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Reflection of waves from slowly decaying complex permittivity profiles
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Wave propagation through rapidly but continuously varying media is surprisingly subtle, and in a pair of
recent papers [Horsley et al., J. Opt. 18, 044016 (2016); Longhi, Eur. Phys. Lett. 112, 64001 (2015)] it was
found that planar media with a spatially varying permittivity ε(x) obeying the spatial Kramers-Kronig relations
do not reflect waves incident from one side, however rapid the changes in ε(x). Within this large class of
media there are some examples where the dissipation or gain is not asymptotically negligible and it has been
pointed out [Longhi, Eur. Phys. Lett. 112, 64001 (2015)] that it is impossible to define meaningful reflection and
transmission coefficients in such cases. Here we show—using an exactly soluble example—that despite the lack
of any meaningful reflection and transmission coefficients, these profiles are still reflectionless from one side
in the sense that the profile generates no counterpropagating wave for incidence from one side. This finding is
demonstrated through examining the propagation of pulses through the profile, where from one side we find that
no second reflected pulse is generated, while from the other there is. We conclude with a discussion of the effect
of truncating these infinitely extended profiles, illustrating how the reflectionless behavior may be retained over
a wide range of incident angles.
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I. INTRODUCTION

A rapid change in the speed of a wave usually results in
some reflection, a phenomenon that is well understood for very
abrupt changes. For instance, the reflection of electromagnetic
waves from an interface between two dielectric media is
governed by Fresnel’s equations [1], which have long been
used to design many things, from antireflection coatings
to interferometers. Although there may be specific angles,
such as Brewster’s angle, where the reflection from a planar
medium vanishes, it is typically nonzero. Meanwhile, a rapid
but continuous change of material properties can act on an
incident wave in a counterintuitive way ([2]). For example, a
transformation medium [3] can exhibit arbitrarily large varia-
tions of refractive index over arbitrarily small distances, while
remaining reflectionless for all incident fields. It is also known
that the Pöschl-Teller profile ε(x) = 1 + 2[k0a cosh(x/a)]−2

is reflectionless for all incident fields of frequency ω = ck0

[4–6], a property that has a deep connection with the solitons of
the nonlinear Korteweg–de Vries equation [7], and the inverse
scattering transform [8].

In recent work [9–11] it was found that there exists a very
large class of continuously varying complex valued planar
profiles that are reflectionless from one side, for all (or at
least a wide range of) angles of incidence, despite exhibiting
an arbitrarily rapid spatial variation. These inhomogeneous
media are reflectionless for waves incident from, e.g., the
left because the Fourier transform of the spatially varying
permittivity ε(x) → ε̃(k) vanishes for k < 0. By analogy
with the well-known frequency domain Kramers-Kronig re-
lations [12], satisfied by virtue of a one-sided response in
the time domain, these profiles satisfy the Kramers-Kronig
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relations with respect to the spatial coordinate x. This result
extends previous work on complex valued periodic media
found to exhibit “lop-sided” diffraction [13], or to be without
stop bands at the Brillouin zone boundary [14]. We note that
a special class of these profiles exhibit PT symmetry, which
is known to suppress reflection [15]. We also note a related
recent work by Philbin [16] that explores the possibility of
eliminating reflection over all frequencies, for a fixed angle of
incidence.

Typically, profiles satisfying the spatial Kramers-Kronig
relations exhibit an electromagnetic response that decays to
the background value (e.g., vacuum ε = 1) as a power law
rather than say an exponential, and there are subtleties about
scattering from potentials that decay slowly to zero. Longhi
has examined the additional conditions one must place on these
profiles such that the scattering states are properly defined [11],
finding that the integrated dissipation I±,

I± = lim
x→±∞

∫ x

0
Im[ε(x ′)]dx ′, (1)

must tend to a finite value. Waves propagating in profiles
where (1) is not finite continually grow or diminish as
|x| → ∞ and it becomes impossible to define meaningful
reflection or transmission coefficients. The main purpose of
this paper is to assess whether profiles that do not satisfy (1)
can in any sense be considered reflectionless from one side,
despite the ambiguity in defining reflection and transmission
coefficients. Through considering an exactly soluble example
we shall show how the two counterpropagating waves can
be identified within the contour integral representation of the
solution. In addition we shall show that reflection can be
identified as rapid spatial oscillations in the Poynting vector.
To further establish the meaning of reflection in such profiles
we numerically investigate the propagation of pulses emitted
from a source embedded in the profile, finding that no reflected
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pulse is generated when the source is placed on one side.
Finally we examine the effect of truncating these profiles to a
finite width L, where in many cases the reflectionless behavior
can be largely retained and it again becomes possible to
define unambiguous values for the reflection and transmission
coefficients.

