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Abstract

Contemporary urban life and functioning have become increasingly dependent on
mobility. Having become an inherent constituent of urban dynamics, the role of
urban moblity in influencing urban processes and morphology has increased dramat-
ically. However, the relationship between urban mobility and spatial socio-economic
structure has still not been thoroughly understood. This work will attempt to take a
complex network theoretical approach to studying this intricate relationship through

• the spatio-temporal evolution of ad-hoc developed network centralities based
on the Google PageRank,

• multilayer network regression with statistical random graphs respecting net-
work structures for explaining urban mobility flows from urban socio-economic
attributes,

• and Graph Neural Networks for predicting mobility flows to or from a specific
location in the city.

Making both practical and theoretical contributions to urban science by offering
methods for describing, monitoring, explaining, and predicting urban dynamics, this
work will thus be aimed at providing a network theoretical framework for developing
tools to facilitate better decision-making in urban planning and policy making.

Keywords: urban mobility, machine learning, complex networks, socio-economic
attributes, spatio-temporal activity, neural networks
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"If you do not care about networks,

the networks will care about you,

anyway. For as long as you want

to live in society, at this time and

in this place, you will have to deal

with the network society."

Manuel Castells, 2001

Chapter 1

Introduction

Let me introduce the reader to the topic of my PhD work in the Data Science PhD

program jointly held by Scuola Normale Superiore of Pisa (SNS), University of Pisa

(UniPi), National Research Council (CNR), Sant’Anna School of Advanced Studies

(SSSA), and IMT School for Advanced Studies Lucca (IMT).

1.1 What is urban data science?

The origins of urban data science can be tracked to the field of urban analytics

which, broadly speaking, develops, utilises and exploits a set of analytical methods

and big data to study, understand and predict properties and features of urban

environments, formalised as urban systems [236]. However, overly focused on data

analysis of huge urban data streams collected from various sources in the city (see

Section 2.1.2), urban analytics often lacks a firm methodological foundation and

clarity about research paradigms. Given this shortcoming and the unprecedented

growth in data-informed research on cities in the past 20 years, Michael Batty calls

for the need "to go beyond data analysis per se" and establish a theory of the urban -

city science - aimed at understanding and explaining spatial and temporal variations

of urban phenomena [31].

In [199], the authors establish the term "urban data science" by extending ur-

ban analytics and city science to require the incorporation of both quantitative and

qualitative methods, and, most importantly, a clear research paradigm and a dia-
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Chapter 1. Introduction 1.2. What is this thesis about?

logue with other established scientific fields from which to borrow and with which

to intertwine our understanding of cities as complex systems.

This aspect is particularly important for the present thesis, as it aims to explore,

model, and understand the complex relationships between urban socio-economic

characteristics and urban mobility, and will attempt to accomplish this via the

scientific apparatus of network science .

In what follows, I will provide a short comprehensive excursion into the essence

of this work with which the reader will be offered a road map of the motivation,

research questions, methodology, main contributions, and results of this PhD thesis.

1.2 What is this thesis about?

If I were to outline what the present PhD thesis contributes to and what it is

essentially about in just a few paragraphs, it would be:

I
What is this PhD thesis essentially about?

The bulk of research in City Science - a computational understanding of urban

systems - can be said to follow two main trajectories: that of urban structure

and urban mobility [30]. The former studies the spatial organisation and mor-

phology of the physical infrastructure, urban space, and the location choices

of firms and individuals - also known as urban economics. The latter, on the

other hand, studies the individual and collective movement patterns in cities

to inform urban and transportation planning.

This thesis attempts to bridge the two trajectories, presenting a methodology

for studying the intricate relationships between urban structure and urban

mobility through the lens of network science.

Classical urban geography treats urban phenomena as spatial processes in

which the relations of urban spaces and locations among each other is lim-

ited to so-called spillover effects typically decaying with distance [200]. Urban

space is primarily understood in geographical or temporal space, with a lo-

cally determined part-to-whole relationships to the city. A major conceptual
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II
view underpinning the present thesis is whether the city can be meaningfully

represented in relational space , and, if so, whether this representation can

help us extract new kinds of knowledge about cities as systems and reevalu-

ate part-to-whole relationships in the city. In particular, this thesis models

the city as a network of mobility flows encoded with origin-destination (OD)

matrices, augmented with attributes describing network nodes - city locations

(e.g., population density, number of restaurants, real estate prices, etc.) and

edges - the various relationships between them (e.g., road distance, travel time,

public transport connections, etc.). This attributed urban mobility network

is then studied from two methodological viewpoints:

• Network centrality measures

• Urban flow modelling and prediction

First, new network centrality measures based on the Google PageRank algo-

rithm are presented. Just like how Google ranks web pages based on queries,

urban planners or policy makers are given the opportunity to "search" the ur-

ban network based on specific criteria of desired urban attributes to study the

spatio-temporal characteristics of city locations and to inform urban planning

and policy making. Then, rankings obtained from the introduced algorithms

are used to enhance the modelling and prediction of urban mobility flows.

This is achieved via two novel approaches presented in the thesis:

• Statistical random graph regression , in which the observed urban

mobility network is considered a realisation from an ensemble of ran-

dom graphs and is regressed on socio-economic attributes describing the

urban environment with the aim of explaining the effect each attribute

has on the mobility flows.

• Graph Neural Networks for predicting flows to/from a specific lo-

cation of interest in a city. Imagine a developer aims to build a new

commercial center at a given location in the city, knowing the socio-

economic attributes of that location in advance (i.e., type of activity,

retail volume, parking area, etc.). Can we predict the mobility to/from
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III
that location, given the attributes of the project location and the rest

of the mobility network?

Thus, this thesis presents a network-oriented methodology to describe, model,

analyze, and predict spatio-temporal aspects of urban mobility flows.

1.3 Thesis Structure

The present PhD thesis is a cumulative thesis . The individual thesis chapters are

essentially modified versions of papers published in the course of three years of the

PhD program.

In what follows, the thesis structure and a brief synoptic outline of each individual

chapter are presented.

Chapter 2 - Background In this Chapter, we prepare ground for the subsequent

body of work by motivating why studying cities and urban mobility is impor-

tant, by introducing core concepts we are going to work with, and by providing

an extensive review of literature in urban structure and urban mobility ,

and baseline techniques and models we will build upon and develop.

Chapter 3 - Thesis Objectives In this Chapter, we define the objectives of our

work and formulate the research questions we will attempt to answer.

Chapter 4 - Data Here we describe in detail the methodology and process of

building the urban mobility network dataset from private car GPS trajecto-

ries, augmented with socio-economic attributes describing city locations from

various open sources. We explore the dataset, discuss its main features, and

set a common ground to be referred to and used by the main body of work

represented in the remaining chapters of this thesis.

Chapter 5 - Adapted PageRank and Eigenvector Centrality In this Chap-

ter, we introduce the conceptual framework for centrality measures based on

the Google PageRank and discuss the motivation and importance of such cen-

trality measures in an urban context. This Chapter is a modified version

17



Chapter 1. Introduction 1.3. Thesis Structure

of our paper "Analysis and comparison of centrality measures applied to ur-

ban networks with data" in which we present new centrality measures based

on the Google PageRank and eigenvector centralities for networks augmented

with node attributes, provide a comparative analysis, and apply the discussed

measures on the constructed OD flow network in Rome. The presented algo-

rithms offer the possibility to choose the relative importance of the attribute

data with respect to the network topology in computing the rankings, thus

providing the urban planner with a high flexibility.

Chapter 6 - APA centrality for Biplex urban networks In this Chapter, we

build upon the Adapted PageRank Algorithm presented in the previous Chap-

ter 5, by extending it to a biplex mobility network setting. This Chapter is

a modified version of our paper "A centrality measure based on the Adapted

PageRank Algorithm for multiplex networks with data" which modifies and

enhances the previously introduced APA centrality to a multiplex network

with the possibility to control for the importance of node attribute data with

respect to the network topology in each of the network layers. The presented

algorithm is then applied to a case study of the Rome urban OD network

with mobility flow and bus connection layers, where different parametrisations

of the relative importance of attribute data with respect to the flow network

topology are compared.

Chapter 7 - APA centrality for Multiplex urban networks This Chapter is

a conceptual follow-up of the previous Chapter 6 which introduced the APA

centrality for biplex mobility networks, and naturally extends it to a multi-

layer setting with the possibility to consider many kinds of relations between

city locations at the same time. This Chapter is a modified version of our pa-

per "Understanding mobility in Rome by means of a multiplex network with

data" in which we apply the presented APA centrality algorithm for multi-

plex networks to the same Rome OD flow network extended to include subway

connections and topologically short travel distances as additional network lay-

ers. Different cases of attribute data importance in each of the layers are then
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considered and the possibilities of such a multilayer network approach are

highlighted. We will use the rankings obtained from this algorithm to enhance

the explanatory and predictive models in Chapters 9 and 10.

Chapter 8 - Spatio-temporal APA centrality In this Chapter, we build upon

the APA centrality paradigm introduced in Chapter 5, and explore spatio-

temporal characteristics of the distribution of APA centrality values in cities.

In particular, this Chapter is a modified version of our paper "Ranking places

in attributed temporal urban mobility networks" in which we apply the APA

centrality introduced in previous chapters to temporal urban OD flow networks

in Rome and London. We introduce several metrics to capture the spatial dis-

tribution of "hotspots" with high centrality values across different hours of the

day and days of the week in both cities, look at how different socio-economic

attributes affect the spatio-temporal behaviour of "hotspots", and provide a

comparison among the two cities. The Chapter both presents a methodology

for studying urban space with its socio-economic characteristics within a net-

work paradigm and a practical workflow for building and monitoring mobility

in a city with specific simple metrics.

Chapter 9 - Explaining mobility from urban attributes We place this Chap-

ter within the paradigm of human mobility modelling by considering the at-

tributed urban mobility network as a multilayer network with each attribute

- both node and edge, including the APA centrality rankings computed in

previous chapters - transformed into dyadic relationships and considered as

a separate layer in the network. Within this framework, the OD flow layer

is considered as a realisation from a particular family of statistical random

graphs. A regression model respecting the network topology is then proposed,

in which the OD flow layer is regressed on the dyadic attribute layers, offering

the possibility to explain the impact each attribute layer has on the observed

urban OD flow network. A temporal regression setting is further presented,

with results compared for Rome and London.

Chapter 10 - Urban Mobility Graph Neural Networks This final study Chap-
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ter is a modified version of our "Learning Mobility Flows from Urban Features

with Spatial Interaction Models and Neural Networks" paper in which we

propose several neural network-based architectures, including Graph Neural

Networks (GNN) for predicting mobility flows to/from a specific city location,

the socio-economic attributes of which are known in advance. We show how

the proposed models significantly outperform classical mobility models and

more recent machine learning approaches, and demonstrate the impact of the

previously computed APA centralities on the prediction accuracy.

Chapter 11 - Conclusion This Chapter concludes the PhD thesis by summaris-

ing the formulated research questions and the methodology proposed in the

different Chapters for tackling these, discussing the main results and findings,

highlighting the advantages of the presented techniques, pointing out draw-

backs and shortcomings, and sketching the directions for improvement and

future work.
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"If a man who can’t count finds a

four leaf clover, is he lucky?"

Stanislaw Lem

Chapter 2

Background

2.1 Introduction and motivation

2.1.1 Why cities?

Along with the agricultural revolution, the first city-like settlements came to be

approximately 10,000 years ago [184] and witnessed unprecedented growth with the

industrial revolution. The first city to reach 1,000,000 inhabitants was London, at

the heart of the industrial revolution, at the onset of the 19th century. This un-

leashed the further spread through the end of the 19th and the 20th centuries to

other parts of the world. However, while western countries are already largely ur-

ban (in 2017, the US population was 82% urban, Australia’s 86%, and the majority

of the countries in the EU hosted around 80% of their population in cities [115]),

the significant part of ’rapid urbanisation’ takes place in developing countries. 2005

marked the year in which it was estimated by the U.N. that more than 50% of the

world population was inhabiting in cities [186]. It is beyond doubt that urbanisation

is not a contingent phenomenon in history, and that the impact cities are going to

have on the world is only expected to grow. In fact, the importance of cities in the

modern world is already enormous.

First, they play a disproportionately large role in the world’s economy. A 2011

report by McKinsey revealed that while the USA and India had respectively 79%

and 19% of urban population, their contribution to their countries’ respective GDP

21



Chapter 2. Background 2.1. Introduction and motivation

was 85% and 39%. NASA data show that urbanised areas cover 6% of the total

land surface area in the world, comparable in size to the whole area of the European

Union. Notwithstanding their relatively small spatial trace, cities have a consider-

able environmental impact. The United Nations reported in 2016 that cities were

responsible for 74% percent of the world’s CO2 emissions.

Representing but the tip of the iceberg, the above-mentioned should suffice to con-

vince anyone of the importance to study and understand cities if we want to make

the world we built for ourselves a better place. The unprecedented explosion of

urbanisation in developing countries poses significant challenges. Both the cause as

well as the solution of some of the most pressing problems in the world unarguably

lie in cities. By improving the way cities function we can possibly have a dramatic

impact on people’s lives. In order to do so however, we need to understand how

they function first.

2.1.2 Why data?

The fundamental game changer in research on cities is data. We now have at our

availability huge amounts of data pertaining to virtually all aspects of urban life.

Data about many different processes is available at various scales.

At short time scales, we have human mobility data originating from call detail

records (CDR) that contain information on the location of individuals at the moment

of making a call. Until relatively recently this kind of data was mainly obtained

by surveys that had limitations with respect to time and space, whereas CDR or

automobile GPS data give a much more precise and real-time overview of mobility in

cities. Moreover, the use of Radio-frequency identification (RFID) in subway, bus,

and private vehicle transport modes enhance this type of datasets and the growing

set of different sensors in urban environments measuring, for instance, air pollution

offer the possibility to extend our understanding and modeling of urban mobility.

At larger time scales of several months to a year, there is socioeconomic data

on such aspects as the income-location relationship, the spatio-temporal change in

real-estate prices, etc. Finally, at a very long time scale, the digitization of historical

documents such as maps offers the opportunity to study the long-term evolution and
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change of urban infrastructure. All the mentioned types of data are indispensable in

the process of modelling and studying cities and the revelation of the major forces

that propel their evolution.

Another crucial issue has to do with the accuracy of the mentioned new datasets.

It is necessary to test and compare them with more conventional methods of ob-

taining socioeconomic data, for example surveys. In [164] the authors investigated

the relationship between various sources of data concerning Origin-Destination flow

(OD) matrices1 describing mobility in Spanish cities with data obtained from Twit-

ter, CDRs, and census data. They showed a valid consistency between the different

datasets. The study showed the importance of working with a multitude of different

data sources, allowing for cross-checking the obtained results (Figure 2-1a).

(a)

(b)

Figure 2-1: (a) Correlations between data sources [164]. (b) The reachability
within 30 minutes by foot, bycicle, and car in the city of Marseille, France [196].

2.1.3 Why mobility?

Mobility is undoubtedly a critical phenomenon in urban environments. In fact, it can

be considered as one of the most important mechanisms underlying the structure and

dynamics of contemporary cities. Indeed, cities are places where intensive buying,
1for a detailed overview of OD flow data, see Section 4
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selling or exchanging goods is taking place, where individuals commute to work or

meet with other individuals. An obvious means to achieve all this is transportation.

Here is where technology enters the picture via the average and maximum velocity

of different transportation modes. This average velocity has increased considerably

as technology evolved and modified the spatial organization of cities. For instance,

as we can see in Figure 2-1b, the reachability of an individual depends on the trans-

portation mode. For a pedestrian, the reachability horizon is typically isotropic and

small, whereas the car permits a wider yet anisotropic exploration of space due to

the existing infrastructures. The described correlation between the spatial organi-

sation of a city and the available technology at the time has been demonstrated by

[18] for American cities. The authors of the study show how many big cities, such

as Denver, grew around rail stations which unleashed the development of central

business districts. Later automobile-era cities such as Dallas, on the other hand,

display a spatial structure primarily conditioned by the highway system.

In terms of mobility, the traditional city center can be regarded as the location

that mimimises the average distance to all other locations in the city. As a natural

consequence, it has thus historically attracted businesses and residences, leading to

competition for the limited space among individuals or firms, which gave rise to the

real-estate market. There exists also a well-studied relationship between land-use

and accessibility, as was shown half a century ago in [120], and it can be expected

that new datasets will certainly offer new possibilities to precisely portray the rela-

tion between these and other important factors.

It is certainly neither reasonable nor possible to make an all-encompassing re-

view on all available studies on mobility and our focus in this thesis will be rather

on certain specific points. We will firstly describe the general features of urban

mobility considering the central quantity in these studies - the origin-destination

(𝑂𝐷) matrix - and discussing how to extract useful information from it. Next, we

will formulate hypotheses about how to approach the intricate relationships between

urban mobility and urban spatial structure.
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2.1.4 Why spatial structure?

Morphological aspects of the city, such as the quantitative description and compari-

son of cities according to their density landscape, spatial organisation, polycentricity,

or the clustering variation of their activity centers, have already been studied for

a long time in urban geography and spatial economy [18, 39, 261, 213, 233, 255,

116, 38, 159]. However, there seems to be a lack of precision when dealing with the

fundamental object of our study: the city. Despite some efforts from urban geogra-

phers to build a common ground as to the definitions of a city [219], we still lack an

univocal, theoretically sound definition of what a city is. And this is problematic,

since statistical results stem from what is deemed as the most suitable definition of

the city at the time and context of the study. This in turn influences the ability to

generalise research results on cities. If we aim to obtain robust empirical results,

compare the results obtained in different countries, we would need to begin think-

ing about the definition of the system of our study. With a definition of the study

object more or less set up, a usual starting point towards our goal of understanding

how cities are spatially structured is to study how objects are scattered within it.

By objects it is meant buildings, roads, economic activities, but most importantly,

people.

The way the distribution of objects in space is traditionally studied is via the

study of densities. With a growing scale, however, density profiles become too com-

plicated to comprehend and work with. Several attempts have been made towards

approaching this problem in the field of spatial statistics as well as urban form

[233, 261, 182, 264]. Authors in them attempt to resolve this issue by proposing

simple measures that extract a single index from the density profile. A paramount

example is the Moran’s 𝐼 [182] defined as:

𝐼 =
𝑁

𝑊

∑︀
𝑖

∑︀
𝑗 𝑤𝑖𝑗(𝑥𝑖 − �̄�)(𝑥𝑗 − �̄�)∑︀

𝑖(𝑥𝑖 − �̄�)2
, (2.1)

where 𝑁 is the number of spatial units indexed by 𝑖 and 𝑗; 𝑥 is the variable of

interest; �̄� is the mean of 𝑥; 𝑤𝑖𝑗 is a matrix of spatial weights with zeroes on the

diagonal (i.e., 𝑤𝑖𝑖 = 0); and 𝑊 is the sum of all 𝑤𝑖𝑗. The Moran’s 𝐼 measures the
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Figure 2-2: Measure of the spatial autocorrelation among spatial units

degree to which similar objects in space tend to cluster together. Its values range

from -1 to 1, with -1 corresponding to perfect clustering of dissimilar values, with

+1 to perfect clustering of similar values, and with 0 indicating no autocorrelation

(perfect randomness, Figure 2-2). It is worth mentioning that Morans’s 𝐼 index is

related to the "First Law of Geography" which states that "everything is related to

everything else, but near things are more related than distant things." [257]

Another example of a single index, in this case measuring the heterogeneity of

population densities in the city is the modified Gini coefficient [264]:

𝐺𝛼 =

∑︁
𝑖,𝑗∈𝛼

|𝑃𝑖 − 𝑃𝑗|

2𝑛𝛼

∑︁
𝑖∈𝛼

𝑃𝑖

, (2.2)

where the sums run over all 𝑛𝛼 cells covering the surface of the municipality 𝛼.

The Gini coefficient is predominantly used in Economics [110, 111], and was

originally proposed to measure the inequality degrees in distributions of wealth

and income but has been modified in [264] to capture the level of heterogeneity of

population densities. It takes on the value of zero for a city in which the population is

uniformly distributed in all grid cells, and is maximum for an extremely concentrated

city, with the total population residing in a single grid cell.

A single index is nonetheless too simple to accurately capture complex spatial

relationships. For example, as we can see in Figure 2-3, the spatial organisation of

the population densities can be reshuffled to obtain different layouts with exactly

the same Gini coefficient, demonstrating the inability of this index to capture how
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values are organised in space. Although the authors go on to introduce another index

compensating for this shortcoming, the example demonstrates the need for more

sophisticated representations. Hence, what is needed is rather a meso-scale measure,

somewhere between the micro-scale representation (the density profile itself) and

the macro-scale representation (a single index summarising the density profile). We

conjecture that since ’centers’ are themselves a meso-scopic system, their working

definition ought to emerge readily from such a representation.

(a) (b)

Figure 2-3: (a) The population distribution in Paris in 2013 and different distribu-
tions with exactly the same Gini [264]. (b) Illustration of a trajectory flow map, a
dynamic graph of aggregated traffic flows constructed from trajectory data. The
presented example is based on bus passenger trajectories obtained in Brisbane,
Australia [143].

Until relatively recently these quantitative characterisations of urban form were

primarily based on transport surveys, census data, and remote sensing data, all al-

lowing for a fine spatially granular population density and land use estimation, but

lacking the same granularity in the temporal dimension. It should be noted here that

early studies in urban geography [96, 114] estimated population density at different

hours of the day using transport surveys and could trace the morphological and

socioeconomic evolution of urban areas during the day. In addition, various traffic

surveys in cities around the world have provided an overall outline of the temporal

dimension of urban mobility.

However, given their rather coarse temporal resolution and the absence of ap-

propriate data, these studies were not able to study some crucial questions related

to dynamical characteristics of the spatial organisation of cities: how does the city’s

population and/or activity density profile change throughout the day? What is the
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spatial distribution of the city’s hotspots at different times of the day? How are

these hotspots or points of interest (POI) spatially organized? Is there any hierar-

chy in the spatial organization of hotspots, and if so, is it robust through time? Is

there some kind of characteristic distance(s) characterizing the invariant core of a

city?

Given the importance and challenges associated with the study of the spatial

structure of cities and its non-trivial relationships with urban mobility, this the-

sis will attempt to approach the above-mentioned issues from a complex network

theoretical perspective.

2.1.5 Why complex networks?

The science of networks has been witnessing a rapid development in recent years:

the metaphor of the network, with all the power of its mathematical devices, has

been applied to complex, self-organized systems as diverse as social, biological, tech-

nological and economic, leading to the achievement of several unexpected results in

the seminal works of Barabási, Strogatz, Pastor-Satorras and others [15, 249, 209].

Our understanding of spatial networks that are omnipresent in biological, techno-

logical and infrastructural systems [181, 27] has seen an unprecedented progress in

the recent years. However, notwithstanding a significant amount of research on

these kinds of networks, in disciplines covering among others mathematics, physics,

biology, and geography, their topological, structural and dynamical properties are

not yet completely understood. These networks have proven to be relevant in urban

systems [55, 40, 206, 29, 26] where the studies of their structure and topology have

revealed particular characteristics of cities as well as shown remarkable statistical

properties such as scale invariant patterns across various urban spaces [112, 41, 138].

The street network with its geometry is of particular importance, providing the res-

idents functional connections for navigating various components of the urban area.

Different street patterns allow for different levels of efficiency, accessibility, and util-

isation of infrastructure [137, 72, 270, 140]. Thus, structural properties of street

networks have been the object of several studies [152, 268, 173, 248].

Urban morphology and morphogenesis, activity residence and workplace spa-
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tial distributions, urban sprawl and the evolution of urban networks, are but a

few of the important mechanisms that have been systematically studied but that

we now hope to comprehend quantitatively. The various network models can be

thought of as a simplified abstracted view of cities, which capture important parts

of their structure and organization [243] and contain the possibilities to unlock the

underlying universal processes behind their formation and development. Apart from

modelling the street network as a graph, thus restricting oneself to its planar proper-

ties, other network approaches capturing various kinds of relationships, particularly

mobility, between different parts of the urban area, have also been experimented

with [143, 229, 308, 250, 163, 134, 302, 292] (Figure 7-2). Extracting similar pat-

terns among cities is one of many ways towards the identification of these conjectured

underlying processes. One important question, for example, boils down to the mech-

anisms behind bottom-up ’organic’ patterns - which evolve under local constraints

- and whether and how they are different from the top-down, planned patterns

by a central authority which appear under large scale constraints. This direction

of research is by no means new [283, 28], but the recent unprecedented increase of

available data such as historical or contemporary digital maps [198, 247] and tempo-

rally granular mobility data allow to proceed with large scale cross-sectional models

and their evolution in both short and longer period of time (Figure 2-3b).

Some types of networks, like street and road networks, are now more or less

adequately described [136, 228, 217, 217, 77, 67, 73]. Because of spatial constraints,

they show a peaked degree distribution, large assortativity and clustering coefficient,

and the most revealing and valuable characteristic is the spatial distribution of a

graph-theoretical measure called betweeenness centrality (see section 2.2.1)

A crucial aspect is that the main instrument for mathematically representing a

network - the adjacency matrix - is not sufficient to capture all relevant information

about the system. In particular, the spatial distribution of node geometry plays a

critical role. A classification of cities according to their street network should then

rely on both topology and geometry.

However, the particular relationships between the street network, differently con-

structed mobility networks along with their evolution over time, and the actual
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physical patterns of the city are non-trivial and poorly understood. We believe

that results in this direction would open up the possibility for devising methods

to the challenging problem of urban mobility prediction and transfer learning to

cities with scarce data. Although some results, primarily in traffic and travel de-

mand forecasting [267, 295] and graph-based transfer learning have been achieved

[123, 133, 160], we still lack systematic methods for mobility-informed prediction

of urban spatio-temporal dynamics. This thesis will attempt to tackle this critical

problem.

(a) (b)

Figure 2-4: (a) Map and network of the city of Murcia, Spain. [1] (b) The commu-
nity structure of San Francisco urban regions. Different color represents different
traffic community, the spatial partition among the four communities are quite
obvious [250].

2.2 Network centrality measures

A crucial set of instruments indispensable to the study of most kinds of networks are

network centrality measures. Centrality measures serve to quantify the idea that in

a network some nodes are more important (central) than others.

As mentioned before, the science of networks has witnessed a dramatic increase

in its applications in systems spanning social, economic, technological and other dis-

ciplines. In particular, the issue of centrality in networks has remained pivotal, since

its introduction in a part of the studies of humanities named structural sociology

[274]. The idea of centrality was first applied to human communication by Bavelas

[32] who was interested in the characterization of the communication in small groups
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of people and assumed a relation between structural centrality and influence and/or

power in group processes. Since then, various measures of structural centrality have

been proposed over the years to quantify the importance of an individual in a social

network [32]; and the issue of centrality has found many applications also in biology

and technology. Currently, centrality is a fundamental concept in network analysis

though with a different purpose: while in the past the role and identity of central

nodes were investigated, now the emphasis is more shifted to the distribution of

centrality values through all nodes. Centrality, as such, is treated like a shared re-

source of the network community, like wealth in nations, with the focus being on the

homogeneity and/or heterogeneity of distributions [15]. In urban planning and de-

sign, as well as in economic geography, centrality, though under different terms like

accessibility, transport cost or effort, has entered the scene stressing the idea that

some places are more important than others because they are more central [278];

all these approaches have been following a primal representation of spatial systems,

where punctual geographic entities - street intersections, settlements - are turned

into nodes and their linear connections - streets, infrastructures - into edges. A pio-

neering discussion of centrality as inherent to urban design in the analysis of spatial

systems has been successfully operated after Hillier and Hanson seminal work on

cities [125] since the late 1980s. Space Syntax, the proposed methodology of urban

analysis, has been raising growing evidence of the correlation between the so-called

integration of urban spaces, a closeness centrality in all respects, and phenomena as

diverse as crime rates, pedestrian and vehicular flows, retail commerce vitality and

human way-finding capacity [124]. The Space Syntax approach follows a dual rep-

resentation of street networks where streets are turned into nodes and intersections

into edges. An outcome of the dual nature of Space Syntax is that the node degree

is not limited by physical constraints, since one street has a conceptually unlimited

number of intersections; this property makes it possible to witness the emerging of

power laws in degree distributions [136, 228] that have been found to be a distinct

feature of other nongeographic systems [15, 249, 209, 23]. On the other hand, the

dual character leads Space Syntax to the abandonment of metric distance: a street

is one node no matter its real length. Metric distance, conversely, was the core of
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most territorial studies [231] and is a key ingredient of spatial networks.

When dealing with urban street patterns, centrality has been investigated in re-

lational (topological) networks only, neglecting a fundamental aspect of the system

as the geography. In the majority of past approaches a city is transformed into

a spatial graph by mapping the intersections into the graph nodes and the roads

into links between nodes. By using a set of different centrality indices (multiple

centrality assessment [77, 76]), extended or defined on purpose for spatial graphs, it

is possible to spot the relevant places of a city. By relevant places it is meant places

closer to other places (closeness centrality), places that are structurally made to be

traversed (betweenness centrality), places whose route to other places deviates less

from the virtual straight route (straightness centrality), and places whose deactiva-

tion affects the structural properties of the system (information centrality). Apart

from the mentioned purely structural centrality measures aaplied to urban networks,

attention has recently been drawn towards more sophisticated centrality concepts

allowing for integration of valuable information about different places in the city in

measuring their respective centralities. Such measures include, among others, the

modified Google PageRank and Eigenvector centralities (see section 2.2.2). More-

over, by investigating how centrality is distributed among the nodes of the graph,

how the different centrality indices are correlated, and how they evolve in the tem-

poral dimension, it is possible to study urban dynamics and also characterise classes

of cities [76].

2.2.1 Multiple centrality assessment

The multiple centrality assessment relies on three basic principles [77, 76] as follows:

label=(0) primal graphs, rather than dual;

lbbel=(0) metric distance, rather than topological;

lcbel=(0) many centrality indices, rather than mainly closeness

The following is a list of common centrality measures we. The definitions are

given in terms of an undirected, weighted graph 𝐺, of 𝑁 nodes and 𝐾 edges. The
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Figure 2-5: (a) Degree distribution of degrees for the road network of Dresden.
(b) The frequency distribution of the cells surface areas 𝐴 obeys a power law with
exponent 𝛼 ≈ 1.9 (for the road network of Dresden) [152].

graph is described by the adjacency 𝑁 ×𝑁 matrix 𝐴, whose entry 𝑎𝑖𝑗 is equal to 1

when there is an edge between 𝑖 and 𝑗 and 0 otherwise, and by a 𝑁 ×𝑁 matrix 𝐿,

whose entry 𝑙𝑖𝑗 is the value associated to the edge: for planar street networks usually

the metric length of the street connecting 𝑖 and 𝑗; for mobility networks usually the

amount of traffic flowing from 𝑖 to 𝑗 in a fixed amount of time.

Degree centrality

Degree centrality, 𝐶𝐷, is the simplest definition of node centrality. It is based on

the idea that important nodes have the largest number of ties to other nodes in the

graph. The degree centrality of 𝑖 is defined as [274, 193, 105]:

𝐶𝐷
𝑖 =

∑︀𝑁
𝑗=1 𝑎𝑖𝑗

𝑁 − 1
=

𝑘𝑖
𝑁 − 1

, (2.3)

where 𝑘𝑖 is the degree of node 𝑖, i.e., the number of nodes adjacent to 𝑖. Degree

centrality is not particularly interesting in primal urban networks where node degrees

are limited by geographic constraints and show a peaked distribution. For example,

in a study of 20 German cities, Lämmer et al. [152] showed that most nodes have

four neighbors (the full degree distribution is shown in Figure 2-5) and that the

degree rarely exceeds 5 for various world cities [61].
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Closeness centrality

Closeness centrality, 𝐶𝐶 , measures to which extent a node 𝑖 is near to all the other

nodes along the shortest paths, and is defined as [274, 230]:

𝐶𝐶
𝑖 =

𝑁 − 1∑︀
𝑗∈𝐺,𝑗 ̸=𝑖 𝑑𝑖𝑗

, (2.4)

where 𝑑𝑖𝑗 is the shortest path length between i and j, defined, in a weighted graph,

as the smallest sum of the edges length throughout all the possible paths in the

graph between 𝑖 and 𝑗.

Betweenness centrality

Betweenness centrality, CB, is based on the idea that a node is central if it lies

between many other nodes, in the sense that it is traversed by many of the shortest

paths connecting couples of nodes. The betweenness centrality of node i is [105, 146]:

𝐶𝐵
𝑖 =

1

(𝑁 − 1)(𝑁 − 2)

∑︁
𝑠 ̸=𝑡∈𝑉

𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡

, (2.5)

where 𝜎𝑠𝑡 is the number of shortest paths going from nodes 𝑠 to 𝑡 and 𝜎𝑠𝑡(𝑖) is the

number of these paths that go through 𝑖 [104].

Straightness centrality

Straightness centrality, 𝐶𝑆, originates from the idea that the efficiency in the com-

munication between two nodes 𝑖 and 𝑗 is equal to the inverse of the shortest path

length 𝑑𝑖𝑗 [156]. The straightness centrality of node 𝑖 is defined as

𝐶𝑆
𝑖 =

1

𝑁 − 1

∑︁
𝑗∈𝐺,𝑗 ̸=𝑖

𝑑𝐸𝑢𝑐𝑙
𝑖𝑗 /𝑑𝑖𝑗, (2.6)

where 𝑑𝐸𝑢𝑐𝑙
𝑖𝑗 is the Euclidean distance between nodes 𝑖 and 𝑗 along a straight line,

and there has been adopted a normalization proposed for geographic networks [265].

This measure captures the extent to which the connecting route between nodes 𝑖

and 𝑗 deviates from the virtual straight route.
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Information centrality

Information centrality, 𝐶𝐼 , is a measure introduced in [158], and relating a node

importance to the ability of the network to respond to the deactivation of the node.

The network performance, before and after a certain node is deactivated, is measured

by the efficiency of the graph 𝐺 [156, 157]. The information centrality of node 𝑖 is

defined as the relative drop in the network efficiency caused by the removal from 𝐺

of the edges incident to 𝑖,

𝐶𝐼
𝑖 =

𝛿𝐸

𝐸
=

𝐸[𝐺] − 𝐸[𝐺′]

𝐸[𝐺]
(2.7)

where the efficiency of a graph G is defined as

𝐸[𝐺] =
1

𝑁(𝑁 − 1)

∑︁
𝑗∈𝐺,𝑗 ̸=𝑖

𝑑𝐸𝑢𝑐𝑙
𝑖𝑗 /𝑑𝑖𝑗 (2.8)

and where 𝐺′ is the graph with 𝑁 nodes and 𝐾 − 𝑘𝑖 edges obtained by removing

from the original graph 𝐺 the edges adjacent to node 𝑖. An advantage of using

the efficiency to measure the performance of a graph is that 𝐸[𝐺] is finite even for

disconnected graphs [76].

