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Understanding the effects of disorder on the light propagation in photonic devices is of major importance from
both fundamental and applied points of view. Unidirectional reflectionless and coherent perfect absorption of
optical signals are unusual yet fascinating phenomena that have recently sparked an extensive research effort
in photonics. These two phenomena, which arise from topological deformations of the scattering matrix S

parameters space, behave differently in the presence of different types of disorder, as we show here for a lossy
photonic crystal prototype with a parity-time antisymmetric susceptibility or a more general non-Hermitian one.
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I. INTRODUCTION

Artificially engineered (optical) materials offer an enor-
mous degree of freedom for manipulating (light) waves, as
they provide nearly arbitrary variations in the components
of their effective permittivity. Among them, unidirectional
reflectionless (URL) media [1–3], where reflection from
one side is significantly suppressed, and coherent perfect
absorption (CPA) media [4–10], where the two-sided incident
waves are completely quenched, are extensively studied wave
phenomena, especially in optics [6,9–17]. On-chip implemen-
tation of URL media, e.g., is expected to underpin a new
generation of photonic devices [18], while CPA media clearly
provides an additional flexibility to tune absorption when
compared to perfect one-port absorbers.

A great number of these applications rely on crystal
structures where order and periodicity are essential attributes.
Most ubiquitous among them are photonic crystals [19] that
exploit order and periodicity on the scale of the wavelength
to manipulate the phase and flow of light beams either in the
form of a familiar solid distributed Bragg reflector [20] or in the
form of a more sophisticated atomic crystal structure [21,22].
Disorder becomes then a detrimental feature that is best
avoided or minimized to improve optical performance.

Disorder due, e.g., to the imperfect manufacturing process
inevitably exists also in most of the photonic crystals currently
being used to implement URL and CPA. Thus it is essential
to assess how robust these two phenomena are in the presence
of variant types of disorder. Exploiting the fact that coherently
driven multilevel atoms have the uncommon advantages
of real-time all-optical tunable and reconfigurable capabili-
ties [23–29], we focus here on a realistic atomic photonic
crystal structure [30–42] where the effect of disorder on URL
and CPA phenomena could be simultaneously assessed.

More specifically, we use a lossy atomic crystal lattice
with a PT -antisymmetric or more general non-Hermitian
susceptibility [2,43,44], known to exhibit both URL and CPA,
to assess the robustness of these two phenomena against
(i) uncorrelated and (ii) self-correlated random fluctuations
in the typical structural or geometric lattice parameters [45].
Disorder archetypes in the width (d) of the atomic density
distribution within a unit cell and in the period (a) of the
cold-atomic lattice for each unit cell are briefly illustrated in

Sec. II and investigated in Sec. III through numerical com-
putation of the atomic crystal reflectivities and the scattering
matrix eigenvalues. The main conclusions of our work are
summarized in Sec. IV.

II. THE MODEL

A. The photonic crystal

Our atomic photonic crystal is shown in Fig. 1(a). We
consider a one-dimensional (1D) atomic lattice of period
a = 0.5 λo/ cos θo, with λo being the wavelength of the
red-detuned laser beams forming the dipole traps and θo being
the angle between the intersecting dipole-trap laser beams [not
shown in Fig. 1(a)] and the lattice axis along −→

z . Within the
j th unit cell, the trapped atoms are taken to have a Gaussian
density distribution,

Nj (z) = N
1√

2πd2
exp[−(z − zj )2/2d2], (1)

with N being the average density and d the width of the
atomic distribution at the j th cell location, zj = j × a. Such
atoms are driven into the four-level N configuration by three
coherent fields of frequencies (real amplitudes) ωp (Ep),
ωc (Ec), and ωd (Ed ) [2,43] [see Fig. 1(b)]. The weak probe
field ωp, moderate coupling field ωc, and strong dressing
field ωd couple, respectively, the allowed transitions |1〉 ↔ |3〉,
|2〉 ↔ |3〉, and |2〉 ↔ |4〉. The corresponding detunings (Rabi
frequencies) are �p = ωp − ω31,�c = ωc − ω32, and �d =
ωd − ω42 (�p = Ep · d13/2h̄, �c = Ec · d23/2h̄, and �d =
Ed · d24/2h̄) with ωij = ωi − ωj being resonant transition
frequencies and dij being electric-dipole moments (i,j =
1,2,3).