II. PROPAGATION OF MONOCHROMATIC WAVES
THROUGH A SLOWLY DECAYING PROFILE

To keep the discussion as simple as possible, we consider
a particular permittivity profile (nonmagnetic, μ = 1) that
illustrates the nonreflecting behavior predicted in [9], but can
be treated exactly in the monochromatic limit. This profile is
defined in x ∈ (−∞,∞) as

ε(x) = 1 − A

x + ix0
, (2)

with x0 real and strictly positive [so that ε(z) is analytic in
the upper half position plane]. This profile has already been
discussed in [9] for real and positive values of A (making
it purely lossy). It is interesting to study its behavior also
for complex values of A as the profile still satisfies the
Kramers-Kronig relations in space in this case, and thus ought
to be nonreflecting for waves incident from the left. Recently,
however, subtle issues have been raised [11] related to a proper
definition of the scattering problem when the imaginary part
of the profile decays to zero very slowly. In particular, when
the imaginary part of A in (2) is not vanishing, the imaginary
part of the profile goes asymptotically to zero as −Im[A]/x,
which means that the wave either asymptotically grows or
diminishes as |x| → ∞. Note also that for purely imaginary
values of A the profile above is PT symmetric around x = 0
and has balanced loss and gain.

We demonstrate how the reflectionless behavior of the
profile in (2) can be assessed even for complex values of
A, generalizing the preliminary account presented in the
supplementary information of [9]. The propagation of a
monochromatic TE wave written as

E = Ez(x) ei(kyy−ωt) ẑ, (3)

where ky is real, with |ky | < k0 ≡ ω/c, is described by the
Helmholtz equation which in this case takes the form,[

d2

dx2
+ k2

0

(
1 − A

x + ix0

)
− k2

y

]
Ez(x) = 0. (4)

The solutions to Eq. (4) can be written in terms of Whittaker
functions (see formula 13.14.1 of [17]). But rather than
appeal to properties listed in a mathematical table, here we
directly examine the contour integral solution of (4), where
the reflection and transmission of the waves can be clearly
identified. To do this we write both solutions to (4) Ez1 and
Ez2 as a right traveling wave times an envelope,

Ezn(x) = exp(ikx)wn(x), (5)

(where n = 1,2) finding that the envelope obeys the differential
equation,

zw′′
n(z) + zw′

n(z) + κwn(z) = 0, (6)

where z = 2ik(x + ix0), k = (k2
0 − k2

y)1/2 > 0, and κ =
iAk2

0/2k. Representing w as a contour integral,

wn(z) =
∫

Cn

v(t)etzdt, (7)

where n labels the chosen contours, which pick out different
linear combinations of the two solutions to Eq. (6). Inserting
this into (6), we find after an integration by parts that∫

Cn

[
t(t + 1)

dv(t)

dt
− (2t + 1 + κ)v(t)

]
etzdt = 0,

provided that

[t(t + 1)v(t)etz]Cn
= 0,

where the subscript “Cn” indicates the difference in the
bracketed quantity at the ends of this contour. The first of
these two conditions can be satisfied if the integrand is zero,
implying that the unknown function v must be given by

v(t) = v0t
κ−1

(1 + t)κ+1
, (8)

where v0 is an arbitrary constant which we set to unity in the
remainder of this work. Having determined the quantity v to
be given by (8), we have found the general solution to the
Helmholtz Eq. (4), with different choices of the two contours
C1 and C2 in (7) picking out different boundary conditions on
the waves at infinity.

For large z the dominant contribution to the integral (7)
comes from the vicinity of the points where the phase of the
integrand is stationary, which we find to be

t± = −1

2
+ 1

z
± 1

2

√
1 + 4

z2
− 4κ

z
. (9)

To leading order the two points t± approach the branch points
as z becomes large, as t− ∼ −1 + (1 + κ)/z and t+ ∼ (1 −
κ)/z. As we shall see, for large z these two points have a
simple physical interpretation: they, respectively, represent the
left and right going waves within the profile. The reflection
from the profile can therefore be analyzed in terms of the
relative contribution of the two points t± to the value of w(z),
as x → ±∞.