As shown in [76], Closeness, straightness, and betweenness centrality distribu-

tions, where the cumulative distribution 𝑃 (𝐶) is defined as

𝑃 (𝐶) =

∫︁ +∞

𝐶

𝑁(𝐶 ′)

𝑁
𝑑𝐶 ′, (2.9)

where 𝑁(𝑐) is the number of nodes with centrality equal to 𝐶, are quite similar

in both self-organized and planned cities, despite the diversity of the two cases in

socio-cultural and economic terms could not be deeper. On the other hand, the

information centrality distributions notably differentiate self-organized cities from

planned ones, being broad-scale (power law) in the first case, and single-scale (ex-

ponential) in the second case (Figure 2-6b).
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(a) (b)

Figure 2-6: a. Thematic color map representing the spatial distributions of cen-
trality in Cairo, an example of a largely self-organized city. The four indices of
node centrality, (a) closeness 𝐶𝐶 , (b) betweenness 𝐶𝐵, (c) straightness 𝐶𝑆, and
(d) information 𝐶𝐼 , used in the MCA, are visually compared over the primal
graph. Different colors represent classes of nodes with different values of the cen-
trality index. The classes are defined in terms of multiples of standard deviations
from the average, as reported in the color legend. b. Cumulative distributions of
(a) closeness 𝐶𝐶 , (b) betweenness 𝐶𝐵, (c) straightness 𝐶𝑆, and (d) information 𝐶𝐼

for three planned cities, Los Angeles, Richmond, and San Francisco. The dashed
lines in panels (b) are Gaussian fits to the betweenness distributions, while the
dashed lines in panel (d) are exponential fits to the information centrality. [76].
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2.2.2 Ranking measures

As already mentioned, the classic centrality measures do not allow us, in a sim-

ple way, to work with the data associated with a network. Therefore, it becomes

necessary to introduce centrality measures which account for two factors: first, the

network topology and, moreover, the importance of existing data, allowing to dif-

ferentiate places with external values other than those related to topology.

Eigenvector centrality

Eigenvector centrality, denoted by 𝐶𝐸, was proposed by Bonacich [50] to measure

the influence of a node in a network from the importance of its connections. Degree

centrality gives an idea about the number of connections a vector has. However, not

all the connections or links are equally important. Therefore, somehow we should

weight the importance of each node connection. If it is assumed that a node is more

central if it is in relation with nodes that are themselves central, it can be argued

that the centrality of the nodes of a graph does not only depend on the quantity of

its adjacent nodes, but also on their value of centrality.

In [1], the authors denote the centrality of node 𝑛𝑖 by 𝑥𝑖, allowing to take into

account the importance of each node’s links by making 𝑥𝑖 proportional to the average

of the centralities of 𝑖’s network neighbours:

𝑥𝑖 =
1

𝜆

𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝑥𝑗, (2.10)

where 𝜆 is a constant. Defining the vector of centralities x = (𝑥1, 𝑥2, ...), they rewrite

equation (9.4) in matrix form as

𝐴 · x = 𝜆x (2.11)

It is clear from the expression (10.9) that x is an eigenvector of the adjacency

matrix 𝐴 associated to the eigenvalue 𝜆. As 𝐴 is the adjacency matrix of an

undirected graph and 𝐴 is non-negative, it can be shown (using the Perron-Frobenius

theorem) that there exists an eigenvector corresponding to the largest eigenvalue (the
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authors denote it by 𝜆1) with only non-negative (positive) entries. This eigenvector

constitutes a ranking of the nodes in the graph.

In [1], the authors go on to construct a data matrix 𝐷 by collecting four types

of different activity data for each node (number of bars, shops, offices, and malls):

𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑑1,1 𝑑1,2 𝑑1,3 𝑑1,4

𝑑2,1 𝑑2,2 𝑑2,3 𝑑2,4
...

... . . . ...

𝑑𝑛,1 𝑑𝑛,2 𝑑𝑛,3 𝑑𝑛,4

⎞⎟⎟⎟⎟⎟⎟⎠ (2.12)

Thus, the matrix 𝐷 is given by has 𝑛 rows, corresponding to the 𝑛 nodes of the

urban network studied, and has 4 columns, each corresponding to the four different

types of data that were collected. The authors then go on to construct a weight

matrix and use it to calculate the vector of rankings for the nodes of the urban

network (for details, see [1]).

Google PageRank centrality

Nowadays, it is essential to have a fast and reliable ranking system for the websites

in the World Wide Web to bring order to the chaos of data. For a deeper discussion

of the structure of the net see, for example, [91, 234]. For an excellent explanation

of the different search engine models that have appeared in the recent decades, we

refer the reader to [154].

The Web’s hyperlink structure forms a massive directed graph, where the nodes

in the graph represent Web pages and the directed arcs or edges represent the hyper-

links. The hyperlinks into a page are called 𝑖𝑛𝑙𝑖𝑛𝑘𝑠 (or incoming edges) and point

into nodes. The hyperlinks that point from nodes are called 𝑜𝑢𝑡𝑙𝑖𝑛𝑘𝑠 (outgoing

edges). If there are multiple links from one page to another, they are considered as

a single link. Finally, links to the page itself are not considered.

The first search engines, back in the 90s, based management results pages on the

number of times the search text appeared on each page, regardless of other factors.

This system did not provide suitable results in many cases, since the fact that a

page often repeats a word in its content does not guarantee its relevance within
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their field. In a nutshell, PageRank’s thesis is that a Web page is important if it is

pointed to by other important pages [202].

The PageRank method was proposed to compute a ranking for every Web page

based on the graph of the Web, that is, PageRank constitutes a global ranking of all

Web pages, regardless of their content, based solely on their location in the Web’s

graph structure. The purpose of the method is obtaining a vector, called PageRank

vector, which gives the relative importance of the pages. Since this vector is calcu-

lated based on the structure of the Web connections, it is said to be independent of

the request of the person performing the search.

If we denote the web-graph as 𝐺 = (𝑉,𝐸), where 𝑉 is the set of webpages on

the internet, and 𝐸 is the set of hyperlinks between them, then the classical Google

PageRank is the solution 𝜋(𝑛) = (𝜋𝑖(𝑛))𝑖=1,..,|𝑉𝑛| to the system

𝜋𝑖(𝑛) = 𝑐
∑︁
𝑗→𝑖

𝜋𝑗(𝑛)

𝑜𝑢𝑡𝑑𝑒𝑔 𝑗
+

1 − 𝑐

|𝑉𝑛|
, 𝑖 = 1, ..., |𝑉𝑛|, (2.13)

where 𝑐 is a weighting parameter.

Some modifications of this method have been proposed in [122, 225]. An applica-

tion of PageRank centrality for describing the urban network has relatively recently

been proposed in [6].

2.3 Human mobility models

Planning and managing city and transportation infrastructures requires understand-

ing the relationship between urban mobility flows and spatial, structural, and socio-

economic features associated with them. There exists extensive literature addressing

this problem ranging from the classical gravity model and its modifications [279,

101] to the more recent spatial econometric interaction models [166] and the non-

parametric radiation models [235] that attempt to characterise cross-sectional origin-

destination (OD) flow matrices. Furthermore, various neural network-based models

have been proposed for predicting temporal OD flow matrices [66, 258].

In this section, we will briefly present the most widely used models for human
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mobility flows, discuss their properties, underlying assumptions, advantages and

disadvantages, and prepare ground for two novel frameworks proposed in this thesis,

namely, a temporal network regression for explaining urban mobility flows from

urban socio-economic attributes in Chapter 9, and several Graph Neural Network

(GNN) architectures for predicting OD flows to a location of interest in Chapter 10.

2.3.1 Gravity models

The theoretical framework for estimating flows between locations in space has been

put forth by Wilson (1971) through a family of spatial interaction models and ex-

tended and elaborated by (Fotheringham, O’Kelly 1989) Consider the basic gravity

model[cit.]:

𝐹𝑖𝑗 = 𝑘
𝑀𝛼

𝑖 𝑁
𝛽
𝑗

𝑑𝛾𝑖𝑗
(2.14)

where 𝐹 is an 𝑚×𝑛 matrix of origin-destination flows between 𝑚 origins (subscripted

by 𝑖) and 𝑛 destinations (subscripted by 𝑗), 𝑀 is an 𝑚 × 𝑙 matrix of 𝑙 origin

attributes describing the "emissivity" of 𝑖, 𝑁 is an 𝑛 × 𝑙 vector of 𝑙 destination

attributes describing the attractiveness of 𝑗, 𝑑 is an 𝑚 × 𝑛 matrix describing the

cost of travelling from 𝑖 to 𝑗 (usually distance or time), 𝑘 is a scaling factor, 𝛼 is a

𝑙 × 1 vector of parameters denoting the effect of 𝑙 origin attributes on the observed

flows, 𝛽 is a 𝑙× 1 vector of parameters denoting the effect of 𝑙 destination attributes

on the observed flows, 𝛾 is a parameter denoting the effect of travel costs on the

observed flows.

Given 𝐹 , 𝑀 , 𝑁 , and 𝑑, the model parameters, which describe how each model

component contributes to explaining the observed flows (𝐹 ), can be estimated and

used to predict unobserved flows.

Using an entropy-maximizing approach, Wilson extended the Gravity model by

proposing a more elaborated family of spatial interaction models (Wilson 1971): un-

constrained, production-constrained, attraction-constrained, and doubly constrained.

The latter aim at assigning flows to origin-destination pairs by finding the most

probable configuration of flows out of all possible configurations, without making
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any additional assumptions.

The unconstrained model does not preserve the total in- nor out-flows during

model calibration. The production-constrained and attraction-constrained models

preserve the number of total in-flows or out-flows, respectively, and hence are used

for assigning flows either to a set of origins or to a set of destinations. The doubly-

constrained model, on the other hand, preserves both the in- and out-flows at each

location during parameter estimation. The models’ predictive power increases as

more built-in information (i.e. total in or out-flows) are accounted for, leading to

the doubly-constrained model usually performing best.

The models are obtained by using conventional optimization techniques imposing

constraints on the total inflows and outflows at each location. For instance, the

doubly-constrained model can be formulated as follows:

𝐹𝑖𝑗 = 𝑈𝑖𝑉𝑗𝑂𝑖𝐷𝑗𝑓(𝑑𝑖𝑗) (2.15)

subject to

𝑈𝑖 = 1/
∑︁
𝑗

𝑉𝑗𝐷𝑗𝑓(𝑑𝑖𝑗), and 𝑉𝑗 = 1/
∑︁
𝑖

𝑈𝑖𝑂𝑖𝑓(𝑑𝑖𝑗), (2.16)

where 𝑂𝑖 is an 𝑛× 1 vector of the total number of out-flows from origin 𝑖, 𝐷𝑗 is an

𝑚×1 vector of the total number of in-flows to destination 𝑗, 𝑈𝑖 and 𝑉𝑗 are 𝑛×1 and

𝑚× 1 vectors respectively, ensuring that the total out- and in-flows are preserved in

the model predictions, 𝑓(𝑑𝑖𝑗) is usually referred to as the distance-decay function,

most commonly given by power function 𝑓(𝑑𝑖𝑗) = 𝑑𝛾𝑖𝑗, where 𝛾 is expected to take

on a negative value.

It is worth noting that the scaling factor in equation (2.14) is absent in all of

the maximum entropy models because an imposed total trip constraint is implied in

their derivation making such a necessity redundant (Fotheringham, O’Kelly 1989).

Also, in the doubly-constrained maximum entropy model, the values for 𝑈𝑖 and 𝑉𝑗

depend on each other and hence need to be computed iteratively.

The parameters of spatial interaction models are often estimated via linear pro-

gramming, non-linear optimization, or, more commonly, through linear regression.
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By taking the natural logarithm of both sides of, for instance, the basic gravity

model, the so-called log-linear or log-normal model is obtained:

ln𝐹𝑖𝑗 = 𝑘 + 𝛼 ln𝑀𝑖 + 𝛽 ln𝑁𝑗 − 𝛾 ln 𝑑𝑖𝑗 + 𝜖, (2.17)

where 𝜖 is a normally distributed error term with 0 mean. The constrained versions of

the model can be obtained by incorporating fixed effects for the origins (production-

constrained), destinations (attraction-constrained) or both (doubly-constrained).

However, the log-normal gravity model suffers from such serious drawbacks as

failing to capture the discrete nature of flows of vehicles or individuals; the flows

are usually not distributed normally; due to estimating the logarithm of flows the

predictions are downward biased; the inability to handle zero flows due to the log-

arithmic framework. To partially mitigate the mentioned shortcomings, a Poisson

log-linear regression for the family of spatial interaction models was formulated

(Flowerdew, Aitkin 1982, Flowerdew, Lovett 1988). This model considers the num-

ber of flow units between 𝑖 and 𝑗 to be sampled from a Poisson distribution with

mean, 𝜆𝑖𝑗 = 𝑇𝑖𝑗 , where 𝜆𝑖𝑗 is logarithmically linked to the linear combination of

features, yielding the unconstrained Poisson log-linear gravity model,

𝐹𝑖𝑗 = exp (𝑘 + 𝛼 ln𝑀𝑖 + 𝛽 ln𝑁𝑗 − 𝛾 ln 𝑑𝑖𝑗) (2.18)

The constrained versions in the family of spatial interaction models can be ob-

tained by including fixed effects for the balancing factors as in equation 2.16. In

particular, for the doubly constrained model this will yield

𝐹𝑖𝑗 = exp (𝑘 + 𝛼 + 𝛽 − 𝛾 ln 𝑑𝑖𝑗) , (2.19)

where 𝛼 and 𝛽 are origin and destination fixed effects, respectively, to the same

effect as including balancing factors as constraints (Tiefelsdorf, Boots 1995). The

introduction of the Poisson regression model partially mitigates the drawbacks men-

tioned above. It also allows the avoid the iterative computation of the balancing

constraints in the previously available models (Fotheringham, O’Kelly 1989). Pa-

rameter estimation for the Poisson regression models is usually conducted within
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the framework of generalized linear models (GLM) using iteratively weighted least

squares (IWSL), which guarantees convergence to the parameter maximum likeli-

hood estimates (Nelder, Wedderburn 1972).

2.3.2 Poisson regression

With the aim to extend the modelling to include a larger set of potential explanatory

variables within the context of the wider Generalized Linear Model framework, we

first consider the number of flow units from 𝑖 to 𝑗 to be a random variable drawn

from a Poisson distribution, with a mean rate potentially influenced by the array

of covariates. These explanatory variables include but are not limited to public

transport connections, real estate price averages, travel time, velocity, traffic activity

correlations, residential-business, residential-airport, residential-school, and other

types of relations between pairs of locations in the city.

Within this framework, our model becomes

𝐹𝑖𝑗 = 𝐹𝑖𝑜𝑢𝑡𝐹𝑗𝑖𝑛 exp
{︀
𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + · · · + 𝛽𝑘𝑋𝑘𝑖𝑗

}︀
, (2.20)

where the Poisson incidence rate 𝐹𝑖𝑗

𝐹𝑖𝑜𝑢𝑡𝐹𝑗𝑖𝑛
is determined by the set of 𝑘 regressor

covariates (the 𝑋’s). Since the flow 𝐹𝑖𝑗 is exposed to the number of possible in- and

out-flow combinations 𝐹𝑖𝑜𝑢𝑡 ×𝐹𝑗𝑖𝑛 between 𝑖 and 𝑗, we include the latter as exposure

in the model.

The most common approach to measuring the overall performance of the fitted

model is by using the Pearson statistic chi-square test:

𝜒2 =
∑︁
𝑖,𝑗

(︁
𝐹𝑖𝑗 − exp

{︁
X𝑖𝑗𝛽

}︁)︁2
exp

{︁
X𝑖𝑗𝛽

}︁ , (2.21)

which is approximately chi-square distributed with 𝑛 − 𝑘 degrees of freedom.

If the Pearson statistic chi-square test is rejected at a chosen significance level, it

implies a statistically significant lack of fit. If the test is not rejected, there is no

evidence of lack-of-fit.

This same test is typically also used as a test for overdispersion. Since the
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Poisson distribution has its mean equal to its variance, this enters as an assumption

in our modelling of flows as count data drawn from a Poisson distribution. If the

model is correct, the expected value of the statistic should be 𝑛− 𝑘, the degrees of

freedom. However, in many real-world settings, this assumption does not hold, so

the variance is assumed to be a factor of the mean.

This is often tested by looking at the Pearson residuals which correct the unequal

variance in the raw residuals, 𝑟𝑖𝑗 = 𝐹𝑖𝑗 − exp
{︁
X𝑖𝑗𝛽

}︁
by dividing by the standard

deviation:

𝑝𝑖𝑗 =
𝑟𝑖√︂

𝜑 exp
{︁
X𝑖𝑗𝛽

}︁ , (2.22)

where 𝜑 is a dispersion parameter to help control overdispersion:

𝜑 =
1

𝑛− 𝑘

∑︁
𝑖,𝑗

(︁
𝐹𝑖𝑗 − exp

{︁
X𝑖𝑗𝛽

}︁)︁2
exp

{︁
X𝑖𝑗𝛽

}︁ . (2.23)

The obtained Pearson residuals can then be inspected in diagnostic plots against

the fitted means, which will show whether overdispersion should be addressed with

other models. A common solution is offered by the Negative Binomial regression

discussed below.

2.3.3 Negative Binomial regression

The Negative Binomial regression is a generalization of the Poisson regression in

which the restrictive assumption about the equality of the mean and the variance

is loosened. Although usually defined in terms of a sequence of Bernoulli trials, it

is convenient to regard the Negative Binomial distribution as a mixture distribu-

tion with samples drawn from a Poisson distribution the mean of which is itself a

Gamma distributed random variable. This allows the mean-variance relationship in

the Negative Binomial distribution to be controlled through a continuous positive

dispersion parameter, 𝛼:
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𝜎2 = 𝜇 + 𝛼𝑔(𝜇𝑖), (2.24)

where 𝑔(·) is a known function, most commonly 𝑔(𝜇) = 𝜇2. We see that the

Poisson behaviour is recovered as 𝛼 tends to zero. The value of the parameter 𝛼

enters as an input to the model, raising the question of how to select it correctly.

With the aim of detecting and evaluating overdispersion more reliably than the

Pearson statistic, a statistical test estimating 𝛼 has been proposed by [60]. It simply

uses the Poisson model’s fitted values ̂︀𝜇𝑖 and performs an auxiliary OLS regression

without intercept:

(𝑦𝑖 − ̂︀𝜇𝑖)
2 − 𝑦𝑖̂︀𝜇𝑖

= 𝛼
𝑔 (̂︀𝜇𝑖)̂︀𝜇𝑖

+ 𝜖𝑖, (2.25)

where the left-hand side is treated as the response variable, 𝛼 is the unknown

parameter, and 𝜖𝑖 is an error term. The fitted 𝛼 coefficient has a Student’s 𝑡 distri-

bution which lends itself to constructing a confidence interval for selecting a suitable

𝛼 for the Negative Binomial Regression.

2.3.4 Spatial autoregressive models

A major concern in the modelling scenarios discussed so far are the complex in-

teractions often caused by spatial dependencies and non-stationarity. The former

arises from spill-over effects from a location to its neighbourhoods, while the latter

is caused by the influence of independent variables varying across space. These is-

sues have been addressed in literature by spatial autocorrelation and geographically

weighted modelling techniques [100, 166, 79, 297].

Although in all the discussed models spatial interdependence among observa-

tions has been latently accounted for by including the network distance among the

covariates, this certainly does not capture how origin or destination cells might af-

fect the flows to or from their geographical neighbours. This obvious shortcoming of

the hitherto considered models is amenable to building the spatial interdependence

structure by the approach proposed by [166]. Modifying this approach, we take a

typical 𝑛 by 𝑛 first-order contiguity matrix D, weight it by the observed 𝑂𝐷 matrix
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F, and row-standardize it to obtain W = ̃︂DF, reflecting relations among the 𝑛 cells.

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛− 𝑏𝑎𝑠𝑒𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒, reflecting the intuition that flows from an

origin to a destination may affect flows to nearby destinations, can be captured by

the the 𝑛2 × 𝑛2 row-standardized spatial weight matrix W𝑑 which can be obtained

from W by the Kronecker product W𝑑 = I𝑛 ⊗W:

W𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎝
W 0𝑛 . . . 0𝑛

0𝑛 W 0𝑛
...

... 0𝑛
. . . 0𝑛

0𝑛 . . . 0𝑛 W

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.26)

where 0𝑛 represents an 𝑛×𝑛 matrix of zeros. The 𝑛2×𝑛2 spatial weight matrix

W𝑑 captures flow relations between an origin and the neighbors of the destina-

tion. Similarly, an 𝑜𝑟𝑖𝑔𝑖𝑛 − 𝑏𝑎𝑠𝑒𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 can be modelled simply by

W𝑜 = W⊗ I𝑛. The latter captures weighted average flows from neighbours of each

origin to each of the destinations. Thus, the new spatially adjusted 𝑂𝐷 flow matrix

becomes 𝐹𝑠𝑝 = vec−1(W𝑑W𝑜𝑦), where 𝑦 = 𝑣𝑒𝑐(F).

W𝑑W𝑜𝑦) can be interpreted as a successive spatial filter. Indeed, the order of

applying the spatial filters W𝑑 and W𝑜 does not matter due to the mixed-product

rule for Kronecker products.

Modifying the spatial autoregressive model proposed in [166], this framework

thus results in:

𝐹𝑠𝑝𝑖𝑗 = 𝐹𝑠𝑝𝑖𝑜𝑢𝑡
𝐹𝑠𝑝𝑗𝑖𝑛

exp
{︀
𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + · · · + 𝛽𝑘𝑋𝑘𝑖𝑗

}︀
, (2.27)

for which we can run the models described in 2.3.2 and 2.3.3 and which has been

shown to capture the variability in spatial OD flows significantly better than all the

models discussed earlier.
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2.3.5 The Huff model

Another approach within the spatial interaction modelling paradigm is the Huff

model and its extensions [129]. Originally developed mainly for retail location

choice and turnover prediction, they represent a probabilistic formulation of the

gravity model. The Huff model considers OD flows as proportional to the relative

attractiveness and accessibility of the destination compared to other competing des-

tinations. The probability 𝑃𝑖𝑗 of a consumer at location 𝑖 of choosing to shop at a

retail location 𝑗 is framed as:

𝑃𝑖𝑗 =
𝐴𝛼

𝑗 𝐷
−𝛽
𝑖𝑗∑︀𝑛

𝑗=1𝐴
𝛼
𝑗 𝐷

−𝛽
𝑖𝑗

, (2.28)

where 𝐴𝑗 is a measure of attractiveness of retail location 𝑗, such as area or a linear

combination of different features, 𝐷𝑖𝑗 is the distance between locations 𝑖 and 𝑗, 𝛼

and 𝛽, estimated from empirical observations, are attractiveness and distance decay

parameters, respectively.

Along with traditional gravity methods, the Huff model and its variations have

found their way to numerous applications including location selection of movie the-

aters [80], a university campus [57], or the analysis of spatial access to health

care [266].

However, these models suffer from too restrictive assumptions such as consider-

ing the ratio of the probabilities of an individual selecting two alternatives as being

unaffected by the introduction of a third alternative. Although the competing des-

tinations model [98] has overcome this, it has the disadvantage of considering either

spatial agglomeration or competition effects, ignoring the fact that they can coex-

ist in the same location. Even though a number of extensions to the Huff model

and the gravity framework in general have been proposed to overcome spatial non-

stationarity and to include a larger array of features affecting the flows [82, 167], this

family of models, along with the non-parametric radiation and population-weighted

opportunities model, have demonstrated to fall short of high predictive capacity

particularly at the city scale [179, 168, 288].

More recently, machine learning, particularly a Random Forest approach, has
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shown promising results in reconstructing inter-city OD flow matrices [244]. How-

ever, its performance on intra-urban flow data remains to be tested.

Despite the proven utility of the discussed models, when applied to real intra-

urban mobility flow data, we shall see that the gravity, Poisson, Negative Binomial,

Spatial autoregressive, and Huff models fail to capture enough of the relationships

between urban mobility and socio-economic and spatial attributes in cities in order

to warrant a convincing explanation. We will extend the discourse initiated by these

models, extend it, and propose two new modelling frameworks for explaining and

predicting urban mobility flows.

2.3.6 Machine learning models

In the previous sections of this Chapter, we discussed classical modelling and sta-

tistical learning frameworks for human mobility models. However, recent advances

in machine learning have also contributed to the task of modelling OD flows in ge-

ographic areas. In particular, a notable method in this respect has been proposed

in [244], in which the authors use a well-known random forest algorithm for recon-

structing OD flows between cities, each of which is described by a set of attributes.

The problem of estimating OD flows has also been addressed with neural network

methods [171]. As flows are most naturally modelled by graphs, most work has

focused on the use of graph neural networks for flow estimation. In this regard,

it is worth mentioning a few words on this recently developed class of neural net-

work models. An early neural network model for graph structured data has been

suggested in [232]. Later work has specifically focused on generalising Convolu-

tional Neural Networks from the domain of regular grids to the domain of irregular

graphs [56, 86]. One of the most commonly used graph neural network models is

the Graph Convolutional Neural Network (GCN) proposed in [145].

Graph neural networks have previously been applied to urban planning tasks.

In [66], they have been used to predict the flow of bikes within a bike sharing system.

In this approach, mobility flows are modelled as node-level features, which requires

a particular neural network model treating graphs in their entirety and does not

allow to predict flows between specific pairs of nodes. Although [271] uses graph
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neural networks to predict flows between parts of a city, their model operates on

spatio-temporal data and focuses on the temporal aspect of the data. Beyond flow

prediction, in [307], a graph neural network model has been proposed for building

site selection. A broader overview of machine learning methods applied to the task

of urban flow prediction is given in [284].
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"There’s no sense in being precise

when you don’t even know what

you’re talking about."

John von Neumann, 1958

Chapter 3

Thesis Objectives

In this chapter we define the goals and derive the specific questions to be addressed

in our research. In Chapter 1 we introduced the topic of research, outlined the

overarching objective of the PhD thesis, and described the thesis structure. Let us

now formulate the specific objectives and research questions we will tackle with the

techniques proposed in the subsequent chapters.

I
1. The city as a network of relations

Are PageRank-based centrality measures in mobility flow network models -

with the mathematically formulated self-referential principle that a web page

is important if other important web pages point at it - capable of capturing

meaningful part-to-whole relationships in the city?

I
2. Urban socio-economic attributes and network centrality

Can the PageRank-based network centrality measures give insight into the

role socio-economic attributes describing city locations play in the spatial

organisation of cities?

I
3. Multilayer network centrality

Can the mentioned PageRank-based centrality in urban mobility flow networks

be extended to multiple types of relations between city locations, such as

distance, time, speed, public transport connections, etc., forming a multilayer
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IInetwork of relations in cities and their contribution be assessed?

I
4. Temporal network centrality

What can a temporal analysis of the behaviour of urban location centrality tell

us about the spatio-temporal characteristics of various socio-economic factors

in the city?

I
5. Explaining mobility flows from urban attributes

Classical models explaining why and how people and goods move in a city

do not account for the network structure of mobility flows. Can a regression

model be devised that inherently respects the network structure of urban flows,

in which the latter can be explained by an array of socio-economic attributes

describing city locations and the relations between them?

I
6. Centrality measures and urban mobility

Can the above-mentioned centrality measures enhanced with urban socio-

economic attributes be informative for explaining urban mobility flows within

the network regression framework?

I
7. Socio-economic attributes and urban flow prediction

Is it possible to construct a network-based city model with socio-economic at-

tributes capable of predicting urban mobility flow with high predictive power?

I
8. Network centrality and urban flow prediction

Can the above-mentioned centrality measures enhanced with urban socio-

economic attributes be informative for predicting urban mobility flows?

This thesis will address the listed research questions within the overarching objec-

tive of exploring the relationships between urban structure and urban mobility

by proposing specific methods and techniques drawing heavily from previous work

in network theory, probability theory, machine learning, and neural networks.
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"The year 2000 was essentially the

point at which it became cheaper

to collect information than to

understand it."

Freeman Dyson

Chapter 4

Data

4.1 What are OD flow data?

As the name suggests, origin-destination (OD) data, also known as flow data, repre-

sent transportation flows through geographic space, from an origin (O) to a destina-

tion (D). OD datasets represent information on trips between two geographic areas

or, more commonly, zones, often represented by the geographical centroids of the

areas in question. Typically encoded with a square symmetric matrix, OD flow data

contain numerical data on the aggregate quantity of vehicles or individuals travelling

from one geographic area to another [178] over a specific time period. Mostly used in

transportation planning, OD flows are an invaluable source of data for understanding

spatial and temporal patterns of urban mobility and dynamics [254].

As discussed in Chapters 1, 2, and 3, where we outlined the methodology and

main objectives of this thesis, we aim to model the relationship between urban

mobility and urban socio-economic characteristics by seeing the OD matrix as a

network graph of OD flows between city locations, augmenting it with quantitative

socio-economic attributes describing these city locations and the various kinds of

relations between them.

In this Chapter, we outline and describe the construction process of the node-

and edge- attributed urban mobility OD flow network datasets in Rome and London

which we will use throughout this work.

These flows can be modelled as attributed graphs with both node and edge
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attributes characterising locations in a city and the various types of relationships

between them.

To make our work reproducible and to contribute to the scientific communitiy,

we publicly release1 a custom dataset of aggregate origin-destination (OD) flows of

private cars in London augmented with attribute data describing city locations and

dyadic relations between them.

The principal data source for building such OD networks consists of GPS tra-

jectories of private car in Rome and in London, provided within the scope of the

EU Horizon 2020 "Track & Know" programme. Other open data sources have been

used to construct or augment information intrinsic to the nodes and edges of the

obtained OD networks. Such data sources include OpenStreetMap [198], Airbnb

[185], London transport data [260], and London housing density [92].

In what follows, we first describe the detailed workflow of the attributed OD

network dataset construction, and then provide an exploratory data analysis of

some of the most important node and/or edge attributes of the OD networks.

4.2 Building the data set

The workflow of building the data sets for both Rome and London is as follows:

1. The urban territory has been subdivided into 𝑛 Cartesian grid cells of different

resolutions (250 × 250 m, 500 × 500 m, 1000 × 1000 m, 1500 × 1500 m, and

2000×2000 m), and each such quadratic cell is considered a node in the graph

of the given resolution.

2. The raw GPS trajectories of around 10000 private cars spanning two years have

been obtained from proprietary car insurance data for research purposes within

the EU H2020 "Track & Know" programme. The data have been cleaned,

processed, and superimposed on the grid. Then, trip origin and destination

GPS positions have been identified by interpreting the engine ignition on/off

interval for each vehicle. Time intervals between 10 and 35 minutes showed
1Dataset will be released at https://trackandknowproject.eu/file-repository/.
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robust outcomes, and 20 minutes were chosen for identifying car trips. The

extracted origin-destination points were then mapped to the respective grid

cells.

3. The 𝑂𝐷 networks have been built from the extracted origin-destination pairs

described by the weighted adjacency matrix, W𝐴 ∈ R𝑛×𝑛, the element W𝐴
𝑖𝑗 of

which represents the number of car trips starting at node (cell) 𝑖 and ending

at node 𝑗.

4. The node features have been built by engineering 35 features from various

open sources [198, 185, 260] and from the GPS data. These features include

population density, average Airbnb prices, parking areas, areas covered by res-

idential buildings, number of restaurants, bars, banks, museums, road network

density, average radius of gyration, etc. per cell. Examples of node features

and their spatial distribution are visualised in Figures 4-5 and 4-6.

5. Similarly, the edge features encode information on 12 dyadic relations such as

network distance, average time, average speed, temporal correlation between

car incidence in cells, public transport connections, etc.

The reason we construct OD networks for different grid resolutions as stated

above, is for testing the results obtained in this study concerning both aforemen-

tioned thesis objectives for robustness to the spatial scale of the grid.

Next, the above-described procedure for obtaining OD networks is repeated on

hourly and daily temporal scales to obtain temporal OD networks for studying their

behaviour across different hours of the day and different days of the week.

4.3 Exploratory Data Analysis

4.3.1 From individual mobility to OD networks

The concept of urban mobility is typically understood as a derivative of individual

human mobility [24]. In this respect, building urban OD flow networks requires

spatio-temporal aggregation of individual human mobility patterns. This necessarily
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(a) (b)

Figure 4-1: (a) Car GPS trajectories over 1 × 1 km grid cells in Rome. (b) Origin-
Destination (𝑂𝐷) flow network in Rome with some popular travel locations high-
lighted.

implies loss of granularity and information about how individual mobility operates

in an urban environment.

Within our representation framework of node- and edge- attributed urban mobil-

ity networks, we incorporate information on individual mobility as a node attribute

in the OD network. In particular, we focus on a widely used measure describing the

characteristic distance travelled by an individual [207]:

𝑟𝑔 =

√︃
1

𝑁

∑︁
𝑖∈𝐿

𝑛𝑖 (r𝑖 − r𝑐𝑚)2, (4.1)

where 𝐿 is the set containing the locations visited by the individual, r𝑖 is a two-

dimensional vector describing location 𝑖 in geographical space; 𝑛𝑖 is the frequency

with which location 𝑖 is visited, 𝑁 =
∑︀

𝑖∈𝐿 𝑛𝑖 is the total number of visits made by

the individual, and r𝑐𝑚 is the center of mass of the individual, defined as the mean

weighted point of all locations visited by the individual.

In Figures 4-2a and 4-2b, we see the empirical distributions of the individual

radii of gyration in London and Rome fitted to Lognormal distributions with mean

20.6 and 22.0 km, respectively.

These individual radii are then aggregated into average values per cell and a cell

attribute 𝑟𝑔 is thus presented as a node-specific attribute in the OD flow network.

The empirical distributions for this value in London and Rome are presented in
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(a) (b)

Figure 4-2: Empirical distributions of the average radius of gyration per cell in (a)
London (b) Rome

Figure 4-3, where you can see the London values tightly packed around the mean

value of around 23 km, the Rome values being more spread out around a much

higher mean value of around 34km.

4.3.2 Urban socio-economic attributes

As mentioned in section 4.2, the spatial variables describing specific locations in a

city can be encoded in a vector of attributes intrinsic to each node in the urban

OD network. We construct a total of 36 node attributes Examples of such node

attributes are presented in Figures 4-5 and 4-6.

A particular node (cell) attribute of interest is the average betweenness centrality

of the street junctions contained in each grid cell (Figure 4-4). The arterial hub and

spike structure of the London street network can be clearly distinguished in the

aggregated 500 × 500m grid resolution.

For a complete description and summary of node and edge attributes of the

urban mobility OD network, we refer the reader to Appendix A.

4.3.3 OD network flows

Urban economics has consistently showed the emergence of spillover effects and

agglomeration economies in cities, resulting in rich-get-richer effects through prefer-

ential attachment mechanisms [200]. A similar phenomenon is also observed in the

56



Chapter 4. Data 4.3. Exploratory Data Analysis

Figure 4-3: Empirical distributions of the average radius of gyration per cell in
London and Rome.

Figure 4-4: Average street junction betweenness centrality in each 500 × 500m grid
cell in London.
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(a) (b) (c)

Figure 4-5: Examples of node (cell) features in London (a) Average Airbnb listing
prices (b) Proportion of grid cell area allotted to industrial activity (c) Number of
museums and galleries per grid cell. Darker colours indicate higher values.

(a) (b) (c)

Figure 4-6: Examples of node (cell) features in Rome (a) Number of restaurants (b)
Proportion of grid cell area allotted to industrial activity (c) Cell area alotted to
parking. Darker colours indicate higher values.
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degree and flow distributions in urban OD networks, where these distributions seem

to exhibit power law properties [229].
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Figure 4-7: Log-log plots of the probability distributions of the OD flows fitted with
a power-law distribution 𝑝(𝑥) ∝ 𝑥−𝛼 with exponents of (a) 𝛼 = −1.491 in Rome.
(b) 𝛼 = −2.088 in London.

(a) (b)

Figure 4-8: Total mobility in-flows in (a) Rome (b) London

Indeed, statistical fitting to our data with Kolmogorov-Smirnov tests shows that

the OD flow distributions in Rome and London display power law behaviour with

exponents −1.491 and −2.088, respectively (Figure 4-7).

The lower power law exponent signifying a heavier right tail hints at a more

unequal concentration of flows in Rome. Indeed, a visual inspection of the spatial

distribution of total in-flows in the grid cells in both cities suggests a monocentric
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concentration of flows in Rome, while London flows display a clear polycentric spatial

structure (Figure 4-8). We will take a closer look and elaborate on this observation

of the differences in the spatial organisation of mobility flows in Rome and London

in Chapter 8.

