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Fraunhofer light diffraction across a thin 2D lattice of cold atoms subject to transverse hybrid
modulations of two standing-wave crossed pump fields is seen to yield lop-sided patterns of various
degrees of symmetry. We show that one can fully restrain the diffraction of a weak incident probe
to two diagonal or adjacent quadrants or even just to a single quadrant, depending on the phases of
two standing-wave pumps and on the probe detuning. Different diffraction symmetries with respect
to the axes or diagonals of the diffraction plane quadrants are here interpreted in terms of different
out-of-phase interplay of absorption and dispersion periodic distributions, resulting from different
combinations of Hermitian, PT -symmetric, and non-Hermitian modulations.

I. INTRODUCTION

Non-Hermitian optical systems with parity-time (PT )
symmetry [1–4] and antisymmetry [5–9] have attracted
a great deal of attention because they provide new pos-
sibilities for controlling photon flows with various inter-
esting characteristics. Optical PT symmetry typically
requires the complex refractive index to satisfy the con-
dition n(x) = n∗(−x) in a given direction. As opposed
to PT symmetry, PT antisymmetry is realized in op-
tical media with the complex refractive index satisfying
instead the condition n(x) = −n∗(−x). Recent work has
reported that PT symmetry and antisymmetry can si-
multaneously occur in the same optical structure [10–12],
whereas feasible ways to convert from one to the other
are discussed in [8, 9]. More importantly, non-Hermitian
optical structures have been explored to extend fascinat-
ing studies on optical Bloch oscillation [13, 14], coherent
perfect absorption [15], photon or phonon lasing [16-19],
etc; have become the basis of a few nonreciprocal opti-
cal phenomena like unidirectional reflection [20, 21], u-
nidirectional invisibility [22, 23], and asymmetric diffrac-
tion [24–26]. In addition, complex crystals described by a
non-Hermitian Hamiltonian with a complex periodic po-
tential are expected to host important spectral singular-
ities whose signatures may be assessed through a typical
Bragg diffraction experiment [27].

Applying standing-wave (SW), instead of traveling-wave
(TW), control fields in the atomic media subject to elec-
tromagnetically induced transparency (EIT) [28–34], is
an efficient way for realizing complex periodic potentials
that lay at the basis of well known phenomena such as
dynamically tunable photonic bandgaps (PBGs) [35–37]
and stationary light pulses (SLPs) [38–40]. This method
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has also been used to realize structures of electromagnet-
ically induced gratings (EIGs) [41–44] with special forms
of spatially periodic absorption and dispersion. One main
advantage of such Hermitian EIG structures is that inten-
sity distributions of the diffracted photons among differ-
ent orders can be manipulated “on demand” through flex-
ible amplitude and/or phase modulations of the transmis-
sion function. This may be explored to generalize earlier
works on lop-sided diffraction of atomic (optical) waves
off 1D non-Hermitian optical (atomic) gratings with fixed
potentials [45, 46]. In fact, unconventional optical mod-
ulations on EIG structures have recently brought to the
development of cooperative nonlinear gratings and non-
Hermitian gratings. Cooperative nonlinear gratings allow
one to distinguish light fields of different photon statistics
with the dipole blockade effect of Rydberg atoms [47, 48],
while non-Hermitian gratings typically result in asym-
metric diffraction patterns that can be tuned through the
out-of-phase interplay of phase and amplitude modula-
tions [49–52]. Unidirectional and controlled higher-order
diffraction, through non-Hermitian modulations on EIG
structures built from Rydberg atoms driven beyond the
dipole blockade regime, has also been reported [53]. Most
of above works hinge, however, on one-dimensional (1D)
Hermitian or non-Hermitian EIG structures.

We investigate here instead a two-dimensional (2D) non-
Hermitian EIG structure consisting of a square optical
lattice filled with ultracold atoms driven into the four-
level N configuration [see Fig. 1] by two TW pumps and
two orthogonal SW pumps (2D pump cross-gratings) [see
Fig. 2(a)]. This realizes a thin 2D non-Hermitian grat-
ing that, under specific driving conditions, enable one
to attain an arbitrary combination of Hermitian, PT -
symmetry, and non-Hermitian modulations on the probe
absorption and dispersion along the two orthogonal lat-
tice axes. Such modulations, which may be “pure” or
“hybrid”, result in peculiar diffraction patterns bearing
double diagonal, single axial, and single diagonal symme-
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FIG. 1: A four-level N configuration for 87Rb atoms driven
by a probe field of Rabi frequency (detuning) Ωp (δp) and
two pump fields of Rabi frequencies (detunings) Ωd and Ωc

