrödinger equation

and projecting out the electronic components. To formulate the corresponding procedure for

coupled cluster theory, we first review the description of the electronic states.
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Electronic wave functions in coupled cluster theory

In the equation of motion coupled cluster formalism, a set of left and right electronic states

are considered. These are defined as23

〈ψ̃n| =
∑
µ≥0

Lnµ〈µ| exp(−T ), (2)

|ψn〉 =
∑
µ≥0

exp(T )|µ〉Rn
µ, n = 0, 1, 2, . . . (3)

The states are not identical, in general, but they satisfy the biorthonormality condition

〈ψ̃m |ψn〉 = δmn. (4)

The scalars Lnµ and Rn
µ are state amplitudes, giving weights to the configurations

|µ〉 = τµ|HF〉 (5)

〈µ| = 〈HF|τ̃ †µ, µ ≥ 0, (6)

where τµ and τ̃µ with µ > 0 are excitation operators relative to the Hartree-Fock state |HF〉,

while τ0 = τ̃0 = I is the identity operator. The ket and bra bases, {|µ〉} and {〈µ|}, span the

same subspace and are normally required to satisfy the biorthonormality relation

〈µ |ν〉 = δµν , µ, ν ≥ 0. (7)

One special case is that the left and right bases are identical and hence orthonormal. How-

ever, using different left and right basis is sometimes convenient (e.g., in spin-adapted for-

mulations6). Finally, we have the exponential part of the parametrization, defined by the

5



cluster operator

T =
∑
µ>0

tµτµ. (8)

The scalars tµ are called cluster amplitudes.

Given the parametrization in Eqs. (2) and (3), how are the parameters determined? First

one assumes that the right ground state can be written

|ψ0〉 = exp(T )|HF〉. (9)

Then the time-independent Scrödinger equation, expressed as

exp(−T )H exp(T )|HF〉 = E0|HF〉, (10)

is projected onto the bra basis. The operator

H̄ = exp(−T )H exp(T ) (11)

is known as the similarity transformed Hamiltonian. This projection procedure gives an

expression for the ground state energy and equations for determining the amplitudes,

E0 = 〈HF |H̄ |HF〉 (12)

Ωµ = 〈µ |H̄ |HF〉 = 0, µ > 0. (13)

The state amplitudes are determined by making the pseudo expectation values

En(Ln,Rn) = 〈ψ̃n |H̄ |ψn〉, n = 0, 1, 2, . . . (14)

stationary under the binormality condition given in Eq. (4). This constrained optimization
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problem is conveniently formulated in terms of the state Lagrangians

Ln(Ln,Rn, Ēn) = 〈ψ̃n |H̄ |ψn〉+ Ēn(1− 〈ψ̃n |ψn〉)

= LT
nH̄Rn + Ēn(1−LT

nRn),

(15)

where we have defined the Hamiltonian matrix

H̄µν = 〈µ |H̄ |ν〉, µ, ν ≥ 0. (16)

Stationarity of the Lagrangians imply

1 = LT
nRn (17)

0 = LT
nH̄− ĒnLT

n (18)

0 = H̄Rn − ĒnRn. (19)

Writing Ēn = En = E0 + ωn, we see that the latter two equations read

LT
nA = ωnLT

n (20)

ARn = ωnRn, n = 0, 1, 2, . . . , (21)

where A = H̄−E0I. Identifying the pseudo expectation value in Eq. (14) with the energy,

we see that ωn is the excitation energy of the nth state, where it is understood that ω0 = 0

for the ground state. The matrix A can be expressed as

A =

(
0 ηT

0 A

)
(22)
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where

ην = 〈HF | [H̄, τν ] |HF〉 (23)

Aµν = 〈µ̃ | [H̄, τν ] |HF〉. (24)

where A is called the coupled cluster Jacobian matrix.24 The eigenvalues of A are the non-

zero excitation energies, i.e. ωn with n = 1, 2, 3, . . .

The Born-Huang expansion of the total wave function and the nu-

clear Schrödinger equations

With the electronic states described, we now turn to the expansion of the total wave func-

tion. The Born-Huang expansion expresses the total wave function in terms of the left and

right electronic bases given in Eqs. (2) and (3). Notice that this implies a biorthonormal

description of the total wave function, since we can expand in both the left and right states.

Hence we have a left and a right total wave function

Ψ(r,R, t) =
∑
n

χn(R, t)ψn(r;R) (25)

Ψ̃(r,R, t) =
∑
n

χ̃n(R, t)ψ̃n(r;R), (26)

with associated left and right nuclear wave functions χ̃n and χn, and

1 = 〈Ψ̃ |Ψ〉 =
∑
mn

〈χ̃m |〈ψ̃m |ψn〉|χn〉 =
∑
mn

δmn〈χ̃m |χn〉 =
∑
n

〈χ̃n |χn〉, (27)

where we have assumed biorthonormal electronic states in the third equality. Expectation

values are defined through the standard expression23,24

〈Ω〉 = 〈Ψ̃ |Ω |Ψ〉, Ω = Ω†. (28)
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To derive the equations for the nuclear wave functions, one normally projects the total

Schrödinger equation on the electronic basis. In this respect, a biorthonormal description is

advantageous; for practical coupled cluster models, where the excitation space is truncated

to some excitation order, projection of the right Schrödinger equation is done onto the left

electronic basis, leading to computationally tractable expressions that scale as expected for

the given model (e.g. O(N6) for CCSD).

By inserting the Ψ in Eq. (25) into the time dependent Schrödinger equation,

HΨ = i
dΨ

dt
, (29)

and projecting it onto the left electronic basis, we get a coupled set of equations for the right

nuclear wave functions χn. These nuclear Schrödinger equations can be expressed as

(i
d

dt
− Em)χm =

∑
I,n

1

2MI

(δmn∇2
I +GI

mn + 2F I
mn · ∇I)χn, (30)

where we have suppressed theR and t dependence for readability. The nonadiabatic coupling

vectors in Eq. (30) are given in the biorthonormal basis:

GI
mn = 〈ψ̃m |∇2

Iψn〉 (31)

F I
mn = 〈ψ̃m |∇Iψn〉. (32)

These are called the scalar and vector couplings, respectively.