(a) (b)

Figure 4-9: Correlation between node degree and node total in-flow in the London
OD flow network of grid resolution (a) 1000 × 1000 m (b) 500 × 500 m

Enquiring into the possible mechanisms behind the generation of the power laws

in urban OD networks observed above is a challenging research question in itself. As

a first caveat, we should be aware of the so-called Modifiable Aerial Unit Problem

[197] - a statistical bias in which a spatial unit-based variable describing a spatial

phenomenon is influenced by both the shape and scale of the aggregation unit. In

our case, the different grid resolutions - 250 × 250 m, 500 × 500 m, 1000 × 1000 m,

1500×1500 m, and 2000×2000 m - can have an impact on the empirical distributions

of OD network flows. To illustrate this, we plot the node degrees, 𝑘, against the

total node in-flows, 𝐹 , normalised by the average degree 𝑘0 and the average total

in-flow 𝐹0, respectively (Figure 4-9). As one might have expected, we see a positive

relationship between node degree and total in-flow. However, this relationship is by

no means trivial and differs significantly across different grid resolutions.

This calls for a closer study on the relationship between spatial scale and network

properties of OD flows. However, it is beyond the scope of the present thesis. As

such, it will be formulated as future work.
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"The origins of graph theory are

humble, even frivolous."

N. Biggs, E. K. Lloyd,

and R. J. Wilson

Chapter 5

PageRank & Eigenvector Centrality

In this Chapter, we study and compare several measures of centrality specifically

applied to urban networks. We show how these centralities are based on the cal-

culation of the eigenvectors of a matrix and are very suitable for attributed urban

networks described in Chapter 4. With the aim of expanding the range covered by

these measures, we present a new centrality measure based on the Google PageRank

algorithm. We then compare the performance of three discussed centrality measures

by applying them to the attributed urban OD network in Rome.

This Chapter is a modified version of our paper Manuel Curado, Leandro Tor-

tosa, Jose F Vicent, and Gevorg Yeghikyan. Analysis and comparison of centrality

measures applied to urban networks with data. Journal of Computational Science,

page 101127, 2020

5.1 Introduction

5.1.1 Motivation

The number and diversity of relationships that occur between space, information and

social processes endow the city with characteristics of a complex system. One way

of dealing with the complexity of the city is through networks, since they capture

the relations (edges) between objects (nodes) [22].

How to effectively identify influential nodes (or edges) in urban networks is a
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question that has been paid attention to because of the great impact on the lives of

millions of people. The idea behind the importance of a node in urban networks is

related with the mathematical concept of centrality. There is an extensive bibliog-

raphy regarding the design and implementation of centrality measures in complex

networks but a high percentage of them are based on the topology of the network

as the main element.

It is a fact that the city is a complex network where a great deal of information

are generated. It can be said that the sources of this data are diverse as for example

social networks existing databases.

On the one hand, complex networks have emerged as a model to understand,

analyse and visualize characteristics of complex systems, such as cities. On the

other hand, the city is a source of data, both physical and virtual, which constitute

an essential part of it and must not be omitted.

Hence, it is necessary to study measures of centrality that consider both char-

acteristics, the connectivity of the nodes (topology) and the information associated

with them (data). Because of that, the comparison of existing measures of centrality

in urban networks that take into account the influence of both factors, topology and

data, is essential. This significant fact constitutes the main motivation that has led

us to develop this Chapter.

5.1.2 Literature Review

Nowadays, centrality measures have become an essential tool in network analysis,

and are extensively used for classifying the influence in such networks as: social

networks [102], Internet web-page popularity [203], computer networks [59], spread

of epidemic diseases [208], ranking reputation of scientists [305], urban networks

[75, 74], etc.

In the literature, there exist studies that focus on defining centrality measures

based on graphs. One of the most used centrality measures is the degree centrality

[49], in which the most important nodes are those with higher degrees in the network

graph. Other centrality measures, widely used, are: eigenvector centrality [49],

Katz centrality [141], closeness centrality [54], PageRank [36, 121, 139, 153, 203,
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210], betweenness centrality [17, 20, 106, 188], percolation centrality [214], Freeman

centralities [102], and others centralities based on topology [222]. For a deeper study,

in [35] a comprehensive review of centrality measures is presented.

In spite of the existence of many investigations on the concept of centrality, the

presence of data in the study of centralities in networks is very recent [7, 8, 9, 11].

In [7], the authors propose a new centrality measure (called Adapted PageRank

Algorithm -APA-) which the main contribution of which is to establish a node

classification taking into account the topology and the data associated with the

nodes. This algorithm, based on the PageRank concept, considers the connectivity

between nodes and the data used for each specific problem.

Important centrality measures are those obtained as a solution of the eigenvalue

problem [42]. In these cases, the classifications of the nodes are given by the values

of the dominant eigenvector. Important examples are the eigenvector centrality [49]

or PageRank [203, 139, 155]. Over the years, some modifications of the PageRank

model have been proposed. For instance, in [121] the authors develop precise search

results calculating a set of PageRank vectors. A link-based algorithm built on a

random surfer model reflecting back steps is presented in [252]. In [42], the authors

show the fundamental properties related with: the complexity of the computational

scheme of the PageRank, the stability of the algorithm and the role of parameters in

the computation of the PageRank. To compute the PageRank an iterative method,

named the Power method is used. The objective of this method is to converge to

the principal eigenvector of the Markov chain representing the Web graph. In [180],

the authors show an algorithm based on the Power method that accelerates the

convergence.

5.1.3 Main contribution

In a city, the importance of a place depends not only on the topology of the net-

work but also, among other factors, on geolocated information. Consequently, the

algorithms studied in this Chapter incorporate, in the calculation process, the ge-

olocated data. This variable is reflected, in the different algorithms compared, using

a data matrix that is used for the construction of the primitive transition matrix.

63



Chapter 5. PageRank & Eigenvector Centrality 5.2. Algorithms based on eigenvector.

From this point of view, the resulting transition matrix incorporates both the jump

probabilities derived from the topology of the network and those derived from the

data assigned to the nodes

Two main characteristics of the compared measures of centrality can be high-

lighted: they are based on the calculation of the eigenvector of a matrix and they

are suitable for urban networks with data. These centralities are closely related to

each other because they all depend, largely, on the degree of the nodes (topology)

and the information assigned to the nodes. Therefore, a comparative analysis that

determines the relationships, differences and the meaning of all of them is required.

Before this comparison, a new measurement is introduced, similar to APAM1 but

which introduces a greater range for a better visualization of the measurement.

Therefore, the objective is twofold, on the one hand introduce a new measure

to increase the range and on the other hand, analysis and study of the central-

ity measures applied to urban networks that are based on the computation of the

eigenvector.

The remainder of the Chapter is organized as follows: Section 2 outlines the

basic characteristics of the algorithms based on eigenvector. Section 3 shows the

methodology used in the comparison. In section 4 some numerical results, based

in different networks and data, are illustrated. Finally, a simple conclusions are

presented in Section 5.

5.2 Algorithms based on eigenvector.

The following subsections show a reminder of the centrality measures based on

the calculation of the eigenvector: Adapted PageRank Algorithm (APA), Adapted

PageRank Algorithm Modified (APAM1) and Eigenvector Centrality Modified (CVP).

Moreover, a new measure, called APAM2, is presented as a result of a modification

of the existing APAM1.
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5.2.1 The Adapted PageRank Algorithm, APA

The PageRank algorithm [203] was proposed to calculate a classification for each

Web page, based on the Web link graph, regardless of their content It was founded,

solely, on their location in the Web’s graph structure.

The method aims at obtaining a PageRank vector, which gives the importance

of the web pages. An important characteristic is that the PageRank vector does not

depend on the request of the person performing the search. In [210], a detailed

description of the PageRank algorithm is shown.

A modification of the PageRank model with the aim of establishing a classifica-

tion of nodes taking into account the information present in the network, is proposed

in [7]. This algorithm is called by the authors as Adapted Pagerank Algorithm (APA

algorithm). A remarkable characteristic is that it can be applied to different types of

networks by assigning additional numerical information to the nodes on the network.

In the APA algorithm the construction of a data matrix 𝐷 is crucial because

it summarizes the numerical value of the data assigned to the nodes. This matrix

represents, numerically, the analysed information placed in columns. Each column

represents a specific type of information that is evaluated or analysed.

Furthermore, the weight vector v0 establishes the importance assigned to any of
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the type of data measured in the network.
Input: Let 𝐺 = (𝑉,𝐸) be a primary graph representing a network with 𝑛

nodes.

Output: x representing the network centrality

begin

Obtain the transition matrix 𝑃

Obtain the data matrix 𝐷 considering different characteristics associ-

ated with the nodes

Select the vector v0, depending on the importance of the characteristics

studied

Obtain the vector v = 𝐷 · v0

Normalize v vector, v −→ v*

Construct 𝑉 matrix as 𝑉 = v*𝑒𝑇

Obtain 𝑀𝐴𝑃𝐴 matrix as 𝑀𝐴𝑃𝐴 = (1 − 𝛼)𝑃 + 𝛼𝑉

The eigenvector x associated with the dominant eigenvalue 𝜆1 = 1 of

𝑀𝐴𝑃𝐴 is the ranking

end

Algorithm 1: APA Algorithm

The numerical classification obtained by the APA algorithm has important char-

acteristics. With this objective, a reformulation of the meaning of some of the

matrices in probabilistic terms is necessary:

• On the one hand, the probability of moving from a node to any of its neigh-

bouring nodes is represented by the 𝑃 transition matrix.

• On the other hand, 𝑉 matrix can be interpreted as the probability of moving

from one node to any other, considering the quantity of data assigned to each

node.

• It may be said that in 𝑀𝐴𝑃𝐴 matrix the part 𝛼𝑉 is related to the probability

of moving from a node to any other without there being a link between them.

The jump is not influenced by the topological distance between them but the
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data present in the network.

5.2.2 Adapted PageRank Algorithm Modified, APAM1

Urban networks have characteristics that make them very particular when applying

traditional algorithms of classical network theory. For instance, the equiprobability

of moving from one node to another node is at least debatable. The influence that

neighbouring nodes exercise on the node itself must be taken into account. These

considerations lead the authors to propose a new centrality measure considering the

particular characteristics of the urban networks [9].

Input: Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph of an urban network.

Output: x representing the network ranking

begin

Obtain the adjacency and the transition matrices 𝐴 and 𝑃

Construct the data matrix 𝐷 considering different characteristics associ-

ated with the nodes

Select the vector v0, depending on the importance of features studied

Obtain the v vector v = 𝐷 · v0

Normalize the vector v using the standard method, v −→ v*

Compute the 𝑉 matrix 𝑉 = v*𝑒𝑇

Obtain the matrix 𝐾 according to 𝐾 = 𝐴⊗ 𝑉 + 𝜖𝐹

Normalize the matrix 𝐾 transforming it in a stochastic matrix, 𝐾 −→

𝐾𝑁 = 𝐾*

Construct the matrix 𝑀𝐴𝑃𝐴𝑀1 = (1 − 𝛼)𝑃 + 𝛼𝐾*

The eigenvector x associated with the dominant eigenvalue 𝜆 = 1 of

𝑀𝐴𝑃𝐴𝑀1 is the ranking

end

Algorithm 2: APAM1 algorithm

The jump probabilities matrix 𝐾* is stochastic by columns and it constitutes the

main difference between the APA and APAM1 algorithm. Because of this matrix,

APAM1 (Algorithm 2) is influenced by the data, the topology of the network and
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the topological distances between the nodes that contain data.

5.2.3 A new Adapted PageRank Algorithm Modified, APAM2

The APAM1 centrality represents an alternative centrality to that of the APA al-

gorithm but it covers a very small range of values when working with networks and

large volumes of data. We describe a modification of the APAM1 algorithm in order

to extend the range of the resulting values.

The way to increase the resulting values is related to the normalization of the data

vector v. In the construction of the 𝑉 matrix of APAM1 algorithm, the normalized

vector v* is used.

𝑉 = v*e𝑇 =
v

v
e𝑇 . (5.1)

In the construction of the 𝐾 matrix, the term 𝐴 ⊗ 𝑉 represents the probability of

jumping from a node to its adjacent nodes based on the quantities of data of the

adjacent nodes.

The algebraic operation of dividing by the norm of the vector v implies a very

important meaning regarding the data that appears in the 𝑉 matrix. The normal-

ization of the vector v, before constructing the 𝑉 matrix, implies that the quantity

of data of 𝑉 represents the portion of data with respect to the totality of the data

assigned to the network nodes. This is fundamental, since with the normalization

of the 𝐾 matrix, its terms are very small values in networks with a large volume of

data. As a consequence there are a very low range values of the ranking.

Thus, to increase the range implies improving the values of the term 𝐴⊗𝑉 , and

this requires to construct the vector v without normalizing. That is to say, we build

the matrix 𝑉 as

𝑉 = ve𝑇 . (5.2)

In this way, the term 𝐴⊗ 𝑉 of the matrix 𝐾 represents the data of the adjacent

nodes without normalizing. When we make 𝐾 stochastic by columns, we will obtain

the matrix 𝐾* representing the jump probability directly proportional to the data
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quantities of the adjacent nodes and not to the proportions of normalized data, as

was the case with the APAM1 algorithm. As a consequence of this new approach,

the resulting ranking covers a greater numerical range.

The main advantage of extending the numerical range is reflected in the clarity

of the visualization and greater numerical stability.

Input: Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph of an urban network.
Output: x representing the network ranking
begin

Obtain the adjacency and the transition matrices 𝐴 and 𝑃
Compute the data matrix 𝐷 considering different characteristics associ-
ated with the nodes

Select the vector v0, depending on the importance of features studied
Obtain a vector v = 𝐷 · v0

Construct the matrix 𝑉 = v𝑒𝑇

Compute 𝐾 matrix according to 𝐾 = 𝐴⊗ 𝑉 + 𝜖𝐹
Normalize the matrix 𝐾 transforming it in a stochastic matrix, 𝐾 −→
𝐾𝑁 = 𝐾*

Obtain the matrix 𝑀𝐴𝑃𝐴𝑀2 = (1 − 𝛼)𝑃 + 𝛼𝐾*

The eigenvector x associated with the dominant eigenvalue 𝜆 = 1 for
the matrix 𝑀𝐴𝑃𝐴𝑀2 is the ranking

end

Algorithm 3: APAM2 algorithm

The interpretation of this result is similar to that of the APAM1 algorithm. The

matrix 𝑀𝐴𝑃𝐴𝑀2 has two different terms: the term related with the topology of the

network (1−𝛼)𝑃 and the term related to the data 𝛼𝐾*. In addition, the 𝛼 parameter

allows to determine the importance associated to both parts. Taken 𝛼 = 0.5 equally

importance of both aspects is considered. Hence, we can modulate the importance

of the quantity of data present in each node and its nearest neighbours by means of

the 𝛼 parameter.

5.2.4 Eigenvector Centrality applied to urban networks, CVP

The direct application of measures of centrality based on the eigenvector in urban

networks does not provide relevant information about the characteristics related to

the importance of the nodes in the network.

69



Chapter 5. PageRank & Eigenvector Centrality 5.2. Algorithms based on eigenvector.

There are factors from the urban context that significantly affect the importance

of spaces in the city. Just think of the commercial streets, places with built heritage

or other characteristic spaces of the city that constitute their identity. Because of

this, in [11], the authors consider incorporating data in the process of calculating

the eigenvector centrality for its application in urban networks. The new proposed

measure, called eigenvector centrality modified (CVP), is based on the fact that the

topological distribution of the data determines the importance of the network areas.

The most important places are those that have greater quantities of data or that

are connected to other places with considerable amounts of them.

As the other analysed measures, the algorithm starts from a data matrix 𝐷 and a

weighting vector v0 ∈ 𝑅𝑛×1. The normalized resulting vector v* is used to calculate

the matrix 𝑊 = (𝑤𝑖𝑗) ∈ 𝑅𝑛×𝑛 with

𝑤𝑖𝑗 =

⎧⎨⎩ 𝑣*𝑖 + 𝑣*𝑗 if 𝑖 has a link with 𝑗 ,

0 otherwise .
(5.3)

This matrix is symmetric and the element 𝑤𝑖𝑗 represents the quantity of data

associated with the edge between the nodes 𝑖 and 𝑗. With this approach the im-

portance of a node depends both on the data itself and on the data of adjacent

nodes.

In a city there are areas without data. This implies that some entries of the 𝑊

matrix are zeros and, consequently, there is loss of the topological information of the

network. To solve this problem, the authors introduce a parameter 𝛽 as a minimum

amount of data associated with the edges.

𝛽 = min(𝑤𝑖𝑗), for 𝑤𝑖𝑗 > 0. (5.4)

The following step is the construction of matrix 𝑀𝐶𝑉 𝑃 ∈ 𝑅𝑛×𝑛

𝑀𝐶𝑉 𝑃 = 𝐴⊗ (𝑊 + 𝛽𝐽) + 𝜖𝐽, (5.5)

where 𝐽 ∈ 𝑅𝑛×𝑛 is a matrix of ones and ⊗ is the Hadamard product. The term 𝜖𝐽

serves to avoid localized solutions and represents a small portion of the parameter
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𝛽. An appropriate value of 𝜖, which is

𝜖 <
1

10
𝛽. (5.6)

Finally the dominant eigenvalue 𝜆1 and its corresponding vector x1 are calcu-

lated. Then the centrality c is calculated as

c =
1

𝜆1

(𝐴x1 + x1) . (5.7)

The term 𝜆−1
1 𝐴x1 comes from the centrality proposed by Bonacich and represents

the centrality of the adjacent nodes. With this, the local centrality of the node and

the centrality of neighbouring nodes are considered.

The calculation process of the CVP centrality is summarized in the following

algorithm:

Input: Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph of an urban network.
Output: c representing the network ranking
begin

Obtain the data matrix 𝐷
Select the weighting vector v0

Calculate the data vector v = 𝐷v0

Normalize the data vector v* = max(𝑣𝑖)
−1v

Compute the matrix 𝑊
Calculate 𝑀𝐶𝑉 𝑃 = 𝐴 ∘ (𝑊 + 𝛽𝐴) + 𝜖𝐽 , where 𝛽 = min(𝑤𝑖𝑗), 𝑤𝑖𝑗 > 0, and
𝜖 < 1

10
𝛽

Calculate the vector 𝜆1 and the eigenvector x1 de 𝑀𝐴𝑉 𝑃

The centrality measure CVP is

c =
1

𝜆1

(𝐴x1 + x1) .

end

Algorithm 4: CVP Centrality
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5.3 The methodology of the comparison

The centrality measures adapted to urban networks previously exposed, are based on

the calculation of the dominant eigenvector. These measures require a comparative

analysis to determine the relationships and differences between them and to better

understand the meaning and applications of each of them.

The APA algorithms are the adaptation of the PageRank model for its appli-

cation in the urban context. In these algorithms, the nodes classification does not

depend exclusively on the urban network topology but it also depends (among other

factors) on the geolocated data. Consequently, the APA models incorporate the

geolocalized data in the calculation process by means of a data matrix. Taking

into account this perspective, the resulting transition matrix incorporates both the

jump probabilities derived from the topology of the network and those probabilities

derived from the amounts of data available at the nodes.

On the other hand, the CVP centrality constitutes the adapted version of the

Bonacich’s measure known as eigenvector centrality. It represents the importance of

a node according to the importance of adjacent neighbouring nodes. The centrality

defined in this way depends on two factors: the number of adjacent nodes and

the centrality of each of the adjacent nodes. The main contribution of the CVP

centrality is the incorporation of data from the urban context in the process of

computing centrality. In this way, the importance of a node in the network depends

not only on the degree and the centralities of the adjacent nodes, but also on the

data itself and the data associated with the neighbouring nodes.

It can be affirmed that the final result of the APA centralities and the CVP

centrality is directly related to the calculation of the dominant eigenvector. However,

the meaning of the components of this vector is different for each case. These

numerical differences in the final results are determined by the characteristics of the

matrix used to calculate the eigenvector.

To carry out the comparison of the APA centralities based on the eigenvector,

we have chosen the most representative centralities of this group: APA and APAM2.

This choice is due to the fact that the APAM1 and APAM2 centralities are very
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similar.

The expressions for APAM1 and APAM2 models are

𝑀𝐴𝑃𝐴𝑀1 = (1 − 𝛼)𝑃 + 𝛼𝑉, (5.8)

𝑀𝐴𝑃𝐴𝑀2 = (1 − 𝛼)𝑃 + 𝛼𝐾*. (5.9)

As we can show in expressions 5.8 and 5.9, the matrix that represents the topol-

ogy in both models (matrix 𝑃 ) is the same. By contrast, the main difference between

both algorithms is the matrix that represents the data (𝑉 and 𝐾* respectively). The

𝑉 matrix represents the jump probabilities from a source node to any other destina-

tion node. This probability depends only on the amount of data associated with each

node. On the other hand, the 𝐾* matrix of the APAM2 model also represents the

jump probabilities between the nodes based on the amounts of data associated with

them. However, this matrix only considers the probabilities of jumping from a node

to the adjacent nodes. This matrix is more consistent with the idea of pedestrian

traffic in urban contexts.

The APA and APAM2 centralities are obtained through the eigenvector associ-

ated with the dominant eigenvalue 𝜆 = 1. This eigenvector can be interpreted, in

probabilistic terms, as the stationary vector of a Markov chain that has as transi-

tion matrices 𝑀𝐴𝑃𝐴 and 𝑀𝐴𝑃𝐴𝑀2, respectively. Mathematically, we can express the

stationary vector as

x𝐴𝑃𝐴 = lim
𝑛→∞

𝑀𝑛
𝐴𝑃𝐴x0 (5.10)

and

x𝐴𝑃𝐴𝑀2 = lim
𝑛→∞

𝑀𝑛
𝐴𝑃𝐴𝑀2x0, (5.11)

where x0 is the initial vector.

The stationary vector resulting from the APA and APAM2 centralities matches

with the eigenvector associated with the dominant eigenvalue 𝜆1 = 1 of the tran-

sition characteristics matrices of the two centralities. The stationary vector or the

dominant eigenvector has a different interpretation in the urban context. Vector
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x𝐴𝑃𝐴 represents the probabilities of locating a person in a certain place (node of

the network), taking into account the topological configuration and the amount of

data available in this place. We consider both the continuous and discontinuous

displacements. By continuous displacements, a sequential transition between the

nodes is understood.

Following a similar scheme to the case of matrices 𝑀𝐴𝑃𝐴 and 𝑀𝐴𝑃𝐴𝑀2, the𝑀𝐶𝑉 𝑃

matrix includes the topological variable and the data variable of the network. This

matrix is not a stochastic transition matrix as the APA type. It is given by the

expression

𝑀𝐶𝑉 𝑃 = 𝐴⊗ (𝑊 + 𝛽𝐽) + 𝜖𝐽. (5.12)

However, for a better interpretation of the 𝑀𝐶𝑉 𝑃 matrix, we need to rewrite it as

𝑀𝐶𝑉 𝑃 = 𝑊 + 𝛽𝐴 + 𝜖𝐽. (5.13)

In 5.13 the 𝑊 matrix is the adjacency matrix with weights. It represents the

amounts of data associated with pairs of nodes joined by an edge. The 𝛽𝐴 matrix

ensures a minimum link between the nodes when there is no data associated with

them. Matrix 𝜖𝐽 avoids localized solutions and speeds up the calculation process.

We can say that the matrix 𝑊 is the most important component of the expression

5.13, since it combines topological and data variable of the network and it represents

the topological distribution of data in the network.

The addition of 𝑊 , 𝛽𝐴 and 𝜖𝐽 matrices gives a non-negative symmetric matrix.

This property ensures that all eigenvalues associated with the resulting matrix are

real.

The CVP centrality is also related to the dominant eigenvector 𝑣𝑒𝑐𝑥1 associated

with its characteristic matrix 𝑀𝐶𝑉 𝑃 . That is to say,

c𝐶𝑉 𝑃 =
1

𝜆1

(𝑀𝐶𝑉 𝑃x1 + x1). (5.14)

However, the meaning of the components of the vector x1 is different from the APA
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type centralities. To better understand the meaning of this centrality we briefly

study the Katz centrality, given that CVP is a particular case of this centrality.

The katz centrality can be expressed as

c𝐶𝑉 𝑃 = 𝛽𝐴(𝐼 − 𝛽𝐴)−1e = (𝛽𝐴 + 𝛽2𝐴2 + 𝛽3𝐴3 + . . .)e = (
∞∑︁
𝑘=1

𝛽𝑘𝐴𝑘)e, (5.15)

where 0 ≤ 𝛽 ≤ 1 is the damping factor, e is a vector of ones and 𝐴 is the adjacency

matrix.

It should be noted that the convergence of the expression 5.15 is guaranteed only

if 𝛽 < 1/𝜆1. In contrast, when 𝛽 tends to 1/𝜆1, the Katz’s centrality c𝐶𝑉 𝑃 tends to

the eigenvector of the matrix 𝐴. Therefore, the Katz centrality with 𝛽 → ∞ and

the eigenvector of a node is the sum of all the links of this node with the remaining

nodes of the network. From the expression 5.15 we can see that the indirect links

(links with 𝑘 > 1) counts less in the centrality, since the parameter 𝛽 penalizes links

by increasing the values of 𝑘 .

5.4 Numerical results

In order to analyse the differences in the centrality measures studied, some numerical

results are presented. The reasons to calculate the centralities are: on the one

hand, to determine the coherence in the results of the classifications provided by

the measures and, on the other hand, to determine the magnitude of differences

in the results of the centralities. All the numerical tests have been carried out by

implementing the different algorithms (APA - 1, APAM2 - 3 and CVP - 4) in R,

a Free Software under the terms of GNU project. It constitutes a language and

environment especially efficient for computing and graphics.

5.4.1 Network and dataset

The three centralities have been calculated independently, for the particular network

shown in Figure 5-1.

The network that has been used is based on a partition of a specific city. That
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Figure 5-1: The urban network of the city of Rome.

is to say, the city of Rome has been subdivided into a grid with cells of size 1 × 1

km. Each quadratic cell is a node of the graph.

On the other hand, each day, the raw GPS trajectories of around 10000 cars have

been imposed on the grid, and trip origins and destinations have been extracted. If

there exists a trip between two cells (nodes) then an edge is constructed between

them. With this method, a network of 1359 nodes and 178844 edges has been built

from the extracted origin-destination pairs described.

The node attribute matrix (data) has been built using features corresponding to

tourist extracted from geo-referenced data from OpenStreetMap. More specifically,
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we have used data from monuments, theatres, museums and airports.

Summarizing, the adjacency matrix size is 𝐴 = 1359 × 1359, the matrix 𝑣0 has

size v0 = 4 × 1 and the data matrix 𝐷 = 1359 × 4.

Matrix 𝐷 represents the dataset evaluated in the network. The rows correspond

to the nodes while the columns correspond to the nodes’ attributes that must be

evaluated. In our example there are 4 columns related to the monuments, theatres,

museums and airports associated to each node, respectively. We have chosen the

weighted vector as v0 = [1, 1, 1, 1]𝑇 , which means that we give the same value to all

the attributes within the general quantification process of the data.

Note that the product 𝐷 · v, from which a vector of data associated with the

nodes is obtained, supposes in a certain way the construction of a weighted network,

with the characteristic that the weights are assigned to the nodes and not to the

edges, since the numerical value incorporated into each node is directly related to

the data that exists in its proximity.

With these matrices, we can construct the three algorithms used in the compar-

ison.

5.4.2 Discussion

We have applied three centrality measures (APA, APAM2 and CVP) to the network

of Rome using data about tourism.

The numerical study has been developed for different values of the parameter 𝛼

of the centralities APA and APAM2. This parameter controls the importance that

we assign to the calculation of centralities to the topology and data. Remark that

the greater the parameter is, the greater the importance for data is assumed.

Table 5.1 shows the value of the APA of fifty nodes in decreasing order when

𝛼 = 0.15. The first column is the node identifier, the second column is the degree

on the node, third column represents the amount of data and finally, the rest of

the columns summarize the results obtained for different values of the 𝛼 parameter

(𝛼 = 0.15, 0.3, 0.6 and 0.85). As we can see in this table, the first place in the

classification is the node number 1349 that has high degree and large amount of

data.
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𝑛 dg data 𝛼 = 0.15 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.85 𝑛 dg data 𝛼 = 0.15 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.85
1349 82 75 0.01841 0.03467 0.06714 0.09421 682 81 6 0.00314 0.00413 0.00613 0.00781
1348 80 43 0.01122 0.02041 0.03878 0.05411 1331 101 3 0.00291 0.00311 0.00359 0.00408
1341 91 40 0.01096 0.01943 0.03633 0.05043 649 91 4 0.00284 0.00335 0.00441 0.00532
1347 67 41 0.01054 0.01934 0.03693 0.05158 685 94 4 0.00283 0.00337 0.00444 0.00534
1346 60 32 0.00869 0.01549 0.02906 0.04035 629 90 3 0.00282 0.00305 0.00357 0.00408
324 24 32 0.00772 0.01469 0.02861 0.04019 630 82 4 0.00280 0.00337 0.00447 0.00536
1356 81 21 0.00654 0.01085 0.01945 0.02662 222 119 0 0.00272 0.00214 0.00111 0.00038
1355 80 19 0.00606 0.00994 0.01767 0.02411 707 93 4 0.00271 0.00330 0.00444 0.00535
1354 76 18 0.00578 0.00943 0.01673 0.02283 251 106 1 0.00269 0.00241 0.00193 0.00162
1340 95 16 0.00570 0.00884 0.01511 0.02038 1339 96 2 0.00265 0.00267 0.00274 0.00285
1350 82 17 0.00565 0.00908 0.01592 0.02162 1333 60 5 0.00264 0.00349 0.00516 0.00654
1357 76 16 0.00543 0.00865 0.01606 0.02037 305 109 0 0.00261 0.00206 0.00108 0.00038
684 78 14 0.00502 0.00774 0.01322 0.01783 651 89 3 0.00257 0.00289 0.00352 0.00407
1342 95 11 0.00448 0.06499 0.01059 0.01407 286 111 0 0.00254 0.00201 0.00106 0.00037
653 82 12 0.00447 0.00679 0.01142 0.01532 687 97 2 0.00254 0.00257 0.00269 0.00283
1337 83 12 0.00447 0.00678 0.01142 0.01532 654 88 3 0.00253 0.00286 0.00351 0.00407
554 93 10 0.00446 0.00622 0.00981 0.01287 652 83 2 0.00252 0.00259 0.00273 0.00286
1358 76 12 0.00438 0.00672 0.01141 0.01532 1330 78 3 0.00251 0.00284 0.00349 0.00406
647 84 9 0.00405 0.00567 0.00891 0.01162 33 109 0 0.00250 0.00198 0.00103 0.00035
683 79 9 0.00386 0.00549 0.00879 0.01157 1334 59 4 0.00248 0.00312 0.00434 0.00532
686 102 8 0.00386 0.00522 0.00798 0.01034 553 71 2 0.00248 0.00259 0.00272 0.00286
650 89 8 0.00385 0.00524 0.00803 0.01037 1338 77 3 0.00243 0.00277 0.00345 0.00405
1345 74 9 0.00362 0.00533 0.00872 0.01155 648 47 5 0.00241 0.00336 0.00516 0.00656
1332 88 6 0.00337 0.00429 0.00619 0.00782 555 47 4 0.00241 0.00307 0.00433 0.00532
646 85 5 0.00321 0.00393 0.00538 0.00661 123 94 0 0.00240 0.00192 0.00103 0.00036

Table 5.1: Fifty first values of the APA centrality for different 𝛼 values

In table 5.2 we can see the numerical results for the second measure studied

APAM2 and the similarity regarding to APA is clearly seen. The position of the

nodes in both measures show a high relationship between the two measures.

Finally table 5.3 summarizes the numerical results in the case of CVP centrality.

It is necessary to highlight that there is not parameter 𝛼 in this measure and, because

of this, it always gives the same value of centrality.

Except for minor non-significant variations, no node with a high APA centrality

has a low APAM2 centrality and vice-versa. Comparing tables 5.1 and 5.2, it is

concluded that the APA and APAM2 values are closely related. The nodes are

located in very similar positions in both measures.

Since, the data assigned to the nodes are referred to tourism, we can interpret

that nodes without data are nodes not exploited tourism. Consequently, we can see

as some nodes without data (222 or 33) appears between 50-top highest values in

APA and APAM2. These nodes, whit high degree, have the highest CVP values,

being this measure an indicator of potential of what places could be better exploited

in tourism.
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𝑛 dg data 𝛼 = 0.15 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.85 𝑛 dg data 𝛼 = 0.15 𝛼 = 0.3 𝛼 = 0.6 𝛼 = 0.85
1349 82 75 0.01839 0.03494 0.06835 0.09588 682 81 6 0.00322 0.00432 0.00651 0.00836
1341 91 40 0.01252 0.02230 0.0410 0.05559 1331 101 3 0.00316 0.00354 0.00416 0.00460
1348 80 43 0.01097 0.02009 0.03859 0.05385 629 90 3 0.00302 0.00340 0.00407 0.00456
1347 67 41 0.00914 0.01714 0.03422 0.04926 649 91 4 0.00301 0.00365 0.00486 0.00583
1346 60 32 0.00806 0.01462 0.02859 0.04081 685 94 4 0.00297 0.00362 0.00489 0.00593
1356 81 21 0.00688 0.01161 0.02117 0.02917 630 82 4 0.00291 0.00359 0.00491 0.00605
1340 95 16 0.00654 0.01036 0.01756 0.02314 251 106 1 0.00282 0.00261 0.00219 0.00189
1355 80 19 0.00631 0.01050 0.01902 0.02618 1339 96 2 0.00279 0.00290 0.00309 0.00325
1350 82 17 0.00603 0.00985 0.01754 0.02401 707 93 4 0.00276 0.00342 0.00479 0.00600
1354 76 18 0.00591 0.00974 0.01746 0.02383 222 119 0 0.00269 0.00210 0.00107 0.00036
1357 76 16 0.00572 0.00929 0.01656 0.02273 651 89 3 0.00267 0.00306 0.00382 0.00446
684 78 14 0.00547 0.00855 0.01446 0.01916 687 97 2 0.00266 0.00278 0.00299 0.00315
554 93 10 0.00531 0.00767 0.01182 0.01489 1333 60 5 0.00260 0.00343 0.00517 0.00672
1342 95 11 0.00502 0.00743 0.01191 0.01531 654 88 3 0.00259 0.00299 0.00375 0.00440
1337 83 12 0.00466 0.00716 0.01211 0.01617 652 83 2 0.00259 0.00273 0.00301 0.00324
653 82 12 0.00463 0.00712 0.01211 0.01623 305 109 0 0.00258 0.00202 0.00104 0.00035
1358 76 12 0.00448 0.00694 0.01193 0.01621 553 71 2 0.00258 0.00273 0.00300 0.00323
647 84 9 0.00444 0.00640 0.01021 0.01329 1330 60 3 0.00257 0.00296 0.00372 0.00436
686 102 8 0.00429 0.00598 0.00911 0.01151 286 111 0 0.00251 0.00197 0.00101 0.00035
650 89 8 0.00423 0.00595 0.00925 0.01192 33 109 0 0.00249 0.00196 0.00101 0.00035
683 79 9 0.00409 0.00594 0.00953 0.01245 1338 77 3 0.00249 0.00287 0.00363 0.00429
1332 88 6 0.00367 0.00482 0.00697 0.00865 1023 106 1 0.00246 0.00230 0.00198 0.00174
1345 74 9 0.00353 0.00522 0.00879 0.01192 612 75 2 0.00243 0.00258 0.00284 0.00306
646 85 5 0.00349 0.00444 0.00619 0.00759 1334 49 4 0.00243 0.00306 0.00440 0.00563
324 24 32 0.00345 0.00652 0.01356 0.02034 518 77 1 0.00242 0.00228 0.00199 0.00178

Table 5.2: Fifty first values of the APAM2 centrality for different 𝛼 values

An essential point, that must be addressed in the comparison between the algo-

rithms, is that the results they offer are coherent when they are applied to the same

network. When talking about consistency in the results, it should not be understood

that they must be the same. The central issue is that the measures offer a ranking

of the network nodes, that is, a classification of the nodes in the network according

to its importance within it.