(∆d and ∆c). The four levels are |g⟩ ≡ |5S1/2, F = 1⟩, |a⟩ ≡
|5S1/2, F = 2⟩, |e⟩ ≡ |5P1/2, F = 1⟩, and |b⟩ ≡ |5P1/2, F = 2⟩
with decay rates Γeg = Γbg = Γea = Γba ≃ 2π × 5.9 MHz.

tries in the diffraction plane. Consequently, we observe
diffracted photons only in two diagonal quadrants, two
adjacent quadrants, or a single quadrant while diffraction
patterns can be made to undergo a π/2-rotation sweep by
just changing the probe detuning and/or the pump phas-
es. It is finally worth mentioning that the lop-sided d-
iffraction mechanism we propose here may turn out to be
relevant to the development of new concepts on wavefront
shaping that are now attained instead through metasur-
faces with subwavelength resolutions [54–56].

This work is organized through the following sect. II,
where we summarize the background model, and sect.
III where we discuss the far-field Fraunhofer diffraction
resulting from three types of pure or hybrid modulations
and interpret the results as arising from the out-of-phase
interplay between real (dispersion) and imaginary (ab-
sorption) parts of the probe susceptibility. We summa-
rize at last our conclusions in sect. IV.

II. THE MODEL.

We start by considering the four-level N configuration
of cold 87Rb atoms driven by three coherent fields of fre-
quencies (amplitudes) ωp (Ep), ωc (Ec) and ωd (Ed) as
shown in Fig. 1. The weak probe field ωp interacts with
transition |g⟩ ↔ |e⟩, while the strong pump fields ωc and
ωd act upon transitions |g⟩ ↔ |b⟩ and |a⟩ ↔ |e⟩, re-
spectively. The corresponding detunings (Rabi frequen-
cies) are defined as δp = ωp − ωeg (Ωp = Ep · ℘ge/~),
∆c = ωc − ωbg (Ωc = Ec · ℘gb/~), and ∆d = ωd − ωea

(Ωd = Ed · ℘ae/~) with ωij being transition frequencies
and ℘ij dipole moments. The atoms are assumed to be
loaded into a square optical lattice of period a along both
x and y axes [see Fig. 2(a)]. Around the intensity max-
ima formed by two (Gaussian) counter-propagating red-
detuned laser beams, a depth minimum occurs leading to
an approximately harmonic lattice potential trap [57, 58].
Assuming that (i.) all lattice traps are equally populated

and (ii.) the trapped atoms are cool enough to occupy
the lowest energy levels, we represent the atomic density
distribution at each (trap) site {xi, yi} as

Ni,j(x, y) = N0e
−[(x−xi)

2/σ2
x+(y−yj)

2/σ2
y ] (1)

corresponding to the ground state of a 2D (harmonic)
trap [59]. Here N0 is the (average) peak density while σx

and σy are the (average) half widths of a Gaussian distri-
bution along the transverse trapping directions [60]. The
above assumptions enable us to introduce the periodic
susceptibility exhibited by the incident probe

χp(x, y) =
℘2
ge

2ε0~Ωp
σge

∑
i,j

Ni,j(x, y) = ασgeN(x, y) (2)

with α = ℘2
ge/2ε0~Ωp. The polarization σge can be ob-

tained by solving the density matrix equations

∂tσgg = Γbgσbb + Γegσee + iΩ∗
cσbg − iΩcσgb + iΩ∗

pσeg − iΩpσge,

∂tσaa = Γbaσbb + Γeaσee + iΩ∗
dσea − iΩdσae,

∂tσbb = −Γbaσbb − Γbgσbb + iΩcσgb − iΩ∗
cσbg,

∂tσga = −γ′
gaσga + iΩ∗

cσba + iΩ∗
pσea − iΩdσge,

∂tσgb = −γ′
gbσgb + iΩ∗

cσeb + iΩ∗
c(σbb − σgg),

∂tσge = −γ′
geσge + iΩ∗

cσbe + iΩ∗
p(σee − σgg)− iΩ∗

dσga,

∂tσab = −γ′
abσab + iΩ∗

dσeb − iΩ∗
cσag,

∂tσae = −γ′
aeσae − iΩ∗

pσag + iΩ∗
d(σee − σaa),

∂tσbe = −γ′
beσbe + iΩcσge − iΩ∗

pσbg − iΩ∗
dσba, (3)

that arise as usual from the interaction Hamiltonian, in
the rotating-wave & electric-dipole approximations, as-
sociated with our N -type driving configuration