In analogous fashion, we derive the nuclear Schrödinger equations for the left nuclear

wave functions from the complex conjugated Schrödinger equation

HΨ̃ = −idΨ̃

dt
. (33)
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Inserting Eq. (26) into Eq. (33), and projecting onto the left electronic basis, leads to

(−i d

dt
− Em)χ̃m =

∑
I,n

1

2MI

(δnm∇2
I + G̃I

nm + 2F̃
I

nm · ∇I)χ̃n, (34)

where

G̃I
nm = 〈∇2

Iψ̃n |ψm〉 (35)

F̃
I

nm = 〈∇Iψ̃n |ψm〉. (36)

The nuclear Schrödinger equations may be expressed in the more compact matrix notation

(i
d

dt
−E)χ =

∑
I

1

2MI

(I∇2
I +GI + 2F I · ∇I)χ (37)

(−i d

dt
−E)χ̃ =

∑
I

1

2MI

(I∇2
I + G̃I + 2F̃ I · ∇I)χ̃, (38)

where E is a diagonal matrix with the electronic energies on the diagonal, I is the identity

matrix, χ is a vector containing the right nuclear wave functions, andGI and F I are matrices

consisting of the scalar and vector couplings of the Ith nucleus, respectively. The quantities

with a tilde are similarly defined.

This matrix notation has been used to illuminate some relations to gauge theories in the

nuclear Schrödinger equations; Pacher et al.25 found that the vector coupling can be seen

to serve a role analogous to the vector potential in electromagnetism. In the present work,

it serves as a useful notation for dealing with basis transformations and the vector algebra

needed to demonstrate invariance under such transformations.

Basis invariance and the special case of norm invariance

In the literature on nonadiabatic coupling vectors in coupled cluster theory, normalization is

often considered problematic. The reason is that the left and right states are binormal in the
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coupled cluster formalism. Compared to the nonadiabatic couplings in full-CI theory, where

the states are normalized, the full coupled cluster limit is “incorrect” because the value of the

couplings depend on the geometry-dependent normalization constants. While this suggests

that one should normalize the states, doing so is not straightforward. The computational

cost of the normalization factor scales as full-CI for the right electronic states:16

Nn
R = 〈ψn |ψn〉 (39)

Nn
L = 〈ψ̃n | ψ̃n〉. (40)

Since one cannot evaluate Nn
R in general, some have suggested Nn

R = (Nn
L)−1 or Nn

R = Nn
L = 1

as alternatives. The former gives the full-CI limit while the latter simply assumes the

standard binormality.16,19

Binormality is not an issue from the point of view of dynamics. Changing the norm of the

electronic states is a special case of a basis transformation of the electronic basis. As such,

the Born-Huang expansion and the projection equations are equivalent in the transformed

and untransformed bases. Changes in the electronic basis are absorbed in the expansion

coefficients, i.e., the nuclear wave functions. In the special case of normalization, the right

electronic wave functions are divided by Nn
R while the right nuclear wave functions are

multiplied by Nn
R. The total wave function is invariant under such transformations.

More precisely, consider invertible transformations of the left and right electronic bases.

In vector notation, these transformations can be expressed as

ψ̃
′
= ψ̃N (41)

ψ′ = ψM , (42)

where the matrices M and N are assumed to be smooth invertible matrix functions of the

nuclear coordinates. For notational simplicity, we have let the left and right wave function

vectors be row vectors. Transformed quantities are denoted by a prime. In the transformed
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basis, the total left and right wave function have the Born-Huang expansions

Ψ′(r,R, t) =
∑
n

χ′n(R, t)ψ′n(r;R) (43)

Ψ̃′(r,R, t) =
∑
n

χ̃′n(R, t)ψ̃′n(r;R). (44)

We wish to show that the wave function in the transformed basis is identical to that obtained

in the untransformed basis; that is, Ψ′ = Ψ and Ψ̃′ = Ψ̃. The conclusion that follows is that

the choice of electronic basis does not change the predictions of the theory. In other words,

it is perfectly appropriate to use the biorthonormal description that is standard in coupled

cluster theory.24

Before proceeding, we define some notation. In the transformed basis, we have to account

for the non-unit overlap of the electronic wave functions. Hence, when projecting the time-

dependent Schrödinger equation onto the electronic basis, we get electronic overlap matrix

elements. We define these elements as

Smn = 〈ψ̃′m |ψ′n〉 =
∑
kl

〈ψ̃kNkm |ψlMln〉 =
∑
kl

N∗kmδklMln = (N †M)mn. (45)

Similarly, the electronic Hamiltonian matrix is not necessarily diagonal:

(He)mn = 〈ψ̃′m |Heψ
′
n〉 =

∑
kl

〈ψ̃kNkm |HeψlMln〉 =
∑
kl

N∗kmEklMln = (N †EM )mn. (46)

We show the equivalence for the right wave functions. The proof for the left wave function

is identical. Following the standard procedure, we now insert the transformed wave function

in Eq. (43) into the Schrödinger equation and project onto the transformed left electronic

wave functions. The result is the right nuclear Schrödinger equation

(
N †EM − i d

dt
S
)
χ′ =

∑
I

1

2MI

(S∇2
I +G′I + 2F ′I · ∇I)χ

′. (47)
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If the total wave function is invariant, and ψ′ = ψM , then we must have nuclear wave

functions that cancel the transformation of the electronic wave functions:

χ′ = M−1χ. (48)

Indeed, with χ′ as given in Eq. (48), we have

Ψ′ =
∑
k

ψ′kχ
′
k =

∑
klm

ψlMlkM
−1
kmχm =

∑
l

ψlχl = Ψ. (49)

Let us confirm that Eq. (48) is in fact a solution to the transformed nuclear Schrödinger

equation in Eq. (47). We begin by relating the old and new nonadiabatic coupling terms.