Under the rotating-wave and electric-dipole approxima-
tions, solutions of density matrix equations in the j th cell
yield, for a weak-probe susceptibility (�c = 0),

χpj
(z) = Nj (z)d2

13

2ε0h̄

i{γ12 − i[�p + δds(z)]}
�2

c + (γ − i�p){γ12 − i[�p + δds(z)]} ,

(2)

where we have phenomenologically introduced the dephasing
rates γij with the assumption γ13 = γ14 = γ � γ12. Note that
the dressing field comprises a red-detuned traveling-wave
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FIG. 1. The atomic photonic crystal. (a) Cold 87Rb atoms, loaded in a 1D optical lattice (black solid curve) of period a and subject to
a three-component dressing field (red dashed curve) as in (c), are used to realize the atomic photonic crystal of Sec. II. The atoms suffer a
space-dependent dynamic level shift with the same periodicity, but phase shifted (φd ) with respect to the optical lattice. The incident probe electric
field amplitudes (E−

R ,E+
L ) are scattered by the atomic crystal into the outgoing electric field amplitudes (E−

L ,E+
R ) through a process described

by the scattering matrix S in Eq. (6). For fields (E−
R ) incident from the right, e.g., outgoing amplitudes consist of waves (E−

L ) transmitted with
amplitude tR in the −z direction as well as waves (E+

R ) reflected with amplitude rR in the +z direction, and likewise for fields (E+
L ) incident

from the left and reflected (transmitted) with amplitude rL (tL); while, in general, rL �= rR, tL = tR = t . URL occurs when either RL or RR

vanishes, whereas CPA corresponds to vanishing outgoing fields (E−
L = E+

R = 0) for a specific incident configuration of fields. (b) The 87Rb
atoms are driven into a four-level N configuration by a weak near-resonant probe field (green) on the |1〉 ↔ |3〉 transition, a moderate resonant
coupling field (blue) on the |2〉 ↔ |3〉 transition and a strong far-detuned dressing field (red) on the |2〉 ↔ |4〉 transition. (c) The probe, with Rabi
frequency �p and detuning �p , and the coupling, with Rabi frequency �c and �c = 0, propagate in the z direction. The dressing field has instead
a TW component propagating in the x direction, with detuning −�d , and a SW component modulated in the z direction, with detuning +�d .

(TW) component and a blue-detuned standing-wave (SW)
component so as to yield a small space-dependent dynamic
shift [43],

δds(z) = �2
d

�d

cos[2(kdz − φd )] ≡ δd0 cos[2(kdz − φd )], (3)

for level |2〉 (|�d | � �d ). Both forward and backward beams
of the SW dressing component [see Fig. 1(c)] are allowed
to have a small angle θd relative to the lattice axis −→

z

and we can attain kd = π/a by modulating the two small
angles θo and θd even if λd �= λo. The shift φd is the (phase)
mismatch between the optical lattice (black solid curve) and
the space-periodic dynamic shift δds(z) (red dashed curve)
arising, respectively, from the dipole-trap beams and from
the dressing field beams. In particular, for φd = ±π/4 and
�p = 0, δds(z) turns out to be a sine function of z, i.e., in
quadrature with the atomic density distribution Nj (z) along
the optical lattice. In this case, the correlated modulations in
Nj (z) and δds(z) result in a PT -antisymmetric susceptibility
with its real (imaginary) part being an odd (even) function
of the position z [2,43]. This implies, in particular, both
that the system is a pseudo-Hermitian one [46] and that it
satisfies the spatial Kramers-Kronig relations [3]. In the case

