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The physics of the renormalization of the effective electron g-factor by the confining potential
in semiconductor nanostructures is theoretically investigated. The effective g factor for electrons
in structures with interacting nanolayers, or coupled quantum wells (QWs), is obtained with an
analytical and yet accurate multiband envelope-function solution, based on the linear 8x8 kp Kane
model for the bulk band structure. Both longitudinal and transverse applied magnetic fields are
considered and the g-factor anisotropy (i.e. the difference between the two field configurations)
analyzed over the entire space spanned by the two structure parameters: the thickness of the
active layers and the thickness of the tunneling barrier separating them. 2D anisotropy maps are
constructed for symmetric and asymmetric InGaAs coupled-QWs, with InP tunneling barriers,
that reproduce exactly known single layer or QW results, in different limits. The effects of the
structure inversion asymmetry (SIA) on the mesoscopic g-factor renormalization are also discussed,
in particular the negative anisotropies for thin layer structures. Such multi-layer structures form
an excellent testing ground for the theory and the analytical solution presented, which is perfectly
consistent over the whole space of parameters, leads to helpful expressions and can guide further
research on the mechanisms of this mesoscopic renormalization.

Simple GaAs/AlGaAs quantum wells (QWs) repre-
sent the ultimate testing system for quantum confine-
ment effects and fundamental methods in condensed mat-
ter physics. For instance, the energy quantization and
the validity of the envelope-function approximation have
been verified in these nanostructures with great accuracy
and interest [1]. Semiconductor QWs support 2DEGs
and are applied in a large number of electronic devices,
in particular lasers and photo-detectors, with operation
frequencies tuned by the well width Lw [2]. More re-
cently, high quality structures with tunnel-coupled QWs
have been fabricated and used in problems and appli-
cations in the physics of exciton liquids [3], topological
transitions [4] and special field-effect transistors [5], for
example. Considering the 1D dynamics along the growth
axis, a double quantum well (DQW) behaves with respect
to the constituent QWs similarly to a biatomic molecule
with respect to the atoms. These DQW structures sup-
port interacting 2DEGs and allow for tunnelling effects
used for instance to control the charge transfer between
the active layers. With respect to single QWs, DQWs
form more general quantum structures with at least two
independent parameters: Lw and Lb, the active layer
width and that of the barrier in between, which is the in-
verse of the tunnel-coupling parameter. The single QW
limit of the DQW structures, both when Lb = 0 and
when it is sufficiently large (so that the inter-well cou-
pling is negligible), is a condition of particular interest in
the modeling of fine quantum confinement effects, as the
g-factor renormalization and the corresponding Zeeman
splitting in such nanostructures.

Due to the increasing interest in spintronics [6] and

in new schemes for quantum computation, including the
detection of Majorana fermions [7], much attention has
been given to the renormalization of the electron g fac-
tor in semiconductor nanostructures [8–18]. The meso-
scopic confining potential in semiconductor nanostruc-
tures further renormalizes the bulk effective g factor (al-
ready renormalized from the bare value 2) and intro-
duces extra anisotropies, transforming scalar g factors
into tensors. The g-factor engineering starts to be a fun-
damental part of semiconductor physics [19], however it is
still largely based only on the Roth formula for the bulk
[20] and before achieving the desired control in nanos-
tructures (quantum wells, wires etc), the problems found
when modeling and measuring this mesoscopic renormal-
ization in simple III-V QWs need to be solved.

After the work of many groups [21–39], it is by now
well established that the ground-state effective g factor
for electrons confined in regular GaAs-like QWs (gQW )
varies with Lw interpolating from the bulk barrier (Al-
GaAs) to the bulk well (GaAs) g factors, when Lw goes
from zero to a sufficiently large value; and that be-
tween these two bulk limits, gQW (Lw) depends on the
magnetic-field orientation. The difference in the QW
g factor between the magnetic-field orientations perpen-
dicular and parallel to the interfaces, gives the g-factor
main anisotropy ∆gQW (= g∥ − g⊥) which is the most
direct and critical signature of the quantum confine-
ment, and has been much investigated both theoretically
[13, 14, 17, 22, 40] and experimentally [8, 24, 26, 32, 38].
QW structures made out of different compounds were
investigated and it is known for example that, except
for very thin asymmetric wells [13], electrons in GaAs-
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like QWs have larger in-plane g factors (g∥) and ∆gQW

