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Transport in a non-Hermitian trimerized lattice with one lossy site per unit cell exhibits a mean
displacement before decay characterised by a two-step phase transition from ‘zero’ to ‘unit’ through
a fractional value. Such a peculiar behaviour, sensitive to both the lattice parameters and the initial
state, is shown to be closely related to the presence of two non-degenerate dark states decoupled from
the lossy site and correspond to two staggered band closing points. We further check that distinct
topological phases can also be characterized by the total Zak phase which is an integer multiple
of 2π and by the number of midgap states. Moreover, we demonstrate that the midgap states are
topologically protected and their localization can be controlled via the couplings imbalance. Our
results are expected to be relevant for implementations of topological photonics such as those based
on arrays of evanescently coupled waveguides.

I. INTRODUCTION

Topological insulators (TIs) are a new phase of quan-
tum matter and can exhibit robust electron transport
through protected surface or edge states [1, 2]. While
Hermitian TIs have been well explored and understood,
non-Hermitian TIs are drawing more and more interests
due to unique topological properties associated with the
exceptional points (EPs) [3–14]. This then inspires exten-
sive studies on topological photonic systems, where inho-
mogeneous gain and loss are ubiquitous and easily con-
trolled [15–18]. Many breakthroughs have been achieved
in such systems with robust optical delay lines [19],
backscattering-free edge states [20], topological polari-
tons [21], and topological lasing [22–24] being a few
paradigms. As two most prototypical models allowing for
nontrivial topological phases, the Su-Schrieffer-Heeger
(SSH) [25–34] and Aubry-André-Harper (AAH) [35–37]
models have been widely used for non-Hermitian exten-
sions by introducing various dissipative effects. Relevant
Hamiltonians typically contain complex on-site poten-
tials [38–41] but may also exhibit non-Hermitian hop-
ping rates [42–45]. Both of the two cases allow realizing
exotic topological phenomena with no Hermitian coun-
terparts, such as anomalous edge states [8], non-Bloch
bulk-boundary correspondence [45], and non-Hermitian
localization transitions [42].

The winding number related to the Zak phase [46–48]
and protected by specific symmetries [49–51] is usually
adopted to characterize the topological features of one-
dimensional (1D) TIs. It is always an integer in Her-
mitian systems with the ‘0’ (‘±1’) value(s) presenting
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the topological trivial (nontrivial) phase(s). It can be
half integers, however, in non-Hermitian systems in the
presence of two non-degenerate EPs [8, 52]. It may also
take integers of absolute values larger than unit, yielding
thus richer phase diagrams in some extended topological
models with long-range hopping terms [53, 54]. A feasi-
ble way for observing the winding number via the mean
displacement of a particle has been originally formulated
in a pioneering work that relied on a non-Hermitian SSH
model [25]. A 1D tight-binding lattice with a unit cell
containing two sites (the first one being lossy and the
second one not) is characterized by the ratio between in-
tracell (v) and intercell (v′) hopping terms. Initializing a
particle on the non-lossy site of the unit cell at the origin,
the average distance 〈∆m〉 at which the particle decays
during the time evolution is considered: when v > v′

it is found that 〈∆m〉 = 0 (i.e., the particle on average
does not move before decaying) and when v < v′ instead
〈∆m〉 = 1 (i.e., the particle on average decays in the next
unit cell). While this result is expected in the two lim-
iting cases v � v′ (the particle cannot leave the initial
unit cell) and v � v′ (the particle has to move to the
next unit cell to find a lossy site), it is striking that the
value of 〈∆m〉 is quantized and the transition at v = v′

is sharp: as a matter of fact, the mean displacement does
correspond to a topological winding number [25], which is
connected to the Zak phase [28, 46]. This groundbreaking
result has been experimentally observed [27] and theoret-
ically generalized to Hermitian [55] and non-Hermitian
models [28, 56–58]. Recent experiments have also re-
ported the winding number measurement in Floquet sys-
tems by examining the photonic quantum walk [59, 60].