HI = ~[δpσ̂ee + (δp −∆d)σ̂aa +∆cσ̂bb

+ ~[Ωpσ̂eg +Ωdσ̂ea +Ωcσ̂bg + h.c.]. (4)

Here σ̂µν = |µ⟩⟨ν| define the projection (µ = ν) and tran-
sition (µ ̸= ν) operators [61] and their expectation values
σµµ and σµν denote atomic population at level |µ⟩ and
atomic coherence between levels |µ⟩ and |ν⟩, respectively.
They satisfy the properties

∑
µ σµµ = 1 and σµν = σ∗

νµ

while γµν =
∑

k(Γµk+Γνk)/2 denote the dephasing rates
with Γeg and Γea (Γbg and Γba) being the decay rates
from level |e⟩ (|b⟩) to levels |g⟩ and |a⟩, respectively. We
also introduce the multi-photon detunings ∆ga = δp−δd,
∆be = δp− δc, and ∆ab = δc+ δd− δp as well as the com-
plex dephasing rates γ′

ga = γga + i∆ga, γ
′
gb = γgb + iδc,

γ′
ge = γge + iδp, γ

′
ab = γab + i∆ab, γ

′
ae = γae + iδd, and

γ′
be = γbe + i∆be for convenience in Eq. (3).

The real χR
p (x, y) and imaginary χI

p(x, y) parts in Eq. (2)
describe the probe dispersion and absorption properties,
respectively. When Ωc,d and δc,d are “constant”, changes
of χR

p (x, y) and χI
p(x, y) along both x and y axes occur

“in-phase”. This would lead to a traditional 2D EIG
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FIG. 2: (a) Non-Hermitian 2D pump grating along the x′ and y′ axes (period a/
√
2) modulating a 2D atomic lattice along the

x and y axes (period a) with Ωc0, Ω
±
c1, and Ω±

c2 together taking the role of Ωc in Fig. 1. (b) Details on the O(x, y) and O′(x′, y′)
coordinate systems of relative orientations given in terms of their origins and axes. (c) A side view of the 2D grating, i.e., its
projection in the xz plane with balanced gain (green) and loss (yellow) in the PT -symmetry regime.

structure exhibiting the symmetric diffraction pattern-
s [62, 63]. However, nontrivial 2D EIG structures may
be attained if changes of χR

p (x, y) and χI
p(x, y) along the

x and/or y axes can be set to occur “not-in-phase”, e.g.,
through the following crossed-pump modulation,

Ωc(x, y) = Ωc0 +Ωc1(x
′) + Ωc2(y

′) = Ωc0 +
1

2
δΩc cos

x′

a/2
√
2π

+
1

2
δΩc cos

y′

a/2
√
2π

(5)

= Ωc0 +
1

2
δΩc cos

(x− δx)− (y − δy)

a/2π
+

1

2
δΩc cos

(x− δx) + (y − δy)

a/2π

= Ωc0 + δΩc cos
(x− δx)

a/2π
cos

(y − δy)

a/2π
= Ωc0 + δΩc · f(x, y).

Here (δx, δy) denote the amounts by which the maxi-
ma of Rabi frequency Ωc(x, y) shift relative to the cor-
responding maxima of density distribution N(x, y). We
denote by Ωc0 a constant TW component while Ωc1(x

′)

and Ωc2(y
′) are two SW components of period a/

√
2 a-

long the two orthogonal axes x′ and y′ rotated by an
angle θ = −π/4 relative to the xy plane [see Figs. 2(a)
and 2(b)]. For convenience in the following discussion,
we further rewrite the modulating factor as

f(x, y) = sin

(
x

a/2π
− βx

)
sin

(
y

a/2π
− βy

)
(6)

by rescaling δx = a/4 + aβx/2π and δy = a/4 + aβy/2π.
The off-center cross modulation in Eqs. (5-6) thus result-
s in a space-dependent probe coherence σge(x, y) which,
together with N(x, y) in Eq. (2), yields nontrivial mod-
ulations on our atomic lattice whose diffraction features
will be discussed in the next section. A side view of the
2D lattice under the PT -symmetry modulation has been
shown in Fig. 2(c) to gain a clearer impression.