positive. The Lw dependence of the anisotropy is more
interesting. In symmetric QWs, the anisotropy must sat-
isfy strict bulk limits, that impose ∆gQW (Lw = 0) and
∆gQW (Lw → ∞) both exactly zero, and present a criti-
cal Lw with maximum (or minimum) ∆gQW . However it
has not been easy to observe and verify these properties.
Experimentally, special conditions for the electron spin
resonance [24] or sophisticated time-resolved techniques
[26, 32] have been necessary and, nevertheless, ∆gQW

has been measured only with large uncertainties and a
small number of samples.

From the theoretical point of view, despite the need
of corrections due to the remote bands, the envelope-
function approximation based on the 8-band Kane model
remains the most promising approach, in particular to
obtain general results and expressions, with simple phys-
ical interpretations. However, with this same approach,
there are different approximate solutions for the effective
g factor [22, 24, 31, 40]. The simple analytical solution
proposed in Ref. [40] (see also Ref. [13] for details) has
the advantages of satisfying exactly the above mentioned
bulk conditions in ∆gQW and of leading to useful ex-
pressions, but has been applied only to single layers or
QWs. The extension and application of such solution to
more complex and general structures, including for exam-
ple competing inversion asymmetry (SIA) and tunneling
effects, is a critical test of the theory and a clear step
forward in our understanding of the mesoscopic g-factor
renormalization.

This is what we do here: a detailed and complete solu-
tion for the electron effective g factor in symmetric and
asymmetric III-V interacting layers or DQW structures.
The obtained results are perfectly coherent over the en-
tire space of the structure parameters, exactly reproduce

known single QW results in the two corresponding lim-
its, and include helpful expressions and recipes for the
estimation/calculation of the effective g-factor in gen-
eral III-V nanostructures. The interacting features ob-
served between the non-interacting (single QW) limits,
as well as the effects of SIA, are simply explained in
terms of the Rashba spin-orbit coupling and the electron
wave-function in these structures. As a specific example,
2D anisotropy maps ∆gDQW (Lw, Lb) are constructed
for symmetric InP/InGaAs/InP/InGaAs/InP and asym-
metric Insulator/InGaAs/InP/InGaAs/InP multi-layer
structures, and discussed in detail. Next we present and
discuss the model calculation and then the results, before
giving a summary of the main conclusions.

A general anisotropic Zeeman response to an applied

magnetic field B⃗ is described by an effective g-factor ten-
sor g∗ij defined by the following Zeeman term in the elec-
tron effective Hamiltonian:

H∗
Z =

µ0

2
σi g

∗
ijBj , (1)

with i, j = x, y, z, σ⃗ = (σx, σy, σz) being the Pauli ma-
trices spin-vector, and µ0 = eh̄/2m0 the Bohr magneton,
with e and m0, the free electron charge and mass. In
2D structures (QWs, DQWs etc), of the nine indepen-
dent elements of g∗ only two are non zero in first order:
g∥ and g⊥, diagonal elements corresponding to magnetic
fields parallel and perpendicular to the interfaces. In this
approximation we neglect the much smaller off-diagonal
elements, which include the in-plane anisotropy.

Starting with the applied magnetic field B⃗ parallel to
the interfaces (say in the y-direction, with the growth
direction along z), the following effective Hamiltonian
for electrons in 2D structures can be easily derived from
the linear 8× 8 Kane model [40]:

H∗(z, ε) = − h̄
2

2

d

dz

1

m(z, ε)

d

dz
+

1

2

m2
0

m(z, ε)
ω2
c (z − zc)

2

+Ec(z) +
µ0

2
σy

{
g0 −

4m0

h̄2

[
β(z, ε) + (z − zc)

d

dz
β(z, ε)

]
+ δgrem(z)

}
B . (2)

All different terms above are easily recognized, the last
one being the effective Zeeman interaction; g0 (= 2) being
the bare electron g factor, ωc = eB/m0 the cyclotron fre-
quency, β(z, ε) the spin-orbit coefficient, d

dzβ = αR the
so-called Rashba coupling parameter [41–43], δgrem(z)
the remote bands correction and zc = −ℓ2kx the center
of the cyclotron orbit with magnetic length ℓ =