Here we investigate a non-Hermitian trimerized lat-
tice containing one lossy site and two neutral (i.e.,
non-decaying) sites in each unit cell and three distinct
nearest-neighbour couplings. As it lacks chiral and inver-
sion symmetry, this model is qualitatively different from
those most commonly studied dimerized lattices such as
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the SSH model. Our model is also different from other
trimerized lattices with, e.g., neither gain nor loss [61],
balanced [62] or unbalanced [63] gain and loss. It has
been chosen to be a nearest-neighbor lattice with only
one lossy site per unit cell, conditions under which its
quantum transport properties are expected to be topo-
logically protected [28]. Here, the mean displacement be-
fore decay as a function of coupling imbalance exhibits a
two-step phase transition between the trivial phase with
〈∆m〉 = 0 and the nontrivial phase with 〈∆m〉 = 1
through an intermediate phase with fractional 〈∆m〉, de-
pending on both the on-site potentials and initial state
choice. At variance with the dimerized models such as
the SSH one [25] exhibiting a one-step transition from
〈∆m〉 = 0 to 〈∆m〉 = 1, this peculiar two-step transi-
tion is associated with two different dark states [25, 28]
composed of only neutral sites, and may also be charac-
terized by a two-step transition of the total Zak phase of
values ‘0’, ‘1’, and ‘2’ (in units of 2π). The two transi-
tion points correspond precisely to two staggered closing
points in the upper and lower band gaps, which separate
the three phases with different numbers of topologically
protected midgap states. Besides a thorough investiga-
tion of the trimerized case, we also extend our analysis
to the case of a tetramerized lattice showing a three-step
topological transition.

II. MODELS AND TOPOLOGICAL
INVARIANTS

A. Non-Hermitian trimerized lattice

We start by considering in Fig. 1 a 1D lossy trimer-
ized lattice containing 2N + 1 unit cells of indices m ∈
{−N, ...,−1, 0, 1, ..., N}. Each unit cell consists of one
lossy site (Am) and two neutral sites (Bm and Cm) from
left to right. The intercell coupling constant between
sites Cm−1 and Am is denoted by gl while the intracell
coupling constant between sites Am (Bm) and Bm (Cm)
is denoted by gr (g0). Then the real-space Hamiltonian
of our model can be written as

H(m) = −iγa |m, a〉 〈m, a|+ δb |m, b〉 〈m, b|
+ δc |m, c〉 〈m, c|+ [gl |m, a〉 〈m− 1, c| (1)

+ gr |m, b〉 〈m, a|+ g0 |m, c〉 〈m, b|+ h.c.]

with γa being the decay rate of the lossy sites Am while
δb and δc being the on-site potentials (with respect to the
energy of the lossy site) of the neutral sites Bm and Cm,
respectively. Setting

|ψ(t)〉 =
∑
m[am(t) |m, a〉+ bm(t) |m, b〉+ cm(t) |m, c〉]

FIG. 1. (Color online) Sketch diagram of the non-Hermitian
trimerized lattice under consideration. Each unit cell contains
one lossy site Am with decay rate γa as well as two neutral
sites Bm and Cm, which are coupled via the intercell (gl) and
intracell (gr and g0) coupling constants.

as a general state of this lattice, it is straightforward to
attain from Eq. (1) the following dynamic equations

∂am
∂t

= −γaam − iglcm−1 − igrbm,

∂bm
∂t

= iδbbm − igram − ig0cm, (2)

∂cm
∂t

= iδccm − ig0bm − iglam+1 .

Without loss of generality, we assume in the following
δb = −δc = δ0 and

g0 = 1 , gl = 1 + δg , gr = 1− δg

with δg being the coupling imbalance of the trimerized
lattice.

The use of non-Hermitian hamiltonians is the sim-
plest way to take losses into account. A more rigorous
treatment of an open quantum system would require a
Lindblad master-equation approach including quantum
jumps; the latter treatment, however, can be shown in
some regimes of experimental interest to be reasonably
well approximated by non-Hermitian hamiltonians which
do neglect quantum jumps [29, 64].

It is worth mentioning that recent experiments on
topological photonics based on arrays of evanescently
coupled waveguides implement the framework above: in
the paraxial approximation Maxwell’s wave equation is
turned into a Schrödinger-like equation where the role of
the time coordinate t is played by the propagation dis-
tance z along the waveguides [17, 27].