The coherence of the values can be demonstrated by checking that the measures

present a high correlation, in the sense that high values of one centrality correspond

to high values of the other. If we refer to a mutual relationship or association be-

tween the centrality vectors studied, we must analyse the consistency of the results

by means of correlation coefficients. In statistical terms, correlation is a method

of assessing a possible two-way linear association between two variables. The cor-

relation coefficient, which represents the strength of the putative linear association

between the variables in question. It is a dimensionless quantity that takes a value in

the range 1 to +1. A correlation coefficient of zero indicates that no linear relation-

ship exists between two variables, and a correlation coefficient of 1 or +1 indicates
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𝑛 dg data CVP value 𝑛 dg data CVP value
222 119 0 1.0746 305 109 0 0.9553
33 109 0 1.0541 286 111 0 0.9529
506 99 0 1.0367 123 94 0 0.9519
251 106 1 1.0353 122 98 0 0.9438
171 104 0 1.0197 719 105 0 0.9409
1331 101 3 1.0155 121 86 0 0.9356
1339 96 2 1.0140 1341 91 40 0.9321
1157 106 0 1.0138 1340 95 16 0.9304
53 92 0 1.0016 223 84 0 0.9302
629 90 3 0.9991 686 102 8 0.9296
1349 82 75 0.9970 652 83 2 0.9280
554 93 10 0.9966 650 89 8 0.9279
1332 88 6 0.9942 687 97 2 0.9253
647 84 9 0.9862 1342 95 11 0.9237
646 85 5 0.9776 1023 106 1 0.9226
627 86 0 0.9775 250 85 1 0.9222
1336 92 1 0.9774 304 86 0 0.9221
518 77 1 0.9739 143 98 0 0.9208
1357 76 16 0.9715 628 84 1 0.9178
684 78 14 0.9641 649 91 4 0.9166
1355 80 19 0.9633 1356 81 21 0.9156
1350 82 17 0.9614 651 89 3 0.9146
685 94 4 0.9593 593 81 0 0.9136
919 97 0 0.9585 1021 91 0 0.9128
683 79 9 0.9570 932 95 0 0.9122

Table 5.3: Fifty first values of the CVP centrality.

a perfect linear relationship. If the coefficient is a positive number, the variables

are directly related and, in the other hand, if the coefficient is a negative number,

the variables are inversely related. There are many different types of correlation

coefficients that reflect somewhat different aspects of a monotone association and

are interpreted differently in statistical analysis. In this Chapter, we focus on three

popular indices that are often provided next to each other by standard software

packages, namely Spearman, Pearson and Kendall coefficient.

Some tests calculating the Spearman, Person and Kendall correlation coefficients

between APA-APAM2, APA-CVP and AMAP2-CVP have been developed, taking

different values of the 𝛼 parameter (see Table 5.4).

The results can be summarized in these key points:

• In the comparison between APA and APAM2 centralities, the values of the

Spearman, Pearson and Kendall coefficients remain practically constant be-

tween 97.8% and 99.9%. This correlation values means that the the relation

between APA and APAM2 is strong and although they are different measures,

both centralities take into account the topology of the network and the data
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Correlation between APA and APAM2
𝛼 = 0.15 𝛼 = 0.30 𝛼 = 0.60 𝛼 = 0.85

Spearman 0.9989 0.9978 0.9959 0.9971
Pearson 0.9914 0.9876 0.9882 0.9898
Kendall 0.9893 0.9826 0.9782 0.9785

Correlation between APA and CVP
𝛼 = 0.15 𝛼 = 0.30 𝛼 = 0.60 𝛼 = 0.85

Spearman 0.9940 0.9895 0.9783 0.9727
Pearson 0.7445 0.5247 0.3431 0.2793
Kendall 0.9429 0.9378 0.9074 0.8791

Correlation between APAM2 and CVP
𝛼 = 0.15 𝛼 = 0.30 𝛼 = 0.60 𝛼 = 0.85

Spearman 0.9962 0.9947 0.9866 0.9777
Pearson 0.7527 0.5366 0.3555 0.2920
Kendall 0.9494 0.9498 0.9192 0.8868

Table 5.4: Pearson, Spearman and Kendall correlation coefficients.

present in it, being specially adapted for urban networks.

• Comparing APA and CVP, the Spearman coefficient remains constant with

values close to 98%, the Kendall coefficient remains between 87.9% and 94.2%.

This gives an idea of the degree of correlation between the two measures.

• A different situation occurs if we pay attention to the Pearson coefficient. If

𝛼 = 0.15 the measure has high relationship but, when the parameter 𝛼 in-

creases, the correlation decreases much until reaching 27.9%, which means

almost absence of correlation. A possible explanation is that the Pearson co-

efficient measures the degree of covariation between different linearly related

variables. This means that there may be strongly related variables, but not

linearly, in which case Pearson’s correlation does not provide sufficient infor-

mation.

In addition, the distortion caused by outliers in the behaviour of the correlation

coefficient can be fairly large in some cases, especially when outliers are present

in both variables at the same time.

• The comparison between APAM2 and CVP is very similar to the preceding
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type.

Let us note, through the tables, the notable differences between CVP centrality

and the APA centralities type. The CVP centrality of a node can be interpreted as

the sum of values related to the amounts of data located along all the possible paths

from a node. From this perspective, a high value of the CVP centrality of a node

means that this node has a high amount of available data.

The studied algorithms establish a classification of the nodes of a network that

allow us to develop some applications. From the urban planning point of view these

models become an effective tool to rigorously evaluate the urban fabric because of

we can monitor areas in the city which are most and least relevant, in terms of the

effects correlated with this activity. Similarly, it is possible to evaluate the pre-urban

development projects, as may be partial plans, master plans and interior renovation

projects. We can also assess the value of the land based on the centrality of their

closest node. In a wider field of use, these algorithms can be a tool to perform

simulations in the whole network performing actions on discrete parts.

5.5 Conclusion

In this Chapter, we studied, analysed and compared centrality measures applied to

an urban network. Two characteristics of these measures can be highlighted: they

are based on the calculation of the eigenvector of a matrix and they are suitable for

urban networks with data. One of these measures has the characteristic of covering

a small range of values. This is inconvenient when working with networks with large

amount of data and because of this, a new measure is presented. Once the centrality

measures applied to urban networks have been analysed and studied, a network

of the city of Rome is used together with data related to tourism, to apply the

centrality measures described. Subsequently, a comparison of three measurements is

made using the most usual correlation coefficients (Spearman, Pearson and Kendall).

When comparing the APA and APAM2 centralities, a correlation is clearly seen.

The three correlation coefficients studied show values close to one indicating similar

measures.
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"The only way to know how a com-

plex system will behave-after you

modify it-is to modify it and see

how it behaves."

George E. P. Box

Chapter 6

APA for Biplex urban networks

In this Chapter, we propose a new algorithm for attributed multiplex networks with

the main objective to compute the centrality of the nodes based on the original

PageRank model used to establish a ranking in the Web pages network. Taking as

a basis the Adapted PageRank Algorithm for monoplex networks with data and the

two-layer PageRank approach, an algorithm for biplex networks is designed with

two main characteristics. First, it solves the drawback of the existence of isolated

nodes in any of the layers. Second, the algorithm allows to choose the value of

the parameter controlling the importance assigned to the network topology and the

data associated to the nodes in the Adapted PageRank Algorithm, respectively.

The proposed algorithm inherits this ability to determine the importance of node

attribute data in the calculation of the centrality; yet, going further, it allows to

choose different parameter values for each of the two layers. The biplex algorithm

is then generalised to the case of multiple layers, that is, for multiplex networks. Its

possibilities and characteristics are demonstrated using the dataset of aggregate OD

flows of private cars in Rome described in Chapter 4. Further, a biplex network is

constructed by taking the data about car mobility for layer 1. Layer 2 is generated

from data describing the local bus transport system. The algorithm then establishes

the most central locations in the city when these layers are intertwined with the

location attributes in the biplex network. Four cases are evaluated and compared

for different values of the parameter that modulates the importance of data in the

network.
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This Chapter is a modified version of our paper Leandro Tortosa, Jose F Vicent,

and Gevorg Yeghikyan. A centrality measure based on the Adapted PageRank Al-

gorithm for multiplex networks with data. Applied Mathematics and Computation,

2020 (under review).

6.1 Introduction

Identifying influential vertices in a network can be useful in many practical fields.

Examples of this are risk identification in infrastructure [246], determining influen-

tial nodes in social networks [81], ensuring the security and reliability of the network

[300], collaborating with the most influential media for advertising [170, 142], evalu-

ating the influence of junctions with the aim of avoiding overloading roads [132, 276],

or defining the influence maximization problem as an algorithmic problem [224].

Various centrality measures including closeness, degree, and betweenness central-

ity [103] are widely used to this end, with the choice of the measure depending on the

specific application. Further, PageRank and related algorithms have been proposed,

extending the concept of network centrality and the range of applications [2, 4]. The

main idea of the PageRank algorithm proposed by Page et al. [201] is that a network

node is relevant if other important nodes have a link to it. If a node with a high

PR value is linked to another node, the value of the page being linked increases. It

plays a crucial role in the ranking of nodes in complex networks [194, 303]. Many

scientists have used the PageRank and its modifications to address various problems.

In [253], Wu and Chen introduce a hierarchical hybrid ranking algorithm to study

entrepreneurship and innovation activities. The relative importance of scientific ar-

ticles based on PageRank is presented in [273]. A social activity ranking method

based on the PageRank algorithm is introduced in [190]. Ma et al. [259] create a

novel ImageRank algorithm for image retrieval and relevance feedback. In [174], the

authors design an algorithm similar to PageRank to identify important news events.

One of the most important characteristics of complex systems is that the collec-

tive behaviour of the system cannot be predicted from the properties of its compo-

nents. The many types of inter-dependencies call for new ways to represent networks
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in which nodes have more than one type of interaction between them. These systems

–called multiplex networks– are characterized by different layers representing differ-

ent interaction types between nodes. An overview of research on multiplex networks

can be found in [46, 148]. Modelled by a set of networks with interacting layers,

these multilayer networks have been used to describe a many real-world complex

systems, such as financial [58], ecological [215], information [130], urban [3], and

transportation networks [108]. The recent advances in Big Data technologies allow

to capture more and more types of relations in observed systems. In this context,

it may be advantageous to represent and study these systems by representing them

by multiplex networks [47, 44, 113].

Multiplex networks allow to connect pairs of nodes with multiple links in multiple

layers. In addition, the ability to capture relations between layers is also important

in modelling and explaining empirical multilayer networks. Ranking the nodes of

these multiplex networks requires to highlight the importance of nodes in each of the

interdependent layers [239]. In [118], Halu et al. proposed a PageRank algorithm

for measuring node centralities in multiplex networks by introducing a bias exerted

by a network layer on the jumps of the random walk in another layer. However, in

many real world networks, attributes described by data intrinsic to the nodes play

an important role and require further modelling. In order to take into account the

data intrinsic to nodes, in this Chapter, we present a network centrality measure

for biplex networks. The proposed algorithm is based on the Adapted PageRank

Algorithm (APA) centrality [2, 4] and is further is extended in a natural way to

multiplex networks. A key aspect of the proposed algorithm is that, built upon the

APA centrality, the random walk jumps in the algorithm are modelled by the network

node attribute data. This allows us to study a range of relationships between among

nodes modelled by different layers, as well as to measure the influence of the node

attribute data in each of the network layers. In addition, the proposed algorithm can

be applied in any multilayer setting, since it avoids the problem of isolated nodes in

any of the layers.

To achieve these objectives, the structure of this Chapter is as follows. A method

to construct a multiplex centrality based is the APA model is presented in Section
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6.2 . In Section 6.3, the biplex centrality algorithm is modified with the aim to avoid

the existence of dangling nodes. Then, some characteristics about the meaning of the

parameter 𝑎𝑙𝑝ℎ𝑎 are discussed (Section 6.4). Section 6.5 aims to show an extension

of the centrality to multiplex networks. Numerical results after analysing a real

urban network in Rome are presented in Section 6.6. Finally, the conclusions of the

work are exposed.

6.2 Building Multiplex centrality from APA

Some classical notation for graphs will be used. So, a graph is represented by

𝒢 = (𝒩 , ℰ) with 𝒩 a set of 𝑛 vertices or nodes and ℰ a set of links between the

nodes. The links are represented by the adjacency matrix 𝐴 = (𝑎𝑖𝑗) square of size

𝑛× 𝑛, where

𝑎𝑖𝑗 =

⎧⎨⎩ 1 if it exists a link between the nodes 𝑖 and 𝑗,

0 otherwise.

6.2.1 Previous work

This section briefly describes the steps that take us from the original system to

the model proposed to measure the centrality of the nodes of a multiplex complex

network.

PageRank is an algorithm, based on the webgraph, that produces a classification

of the web pages according to their importance.

The core of PageRank is the construction of the called Google matrix

𝐺𝑖𝑗 = 𝛼𝑆𝑖𝑗 + (1 − 𝛼)
1

𝑁
, (6.1)

where𝑆𝑖𝑗 is, by columns, an stochastic matrix obtained from the adjacency matrix of

the graph and the number of outgoing links from a node to the rest. The existence of

null columns in 𝑆 is a consequence of isolated nodes, which is solved by introducing

a constant value 1/𝑁 –with 𝑁 the number of nodes–. The parameter labeled as

𝛼 is known as the damping factor. As it is well-known, the spectral properties
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of 𝐺, defined by (6.1) causes Perron-Frobenius’s theorem to be satisfied, so for

0 < 𝛼 < 1, there exists a unique and non-negative eigenvector associated to the

maximal eigenvalue 𝜆 = 1. This vector –called PageRank vector– constitutes the

rank of the nodes.

In the APA model described by the Adapted PageRank Algorithm (see [2], page

2190), a similar reasoning is used to determine a ranking of the nodes according to

their importance.

In this case, the core of the model is the construction of a matrix 𝑀𝐴𝑃𝐴 given

by

𝑀𝐴𝑃𝐴(𝑖𝑗) = (1 − 𝛼)𝑃𝑖𝑗 + 𝛼𝑉. (6.2)

The transition matrix 𝑃𝑖𝑗 is defined as

𝑝𝑖𝑗 =

⎧⎨⎩ 1
𝑐𝑗

if 𝑎𝑖𝑗 ̸= 0,

0 otherwise,
1 ≤ 𝑖, 𝑗 ≤ 𝑛, (6.3)

with 𝑐𝑘 representing the sum of the 𝑘-th column of the adjacency matrix. The

matrix 𝑉 in the second term of equation (6.2) is constructed from a data matrix

associated to the network. For more details, see [2].

It is important to highlight that the 𝑀𝐴𝑃𝐴 matrix, due to the way it is defined by

(6.2) and (6.3), inherits the spectral characteristics of the Google matrix, with the

property of being a stochastic matrix by columns. This fact assures us the existence

of the dominant eigenvalue 𝜆 = 1 and the consequent right-side eigenvector that

constitutes the expected classification of the nodes.

The second idea in which it is based the proposed algorithm for multiplex net-

works is the PageRank approach described by Pedroche et al. [212], known as

two-layer approach. They state that Google matrix (6.1) may be divided into two

terms and associated to two different layers representing the network. On the one

hand, the physical layer, given by the term 𝛼𝑆, and, on the other side, a teleportation

layer, given by the term 1/𝑁 .
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In mathematical terms, Pedroche et al. [212] construct the 2 × 2 block matrix

𝑀𝐴 =

⎛⎝ 𝛼𝑃𝐴 (1 − 𝛼)𝐼

2𝛼𝐼 (1 − 𝛼)ev𝑇

⎞⎠ ∈2𝑛×2𝑛 . (6.4)

where 𝑀𝐴 represents a Markov chain.

The algebraic characteristics of 𝑀𝐴 –irreducible and primitive– allows us to affirm

that

�̂�𝐴 = 𝜋𝑢 + 𝜋𝑑 ∈𝑛,

where
[︀
𝜋𝑇
𝑢 𝜋𝑇

𝑑

]︀𝑇 ∈2𝑛, is the only positive and normalised eigenvector. The structure

of this matrix will be generalised for the case of multiplex networks as it will be

described in the following section.

Figure 6-1: Schematic representation of the models used to design the APA biplex
centrality algorithm

In Figure 6-1 an schematic graphic of the models used to design and implement
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the APA biplex algorithm for calculating the nodes’ centrality in biplex networks

is shown. For both detailed description –the APA algorithm and the two-layers

PageRank approach–, see [2, 3, 212].

6.2.2 Constructing biplex centrality from APA and the two-

layer approach

Taking into account that a multiplex networks is a case in which there are different

relationships in each layer but the same nodes in all of them, we can extend the two

layer approach to the case of multiplex netwoks. Behind this process is the idea of

applying the two-layer model to every layer of the multiplex network.

Let us follow the classical notation for a multiplex network ℳ = (𝒩 , ℰ ,𝒮) with

𝒮 = (𝑙1, 𝑙2, . . . , 𝑙𝑘) a set of layers.

Considering the simplest case of a biplex networks ℳ = (𝒩 , ℰ ,𝒮), with two

layers 𝒮 = (𝑙1, 𝑙2) with adjacency matrices 𝐴1, 𝐴2 ∈ R𝑛×𝑛.

A matrix 𝑀2 ([212]) is constructed as

𝑀2 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
𝛼𝑃1 𝐼 (1 − 𝛼)𝐼 0

𝐼 𝛼𝑃2 0 (1 − 𝛼)𝐼

2𝛼𝐼 0 (1 − 𝛼)ev𝑇
1 (1 − 𝛼)ev𝑇

2

0 2𝛼𝐼 (1 − 𝛼)ev𝑇
1 (1 − 𝛼)ev𝑇

2

⎞⎟⎟⎟⎟⎟⎟⎠ (6.5)

with 𝑃𝑖, for 𝑖 = 1, 2 a stochastic matrices and v𝑖, for 𝑖 = 1, 2 personalized vectors.

Thinking in terms of the APA algorithm, and taking the matrix 𝑀𝐴𝑃𝐴 (6.2) as

the reference, a 2 × 2 block matrix is built

𝑀𝐴𝑃𝐴2 =

⎛⎝ 𝛼𝑃𝐴 (1 − 𝛼)𝐼

𝛼𝐼 𝛼𝑉

⎞⎠ ∈2𝑛×2𝑛 . (6.6)

An algebraic study of the spectral characteristics of 𝑀𝐴𝑃𝐴2 allows us to affirm

that this matrix is a class of Perron-Frobenius operators, ensuring the existence and

uniqueness of the eigenvector associated with the dominant eigenvalue.

The following step consists on extending the two-layers APA model given by
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(6.6). Reordering the blocks so that the physical layer appear in the position (1, 1)

and the data layer in the block (2, 2), we have

𝑀𝐵𝐼 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − 𝛼)𝑃1 𝐼 2(1 − 𝛼)𝐼 0

𝐼 (1 − 𝛼)𝑃2 0 2(1 − 𝛼)𝐼

𝛼𝐼 0 𝛼𝑉1 𝛼𝑉2

0 𝛼𝐼 𝛼𝑉1 𝛼𝑉2

⎞⎟⎟⎟⎟⎟⎟⎠ (6.7)

with 𝑃1 and 𝑃2 stochastic matrices by columns and 𝑉𝑖, for 𝑖 = 1, 2, data matrices of

the two layers respectively.

As a consequencece, there exists an eigenvector

𝜋BI = (𝜋u1 , 𝜋u2 , 𝜋d1 , 𝜋d2) ∈4𝑛 (6.8)

associated to 𝜆 = 1 (largest eigenvalue).

This vector is essential and represents the node’s centralities. Therefore, a unique

vector can be obtained.

x =
1

2
(𝜋u1 + 𝜋u2 + 𝜋d1 + 𝜋d2) ∈𝑛, (6.9)

with x being a normalized vector.

6.2.3 Problems with dangling nodes in multiplex networks

Let us consider a biplex network with 𝑛 nodes 𝒩 = {1, 2, . . . , 𝑛}, and two layers, 𝑙1

and 𝑙2 corresponding to two different relationships between nodes that give rise to

the adjacency matrices 𝐴1 and 𝐴2.

Because the nodes in the two layers are the same and the relationships are

different, it is possible to for dangling nodes to appear in each of the layers; that

is, nodes with no link to other nodes. In this way, we have nodes with degree

greater than zero (real nodes) and nodes with degree equal to zero (virtual nodes).

This has an undesirable effect on the spectral properties of the transition matrix

𝑃 that is designed to be irreducible and stochastic by columns. The appearance of
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rows and columns of zeros corresponding to the virtual nodes causes 𝑃 not to be

stochastic, making the numerical resolution of the system based on the calculation

of the PageRank vector impossible.

Let us discuss this instability with a simple case. Considering a biplex network

with 10 nodes and the following two adjacency matrices

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.10)

We can observe from the adjacency matrices that in layer 𝑙1 there is a dangling

node (node 8) while in layer 2 there are two dangling nodes (nodes 2 and 10).

If we take 𝐴1 from the first layer and calculate the transition matrix 𝑃1, we

notice that the sum vector of the columns is sum = [2, 1, 2, 1, 1, 2, 2, 0, 2, 1]. This

leads us to a transition matrix

P1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 𝑁𝑎𝑁 0 1

0 0 1/2 0 0 0 0 𝑁𝑎𝑁 0 0

0 1 0 0 0 0 0 𝑁𝑎𝑁 1/2 0

1/2 0 0 0 0 0 0 𝑁𝑎𝑁 0 0

0 0 0 0 0 1/2 0 𝑁𝑎𝑁 0 0

0 0 0 0 1 0 1/2 𝑁𝑎𝑁 0 0

0 0 0 0 0 1/2 0 𝑁𝑎𝑁 1/2 0

0 0 0 0 0 0 0 𝑁𝑎𝑁 0 0

0 0 1/2 0 0 0 1/2 𝑁𝑎𝑁 0 0

1/2 0 0 0 0 0 0 𝑁𝑎𝑁 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where NaN is the acronym for Not a Number, the result of dividing by zero. As a

consequence of this, the matrix

𝑀𝐴𝑃𝐴 = (1 − 𝛼)𝑃1 + 𝛼𝑉1
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will not be stochastic by columns and it would be impossible to obtain a classification

vector for the nodes.

If you look at layer 𝑙2, the adjacency matrix 𝐴2 has two rows of zeros, at nodes

2 and 10, which makes them dangling nodes. We deal with the same problem as in

layer 𝑙1 although now errors occur in the columns 2 and 10. The solution to this

problem is addressed in the next section.

6.3 Adapting biplex centrality for dangling nodes

To solve the problem of isolated nodes, we must reformulate the basic principles of

the PageRank model and the definition of the Google matrix for the most generic

case. Let us consider the graph 𝒢 = (𝒩 , ℰ) with dangling nodes, that is, nodes

with zero degree. From the adjacency matrix 𝐴 = (𝑎𝑖𝑗) of the graph 𝐺, the matrix

𝑃 = (𝑝𝑖𝑗) is redefined as:

𝑝𝑖𝑗 =

⎧⎨⎩ 0 if 𝑖 is a dangling node, for all 𝑗 = 1, 2, . . . , 𝑛.

1
𝑐𝑗

if 𝑎𝑖𝑗 ̸= 0.
(6.11)

In this case, with the aim to construct a column stochastic matrix, we substitute

the matrix 𝑃 in the calculation of the matrix 𝑀𝐴𝑃𝐴 with a new matrix 𝑃 * given by

𝑃 * = 𝑃 + d · u𝑇 , (6.12)

where d is the vector characterizing the dangling nodes defined as

d𝑖 =

⎧⎨⎩ 1, if 𝑖 is a dangling node,

0, otherwise,

and u ∈ ℜ𝑛 characterizes the distribution of dangling nodes such that u > 0 and

u𝑇e = 1, with e = (1, 1, . . . , 1).

Rewriting 𝑃 as (8.4) we make sure that we continue working with a stochas-

tic matrix by columns so that we have the proper spectral features to obtain the
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classification vector.

Another aspect that must be highlighted is related to the construction of the

𝑉 matrix based on the individual data associated with each node of the graph.

For those virtual nodes that have no connection with the rest of the nodes, the data

associated to them is zero. That means that the data vector v has a zero component

in all the positions corresponding to dangling nodes.

It may be the case of having a large number of virtual nodes, which would lead

to a high number of null values in 𝑉 . On the other hand, it may be convenient,

not only from the point of view of numerical stability, but also from the idea of the

influence of the whole data in the network, to introduce a small coefficient in places

that have a null value of data. This small coefficient, that will be denoted as coef,

may be defined as

𝑐𝑜𝑒𝑓 =
min(𝐷) > 0

𝑘 − 𝑛
, (6.13)

where 𝐷 is the data matrix, 𝑘 is the quantity of dangling nodes and 𝑛 the number

of nodes.

From this coefficient, it is possible to redefine the data vector v adding these

small values at the positions of dangling nodes. This new data vector v𝑢𝑝 is then

given by

v𝑢𝑝(𝑖) =

⎧⎨⎩ v(𝑖), if 𝑖 has nonzero degree,

𝑐𝑜𝑒𝑓, otherwise,

As can be seen, the introduced coefficient represents a small value obtained by

dividing the minimum data value associated to the nodes by the total number of

dangling nodes.

Taking into account the modifications proposed regarding the matrix 𝑃 * and

vector v𝑢𝑝, the matrix from which the centrality measure will be obtained may be

rewritten as

𝑀𝐵𝐼 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − 𝛼)𝑃 *

1 𝐼 2(1 − 𝛼)𝐼 0

𝐼 (1 − 𝛼)𝑃 *
2 0 2(1 − 𝛼)𝐼

𝛼𝐼 0 𝛼𝑉1 𝛼𝑉2

0 𝛼𝐼 𝛼𝑉1 𝛼𝑉2

⎞⎟⎟⎟⎟⎟⎟⎠ (6.14)
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Figure 6-2: Schematic representation of the APA biplex centrality model

Figure 6-2 details a graphic scheme of the centrality model for biplex networks

–based on the APA algorithm– with dangling nodes. Note how the most notable

changes with respect to the previous model occur in the construction of the ma-

trices 𝑃 *
1 and 𝑃 *

2 as well as in the inclusion of a residual value in the data vector

representing nodes with zero connectivity in any of the layers.

The scheme shown in Figure 6-2 can be summarized in Algorithm 5.

Following the simple example studied above with 10 nodes, where there were

two layers with the adjacency matrices given by (6.10). Let us assume that the data

matrices 𝐷1, 𝐷2 are

𝐷1 = [2, 2, 5, 2, 1, 3, 2, 0, 7, 2]𝑇 , 𝐷2 = [4, 0, 5, 6, 1, 5, 2, 4, 3, 0]𝑇 .

From the adjacency matrices, we detect the dangling nodes and, using the defi-
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Input: Let ℳ = (𝒩 , ℰ ,𝒮) be a biplex network with 𝒩 = {1, 2, . . . , 𝑛} the
set of nodes, 𝒮 = (𝑙1, 𝑙2) two layers and 𝐴1 and 𝐴2 the respective
adjacency matrices.

Let 𝐷1 and 𝐷2 the data matrices associated to nodes in layers 𝑙1 and 𝑙2,
respectively, and weighted vectors v01 and v02, respectively.
Output: x representing the graph centrality
begin

For the layers 𝑙𝑖, for 𝑖 = 1, 2, construct the vectors and matrices:
– 𝑃𝑖, the probability matrices from (6.3)
– vectors d𝑖,u𝑖 from the adjacency matrices 𝐴𝑖

Compute 𝑃 *
𝑖 , for 𝑖 = 1, 2, from (8.4)

Compute the data vectors vi, for 𝑖 = 1, 2, as vi = 𝐷𝑖 · v0i

Compute the coefficients 𝑐𝑜𝑒𝑓𝑖, for 𝑖 = 1, 2, from (6.8)
From v𝑖 and 𝑐𝑜𝑒𝑓𝑖, for 𝑖 = 1, 2, compute v𝑢𝑝

𝑖

Normalize v𝑢𝑝
𝑖 , for 𝑖 = 1, 2 and denote it as {v𝑢𝑝

𝑖 }*
Construct 𝑉𝑖, for 𝑖 = 1, 2
Construct the matrix 𝑀𝐵𝐼 from (6.14)
Compute the dominant eigenvector 𝜋BI of 𝑀𝐵𝐼

Compute the centrality x

end

Algorithm 5: APA biplex networks algorithm for computing the node’s
centrality.

95



Chapter 6. APA for Biplex urban networks 6.3. Adapting biplex centrality for dangling nodes

nitions of the vectors d𝑖 and u𝑖, for 𝑖 = 1, 2, we have that

d1 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]𝑇 , d2 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 1]𝑇 .

u1 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]𝑇 , u2 = [0, 1/2, 0, 0, 0, 0, 0, 0, 0, 1/2]𝑇 .

Once 𝑃𝑖,d𝑖,u𝑖 have been computed, the matrices 𝑃 *
𝑖 are obtained as

𝑃 *
1 = 𝑃1 + d1 · u𝑇

1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0 1

0 0 1/2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1/2 0

1/2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1/2 0 0 0 0

0 0 0 0 1 0 1/2 0 0 0

0 0 0 0 0 1/2 0 0 1/2 0

0 0 0 0 0 0 0 1 0 0

0 0 1/2 0 0 0 1/2 0 0 0

1/2 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.15)

and

𝑃 *
2 = 𝑃2 + d2 · u𝑇

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1/2 1 1/2 0 0 0 0 0

0 1/2 0 0 0 0 0 0 0 1/2

1/3 0 0 0 0 0 0 0 1 0

1/3 0 0 0 0 0 0 0 0 0

1/3 0 0 0 0 1 0 0 0 0

0 0 0 0 1/2 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 1/2 0 0 0 0 0 0 0

0 1/2 0 0 0 0 0 0 0 1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.16)

Note that both 𝑃 *
𝑖 given by (6.15–6.16) are now column stochastic matrices.
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Regarding the data vectors, we update vectors v𝑖 to obtain vectors v𝑢𝑝
𝑖 , for

𝑖 = 1, 2, by computing the following parameters involved in the updating process.

min(𝐷1 > 0) = 1, min(𝐷2 > 0) = 1, 𝑘1 = 1, 𝑘2 = 2.

Using the expression (6.13), the respective coefficients are

𝑐𝑜𝑒𝑓1 = 1, 𝑐𝑜𝑒𝑓2 = 1/2.

In this way, the updated data vectors are

v𝑢𝑝
1 = [2, 2, 5, 2, 1, 3, 2, 1, 7, 2]𝑇 , v𝑢𝑝

2 = [4, 1/2, 5, 6, 1, 5, 2, 4, 3, 1/2]𝑇 .

6.4 Some considerations about the 𝛼 parameter

.

In the PageRank model, the parameter 𝛼 represented the probability that a

"surfer" follows the links of a web page uniformly and randomly. In this context,

–of random surfer– the choice of 𝛼 is not well justified, although in the original

proposal of Page and Brin [204] they used 𝛼 = 0.85. In the extensive literature for

web surfer, two choices are highlighted: 𝛼 = 0.85 and 𝛼 = 0.5 (see, for instance, [68]).

In the APA centrality algorithm, the 𝛼 parameter has a different meaning, since

it represents the importance we attach to the data associated with each node, while

the value (1 − 𝛼) represents the importance that we assign to the topology of the

network we are studying.

In the design and assessment process of the different algorithms, both for single-

layer networks and multi-layer networks, no mention about the alpha parameter at

any time is done, since we assume that it is a fixed value that is initially chosen and

used in both layers of the biplex network. This means that an equal importance to

the data and the network connectivity in both layers is given. However, depending

on the application context, it may happen that the node attribute data is more

important in one of the layers and not in the other. If the same value of the
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parameter in the two layers is chosen, these differences will not be considered. The

objective is to be able to set different parameter values for the different layers. We

could consider the node attribute data to be more important than the topology in

one layer but not the other. To contemplate these multiple possibilities, we need to

introduce 𝛼𝑖, for layers 𝑙𝑖, with 𝑖 = 1, 2.

Therefore, the matrix 𝑀𝐵𝐼 may be adapted as:

𝑀𝐵𝐼 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − 𝛼1)𝑃

*
1 𝐼 2(1 − 𝛼1)𝐼 0

𝐼 (1 − 𝛼2)𝑃
*
2 0 2(1 − 𝛼2)𝐼

𝛼1𝐼 0 𝛼1𝑉1 𝛼2𝑉2

0 𝛼2𝐼 𝛼1𝑉1 𝛼2𝑉2

⎞⎟⎟⎟⎟⎟⎟⎠ (6.17)

and Algorithm 5 modified as:

Input: Let ℳ = (𝒩 , ℰ ,𝒮) be a biplex network with 𝒩 = {1, 2, . . . , 𝑛} the
set of nodes, 𝒮 = (𝑙1, 𝑙2) two layers and 𝐴1 and 𝐴2 the respective
adjacency matrices.

Let 𝛼1 and 𝛼2 be the values of the parameter 𝛼 for layers 𝑙1 and 𝑙2, respec-
tively. Let 𝐷1 and 𝐷2 be the data matrices associated to nodes
in layers 𝑙1 and 𝑙2, respectively, and weighted vectors v01 and
v02, respectively. Output: x representing the graph centrality

begin
For the layers 𝑙𝑖, for 𝑖 = 1, 2, construct the vectors and matrices:
– 𝑃𝑖, the probability matrices from (6.3)
– vectors d𝑖,u𝑖 from the adjacency matrices 𝐴𝑖

Compute 𝑃 *
𝑖 , for 𝑖 = 1, 2, from (8.4)

Compute the data vectors vi, for 𝑖 = 1, 2, as vi = 𝐷𝑖 · v0i

Compute the coefficients 𝑐𝑜𝑒𝑓𝑖, for 𝑖 = 1, 2, from (6.8)
From v𝑖 and 𝑐𝑜𝑒𝑓𝑖, for 𝑖 = 1, 2, compute v𝑢𝑝

𝑖

Normalize v𝑢𝑝
𝑖 , for 𝑖 = 1, 2 and denote it as {v𝑢𝑝

𝑖 }*
Construct 𝑉𝑖, for 𝑖 = 1, 2
Construct the matrix 𝑀𝐵𝐼 from (6.17)
Compute the dominant eigenvector 𝜋BI of the matrix 𝑀𝐵𝐼

Compute the centrality x

end

Algorithm 6: APA biplex networks algorithm to compute the node’s
centrality using different values of the 𝛼 parameter.

Although the changes in the algorithms are minimal, the possibilities offered by
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being able to choose different alpha values in each layer are very important, since it

allows to establish the importance that we associate to the node attribute data in

each of the layers.

6.5 Extending centrality to multiplex networks

.

Matrix 𝑀𝐵𝐼 , given by the expression 6.17, is the key in the entire process of the

algorithm construction leading to the computation of the centrality. The spectral

properties of this matrix and its stochastic characteristic allow us to calculate its

dominant eigenvector that represents of the ranking of the nodes. A closer look at

the structure of the matrix reveals that its extension to the case of multiple layers

is easy. The block structure of this matrix favors its natural extension as we see

below.