Let us now examine the behavior of (7) in detail, assessing
the relative combinations of left- and right-going waves,
for the cases when waves are either incident from the left
or the right of the profile. For waves incident from the left,
we must pick the contour C such that on the far right of
the profile, the contribution from the point t = t+ dominates
the integral. One such contour is C1 illustrated in Fig. 1(b),
and loops around the right-hand branch point of the function
v(t), beginning and ending on different Riemann sheets of
this function. Meanwhile when waves are incident from the
right, the point t = t− must dominate the integral on the
far left of the profile. This is achieved with the contour C2

illustrated in Fig. 1(a), looping around the left-hand branch
point. Having drawn these two contours, and noting that
increasing x leads to a counterclockwise rotation of their end
points (the sense of rotation being determined by the sign of x0)
we can immediately see from Fig. 1 that the profile will reflect
from only one side, independent of the angle of incidence
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FIG. 1. Behavior of the integrand of w(z) [see (7)] as a function of the dimensionless variable t . The brightness is proportional to the
magnitude of the function, and the color indicates phase (advancing from zero to π in the succession, red, yellow, green, and light blue). The
integrand has a branch cut between the points t = 0 and t = −1, shown as a red dashed line, and points of stationary phase t = t± (9) are
indicated by red dots. The dashed arrows in (a) and (b) show the motion of the end points of the contours C1 and C2 as the position x is
increased or decreased, respectively. Comparing (a) and (b) we see that as x is increased (units λ = 2π/k0) from negative to positive, the end
points of the two contours move counterclockwise from the lower to upper half of the t plane. This leaves the contour C1 (waves incident from
the left) still passing through t+ only, while C2 (waves incident from the right) becomes tangled around the branch cut, leading to contributions
from both t− and t+ (inset showing how this tangled contour can be deformed into the succession of contours C1, C ′

2, and C ′
1, with the numbers

at the top indicating the Riemann sheet). When x0 < 0, the sense of rotation of the contours is reversed.

cos(θ ) = k/k0, in accordance with the predictions of [9]. As C1

is rotated counterclockwise it always passes through only one
of the points of stationary phase t+ because it loops around the
right-hand branch point. Meanwhile because C2 loops around
the left-hand branch point, when it is rotated counterclockwise
it ultimately becomes tangled around the branch cut, leading
to contributions from both t− and t+, and hence reflection.

Evaluating the integral in the respective cases of contour
C1 (incidence from the left) at large positive x [see Fig. 1(b)]
and contour C2 (incidence from the right) at large negative x

[see Fig. 1(a)] we obtain the respective forms of the waves on
the transmission side of the profile,

w1(z) =
∫

C1

tκ−1etz

(1 + t)κ+1
dt

∼ −2i sin(πκ)�(κ)|z|−κe−iiπκ/2 x → +∞, (10)

and

w2(z) =
∫

C2

tκ−1etz

(1 + t)κ+1
dt

∼ −2i sin(πκ)�(−κ)|z|κe−zeiπκ/2 x → −∞, (11)

where we have taken leading order terms in 1/z, and applied
the integral representation of the gamma function ([18],
Sec. 8.31):

�(κ) = e−iπκ

2i sin(πκ)

∫
C ′

e−t t κ−1dt, (12)

with C ′ beginning at +∞ + i0 and ending at +∞ − i0,
looping counterclockwise around the origin. Carrying out the
same procedure in the opposite limits, of C1 at large negative

x [Fig. 1(a)] and C2 at large positive x [Fig. 1(b)] we obtain
the form of the waves on the side of the profile onto which the
waves are incident,

w1(z) ∼ −2i sin(πκ)�(κ)|z|−κe−3iπκ/2 x → −∞, (13)

and

w2(z) =
(∫

C1

+
∫

C ′
2

+
∫

C ′
1

)
tκ−1etz

(1 + t)κ+1
dt

∼ −2i sin(πκ)�(−κ)e−iπκ/2

×
[
|z|κe−z − 2πieiπκ

�(1 − κ)�(−κ)
|z|−κ

]
x → +∞,

(14)

where the integral over the tangled contour C2 was evaluated
through reducing it to the succession of three contours C1, C ′

2,
and C ′

1 shown in the inset of Fig. 1(b). To obtain (14) we also
applied the identity �(κ)�(1 − κ) = π/ sin(πκ).

We have now completely determined the asymptotic be-
havior of waves incident from both left- and right-hand sides
of the profile (2). Inserting (10–14) into the expression for the
electric field (5) we have to leading order in 1/|z|, for incidence
from the left,

Ez1(x) = eikx− iAk2
0

2k
log(2k|x+ix0|)

×
{

1 x → −∞
e− Aπk2

0
2k x → +∞ , (15)
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and for incidence from the right,

Ez2(x) =
⎧⎨
⎩e−ikxe

iAk2
0

2k
log(2k|x+ix0|)e− πAk2

0
2k x → −∞

e−ikxe
iAk2

0
2k

log(2k|x+ix0|) + r eikxe− iAk2
0

2k
log(2k|x+ix0|) x → +∞,

(16)

where

r = |r|eiφ = − 2πie−2kx0e− πAk2
0

2k

�
(
1− iAk2

0
2k

)
�

(− iAk2
0

2k

) , (17)

where we have dropped the overall position independent
factors multiplying the expressions, and replaced z and κ with
their earlier definitions. These two asymptotic solutions are
clearly combinations of plane waves exp(±ikx) multiplied by
exponentials with logarithmic exponents, which for real A/k

represent logarithmic corrections to the phase of the wave,
and for imaginary A/k an overall growth or diminishing of
the wave. The logarithmic terms cannot be neglected at large
|x| and are present due to the slow decay of the profile as
|x| → ∞.