B. Mean displacement

Supposing the initial state is |ψ(0)〉 = b0 |0, b〉+c0 |0, c〉,
which is a superposition of the two central neutral sites
and constrained by |b0|2 + |c0|2 = 1, we can define the
mean displacement of a particle before its decay [25, 27]

〈∆m〉 = 2γa

∫ ∞
0

dt
(∑

m
m |am(t)|2

)
(3)

as a topological invariant to examine the topological
phase diagram via numerical simulations.

First we focus on two specific initial states charac-
terized, respectively, by |ψ1(0)〉 = |0, b〉 (b0 = 1) and
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FIG. 2. (Color online) Mean displacement 〈∆m〉 against cou-
pling imbalance δg with the initial state (a) |ψ1(0)〉 = |0, b〉
and (b) |ψ2(0)〉 = |0, c〉. The black solid, red dashed, green
dotted, and blue dot-dashed lines correspond to δ0 = 0,
δ0 = 0.2, δ0 = 0.3, and δ0 = 0.4, respectively. Other pa-
rameters are chosen as γa = 0.2 and N = 15.

|ψ2(0)〉 = |0, c〉 (c0 = 1) for a finite sample of 2N+1 = 31
unit cells. Fig. 2 shows that a single topological phase
transition from 〈∆m〉 = 0 (trivial) to 〈∆m〉 = 1 (non-
trivial) occurs around δg = 0 in the case of δ0 = 0. The
phase transition splits, however, into two steps in the
case of δ0 6= 0 with a fractional 〈∆m〉 appearing as the
intermediate phase. It is worth noting that, as δ0 is grad-
ually increased, the fractional 〈∆m〉 exists on one hand
within a more and more extended region identical for
both initial states of our interest, but on the other hand
exhibits a smaller and smaller (larger and larger) value
for the initial state |ψ1(0)〉 = |0, b〉 (|ψ2(0)〉 = |0, c〉). We
finally note that initializing the particle on the lossy site
(|ψ1(0)〉 = |0, a〉) the mean displacement always vanishes
(〈∆m〉 = 0), similarly to the case of the non-Hermitian
SSH model [25].

C. Dark states

Considering that with periodic boundary conditions
the system is translationally invariant, it may be ben-
eficial to understand the above results in the momentum
representation by performing the Fourier transformation
Om =

∑
k Oke

imk (O = a, b, c). In this way, we can
attain the following bulk eigen equation

H(k) |ψk〉 = E(k) |ψk〉 (4)

with |ψk〉 = ak |a〉 + bk |b〉 + ck |c〉 being the bulk state
and

H(k) =

 −iγa gr gle
−ik

gr δ0 g0
gle

ik g0 −δ0

 (5)

being the bulk Hamiltonian of eigenvalue E(k). In the
momentum space, it is convenient to diagonalize the sub-
space of the neutral sites to attain

H ′(k) =

 −iγa g+ g−
g∗+ δ+ 0
g∗− 0 δ−

 . (6)

with δ± = ±
√
g20 + δ20 being the effective on-site poten-

tials (detunings) and

g± =
g0gr − (δ0 ∓

√
g20 + δ20)gle

−ik√
2(g20 + δ20 ∓ δ0

√
g20 + δ20)

(7)

being the effective couplings. Then the bulk state can be
rewritten as |ψ′k〉 = ak |a〉+ b+k |b+〉+ b−k |b−〉 with

|b±〉 =
g0 |b〉 − (δ0 ∓

√
g20 + δ20) |c〉√

2(g20 + δ20 ∓ δ0
√
g20 + δ20)

. (8)

According to Eq. (7), we can find that:

(i) g+ = 0 when both k = π and
gl
gr

=
g0√

g20 + δ20 − δ0
;

(ii) g− = 0 when both k = 0 and
gl
gr

=
g0√

g20 + δ20 + δ0
.

In case (i), |b+〉 is decoupled from both |a〉 and |b−〉 so
that it becomes a dark state immune to the lossy sites [25,
27, 28, 37]. In this case, we have

δg+ ≡ δg|g+=0 =
g0 + δ0 −

√
g20 + δ20

g0 − δ0 +
√
g20 + δ20

.