of φd �= ±π/4 or �p �= 0, however, χpj
(z) will no longer be

pseudo-Hermitian.
Although in atomic photonic crystal structures typical probe

susceptibilities provide periodic modulations with very small
contrasts of refractive index, sizable reflectivities may still
be observed, as shown in Fig. 2, due to Bragg reflection
for probe wave vectors kp very close to π/a. This can be
attained by small tunings of the probe misalignment angle (θp)
with respect to the crystal z axis. Within different parameter
regimes than used here, even fully developed photonic stop
bands may be obtained [47]. Two entirely different regimes
of symmetric Figs. 2(a) and 2(b) and asymmetric [Figs. 2(c)
and 2(d)] reflectivities are achieved in the absence or presence
of the driving field, respectively. In the former case, the
photonic crystal has a mirror symmetry (RL = RR) associated
with a standard electromagnetically induced transparency
(EIT)-probe susceptibility ( configuration) [48] vanishing,
in particular, at two-photon resonance (�p = �c = 0) where
we observe zero-reflectivity dips (RL = RR = 0). In the
latter case, we have RL �= RR with the maximal reflectivities
difference occurring surprisingly at �p = �c = 0. Quite
large left-right asymmetries can actually be achieved through
optimal tuning of the probe parameters {kp,θp}, as discussed
in details in Sec. III.
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FIG. 2. (a, b) Symmetric reflectivities spectra (RL = RR) as a
function of detuning �p for wave vectors kp close to the Bragg
resonance “without” the driving field (δd0 = 0). The black-square,
red-circle, and blue-triangle curves correspond, respectively, to
λp/ cos θp = 800.00, 799.75, and 799.50 nm. The lattice parameters
are a = 10d = 400 nm, λo = 800.00 nm, and θo = 00. (c, d)
Asymmetric reflectivities spectra (RL �= RR) against �p as above, but
“with” the driving field (δd0 = 1.2 MHz) whose parameters are λd =
794.98 nm, θd = 6.40, and φd = π/4. Other parameters suitable to
cold 87Rb atoms are γ = 3.0 MHz, γ12 = 0, �c = 0, �c = 2.5 MHz,
d13 = 2.0 × 10−29 C m, L = 0.6 mm, and N = 2.0 × 1012 cm−3.

One important application of PT -antisymmetric suscepti-
bilities is to realize high-contrast asymmetric reflectivities in-
cluding fully unidirectional reflection, which one can examine
by directly adopting transfer matrix methods to Eq. (2) [47]. To
this end, we first derive the 2 × 2 unimodular transfer matrix
Mj of the j th lattice site by dividing the period into, e.g., 100
thin layers of identical thickness δz but distinct atomic density
Nj (zl) for l ∈ {1,100}. The transfer matrix of such a thin layer
is

mj (zl) = 1

tj (zl)

[
t2
j (zl) − r2

j (zl) +rj (zl)

−rj (zl) 1

]
, (4)

with the corresponding reflection and transmission complex
amplitudes rj (zl) and tj (zl) determined by the complex
refractive index npj (zl) 
 1 + χpj

(zl)/2 [47]. The j th-period
matrix is then

Mj = mj (z1) × · · · × mj (zl) × · · · × mj (z100),

in terms of which the transfer matrix for a 1D atomic lattice of
length L = (2k + 1)a can be written as

M2k+1
0 = M−k · · · M0 · · · M+k. (5)

From (5), the probe complex amplitudes t, rL, and rR at
both lattice ends lead to the following expressions for the
transmittivity (T ) and reflectivities (RL,R):

T = |t |2 =
∣∣∣∣ 1

M2k+1
0(22)

∣∣∣∣
2

, RL = |rL|2 =
∣∣∣∣M

2k+1
0(12)

M2k+1
0(22)

∣∣∣∣
2

,

RR = |rR|2 =
∣∣∣∣M

2k+1
0(21)

M2k+1
0(22)

∣∣∣∣
2

,

and to the scattering matrix

S =
[

t rL

rR t

]
(6)

relating the outgoing field amplitudes (E−
L and E+

R ) to the
incoming field amplitudes (E−

R and E+
L ).

For the specific representation (6) of matrix S [49] with
eigenvalues

λ±
s = t ± √

rLrR,

URL occurs when either rL or rR vanishes, corresponding to
a non-Hermitian degeneracy [50] of matrix S also known as
an exceptional point [51,52], whereas CPA, on the other hand,
occurs when

λ+
s = 0 or λ−

s = 0,

i.e., when det(S) = 0 (the latter condition being independent
of the S-matrix representation chosen).

B. The disorder

Cold atoms in disordered potentials have been extensively
investigated [29,53–57], especially in connection with Ander-
son localization [58]. Here, we are not interested in the atomic
dynamics in random potentials per se, but only in the effects
that a small disorder perturbing the periodic atomic distribution
may have on the atomic crystal optical response, in much the
same way as is done by the random perturbation of a speckle
potential when superposed to an ideal optical lattice [58].
Perturbing the ideal periodicity of the real and imaginary parts
of the local probe susceptibility χpj

(z) as well as their
phase relation may, in fact, hamper the ideal URL and CPA
regimes [2,44] that one attains in the absence of disorder.
This is examined in the following by introducing disorder
in both geometrical and structural parameters whose random
fluctuations are responsible for departures from ideal URL and
CPA regimes.