As the waves given in (15) and (16) are not of the form
exp(±ikx) at infinity, one might question whether our above
identification of “left-going” and “right-going” waves from the
contours C1 and C2 in Fig. 1 was reasonable. One indication
that our intuition is correct can be found in a WKB analysis
of the Helmholtz equation we started with (4) (see, e.g., [19])
where the two solutions representing the propagation of left-
and right-going waves in the absence of reflection and are, for
large |x|,

Ez,WKB± =
(

k2 − Ak2
0

x + ix0

)−1/4

× exp

⎛
⎝±i

∫ x

0

√
k2 − Ak2

0

x ′ + ix0
dx ′

⎞
⎠

∼ 1√
k

exp

(
±ikx ∓ iAk2

0

2k
log(1 − ix/x0)

)
, (18)

in agreement with what we identified as left- and right-
going waves in (15) and (16). Indeed, in WKB analyses of
wave propagation in inhomogeneous media it is common to
define the reflectivity and transmissivity for real permittivity
profiles that do not decay slowly to unity, sometimes even
diverging at infinity (such as the linear and quadratic profiles
treated in [19]). To calculate, e.g., reflectivity in such cases
one takes the relative magnitude of the two WKB waves
|Ez,WKB−/Ez,WKB+| on the left of the profile (assuming
there is no incoming left-going wave on the right). For real
valued profiles where ε′/ε → 0 at infinity, this value for
the reflectivity is unambiguous and approaches a constant as
|x| → ∞.

In addition in our case all other x dependent factors
in (15) and (16) are typically slowly varying compared to
e±ikx , so that the component waves are very close in form
to right- and left-going plane waves. This intuition will be
further substantiated in the next section where we consider
the corresponding Poynting vector. Moreover, in the case

Im[A] = 0 the reflectivity and transmissivity can be calculated
straightforwardly, given that the amplitudes of the left- and
right-going parts of (15) and (16) at infinity are asymptotically
constant. We obtain

TL = TR = e− πk2
0A

k , RL = 0,

RR =
∣∣∣∣∣∣

2πe−2kx0e− πk2
0A

2k

�
(
1− ik2

0A

2k

)
�

(− ik2
0A

2k

)
∣∣∣∣∣∣
2

= 4e−4kx0e− πk2
0A

k sinh2

(
πk2

0A

2k

)
, (19)

where the subscripts “L” and “R” indicate the cases of
incidence from the left and right of the profile, respectively.
We can see that the profile (2) does not reflect waves incident
from the left, independent of the values of A (real), k > 0
and x0 > 0. This is in accordance with our discussion of the
behavior of the two contours C1 and C2 shown in Fig. 1 as
well as with the findings presented in [9]. For real values of
A/k there is always some reflection for incidence from the
right, although this can become exponentially small for large
values of kx0, when the profile varies very slowly compared
to the wavelength. In the opposite limit kx0 
 1 and k0A � 1
the reflection and transmission coefficients (19) reduce to
TL = TR = RL = 0 and RR = 1 so that the profile acts as a
perfect reflector for waves incident from the right, and a perfect
absorber for waves incident from the left, properties which
in the ideal case hold for all angles of incidence. Although
we derived the above reflectivity RR for Im[A] = 0, note
that it vanishes for the purely imaginary values of A where
A = −2kmi/k2

0 (m � 0, integer), where the argument of one
or both of the gamma functions is a negative integer or zero.
For these values of A the profile is PT symmetric and for a
large fixed |x| the transmitted wave has the same amplitude
as the incident one, with a phase difference that is a multiple
of π , bearing quite a close similarity with the behavior of
PT-symmetric media at the symmetry breaking point [20].

When Im[A] �= 0 the amplitude of the exact solution
[(15) and (16)] is not asymptotically constant, and it is not
straightforward to analyze the reflectivity and transmissivity
of the profile. For k0A = +i, for instance, the amplitude
of the incident left-going wave in (16) approaching x = 0
from +∞ is amplified, as is the reflected right-going wave
moving towards +∞, while the amplitude of the transmitted
left-going wave moving towards −∞ is damped. This behavior
occurs due to the scattering profile (2) being lossy for x < 0
while exhibiting gain for x > 0, even in the limit |x| → ∞.
Yet, even in this case Im[A] �= 0, it is possible to assess the
reflectionless behavior of the profile given in (2), which is
analytic in the upper half position plane and therefore ought to
be nonreflecting for waves incident from the left [9]. Although
we cannot unambiguously define a reflection coefficient for
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the profile in these cases, one way to ascertain when the
reflectivity is zero is to consider the Poynting vector S =
E×H corresponding to the solution calculated above.