Similarly, |b−〉 is a dark state in case (ii), with

δg− ≡ δg|g−=0 =
g0 − δ0 −

√
g20 + δ20

g0 + δ0 +
√
g20 + δ20

.

It is clear that the two dark states |b±〉 corresponding to
δg± are simultaneously attained only for δ0 = 0. Impor-
tantly, we find that δg− (δg+) exactly predicts the center
of the left (right) topological phase transition (see ver-
tical lines in Fig. 2). Therefore, we may conclude that
each topological transition indicates the appearance of
a dark state in the 3 × 3 Hilbert space as the coupling
imbalance δg is scanned. Moreover, we reveal that there
are three non-degenerate dark states for a tetramerized
lattice containing only one lossy site in each unit cell (see
Appendix for details).

D. Zak phase

The two-step topological phase transition can be fur-
ther understood by examining the Zak phase of Hamil-
tonian H ′(k), which owns the right eigenvectors

|ψ′k,α〉 =
1
√
ηα

(1,
g∗+

λα − δ+
,

g∗−
λα − δ−

)T (9)

except when our model suffers a dark state. Here, 1/
√
ηα

is a normalization factor and α ∈ {1, 2, 3} labels the three
eigenvalues λ which satisfy

λ3 + (iγa − δ+ − δ−)λ2 + (δ+δ− − iγaδ+ − iγaδ−)λ

− (|g+|2 + |g−|2)λ+ iγaδ+δ− + |g+|2δ− + |g−|2δ+ = 0.
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FIG. 3. (Color online) Total Zak phase Ztot against coupling
imbalance δg for different values of δ0. The gray square and
dot correspond to δg± in the case of δ0 = 0.4, respectively.
The inset shows Ztot/3 and the globally averaged displace-

ment 〈∆m〉 against δg for δ0 = 0.4. Other parameters are the
same as in Fig. 2.

Since [H ′(k, γa)]† = H ′(k,−γa) and [λ(k, γa)]∗ =
λ(k,−γa), the left eigenvectors of H ′(k) can be easily
attained through |ϕ′k,α(γa)〉 = |ψ′k,α(−γa)〉 as

〈ϕ′k,α| =
1
√
ηα

(1,
g+

λα − δ+
,

g−
λα − δ−

). (10)

The normalization factor 1/
√
ηα is chosen to ensure the

biorthogonal relation 〈ϕ′k,α|ψ′k,β〉 = δα,β by setting

ηα = 1 +
|g+|2

(λα − δ+)2
+

|g−|2

(λα − δ−)2
.

With the left and right eigenvectors, we can define the
Zak phase for individual energy bands as

zα = i

∫ π

−π
〈ϕ′k,α|∂kψ′k,α〉dk (11)

except at the phase transition points. Substituting
Eqs. (9) and (10) into Eq. (11), we attain

zα =

∫ π

−π

i dk

2ηα

[
f+

(λα − δ+)2
+

f−
(λα − δ−)2

]
(12)

with f± = g±∂kg
∗
± − g∗±∂kg±.

Note in the absence of chiral symmetry, the individual-
band Zak phases are usually not quantized [46]. However,
the total Zak phase in units of 2π

Ztot = − 1

2π

∑
α

zα, (13)

is always an integer and thus can be used to characterize
the topological phases of 1D TIs [65].

FIG. 4. (Color online) Real (a, c) and imaginary (b, d) energy
spectra of H(m) against coupling imbalance δg for δ0 = 0
(a, b) and δ0 = 0.4 (c, d). In each panel, the topological
edge modes are marked in green. The gray square and dot
correspond to δg± in the case of δ0 = 0.4, respectively. Other
parameters are the same as in Fig. 2.