Uncorrelated disorder. We start by considering disorder in
the width of the atomic spatial distribution at each lattice site
[see Fig. 1(a)]. Such an uncorrelated structural disorder may
be modeled by introducing random variations of width d in
Eq. (1), which thus become functions of the j th site as

d → dj = d + δdj = d + d × δj . (7)

Since we do not know a priori how large a random deviation
from the average width d should be to observe departures
from the ideal URL and CPA regime [2,44], we introduce
a disorder-strength parameter. The latter is taken to be the
largest variation �d in the width of the Gaussian distribution
in Eq. (1) such that

|δdj | � �d � d. (8)

Thus, {δj } in Eq. (7) represent sequences of uncorrelated
random numbers [45] uniformly distributed, respectively, in
the interval [−�d/d,�d/d]. This source of structural disorder
represents how the ideal atomic distribution sketched in the
first row of Fig. 3 is affected by uncorrelated random variations
in the width of the Gaussian distribution. Such a randomly
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FIG. 3. Disorder models. (a) Schematic atomic distribution of
an ideal lattice. (b) Structural disorder entailing “uncorrelated”
fluctuations in the atomic spatial distribution width dj [Eq. (7)] at each
lattice. (d) Geometric disorder entailing “uncorrelated” fluctuations
δzj in the site position zj [Eq. (9)] of each lattice and (c) concomitant
phase variations 2φdj

[Eq. (10)] with respect to the lattice site
[see Fig. 1(a)]. (e) Geometric disorder entailing “self-correlated”
fluctuations of the position z

(c)
j [Eq. (11)] arising from random

variations δzj (in color) at all previous site positions along with the
concomitant phase mismatch 2φ

(c)
dj

[Eq. (12)].

perturbed (atomic) photonic lattice is sketched in the second
row of Fig. 3.

Lattice disorder may also arise from random perturbation
of the potential well position zj . Such an uncorrelated
geometric disorder is accounted instead by introducing random
fluctuations of positions zj in Eq. (1) as

zj = aj + δzj = aj + aζj , (9)

where a is the lattice period. Similarly to {δj } in Eq. (7),
here {ζj } represent sequences of uncorrelated random numbers
uniformly distributed in the interval [−�a/a,�a/a], with
�a � a. It is worth noting that in the setup of Fig. 1, the
disorder on the site position is accompanied by a variation of
the phase mismatch φd , which in turn becomes a function of
positions zj ,

φdj
= φd − π

a
zj = φd − πζj ; (10)

this is to be intended as a specific form of fluctuation of the
phase mismatch, determined by the disorder in site positions
leading to the randomly perturbed lattice sketched in the third
and fourth row of Fig. 3.

Self-correlated disorder. We then consider a model of self-
correlated disorder where the j th-site position zj is affected
by the random variations of the positions of all previous sites
as

z
(c)
j = aj +

j∑
i=0

δzi = aj + a

j∑
i=0

ζi . (11)

The resulting random perturbation of the atomic lattice is
sketched in the fifth row of Fig. 3 and again this would entail
a phase mismatch in the form

φ
(c)
dj

= φd − π

a
z

(c)
j = φd − π

j∑
i=0

ζi . (12)

This self-correlated disorder which takes into account the
cumulative effect of layer-width fluctuations is used here
as a simple characterization of solid layered media such as
dielectric Bragg mirrors obtained by bottom-up epitaxy where
it is challenging to keep a tight control over the layer thickness
for a long growth time [59]. To this extent, it is also worth
noticing that the atomic crystal setup described in Fig. 1
can be easily adapted to describe solid crystal setups where
atoms are replaced by multilevel defect centers or impurities
such as nitrogen-vacancy (NV) diamond or rare-earth-doped
crystals [60].