III. THE POYNTING VECTOR

The problem of determining the reflectivity of the profile (2)
when Im[A] �= 0 is similar to finding the reflectivity of waves
incident onto the interface between two homogeneous media
where the refractive indices are complex. In such cases the
amplitudes of the waves also do not tend to constant values
at infinity, but exponentially increase or decrease depending
on the direction of propagation and whether the material
exhibits loss or gain. We initially consider the case [1] of
a uniform (nonmagnetic and isotropic) medium having a
complex index of refraction n = nR + inI = √

ε in which two
monochromatic counterpropagating waves are given by

E±(x,t) = α±e±inRk0xe∓nI k0xe−eωt ẑ ≡ α±E±(x)e−iωt ẑ,

B±(x,t) = i

ω
α±

∂E±(x)

∂x
e−iωt ŷ. (20)

The time-averaged Poynting vector 〈S〉 = 〈E × H〉 (note in
our case μ = 1 so that B and H differ only by factor of
μ0) in the presence of both counterpropagating waves E =
E+ + E− is

〈S(x)〉 = 1

2μ0c
{nR(|α+|2e−2nI k0x − |α−|2e2nI k0x)

+ 2nI Im[α−α�
+e−2inRk0x]}x̂,

→ 1

2μ0c
[nR (|r|2e−2nI k0z − e2nI k0z)

− 2nI |r| sin(2nRk0x + φ)]x̂, (21)

where we applied the general result 〈Re[ae−iωt ]Re[be−iωt ]〉 =
(1/2)Re[ab�] and in the last line have set α− → 1 and
α+ → r = |r| exp(iφ), considering the left-going wave as
“incident” and the right-going one as “reflected.” When nI = 0
the Poynting vector is independent of position and is simply
the sum of the two energy fluxes corresponding to the presence
of only one wave at a time (the right-going one contributing
positively, and the left-going one negatively). Meanwhile for
nI �= 0, the individual contributions to the flux from the
left- and right-going waves depend exponentially on position.
Moreover, the net energy flux is not simply the sum of
these two contributions, but includes an additional rapidly
varying “interference” contribution which oscillates with an
amplitude independent of position. This spatially oscillating
term simply conveys extra energy to the regions where it is
dissipated most (for nI > 0) or away from the regions where it
is amplified most (for nI < 0), i.e., where the amplitude of the
electric field is larger due to the constructive interference of
the two counterpropagating waves. This spatially oscillating
contribution to the total energy flux is a qualitative hallmark
of the presence of two counterpropagating waves in a medium
with gain or loss.

We now examine the Poynting vector of the exact solution
for propagation in the profile (2) given by (15) for x →
−∞, i.e., the side onto which the waves are incident, and
consider for the sake of comparison with (21) the case of

normal incidence: k = k0 = ω/c. As above we obtain the
corresponding magnetic field (B = μ0 H) from the Maxwell
equation ∇ × E = iωB:

B1 = By1(x) e−iωt ŷ = −1

c

(
1 − A

2x

)
Ez1(x) e−iωt ŷ. (22)

Note that for large |x| we have 1 − A/(2x) � nR(x) +
inI (x) ≡ √

ε(x). The time-averaged Poynting vector is then

〈S1(x)〉 = − 1

2μ0
Re[E∗

z1(x) By1(x)]x̂,

= 1

2μ0c

(
1 − Re[A]

2x

)
|Ez1(x)|2 x̂

≈ nR(x)

2μ0c
ek0Im[A] log(2k0|x|) x̂, (23)

which depends on position, but does not exhibit any spatially
rapidly oscillating contribution and is directly analogous
to (21) (for incidence from the opposite direction) with r = 0.

For waves incident from the opposite side of the profile (2)
the Poynting vector is computed from (16) for x → +∞. The
magnetic field is now given by

B2 = By2(x)e−iωt ŷ

= 1

c
(nR(x) + inI (x))

[
e−ik0x+ iAk0

2 log(2k0|x|)

− reik0x− iAk0
2 log(2k0|x|)] ŷ, (24)

where r is now given by (17). The time-averaged Poynting
vector is

〈S2(x)〉 = − 1

2μ0
Re[E�

z2(x) By2(x)]x̂

= − 1

2μ0c
[nR(x)(e−Im[A]k0 log(2k0|x|)

− |r|2eIm[A]k0 log(2k0|x|))

+ 2|r|nI (x) sin(2k0x − k0Re[A] log

× (2k0|x|) + φ)]x̂, (25)

which exhibits rapid spatial oscillations and has the same form
of Eq. (21), albeit with a power law decay or growth rather
than an exponentially varying one.