We have to remark that 𝑀𝐵𝐼 is constructed for biplex networks. Let us assume

that we have a multiplex network with 𝑘 layers {𝑙1, 𝑙2, . . . , 𝑙𝑘}, a set of adjacency

matrices {𝐴1, 𝐴2, . . . 𝐴𝑘} and 𝑘 data matrices {𝐷1, 𝐷2, . . . , 𝐷𝑘}. Let 𝛼1, 𝛼2, . . . , 𝛼𝑘

be the parameter values for the layers 𝑙1, 𝑙2, . . . , 𝑙𝑘, respectively. Then, 𝑀𝐵𝐼 may be

extended to multiplex networks as

𝑀𝑚𝑢𝑙𝑡𝑖 =
1

𝑘

⎛⎝ 𝑀1,1 𝑀1,2

𝑀2,1 𝑀2,2

⎞⎠ (6.18)

with

M1,1 =

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − 𝛼1)𝑃

*
1 𝐼 · · · 𝐼

𝐼 (1 − 𝛼2)𝑃
*
2 · · · 𝐼

· · · · · · · · · · · ·

𝐼 𝐼 · · · (1 − 𝛼𝑘)𝑃 *
𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑀2,2 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛼1𝑉1 𝛼2𝑉2 · · · 𝛼𝑘𝑉𝑘

𝛼1𝑉1 𝛼2𝑉2 · · · 𝛼𝑘𝑉𝑘

· · · · · · · · · · · ·

𝛼1𝑉1 𝛼2𝑉2 · · · 𝛼𝑘𝑉𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Both 𝑀1,2 and 𝑀2,1 are block diagonal matrices and are given by

M1,2 =

⎛⎜⎜⎜⎜⎜⎜⎝
2(1 − 𝛼1)𝐼 0 · · · 0

0 2(1 − 𝛼2)𝐼 · · · 0

· · · · · · · · · · · ·

0 0 · · · 2(1 − 𝛼𝑘)𝐼

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑀2,1 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛼1𝐼 0 · · · 0

0 𝛼2𝐼 · · · 0

· · · · · · · · · · · ·

0 0 · · · 𝛼𝑘𝐼

⎞⎟⎟⎟⎟⎟⎟⎠ .

The matrix 𝑀𝑚𝑢𝑙𝑡𝑖 constructed as shown in equation (7.1) inherits the spectral

properties of 𝑀𝐵𝐼 ; therefore, the dominant eigenvector allows us to compute the cen-

trality x. We must also comment that the size of the matrix 𝑀𝑚𝑢𝑙𝑡𝑖 grows remarkably

when we are adding layers so it will be necessary to optimize the calculation of the

dominant eigenvector when the number of layers is high.

6.6 Numerical results

Nowadays, we show a real example of biplex network related to the urban network

of the city of Rome, Italy. Data about car flows and the public bus transport system

will be used to analyse and determine the most central areas of the city when both

data are studied. To perform this, let us first briefly describe the dataset used for

the numerical example.

6.6.1 Rome dataset

Figure 6-3: (left) Private car GPS trajectories superimposed on the grid in Rome
(middle) Layer 1 of biplex network: Rome OD network with some popular locations
highlighted (right) Layer 2 of biplex network: bus connection network.
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6.6.2 The numerical results

As described in Section 6.6.1, we build a biplex network for the city of Rome with

the nodes being the centroids of the grid representing the urban streets network.

The two layers of the biplex network will represent the car flows between nodes and

the bus transport system, respectively. As the biplex model allows us to establish

different relationships between the nodes using different data, the idea in this case

study is to analyse and visualise the relationship between a public transport system

such as the urban bus connectivity and the car OD flows between different city

locations.

Consequently, two layers may be defined with these characteristics:

• Layer 1: the graph is composed of the nodes of the urban network and an

edge is drawn between two nodes if there is at least one car unit flow between

these nodes. The attribute data associated to every node is the total quantity

of in- and out-flows from the node.

• Layer 2: this layer graph has the same nodes, and two nodes are linked by

an edge if there exists non-zero car flow between them and there also exists

at least a bus line connecting them. The data associated to the nodes is the

total number of bus lines connecting a node with the remaining ones.

For instance, node number 9 is linked by at least one OD car flow with the

nodes 1, 298, 416, 633, 713, 715, 730, 775, 999, 1083, 1087, and 1486. However,

in layer 2 node 9 is linked only with the nodes 1 and 416 since there exists at

least one bus line connecting the nodes. More precisely, between nodes 9 and

1 there are 6 lines connecting them and there are 2 bus lines connecting the

nodes 9 and 416. Therefore, the data associated to the node 9 is 6 + 2 = 8.

In this example we are quantifying and analysing urban mobility as well as the

bus transport system. The advantage to work with two or more layers is that it

is possible to measure several relationships with different datasets between nodes,

which is not possible in networks with only one layer.

Another characteristic of this model is the possibility of differentiating the im-

portance assigned to the data in each of the layers. In the definition of matrix 𝑀𝐵𝐼
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given by the expression 6.17 each of the blocks has its own parameter 𝛼𝑖. This allows

us to consider giving more importance to the data associated to the nodes in the

first layer or, on the contrary, giving more value to the data in the second layer.

(a) (b)

Figure 6-4: Biplex centrality PGBI for (a) 𝛼1 = 𝛼2 = 0.2 and (b) 𝛼1 = 𝛼2 = 0.8

(a) (b)

Figure 6-5: Biplex centrality PGBI for (a) 𝛼1 = 0.3, 𝛼2 = 0.8 and (b) 𝛼1 = 0.8
𝛼2 = 0.3

Case 1: 𝛼1 = 0.2, 𝛼2 = 0.2 In the first analysed case, we choose the same value of

the parameter for both layers, that is, 𝛼𝑖 = 0.2, for 𝑖 = 1, 2. This choice of

parameters means that we are giving the same importance to data in both

layers. Note that, following the original APA algorithm, the parameter varies

in the interval (0, 1); therefore, a low value of 𝛼𝑖 also means that we give

much more importance to the network topology than to the node attribute

data. On the contrary, if we give a high value for the parameter, we are giving
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much more importance to the data associated to the nodes than to the graph

topology. We executed Algorithm 6 to obtain the biplex centrality of all the

nodes according to the model described in this Chapter. In Figure 6-4a we

show the map of Rome with the values of the biplex centrality, that we will

denote in the following as PGBI, plotting the size of the nodes proportional

to their centrality value.

Case 2: 𝛼1 = 0.8, 𝛼2 = 0.8 In this case, we also choose the same value of the 𝛼

parameter for both layers, that is, 𝛼𝑖 = 0.8, for 𝑖 = 1, 2. However, as opposed

to case 1, the value of the parameter is 𝛼 = 0.8, which means that we are giving

much more importance to the data than to the connectivity in the individual

layers. Now, we are more interested in measuring the influence of data than

the influence of the links between the nodes. The values of the biplex centrality

for this choice of 𝛼 can be seen in Figure 6-4b. We can see the differences with

respect to the first case.

Case 3: 𝛼1 = 0.3, 𝛼2 = 0.8 This case under study introduces a new variant since

now the values taken by the alpha parameter are different for each layer.

Thus, the 𝛼1 value for layer 1 is 0.3, which means that in layer 1 we give less

importance to the data and greater to the connectivity within the network.

However, we take the value 𝛼2 = 0.8 for layer 2, which means that we measure

the importance of the nodes in this layer giving more importance to the data

and less importance to the connectivity. We can see a visualization of the

biplex centrality for this case in Figure 6-5a.

Case 4: 𝛼1 = 0.8, 𝛼2 = 0.3 This case is similar to case 3 with the difference that

now 𝛼1 = 0.8 and 𝛼2 = 0.3. This means that we give more importance to

the node attribute data in the layer 1 and to the connectivity in layer 2. The

results are displayed in Figure 6-5b.

Table 6.1 summarizes the results of the 25 most central nodes for the four studied

cases, based on the choice of 𝛼1 and 𝛼2 in the two layers of the network. The

centrality is shown in the column labeled PGBI.
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𝛼1 = 0.2, 𝛼2 = 0.2 𝛼1 = 0.3, 𝛼2 = 0.8 𝛼1 = 0.8, 𝛼2 = 0.3 𝛼1 = 0.8, 𝛼2 = 0.8
ranking node PGBI node PGBI node PGBI node PGBI

1 270 0.068118 1437 0.114870 790 0.107058 1437 0.117651
2 367 0.060640 1485 0.114636 1460 0.099745 634 0.115931
3 634 0.060223 634 0.110817 776 0.096553 1485 0.112266
4 1460 0.059685 1478 0.107259 1122 0.095818 1460 0.106568
5 809 0.059439 740 0.104394 634 0.092842 790 0.104531
6 340 0.058988 1469 0.092490 673 0.092495 776 0.100668
7 44 0.058983 1460 0.091879 777 0.091264 740 0.099942
8 149 0.057718 1023 0.091119 732 0.090415 1001 0.099353
9 64 0.057618 794 0.090761 1120 0.089788 839 0.098693
10 1468 0.057595 1468 0.089183 1468 0.088741 1478 0.097365
11 150 0.057505 839 0.087562 1001 0.085205 1468 0.096991
12 301 0.057440 1013 0.086017 1437 0.083270 1469 0.093373
13 586 0.056891 776 0.083814 791 0.083016 673 0.090841
14 1469 0.055625 1486 0.082705 858 0.082981 794 0.088529
15 1122 0.055414 1014 0.082375 839 0.082880 732 0.084063
16 776 0.055333 1001 0.082046 861 0.082831 1023 0.083701
17 148 0.054751 1470 0.079746 1016 0.082021 1014 0.083121
18 1283 0.054659 1002 0.079721 860 0.080953 791 0.083013
19 740 0.054000 616 0.078429 270 0.080392 1120 0.082989
20 712 0.053724 817 0.076460 711 0.079724 858 0.082569
21 673 0.053722 738 0.076299 1469 0.078576 1013 0.082471
22 777 0.053695 1479 0.075673 712 0.078563 861 0.081994
23 714 0.053618 1438 0.074511 773 0.078317 862 0.081933
24 271 0.053441 64 0.074433 769 0.078037 777 0.080259
25 204 0.053046 739 0.073911 811 0.077536 1002 0.080107

Table 6.1: The first 25 most central nodes for the studied numerical cases.

If we look, for instance, at the results obtained for case 1 and case 4, where the

network and data are assigned a greater importance, respectively, we observe that

of the first ten most central nodes only 2 appear in both listings: nodes 634 and

1460.

Figure 6-4a offers useful information for the case 𝛼1 = 𝛼2 = 0.2. This choice of

parameters means that we consider the node attribute data as less important than

the network topology in both layers. In Figure 6-4b, the opposite case is shown,

with 𝛼1 = 𝛼2 = 0.8. Now, we give much more importance to the total in- and

out-flow as well as total bus connections associated to each node. We clearly see the

difference in the maps. Specifically, in the lower figure the main roads of the city

are clearly perceived, which is precisely where more public transport exists. These

main roads, as well as train stations, contain nodes with a high centrality value.

In order to find whether there is a correlation between the ranking results in

the four discussed cases, we compute the Spearman coefficient 𝜌, measuring the

104



Chapter 6. APA for Biplex urban networks 6.7. Conclusion

statistical correlation between the rankings of the nodes. A positive value of 𝜌 near

+1 means a high association of ranks, while a value near 0 means no association

between ranks.

This demonstrates the importance of choosing the 𝛼𝑖 parameters in the model,

giving more or less importance to the data than to the network itself.

6.7 Conclusion

In this Chapter, a measure of centrality for multiplex networks has been designed

and evaluated with a real numerical example with the fundamental characteristic

that both the connectivity of the graphs and a set of data present in each layer

associated to the nodes are taken into account. The starting point is the original

idea of the APA algorithm that introduces the influence of a set of data present

in a network to the computation of the centrality of the nodes. The model solves

the problem of the existence of isolated nodes in any of the layers by introducing

a residual value for all nodes and representing the influence of the presence of data

in the overall network. In addition, the proposed method introduces a variant with

respect to the original alpha parameter related to the PageRank vector consisting

of the choice of a different parameter for each of the layers. This difference in the

value of 𝛼 allows to take into account the importance assigned to the topology or to

the data associated with the nodes in each of the layers. This allows for a flexibility

that is demonstrated in the case study of the urban mobility OD and the urban

bus network in the city of Rome. In that case study, a network with two layers is

evaluated, where in the first layer a graph represents the OD car flows in the city,

while the second layer represents local urban bus connectivity between city locations.

The model solves the problem of the isolated nodes of the second layer and it allows

to choose the importance of the node attribute data in each layer. Four different

cases corresponding to different meaningful combinations of the 𝛼 parameter are

evaluated and visualised. The differences among the cases as visible from the most

central city locations in each case show the advantage and utility of the proposed

algorithm.
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"We are losing the ability to under-

stand anything that’s even vaguely

complex."

Chuck Klosterman, 2003

Chapter 7

APA for Multiplex urban networks

As discussed in Chapters 1 and 2, complex networks provide a framework for mod-

elling real-world complex systems. Based on a set of data on mobility by car between

different urban areas of the city of Rome described in Chapter 4, in this Chapter

we represent and analyze these mobility data extended by urban public transport

networks as additional network layers, augmenting the network nodes with data on

commercial, economic, service and tourist activity in the city. In order to unravel

the complex interdependencies of all these data, we propose a multiplex network

consisting of four urban layers. Network centrality measures are then used to de-

termine the most influential nodes or prominent areas of the city. In particular,

we propose an adaptation of the APA centrality Algorithm for multiplex networks.

This adaptation of the algorithm for multiplex networks offers the possibility to

assign the importance given to node data relative to the network topology in each

layer when computing the centrality. This allows a wider control in studying the

mobility network, particularly generating different centrality maps according to the

choice of this control parameter in each layer. We carry out experiments and present

the results of a study of the network centralities considering different choices of the

parameter.

This Chapter is a modified version of our paper Manuel Curado, Leandro Tortosa,

Jose F Vicent, and Gevorg Yeghikyan. Understanding mobility in Rome by means

of a multiplex network with data. Applied Mathematics and Computation, 2020

(under review)
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7.1 Introduction

Detecting influential elements in complex systems is a crucially important task in

several applied fields such as the identification of influencer people [147] in social

networks, the spreading of a virus or fake news for detecting the original signal [95],

[205], the detection of road traffic network dynamics [88], [87], [117], city growth

[28], [281], global maritime flow [90], the study of the metropolitan rail transport

network [65], [89] or urban congestion [242].

To quantify this influential information, many centrality measures have been

proposed in literature, depending on the specific application. Such measures include

degree, closeness or betweenness centrality. The concept of network centrality is

exploited in the PageRank algorithm and its modifications [202][282][191][175] where

the relevance of a node in a network is measured by how important the nodes linked

to it are. This idea is essential in the ranking of nodes in a complex network

[84][304][195].

A multidisciplinary part of complexity science is the complex network theory. It

could be defined as the modelling of real systems through a graph (network) with

non-trivial topological features [187]. A relevant characteristic of these networks

is the impossibility of predicting the behaviour of the whole from the properties

of its components. Intricate inter-dependencies and different kinds of interactions

between the nodes of the complex network call for a more broader representation. A

particular type of such a representation in the interconnected multilayer network is

called multiplex, in which each network layer represents a different kind of relation

among the shared nodes. Multilayer networks provide more flexible descriptions of

nodes, edges and their interactions, generalizing single-layer networks. Multilayer

data networks arise in a natural way as we observe complex systems in detail.

Different authors approach the representation of data into a multilayer network

in different ways. Such a multiplex representation has proven useful in such real-

world complex systems as urban systems, ecological information, financial data or

mobility networks [48][149][62][126][176][183].

Much of the existing studies on multilayer networks focus on the basic question of
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how to mathematically analyze a multilayer network effectively? On the one hand,

we can see each layer as an isolated network, while on the other, we can add all the

layers to form a single-layer network. Both methods are useful in some cases but

are not suitable for all multilayer applications.

Several works have used a structure based on multiplex networks, but the main

difference is that the topology adopted here relies on the connectivity between nodes

representing the same entity in the different layers. There are many multiplex net-

work works developing measures that allow to make comparisons between multiplex

networks, and their single layer equivalents. Some of these studies propose differ-

ent metrics to evaluate the importance of the nodes in the network with centrality

rankings [240] such as eigenvector centrality [238] or random walk centrality [241].

In many applications, ranking nodes in multiplex networks requires highlighting

the importance of nodes of each layer [240]. For instance, a version of the PageR-

ank algorithm [119] measures the node centralities in these networks through an

included bias in the jump between layers in a random walk [83]. However, a better

model is required to correctly incorporate data intrinsic to the nodes. As mentioned

in Chapter 5, the authors in [7], [10] proposed an Adapted PageRank Algorithm

(APA) centrality for biplex networks for a better understanding of the relationships

between nodes in different layers, and for measuring the importance of the nodes in

each of these layers.

However, a biplex network is not enough in some complex problems as transport

or mobility, where it is necessary to represent all information with more details. For

this reason, in this Chapter, a multiplex network representing a complex model of

the mobility in a metropolitan area (e.g., Rome) is proposed and analyzed. The

analysis is based on the calculation of the importance of nodes given by the APA

Centrality Algorithm for multiplex networks.

7.1.1 Motivation

In complex networks, one important line of research is how to integrate network

science with time-series analysis [126]. That is to say, the study of the evolution

and behaviour of networks over time. In this regard, the most central nodes of
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the 𝑂𝐷 network as identified by the Adapted PageRank Algorithm (APA) [? ]

are an important point of focus. Some recent work has focused on analysing the

spatial patterns of urban features [165, 220], studying urban networks with centrality

measures [? ? ], as well as modelling the evolution of urban interaction networks over

time [291]. However, there still seems to be a poor understanding of the interplay

between urban location characteristics and the networks of interactions between

these locations. All the more so, the temporal evolution of this interplay remains

an unexplored area of research.

The study of origin-destination (OD) flow data is an important part for urban

transport network management and strategic planning. More specifically, OD traffic

matrices provide an estimate of the number of vehicles travelling between points in

the city network over a given period of time [59]. That said, the objectives of this

Chapter are to analyse the distribution of important nodes over time in urban OD

networks. More precisely, we aim at studying the most central nodes of the urban

multilayer network, as identified by the Adapted PageRank Algorithm (APA) ([7]).

The model presented in this Chapter allows to study and analyze several rela-

tionships of a set of nodes represented by different layers. In addition, it measures

the influence of the data intrinsic to nodes in the different layers of the network.

This is a crucial difference with respect to the classical multilayer approach. In our

model, we adapt and generalize the APA algorithm to multilayers, and this leads

to two main advantages: on the one hand, the advantages of the monoplex are ex-

ploited by associating a set of node data to each layer. On the other hand, we can

play with the importance given to the data in each layer through a parameter. This

allows to take into account both the the network topology is and the node data

present in each layer. This feature is supported by the numerical results, showing

the flexibility and versatility of the proposed model, allowing to work with different

types of data - real and synthetic - and evaluate its importance within the network.

In Section 7.2 we review the centrality model based on the APA algorithm.

Then, we discuss the case study of the urban OD network in Rome, augmented with

commercial, tourist, economic and transport attributes in Section 7.3. Finally, we

conclude the Chapter in Section 7.4
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7.2 The centrality model

In [5], the authors propose a model to compute the centrality for attributed multiplex

networks with the primary objective to classify the nodes in order of importance

following the original PageRank vector concept used to establish a ranking in the

Web graph.

They propose an algorithm for biplex networks that may be generalized to mul-

tiplex networks considering different relationships between nodes, but with the same

set of nodes in each of the layers.

Let ℳ = (𝒩 , ℰ ,𝒮) be a multiplex network with 𝒩 = {1, 2, . . . , 𝑛} the set

of nodes, 𝒮 = (𝑙1, 𝑙2, . . . , 𝑙𝑘) layers and 𝐴1, 𝐴2, . . . , 𝐴𝑘, the respective adjacency

matrices. Further, let 𝛼1, 𝛼2, . . . , 𝛼𝑘 be the values of the parameter 𝛼 for the 𝑘

layers, respectively, and let 𝐷1, 𝐷2, . . . , 𝐷𝑘 be the data matrices associated to nodes

in the 𝑘 layers. Finally, v01,v02, . . . ,v0k represent the weighted vectors.

From all these parameters, the algorithm 7 computes the APA multiplex cen-

trality for a multiplex network of 𝑘 layers.

A detailed diagram of the steps of Algorithm 7 are shown in Figure 7-1 when

considering a multiplex network with 4 layers.

The core of the process described in Figure 7-1 is the construction of the 𝑀𝑀𝑃

matrix, whose dominant eigenvector is the key to our calculation process, since it

is the one that provides us with the classification vector of the nodes according to

their importance. This matrix has a size of 𝑘𝑛, where 𝑘 is the number of layers in

the network. It should be noted that when the number of layers is greater than 5

or 6, the matrix has a very large size, depending on the number of nodes. Undoubt-

edly, optimized numerical processes are necessary to reduce the calculation times

of the centrality vector. The matrix 𝑀𝑀𝑃 is stochastic by columns, which ensures

convergence and numerical stability essential in the calculation of the dominant

eigenvector.

The equations that describe the construction of the 2× 2 block matrix 𝑀𝑀𝑃 are

the following:
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APA Multiplex Centrality Algorithm. Input: 𝐴𝑖, 𝛼𝑖, 𝐷𝑖, v0i, for 𝑖 =

1, 2, . . . , 𝑘. Then,

1 For the layers 𝑙𝑖, for 𝑖 = 1, 2, . . . , 𝑘, construct the vectors and matrices:

(a) 𝑃𝑖, the probability matrices.

(b) vectors d𝑖,u𝑖 from the adjacency matrices 𝐴𝑖.

2 Compute 𝑃 *
𝑖 , for 𝑖 = 1, 2, . . . , 𝑘.

3 Compute the data vectors vi, for 𝑖 = 1, 2, . . . , 𝑘, as vi = 𝐷𝑖 · v0i.

4 Compute the coefficients 𝑐𝑜𝑒𝑓𝑖, for 𝑖 = 1, 2, . . . , 𝑘.

5 From v𝑖 and 𝑐𝑜𝑒𝑓𝑖, for 𝑖 = 1, 2 . . . , 𝑘, compute v𝑢𝑝
𝑖 .

6 Normalize v𝑢𝑝
𝑖 , for 𝑖 = 1, 2, . . . , 𝑘 and denote it as {v𝑢𝑝

𝑖 }*.

7 Construct 𝑉𝑖, for 𝑖 = 1, 2, . . . , 𝑘.

8 Construct the matrix 𝑀𝑀𝑃 .

9 Compute the dominant eigenvector 𝜋MP of the matrix 𝑀𝑀𝑃 .

10 Compute the centrality x.

Algorithm 7: APA Multiplex algorithm for multiplex networks.
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Figure 7-1: The APA centrality algorithm for a multiplex network with 4 layers.

𝑀𝑀𝑃 =
1

𝑘

⎛⎝ 𝑀1,1 𝑀1,2

𝑀2,1 𝑀2,2

⎞⎠ (7.1)

with

M1,1 =

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − 𝛼1)𝑃

*
1 𝐼 · · · 𝐼

𝐼 (1 − 𝛼2)𝑃
*
2 · · · 𝐼

· · · · · · · · · · · ·

𝐼 𝐼 · · · (1 − 𝛼𝑘)𝑃 *
𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑀2,2 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛼1𝑉1 𝛼2𝑉2 · · · 𝛼𝑘𝑉𝑘

𝛼1𝑉1 𝛼2𝑉2 · · · 𝛼𝑘𝑉𝑘

· · · · · · · · · · · ·

𝛼1𝑉1 𝛼2𝑉2 · · · 𝛼𝑘𝑉𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ .

Both 𝑀1,2 and 𝑀2,1 are block diagonal matrices and are given by

M1,2 =

⎛⎜⎜⎜⎜⎜⎜⎝
2(1 − 𝛼1)𝐼 0 · · · 0

0 2(1 − 𝛼2)𝐼 · · · 0

· · · · · · · · · · · ·

0 0 · · · 2(1 − 𝛼𝑘)𝐼

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑀2,1 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛼1𝐼 0 · · · 0

0 𝛼2𝐼 · · · 0

· · · · · · · · · · · ·

0 0 · · · 𝛼𝑘𝐼

⎞⎟⎟⎟⎟⎟⎟⎠ .

As we can see in Figure 7-1, each layer contains its own dataset 𝐷𝑖 associated with

112



Chapter 7. APA for Multiplex urban networks 7.3. Multiplex Rome mobility network

the nodes. In addition, the 𝛼 parameter may be chosen in each of the layers; to recall,

𝛼 is the parameter controlling the importance of data and network connectivity in

the computation of the centrality. This implies that it is possible to assign different

importance to the analyzed data in each layer.

On the other hand, we construct, for each layer, the matrices 𝑃 *
𝑖 which replace

the probability matrices of the original algorithm. They are also defined from the

probability matrices given by the node degrees. Its objective is that the isolated

nodes in any of the graphs of the layers do not produce rows or columns of zeros in

the 𝑀𝑀𝑃 matrix, which would lead to problems of numerical stability.

7.3 Multiplex Rome mobility network

In this section we present the case study of the city of Rome, where its mobility is

analyzed together with a set of commercial, tourist, economic and cultural attributes

associated with it, as described in detail in Chapter 4.

Multilayer networks offer the possibility of studying different relationships be-

tween the nodes of a graph, also including a set of data per layer associated with the

nodes themselves. In addition, we have the opportunity to weight the data accord-

ing to the importance that we give them within the general calculation of centrality.

Taking advantage of this possibility, we present a numerical study on mobility in

the city of Rome through the design and implementation of a four-layer multiplex

network.

7.3.1 The dataset

Data about car flows and the public bus transport system will be used to analyse

and determine the most central areas of the city when both data are studied (Figure

7-2).
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(a) (b)

Figure 7-2: (a) Private car GPS trajectories superimposed on the grid in Rome (b)
Rome OD network with some popular locations highlighted.

7.3.2 The construction of the multiplex network

Let us proceed with the construction of the4-layer multiplex network in the city of

Rome. To better understand all the elements involved in the construction of the

four-layer multiplex network that will be analyzed, we present Figure 7-3.

Below we describe in more detail each of the layers that make up the network.

Since it is a multiplex network, the nodes are the same in each of the layers. What

is different is the relationship between nodes. In all the layers the nodes are the

geometric centre of the grid cells which the territory of Rome has been subdivided

into using a Cartesian grid.

Layer 1 This layer represents the car flows. In other words, we represent the car

displacements from a node to another node creating the OD network. Thus,

an edge in the graph between nodes 𝑖 and 𝑗 means that there has been at

least 1 car displacement between those nodes. The node data evaluated in

this layer is the total number of displacements from each node. For instance,

considering the node 𝑖, we associate to it the total number of displacements

between itself and other nodes.

Layer 2 To construct the graph in this layer we introduce the public bus transport

system. We also consider both car mobility and bus transport connections

between nodes. Thus, an edge in the graph between nodes 𝑖 and 𝑗 means that
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Figure 7-3: Rome multiplex mobility network with 4 layers.

there has been at least 1 car displacement between those nodes and, and, in

addition, there is at least one bus line connecting the two nodes. The data

associated with the nodes in this layer is related to the commercial activities in

the city. More precisely, the number of shops, restaurants, bars-cafes, shopping

malls, and fast-food has been counted in the area (cell) of each node and the

aggregate count has been taken.

Layer 3 This layer takes into account, on the one hand, the trips by car between

nodes and, on the other hand, the city’s subway transport network. Thus, an

edge in the graph between nodes 𝑖 and 𝑗 means that there has been at least 1

car displacement between those nodes and, also, there is at least one subway

line connecting the two nodes. The data is similar to the one described in

layer 2, that is, the commercial activities.

Layer 4 In this layer we construct an OD network taking into account the car

displacements but with the restriction that the displacements must be short :
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not exceeding a topological distance of 3 units. We now measure short mobility

or even in the cell itself. The dataset chosen for this layer is the information

on touristic attractions. Therefore, every node is associated with the number

of museums and touristic attractions in the surrounding.

7.3.3 Numerical results

In this case study we are quantifying and analyzing the interconnected different

variants of mobility, taking as a basis the mobility offered by car displacements in the

different areas of the city. However, the richness of this approach is the possibility of

mixing other variants of public transport such as the bus or the subway, considering

different relationships between nodes.

In addition, we have the ability to evaluate various types of data in each layer. In

our case, we have focused on information related to commercial and tourist activity

in the city. This adds a framework of complexity to the analysis that is impossible

in a single layer network approach. We must not forget the final objective, which

is the classification of the nodes in order of importance within the network, taking

into account the evaluated parameters.

Another characteristic of this model is the possibility of differentiating the im-

portance assigned to the data in each of the layers. In the definition of the matrix

𝑀𝑀𝑃 given by the expression 7.1 each of the blocks has its own parameter 𝛼𝑖. This

allows to consider giving more importance to the data associated to the nodes in all

or any of the layers or, on the contrary, giving more value to the network topology

in all or any of the layers.

Different numerical experiments have been conducted taking different values of

the parameter 𝛼𝑖 for the different layers. Some example cases are presented below.

Case 1: 𝛼1 = 0.1, 𝛼2 = 0.8, 𝛼3 = 0.8, 𝛼4 = 0.8 In the first analyzed case, the high-

est importance is assigned to the network and its connectivity in layer 1, while

in the other layers the highest importance is assigned to the evaluated data

associated with each node. This means that we are mainly establishing re-

lationships between car mobility with commercial and tourist activity that
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takes place in the city. While considering mobility, we do not give excessive

importance to public transport networks, but rather to the private car flows.

We run Algorithm 7 to obtain the multiplex centrality of all the nodes accord-

ing to the model described in this Chapter.

Case 2: 𝛼1 = 0.2, 𝛼2 = 0.2, 𝛼3 = 0.2, 𝛼4 = 0.2 In this case, we choose the same value

of the parameter for all layers, that is, 𝛼𝑖 = 0.2, for 𝑖 = 1, 2, 3, 4. This choice

of 𝛼𝑖 in each layer means that we give the same value to the data in all layers.

The value chosen is small, only 0.2, which indicates that we give the network

topology much more importance than the weight of the data at the nodes.

Case 3: 𝛼1 = 0.5, 𝛼2 = 0.5, 𝛼3 = 0.5, 𝛼4 = 0.5 In this case, as before, we choose the

same value of the parameter for all layers, that is, 𝛼𝑖 = 0.5, for 𝑖 = 1, 2, 3, 4.

Note that now the situation is different because we are assigning the same

value to each layer, but giving the same importance in the calculation to the

data as to the network topology.

Case 4: 𝛼1 = 0.7, 𝛼2 = 0.7, 𝛼3 = 0.7, 𝛼4 = 0.7 In this last case, we assign much greater

importance to the amount of the data than to the network. We are essentially

interested in measuring centrality based on the data evaluated through the

mode data in the different network layers.

The centrality algorithm has been executed for these four cases and the results

are shown below.

In Figure 8-3 we show a map of Rome with the computed multiplex centrality

of nodes for all the cases studied, for different values of the parameter 𝛼.

In the image representing case 1 (Figure 8-3(a)) it can be seen that there are a

few nodes with very high centrality in the historical and tourist center of the city.

This is a consequence of giving maximum importance to the data in layers 2, 3 and 4.

These data summarize the commercial and recreational activity (bars, restaurants,

shops, etc.) in layers 2 and 3 and touristic activity in layer 4. You can clearly

identify the area where there is a greater probability of finding tourists in the city,

for instance.
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Figure 7-4: Multiplex centrality (PGMP) for all the cases analyzed.

The difference in the image that we have represented of case 2 is worth noting.

Now the importance in the nodes is not given to the data but to the network topol-

ogy. The study is now based on the importance of the connections of each node

with the rest. As the connectivity is determined by urban transport networks and

vehicle mobility, the behaviour of the centrality distribution is now quite different.

A much more uniform distribution of the centralities is observed, clearly showing

the influence of the urban and metro transport networks.

In the lower figures (c) and (d), that corresponding to cases 3 and 4, we return

to a pattern similar to that of case 1, characterized by the existence of a few nodes

with very high centrality in the historic center of the city. The closest similarity in

terms of results is found between cases 1 and 4, although in case 4 the differences in

centralities are not as noticeable as in case 1 in which the hubs with high centrality

are more discernible. In sum, the greatest differences are given when the importance

is focused on the network or on the data (cases 1 and 2, respectively).

In Figure 8-4 we have graphically represented the centrality values for all the
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Figure 7-5: The multiplex centrality distribution for the cases studied.

nodes of the graph, differentiating the four cases that we have studied by varying

the parameter 𝛼. It is important to highlight the small dispersion of the centrality

values, which is especially clear in cases 2 and 4, where there are hardly any values

beyond the third quartile. In cases 1 and 3, which display great similarity in terms

of the distribution of degrees, one can observe a few nodes that trigger the value of

centrality and become small hubs that absorb much of the importance within the

network.

A multiplex network with four layers has been constructed where the relation-

ships between the nodes have been established according to various types of public

transport and mobility in vehicles through the urban traffic network. In addition,

data on commercial and restaurant activities, as well as tourist interest, have been

used to determine the importance of the different nodes. The study of centrality in

a multiplex network with four layers is not the same as if the four layers are consid-

ered as four individual monoplex networks without any interaction between them.

In this regard, we determine the centrality of the layers individually to compare

them with the multiplex centrality. The individual centrality is calculated using the

APA centrality algorithm for networks with node data (see [5]).
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Figure 7-6: APA centrality for graphs in layers 1, 2, 3, 4.

Let us take case 1, where 𝛼=0.1, 𝛼2 = 𝛼3 = 𝛼4 = 0.8.

Figure 8-8 shows four maps of Rome with the node centralities calculated individ-

ually in each layer, without taking into account the relationships between the layers.

The centrality in layer 1 (a) presents the greatest spatial dispersion, as expected.

This is the centrality of car displacements throughout the urban area of the city,

with many displacements between the periphery and the rest of the areas, not only

in the center. There exist no hubs of centrality in the historic and touristic center

since within these central areas full of tourists and visitors people move massively

in public urban transport, bicycle or simply walk.

The centralities of layers 2 and 3, PG1 and PG2, respectively in images (b) and

(c) are very similar. This is because the data set used in both layers is identical: the

commercial and restaurant activity associated with the city in the form of shops,

bars, restaurants, and others. In addition, we are giving the utmost importance to

data, so the role of the graph and its connectivity is not so relevant. The centrality

observed in layer 4 (PG4) is based on the maximum importance of the data related
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to the city’s touristic attractions and museums. This causes the existence of a

large central node located in the most touristic part of the city where all the main

monuments are located next to the Vatican City. The only node that has a high

centrality that is outside the historic city center is located in the Cinecitta World

theme park.

(a) (b)

Figure 7-7: The 50 most important nodes of all the cases analyzed.

Since the distribution of centrality densities in all cases is quite monotonous, it

may be interesting to work with the most important 50 nodes in each of the cases

analyzed. For this task, a table has been constructed with this ranking in all the

cases, taking as a reference the multiplex centrality (PGMP). The results can be

seen in Figure 8-6. On the left side a 3D graph is shown where on the 𝑋 axis we

have the ranking from 1 to 50, on the Y axis we have the node and on the Z axis

the corresponding centrality value is shown. The plot shows the centrality values

for the four cases. In the right part (b) the centrality values are plotted against the

ranking, making a graphic representation for each of the cases.

The 3D graph shows the great similarity between the data from case 1 and case

4, where the correlation of the most important nodes is very high. The case 2 is

slightly different; if we analyze its 3D graph compared to other cases, the values of

the centrality of all the nodes are very small and not even the most central nodes

compare to that of the others. Homogeneity is the essential characteristic. We notice

this in the plot (b) where the point cloud is a little different from the rest.
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7.4 Conclusion

An algorithm for measuring the centrality in multiplex networks is used to determine

the most important nodes in the metropolitan area of the city of Rome evaluating

a data set obtained by aggregating origin-destination (OD) flows of private cars

augmented with the bus and metro public transport system. A four-layer multiplex

network is constructed using this mobility data set together with some attribute

data associated to the nodes related to the commercial and tourist activity that

takes place in the city.

The proposed algorithm constitutes a generalization of the APA algorithm for

networks with data extended to multiplex networks, the main advantage of which

is the possibility to choose for each layer the importance given to the network con-

nectivity and to the node data present in the network. This task is done by the

well-known parameter 𝛼 in the PageRank model.