We plot in Fig. 3 the total Zak phase Ztot as a function
of δg for four typical values of δ0. Clearly, it shows an
abrupt single phase transition in the case of δ0 = 0 and
changes from ‘0’ to ‘2’ through an intermediate value ‘1’
as long as δ0 6= 0. The positions of the phase transitions
are closely related to the dark states above and are ex-
actly predicted by δg± (see, e.g., gray dot and square in
the case of δ0 = 0.4). It is worth pointing out that de-

noting by 〈∆m〉 the global average of 〈∆m〉 over three
independent initial states (i.e., |0, a〉, |0, b〉 and |0, c〉),
the relation anticipated in Ref. [28] Ztot = p 〈∆m〉 with
p being the number of sites per unit cell is indeed ver-
ified. This can be seen from the inset in Fig. 3, where
the value of 〈∆m〉 as well as the positions of phase tran-
sitions are in good agreement with those of Ztot/3. The
same happens for the tetramerized lattice considered in
the Appendix with p = 4.

III. ENERGY SPECTRA AND MIDGAP
STATES

In non-Hermitian TIs, the conventional bulk-boundary
correspondence may be invalid while the real-space en-
ergy spectra are always reliable in predicting the emer-
gence of topological edge states [13, 45]. In view of this,
we plot in Fig. 4 the real-space energy spectra of the fi-
nite sample considered in Fig. 2. As shown in Figs. 4(a)
and 4(b), in the case of δ0 = 0, two midgap states of
Re(E) = ±1 and Im(E) = 0 emerge within two sym-
metric band gaps for δg > 0, indicating a single topo-
logical transition around δg = 0 from the trivial phase
with no midgap states to the nontrivial phase with two
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FIG. 5. (Color online) Real-space wave functions of the
midgap states with δ0 = 0, δg = 0.1 (a); δ0 = 0, δg = 0.4
(b); δ0 = 0.4, δg = 0.1 (c); δ0 = 0.4, δg = 0.4 (d). The insets
depict the wave-function profiles |ψn|2. Other parameters are
the same as in Fig. 2.

midgap states. It is worth noting that only the two
midgap states are stable (the imaginary parts of eigen-
values are zero) while all other states will vanish with
time (the imaginary parts of eigenvalues are negative).
That is to say, the two midgap states are in fact the
dark states mentioned above. In the case of δ0 = 0.4,
however, we find that the upper and lower band gaps
are markedly asymmetric so that only one midgap state
emerges for −0.1926 < δg < 0.1926 while two midgap
states emerge for δg > 0.1926, as shown in Figs. 4(c) and
4(d). This indicates two topological transitions around
δg± with distinct topological phases characterized by dif-
ferent numbers of midgap states. More importantly, the
two band closing points are consistent with the phase
transition points predicted by δg± (see the gray square
and dot), implying that the bulk-boundary correspon-
dence remains valid in our model.

For a deeper insight, we also plot in Fig. 5 the real-
space wave functions ψn of the midgap states, being ψn
equal to am, bm, and cm when n = 3m− 2, n = 3m− 1,
and n = 3m, respectively. As shown in Figs. 5(a) and
5(b), in the case of δ0 = 0, there are always two edge
states (i.e., the two midgap states) localized at the right
boundary as long as δg > 0, which become more and
more localized as δg is increased. Note that in Fig. 4(c),
an additional state can be found the eigenvalue of which
has a real part that splits from the band for large enough
values of δg: this state is localized at the left boundary
and suffers strong losses. Such a localized state is not
dark, thus we do not consider it further as it is not con-
nected to the topological invariants. The wave functions
of the two right edge states exhibit different phases and
identical modulus (see probability profiles |ψn|2 in the in-
sets). The same calculations are made in Figs. 5(c) and
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FIG. 6. (Color online) Inverse participation ratios of the
midgap states against coupling imbalance δg. The red dashed
(dot-dashed) and blue solid (dotted) lines correspond to the
midgap states in the upper and lower band gaps in the case
of δ0 = 0 (δ0 = 0.4), respectively. The three vertical lines de-
note the emergence positions of corresponding midgap states.
Other parameters are the same as in Fig. 2.

5(d) for the midgap states in the case of δ0 = 0.4 to gain
a direct comparison. It is clear that, as predicted by the
real-space energy spectra, we observe only one edge state
for δg− < δg < δg+ while two edge states for δg > δg+
at the right boundary. More interestingly, the probabil-
ity profiles of the two edge states are distinguishable in
this case, i.e., the moduli of the wave functions become
different.