As shown by the asymptotic solutions of the Helmholtz
Eq. (4) [(15 and 16)], when Im[A] �= 0 the amplitudes of the
waves do not reach a constant value at x → ±∞ and thus the
reflectivities RR,L and transmissivity T cannot be defined in
the usual way as asymptotic intensity ratios [as done in (19)
for Im[A] = 0]. As mentioned above, this is simply due to the
fact that gain and loss decay too slowly to zero and they are
not asymptotically negligible. This situation is closely related
to the one occurring within a homogeneous medium with a
complex refractive index [as described by (21)] in which case
it is also impossible to define the reflectivity in the standard
way due to the exponentially growing or decaying factors.
However, the presence or absence of two counterpropagating
waves can be assessed via the presence or absence of rapid
spatial oscillations in the energy flux. Therefore, we conclude
from the qualitative behavior of the Poynting vector (23)
that this represents a right-going wave which is not reflected,
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FIG. 2. (a) Shows the two exact solutions Ez1 and Ez2 of the Helmholtz Eq. (4) in the permittivity profile (2), numerically computed
from (5) and the contour integral representation (7) with the two contours shown in Fig. 1 (the two plots are offset vertically for the purposes
of visualization, and the units on the x axis are λ = 2π/k0). These two forms for the electric field correspond to waves incident from the left
and right of the profile, respectively. The choices of parameters defining the profile are k0A = 1.5 − 0.2i and k0x0 = 0.15, and the waves are
at normal incidence ky = 0. Blue solid and green dashed lines are the real and imaginary parts of Ez(x) and the thinner red line is the absolute
value. This particular profile is an example where the wave amplitude is not asymptotically constant, and the two smaller middle panels show
the behavior of the waves over a larger scale where a slow change in the overall wave amplitude is evident. (b) Shows the normalized Poynting
vector 〈Sx〉(x)/|〈Sx,max〉| calculated from 〈Sx〉 = −(1/(2μ0))Re[E�

zBy], normalized such that the maximum value in the plot is ±1. The upper
blue line is calculated for the wave incident from the left (Ez1), whereas the lower thinner green line is for the wave incident from the right
(Ez2). The lack of any rapid oscillations in the former case indicates a lack of reflection [c.f. Eq. (23)], whereas the rapid oscillations in the
latter indicates reflection [c.f. Eq. (25)].

whereas (25) corresponds to the superposition of a left-going
incident wave and a right-going reflected wave. The exact
solutions shown in Fig. 2 both at small and large distances
thus exhibit the reflectionless or reflective behavior outlined in
Sec. I and are in accordance with the results of [9].

IV. PULSE PROPAGATION

While the exact solutions of the Helmholtz equation
considered above allow for a detailed analysis of the asymp-
totic behavior of monochromatic waves incident onto the
permittivity profile (2) from the left or from the right, the
physical meaning of reflection (or lack of it) and transmission
can be further illustrated considering the propagation of finite
wave packets. This also models the more experimentally
feasible where the reflectivity of the profile is assessed

without considering propagation through the whole (infinite)
structure. We note that although it is impossible to have the
complex spatial distribution of material properties (2) for
all the component frequencies in an arbitrary pulse (due to
the frequency domain Kramers-Kronig relations), we imagine
some bandwidth over which (2) is valid. Here we discuss
several numerically calculated examples of pulse propagation
for the same profile as in Fig. 2, for normal incidence k = k0.
The pulse propagation is found through solving the Helmholtz
equation in the presence of a source at x = x0,

[
d2

dx2
+ k2

0ε(x)

]
Ez(x,ω) = −iωμ0Jz(ω)δ(x − x0),

which has the exact solution,

Ez(x,ω) = −iμ0ωJz(ω)
�(x − x0)Ez1(x)Ez2(x0) + �(x0 − x)Ez1(x0)Ez2(x)

E′
z1(x0)Ez2(x0) − Ez1(x0)E′

z2(x0)
, (26)

with Ez1 and Ez2 given by the integral representations in
Sec. I. Assuming a Gaussian spectrumJz(ω) = J0 exp(−(ω −
�0)2/(�ω)2), where �0 is the central frequency of the pulse,
�ω is the bandwidth, and J0 sets the overall amplitude,
the time-dependent field Ez(x,t) is calculated as an integral

over (26) for different frequencies ω,

Ez(x,t) =
∫ ∞

−∞
Ez(x,ω)e−iωt dω

2π
.
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FIG. 3. A Gaussian pulse is launched with central frequency �0 = cK0 = 2πc/λ generated by a current localized at positions x = −10λ