This work explores this possibility by analyzing the centrality of the network in

four different cases, depending on the importance given to the data in the compu-

tation of centrality. When we give great importance to the commercial and tourist

activity data, the areas of the historic city center are clearly marked, while when

evaluating mobility in private vehicles, the centrality extends in a much more gen-

eralized way to a wider area, highlighting important nodes in some fundamental

communication pathways.

The discussed example shows the possibilities offered by this study interrelating

the nodes by layers with different data sets. The comparison carried out with respect

to the centrality measurements calculated individually in each layer, without taking

into account the relationships with other layers, show us the differences in centralities

when calculated in multilayer networks and why the complex interdependence in

urban networks is better represented with a multiplex model.
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"Space is killed... and we are left

with time alone."

Heinrich Heine, 1843

Chapter 8

Spatio-temporal APA centrality

In the wake of the mobility challenges cities are facing worldwide, understanding

the complex interactions between urban mobility patterns and the socio-economic

activities in cities is of crucial importance for urban planning and policy making.

Drawing on the recent advances in complex network theory, the mobility flow pat-

terns, typically encoded as origin-destination (𝑂𝐷) matrices, can be represented as

weighted directed graphs, with nodes denoting city locations and weighted edges the

number of trips between them. Such a graph can further be augmented by node at-

tributes denoting the various socio-economic characteristics at a particular location

in the city, as described in Chapter 4. In this Chapter, we propose a generic work-

flow to study the spatio-temporal characteristics of "hotspots" of different types of

socio-economic activities as characterised by the attribute-augmented network cen-

trality measures introduced in Chapter 5. We apply these centrality measures to

the urban 𝑂𝐷 networks in Rome and London to demonstrate the proposed work-

flow. Our results show structural similarities and distinctions between the spatial

patterns of different types of human activity in the two cities. Our approach offers

a workflow yielding simple indicators thus opening up opportunities for urban prac-

titioners to develop tools for real-time monitoring and visualisation of interactions

between mobility and economic activity in cities.

This Chapter is a modified version of our paper Gevorg Yeghikyan, Leandro

Tortosa, Jose F Vicent, and Mirco Nanni. Ranking places in attributed temporal

urban mobility networks. PloS one, 2020 (under review).
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8.1 Introduction

The ever-growing availability of large scale data sources pertaining to human activ-

ities in contemporary cities and the fact that the socio-economic and technological

systems lend themselves adequately to representation through discrete elements and

interactions between them have led recent years to witness an unprecedented increase

in modelling of such complex systems using network theory [25].

In urban science, there has been a significant research interest towards under-

standing urban systems particularly through modelling road structures, human mo-

bility, traffic flow, and economic activity through a complex networks approach

[26, 40, 55]. In such a setting, distinct elements in a city such as road junctions or

neighbourhoods are typically represented as the network nodes, while the heteroge-

neous connections or interactions between them, such as road segments, passenger

flows, activity correlations represent the edges in the network [218, 163]. Further,

depending on the focus of the research, various statistical and graph-theoretical

properties of the network can be studied to gain valuable insights about the urban

spatial, temporal and socio-economic structures. Following this approach, several

studies have analysed mobile phone usage, taxi or private car GPS trajectories,

smart card, geo-located social media, and classical census data for inferring sys-

temic patterns both at the individual and aggregate level [53, 227, 21, 45, 306].

An area of research of particular interest in complex network theory is the study

of the importance of nodes or edges in a network through centrality measures. Such

measures are typically based on local and global network connectivity structures and

include a variety of types: degree [105], closeness [33], betweenness [104], eigenvector

[189], PageRank [211], etc. However, these conventional centrality metrics measure

the importance of nodes by considering only the network topology regardless of the

intrinsic information on these nodes such as their behaviour, type or some other,

domain-specific attribute. Since many kinds of real-world networks call for such

node attributes, several centrality measures have recently been proposed extending

the widely used centrality measures to accommodate node attributes [6, 10, 34].

This becomes especially relevant in urban modelling, as locations in a city possess
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quantitative and qualitative characteristics irrespective of the connectivity structure

of the network of interactions with other locations. Such characteristics may describe

the availability and quantity of such urban features as parking lots, restaurants, real

estate prices, population density, etc., qualitatively enhancing urban networks.

Another important line of research in complex networks is temporal network

theory: the study of the evolution and behaviour of networks over time. Temporal

networks integrate network science with time-series analysis and contribute greatly

to the modelling of epidemic spreading, transportation optimization, biological sys-

tems, as well as social networks [127].

Although some recent work has focused on analysing the spatial patterns of

different urban features [163, 221], studying urban networks with centrality measures

[6, 217, 229], as well as modelling the evolution of urban interaction networks over

time [293], we still have a poor understanding of the interplay between urban location

characteristics and the networks of interactions between these locations. All the

more so, the temporal evolution of this interplay remains an unexplored area of

research.

Having this gap as motivation, the objectives of this Chapter are to analyse and

study the spatial distribution of the central nodes by activity type over time in

urban origin-destination (𝑂𝐷) networks. More specifically, we focus on the spatial

arrangement of the most central nodes of the 𝑂𝐷 network as identified by the

Adapted PageRank Algorithm (APA) [6] additionally considering activity related to

food and retail services over time in Rome and London. We find that although the

daily temporal patterns of the most central places in attributed 𝑂𝐷 flows in the two

cities display structural similarity, the spatial distributions of food and retail related

activity over time differ, indicating a more polycentric structure in London. The

proposed pipeline from raw GPS and open source point-of-interest (PoI) data to the

resulting data visualization offers a workflow with the potential for creating tools for

monitoring the changes in mobility patterns and in their relations to various socio-

economic activities over time. This would allow urban practitioners to monitor

daily/weekly mobility patterns for analysing the effects of urban interventions or

temporary events, but also to study long-term trends in these patterns for urban
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policy making.

To achieve the objectives the structure of this Chapter is as follows: the theoreti-

cal tools employing graph theoretical methods for characterising centrality (Adapted

PageRank Algorithm), a measure of statistical heterogeneity (the Gini coefficient)

for describing the distribution of the obtained centrality values, a non-parametric

technique for identifying "hotspots" of high centrality values, and a spreading index

characterising the spatial spread of the "hotspots" in the two cities are presented

in Section 2. Section 3 describes the dataset used for the proposed study and sum-

marises the methodology underpinning the experiments. The proposed methodology

is validated and the numerical results from studying real urban 𝑂𝐷 networks in Lon-

don and Rome are discussed in Section 4. Finally, Section 5 concludes the Chapter.

8.1.1 Related work

The city is one of the most complex dynamic anthropogenic systems. To analyse

this complexity, spatial networks have been widely used for modelling city objects

and the interactions between them, and different approaches have been proposed

with regards to the choice of objects and the various types of interactions between

them to denote with nodes and edges, respectively [217, 216, 25]. In modelling cities

with these simple mathematical objects called graphs, a variety of properties such

as the relative importance of city locations through network centrality measures can

further be studied.

Network centrality measures have been widely used in different problem settings

across many research fields related to economic geography [51], road networks [217],

and urban mobility [229]. [51], for instance, study the impact of social network

structures exemplified by central nodes computed with the PageRank algorithm in

the US startup mobility networks on the innovation performance of cities.

In studying street networks, [217, 217], for instance, analyse the distributions

of various types of centrality measures computed on the street networks of differ-

ent cities and find them to reveal the distinction between self-organized and planned

cities. Another work [146] utilises betweenness centrality measures in street networks

across cities worldwide to find universal bimodal betweenness regimes corresponding
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to trees and loops explaining high and low centrality values, respectively. Similarly,

conventional centrality measures have also been used in studying human mobility,

particularly on inter- and intra-urban 𝑂𝐷 networks. In particular, [85] reveal node

betweenness centrality in an inter-urban 𝑂𝐷 network displaying a positive corre-

lation with population and wealth, while [229] study the statistical properties of

betweenness centrality in intra-urban 𝑂𝐷 networks in different cities.

As mentioned in the previous section, conventional centrality measures suffer

from the drawback of not taking account of exogenous information on the nodes. In

this regard, there exist studies that have attempted to overcome this by extending

centrality measures to include node attributes. [6, 10] propose an augmented cen-

trality measure (APA) based on the PageRank centrality to study the key areas of

city activity on the street network enriched with geo-referenced retail and services

data on the nodes. [275] take a different approach, introducing distance decay and

attractiveness modifications to the PageRank algorithm to incorporate the effects

of distance and attractiveness in choosing a particular destination over another.

As we have seen, computing measures of network centrality gives us the relative

importance of the nodes (locations) in an urban network. However, choosing the

most important locations requires some discussion. In the field of spatial analysis,

a "hotspot" usually refers to a location with an attribute value relatively higher

than that of its neighbouring locations. The study of the spatial characteristics

of "hotspots" has been the focus of research in such different fields as criminology

[192], transportation [287], or epidemiology [256]. In the context of urban mobility,

"hotspots" may be seen to reflect travel intensity between different areas [301, 299].

With the availability of large data streams of ever more granular location data,

"hotspot" analysis is becoming a widely practiced tool in urban mobility research

[12, 177].

Among many techniques for "hotspot" detection, there are two most commonly

used techniques. The first is based on spatial statistical analysis, particularly on

spatial autocorrelation indicators for detecting neighbouring areas with dissimilar

value intensities [19]. The second "hotspot" detection method is based on kernel

density estimation by using a spatial search method [128]. In [169], the authors have

127



Chapter 8. Spatio-temporal APA centrality 8.2. Previous work

applied this method to study the spatial distribution of popular locations.

So far, we have discussed static networks as the object of study with tools from

network theory. However, since many real-world phenomena require modelling their

behaviour over time, temporal network theory has become a valuable tool in many

fields. This is the case with urban mobility which demonstrates important temporal

patterns, the study of which could greatly inform urban planning, policy making,

and management. A number of studies has attempted to analyze urban mobility

from a temporal perspective. [272], for instance, use centrality measures for temporal

prediction on 𝑂𝐷 networks built from cellular traffic data. [293], study temporal

𝑂𝐷 networks with change detection techniques for identifying "change points" in

time, in which the entire structure of the graph changes.

There have also been recent applications of graph neural networks on temporal

sequences of graphs, mostly in a prediction setting. For instance, based on the

length of prediction windows, previous studies of traffic forecast can be divided in

dynamical modelling [263] based on mathematical tools and physical knowledge, and

data-driven methods [135, 69] based on classical statistical and machine learning.

8.2 Previous work

In this section, the centrality measure applied to rank the attributed nodes in the

𝑂𝐷 networks, statistical dispersion measures describing the centrality value distri-

butions, as well as a measure of spatial spread are presented in detail.

8.2.1 The Adapted PageRank algorithm (APA)

The PageRank model [202] was proposed to compute a ranking for every Web page

based on the graph of the Web. The objective of the model is the calculation of a

vector, called PageRank vector, which establishes a ranking of all the pages analyzed

according to their importance.

The PageRank vector is the dominant eigenvector of the matrix known as Google

matrix 𝐺′ (see [211] for an algebraic definition and characteristics of this matrix).

Among its spectral features, 𝐺′ is stochastic and positive, so it can be directly
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applied the Perron-Frobenius theorem to assure the existence and uniqueness of the

PageRank vector x. To delve into the characteristics of the PageRank model, see

[37, 43].

In 2012, [6] proposed an adaptation of the original PageRank model called

Adapted PageRank Algorithm (APA) for spatial networks with data, although the

original algorithm was initially thought for urban street networks. Afterwards, the

APA model was modified introducing small variants [10]. The base of the APA model

is, following the core of the original PageRank, the construction of an stochastic and

positive matrix 𝑀𝐴𝑃𝐴 that keeps the excellent spectral properties of the Google ma-

trix. From this new matrix, it is possible to compute a unique eigenvector that

constitutes the classification of the nodes according to their importance in the net-

work.

As the Google matrix had two terms, one related to the node’s connections and

the other related to the probability of surfing among the pages, the matrix 𝑀𝐴𝑃𝐴 has

two terms, the first related to the connectivity and the second term related to the

data associated to every node. So, a data matrix 𝐷 of size 𝑛×𝑘 is constructed where

the rows are the nodes and the columns are the attributes of the node’s information

object of the analysis.

Therefore, 𝑀𝐴𝑃𝐴 is constructed from the adjacency matrix 𝐴 and the data matrix

𝐷 as

𝑀𝐴𝑃𝐴 = (1 − 𝛼)𝑃 + 𝛼𝑉, (8.1)

where 𝑃 is the probability matrix computed from the adjacency matrix, and 𝑉

is a matrix that collects the whole data associated to the nodes. Regarding the

probability matrix 𝑃 , it is constructed from the adjacency matrix 𝐴, as

𝑝𝑖𝑗 =

⎧⎨⎩ 1
𝑐𝑗

if 𝑎𝑖𝑗 ̸= 0,

0 otherwise,
1 ≤ 𝑖, 𝑗 ≤ 𝑛, (8.2)

where 𝑐𝑗 represents the sum of the 𝑗-th column of the adjacency matrix.

Remark that 𝑃 has the following characteristics: it is nonnegative and stochastic

by columns (see [6] to know more details about the spectral properties of 𝑃 ).
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The APA algorithm proposed by the authors can be summarized as:
Input: Let 𝐺 = (𝑉,𝐸) be a primary graph representing a network with 𝑛

nodes.

Output: x representing the network centrality

begin

Compute the matrix 𝑃 from the graph 𝐺 according to (8.2)

Construct the data matrix 𝐷

Construct the weighted vector v0

Compute v as 𝐷v0 = v

Normalize v, and denote it as v*

Construct 𝑉 as 𝑉 = v*e𝑇

Construct the matrix 𝑀𝐴𝑃𝐴 following the expression (8.1)

Compute the eigenvector x of the matrix 𝑀𝐴𝑃𝐴 associated to eigenvalue

𝜆 = 1. The components of the resulting eigenvector x represent the

ranking of the nodes in the graph 𝐺

end

Algorithm 8: APA algorithm for attributed networks.

Vector x constitutes the Adapted PageRank vector and provides a classification

or ranking of the network nodes according to both the connectivity and the presence

of data.

8.2.2 Gini coefficients

After computing the node rankings with the APA centrality for each activity type for

each hour of the day, we need measures of heterogeneity to assess their distributions

in time and space.

The first type of measure commonly used to assess how heterogeneous a variable

is distributed, is the Gini coefficient, borrowed from economics. It is defined as

𝐺𝐼 =

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 |x𝑖 − x𝑗|
2𝑛2x̄

, (8.3)

where x𝑖 is the APA value at location 𝑖 = [1, 2, . . . , 𝑛] and x̄ = (1/𝑛)
∑︀

𝑖 x𝑖.
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The Gini coefficient, originally used to measure wealth and income inequality,

can be applied to quantify the heterogeneity of other variables as well. In the case

of characterising heterogeneity of values at different locations in a city, the Gini

coefficient will take on the value of zero if the variable of interest is distributed

uniformly across city locations. Conversely, it takes on its maximum value when all

of the variables of interest are concentrated in a single location, leading to a Gini

coefficient of 𝐺𝐼 = 1 − 1/𝑛, which is very close to 1 for large 𝑛.

However, being a measure of statistical dispersion, the Gini coefficient is agnostic

to the spatial arrangement of the APA values in the city. As demonstrated in [223]

and [264], a reshuffling of the spatial configuration can yield the exact same Gini

coefficient.

In order to obtain a Gini coefficient that carries meaningful spatial information,

we further use the Spatial Gini index proposed in [223]. In essence, it is a decompo-

sition of the classical Gini with the aim of considering the joint effects of inequality

and spatial autocorrelation. More specifically, it exploits the fact that the sum of

all pairwise differences can be decomposed into sums of geographical neighbors and

non-neighbours:

𝐺𝐼 =

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1𝑤

𝐴
𝑖,𝑗 |x𝑖 − x𝑗|

2𝑛2x̄
+

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1

(︀
1 − 𝑤𝐴

𝑖,𝑗

)︀
|x𝑖 − x𝑗|

2𝑛2x̄
, (8.4)

where 𝑤𝐴
𝑖,𝑗 is an element of the binary spatial adjacency matrix.

The Spatial Gini index can be interpreted as follows: as the positive spatial

autocorrelation increases, the second term in equation 8.4 increases relative to the

first, since geographically adjacent values will tend to take on similar values. On

the contrary, negative spatial autocorrelation will cause an opposite decomposition,

since the difference between non-neighbours will tend to be less than that between

geographical neighbours. In either case, this offers the possibility to quantify the rel-

ative contributions of these two terms. The results obtained from this approach can

further be tested for statistical significance by using random spatial permutations

to obtain a sampling distribution under the null hypothesis that the APA variate is

randomly distributed in space.
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8.2.3 Spreading index

Despite their informative relevance, the Gini coefficient and its spatial variant ex-

ploit the mean x̄, which, under fat-tailed distributions, as many socio-economic

variables tend to be, may be undefined. In such cases, as shown in [97], the Gini

coefficient cannot be reliably estimated with non-parametric methods and will result

in a downward bias emerging under fat tails.

Another downside of measuring heterogeneity of the obtained APA values with

the Gini approach is that it does not offer the possibility to study the spatial ar-

rangement of the "hotspots" - locations with very large APA values. The "hotspots"

are defined as the grid cells with an APA value above a certain threshold x* (see

Figure 8-3). For choosing this threshold we resort to a non-parametric method in-

troduced in [172]. Once we have identified the "hotspots" as cells with APA values

larger than the chosen threshold x*, we can use the spreading index introduced in

[264] for measuring the average distance between the "hotspots", normalized by the

average city distance to enable cross-city comparisons:

𝜂 (x*) =

1
𝑁(x*)

∑︀
𝑖,𝑗 𝑑(𝑖, 𝑗)1(x𝑖>x*)1(x𝑗>x*)

1
𝑁

∑︀
𝑖,𝑗 𝑑(𝑖, 𝑗)

, (8.5)

where 𝑁(x*) is the number of pairwise distances of grid cells with an APA value

greater than x*, 𝑁 is the number of pairwise distances between all grid cells covering

the city, 𝑑(𝑖, 𝑗) is the distance between cell 𝑖 and cell 𝑗, and 1(x𝑖>x*) is the indicator

function for identifying the cells with APA values greater than x* for computing

the distances. The spreading index is essentially the average distance between cells

with x𝑖 > x*, normalized by the average distance between all city cells. If the

cells with large APA values are spread around across the city, this ratio will be

large. Conversely, if the high value cells are concentrated close to each other, as in

a monocentric city, this ratio will be small.

Now, we present a synoptic description of the overall workflow.

After the city territories have been tessellated into 1x1km grid cells, the raw

GPS data has been processed, trip origins and destinations have been extracted

and the 𝑂𝐷 networks have been built for each hour of the day both in London
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Figure 8-1: Workflow flowchart from raw data input to analysis and visualisation

and Rome, we proceed to computing the location centralities with the Adapted

PageRank Algorithm. Then, we analyze the heterogeneity of the APA values in both

cities during a typical day and during a typical week by using the Gini coefficient.

Finally, in order to obtain a clearer picture of the spatial distribution of the APA

values, we calculate the spreading index and its modification introduced in Section

8.3.5.

The methodology can be summarized in Figure 8-1.

8.3 Numerical results

In this section we conduct the numerical experiments for the study and outline the

principal findings. We then undertake a detailed discussion of the results in the

forthcoming section.

8.3.1 Computing the APA centrality

We proceed to compute the APA values using Algorithm 8 for the following three

kinds of networks:

133



Chapter 8. Spatio-temporal APA centrality 8.3. Numerical results

Figure 8-2: The APA values for the mobility flow network in Rome (up row) and
London (down row) at different times of the day.

1. Mobility flow network only.

2. Flow network with nodes attributed with information related to retail (number

of shops, shopping malls, retail stores).

3. Flow network with nodes attributed with information related to food services

(number of bars, restaurants, cafes).

The APA values of the Rome and London grid cells at different times of the day

can be seen in Figure 8-2. In this figure, the values of the APA centrality of each of

the nodes with respect to the mobility flows have been calculated using Algorithm

2.1 and have been quantitatively represented. In the upper row the most central

nodes in the city of Rome are clearly shown, at different times of the day; in the

lower row the same calculations made in London are shown. Without delving into

details, for now, a greater concentration of the most important nodes in the city of

Rome is observed for all the chosen times, while in London the most central nodes

are in much more dispersed locations. Precisely the study of this dispersion and the

characteristics associated with the distribution of centrality values will be one of the

axes of this work.
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Figure 8-3: (a)-(b) Food service and retail activity APA distributions in Rome, (d)-
(e) in London, (c)-(f) Log-log plots of empirical ECDFs in Rome and London at
12:00pm.

The spatial as well as empirical cumulative distributions (ECDF) of the com-

puted APA values in Rome and London are presented in Figure 8-3. As can be

seen from the ECDFs, the APA distributions in both cities are asymmetrically dis-

tributed: most of the grid cells have a very low centrality value, while only a handful

of cells have a large centrality value. However, experiments aimed at identifying the

analytical distributions yielded different results in the two cities. We conducted the

fitting with the Python package "powerlaw" [16]. Parameters obtained via maximum

likelihood estimation and the statistical goodness-of-fit measure quantified by the

KS (Kolmogorov-Smirnov) test show differing results for the two cities: a truncated

power law distribution for Rome (𝑝 = 0.004), and a log-normal-like distribution in

the case of London (𝑝 = 0.06). Although the exact distribution is irrelevant here,

this finding suggests that different data-generating mechanisms might be in place in

the two cities.
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Figure 8-4: Gini (left) and Spatial Gini (right) coefficients during the day for flow
only, food service, and retail activity in Rome and London.

8.3.2 Computing the Gini coefficients

We now proceed to analyzing the heterogeneity of the APA values in both cities, as

described in section 8.2.2. In particular, as it is shown in Figure 8-4 (left), the daily

average Gini coefficients in Rome and London take on values roughly 0.67 and 0.48,

respectively. The temporal variation of the data is higher in London. In the same

figure, we further observe a slightly higher Gini coefficient during the night hours

in both cities, in accordance with the fact that most flows are associated with much

fewer areas and thus yield a larger degree of concentration of activity during these

hours.

With the aim of finding whether the Gini and Spatial Gini coefficients capture

any difference between working days and weekends, both coefficients computed daily

are represented in Figure 8-5. No significant change across the days of the week can

be observed neither in Rome nor in London, while only a negligible rise of the

coefficient on the weekend can be seen in London.

Despite the fact that some conclusions can be drawn from observing a relatively

higher Gini coefficient during the night hours in both cities and on the weekends in

London, the temporal evolution of the Gini coefficient, as can be seen in Figures 8-4
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Figure 8-5: Gini (left) and Spatial Gini (right) coefficients during the week for flow
only, food service, and retail activity in Rome and London.

and 8-5, conveys little significant information. Also, as mentioned in Section 8.2.2,

it tells us nothing about the spatial distribution of the APA values.

In order to understand the temporal behaviour of the spatial component of the

Gini coefficient, we resort to decomposing the Gini coefficient as described in Section

8.2.2. In essence, we are interested in finding how much of the Gini coefficient is due

to non-neighbour heterogeneity. To achieve this, we follow the approach described

in [223] and use the non-neighbour term in the Gini decomposition as a statistic to

test for spatial autocorrelation:

𝐺𝐼2 =

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1

(︀
1 − 𝑤𝐴

𝑖,𝑗

)︀
|x𝑖 − x𝑗|

2𝑛2x̄
. (8.6)

The expression (8.6) can be interpreted as the portion of overall heterogeneity

associated with non-neighbour pair of grid cells. Inference on this statistic is carried

out by computing a pseudo p-value by comparing the 𝐺𝐼2 obtained from the observed

data to the distribution of 𝐺𝐼2 values obtained from random spatial permutations.

It should be noted that this inference based on random spatial permutations is on

the spatial decomposition of the Gini coefficient given by the expression (8.4), and

not the value of the Gini coefficient itself.
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Following the described approach, we proceed to the numerical experiments,

varying the neighbourhood radius in the expression (8.6) from 1.5 to 6 kilometers.

Both in Rome and London, the random spatial permutation approach yielded a

statistically significant spatial decomposition for all hours of the day (p = 0.01).

As demonstrated in Figures 8-4 and 8-5, the temporal profiles of the Spatial Gini

coefficients closely follow the Gini profile. As the neighbourhood radius increases,

the inequality due to non-neighbour APA values decreases, since the growing neigh-

bourhood captures more and more of the inequality. We find a superlinear growth in

the rate of decline of the Spatial Gini coefficient with increasing the neighbourhood

radius, with a faster decline in Rome, suggesting a higher spatial concentration of

urban flow in Rome.

8.3.3 Identifying urban hotspots

In order to obtain a clearer picture of the spatial structure of the "hotspot" cells

with high APA values over time, we aim to compute the spreading index for flow,

food services, and retail activity at different hours of the day in both Rome and

London.

Figure 8-6 shows "hotspot" locations with APA values greater than the 50th,

75th, and 90th percentiles in Rome (a) and London (b). Remark the differences in

"hotspot" locations in both cities for several percentiles. The "hotspot" concentra-

tion in Rome is significantly higher than in London, where we see spatial spread.

It is essential to perform a meaningful choice of the x* for identifying the

"hotspots" in equation (8.5). With the aim of choosing a threshold which will retain

information without turning to noisy behaviour, we resort to a heuristic technique

proposed in [172] based on the Lorenz curve from economics, see figure 8-7.

For a given distribution of data, the construction of the Lorenz curve proceeds as

follows. For a set of values of cardinality 𝑛, the values are ordered in a non-decreasing

sequence xi with 𝑖 = 1...𝑛. The incomplete sums 𝐿𝑖 ≡
(︁∑︀𝑖

𝑗=1 xj

)︁
/
(︁∑︀𝑛

𝑗=1 xj

)︁
are

then plotted against 𝐹𝑖 ≡ 𝑖/𝑛. As described in [172], we note that the mean value

x̄ corresponds to the projection point of the tangent of slope 1 on the 𝑥-axis and

inverting 𝐹 (𝑥) = 𝐹𝑥. The xLB value is found from the intersection of the 𝑥axis with
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Figure 8-6: Hotspot locations with APA values greater than the 50th, 75th, and
90th percentiles in (a) Rome and (b) London.

the tangent of the Lorenz curve at 𝐹𝑖 = 1 (red line). This method, called "LouBar",

is inspired by the classical technique for determining the scale for an exponential

decay. Indeed, if the decay from 𝐹 = 1 were an exponential exp−(1 − 𝐹 )/𝑎 where

𝑎 is the scale to be determined, the described method would yield 1 − xLB = 𝑎.

In Figure 8-8 we plot the spreading indices for different threshold values x* over

time in Rome and London. For low values of x*, the plots show relatively constant,

low variance spreading indices over time, while for very large threshold values the

spreading indices tend to become noisy.

In fact, the thresholds x* = x̄ and x* = xLB form an interval [x̄,xLB] containing

all reasonable choices for determining the "hotspots". However, since the lower

bound x̄ results in a curve with little variation during the day, and since values from

the interval closer to the LouBar value give similar results to the Loubar value itself,

we will proceed with this choice (see Figure 8-8).
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Figure 8-7: Lorenz curve for a data distribution.

Figure 8-8: Spreading indices over time for various thresholds x* in (a) Rome and
(b) London.

8.3.4 Computing the spreading index

In this section, we present the results of studying the spreading index profiles on a

typical day in Rome and London, and build hypotheses regarding their interpreta-

tions.

Having chosen the threshold value x*, we compute the hourly profiles of the

spreading indices for flows only, food services, and retail activities in Rome and

London. Since the data sets of raw GPS trajectories at our disposal span two

years, we extract hourly 𝑂𝐷 networks across the working days and obtain sampling

distributions and corresponding 95% confidence intervals of spreading indices at
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Figure 8-9: Spreading indices for flow only, food services, and retail activity in Rome
and London during a typical day.

each hour with the aim of testing our results for robustness (Figure 8-9). The wider

confidence intervals in the night hours are due to less available data for these hours.

First, we find a significant difference in the spreading index hourly profiles of

Rome and London. During a typical day, the former varies from around 0.4 to 0.7,

while the latter varies from around 0.65 to almost 0.9, suggesting a considerably

higher concentration of "hotspots" during the day in Rome compared to London.

Next, we see structural similarities in the hourly patterns of the spreading indices

in both cities. As shown in Figure 8-9, the spreading indices for all types of activities

demonstrate a similar inverted U-like pattern, with the spreading index increasing

considerably during the night hours, bulging during the morning and evening hours,

and declining during the late evening hours. The rapid rise of the index during

the night hours could possibly be attributed to the fact that most mobility during

these hours is due to flows on highways located in the periphery of both cities, thus

yielding a higher 𝜂, while the bulging of the index at morning and evening hours is
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Figure 8-10: 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 for flow only, food services, and retail activity in
Rome and London during the week.

likely due to core-periphery commuting flows.

We further observe a large gap of around 0.1 between the flow only 𝜂 profile

and those of food services and retail in London, while similar, albeit smaller gaps in

Rome can be observed only during the late evening and night hours (shaded areas in

Figure 8-9), whereas the profiles for all types of activities collapse very close to each

other during the working hours. This gap can likely be attributed to the "London

congestion charge"1, which has dramatically reduced private cars in central London

since its introduction, while most of food services and retail stores and shops are

located in the central part of London, bringing the spreading index down for these

activities. In Rome, on the other hand, a similar gap exists only during the night

and early morning hours, which one can intuitively expect since most of the food

services and shops have a central location, decreasing 𝜂, while during these hours

most of the flows are due to inter-peripheral highway flows which increase 𝜂.
1https://tfl.gov.uk/modes/driving/congestion-charge
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In Figure 8-10, the spreading indices across the days of the week are shown. We

use the 104 weeks of available data to build an empirical 95% confidence interval for

the spreading index. We see the already familiar gap between the flow only and the

other two types of activities in London. Further, we detect a statistically significant

(𝑝 < 1𝑒−5) change in the index for London, while no significant change appears to

be present in Rome.

8.3.5 The time-space spreading index (𝑇𝑆𝐼)

We have previously computed and tracked the spreading index 𝜂 over a typical day

in Rome and London. The spreading index, being based on Euclidean distances

between the cell centroids, represents geographic space, but fails to capture urban

mobility. In particular, due to congestion in cities at peak hours, travel times can be

said to distort the perception of space. If travel times are considered as a measure

of distance, geographically very close locations in the city center might turn out to

be further away than geographically further placed locations in the city periphery

with low traffic. For this reason, we enable the spreading index to capture urban

mobility by introducing the time-space spreading index (𝑇𝑆𝐼), essentially replacing

the distances in the calculation of the spreading index 𝜂 by the pairwise average

travel times:

𝑇𝑆𝐼 (x*) =

1
𝑁(x*)

∑︀
𝑖,𝑗 𝑡(𝑖, 𝑗)1(x𝑖>x*)1(x𝑗>x*)

1
𝑁

∑︀
𝑖,𝑗 𝑡(𝑖, 𝑗)

, (8.7)

where 𝑡(𝑖, 𝑗) is the average travel time from cell 𝑖 to cell 𝑗, and is obtained using the

Google Distance Matrix API. This constitutes an important dimension for studying

the spatio-temporal characteristics of the "hotspots" in the mobility networks.

Therefore, we then proceed to analyze the time-space spreading index 𝑇𝑆𝐼 of

the three activities during a typical day in Rome and London.

The spreading indices and 𝑇𝑆𝐼s for Rome and London are shown in Figure 8-11.

While the two measures are very close to each other during the night hours, they start

to deviate significantly during the rest of the day. At these hours, the 𝑇𝑆𝐼 in both

cities is considerably higher than the spreading index, hinting at the above-mentioned
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Figure 8-11: Spreading index and time-space spreading index (𝑇𝑆𝐼) with corre-
sponding 95% confidence intervals during a typical day in Rome and London.
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Figure 8-12: Tracking the difference 𝑇𝑆𝐼(x*) − 𝜂(x*) in Rome and London during
a typical day.

145



Chapter 8. Spatio-temporal APA centrality 8.3. Numerical results

Figure 8-13: Retail APA values at 18:00 in Rome represented with pairwise time-
weighted distances between grid cells using multidimensional scaling (𝑀𝐷𝑆). The
inset shows the same set of values in geographical space.
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space-time distortion, in which geographically close central locations become further

apart because of longer travel times due to traffic, effectively increasing the 𝑇𝑆𝐼

compared to the spreading index. This effect is shown in Figure 8-13, where the time-

weighted distances used in computing the 𝑇𝑆𝐼 are visualised with multidimensional

scaling (𝑀𝐷𝑆) [13].

Note that the confidence intervals for the 𝑇𝑆𝐼 values are wider than those of

the spreading indices since additional uncertainty is introduced in the calculation of

the 𝑇𝑆𝐼 by including travel times contingent on volatile traffic conditions (Figure

8-11).

We also note the two peaks of higher 𝑇𝑆𝐼 values during the morning and evening

commuting hours forming a circadian rhythm in both cities. A peculiar observation

is the mismatch of the peaks between the two cities. Rome seems to be "late" by

roughly an hour (vertical shaded areas in Figures 8-11 and 8-12).

In Figure 8-12 we plot the differences 𝑇𝑆𝐼(x*) − 𝜂(x*) during the day in Rome

and London. We observe this difference during the day to be consistently greater

in Rome, suggesting congestion to have a larger impact on the spatio-temporal

characteristics of the "hotspots" in Rome.

The 𝑇𝑆𝐼 for the hotspots of the three types of activities during a typical day

in both cities are displayed in Figure 8-14. One can note a gap in London between

the flow only temporal 𝑇𝑆𝐼 profile, and the food services and retail 𝑇𝑆𝐼 profiles,

consistent with a similar gap in the case of the spreading index discussed in Section

8.3.4.

8.4 Conclusion

In this Chapter, we have proposed a generic end-to-end workflow for analyzing

spatio-temporal characteristics of urban mobility induced "hotspots" for different

types of activities in cities, and have demonstrated it in case studies in Rome and

London. The proposed workflow comprised data mining of GPS data, the subdi-

vision of the urban territory into regular grid cells, construction of temporal 𝑂𝐷

networks, addition of socio-economic activity attributes to the 𝑂𝐷 network nodes
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Figure 8-14: 𝑇𝑆𝐼 for flow only, food services, and retail activity in Rome and London
during a typical day.
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from 𝑃𝑜𝐼 data, computation of the attribute-enhanced APA centralities in the 𝑂𝐷

networks on an hourly or daily basis, identification of "hotspots", and visualisation

and analysis of measures of their spatial heterogeneity. The obtained results led us

to a series of hypotheses regarding their nature, the study of which will be the target

of future work.

In particular, we observed an increase in both the Gini coefficients as well as the

spreading indices during the night hours, suggesting higher inequality and spatial

spread, respectively. However, a further decomposition of these measures would be

required to determine what share of these inequality and spatial spread is due to

core-periphery, inter-peripheral, or highway transit flows. Also, future work will

be aimed at understanding whether there is a hierarchy of "hotspots" and how

it evolves over time. Further, the hypothesis that the peculiar gap between the

flow only and food services and retail spreading index profiles in London has to

do with the congestion charge, and whether our approach can be adopted as a

traffic management indicator, requires further study. Further yet, we note that a

methodology needs to be developed and tested for using the measures proposed in

this Chapter as monitoring tools in connection with specific urban planning policies

in a particular city. For instance, deciding critical values of the proposed measures,

beyond which action would be required on the part of the urban planners.

Notwithstanding the mentioned shortcomings, our approach has direct utility to

urban planners and policy makers. It highlights the road map for creating analy-

sis, visualisation, early warning, or trend detection tools with simple information-

rich measures for monitoring city-wide spatial characteristics of mobility related to

various socio-economic activities. The proposed workflow from raw data input to

analysis and visualisation is generic enough to accommodate other types of spatial

movement data (e.g., call detail records (CDR), smart card, etc.) as well as other

socio-economic activities in cities over both short and long terms.
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"The Network is the Message."