C. The numerical implementation

Uncorrelated disorder algorithm. We consider a sample
of, say, 20 disorder realizations for a cold-atomic lattice of
length L = Ma, with M � 1 being the number of periods.
This is done by defining 20 arrays Rk{1,M} (k = 1,2, . . . ,20)
to store the random numbers uniformly distributed in the range
of {−0.5, +0.5}. After Rk(0), . . . ,Rk(j ), . . . ,Rk(M) have
been assigned different random values, we start to evaluate
the averaged scattering properties of a probe field incident
upon this sample by implementing each iteration of the 20
disorder realizations. Relevant results are shown in Figs. 4–13
by varying the dynamic level shift δd0 in the range of {−4.5,
+4.5 MHz} when other parameters are fixed. In the first
iteration, e.g., after calling R1(j ) to define the disordered
parameters dj or zj , we can adopt the usual numerical approach
to evaluate first the transfer matrix of the j th period, then the
transfer matrix of the whole sample, and finally the scattering
properties. Similarly, we may call R2(j ) to define the second
disorder realization, and so on for the remaining realizations.
Details for the case of uncorrelated geometric disorder are
shown in Fig. 4. Once all 20 realizations have been obtained,
a straightforward arithmetic mean procedure leads to the
averaged quantities RL,RR, λ+

s , and λ−
s .

Self-correlated disorder algorithm. This type of disorder
is studied using the same approach as above with the only
difference lying in the fact that we redefine here Rk(j + 1) =
Rk(j ) + Cj+1, with Cj+1 being the randomly called numbers
uniformly distributed in the range of {−0.5, +0.5}. We label
with k = 1,2, . . . ,20 and j = 0,2, . . . ,M again, respectively,
the iterations and the unit cells. An example for the case of
self-correlated geometric disorder is shown in Fig. 5.

It is worth noting that although, in the two algorithms above,
the random numbers are chosen to be uniformly distributed in
the range of {−0.5, +0.5} with a standard deviation ∼0.29,
nonuniform distributions may also be adopted. For a Gaussian
distribution, e.g., with a half width ∼0.34 corresponding to the
same standard deviation, all results turn out to be basically the
same as those obtained with the uniform distribution.
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FIG. 4. Uncorrelated geometric disorder (site position). Top pan-
els: Effect of uncorrelated disorder in the site position zj accompanied
by the corresponding variation of phase mismatch φdj

[Eqs. (9)
and (10)] on (a, c) probe reflectivities RL and RR as well as on
(b, d) the moduli of scattering eigenvalues |λ+

s | and |λ−
s |. Each

curve represents a different random configuration of disorder with
maximum value |�a| = 0.1a. Parameters are same as in Figs. 2(c)
and 2(d), except �p = 0 and λp/ cos θp = 800.00 nm. Bottom panel:
An example of random-number sequence [Eq. (9)] leading to one of
the 20 configurations of uncorrelated disorder.

III. RESULTS AND DISCUSSION

We examine in Fig. 6 the effects on URL and CPA of the
uncorrelated disorder in the width d of a Gaussian density
profile [see Eq. (7)] as computed in Sec. II C for the lossy
atomic lattice of Fig. 1(a). We show the reflectivities RL and
RR , respectively, in Figs. 6(a) and 6(c), while the eigenvalues
|λ+

s | and |λ−
s |, respectively, are shown in Figs. 6(b) and 6(d).

These panels indicate that both URL (the zeros of RL or
RR at |δd0| ≈ 2.7 MHz) and CPA (the zeros of |λ−

s | at
|δd0| ≈ 3.0 MHz) points are rather robust against uncorrelated
random variations (δdj ) of d. However, we should note that
both URL and, to a larger degree, CPA points slightly move
towards higher |δd0| values as the maximum amount of disorder
(�d) increases. The trivial reflectivity zeros RR = RL = 0
always appearing at δd0 = 0 for �c = �p = 0 are, however,
not affected by any kinds of disorder. URL and CPA points
may also be found [44] for φd �= π/4 and �p �= 0, in which
case our system will no longer be PT -antisymmetric or
pseudo-Hermitian [49]. We examine in Fig. 7 the effects of
uncorrelated disorder in the width d on URL and CPA for a
representative value of φd = 0.15π with �p = 1.363 MHz
[Figs. 7(a) and 7(c)] and �p = 1.525 MHz [Figs. 7(b)
and 7(d)]. The symmetry around δd0 = 0 is clearly lifted with
disorder-induced modifications similar to that in Fig. 6.