√
h̄/eB

(note that the Hamiltonian does not depend on x, so
that a plane wave was chosen for the x-depend part
of the wave-function). In addition, Ec(z) describes the
conduction-band-edge profile, and for completeness, we

recall that the energy-dependent effective mass and spin-
orbit coefficient are given by

1

m(z, ε)
=
P 2

h̄2

[
2

ε− Ev(z)
+

1

ε− Ev(z) + ∆(z)

]
(3)

and

β(z, ε) =
P 2

2

[
1

ε− Ev(z)
− 1

ε− Ev(z) + ∆(z)

]
, (4)

where P is the Kane matrix element, Ev(z) (= Ec(z) −
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FIG. 1. (Color online) 2D maps of the g-factor anisotropy for electrons in symmetric (a) and asymmetric (b) InGaAs/InP
DQW structures. The anisotropy is given by the color code on the right. Among other features discussed in the text, note
the large negative values of the anisotropy in asymmetric structures with very thin layers, in the lower left angle of the map,
right next to the black area on the left, which is the region with no bound states allowed. For the band profile and parameters,
please see Figures 2 and 3.

Eg(z)) stands for the valence-band edge profile and ∆ is
the valence-band spin-orbit energy splitting.
It is easy to check that the above effective Hamiltonian

(2) satisfies exactly three well known and fundamental
limits: bulk (no z-dependence), no spin-orbit (β = 0)
and zero-field (B = 0). More important here though is
that in the limit of B → 0, g∥ can be obtained in first
order perturbation theory. One simply compute the ex-
pectation value ⟨H∗

Z⟩ψ0 with the unperturbed eigenstate
ψ0 (with energy ε0). The unperturbed problem is that
for B = 0, i.e. H∗(B = 0)|ψ0⟩ = ε0|ψ0⟩. By recalling
that in an undoped (flat-band) structure β(z) is given by
a step function, with discontinuous jumps at each inter-
face (where it changes from one bulk value to another),
one clearly sees that g∥ = ⟨gbulk⟩ψ0 +∆g2D, i.e. sum of
the bulk average plus an interface contribution [40]

∆g2D = (4m0/h̄
2)⟨αR(z, ε0) (z0 − z)⟩ψ0 , (5)

where z0 = ⟨z⟩ψ0
. Even for 2D structures with band pro-

files far from flat, there is always the αR ̸= 0 contribution
at the interfaces, which is proportional to δβ = βw − βb,
the only one for flat-bands and often the dominant one.
Since the bulk average is independent of the field and/or
growth orientation, ∆g2D is identified as the g-factor
anisotropy because, in the same order of approximation,
one finds g⊥ = ⟨gbulk⟩ψ0 . Despite the larger symme-
try, the theory for the perpendicular configuration is less
straightforward [13, 31], nevertheless, the result could not
be simpler, more reasonable and in better agreement with
the experiments [23, 25, 26, 32, 36]. In a more usual form,
the averaged gbulk can be written in terms of the main
parameters as:

g⊥ = g0 −
∑
i=b,w

(
m0

mi(ε0)

2∆(i)

3ε
(i)
g (ε0) + 2∆(i)

− δg(i)r

)
Pi ,

(6)
where Pi is the probability to find the electron in the
layers i (well or barrier). It is an expectation value of

the bulk g factor calculated however with an (energy

dependent) effective gap ε
(i)
g (ε0) (= ε0 − E

(i)
c + E

(i)
g );

this formula generalizes that of Roth et al. for the bulk
[20] and is part of our analytical solution for the g-factor
renormalization in 2D structures. It is particularly useful
when the electron density of probability is concentrated
in the active layers only, so that g⊥ is determined by the
confinement energy shift only, as already observed ex-
perimentally [36]. The known bulk formula is recovered
in limits of Lw → 0 and of sufficiently large Lw, when
εbg(ε0) → Ebg (with Pw = 0 and Pb = 1) and εwg (ε0) → Ewg
(with Pw = 1 and Pb = 0) respectively (note that the
energy dependent effective mass also goes to the bulk
band-edge effective mass, i.e. in these bulk limits one
has respectively mb(ε0) = m∗

b and mw(ε0) = m∗
w).