Manuel Castells, 2001

Chapter 9

Explaining mobility from urban at-

tributes

9.1 Introduction

The conventional model-driven approaches to human mobility, such as (constrained)

gravity, maximum entropy, intervening opportunities and radiation models ([93],

[280]) have recently been challenged and augmented by machine learning, specifically

deep learning techniques ([251], [94]). The latter focus on improving predictive

power, but often fail to provide insights about how the observed mobility is related

to urban form and socio-economic dynamics. Existing studies on these kind of

relations, linking urban functions and mobility ([269], [298], [289]) are narrowly

tailored to a specific question, e.g., quantifying flows between a selected number

and type of Points-of-Interest. In this Chapter, we will attempt to explain urban

mobility flow networks from urban socio-economic attributes by means of developing

a network regression model respecting the network topology and offering a statistical

framework for parameter estimation.
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9.2 Background and related work

9.2.1 Goodness-of-fit measures

Coefficients of determination It has been suggested that a variety of goodness-of-fit

measures be used for evaluating spatial interaction model performance (Knudsen,

Fotheringham 1986), among which we will focus our attention to the pseudo 𝑅2

statistic based on the likelihood function (McFadden 1974),

𝑅2
𝑝𝑠𝑒𝑢𝑑𝑜 = 1 − ln �̂� (𝑀𝑓𝑢𝑙𝑙)

ln �̂� (𝑀𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
, (9.1)

where �̂� is the model likelihood, 𝑀𝑓𝑢𝑙𝑙 is the model with all the covariates included,

and 𝑀𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 is the model with only the intercept (i.e., no explanatory variables).

To account for model complexity, we also use an adjusted version of this measure,

𝑅2
adj-pseudo = 1 − ln �̂� (𝑀𝑓𝑢𝑙𝑙) −𝐾

ln �̂� (𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
(9.2)

where 𝐾 is the number of covariates in the model. Both model fit measures achieve

a maximum at a value of 1, with higher values meaning better model fit.

Akaike information criterion Another goodness-of-fit statistic utilised in the

study is the Akaike information criterion (AIC),

𝐴𝐼𝐶 = −2 ln �̂� (𝑀𝑓𝑢𝑙𝑙) + 2𝐾, (9.3)

which also accounts for model complexity and in which lower values denote a better

fit (Akaike 1974). This statistic has its roots in information theory, with the AIC

being interpreted an asymptotic estimate of the information lost by using the full

model to describe a given process.

Standardized root mean square error Since the 𝑅2 and AIC goodness-of-fit mea-

sures have been devised for model selection, and hence should not be used to compare

different models, we also use the standardized root mean square error (SRMSE),
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SRMSE =

⎯⎸⎸⎷∑︀𝑖

∑︀
𝑗

(︁
𝐹𝑖𝑗 − 𝐹𝑖𝑗

)︁2
𝑛𝑚

⧸︂∑︀
𝑖

∑︀
𝑗 𝐹𝑖𝑗

𝑛𝑚
, (9.4)

where the numerator shows the root mean squared error between the observed flows,

𝐹𝑖𝑗, and the predicted flows, 𝐹𝑖𝑗, while the denominator denotes the mean of the

observed flows and is the quantity by which the root mean squared error is stan-

dardized by. 𝑛𝑚 is the number of origin-destination pairs (Knudsen, Fotheringham

1986).

Sorensen similarity index We also utilize the modified Sorensen similarity index

(SSI), as it is being increasingly used in spatial interaction studies (Lenormand et

al. 2012, Masucci et al. 2012, Yan et al. 2013). This statistic is defined as,

𝑆𝑆𝐼 =
1

(𝑛𝑚)

∑︁
𝑖

∑︁
𝑗

2 min
(︁
𝐹𝑖𝑗, 𝐹𝑖𝑗

)︁
𝐹𝑖𝑗 + 𝐹𝑖𝑗

, (9.5)

and takes on values between 0 and 1, with values closer to 1 denoting a better fit.

9.2.2 Gravity, Poisson, and Negative Binomial models

exponent Std.Err 𝑝-value
intercept -5.6118 0.0066 <1e-16 ***
outflow 0.6574 0.0006 <1e-16 ***
inflow 0.6547 0.0006 <1e-16 ***

distance -0.2752 0.0001 <1e-16 ***

Figure 9-1: Estimated parameters of the gravity model for the mobility flows in London

Following the discussion of gravity models of human mobility in Chapter 2, we

show in Table 9-1 the parameter estimates for the doubly constrained gravity model

applied to the attributed urban mobility OD network in London. In the regression

performance Table 9.1 presented in subsection 9.4.2, we see that the constrained

gravity models perform progressively better on all goodness-of-fit metrics discussed

in subsection 9.2.1.

Continuing the discussion of residual plots for the Poisson regression, we apply

the model to the London data, and observe that the model yields a result for which
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the majority of the Pearson residuals are concentrated close to zero with the greatest

divergence from the model also occurring there (see Figure 9-2).

Figure 9-2: Pearson residuals plotted against fitted means. Rome and London
data.

Since a Poisson random variable has a variance equal to its mean, so what, we

would expect to observe this for our data if our assumption about the underlying

distribution is correct.

As already discussed, the Pearson residual is scaled to compensate for non-

uniform variance and hence calls for a more uniform vertical scattering than ob-

tained. The Pearson statistic, the ratio between the sum of squares of the residuals

and their degrees of freedom, captures this, being approximately 1 if the data is

drawn from a Poisson distribution. A value greater than 1, as in our case (>> 1

for London, Rome, and Shenzhen), suggests the presence of overdispersion, which

can arise when some unobserved variables are contributing to the mean but are not

captured by the model.

The Negative Binomial regression model brings the Pearson statistic significantly

down closer to 𝑛−𝑘, but still keeps it at least an order of magnitude larger for both

cities. However, as we see from the results (Table 9.1), it yields a better performance

153



Chapter 9. Explaining mobility from urban attributes 9.3. Multilayer Network Regression

on the adjusted 𝑅2 and SSI measures, but performs worse on the SRMSE and

AIC metrics. This suggests that loosening the mean-variance constraint does not

contribute to obtaining an adequate model, and that neither the Poisson nor the

Negative Binomial models succeed in explaining the variability in intra-urban OD

flows.

The spatial autoregressive model (SAR), with its spatially adjusted Poisson and

Negative Binomial variants described in Section 2.3.4, yields a further improvement

of an order of magnitude for the Pearson statistic in both London and Rome, a

negligible change in SRMSE, and a slight improvement for the SSI metric.

Thus, despite producing plausible coefficients, the models discussed so far fail

to capture some key mechanism at play in generating 𝑂𝐷 flows, and which we

conjecture to be an interplay between non-spatial and spatial network effects.

9.3 Multilayer Network Regression

9.3.1 Generalised Hypergeometric Ensembles (gHypE)

Thus far, we have extensively discussed regression models aiming to explain the de-

pendent variable (the observed flows) as a function of independent ones (the dyadic

relationships between city locations), accounting for random effects. However, mo-

bility 𝑂𝐷 flows form a network and the dyadic relations in it are not independent.

Because of this, ordinary least squares regression models are unsuitable for analysing

network data ([151]). To overcome this, several different network regression models

have been proposed ([237]). However, these models suffer from either having been

developed for unweighted graphs or not taking into account combinatorial effects in

the network of interactions. Combinatorial effects refer to the fact that elements

interacting more in general are also more likely to interact among themselves. In

network theory, this problem is known as degree correction. For example, two city

locations might have a high mobility flow between them because one of them is

located in a dense residential area and the other in the central business district,

or because the other is an airport, or simply because one of them has large total

out-flow and the other large total in-flow, and hence have a high chance to have
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flow between them. Therefore, significant relations have to be disentangled from

combinatorial effects when modelling the system.

To overcome the mentioned problems, we follow the approach for statistical

regression on networks introduced by [63]. The proposed method builds upon gen-

eralised hypergeometric ensembles (gHypE), a recently developed class of statistical

random graph ensembles ([64]). gHypEs provide an elegant formulation of the well-

known configuration model in terms of an urn problem, incorporating arbitrary

tendencies to form relations with combinatorial effects.

The urn problem to which the process of drawing edges in the proposed network

model is mapped to is based on the following intuition. Suppose there is an urn

filled with 100 balls of 3 different colors: 20 blue, 30 red, and 50 yellow. If 40 balls

are chosen at random without replacement, what is the probability that 10 of them

are red, 10 yellow, and 20 blue? The gHypE statistical random graph can then be

thought in terms of the total number of edges corresponding to the total number of

colored balls in the urn problem, each dyadic pair of nodes corresponding to a differ-

ent color, and each multi-edge between the nodes of the dyadic pair corresponding

to a single ball in the urn. This probability is described by the multivariate hyper-

geometric distribution. However, it assumes a uniform probability of drawing balls

of each color. As we saw in Chapter 4, urban mobility flows, i.e. the edges (dyadic

pairs) in the OD network have an extremely unequal distribution. This suggests

that the original urn problem be transformed into balls of different colors having

different propensities - probabilities of being sampled. These propensities are en-

coded by the various dyadic relationships between nodes and used as independent

variables in the network regression setting, where the dependent variable - the OD

flows - is modelled as a realisation of the gHypE statistical random graph ensemble.

Furthermore, its compact analytical formulation allows for statistically testing the

significance of the regression model against the observed interactions. A more de-

tailed description of gHypE can be found in the Appendix B.1 and in the original

paper.
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Figure 9-3: The multilayer network representation of the attributed OD network
in London. The bottom layer (dark green) captures the observed flow counts be-
tween the cells. The top layers (light green) encode different types of relations,
such as network distance, average of Airbnb prices, product of population densi-
ties, bus or subway network, etc. The gHypE network regression model allows us
to explain the impact of these relational layers on the OD flows.

9.3.2 Multilayer Network Representation

The urban mobility 𝑂𝐷 flow network, together with the collection of 𝑝 dyadic rela-

tions, can be represented as a multilayer network with the flow counts forming the

interaction layer, and the dyadic relations between nodes - the covariates, forming

the explanatory layers.

In the proposed framework, each unit of flow between locations in the interaction

layer ℐ is represented as a separate edge, thus turning the interaction layer ℐ into a

multi-edge graph. Further, each type of dyadic relation can be seen as a weighted

graph in which the weight of each edge encodes the strength of that dyadic relation.

These 𝑝 graphs constitute the relational layers 𝑅𝑙 with 𝑙 ∈ [1, 𝑝]. The 𝑛 = |𝑉 | nodes

and 𝑝 + 1 layers then form the multilayer network ℳ. Figure 9-3 illustrates the
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multilayer approach we take.

Given the multilayer network representation of the attributed urban OD flow

network with its interaction layer a realisation of the generalised hypergeometric

graph ensemble gHypE(𝑛,𝑚), we follow the framework proposed in [63] for statis-

tical regressions with network layers.

We assume the multi-edged network layer ℐ to be the dependent variable re-

gressed on the remaining layers 𝑅𝑙 which we consider to be the independent, ex-

planatory variables. The resulting model then assumes the following form:

ℐ = 𝑓 (ℛ1, . . . ,ℛ𝑟; 𝛽1, . . . , 𝛽𝑟) (9.6)

where the parameters 𝛽𝑙, 𝑙 ∈ [1, 𝑝] are the model parameters corresponding to each

explanatory layer 𝑅𝑙.

9.3.3 Statistical model

Our aim is to model the interaction layer ℐ, represented as a multi-edged graph with

fixed total number of edges 𝑚. As mentioned in the previous section, we model the

interaction layer ℐ as a realisation from a generalised hypergeometric ensemble, with

𝑛 vertices and 𝑚 edges. We denote with A the adjacency matrix of the interaction

layer ℐ and its elements with 𝐴𝑖𝑗, 𝑖, 𝑗 ∈ 𝑉 . The relational layers are represented

in a similar way: let R𝑙 denote the adjacency matrix of the relational layer 𝑅𝑙

and 𝛽 ∈ R𝑝 be the 𝑝-vector of coefficients in the regression. In this setting, ℐ is

distributed according to the Wallenius non-central hypergeometric distribution [64]:

Pr(ℐ|ℛ) =

⎡⎣∏︁
𝑖,𝑗

⎛⎝ Ξ𝑖𝑗

𝐴𝑖𝑗

⎞⎠⎤⎦∫︁ 1

0

∏︁
𝑖,𝑗

(︂
1 − 𝑧

Ω𝑖𝑗
𝑆Ω

)︂𝐴𝑖𝑗

𝑑𝑧 (9.7)

with 𝑆Ω =
∑︀

𝑖,𝑗 Ω𝑖𝑗 (Ξ𝑖𝑗 − 𝐴𝑖𝑗), where Ω encodes the propensity of pairs of nodes

to interact, and Ξ the probability that pairs of nodes interact due to combinatorial

effects, as described in [64].

The entries of the matrix of possible edges Ξ are assumed to be constructed ac-

cording to the configuration model which randomly shuffles and rewires the topology
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of a network while preserving the node degrees [71]. This is the most general way

to model the combinatorial effect generated by the various activities of nodes repre-

sented by their degrees. This formalises the idea that more active nodes, i.e. those

with a higher degree, are more likely to interact. Therefore, Ξ is completely defined

by ℐ. The nodes’ interaction propensity Ω, an important element in equation 9.7,

depends on the explanatory layers {ℛ𝑙}𝑙∈[1,𝑝]:

Ω :=

𝑝∏︁
𝑙=1

R𝛽𝑙

𝑙 . (9.8)

The statistical model in equation 9.6 can now be specified. 𝑓 is considered to

be the expected value of the hypergeometric graph ensemble that maximises the

probability of observing ℐ, given the explanatory layers {ℛ𝑙}𝑙∈[1,𝑝]:

ℐ = E [gHypE(𝑛,𝑚)|ℛ1, . . . ,ℛ𝑝] . (9.9)

Equation 9.9 is therefore equivalent to finding maximum likelihood estimators

(MLE) for the parameter vector 𝛽 in equation 9.7.

Following equation 9.7, given the observed interaction network ℐ, the likelihood

of 𝛽 is then defined as

𝐿(𝛽|ℐ) =

⎡⎣∏︁
𝑖,𝑗

⎛⎝ Ξ𝑖𝑗

𝐴𝑖𝑗

⎞⎠⎤⎦∫︁ 1

0

∏︁
𝑖,𝑗

⎛⎝1 − 𝑧
Π
𝑝
𝑙=1

𝑅
𝛽𝑙
𝑙,𝑖𝑗

𝑆𝛽

⎞⎠𝐴𝑖𝑗

𝑑𝑧, (9.10)

with 𝑆𝛽 =
∑︀

𝑖,𝑗

∏︀𝑟
𝑙=1 𝑅

𝛽𝑙

𝑙,𝑖𝑗 (Ξ𝑖𝑗 − 𝐴𝑖𝑗).

As explained in [63], the numerical maximisation in equation 9.10 is not straight-

forward, and for 𝑚 ≪
∑︀

𝑖𝑗 Ξ𝑖𝑗, which is the case in the urban OD network, the

multivariate hypergeometric distribution can be approximated up to constants by

the multinomial distribution:

𝐿(𝛽|ℐ) ∼
∏︁
𝑖,𝑗∈𝑉

(︃
Ξ𝑖𝑗

∏︀𝑝
𝑙=1𝑅

𝛽𝑙

𝑙,𝑖𝑗∑︀
𝑖,𝑗∈𝑉 Ξ𝑖𝑗

∏︀𝑝
𝑙=1𝑅

𝛽𝑙

𝑙,𝑗,𝑗

)︃𝐼𝑖𝑗

. (9.11)

The MLE 𝛽 = argmax𝛽(𝐿(𝛽|ℐ)) is then obtained by finding numerical solutions

to ∇𝐿(𝛽) = 0. The components of the gradient of the log-likelihood ∇ log(𝐿(𝛽))
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are given as

𝜕 log(𝐿(𝛽|ℐ))

𝜕𝛽𝑙

= −𝑚

∑︀
𝑖𝑗 log (𝑅𝑙,𝑗𝑗) Ξ𝑖𝑗

∏︀𝑝
𝑙=1𝑅

𝛽𝑙

𝑙,𝑖𝑗∑︀
𝑖𝑗 Ξ𝑖𝑗

∏︀𝑝
𝑙=1𝑅

𝛽𝑙

𝑙,𝑖𝑗

+
∑︁
𝑖𝑗

𝐼𝑖𝑗 log (𝑅𝑙,𝑖𝑗) . (9.12)

After computing the MLEs
{︁
𝛽𝑙

}︁
𝑙∈[1,𝑝]

for the 𝑝 explanatory layers {ℛ𝑙}𝑙∈[1,𝑝]
representing the strength of the effect each layer exerts on the interaction layer ℐ, we

carry out statistical significance tests for the obtained parameters. This procedure

is described in Appendix B.2.

9.4 Results

In this section, we present the principal results of the gHypE network regression

on the urban mobility OD networks in Rome and London. First, the multilayer

networks for both cities are constructed as described in Section 9.3.2. Then, the MLE

estimates for the network regression parameters best explaining the observed OD

network are obtained. Finally, the evolution of the obtained regression parameters

across hours of a typical day are tracked and compared between the two cities.

9.4.1 Data

The multilayer network data used in this regression setting is essentially the same

dataset as descibed in Chapter 4, except that all node attributes are transformed into

dyadic relations through the simple operations of averages or products to capture the

relation’s strength. Since the OD flow matrices were obtained from individual crs

GPS trajectories, which naturally extend beyond the city administrative boundaries,

those Also, the APA centrality measures obtained in the previous chapters and

transformed into dyadic relations through pairwise averaging are added as relational

explanatory layers as well.
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Model Adjusted 𝑅2 AIC SRMSE SSI
gravity 0.4698 1.2124e+07 16.4691 0.3789

origin-constrained gravity 0.4881 1.1704e+07 16.3256 0.3841
destination-constrained gravity 0.4879 1.1709e+07 16.3283 0.3884

doubly-constrained gravity 0.4924 1.1606e+07 15.8827 0.3937
Poisson log-linear regression 0.6291 8.2458e+05 13.2451 0.4615
Negative Binomial regression 0.5258 2.1854e+06 13.5257 0.5382
Spatially adjusted Poisson 0.6571 3.1108e+05 12.9981 0.5321

Spatially adjusted NB 0.5869 1.0201e+06 12.3859 0.5819
gHypE multilayer regression 0.7228 8.2209e+03 7.4491 0.6194

Table 9.1: Comparison of gHypE multilayer regression performance against base-
line methods

9.4.2 Comparison with baseline models

Table 9.1 summarises the performance of our network regression model against the

baseline models described in Section 2.3 as measured by goodness-of-fit metrics we

introduced in subsection 9.2.1. It can be clearly seen that the gHypE network

regression model outperforms the baseline models on all metrics.

(a) (b)

Figure 9-4: gHypE network regression fitted prediction values for (a) London (b)
Rome

The fitted values of the gHypE network regression against the observed OD flows

in London and Rome are shown in Figure 9-4. It should be noted, however, that

the objective of this model is not to claim any predictive power but rather to focus

on explaining the effects different relational layers have on the OD flows.
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Coefficients Estimate Std. Err p-value
betweenness 0.132 5.286e-02 1.995e-06

network distance -1.256 1.149e-01 <1e-16
route factor 0.312 1.769e-01 2.124e-02

airbnb -0.82 2.488e-02 4.321e-02
time -0.631 2.717e-02 <1e-16
speed -0.152 5.494e-02 1.112e-03
bus 0.209 3.361e-02 3.921e-02

subway -0.121 3.481e-02 3.199e-02
densities 0.228 8.396e-03 4.289e-03

residential to rest 0.208 5.824e-02 1.119e-02
highway 0.062 1.098e-01 2.819e-03

correlation -0.479 1.692e-02 <1e-16
APA flow only 0.670 3.611e-02 <1e-16

APA food services 0.607 2.001e-02 <1e-16
APA retail 0.634 1.452e-02 <1e-16

Table 9.2: MLE coefficients of the gHypE multilayer regression model in London

9.4.3 Estimated coefficients

Those explanatory layer coefficients obtained by MLE that are statistically signifi-

cant are summarised in Table 9.2. Network distance and population densities - as

expected, with negative and positive exponents, respectively - are treated as control

variables. In order to account for the spatial boundary effects, the highway explana-

tory layer is also treated as a control variable - a small positive effect as can be seen

in Table 9.2. We then focus our attention on the remaining relational explanatory

layers of interest.

Figure 9-5 shows the temporal evolution of the estimated coefficients for speed,

network distance, and the route factor over the hours on a typical weekday in London

and Rome. We see structurally similar but locally differing results in both cities.

The impact of network distance during the night hours is markedly weaker than

during the day. This can be explained by the fact that the massive amount of

short travels during the day do not take place in the night, and drivers cover longer

distances during the day. To test this hypothesis, we conducted a two-sample t-test

and compared the average distance travelled during the night hours (from 2am to
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7am) to that of the day hours and found circa 17 vs. 7 km and 15 vs. 4 km in

London and Rome, respectively. On the contrary, speed has a stronger positive

effect during the night and late evening hours compared to working hours. This

captures the intuition that average speed during the working hours is smaller due

to traffic. Indeed, the difference between average driving speeds during night and

day hours in London and Rome are 14 and 16 km/h respectively. The route factor,

roughly representing the journey’s divergence from a straight line, also displays an

interesting behaviour with a significant dip during the night hours during which its

negative effect is strengthened. Intuitively, this should be the case since during night

hours drivers make less detours to reach a destination, both because of less traffic

and because of longer journey distances.

(a) (b)

Figure 9-5: Speed, network distance, and route factor coefficients over time in (a)
London (b) Rome

Next, we observe in Figure 9-6 that there is a more or less constant positive

effect of population densities on the OD flows in both cities, with a small increase

during the night hours. This can possibly be explained by the fact that since there

are essentially no business trips to locations with a small population density during

the night, its effect will be higher. We also observe a small difference in the effect

between the cities, with the density effect being higher in Rome.

Average betweenness centrality also tends to have a positive constant effect in

both cities, with a small decrease during the night hours. This can be attributed

to the fact that most locations with a high street betweenness centrality value are

relatively centrally located (Figure 4-4), while a significant amount of night trips
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are peripheral to the city. Although this explanation requires further study and

testing, we saw Chapter 8 that the spreading index related to urban mobility flows

was indeed very high.

We also observe in the same figure that Airbnb prices have a negative, close to

zero effect on OD flows, with the minimum value during the morning commuting

time, and with a small positive effect during the night hours. This observation may

be due to the fact that most flows at the beginning and end of the working day

are core-periphery commuting trips, or, in other words, trips between locations with

high and low Airbnb prices.

Finally, despite the fact that the "resid-to-X" type of explanatory layers were

statistically insignificant by themselves, the aggregated "resid_torest" layer can be

seen to have a significant positive effect on the flows with a slight increase during

the night and early morning hours.

(a) (b)

Figure 9-6: Population densities, betweenness centrality, residential-to-other, and
Airbnb coefficients over time in (a) London (b) Rome

Turning our attention to Figure 9-7, we see that the average travel time has a

negative effect as a whole similar to network distance. However, unlike the network

distance coefficient, we observe time to have a stronger negative effect during night

hours. This is due to the fact that despite drivers travelling, on average, longer

distances during the night, they do it in less time. We also see a similar temporal

profile of the correlation coefficient. To recall, the correlation here measures the

cross-correlation between the time series of car arrivals (destinations) in the two

nodes forming the dyadic relationship in question. Similar to average travel time, it
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enters overall with a negative exponent, with a markedly stronger effect during night

hours. The overall negative effect is expected since most flows are core-periphery or

residential-business area commuting flows where temporal patterns of car arrivals

have either a weak or negative correlations. The effect is stronger during the night

hours when most flow activity is spatially more spread out with arrival correlations

being even weaker.

Next, we also see an overall positive effect of the existence of bus connections

between nodes on the OD flows in both cities, with a slight drop in the effect during

the night hours. Interestingly, the subway relational layer affects flows positively

in Rome while its effect is negative in London. A reasonable hypothesis explaining

this is the fact that London has banned the entry of cars in its center whereas Rome

has not. Since subways typically connect the city center with the periphery, hence

a positive coefficient in Rome and a negative one in London.

(a) (b)

Figure 9-7: Time, correlation, subway, and bus coefficients over time in (a) London
(b) Rome

We continue by discussing the effect of the APA centrality measures on the

urban mobility flows in Figure 9-8. Our first observation is that the effect of all

three measures is stronger in Rome compared to London. This raises the need for

a deeper study of the relationship between network centrality measures and urban

geography. Next, we note that despite this difference, the coefficients follow an

overall similar temporal profile during the day. The influence of all measures in

both cities display a sharp decrease during the night hours with two visible peaks

during the morning and evening commute hours. We also note that food services
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Figure 9-8: Flow only, food services, and retail APA centrality coefficients over
time in (a) London (b) Rome

have the strongest effects in both cities, followed by retail activity.

Finally, we address the issue concerning the spatial resolution of the urban grid

mentioned in Section 4.2. Since we do not have a theoretical apparatus to control for

the effect of the grid resolution on the results of the regression, we took an empirical

approach and tested our method for robustness in various grid resolution scenarios.

All network layer parameters that were statistically significant under the default

grid resolution of 500 × 500 meters turned out to be statistically significant under

grid resolutions ranging from 250 to 2000 meters as well.

For example, Figure 9-9 shows the temporal behaviour of the parameter corre-

sponding to the street network distance layer in London. As can be seen in the plot,

the estimated parameter is remarkably robust to changes in scale ranging from 250

to 1500 meters, and visibly "breaks down" under grid sizes larger than that.
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Figure 9-9: The network distance regression parameter over time under different
spatial grid resolutions in London.

9.5 Discussion and Conclusions

In this Chapter, we built a framework for carrying out a regression analysis on mul-

tilayer networks, allowing to explain how each layer, built from the attributed urban

network datasets (Chapter 4), contributes to explaining the observed urban mobil-

ity OD flows. The framework is based on the recently developed hypergeometric

random graph ensemble (gHypE), has a closed form solution, and offers statistical

model selection tools for testing the statistical significance of the parameters and

for selecting the best possible model explaining the data.

We then conducted network regression for different hours of the day in both

London and Rome, and obtained the temporal profiles of the estimated coefficients

throughout the day.

We found interesting points of comparison between the two cities, offered possible

explanations for the temporal behaviour of some coefficients, and noted the need for

a deeper analysis of some of them. In particular, our findings regarding the drop in

the effect of betweenness centrality during the night hours require further study as
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its relationship to the spatial structure of urban mobility remains unclear. Another

important direction of study for future work is the observation that the influence

of APA centrality measures in Rome are significantly stronger compared to that of

London.

A final important contribution to the proposed framework would be developing

"local" spatial network regression models where specific origins or destinations are

spatially selected to study how spatial interaction processes vary across geographic

space ([99]). In other words, instead of the expected value obtained through MLE, a

further enquiry into the spatial distribution of the estimated coefficients is required

to better understand local relationships between urban socio-economic and spatial

structure and mobility.

Having provided a general multilayer network regression framework for explaining

urban mobility flows, we can now turn to the final Chapter in the present study,

focusing on prediction of OD flows in an urban environment.
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"We begin with the concept of

Movement, which underlies all

mechanisation..."

Sigfried Giedion, 1969

Chapter 10

Urban Graph Neural Networks

A fundamental problem of interest to policy makers, urban planners, and other

stakeholders involved in urban development projects is assessing the impact of plan-

ning and construction activities on mobility flows. This is a challenging task due to

the different spatial, temporal, social, and economic factors influencing urban mo-

bility flows. In this Chapter, we address the problem of assessing origin-destination

(OD) car flows between a location of interest and every other location in a city, given

their attributes and the structural characteristics of the graph. We propose three

neural network architectures, including graph neural networks (GNN), and conduct

a systematic comparison between the proposed methods and state-of-the-art spa-

tial interaction models, their modifications, and machine learning approaches. The

objective of the Chapter is to address the practical problem of estimating potential

flow between an urban development project location and other locations in the city,

where the attributes of the project location are known in advance. We evaluate the

performance of the models on a regression task using a custom data set of attributed

car OD flows in London as described in Chapter 4.

This Chapter is a modified version of our paper Gevorg Yeghikyan, Felix L

Opolka, Mirco Nanni, Bruno Lepri, and Pietro Lio. Learning mobility flows from

urban features with spatial interaction models and neural networks. arXiv preprint

arXiv:2004.11924, 2020 which is to appear in the Proceedings of IEEE International

Conference on Smart Computing (SMARTCOMP 2020).
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10.1 Introduction

So far, our urban mobility modelling attempts have been focused on essentially

reconstructing OD flow matrices. However, modelling OD flow matrices in their

entirety, the discussed approaches do not address the problem of assessing flows

between a specific location and every other location in the city, given all other flows,

other location characteristics, as well as information on the dyadic relations between

those locations.

More specifically, the motivation for this task comes from a scenario in which it

is necessary to assess the impact of an urban development project on the OD flows

in and out of the project’s location. Examples of these motivating scenarios include

retail location choice and consumer spatial behaviour prediction, which have been

approached with the Huff model and its modifications [129]. These models, however,

suffer from a series of drawbacks related mostly to overly restrictive assumptions.

We take a different approach and focus on the problem of evaluating OD flows in

and out of a location of interest. By modelling urban flows as attributed graphs

as described in Chapter 4, in which the nodes represent locations in a city (i.e.

each node is described by a vector of features such as population density, Airbnb

prices, available parking areas, etc.), and the edges represent the car flows between

them (each one described by a vector of features such as road distance, average time

required to travel, average speed, etc.), this Chapter aims to offer an instrument for

assessing flows between a specific location and all other locations in the city. We

have already discussed machine learning and neural network approaches to urban

mobility flow prediction in Section 2.3.6 where we outlined existing literature and

introduced graph neural networks, which the method proposed in this Chapter is

based on.

Since a rigorous experimental setting would have required difficult-to-obtain lon-

gitudinal data of OD flows before and after the completion of an urban development

project, we set up a quasi-experimental setting. We randomly select locations in a

city and the flows associated with them as a test set, and attempt to find a function

that takes the urban features describing city locations and the remaining flows as
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input, and predicts the flows in the test set as output.

In this work, we define neural network models that make use of stationary node

and edge features and compare different neural network architectures based on fully

connected networks and graph neural networks.

In sum, our approach makes the following contributions:

• We propose three neural network architectures for predicting car flows between

a location of interest and every other location in a city. Two of the models use

graph convolutional layers that pool information from geographical or topo-

logical neighbourhoods around relevant nodes to incorporate more information

(Section 10.4).

• We evaluate and compare our models on a custom dataset of aggregate OD

car flows in London, containing node and edge features (Section 10.5).

• We show that the proposed neural network models outperform well-known

spatial interaction and machine learning models. A comparison among neural

network models reveals that graph convolutions do not substantially improve

prediction performance on the formulated task (Sections 10.3, 10.5).

• We describe our custom dataset and make it publicly available along with the

code for this study (Section 10.2).

10.2 Data description

To enhance our approach with results obtained in previous Chapters, we extend

the urban mobility network data set described in Chapter 4 by including as node

attributes the APA centrality values computed with the algorithms described in

Chapter 8, and muliplex APA values from Chapter 7, respectively (Figure 10-1).

However, in order to make sure the centrality values are not computed by including

node information from our test set, we recompute both centrality measures by using

only the partial network available in our training set.

To recall the general urban mobility network dataset structure, its main compo-

nents are shown in Figure 10-2.
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Figure 10-1: The APA centrality values for the mobility flow network in London
at different times of the day.

(a) (b) (c)

Figure 10-2: (a) Car GPS trajectories over grid cells in London. (b) Origin-
Destination (𝑂𝐷) flow network in London. (c) Target flows between a node of
interest and every other node.

10.3 Problem statement

In this section, we describe the problem we are addressing and state definitions of

important terms.

We define a weighted attributed graph 𝐺 = (𝒱 , ℰ ,W,X𝑣,X𝑒) with feature

information associated with both nodes and edges. More specifically, 𝒱 is the set

of 𝑛 nodes, and ℰ = {𝑒𝑖𝑗 = (𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝒱} represents the set of 𝑚 edges in graph

𝐺. Furthermore, W ∈ R𝑛×𝑛 is the weighted adjacency matrix, essentially the OD

matrix, with W𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ 𝒱 corresponding to the flow between cells 𝑖 and

𝑗. Additionally, we denote the node feature matrix as X𝑣 ∈ R𝑛×𝑝, where 𝑝 is the

number of node features. The edge feature matrix, on the other hand, is denoted as

X𝑒 ∈ R𝑚×𝑘, where 𝑘 is the number of edge features.

The urban mobility flow network 𝑇 is a weighted undirected attributed graph

whose nodes are 500 × 500 m city grid cells, and the edges are the aggregate flows
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between them. The nodes and edges are additionally augmented by feature vectors

described in detail in Section 10.2. Furthermore, each edge 𝑒𝑖𝑗 in the urban mobility

flow network 𝑇 is associated with a target (or ground truth) flow 𝑤𝑖𝑗, which is the

corresponding entry in the weighted adjacency matrix 𝑊 of 𝑇 . It represents the

aggregate mobility flow between cell (node) 𝑖 and cell (node) 𝑗 in the network.

In our prediction setting, we are given the urban mobility flow network 𝑇 =

(𝒱 , ℰ ,W,X𝑣,X𝑒) and a node of interest 𝑖 for which the target flows 𝑊𝑖1, . . . ,𝑊𝑖𝑛

are unknown. Hence, we aim to learn a mapping 𝑓 : {𝒱 , ℰ ,W,X𝑣,X𝑒} → R𝑛

from the urban mobility flow network to the missing flows, i.e. [𝑊𝑖1, . . . ,𝑊𝑖𝑛] =

𝑓(𝑖,W,X𝑣,X𝑒) ∀𝑖 ∈ 𝒱 . In other words, the aim is to predict the missing target

flows (Figure 10-2c), given the features of node 𝑖 and the rest of the graph.

10.4 Methodology

In the following, we describe three neural network models1 that are trained to predict

the unknown flows in the urban mobility flow network 𝑇 . When a model makes a

prediction for the flow associated with an edge going from a node of interest to

another node in the graph, it can use all node and edge features in the graph, as

these features are available even for nodes of interest, i.e. sites of prospective urban

development projects. Furthermore, it may use the ground truth flows for edges that

are not connected to a node of interest. In a practical situation, this corresponds

to the flows between existing locations in the city for which flow information is

therefore available.

The first neural network architecture is a fully connected neural network oper-

ating on the features of the target edge and the features of its two incident nodes.

More specifically, when predicting the flow for target edge 𝑒𝑖𝑗, we concatenate the

node features 𝑥𝑣
𝑖 and 𝑥𝑣

𝑗 for incident node features, as well as the corresponding

edge features 𝑥𝑒
𝑖𝑗. The concatenated vector

�̄� = [𝑥𝑣
𝑖 ,𝑥

𝑒
𝑖𝑗,𝑥

𝑣
𝑗 ] (10.1)

1Code available at github.com/FelixOpolka/Mobility-Flows-Neural-Networks.
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𝑣𝑖

𝑣𝑗

𝑥𝑣
𝑖

𝑥𝑣
𝑗

𝑒𝑖𝑗 𝑥𝑒
𝑖𝑗 || FCN

�̄�

GCN
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+

·𝜑2

·𝜑1

·𝜑2

FCNs 𝑦𝑖𝑗

Figure 10-3: Overview of the neural network model architectures. When predict-
ing the flow for edge 𝑒𝑖𝑗, all three models concatenate the corresponding edge
features 𝑥𝑒

𝑖𝑗, and the node features 𝑥𝑣
𝑖 ,𝑥

𝑣
𝑗 of the incident nodes. The resulting

vector is fed into a single fully connected layer. In case of the GNN-based mod-
els GNN-geo and GNN-flow, the network also perform graph convolutions on the
neighbourhoods of 𝑣𝑖 and 𝑣𝑗 and computes a weighted sum of both neighbourhood
embeddings and the edge embedding. A further set of fully connected layers maps
the sum to the predicted flow 𝑦𝑖𝑗. The FCNN model skips the addition step and
does not perform graph convolutions.

is passed into a fully connected neural network with ReLU-non-linearities, defined

as ReLU(𝑧𝑗) = max(0, 𝑧𝑗), where 𝑧𝑗 is the 𝑗th output of the linear transformation.