The gradient of the electronic wave functions transform as

∇Iψ
′
l =

∑
m

∇I(ψmMml) =
∑
m

(
(∇Iψm)Mml + ψm(∇IMml)

)
. (50)

Hence, the vector couplings can be written as

(F ′I)kl = 〈ψ̃′k |∇Iψ
′
l〉 =

∑
n

N∗nk〈ψ̃n |∇Iψ
′
l〉 =

∑
nm

(
N∗nkF

I
nmMml +N∗nkδnm∇IMml

)
. (51)

In more compact matrix notation, we have

F ′I = N †F IM +N †(∇IM). (52)

Similarly, the Laplacian of the electronic wave functions transform as

∇2
Iψ
′
l = ∇I · ∇Iψ

′
l =

∑
m

(
(∇2

Iψm)Mml + 2(∇Iψm) · (∇IMml) + ψm(∇2
IMml)

)
, (53)
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implying that the scalar couplings transform as

G′I = N †GIM + 2N †F I · (∇IM ) +N †(∇2
IM ). (54)

The gradient and Laplacian of χ′ is derived in the same way as for the electronic states,

giving

∇Iχ
′
l =
∑
m

(
M−1

lm (∇Iχm) + (∇IM
−1
lm )χm

)
(55)

∇2
Iχ
′
l =
∑
m

(
M−1

lm (∇2
Iχm) + 2(∇IM

−1
lm ) · (∇Iχm) + (∇2

IM
−1
lm )χm

)
. (56)

Thus, we have the following contributions on the right hand side of the nuclear Schrödinger

equation:

S∇2
Iχ
′ = N †(∇2

Iχ+ 2M (∇IM
−1) · ∇Iχ+M(∇2

IM
−1)χ) (57)

G′Iχ
′ = N †(GIχ+ 2F I · (∇IM)M−1χ+ (∇2

IM )M−1χ) (58)

2F ′I · ∇Iχ
′ = N †(2F I · ∇Iχ+ 2F I ·M(∇IM

−1)χ

2(∇IM )M−1 · ∇Iχ+ 2(∇IM) · (∇IM
−1)χ).

(59)

Though somewhat involved, most of the terms cancel when added together. In fact, since

0 = ∇I(MM−1) = (∇IM )M−1 +M(∇IM
−1) (60)

0 = ∇2
I(MM−1) = (∇2

IM )M−1 +M(∇2
IM

−1) + 2(∇IM) · (∇IM
−1), (61)
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we can write

S∇2
Iχ
′ +G′Iχ

′ + 2F ′I · ∇Iχ
′ = N †

(
∇2
Iχ+GIχ+ 2F I · ∇Iχ

+ 2∇I(MM−1) · ∇Iχ+∇2
I(MM−1)χ

+ 2F I · ∇I(MM−1)χ
)

= N †(∇2
Iχ+GIχ+ 2F I · ∇Iχ).

(62)

In other words, with χ′ = M−1χ, the right nuclear Schrödinger equation simplifies to

(
N †E − i d

dt
N †
)
χ = N †

∑
I

1

2MI

(∇2
I +GI + 2F I · ∇I)χ, (63)

which, upon premultiplication by N−†, is seen to be equivalent to the original right nuclear

Schrödinger equation in Eq. (37).

Since all the derivation steps we have made are reversible, we have shown that χ is a

solution to the untransformed nuclear Schrödinger equation if and only if χ′ is a solution to

the transformed Schrödinger equation. The total right wave function is therefore invariant

with respect to transformations of the electronic basis, Ψ′ = Ψ.

One consequence of basis invariance is that the nonadiabatic couplings can be derived in

the standard biorthonormal formalism. To derive expressions for these elements, we must

first consider the geometry dependence of the many-body operators.

Geometry dependence of the many-body operators

The scalar and vectors couplings, see Eqs. (154) and (32), involve differentiation of the

electronic wave functions with respect to the nuclear coordinates x. To evaluate these, we

need to consider the dependence of both the wave function parameters and the many-body

operators. The operator’s dependence is handled through orbital connections which relates

orbitals at neighbouring geometries. Note that there is no unique orbital connection; many-

body operators are expressed with respect to a specific orthonormal orbital basis, but at each
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geometry there are an infinite number of such bases related by unitary transformations. For

reasons that will become clear, we will use the so-called natural connection. Our presentation

will follow closely that given by of Olsen et al.26

When evaluating derivatives at x0, we need to relate the basis at x0 to some basis at

x = x0 + ∆x. Suppose the molecular orbitals (MOs) at x0 are

φm(x0) =
∑
α

χα(x0)Cαm(x0), (64)

where Cαm are orbital coefficients and χα are atomic orbitals. The unmodified MOs (UMOs)

are defined by freezing the orbital coefficients,

φum(x) =
∑
α

Cαm(x0)χα(x). (65)

The UMOs are not orthonormal, however:

Smn(x) = 〈φum(x) |φun(x)〉, Smn(x0) = δpq. (66)

Hence, UMOs are related to orthonormalized MOs (or OMOs) through

φm(x) =
∑
n

φun(x)Tnm(x), (67)

where the connection matrix T (x) satisfies T (x0) = I and

T (x)†S(x)T (x) = I. (68)

In the natural connection, T is chosen to be

T (x) = W (x)−1(W (x)S(x)W (x)†)1/2 = W (x)−1∆(x), (69)
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where

Wmn(x) = 〈φum(x0) |φun(x)〉. (70)

The natural connection minimizes the change in the orthonormalized orbitals at x relative

to the orbitals at x0.

Let us now relate the orbital space at x to the orbital space at x0. In order to do so,

we need to consider a complete orbital basis (denoted by indices pq . . .), which we partition

into the OMO basis (mn . . .) and the orthogonal complement orbitals, or OCOs (uv . . .). For

complete bases, we can write

φp(x) =
∑
q

φq(x0)Uqp(x), Uqp(x) = 〈φq(x0) |φp(x)〉. (71)

Occupation number states at x can thus be expressed as

|Φ(x)〉 = U(x)|Φ(x0)〉, (72)

with

U(x) = exp(−b(x)), b(x) =
∑
pq

bpq(x)a†p(x0)aq(x0), (73)

where b(x) is the anti-Hermitian operator with bpq(x) defined such that U (x) = exp(−b(x)).