(a)–(c), and x = 10λ (d)–(f) with a bandwidth of �� = 0.3 �0. The electric field (thicker blue line) and Poynting vector (thinner red line) are
given in units of E0 = μ0cJ0�0 and S0 = E2

0/(μ0c), respectively. The vertical dashed lines indicate the region over which the permittivity is
plotted in the inset of (d) (real part, blue solid and imaginary part green with circles). It is imagined that over this bandwidth the permittivity is
given by (2) for the parameters K0A = 0.7 + 0.2i and K0x0 = 0.1 (a profile that contains regions of gain). It is useful to list these parameters for
a realistic case. For example, for a central frequency in the microwave regime �0 = 1010 rad s−1 we have λ = 0.18 m, �� = 3 × 109 rad s−1,
A/x0 = 7 + 2i and x0 = 0.003 m, which illustrates that these large index variations on the scale of millimeters will not reflect centimeter scale
waves. Notice that the reflectionless behavior is clearly identified: (a)–(c) For a source on the left there is no reflected pulse, while (d)–(f) for a
source on the right there is.

Our results are summarized in Figs. 3–5, showing that the
reflection is essentially confined to the central region of the
profile, and that from one side the pulse passes through
the central region without generating a reflected pulse. From
the asymptotic form of the waves in the profile [(15) and (16)],
we observe that for real A the transmitted pulse is reshaped,
with an exponential reduction of the higher frequency com-
ponents by the factor exp(−πAk0/2). For purely imaginary A

the frequency components undergo a phase shift, equivalent
to a displacement of the pulse by a distance π |A|/2. The
inset of Fig. 3(d) shows the permittivity profile through which
the pulse propagates. For incidence from the left the pulse
passes through a region of increasing real and imaginary ε,
before the real part suddenly drops to a negative value and
then returns to the background. Approached in this order, this
does not generate a reflected pulse. Meanwhile for incidence
from the right the pulse starts in the background region before

encountering a sudden drop in the real part of the permittivity
to a negative value (where there is also some degree of material
gain), which generates a significant reflection.

V. TRUNCATING AN INFINITE PROFILE

Even if they asymptotically tend to a constant background
value, the reflectionless permittivity profiles obeying the spa-
tial Kramers-Kronig relations [9] are always, strictly speaking,
of infinite extent, while a realistic sample will correspond in
practice to a suitable truncation of such a profile. In this section,
we discuss the effect of introducing such a truncation, and
finally we show how multiplying the reflectionless potential
with a very rapidly decaying and smooth function will preserve
the reflectionless behavior apart from the case of grazing
incidence [9].
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FIG. 4. As in Fig. 3, but for a narrower pulse bandwidth of �� = 0.1 �0, demonstrating that the nonreflecting behavior from the left is
not dependent on the pulse width.

The simplest kind of truncation is to terminate the profile (2)
at some distance from the origin |x| = L/2, and set ε = 1 for
|x| > L/2. However, in general such a truncation leads to
significant reflection due to the steplike discontinuity in ε(x),
and this reflection increases markedly as the angle of incidence
is increased towards π/2. The next simplest truncation is to
retain the continuity of ε(x), setting the permittivity to its final
value ε = εR,L = ε(±L/2) for |x| > L/2. We can calculate the
effect of such a truncation exactly, constructing the transfer
matrix [21] for propagation between the two homogeneous
regions where ε = εR,L. We write the field in the three different
regions as

Ez(x) =

⎧⎪⎨
⎪⎩

α
(+)
L e

(+)
L (x) + α

(−)
L e

(−)
L (x) x < −L/2

A1Ez1(x) + A2Ez2(x) −L/2 < x < L/2

α
(+)
R e

(+)
R (x) + α

(−)
R e

(−)
R (x) x > L/2

,

(27)

where e
(±)
L = exp[±ikL(x + L/2)] and e

(±)
R = exp[±ikR(x −

L/2)] with kR,L =
√

εR,Lk2
0 − k2

y . Demanding the continuity
of Ez(x) and E′

z(x) across the three regions (27) leads to the
pair of matrix equations,(

1 1
ikL −ikL

)(
α

(+)
L

α
(−)
L

)
=

(
Ez1(−L/2) Ez2(−L/2)
E′

z1(−L/2) E′
z2(−L/2)

)(
A1

A2

)
,

and(
Ez1(L/2) Ez2(L/2)
E′

z1(L/2) E′
z2(L/2)

)(
A1

A2

)
=

(
1 1

ikR −ikR

)(
α

(+)
R

α
(−)
R

)
,

which can be combined to eliminate A1 and A2, thus obtaining
the transfer matrix for propagation across the truncated profile,(

α
(+)
R

α
(−)
R

)