FIG. 5. Self-correlated geometric disorder (site position). Top
panels: Effect of self-correlated disorder in the site position z

(c)
j

accompanied by the corresponding variation of phase mismatch φ
(c)
dj

[Eqs. (11) and (12)]. Each curve represents a different random config-
uration of disorder with maximum value |�a| = 0.001a. Parameters
are the same as in Figs. 2(c) and 2(d), except �p = 0 and λp/ cos θp =
800.00 nm. Bottom panel: An example of 20 random configurations
of self-correlated disorder [Eq. (11)] exhibiting maximal absolute
values ∼0.02a, which are much larger than |�a|.

FIG. 6. Uncorrelated structural disorder (distribution width). (a,
c) Probe reflectivities and (b, d) scattering eigenvalues against
maximal dynamic shift δd0 for uncorrelated disorder in the distribution
widths dj [Eq. (7)]. Maximum disorder cases with |�d| = 0.5d (blue-
triangle curves) and |�d| = 1.0d (red-circle curves) are compared
to the ideal case (black-square curves) without disorder [2,44].
Red-circle and blue-triangle curves are attained through averaging
over 20 different random configurations of disorder. Parameters are
the same as in Figs. 4 and 5.
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FIG. 7. Same as in Fig. 6, except φd = 0.15π , (a, c) �p =
1.363 MHz, and (b, d) �p = 1.525 MHz, a choice which lifts [44]
the PT -antisymmetry and pseudo-Hermiticity (see Sec. II A).

In Fig. 8, we examine the effects of uncorrelated disorder
in the site position zj [see Eq. (9)], accompanied by the
corresponding variation of the phase mismatch φdj

. It is to be
noticed from comparing Fig. 6 with Fig. 8 that reflectivities RL

and RR as well as eigenvalues |λ+
s | and |λ−

s | are modified dif-
ferently with respect to the structural and geometric disorders,
being in general much more sensitive to the latter than to the
former. Increasing degrees of structural disorder, even orders
of magnitude larger than those for the geometric case, do not
destroy the crystal which remains periodic on average, hence
exhibiting still efficient reflectivity resonances (Bragg peaks).
In the case of geometric disorder, already a few percent level

FIG. 8. Uncorrelated geometric disorder (site position). (a, c)
Probe reflectivities and (b, d) scattering eigenvalues against maximal
dynamic shift δd0 for uncorrelated disorder in the site position zj

accompanied by the corresponding variation of the phase mismatch
φdj

[Eqs. (9) and (10)]. Maximum disorder cases with |�a| =
0.05a (green-diamond curve), |�a| = 0.1a (blue-triangle curve), and
|�a| = 0.2a (red-circle curve) are compared to the ideal case (black-
square curve) without disorder [2,44]. Red-circle, blue-triangle,
and green-diamond curves are attained through averaging over 20
different random configurations of disorder. Parameters are the same
as in Figs. 4 and 5.

FIG. 9. Same as in Fig. 8, except φd = 0.15π , (a, c) �p =
1.363 MHz, and (b, d) �p = 1.525 MHz, a choice which lifts [44]
the PT -antisymmetry and pseudo-Hermiticity (see Sec. II A).

of disorder changes the optical response by shifting, on the one
hand, the URL position with respect to the ideal case and by
making, on the other hand, the CPA point disappear. Somewhat
larger disorder effects are observed in Fig. 9 where the case
of φd = 0.15π is considered for �p = 1.363 MHz [Figs. 9(a)
and 9(c)] and �p = 1.525 MHz [Figs. 9(b) and 9(d)]. Different
effects of structural and geometric disorders are often found
in various kinds of otherwise periodic systems, including
photonic crystals [61–67]. As a matter of fact, geometric
disorder is especially detrimental to our setup as it implies a
concomitant variation in the phase mismatch between atomic
distributionNj (z) and dynamic shift δds(z); this point is clearly
confirmed in Fig. 10 where the phase mismatch has been
artificially set equal to its ideal lattice value (φdj

≡ φd ) (no
cross correlation between φdj

and zj ). A comparison of Fig. 8
with Fig. 10 suggests that only for moderate amounts of
uncorrelated geometric disorder both URL and CPA points
remain, whereas for increasing disorder strengths, it is the

FIG. 10. Same as in Fig. 8 where results (red-circle curve) for
uncorrelated disorder [Eqs. (9) and (10)] are compared here to results
obtained with an artificial constant value of the phase mismatch
φdj