The many-body operators can be expanded as

a†p(x) =
∑
q

a†q(x0)Uqp(x). (74)
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To evaluate derivatives with respect to some specific x, we expand operators about x0,

a†p(x) = a†p + a(1)†p ∆x+
1

2
a(2)†p (∆x)2 + . . . (75)

b(x) = b(1)∆x+
1

2
b(2)(∆x)2 + . . . , (76)

where

b(n) =
∑
pq

b(n)pq a
†
paq. (77)

Here we have let a†p ≡ a†p(x0) and suppressed the x-dependence of the derivatives. It will be

useful to split operator contributions in the OMO (‖) and OCO blocks (⊥):

a†p(x) =
∑
m

a†m(x0)Ump(x) +
∑
u

a†u(x0)Uup(x) = a†p‖(x) + a†p⊥(x). (78)

Let us evaluate

fIJ = 〈ΦI(x0) |
∂

∂x
ΦJ(x)〉

∣∣∣
0
. (79)

Using Eq. (72), we get

fIJ = 〈ΦI(x0) |
∂U

∂x

∣∣∣
0
|ΦJ(x0)〉 = −〈ΦI(x0) |b(1) |ΦJ(x0)〉. (80)

To simplify further, we note that Umn = ∆mn is Hermitian in the natural connection. Since

the Uuv block can similarly be chosen to be Hermitian, we have26

bmn = buv = 0 =⇒ b(k)mn = b(k)uv = 0 (81)
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and so

fIJ = −
∑
mn

b(1)mn〈ΦI(x0) |a†man |ΦJ(x0)〉 = 0. (82)

In general, fIJ is non-zero with connections other than the natural connection.

Next, we consider the second derivative

gIJ = 〈ΦI(x0) |
∂2

∂x2
ΦJ(x)〉

∣∣∣
0

= 〈ΦI(x0) |
∂2U

∂x2

∣∣∣
0
|ΦJ(x0)〉, (83)

which can be written

gIJ = 〈ΦI(x0) | − b(2) + b(1)b(1) |ΦJ(x0)〉 = 〈ΦI(x0) |b(1)b(1) |ΦJ(x0)〉. (84)

In the final equality, we have used Eq. (81). Now, notice that since

b(1) =
∑
um

b(1)uma
†
uam +

∑
mu

b(1)mua
†
mau = −

∑
m

a
(1)†
m⊥am +

∑
m

a†ma
(1)
m⊥, (85)

the only non-zero b(1)b(1) contribution is the one that first creates an electron in the comple-

mentary space and then destroys it. Thus,

gIJ = −
∑
mn

〈ΦI(x0) |a†ma
(1)
m⊥a

(1)†
n⊥ an |ΦJ(x0)〉

= −
∑
mn

〈ΦI(x0) |a†m[a
(1)
m⊥, a

(1)†
n⊥ ]+an |ΦJ(x0)〉.

(86)

The commutator can be expressed as

[a
(1)
m⊥, a

(1)†
n⊥ ]+ =

∑
uv

U (1)∗
um U (1)

vn [au, a
†
v]+ =

∑
u

U (1)∗
um U (1)

un =
∑
u

〈φ(1)
m |φu(x0)〉〈φu(x0) |φ(1)

n 〉. (87)
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Moreover, since

〈φm(x0) |φ(1)
n 〉 = U (1)

mn = −b(1)mn = 0, (88)

the inner projection in Eq. (87) is equivalent to the identity and so

[a
(1)
m⊥, a

(1)†
n⊥ ]+ = 〈φ(1)

m |φ(1)
n 〉. (89)

Hence, we get the final result

gIJ = −
∑
mn

〈ΦI(x0) |a†man |ΦJ(x0)〉〈φ(1)
m |φ(1)

n 〉. (90)

The formulas for fIJ and gIJ are valid for occupation number states but allow for general-

ization to general wave functions. We will be concerned with evaluating partial derivatives

with respect to x for wave functions of the form

|ψk(x)〉 =
∑
I

cIk(x)|ΦI(x)〉. (91)

Since the cIk depend implicitly on x, we have ∂cIk/∂x = 0. Thus,

fkl = 〈ψk(x0) |
∂

∂x
|ψl(x)〉

∣∣∣
0

=
∑
IJ

c∗Ik(x0)〈ΦI(x0) |
∂

∂x
|ΦJ(x)〉

∣∣∣
0
cJl(x0)

=
∑
IJ

c∗Ik(x0)fIJcJl(x0)

= 0

(92)
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and

gkl = 〈ψk(x0) |
∂2

∂x2
|ψl(x)〉

∣∣∣
0

=
∑
IJ

c∗Ik(x0)gIJcJl(x0)

= −
∑
mn

〈ψk(x0) |a†man |ψl(x0)〉〈φ(1)
m |φ(1)

n 〉.

(93)

For partial derivatives of the energy, we also have to account for the explicit x-dependence

of the Hamiltonian. We express the OMO Hamiltonian as

H =
∑
pq

hpq(x)Epq(x) +
1

2

∑
pqrs

gpqrs(x)epqrs(x), (94)

where both the integrals and the operators depend on x. However, the dependence of the

operators can be ignored in energy derivatives because matrix elements of occupation number

states are constant:

〈ΦI(x) |ΦJ(x)〉 = 〈ΦI(x0) |U(x)†U(x) |ΦJ(x0)〉 = 〈ΦI(x0) |ΦJ(x0)〉 (95)

In particular, elements involving Epq(x) and epqrs(x) are linear combinations of such overlaps

and therefore give no contributions in energy derivatives.27 The integrals are related to the

UMO basis as

hpq(x) =
∑
mn

Tmp(x)∗humn(x)Tnq(x) (96)

gpqrs(x) =
∑
mnkl

Tmp(x)∗Tnq(x)∗gumnkl(x)Tkr(x)Tls(x). (97)

By differentiating TW = W †T † and I = T †ST , we find that

T (1) = −W (1). (98)
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Consequently, the partial derivative of the Hamiltonian can be written

H(1) = H(1)
u − {W (1), H}, (99)

where H
(1)
u is the derivative of the UMO Hamiltonian and

{W (1), H} =
∑
pq

jpqEpq +
1

2

∑
pqrs

jpqrsepqrs, (100)

where

jpq =
∑
m

(W (1)
pmhmq + hpmW

(1)
mq ) (101)

jpqrs =
∑
m

(W (1)
pmgmqrs +W (1)

qmgpmrs + gpqmsW
(1)
mr + gpqrmW

(1)
ms ). (102)

The W (1) matrix, given by

W (1)
pq =

∂Wpq

∂x

∣∣∣
0

=
∑
αβ

Cαp(x0)Cβq(x0)

∫
χα(x0)

∂χβ
∂x

∣∣∣
0
dr, (103)

is analogous to S
(1)
pq = ∂Spq/∂x|0 in the symmetric connection T = S−1/2.