As a practical example let’s consider
InP/InGaAs/InP/InGaAs/InP symmetric DQWs
and Insulator/InGaAs/InP/InGaAs/InP asymmetric
DQWs structures, which depend on the same set of
parameters, formed by the width of the InGaAs and
(middle) InP nanolayers, Lw and Lb, plus their bulk
band parameters and band offset, and can then be better
compared in order to assess the effects of SIA on this
mesoscopic renormalization.

The recipe is then: for each point in the space spanned
by the two varying parameters, Lw and Lb, we 1) solve
the unperturbed problem to obtain ψ0 and ε0, the wave-
function and energy of the ground state of the Kane’s
DQW problem; then 2) calculate z0 = ⟨z⟩ψ0

and the

probabilities Pi =
∫
i
|ψ0|2dz; and finally 3) substitute

them into the equations above and get ∆gDQW , gDQW⊥
and gDQW∥ .

With a color code, Figure 1 shows the obtained
anisotropy maps for symmetric (a) and asymmetric (b)
DQW structures, showing rich landscapes with qual-
itative differences, particularly in the strong coupling
regime at the small Lb region. Note first that for the
symmetric structures (SDQWs), the Lw-dependence of
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FIG. 2. Detailed results for the effective g factor of electrons in InGaAs/InP symmetric DQW structures, illustrated in the inset,
with examples of the three different interacting regimes, corresponding to inter-well barrier width Lb zero, intermediate and
sufficiently large; Lw = 2 nm. Layers of InP and In0.53Ga0.47As are considered with the following parameters: EInP

g = 1.424

eV , ∆InP
so = 0.108 eV , g∗InP = 1.2; and EInGaAs

g = 0.813 eV , ∆InGaAs
so = 0.326 eV , g∗InGaAs = −4.5 and m∗

InGaAs = 0.041 me;
[44] with a conduction-band offset of 0.25 eV [45]. It is plotted: in (a) ψ0(z), and, as a function of Lw, g⊥, g∥ and ∆g, in (b),
(c) and (d), respectively. In (a), Lb varies from zero (on top) up to 30nm (bottom) in units of 0.2 nm, used also in the other
plots. In (d) one sees the anisotropy ∆gSDQW interpolating from one single QW limit to another, as Lb goes from zero up to
a sufficiently large value, as discussed in the text, and the inset shows the comparison with available experimental data [24].

the anisotropy for different values of Lb always satisfies
the bulk conditions; i.e. independent of Lb, the g-factor
anisotropy goes indeed to zero as Lw → 0 or ∞, and that
∆g presents always a single maximum, limited though
by the maximum ∆gQW . By increasing the width of the
InP barrier between the InGaAs nanolayers, a continu-
ous crossover from one non-interacting single QW limit
to another is obtained (i.e., from a 2Lw wide QW to an
Lw one); one exactly obtains ∆gSDQW (Lw, Lb = 0) =
∆gQW (2Lw) and ∆gSDQW (Lw, Lb → ∞) = ∆gQW (Lw).
Probably the most interesting difference seen in asym-

metric DQWs is the large negative anisotropies (down
to ∆g = −2.4) seen in the small area at the lower left
angle of the map, corresponding to thin layer structures,
just on the right of the black area, which is the region of
the asymmetric structures with no allowed bound states.
The differences in g-factor anisotropy between SDQWs
and ADQWs are better understood with their corre-
sponding explicit expressions. In flat-band structures,
the expectation value in Eq. 5 is easily computed and
∆g2D is seen to be given in terms of the density of prob-
ability P (= |ψ0|2) at the different interfaces. In SDQWs
there are only two non-equivalent interfaces, called 1 and
2, and one gets:

∆gSDQW = [(P2 −P1)Lb + 2P2 Lw]
4m0 δβ

h̄2
, (7)

with the z-origin taken at the middle of the structure (see
Fig.2), thus z0 = 0, P1 = |ψ0(Lb/2)|2 and P2 = |ψ0(Lw+
Lb/2)|2. In the ADQWs here considered, instead, with
the z-origin taken at the leftmost infinite barrier with
|ψ0(z = 0)|2 = 0 (see Fig.3), three non-equivalent inter-
faces contribute (at z = Lw, Lw + Lb, 2Lw + Lb), and
numbering them from the left one gets:

∆gADQW =
[
(P3 − P2 + P1) (Lw − z0)

+ (P3 − P2)Lb + P3Lw

]4m0 δβ

h̄2
. (8)

These expressions complete the analytical solution and
make clear each feature of the maps in Figure 1, with a
look at the corresponding ψ0, as well as at the individ-
ual elements g⊥ and g∥. See for instance the results in
Figures 2 and 3 for Lw = 2nm SDQWs and ADQWs re-
spectively, with varying Lb in a fine grid (0.2nm), where
(a) shows ψ0(z), (b) g⊥, (c) g∥ and (d) ∆g, and the insets
give examples of the three different interacting regimes,
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FIG. 3. Unperturbed wave-function and renormalized effective g factors for asymmetric DQW structures of the type
Insulator/InGaAs/InP/InGaAs/InP , illustrated in the inset. Lw and Lb give the width of the InGaAs active layers and
that of the tunneling InP barrier. The parameters used were as in Figure 2. The differences seen with respect to the SDQW
results, derive from the SIA and are explained with the Rashba spin-orbit coupling in these structures (see the discussion in
the text).

i.e. the non-interacting single QW, in the limits of Lb = 0
and Lb >> Lw, and the coupled regime in between.

The SDQW and ADQW ψ0 are quite different; in
ADQWs, |ψ0|2 is always concentrated in only one layer
(that on the right, far from the large barrier on the left),
while in SDQWs it splits equally between the two. To
this corresponds an important qualitative difference also
in z0 as a function of Lw and Lb; while it is always zero
in SDQWs, in ADQWs instead, it does vary significantly
and is responsible for the negative anisotropies in very
thin layer structures. In such thin layer limit, ψ0 de-
scribes states with energy close to the top of the InP
barrier, near the region with no allowed bound states,
and feels strongly the asymmetry of the confining poten-
tial. For this reason the SDQW and ADQW results in
this regime present larger contrast, and the ADQW z0
is pushed away from the larger barrier, leading to the
negative anisotropies.

Experimentally, the g-fator renormalization in InGaAs
nanolayers has been investigated by Kowalski et al. [24],
and more recently also by Herzog et al. [8]. Despite a sign
controversy, the large confinement-induced anisotropy of
the g factor in InGaAs QWs was confirmed in both stud-
ies. Modulation doping structures were used and a direct
comparison with theory would require precise knowledge
of the structure parameters and its self-consistent band-

profile. Nevertheless, in the inset of Fig. 2 (d) we com-
pare our flat-band results with plain data of Ref. [24]
and obtain a reasonably good agreement, similarly to
that already shown for GaAs systems [40]. Note that
the curve in the inset is for symmetric QWs, which for
this experimental Lw range, coincide with the results for
the asymmetric QWs considered here. However, stud-
ies of samples with symmetric and asymmetric InGaAs
DQW structures are still necessary in order to fully verify
the above predictions for the large g-fator renormaliza-
tion and anisotropy in these structures with interacting
nanolayers.

Summarizing, we have solved the g-factor renormal-
ization in III-V semiconductor DQW structures, within
the multiband envelope function and perturbation ap-
proximations using the 8 × 8 Kane model for the bulk.
Symmetric and asymmetric structures have been consid-
ered. Useful expressions are derived which explain well
the available experimental data, and are applied to cal-
culate the main effective g-factor components for elec-
trons in InP/InGaAs/InP/InGaAs/InP SDQWs and
Insulator/InGaAs/InP/InGaAs/InP ADQWs. With
the resulting g-factor anisotropy as a function of the
InGaAs-layer width and the middle InP -layer width,
2D maps were then constructed and compared to assess
the effects of SIA on the g-factor mesoscopic renormal-
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ization. The qualitative differences are simply explained
with the structure’s unperturbed wave-function ψ0. Be-
sides the specific numerical predictions for the InGaAs
DQW structures, the overall consistency of the results,
shown over the whole space of the structure’s parameters,
and the general expressions derived give enough ground
to believe that the present simple and transparent calcu-

lation can guide/help further research to fully understand
the mesoscopic renormalization of the electron g factor
in nanostructures.
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