≡ φd = π/4 (blue-triangle curve). Maximum disorder is kept at
|�a| = 0.2a for both red-circle and blue-triangle curves.
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FIG. 11. Self-correlated geometric disorder (site position). (a,
c) Probe reflectivities and (b, d) scattering eigenvalues against
maximal dynamic shift δd0 for self-correlated disorder in the site
position z

(c)
j accompanied by the corresponding variation of the phase

mismatch φ
(c)
dj

[Eqs. (11) and (12)]. Maximum disorder cases with

|�a| = 2.5 × 10−4 a (blue-triangle curve) and |�a| = 1.0 × 10−3 a

(red-circle curve) are compared to the ideal case (black-square curve)
without disorder [2,44]. Red-circle and blue-triangle curves are
attained through averaging over 20 different random configurations
of disorder. Parameters are the same as in Figs. 4 and 5.

disorder-induced phase mismatch that mostly hampers the
position where URL is to be observed and the occurrence
of the CPA effect.

Finally, we consider the model of self-correlated geometric
disorder described by z

(c)
j [see Eq. (11)] with the concomitant

phase mismatch φ
(c)
dj

. Such a cumulative disorder is fairly
common, e.g., in solids, where epitaxially grown layers are
subject to fluctuations intrinsic to the growth process. This
kind of disorder has the most dramatic effect on our photonic
atomic crystal URL and CPA points as in Fig. 11; already very
small percent fractions (0.025%) in the period fluctuations
lead to remarkable weakening of the URL and CPA effects. A
similar behavior is also observed when we use different values

FIG. 12. Same as in Fig. 11, except φd = 0.15π , (a, c) �p =
1.363 MHz, and (b, d) �p = 1.525 MHz, a choice which lifts [44]
the PT -antisymmetry and pseudo-Hermiticity (see Sec. II A).

FIG. 13. Same as in Fig. 11, where results (red-circle curve)
for self-correlated disorder [Eqs. (11) and (12)] are compared
here to results obtained with an artificial constant value of the
phase mismatch φ

(c)
dj

≡ φ
(c)
d = π/4 (blue-triangle curve). Maximum

disorder is kept at |�a| = 10−3a for both red-circle and blue-triangle
curves.

of the phase shift φd and the probe detuning �p as in Fig. 12.
Again it is the disorder-induced phase mismatch that largely
blurs the URL and CPA points as is apparent from comparing
Fig. 11 with Fig. 13.

IV. CONCLUSIONS

At variance with standard solid photonic crystal structures,
atomic photonic crystal setups [32,33,38–41] enable all-
optical control of variant disorders [29,69,70]. Here we have
addressed the issue of how robust are URL and CPA against
uncorrelated and self-correlated disorders of familiar structural
and geometric parameters, in a realistic photonic crystal
structure obtained by driving cold atoms in an optical lattice
to a multilevel EIT configuration [30–33,35–42]. We find that
both URL and CPA are generally robust against structural
disorder, though they appear rather sensitive against geometric
disorder, mainly due to a concomitant variation in the phase
mismatch between the cold-atomic density distributions and
the dressing field spatial profiles. In particular, in the case
of self-correlated disorder in the site position, CPA seems to
disappear faster than URL, at least for the disorder strengths
considered here. Needless to say, these strengths largely exceed
those observed in typical optical lattice experiments, which
conversely makes cold atoms loaded into optical lattices a
system of choice to attain URL and CPA regimes. In fact,
if disorder is not purposely introduced, e.g., via an additional
speckle potential [58,68], the optical lattice periodicity is prac-
tically ideal, as only randomness in the number of cold atoms
loaded into each well is, in general, present. To this purpose, we
have also ascertained the effect of random fluctuations δNj in
the atomic density N and found that such a source of structural
disorder entails changes in the reflectivities (RL and RR) and
the eigenvalues (|λ+

s | and |λ−
s |) that amount to a tiny fraction

of percents (∼0.2%) of the changes one would observe, e.g.,
for disorder in the distribution width d (Figs. 6 and 7).
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Finally, we note that our results may also be relevant
to acoustic waves in layered media owing to the fact that
acoustic and optical waves obey similar propagation equa-
tions [71–74]. To this extent, the realization of a coher-
ently tunable and periodically modulated acoustic response
may turn out to be an attractive prospect for acoustic
metamaterials [75–79].
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