This concludes our discussion of how the geometry dependence of the many-body op-

erators affects energy derivatives and nonadiabatic coupling elements. We refer the reader

to Helgaker and Jørgensen27 for more details regarding connections and energy derivatives

and to Olsen et al.26 for more on the natural connection. In the next section, we derive

expressions for the nonadiabatic elements in coupled cluster theory.

Nonadiabatic coupled cluster couplings in a Lagrangian formalism

To obtain a Lagrangian for the vector coupling, Hohenstein22 defined a quantity whose first

derivatives are identical to components of the vector coupling. Although Hohenstein used it
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for configuration interaction theory, the observation generalizes straightforwardly to coupled

cluster theory. The quantity is the partially frozen overlap

Omn(x) = 〈ψ̃m(x0) |ψn(x)〉, (104)

in terms of which we have

(F I
mn)i =

〈
ψ̃m(x)

∣∣∣ d

dxi
ψn(x)

〉∣∣∣
0

=
d

dxi
Omn(x)

∣∣∣
0
, i ∈ I, (105)

and

GI
mn =

〈
ψ̃m(x)

∣∣∣∑
i∈I

d2

dx2i
ψn(x)

〉∣∣∣
0

=
∑
i∈I

d2

dx2i
Omn(x)

∣∣∣
0
. (106)

For convenience, we write i ∈ I to signify that xi is one of the three coordinates at nucleus

I (x, y, or z). Clearly, the vector and scalar couplings are derivatives of the partially frozen

overlap and may therefore be evaluated using a Lagrangian. Note that the overlap Omn(x)

depends on x0. We suppress this dependency for notational simplicity.

The overlap is expressed in terms of coupled cluster wave functions, which depend on x

but also on a set of wave function parameters λ (which themselves depend on x). Written

out in terms of wave function parameters, the overlap is given by

Omn(x,λ) = 〈ψ̃m(x0) | exp(−κ) exp(T ) |Rn〉, (107)

where

〈ψ̃m(x0)| = 〈Lm| exp(−T )
∣∣∣
0

(108)

23



and

κ =
∑
p>q

κpq(Epq − Eqp) =
∑
p>q

κpqE
−
pq. (109)

The κ operator accounts for orbital rotations, meaning changes in the Hartree-Fock orbitals,

where, by definition, we have κ(x0) = 0. Following the standard recipe, we add the equations

(denoted by Emn) that determine the parameters as constraints with associated Lagrangian

multipliers (denoted by γ),

Lmn(λ,x,γ) = Omn(λ,x) + γTEmn(λ,x), m 6= n, (110)

where λ and γ are determined for every x by stationarity:

∂Lmn

∂γk
= (Emn)k = 0 (111)

∂Lmn

∂λk
= 0. (112)

The derivatives of this Lagrangian are identical to the derivatives of the frozen overlap (since

Emn = 0). One advantage of the Lagrangian formalism is that it automatically incorporates

the 2n+ 1 and 2n+ 2 rules for λ and γ, respectively. In particular,

(F I
mn)i =

dLmn

dxi

∣∣∣
0

=
∂Lmn

∂xi

∣∣∣
0
, i ∈ I, (113)

where the final equality follows from stationarity, see Eqs. (111) and (112). Denoting partial

derivatives with respect to geometrical coordinates as

a(i) =
∂a

∂xi

∣∣∣
0
, a(i,j) =

∂2a

∂xi∂xj

∣∣∣
0
, (114)
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we can write

(F I
mn)i = L (i)

mn, i ∈ I. (115)

Furthermore, if we let

fα =
∂Lmn

∂λα

∣∣∣
λ=λ0

, Hαβ =
∂2Lmn

∂λα∂λβ

∣∣∣
0
, (116)

then the scalar coupling can be expressed as (see Appendix A)

GI
mn =

∑
i∈I

d2Lmn

dx2i

∣∣∣
0

=
∑
i∈I

(
L (i,i)
mn +

∑
αβ

λ(i)α Hαβλ
(i)
β + 2

∑
α

λ(i)α f
(i)
α

)
. (117)

Clearly, F I
mn and GI

mn are similar in complexity to the energy gradient and Hessian. How-

ever, GI
mn is somewhat simpler than the energy Hessian because the first derivatives of the

parameters (λ(i)) can be considered one at a time.

To proceed, we must define the Lagrangian Lmn in detail. The conditions Emn include all

equations that must be solved to evaluate the overlap Omn. These are (a) the Hartree-Fock

equations, (b) the amplitude equations, and (c) the eigenvalue equations for the right state

amplitudes. Written out in full, we have

Lmn = Omn + γTEmn

= Omn + κ̄TF c + ζTΩ + βTn (H̄− En)Rn + Ēn(1− 〈L0
n |Rn〉),

(118)

where we have introduced multipliers associated with the different sets of equations, κ̄, ζ,

as well as βn and Ēn. We have also introduced the Brillouin condition

(F c)pq = 〈HF | [E−pq, H(κ)] |HF〉, p > q, (119)
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where

H(κ) = exp(κ)H exp(−κ). (120)

Furthermore, the similarity transformed Hamiltonian in Ω and H̄ is given by

H̄ = H̄(κ) = exp(−T )H(κ) exp(T ) (121)

and the nth electronic energy defined as

En = 〈L(0)
n |H̄ |Rn〉. (122)

With Lmn defined, we can now consider the equations for the zeroth order multipliers.