Each fully connected layer is followed by batch normalisation [131] and dropout [245]

to counter overfitting. We refer to this model as FCNN.

The second model builds upon the FCNN model through the additional use of

graph convolutions to generate embeddings of node neighbourhoods. We use a graph

convolutional neural network (GCN) [145] to generate node embeddings ℎ𝑖,ℎ𝑗 for

the two nodes incident to the target edge 𝑒𝑖𝑗. GCN layers extend fully-connected

layers with an additional neighbourhood aggregation step before the non-linearity.

The layer applies a linear transformation to all node features ℎ(𝑙−1)
𝑖 in the graph and

then, for each node, computes a weighted average of the resulting representations

at the central node and in the 1-hop neighbourhood of the central node:

𝑧
(𝑙)
𝑖 =

∑︁
𝑗∈𝒩 (𝑖)∪{𝑖}

1√︀
(𝑑𝑖 + 1)(𝑑𝑗 + 1)

ℎ
(𝑙−1)
𝑗 Θ, (10.2)
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where Θ ∈ R𝐷(𝑙−1)×𝐷(𝑙) is a learned weight matrix, 𝒩 (𝑖) refers to the 1-hop neigh-

bourhood of node 𝑖, and 𝑑𝑖 denotes the degree of node 𝑖. This aggregation scheme

is followed by a non-linearity and can be written more compactly using matrix mul-

tiplication as

𝐻(𝑙) = ReLU(�̃�− 1
2�̃� �̃�− 1

2𝐻(𝑙−1)Θ). (10.3)

where �̃� = 𝑊 + 𝐼 and �̃� is the degree matrix of �̃� . Equation 10.3 defines a

graph convolutional layer and multiple such layers can be stacked to form a multi-

layer graph neural network. A GNN with 𝑘 layers allows us to compute embeddings

encoding node feature information from within a 𝑘-hop neighbourhood.

For the second model, we apply multiple graph convolutions as defined above on

the flow-weighted geographical adjacency matrix 𝑊 geo where 𝑊 geo
𝑖𝑗 is non-zero if and

only if node 𝑖 is in the geographical neighbourhood of node 𝑗 and 𝑊 geo
𝑖𝑗 = 𝑊𝑖𝑗, i.e.

the flow between 𝑖 and 𝑗. The resulting node embeddings ℎ𝑖,ℎ𝑗 ∈ R𝐷 for the two

nodes incident to edge 𝑒𝑖𝑗 are added to the representation of �̄� (see Equation 10.1

after the first fully connected layer:

ℎ
(1)
𝑖𝑗 = 𝜑1FCN(�̄�) + 𝜑2 [GNN(𝑥𝑖) + GNN(𝑥𝑗)] , (10.4)

where 𝜑1, 𝜑2 are learned weighting coefficients. We note that both mentions of

GNN(·) refer to the same sequence of graph convolutional layers. We then feed ℎ
(1)
𝑖𝑗

into a number of fully connected layers, again with dropout and batch normalisation,

such that the resulting model contains the same number of fully connected layers as

the FCNN model. We call the resulting model GNN-geo.

Finally, we evaluate a third model, denoted by GNN-flow, which is equivalent to

GNN-geo except graph convolutions are performed using the flow-based adjacency

matrix 𝑊 flow = 𝑊 , where 𝑊 𝑓𝑙𝑜𝑤
𝑖𝑗 is the flow between 𝑖 and 𝑗. Hence, the adjacency

matrix used by GNN-flow will contain additional edges to those used by GNN-geo.

A visualisation of the model architectures is given in Figure 10-3.

The graph based models GNN-geo and GNN-flow require flow information for

the adjacency matrices. While this is readily available for edges between two regular

nodes, we have to approximate flow between a regular node 𝑖 and a node of interest
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𝑗. This is done by taking the average of the flows from node 𝑖 to each node in the

neighbourhood of 𝑗, i.e.

�̃�𝑖𝑗 =
1

|𝒩 (𝑗)|
∑︁

𝑘∈𝒩 (𝑗)

𝑊𝑖𝑘. (10.5)

We note that even though the FCNN does not use graph convolutions and hence

does not qualify as a common graph neural network, it does use graph structure

information by concatenating specifically the features 𝑥𝑣
𝑖 ,𝑥

𝑣
𝑗 of the nodes incident

to the target edge 𝑒𝑖𝑗.

All models output the flow corresponding to the target edge 𝑒𝑖𝑗 and are trained

to minimise the mean squared error between the predicted and the actual flow. More

details on the experimental setup are provided in Section 10.5.3.

10.5 Experiments

We evaluate the described model on the London dataset described in Section 10.2.

In the following, we describe the goodness-of-fit metrics we use to measure model

performance, the baseline methods we compare our models to, and the experimental

setup.

10.5.1 Goodness-of-fit measures

Mean absolute error (MAE). Let 𝑦𝑖𝑗 be the predicted flow between 𝑖 and 𝑗, 𝑦𝑖𝑗 be

the ground truth flow, then

MAE =
1

|ℰ|
∑︁
𝑖

∑︁
𝑗

|𝑦𝑖𝑗 − 𝑦𝑖𝑗| . (10.6)

Binned MAE. Due to the highly skewed distribution of the flow data, the vast

majority of flows have a small flow count, with only a handful of flows with a very

large flow value (see Figure 4-7b). Because of this, the total MAE will be biased

downwards. To account for this, we additionally measure the MAE of all models

within 4 bins with the following boundaries: 0 ≤ 10.0 ≤ 100.0 ≤ 1000.0 ≤ 10000.0,

corresponding to MAE0, MAE1, MAE2, MAE3, respectively. Finally, we define the
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MAE bin mean as

Bin mean MAE =
MAE0 + MAE1 + MAE2 + MAE3

4
, (10.7)

where MAE𝑖 refers to MAE of the 𝑖th bin.

Mean absolute percentage error (MAPE). To display the model accuracy with

respect to the ground-truth flow values, we further use the mean absolute percentage

error, defined as

MAPE = 100 × 1

|ℰ|
∑︁
𝑖

∑︁
𝑗

⃒⃒⃒⃒
𝑦𝑖𝑗 − 𝑦𝑖𝑗

𝑦𝑖𝑗

⃒⃒⃒⃒
, (10.8)

Sorensen similarity index. We use a modified version of the Sorensen similarity

index (SSI), which has been extensively used in spatial interaction modelling [288,

162], and is defined as

𝑆𝑆𝐼 =
1

|ℰ|
∑︁
𝑖

∑︁
𝑗

2 min (𝑦𝑖𝑗, 𝑦𝑖𝑗)

𝑦𝑖𝑗 + 𝑦𝑖𝑗
, (10.9)

and takes on values between 0 and 1, with values closer to 1 denoting a better fit.

Common part of commuters. Further, we use a similar metric, the common part

of commuters, used specifically for mobility OD flow networks [162]:

𝐶𝑃𝐶 =
2
∑︀𝑛

𝑖,𝑗=1 min (𝑦𝑖𝑗, 𝑦𝑖𝑗)∑︀𝑛
𝑖,𝑗=1 𝑦𝑖𝑗 +

∑︀𝑛
𝑖,𝑗=1 𝑦𝑖𝑗

. (10.10)

This measure takes on the value 0, when the flows in the two networks completely

differ, and 1, when they are in perfect agreement.

Common part of links. Finally, to measure the degree to which the topological

structure of the original network has been reconstructed, we use the common part

of links (CPL) [161] defined as

𝐶𝑃𝐿 =
2
∑︀𝑛

𝑖,𝑗=1 1𝑦𝑖𝑗>0 · 1𝑦𝑖𝑗>0∑︀𝑛
𝑖,𝑗=1 1𝑦𝑖𝑗>0 +

∑︀𝑛
𝑖,𝑗=1 1𝑦𝑖𝑗>0

, (10.11)

where 1𝐴 is the indicator function of condition 𝐴. The common part of links shows
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the proportion of links between the observed and predicted networks such that

𝑦𝑖𝑗 > 0 and 𝑦𝑖𝑗 > 0. It takes on the value zero if the two networks have no common

links and one if the networks are topologically equivalent.

10.5.2 Baseline models

In this study, we compare the proposed model to the following baselines, using the

same experimental setup for all models:

• Doubly constrained gravity model (DC-GM): The classical gravity model

with a power law decay has several formulations with respect to preserving

the total in- nor out-flows during model calibration: unconstrained, origin-

constrained, destination-constrained, and doubly constrained. Here we take

the latter.

• Huff model: A probabilistic formulation of the gravity model described in

Section 2.3.5.

• Poisson regression: An instance of the Generalized Linear Modelling frame-

work, in which the dependent variable, being count data, is assumed to be

drawn from a Poisson distribution.

• Negative Binomial regression (NB): A generalization of the Poisson re-

gression in which the restrictive assumption that the mean and the variance

of the dependent variable are equal is loosened.

• Spatial Autoregressive Model (SAM): An extension to the Generalized

Linear Modelling framework by accounting for spatial dependence among the

flows by using spatial lags represented by spatial weight matrices built from

observed data [166].

• Generalised hypergeometric ensemble multilayer network regression

(gHypE): This recent random graph approach [63] provides a statistical en-

semble of all possible flow networks under the constraints of preserving in- and

out-flows from each node, as well as respecting pairwise flow propensities of
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nodes. The multilayer network regression considers these propensities as la-

tent variables, inferred from the edge features describing the dyadic relations

between city locations. As opposed to conventional regression methods, this

method intrinsically respects the network constraints.

• Random Forest regression (RF): We follow the approach proposed in [244]

aimed at predicting inter-city mobility flows with a set of attributes describing

each city. We adapt the same approach to our problem of intra-city flow predic-

tion. Following the described method, we use a Random Forest approach with

eXtreme Gradient Boosting (XGBoost) [70] through 5-fold cross-validation,

model and feature selection, and hyperparameter tuning.

10.5.3 Experimental setup

For training and evaluating the three proposed models, we divide the dataset into a

training, validation, and test set of edges. The subsets contain 70%, 10%, and 20%

of the edges respectively. To construct the test set, we randomly select nodes in the

graph and add their incident edges to the test set. We ensure that an equal number

of edges fall in each of the four bins split by flow magnitude. Hence, once a bin is

full, no more edges are added to the test set that would fall into this bin. We use

the same procedure to construct the validation set. Nodes in the validation and test

set are considered nodes of interest, while nodes in the training set are considered

regular nodes.

We train all models on the same training set. To address the imbalance between

flows of different magnitude, we resample the data such that each bin contains the

same number of samples. We perform hyperparameter search to determine the opti-

mal dimension of the intermediate representations, i.e. the outputs of the GCN and

fully connected layers, the dropout rate, and the number of fully connected and GCN

layers. We select models based on the bin mean MAE (see Equation 10.7) achieved

on the validation set. The selected models have a total of four fully connected layers.

The GNN-based models use a single GCN layer. We use a dimensionality of 32 for

intermediate representations and the dropout rate is set to 0.5.
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(a) (b)

Figure 10-4: MAE residuals of flows associated with test nodes (a) GNN-geo. (b)
XGBoost.

MAE Total [0; 10) [10; 102) [102; 103) [103; 104) bin mean

DC-GM 167.58 64.88 170.45 881.98 2176.35 823.42
Huff 122.89 48.21 99.86 511.41 1476.72 534.05
Poisson 106.74 40.69 88.56 475.23 1261.41 466.47
NB 92.62 33.02 76.96 431.44 1087.12 407.14
SAM 75.09 19.31 61.53 395.01 989.30 366.29
gHypE 58.11 9.02 53.10 346.96 832.26 310.34
XGBoost 31.59 ± 5.88 2.61 ± 0.89 45.12 ± 11.06 228.96 ± 39.96 549.83 ± 84.79 206.63 ± 34.18

FCNN 12.55 ± 0.91 0.33 ± 0.08 28.97 ± 4.93 161.12 ± 22.36 408.88 ± 36.59 149.82 ± 13.65
GNN-geo 13.34 ± 2.51 0.52 ± 0.40 31.63 ± 9.68 161.32 ± 9.09 422.04 ± 25.70 153.88 ± 9.74
GNN-flow 15.35 ± 4.23 0.63 ± 0.62 38.66 ± 16.65 170.06 ± 17.41 458.05 ± 64.56 166.85 ± 16.39
GNN-APA 9.51 ± 0.43 0.24 ± 0.05 20.26 ± 3.75 152.09 ± 7.14 399.90 ± 19.63 143.12 ± 6.88
GNN-APA-mpx 10.05 ± 0.51 0.28 ± 0.06 23.31 ± 4.30 155.89 ± 8.04 406.01 ± 21.12 146.37 ± 8.04

Table 10.1: Comparison of model performance in terms of mean absolute error
grouped by flow magnitude.

We train for a total of 110 epochs using the Adam optimiser [144] with a batch

size of 256 and a learning rate of 0.01. We reduce the learning rate by a factor of

ten after 50 epochs and every 15 epochs after that. We stop training early once the

performance of the model does no longer improve in terms of bin mean MAE on the

validation set.

We have also experimented with using different types of graph neural network

layers including GAT layers [262], GIN layers [285], and Jumping Knowledge lay-

ers [286]. We did not find these layers to improve performance on the validation

data set and hence preferred the conceptually simpler GCN layers.
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SSI MAPE CPL CPC
[103; 104)

DC-GM 0.39 162.59 0.38 0.49
Huff 0.48 106.91 0.56 0.54
Poisson 0.46 102.10 0.57 0.54
NB 0.54 91.03 0.62 0.56
SAM 0.59 66.65 0.68 0.58
gHypE 0.62 52.99 0.79 0.60
XGBoost 0.67 ± 0.02 40.90 ± 5.85 0.86 ± 0.02 0.61 ± 0.01

FCNN 0.71 ± 0.00 27.16 ± 2.23 1.0 ± 0.00 0.69 ± 0.01
GNN-geo 0.70 ± 0.01 27.06 ± 1.65 1.0 ± 0.00 0.68 ± 0.04
GNN-flow 0.71 ± 0.02 30.67 ± 4.18 1.0 ± 0.01 0.65 ± 0.05

Table 10.2: Comparison of model performance in terms of MAPE, SSI, CPL, and
CPC.

10.6 Results

We compare our models to the baseline ones in terms of MAE in Table 10.1. We find

that all three neural network models outperform all the spatial interaction models

(DC-GM, Huff, Poisson, NB, SAM ) as well as gHypE and XGBoost in terms of

total MAE by a large margin. Crucially, the MAEs per bin reveal that the neural

network models achieve high accuracy across bins relative to the magnitude of flows,

hence the neural network does not only perform well on small flows, which are highly

overrepresented in the dataset.

We extend our analysis by creating two additional models corresponding to the

node attributes augmented with the APA and multiplex APA centrality values,

respectively, as described in Section 10.2. We see from Table 10.1 that including

the APA centrality values improves overall model performance on the MAE metric

across all bins.

We also observe that there is no clear difference in the performance between the

three neural network based models. Surprisingly, the graph neural networks (GNN-

geo, GNN-flow) do not outperform the fully connected neural network FCNN. This

indicates that node neighbourhood information does not result in stronger predictive

performance for this dataset and prediction task. We stress, however, that while

FCNN is not a graph neural network, it does use graph structural information by
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concatenating edge features with features of incident nodes. Furthermore, previous

work on mobility flow prediction has omitted an explicit comparison of GNNs to

fully connected neural networks, hence it remains unclear whether GNNs offer a

predictive advantage in the urban mobility setting.

Finally, we compare the neural network models to the baselines in terms of SSI,

MAPE of the largest bin, CPL, and CPC. These results also confirm that the neural

network models find a better fit to the data compared to the state-of-the-art.

To further illustrate the effectiveness of the GNN models, we represent the MAE

residuals on the London diagrammatic maps in Figure 10-4. These representations

show the difference between predicted and ground-truth flows between the locations

in the test set. We compare the state-of-the-art XGBoost model with our GNN-flow

model and observe that the latter results in spatially smoother residuals.

10.7 Conclusion

In this Chapter, we formulated and addressed the problem of learning urban mobility

flows between a location of interest and every other location in the city, given the

array of socio-economic and structural features describing each location and the

pairwise dyadic relations between them. We proposed three novel neural network

architectures, using fully connected and graph convolutional layers, and compared

them to a set of strong baseline models. We find that the neural network models

achieve state-of-the-art performance and outperform the baselines by a large margin.

In fulfilment of the stated objective, our work has direct utility to urban planners

and policy makers in offering a technique for assessing mobility flows between an

urban development project location and other locations in the city.
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"If you optimize everything, you

will always be unhappy."

Donald Knuth

Chapter 11

Conclusion

11.1 Summary and conclusions

In this final Chapter, we summarise the results, discuss the limitations of our work,

and sketch an outlook on future work. We began this thesis by introducing in

Chapters 1, 2, and 3 the overarching theme and motivation for our research: that of

finding valuable knowledge about the complex relationships between urban socio-

economic structure and mobility . To frame this task in a meaningful system for

jointly representing urban structure and mobility, we described the city as a network

in which the nodes represented urban locations (Cartesian grid cells of different

spatial resolution) and the edges represented the OD mobility flows between them.

We then augmented the network with an array of socio-economic attributes de-

scribing the network nodes and edges. We described this process of building the

attributed urban mobility network dataset in Chapter 4.

In Chapter 5, we introduced new network centrality measures based on Google’s

PageRank - the Adapted PageRank Algorithm (APA) - which allowed the incor-

poration of node attribute data in the computation of the centrality values. The

proposed centrality measures also provided the possibility to assign the relative im-

portance of attribute data in relation to the network topology when computing node

rankings. This possibility, controlled via a parameter, offers the urban researcher

with ample flexibility in studying urban locations through network centrality, given

specific socio-economic attributes of interest to the researcher. Despite the fruit-
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ful application of the developed centrality measures to urban mobility networks in

Rome and London in subsequent chapters, a major theoretical shortcoming is the

fact that we have not explored the behaviour of the vector of centrality values as a

function of the mentioned parameter in order to gain a deeper understanding of the

interplay between the network topology and the node attribute data. We intend to

formulate this interesting question as future work.

In Chapters 6 and 7, we extended the APA centrality measures to Biplex and

Multiplex networks to accommodate more types of dyadic relations between city

locations treating them as additional layers in the complex urban networks. Being

based on the previously introduced APA, these measures inherited its properties,

notably the possibility to assign the relative importance of attribute data in each

network layer. We applied the multiplex network centrality measures on the Rome

urban mobility network and discussed the effects that different parametrisations of

giving different importance to data in each network layer has on the spatial distri-

bution of important nodes in the city. An interesting direction for future work in

this regard would be a deeper study of how different layers affect the APA centrality

in such a multilayer network setting.

Chapter 8 focused on unraveling the spatio-temporal behaviour of the most cen-

tral nodes corresponding to different types of socio-economic activity in the city.

We did this by computing the APA centrality values for flow only, food, and retail

activities across the hours of the day, and across the days of the week in Rome and

London. We identified the "hotspots" with high centrality values via a robust empir-

ical method, and proposed simple metrics capturing the spatio-temporal structure

of the studied socio-economic activities in both cities. We compared the results and

findings in Rome and London, and formulated hypotheses offering possible explana-

tions, which, however, will have to be studied further to get a more holistic picture

of the spatio-temporal patterns of APA centrality in urban networks. In particular,

the proposed Gini and TSI metrics fail to explain what share the spatial inequality

and spread are due to core-periphery and inter-peripherial urban flows. As future

work, we also intend to study the possible existence of a hierarchy of "hotspots"

and its evolution over time. We see this application as a critical tool for monitoring
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urban mobility and informing urban planning decisions. To that end, we see the

necessity to develop and test a methodology for using the proposed measures as

monitoring and policy informing tools. In particular, defining low, normal, high,

or critical values of the proposed measures as simple indicators for urban planners

to take action, should be formulated as part of methodological research in urban

planning.

In Chapter 9, we developed a multilayer network regression model in which the

OD flow layer is regressed on the other layers representing socio-economic relations

between city locations. Within this framework, the observed OD flow network is

modelled as a realisation from a recently developed family of statistical random

graphs. This approach allowed to respect the network structure of the mobility

flows - a major shortcoming of existing models - and to carry out statistical maxi-

mum likelihood estimation of parameters explaining the effect of each network layer

on the observed OD flows. We saw how the dyadic relational layers built from APA

centrality values obtained from our work in Chapter 5 contributed to this task. We

conducted the network regression over the hours of a typical day, observing interest-

ing similarities and differences in the temporal profiles of the obtained parameters

between Rome and London. We see an important direction for future work in de-

veloping "local" network regression models to more accurately capture the variation

of the regression parameters in geographical space. This is a crucial aspect since

urban systems have high spatial and directional variation on different spatial scales,

replacing and aggregating which with an average parameter valid for the city as a

whole fails to capture the intricate local relationships so important in cities.

Finally, the contribution of Chapter 10 is twofold. On the one hand, it proposes

several neural network architectures, including Graph Neural Networks (GNN), for

predicting urban mobility flows by learning a mapping from the given OD flow net-

work and its node and edge attributes to the missing flows in the OD network. On

the other hand, it offers a solution to a practical problem arising in urban planning:

that of assessing (missing) mobility flows to or from an urban development project

in a particular city location, given its socio-economic attributes and the rest of the

mobility flow network. The proposed neural network architectures preformed at
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least an order of magnitude better compared to classical human mobility models

and significantly better than more recent machine learning models. An interesting

direction to develop this result in the future is enquiring into the reasons for why

graph convolutions did not seem to offer a statistically significant improvement over

simpler graph neural networks, despite their recent success in many other fields. In

particular, we see a starting point in generating synthetic urban OD flow networks

with any of the discussed mobility models and, being in control of the data gener-

ating mechanism, running experiments with various network sizes, parameters, and

architectures.

11.2 Further research questions

In the present work, we touched upon but only barely scratched the surface of the

relationship of urban spatial structure, socio-economic characteristics, and mobility.

Naturally, enormous space for further research has been opened up, to which we

deem important to devote a short discussion.

A general direction for future work concerning all proposed and discussed meth-

ods and techniques has to do with the urban grid resolution at the core of building

the urban OD flow networks. Notwithstanding the few empirical robustness tests

we carried out, the effect of the grid resolution on the OD network properties, APA

centrality, multilayer network regression, and Graph Neural Networks remains to

be explored and studied from a rigorous theoretical standpoint. For instance, the

dependence of such an important indicator of urban mobility as the probability dis-

tribution characteristics on the spatial grid resolution is not at all trivial. Given

the incredible richness and variability of spatial information in our cities, it is im-

perative to be careful and considerate with the spatial aggregation units we choose

to study the urban environment. Finding the spatial resolution most suitable to

the particular study at hand can be thought of as a problem of bias vs. variance

tradeoff. Pertaining to the field of spatial statistics and to the Modifiable Aerial

Unit Problem in particular, this question has important implications for studying

all kinds of spatial phenomena dealing with spatial aggregations. However, it is
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particularly important for urban data science, which, as mentioned in Section 1,

requires rigorous theoretical and methodological foundations and dialogues with the

research fields it borrows from and, by implication, heavily relies on.

Another interesting research question I intend to address in future work is the

integration of qualitatively different data into the methodology proposed in this

thesis. In particular, semantic information from geo-located social networks such

as Twitter or Foursquare could prove very useful in enriching our network model of

urban mobility and capture a qualitatively new dimension of social activity and its

relationship to urban mobility in cities. First important steps in modelling social

phenomena in a spatial context in cities have been undertaken [150, 14]. However,

the link between the semantic dimension of social activity and urban mobility is still

terra incognita and I see the network-theoretical modelling framework proposed in

this thesis as a viable possibility to explore and incorporate this new dimension in

urban data science.

In this thesis, urban mobility was primarily represented by collective mobility

patterns aggregated in space and time. An important direction of research worth

examining is the role and impact of individual mobility patterns [226, 52] on urban

spatial structure and dynamics. Although our approach allows to integrate some in-

dices like the radius of gyration capturing individual mobility into the network-based

urban mobility framework presented in this thesis, further studies are necessary to

disentangle the impact individual mobility choices and preferences have on urban

land use, real estate prices, accessibility, and other urban socio-economic character-

istics. This becomes especially important in the wake of the mass introduction of

electric and autonomous vehicles in cities, since the individual and collective urban

mobility patterns and their impact on urban economies, as well as the challenges

posed to urban planning require urgent and thorough analysis [109].

A research question particularly interesting for urban management and policy

making is the identification of urban functional zones as determined by the actual

activity clusters in cities. Identifying such functional zones as shopping, working, en-

tertainment, etc., can greatly inform and enhance administrative divisions in cities,

improve the organization of various city services such as waste collection, repair

186



Chapter 11. Conclusion 11.2. Further research questions

works, as well as determine catchment areas for retailers or government services.

Existing work in this direction mostly utilises techniques from spatial statistics and

conventional hotspot analysis [296, 294]. However, I see urban mobility networks as

described and formulated in this thesis and network community detection techniques

from network science as tools with great great potential to tap into this research

question. A first step in this direction has been made in [107] in which the authors

use network community detection algorithms for identifying densely connected pock-

ets in inter-city mobility networks. Developing and applying network community

detection techniques to intra-urban mobility flow networks evolving over time can

offer great insights into the dynamics of urban functional zones. In fact, prelimi-

nary experiments on both London and Rome mobility network datasets built and

described in Chapter 4 have shown promising results.

These are but some of the research questions this PhD thesis has opened up

and provided the methodology and techniques to explore. Offering a method for

building very specific and detailed urban models, the attributed urban mobility

network approach presented in this thesis provides a fairly generic approach for

addressing a wide range of other questions in urban data science, urban planning

and design, as well as urban management and policy making. I conclude the present

PhD thesis with the intention to delve deeper into the mentioned directions, discover

new avenues of research, and contribute to urban data science.
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Glossary

CNR National Research Council. 14

IMT IMT School for Advanced Studies Lucca. 14

OD Origin-Destination flow. 23

SNS Scuola Normale Superiore of Pisa. 14

SSSA Sant’Anna School of Advanced Studies. 14

UniPi University of Pisa. 14
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Appendix A

Data

Table A.1 contains an overall summary of the OD network structures in both London

and Rome.

City Nodes Node at-
tributes

Edges Edge at-
tributes

London 6791 36 23062231 13

Rome 5432 35 15012127 13

Table A.1: Summary of the OD network datasets

Table A.2 contains a detailed description of the edge attributes of the OD flow

networks built from private car GPS trajectory data.

Table A.3 contains a detailed description of the node attributes of the OD flow

networks built from private car GPS trajectory data, augmented with.

Table A.3: Node attributes of the500×500m OD network

Attribute Description

NodeID IDs of the London grid cells

airbnb_price average airbnb price in a cell

universities total area of universities in a cell

tourism number of touristic attractions

Continued on next page

212



Appendix A. Data

Table A.3 – continued from previous page

Attribute Description

theatres number of theatres

shops number of shops

shopping_malls number of shopping malls

restaurants number of restaurants

residential total residential area

pubs_cafes number of pubs and cafes

post number of postal offices

parking total parking area

offices number of office buildings

museums number of museums

medical total area of medical facilities

schools number of secondary schools

industrial total industrial area

government number of governmental institutions

fuels number of gas stations

fast_foods number of fast food restaurants

commercial number of commercial firms

cinemas number of cinemas

bars_cafes number of bars

banks number of banks

atms number of ATM machines

arts number of arts venues

airport binary dummy: 1 if an airport falls into the cell, 0

otherwise

in_total total inflow to cell

out_total total outflow from cell

street_density number of street junctions per cell

gyration_radius average radius of gyration of cars “housed” in a cell

Continued on next page
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Table A.3 – continued from previous page

Attribute Description

gyration_radius _spa-

tial_lag

average radius of gyration of cars “housed” in the

neighbours of the cell

highways binary dummy: 1 if the cell is located on a highway

or street on the edge of a city

metro_flow number of passengers that have entered subway in

the cell

avg_betw_ centrality average betweenness centrality of the street junc-

tions in the cell

in_total_ spatial_lag total inflow to the geographic neighbours of a cell

out_total_ spa-

tial_lag

total outflow from the geographic neighbours of a

cell

APA_flow_only Computed APA centrality for flow only

APA_food Computed APA centrality for food

APA_retail Computed APA centrality for retail
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Attribute Description

location_1, loca-
tion_2

IDs of the London grid cells

flows mobility flow counts between cells location1 and
location2

netw_distance the physical road distance between the centroids of
location_1 and location_2 extracted from Open-
StreetMap

total_loc_flow the total in/out-flow associated to location1

route_factor the ratio between netw_distance and the Euclidean
distance between the centroids of location_1 and
location_2. It is greater or equal to 1

subway the number of subway lines between location_1
and location_2

bus the number of bus lines between location_1 and
location_2

airbnb average of the Airbnb prices of location_1 and
location_2

speed average travel speed between location_1 and loca-
tion_2

time average travel time between location_1 and loca-
tion_2

corr_at_ destina-
tions

correlation between the time series of car arrivals
at location_1 and location_2

corr_incidence correlation between the time series of car inci-
dences at location_1 and location_2

location1_to_
neighbourhood

the aggregate car flow count from location_1 to
the immediate geographic neighbours of location_2

neighbourhood_to
_location2

the aggregate car flow count from the neighbours of
location_1 to location_2

Table A.2: Edge attributes of the 500 × 500 m OD network
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Appendix B

gHypE statistical random graphs

B.1 Illustrating gHypE intuition

The intuition behind the gHypE statistical random graphs described in Section 9.3.1

is illustrated in Figures B-1 and B-2.

B.2 gHypE regression model selection

The gHypE network regression parameters, estimated via MLE as described in Sec-

tion 9.3.3 need to be tested for statistical significance. In particular, we want

to obtain the statistical significance of the regression model with all parameters{︁
𝛽𝑙

}︁
𝑙∈[1,𝑝]

, and test it against simpler variants of the model with a smaller number

of parameters. This is known in statistics as model selection, which allows to se-

lect the regression model with highest statistical significance, and to drop the layers

corresponding to non-significant parameters in the model.

Our aim is to compare two structures of statistical models defined by subsets

of layers {ℛ𝑙}𝑙∈[1,𝑞] and {ℛ𝑙}𝑙∈[1,𝑞+𝑠] as described in equation 9.6, with 𝑞 and 𝑞 + 𝑠

parameters, respectively, and to see which of the two better describes the observed

interaction layer ℐ, i.e. the OD flow network.

We note that one model is a special case of the other, and recall that they are

described in equation 9.10 which we present here again:
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Figure B-1: The configuration model illustrated (left) as a typical edge rewiring
exercise and (right) as analogous to the urn problem. In the first case, in order
to obtain a new multi-edge, first an out-stub (𝐴, ·) is sampled for rewiring, then
an in-stub is sampled uniformly at random from those available. If each possible
combination of out- and in-stubs is represented as a ball, we get the urn problem
without replacement. In this setting, the probability of observing a multi-edge
(𝐴,𝐵) is three times as high as that of observing a multi-edge between (𝐴,𝐷) and
1.5 times as high as that of observing a multi-edge between (𝐴,𝐶) in both the
edge rewiring and the urn schemes.

Figure B-2: Edge propensities driving the selection process in the configuration
model. As opposed to the conventional configuration model, in this case the stubs
are not sampled uniformly at random as in Figure B-1. Once an out-stub has
been sampled, each in-stub is then described by a propensity Ω𝑖𝑗 of being sampled
to form the new multi-edge. This results in the odds of wiring the out-stub (𝐴, ·)
to the node D being higher than that of B because of a very large edge propensity
Ω𝐴𝐷,despite node B having three times more in-stubs than node D.
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𝐿(𝛽|ℐ) =

⎡⎣∏︁
𝑖,𝑗

⎛⎝ Ξ𝑖𝑗

𝐴𝑖𝑗

⎞⎠⎤⎦∫︁ 1

0

∏︁
𝑖,𝑗

⎛⎝1 − 𝑧
Π
𝑝
𝑙=1

𝑅
𝛽𝑙
𝑙,𝑖𝑗

𝑆𝛽

⎞⎠𝐴𝑖𝑗

𝑑𝑧, (B.1)

with 𝑆𝛽 =
∑︀

𝑖,𝑗

∏︀𝑟
𝑙=1 𝑅

𝛽𝑙

𝑙,𝑖𝑗 (Ξ𝑖𝑗 − 𝐴𝑖𝑗).

We proceed by conducting model selection via the likelihood ratio test, which,

as stated by the Neyman-Pearson lemma, is the most powerful statistical test at

significance level 𝛼. We do this by defining the null hypothesis 𝐻0 by the first

model {ℛ𝑙}𝑙∈[1,𝑞] with 𝑞 parameters, and the alternative hypothesis 𝐻1 by the sec-

ond model {ℛ𝑙}𝑙∈[1,𝑞+𝑠], with 𝑠 more parameters. We can then use the likelihood

ratio test statistic to identify whether the more complex model with 𝑞 + 𝑠 parame-

ters has enough explanatory power to justify the addition of complexity by 𝑠 more

parameters.

The likelihood statistic Λ(ℐ) is defined as

Λ(ℐ) =
𝐿 (𝛽0|ℐ)

𝐿 (𝛽1|ℐ)
=

𝐿 (𝛽𝑞|ℐ)

𝐿 (𝛽𝑞+𝑠|ℐ)
. (B.2)

Recalling the likelihoods from equation 9.10, the likelihood ratio Λ(ℐ) is then given

by

Λ(ℐ) =

∫︀ 1

0

∏︀
𝑖,𝑗

⎛⎝1 − 𝑧

Π
𝑞
𝑙=1

𝑅
𝛽𝑙
𝑙,𝑖𝑗

𝑆𝛽0

⎞⎠𝐴𝑖𝑗

𝑑𝑧

∫︀ 1

0

∏︀
𝑖,𝑗

⎛⎝1 − 𝑧

Π
𝑞+𝑠
𝑙=1

𝑅
𝛽𝑙
𝑙,𝑖𝑗

𝑆𝛽1

⎞⎠𝐴𝑖𝑗

𝑑𝑧

. (B.3)

We can then calculate the p-value corrsponding to Λ(ℐ) and select the more complex

model only if the null hypothesis can be rejected at a chosen significance level 𝛼.

According to Wilks’ theorem ([277]), as the number of samples 𝑁 and the number

of dyadic relations 𝐴𝑖𝑗 → ∞, the likelihood ratio distribution converges to a 𝜒2

distribution with 𝑑 degrees of freedom. Moreover, as shown by [63], if the number

of non-zero Ξ𝑖𝑗 is large enough, Wilks’ theorem holds even for a single observed

sample (𝑁 = 1). The number of degrees of freedom in the 𝜒2 distribution will

be 𝑑 = (𝑞 + 𝑠) − 𝑞 = 𝑠 plus the number of degrees of freedom of the additional
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network layers {ℛ𝑙}𝑙∈[𝑞,𝑞+𝑠]. That said, we can do a stepwise selection and find the

best model with only the statistically significant network layers included. In every

selection step, the results of the likelihood ratio test tell us whether to add or remove

a layer from the model. Following the procedure described above, the statistically

significant layers were identified and are presented in Table 9.2 in Section 9.4.
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