To quantify the localization degrees of the edge
states, we then introduce the inverse participation ratios
(IPRs) [66, 67]

I =

∑
n |ψn|4

(
∑
n |ψn|2)2

(14)

with a larger value indicating a stronger localization. As
in other 1D systems, the IPRs of the bulk states roughly
equal the inverse of the lattice size, i.e., I ' 1/3(2N + 1)
in our system. The edge states, however, typically ex-
hibit much larger IPRs depending, e.g., on δg and δ0 as
shown in Fig. 6. In the case of δ0 = 0, the two midgap
states exhibit identical probability profiles |ψn|2 as dis-
cussed above, so their IPRs are also the same though in-
creasing monotonically with δg. In the case of δ0 = 0.4,
the midgap state in the lower (upper) band gap is more
localized (extended) with a larger (smaller) IPR as com-
pared to the two midgap states attained with δ0 = 0.
We further note from the inset that in this case, the IPR
of the upper midgap state grows more rapidly than, and
finally approaches, that of the lower midgap state as we
increase δg.

Finally, we point out that the midgap states are topo-
logically protected in spite of the absence of unitary
and/or anti-unitary symmetries in our model. The topo-
logical protection here is associated with the dark states
decoupled from all lossy sites [25, 27, 28], and can be
proved by introducing disorders in both coupling con-
stants and on-site potentials, i.e., gβ → gβ + ρβ,m (β =
0, l, r) and δ0 → δ0 + ∆m with −0.05 ≤ {ρβ,m, ∆m} ≤
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FIG. 7. (Color online) Real (a) and imaginary (b) energy spectra of H(m) against coupling imbalance δg in the presence of
disorders with {ρβ,m, ∆m} ∈ [−0.05, 0.05]. The gray square and circle correspond to δg± in the case of δ0 = 0.4, respectively.
Real-space wave functions of the lower midgap states with δg = 0.1 (c), the upper (d) and the lower (e) midgap states with
δg = 0.4. The blue lines and red circles correspond to the cases without and with disorders, respectively. Other parameters
are the same as in Fig. 2.

0.05 being four sets of independent real random numbers.
We can find from Figs. 7(a) and 7(b) that both midgap
states persist within the corresponding band gaps and re-
main stable (i.e., the imaginary parts of their eigenvalues
remain vanishing) even in the presence of all types of dis-
orders. The two staggered topological transition points
are insensitive to the disorders as well, so they still can
be predicted by δg±. We also illustrate in Figs. 7(c)-7(d)
the wave functions of relevant midgap states attained
with (red circles) and without (blue lines) disorders. The
highly coincident wave functions further verify that the
midgap states in our model are robust against disorders
as those in symmetry-protected TIs.

IV. CONCLUSIONS

In summary, we have studied the nontrivial topological
features of a 1D lossy trimerized lattice by focusing on
two topological invariants, i.e., the mean displacement
〈∆m〉 and the total Zak phase. It is found that a two-
step phase transition of quantum transport could occur
between 〈∆m〉 = 0 and 〈∆m〉 = 1 through a fractional
number, whose value and extension can be easily tuned
by modulating the on-site potentials of neutral sites and
the initial state of lattice excitation. We have also re-
vealed that each topological transition corresponds to a
dark state decoupled from the lossy sites, associated to
the closing point of one band gap in the real-space en-
ergy spectrum, and is accompanied by a change in the
midgap-state number (and also Ztot, the total Zak phase
in units of 2π) from ‘0’ to ‘1’ or from ‘1’ to ‘2’. The

midgap states are, in particular, topologically protected
(robust against disorders) with their localization degrees
mainly controlled by the coupling imbalance δg. Finally,
It is shown in the Appendix that the results in this paper
can also be extended to a lossy tetramerized model which
exhibits a three-step topological transition.
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Appendix: Extension to a tetramerized lattice