These are determined from the zeroth order terms of the λ stationarity, Eq. (112). To keep

our notation simple, we will denote the zeroth order terms as γ(0) ≡ γ and λ(0) ≡ λ, where it

should be understood from context when these are γ and λ evaluated at x0. Differentiation

with respect to the state parameters gives

∂Lmn

∂Rn

∣∣∣
0

= 0 = LT
m + βTn (H̄− EnI)−

(
Ēn + En β

T
nRn

)
LT
n = 0. (123)

To solve this equation, we note that if we let

Ēn = −En βTnRn, (124)

the equation for βn becomes

βTn (H̄− EnI) = −LT
m. (125)
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Thus, we have

βn = (En − Em)−1Lm. (126)

Next we consider stationarity with respect to t. This can be expressed as

∂Lmn

∂t

∣∣∣
0

= 0 = tη + ζTA, (127)

where

tηµ = 〈L̄m |τµ |R̄n〉+ 〈β̄n | [H, τµ] |R̄n〉 (128)

and where we have introduced the notation

|X̄〉 = exp(T )|X〉 (129)

〈X̄| = 〈X| exp(−T ). (130)

Finally, we have stationarity with respect to κ, which can be written

∂Lmn

∂κ

∣∣∣
0

= 0 = κη + κ̄TAHF, (131)

where

κηrs =− 〈L̄m |E−rs |R̄n〉+ 〈ζ̄ | [E−rs, H] |CC〉+ 〈β̄n | [E−rs, H] |R̄n〉 (132)

and

AHF
pq,rs = 〈HF | [E−pq, [E−rs, H]] |HF〉. (133)

27



With the zeroth order multipliers determined, we can derive the expression for the vector

coupling. By partially differentiating Lmn, we find that

(F I
mn)i = L (i)

mn = (En − Em)−1〈Lm |H̄(i) |Rn〉

+ 〈ζ |H̄(i) |HF〉+ 〈HF | [κ̄, H(i)] |HF〉, i ∈ I,
(134)

where

H̄(i) = exp(−T )H(i) exp(T ) (135)

and where quantities at x0 are denoted as y(0) ≡ y (e.g., we denote T (0) as T ).

The vector coupling given in Eq. (134) has also been identified by other authors. It was

derived by Christiansen,13 who assumed biorthonormality and used Z-vector substitution14

on the expression for the vector coupling. Tajti and Szalay15 identified the same expression

indirectly via Z-vector substitution on derivatives of Hamiltonian transition elements. How-

ever, they also argued15 that the coupling should not be given by Eq. (134) but rather be

averaged and expressed with normalized states. As we have shown, Eq. (134) is a valid choice

due to norm invariance and represents the vector coupling in the right nuclear Schrödinger

equations. For the left Schrödinger equations, we can make use of the identity

〈ψ̃m |ψn〉 = δmn =⇒ F I
mn = −F̃ I

mn. (136)

Before moving on to the scalar coupling, we note that although the Z-vector substitution

method is equivalent to the Lagrangian technique, the latter method gives, in our opinion,

an especially elegant way of deriving the coupling elements.

For the scalar coupling, we must determine the first derivatives of the parameters. Equa-

tions for these are obtained as the first order terms of the multiplier stationarity conditions.
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In the case of t, we have

dΩ

dxi

∣∣∣
0

= 0 = tξ(i) +At(i), (137)

where

tξ(i)µ = 〈µ |H̄(i) |HF〉+ 〈µ | exp(−T )[κ(i), H] exp(T ) |HF〉. (138)

In the case of κ, we similarly have

dF c

dxi

∣∣∣
0

= 0 = κξ(i) +AHFκ(i), (139)

where

κξ(i)rs = 〈HF | [E−rs, H(i)] |HF〉. (140)

The binormality condition implies

d

dxi
(1− 〈L0

n |Rn〉)
∣∣∣
0

= 0 = −LT
nR(i)

n , (141)

while the eigenvalue condition implies

d

dxi

(
(H̄− En)Rn

)∣∣∣
0

= 0 = Rnξ(i) + (H̄− En)R(i)
n (142)

Here we have defined

Rnξ(i) =
(
Y (i) −LT

nY (i)Rn

)
Rn (143)
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where

Y(i)
µν = 〈µ |H̄(i) |ν〉+ 〈µ | [H̄, T (i)] |ν〉+ 〈µ | [κ(i), H̄] |ν〉, µ, ν ≥ 0. (144)

With the derivatives of the parameters determined, let us next consider f
(i)
α and Hαβ, see

Eq. (116). Recall that the α and β indices refer to the parameters λα and λβ. The gradient

f is given by the zeroth order equations for the multipliers, that is, Eqs. (123), (127), and

(131), with λ = λ0 but allowing for x 6= x0. Partially differentiating these terms with

respect to xi gives f (i). The blocks of the
∑

α f
(i)
α λ

(i)
α contributions to GI

mn may be written

Rnf (i)
µ (R(i)

n )µ =
∂2Lmn

∂xi∂Rn
µ

∣∣∣
0
(R(i)

n )µ = 〈β̄n |H(i) − E(i)
n |R̄(i)

n 〉 (145)

and

tf (i)
µ t(i)µ =

∂2Lmn

∂xi∂tµ

∣∣∣
0
t(i)µ = 〈ζ̄ | [H(i), T (i)] |CC〉+ 〈β̄n | [H(i), T (i)] |R̄n〉 (146)

κf (i)
pq κ

(i)
pq =

∂2Lmn

∂xi∂κpq

∣∣∣
0
κ(i)pq = 〈ζ̄ | [κ(i), H(i)] |CC〉+ 〈β̄n | [κ(i), H(i)] |R̄n〉

+ 〈HF | [κ̄, [κ(i), H(i)]] |HF〉
(147)

where repeated indices implies summation. For contributions to GI
mn involving the parameter