= i

2kR

1

Ez1(−L/2)E′
z2(−L/2) − Ez2(−L/2)E′

z1(−L/2)

×
(

b1+a1− − b2+a2− b2+a1+ − b1+a2+
b1−a2− − a1−b2− b1−a2+ − b2−a1+

)(
α

(+)
L

α
(−)
L

)
, (28)

where

an± = E′
zn(−L/2) ± ikLEzn(−L/2),

bn± = E′
zn(L/2) ± ikREzn(L/2). (29)

From an examination of (28) it is clear that if there is no wave
incident from the right α

(−)
R = 0 then the ratio of left- and

right-going waves on the left of the profile is given by

α
(−)
L

α
(+)
L

= −b1−a2− − b2−a1−
b1−a2+ − b2−a1+

, (30)

when (30) vanishes then the truncated profile can be said to be
reflectionless from the left. An examination of the asymptotic
form of the solution Ez1 (15) shows that on both the left and
the right of the profile we have E′

z1 − ikL,REz1 = 0 and thus
b1− = a1− = 0 implying that (30) is zero. Therefore, so long
as the asymptotic limit (15) is valid (which requires terms
of order 1/x2 to be vanishingly small in comparison to 1/x)
then truncation of the profile to a constant value at ±L/2

FIG. 5. As in Fig. 3, but for sources located at x = −30λ (a) and x = +30λ (b). The slow decay to zero of the imaginary part of ε(x)
causes the amplitude of the pulse to slowly grow or diminish as it propagates towards the central region of the profile (numbers within the plots
indicate different times), but the qualitative character of the nonreflecting behavior from the left is not affected.
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FIG. 6. A pulse is launched at x = −20λ (a) and propagates through the permittivity profile (31) (real part blue solid, imaginary part green
with circles), for the values K0A = 1.2 − 0.5i, K0x0 = 0.1, L = 1.6λ, and �x = 0.39λ, truncated to a value of 1 at the vertical dashed lines.
The inset of (a) shows the permittivity profile within the dashed lines, along with the Gaussian envelope function (black solid line). (b) Shows
the pulse shape after propagation through the truncated profile, with only very slight reflection evident (inset plot is a 300 times magnification
of the reflected pulse, plotted with the same vertical range as the main panel).

does not introduce any reflection. However, the validity of
the asymptotic limit requires kx � 1, which requires an ever
larger value of L as the wave approaches grazing incidence.

The reflection can be further reduced if the profile (2) is
multiplied by an envelope function before it is truncated so
that ε(x) and all its derivatives are close to continuous at x =
±L/2. Figure 6 shows pulse propagation through a profile
multiplied by a Gaussian envelope before truncation:

ε(x) =
{

1 − A
x+ix0

e
− x2

�x2 |x| � L/2
1 |x| > L/2

. (31)

As shown in Fig. 6, smoothly truncating the potentials has
very little effect on the reflectionless behavior. As a matter
of fact, the truncation method above [9] is quite distinct from
a sharp boxlike truncation, such as that used, for instance,
in [22,23], because the slowly varying envelope function
avoids the large discontinuities that may occur at abrupt
interfaces which can lead to significant reflection even at
normal incidence due to constructive interference between
reflections at the entrance and exit faces of the sample.

VI. CONCLUSIONS

When considering propagation through the profile (2),
it is impossible to unambiguously define the reflection and
transmission coefficients for waves incident from the left or
right if Im[A] �= 0. This is a particular case of the condition (1)
discussed by Longhi [11], and bears much similarity with the
problem of defining reflection and transmission coefficients
between two homogenous media with complex refractive

indices. Nevertheless, just as in that simpler case it is possible
to say when there is zero reflection.

In this work we discussed a particular medium satisfying
the spatial Kramers-Kronig relations where there is an exact
solution to the Helmholtz equation that can be represented as a
contour integral. The two component waves can be identified
as the two points of the stationary phase of the integrand (9)
that approach the two branch points of (8) as |x| → ∞. For
incidence from one side, only one of these two points ever
contributes to the integral, whereas for incidence from the
other side, both points contribute. We thus conclude that even
when (1) is not satisfied, the profile is still reflectionless from
one side even though we cannot unambiguously say what
the reflection coefficient is for incidence from the other side.
This result was bolstered through considering (i) the form of
the Poynting vector which exhibits rapid oscillations in the
dissipative region of the profile when there is reflection, and
(ii) the propagation of a wave packet launched from a source
embedded within the profile, which we illustrated in Figs. 3–5,
demonstrating that reflected pulses are only generated when
the source is placed on the right-hand side of the pro-
file (2). The ambiguity in the scattering from (2) disappears
when the profile is truncated to a finite width L and we have
demonstrated that this truncation can be achieved while largely
retaining the reflectionless behavior.
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