Here we extend our discussion to a tetramerized lattice
consisting of one lossy site (Am) and three neutral sites
(Bm, Cm, and Dm) in each unit cell. In this extended
model, the intercell (intracell) coupling constant between
sites Dm−1 (Am) and Am (Bm) is denoted by gl (gr),
while the intracell coupling constant between sites Bm
(Cm) and Cm (Dm) is denoted by gc. Note that, similar
to the trimerized lattice considered in the main text, this
system lacks chiral and inversion symmetry, but it is a
nearest-neighbor lattice with only one lossy site per unit
cell, and thus it is also expected to have a topologically
protected quantum transport [28]. By considering the
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FIG. A1. (Color online) Globally averaged displacement 〈∆m〉 (a), real (b) and imaginary (c) energy spectra of the tetramerized
model against coupling imbalance δg with δ = 0.4. The gray square, circle, and triangle correspond to δg± and δg0 in this
case, respectively. Real-space wave functions of the midgap edge states with δg = −0.1 (d), δg = 0.2 (e), and δg = 0.5 (f).
The blue solid, red dashed, and green dotted lines correspond to the midgap states in the lower, middle, and upper band gaps,
respectively. Other parameters are γ = 0.2 and N = 15.

periodic boundary condition, the bulk Hamiltonian can
be given by

H(k) =


−iγ gr 0 gle

−ik

gr δ gc 0
0 gc 0 gc

gle
ik 0 gc −δ

 (A.1)

where we have assumed γa = γ, δb = δ, δc = 0,
and δd = −δ for simplicity. Likewise, we assume here
gl = gc + δg and gr = gc − δg with δg being the coupling
imbalance. To seek appropriate situations under which
dark states can be realized, we now diagonalize the sub-
space of the three neutral sites to obtain an effective bulk
Hamiltonian, i.e.,

H ′(k) =

 −iγ g+ g0 g−
g∗+ δ+ 0 0
g0 0 δ0 0
g∗− 0 0 δ−

 (A.2)

with three effective on-site potentials δ0 = 0 and δ± =

±
√

2g2c + δ2, and three effective coupling constants

g0 =
gcgr − gcgle−ik√

2g2c + δ2
,

g± =
gr(δ ±

√
2g2c + δ2)− gl(δ ∓

√
2g2c + δ2)e−ik

2
√

2g2c + δ2
.

(A.3)

In this case, we have the new bulk state |ψk〉 = ak|a〉 +
b+k |b+〉+ b0k|b0〉+ b−k |b−〉 with

|b0〉 =
gc |b〉 − δ |c〉 − gc |d〉√

2g2c + δ2
,

|b±〉 =
δ |b〉+ 2gc |c〉 − δ |d〉

2
√

2g2c + δ2
± |b〉+ |d〉

2
.

(A.4)

We can see clearly from Eq. (A.3) that (i.) g0 = 0
when k = 0 and gl/gr = 1 (δg0 = δg|g0=0 = 0) such
that |b0〉 becomes a dark state; (ii.) g± = 0 when k = π

and gl/gr = (
√

2g2c + δ2 ± δ)/(
√

2g2c + δ2 ∓ δ) (δg± =

δg|g±=0 = ±δ/
√

2g2c + δ2) such that |b±〉 become two
other non-degenerate dark states.

Accordingly, we expect a three-step staggered topolog-
ical transition from 〈∆m〉 = 0 to 〈∆m〉 = 1 through two
different fractional values as the coupling imbalance δg is
varied. Fig. A1(a) shows the globally averaged displace-

ment 〈∆m〉 as a function of δg in the case of δ = 0.4,
which does exhibit three phase transitions with the cen-
ter of each one exactly predicted by δg± and δg0, re-
spectively. Moreover, we can find from Figs. A1(b) and
A1(c) that each phase transition is accompanied by the
emergence or disappearance of a new midgap state lo-
calized at the right boundary and all of them are stable
in this model as well. As shown in Figs. A1(d)-A1(f),
the number of right edge states changes from ‘0’ to ‘1’ to
‘2’ to ‘3’ as δg increases across the four distinct topo-
logical phases. Once again, the three edge states ex-
hibit different localization degrees, which can be signif-
icantly enhanced by increasing δg. More generally, we
note that a 1D nearest-neighbor lattice containing p sites
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per unit cell of which only one is lossy can be classified
as a weak-bipartite system [28], and one may expect a
(p − 1)-step quantized quantum transport with (p − 2)
intermediate phases characterized by different fractional

mean displacements, and (p − 1) non-degenerate dark
states (topologically protected midgap states).
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