Hessian Hαβ = ∂2Lmn/∂λα∂λβ|0, we have, for terms involving t and κ,

t(i)µ H
tt
µνt

(i)
ν = t(i)µ

∂2Lmn

∂tµ∂tν

∣∣∣
0
t(i)ν

= 〈L̄m |(T (i))2 |R̄n〉

+ 〈ζ̄ | [[H,T (i)], T (i)] |CC〉

+ 〈β̄n | [[H,T (i)], T (i)] |R̄n〉

(148)
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as well as

κ(i)rsH
κt
rsνt

(i)
ν = κ(i)rs

∂2Lmn

∂κrs∂tν

∣∣∣
0
t(i)ν

= −〈L̄m |κ(i)T (i) |R̄n〉

+ 〈ζ̄ | [[κ(i), H], T (i)] |CC〉

+ 〈β̄n | [[κ(i), H], T (i)] |R̄n〉

(149)

and

κ(i)pqH
κκ
pqrsκ

(i)
rs = κ(i)pq

∂2Lmn

∂κpq∂κrs

∣∣∣
0
κ(i)rs

= 〈L̄m |(κ(i))2 |R̄n〉

+ 〈ζ̄ | [κ(i), [κ(i), H]] |CC〉

+ 〈β̄n | [κ(i), [κ(i), H]] |R̄n〉

+ 〈HF | [κ̄, [κ(i), [κ(i), H]]] |HF〉.

(150)

Next we have terms involving right state and the cluster amplitudes and orbital rotations:

t(i)µ H
tRn
µν (R(i)

n )ν = t(i)µ
∂2Lmn

∂tµ∂(Rn)ν

∣∣∣
0
(R(i)

n )ν

= 〈L̄m |T (i) |R̄(i)
n 〉

+ 〈β̄n | [H,T (i)] |R̄(i)
n 〉

− 〈βn |R(i)
n 〉〈L̄n | [H,T (i)] |R̄n〉

(151)

κ(i)pqH
κRn
pqν (R(i)

n )ν = κ(i)pq
∂2Lmn

∂κpq∂(Rn)ν

∣∣∣
0
(R(i)

n )ν

= −〈L̄m |κ(i) |R̄(i)
n 〉

+ 〈β̄n | [κ(i), H] |R̄(i)
n 〉

− 〈βn |R(i)
n 〉〈L̄n | [κ(i), H] |R̄n〉.

(152)
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Finally, we have the partial derivative of the Lagrangian, which can be written

L (i,i)
mn = −

∑
pq

〈L̄m |Epq |R̄n〉〈φ(i)
p |φ(i)

q 〉+ 〈ζ̄ |H(i,i) |CC〉

+ 〈HF | [κ̄, H(i,i)] |HF〉+ 〈β̄n |H(i,i) |R̄n〉,
(153)

Written in compact notation, the scalar coupling may be evaluated as

GI
mn = 〈L̄m |R̄(i,i)

n 〉+ 〈ζ̄ |K(i,i) |CC〉+ 〈β̄n |K(i,i) |R̄n〉

+ 〈HF | [κ̄, J (i,i)] |HF〉+ 〈β̄n |L(i) − 〈L(i)〉n |R̄(i)
n 〉

(154)

where we have let

K(i,i) = J (i,i) + 2[J (i), T (i)] + [[H,T (i)], T (i)] (155)

J (i) = H(i) + [κ(i), H] (156)

L(i) = 2(H(i) + [κ(i), H] + [H,T (i)]) (157)

〈L(i)〉n = 〈L̄n |L(i) |R̄n〉 (158)

J (i,i) = H(i,i) + 2[κ(i), H(i)] + [κ(i), [κ(i), H]] (159)

as well as

〈L̄m |R̄(i,i)
n 〉 = 〈L̄m |(κ(i))2 − 2κ(i)T (i) + (T (i))2 |R̄n〉 − 2〈L̄m |κ(i) |R̄(i)

n 〉

+ 2〈L̄m |T (i) |R̄(i)
n 〉 −

∑
pq

〈L̄m |Epq |R̄n〉〈φ(i)
p |φ(i)

q 〉.
(160)

Throughout the derivations above, we have considered the off-diagonal coupling elements

(m 6= n). The diagonal terms can be derived from the Lagrangian

Lnn = Onn + γTEnn

= Onn + κ̄TF c + ζTΩ + βTn (H̄− En)Rn + Ēn(1− 〈L0
n |Rn〉),

(161)
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which gives the slightly different Rn stationarity condition

0 = (1 + Ēn − EnβTnRn)LT
n + βTn (H̄− En). (162)

Here we again select Ēn to make the first term vanish, giving

βTn = LT
n . (163)

Other than this change, the derivation of the scalar coupling is virtually unchanged. Terms

involving differentiation of Onn has the left state 〈Ln| in the bra instead of 〈Lm| (e.g., in

the stationarity conditions for the zeroth order multipliers). In particular, the expression in

Eq. (154) is valid with m = n.

Unlike for the vector coupling, there is no convenient relationship between GI
mn and G̃I

mn.

To derive the latter quantity, we may consider the Lagrangian

Lmn = Omn + γTEmn

= Omn + κ̄TF c + ζTΩ + LT
m(H̄− Em)βm + Ēm(1− 〈Lm |R0

m〉),
(164)

where

Omn = 〈Lm | exp(−T ) exp(κ) |ψn(x0)〉 (165)

Em = LT
mH̄R0

m. (166)

The Lm stationarity then gives

0 = Rn + (H̄− Em)βm + (Ēm − EmLT
mβm)Rm, (167)
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from which we again have Ēm = EmLT
mβm and thus

βm = −(En − Em)−1Rn. (168)

The equations for the zeroth order multipliers are derived as before, with the result that

the multipliers change their sign, thus giving the result in Eq. (136) for the vector coupling.

For the derivative of the parameters, we have the same equations for t(i) and κ(i). For the

derivative of Lm, we must solve the equation

d

dxi

(
LT
m(H̄− Em)

)∣∣∣
0

= 0 = Lmξ(i)T + L(i)T
m (H̄− Em), (169)

which is analogous to Eq. (142). In contributions involving 〈βn | . . . |Rn〉 in GI
mn, we obtain

similar expressions involving 〈Lm | . . . |βm〉 in the case of G̃I
mn. The end-result is

G̃I
mn = 〈L̄(i,i)

m |R̄n〉+ 〈ζ̄ |K(i,i) |CC〉+ 〈L̄m |K(i,i) | β̄m〉

+ 〈HF | [κ̄, J (i,i)] |HF〉+ 〈L̄(i)
m |L(i) − 〈L(i)〉m | β̄m〉,

(170)

with

〈L̄(i,i)
m |R̄n〉 = 〈L̄m |(κ(i))2 − 2T (i)κ(i) + (T (i))2 |R̄n〉+ 2〈L̄(i)

m |κ(i) |R̄n〉

− 2〈L̄(i)
m |T (i) |R̄n〉 −

∑
pq

〈L̄m |Epq |R̄n〉〈φ(i)
p |φ(i)

q 〉.
(171)

Finally, G̃I
nn is obtained in a similar manner to GI

nn, see Eq. (161) and the surrounding text.

This concludes our derivation of the coupled cluster scalar coupling. To the best of our

knowledge, equations for this coupling have not been presented in the literature before (with

m 6= n). Diagonal terms were also considered by Gauss et al.18 from a different starting point.

The scalar coupling is often omitted in dynamics simulations, but its potential influence on

nonadiabatic dynamics has been highlighted in recent years (see Curchod and Mart́ınez3 and

references therein).
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Concluding remarks

The norm of the electronic states changes the value of nonadiabatic coupling elements but

does not change the molecular wave function. The biorthonormal formula assumed by Chris-

tiansen13 is therefore a valid choice for coupled cluster dynamics with the appropriate nuclear

Schrödinger equations. More generally, we have shown that the wave function is invariant

under invertible transformations of the electronic basis. Of course, the biorthonormal cou-

plings are not directly comparable to the coupling elements of an Hermitian method with

normalized states, such as CI or full-CI. However, this reflects the basis-dependence of the

couplings and not the validity of the biorthonormal formalism.

We therefore derive a set of nuclear Schrödinger equations assuming biorthonormal pro-

jection onto the electronic basis. Combined with expressions derived for the vector and scalar

couplings, these nuclear Schrödinger equations serve as a starting point for the application

of nonadiabatic dynamics methods to coupled cluster theory.

Our derivations have been restricted to standard coupled cluster theory. However, the La-

grangian formalism is easily extended to similarity constrained coupled cluster methods,11,12

which are suited to describe relaxation through a conical intersection between excited states.

The application to ground state intersections is less straightforward, but may be accessible

with approaches that use a different reference than the closed-shell Hartree-Fock state.28
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Appendix A: Lagrangian derivatives

Here we derive first and second derivatives of the generic Lagrangian

L (λ,x,γ) = O(λ,x) + γTE (λ,x) (172)

with respect to x. The parameters and multipliers both depend on x since they are deter-

mined, for a given x, from the stationarity conditions

∂L

∂λk
= 0,

∂L

∂γk
= 0. (173)

Using Einstein notation, we can write the Taylor expansion of L about some x0 as

L (λ,x,γ) = L0 +
∂L

∂xk

∣∣∣
0
∆xk +

1

2
∆xk

∂2L

∂xk∂xl

∣∣∣
0
∆xl +

1

2
∆λk

∂2L

∂λk∂λl

∣∣∣
0
∆λl

+ ∆λk
∂2L

∂λk∂xl

∣∣∣
0
∆xl + ∆γk

∂2L

∂γk∂xl

∣∣∣
0
∆xl + ∆λk

∂2L

∂λk∂γl

∣∣∣
0
∆γl + . . . ,

(174)

where we have ignored terms of order three or higher in ∆x. These terms do not contribute

to the first and second derivatives and are therefore not relevant to the analysis given here.

In the first derivative, only the partial derivative survives,

dL

dxi

∣∣∣
0

=
∂L

∂xi

∣∣∣
0
. (175)

This is due to the stationarity conditions, since they ensure that there are no linear terms in

∆λ and ∆γ in the Taylor expansion in Eq. (174). In the second derivative, it is convenient

to introduce notation for derivatives with respect to particular components of x. We let

a(i) =
∂a

∂xi

∣∣∣
0

(176)

a(i,j) =
∂2a

∂xi∂xj

∣∣∣
0
. (177)
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Then we can write

dL

dxi

∣∣∣
0

= L (i). (178)

and

d2L

dxidxj

∣∣∣
0

= L (i,j) + λ
(i)
k

∂2L

∂λk∂λl

∣∣∣
0
λ
(j)
l + λ

(j)
k

∂2L

∂λk∂xi

∣∣∣
0

+ λ
(i)
k

∂2L

∂λk∂xj

∣∣∣
0

+ γ
(j)
k

∂2L

∂γk∂xi

∣∣∣
0

+ γ
(i)
k

∂2L

∂γk∂xj

∣∣∣
0

+ 2λ
(i)
k

∂2L

∂λk∂γl

∣∣∣
0
γ
(j)
l .

(179)

Now,

γ
(j)
l

( ∂2L

∂xi∂γl

∣∣∣
0

+ λ
(i)
k

∂2L

∂λk∂γl

∣∣∣
0

)
= γ

(j)
l

dEl
dxi

∣∣∣
0

= 0, (180)

by stationarity, so that

d2L

dxidxj

∣∣∣
0

= L (i,j) + λ
(i)
k

∂2L

∂λk∂λl

∣∣∣
0
λ
(j)
l + λ

(j)
k

∂2L

∂λk∂xi

∣∣∣
0

+ λ
(i)
k

∂2L

∂λk∂xj

∣∣∣
0
. (181)

To simplify the notation further, we define derivatives with respect to the parameters:

fk =
∂L

∂λk
, Hkl =

∂2L

∂λk∂λl

∣∣∣
0
. (182)

Thus, we get the final expression for the second derivatives:

d2L

dxidxj

∣∣∣
0

= L (i,j) + λ
(i)
k Hklλ

(j)
l + λ

(j)
k f

(i)
k + λ

(i)
k f

(j)
k . (183)
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