For a weak probe impinging perpendicular to the 2D
atomic lattice shown in Fig. 2(a), the (far-field) diffrac-
tion intensity [62, 63] can be written in the thin scatterer
approximation [64] as

Ip(θx, θy) ≈
∣∣EI

p(θx, θy)
∣∣2 · [ sin(πMR sin θx)

M sin(πR sin θx)
· sin(πMR sin θy)

M sin(πR sin θy)

]2
, (7)

where the geometric factors depend on two ratios R =
a/λp and M = wo/a, with wo being the width of the

incident probe beam. We have also denoted by θx and
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θy the diffraction angles with respect to the z direction
in the xz and yz planes. More specifically, probe diffrac-
tion will take place in a few directions determined by the
diffraction order {m,n} according to angles θx → θx,m =
arcsin(m/R) and θy → θy,n = arcsin(n/R), the number
of diffraction orders depending on the ratio R. The single
square lattice (i.e., 2D unit cell) diffraction function

EI
p(θx, θy) =

∫ a
2

− a
2

∫ a
2

− a
2

TL(x, y)e
−i2πR(x sin θx+y sin θy)dxdy,

(8)

depends instead on the probe dispersion and absorption
directly through the transmission

TL(x, y) = e−2πLχI
p(x,y)/λp · ei2πLχR

p (x,y)/λp (9)

across a short distance L in the z direction [65, 66]. Note
that phase and amplitude modulations in Eq. (9) are as-
sociated, respectively, with χR

p (x, y) and χI
p(x, y) whose

control makes it feasible to attain the modulations on
χR
p (x, y) and χI

p(x, y) that are “not-in-phase” we sought
for. We will discuss the corresponding nontrivial modu-
lations on our atomic lattice in the next section.

III. RESULTS AND DISCUSSION.

Now we examine and discuss the far-field Fraunhofer
diffraction that results from driving our 2D atomic lattice
both with a (A.) PT -symmetry modulation and a (B.)
hybrid non-Hermitian modulation. We just consider the
partial PT symmetry with respect to the x → −x and
y → y transformation or the x → x and y → −y trans-
formation by plotting the (far-field) diffraction intensi-
ty Ip(θx, θy), away from exceptional points and thus im-
mune to secular growths due to spectral singularities [27].

A. PT -symmetry modulation

Our 2D pump cross-grating works in the PT -symmetry
regime when f(x, y) is a product of sine functions with
βx = βy = 0. It is clear that χI

p(x, y) and χR
p (x, y) are

spatially out of phase (i.e., differ by π/2 in phase at each
point), with the former (latter) being an odd (even) func-
tion along the four gray lines in the x and y directions
[see Fig. 3(a) and 3(b)]. In addition, χI

p(x, y) exhibits
the double diagonal symmetry with two positive (nega-
tive) peaks in the II and IV (I and III) quadrants in
each period of the atomic lattice, while χR

p (x, y) exhibits
the centro symmetry with a single negative peak centered
at the origin. This is further seen by extracting numer-
ical values from the density plots of Fig. 3(a) and 3(b),
namely along the x = y [see Fig. 3(c)] and x = −y [see
Fig. 3(d)] lines, respectively. The balanced gain for x = y
and loss for x = −y (accompanied by the same disper-
sion) in the 2D PT -symmetry regime can be thought of

FIG. 3: Absorption (a) and dispersion (b) distributions of a
2D PT -symmetry atomic lattice attained for βx = βy = 0,
together with their 1D projections along the x = y (c) and
x = −y (d) directions. Other parameters are Ωd = 2.0 MHz,
Ωc0 = 4.5 MHz, δΩc = 1.6 MHz, δp = 5.96 MHz, ∆c = ∆d =
0, R = 4, M = 10, L = 100 µm, and N0 = 3.5× 1011 cm−3.

as the extension of the balanced gain regime for x > 0
and loss for x < −0 (accompanied by the same disper-
sion) in the 1D PT -symmetry regime.

FIG. 4: Diffraction intensity Ip(θx, θy) vs. diffraction angles
θx and θy for a 2D PT -symmetry pump grating. Parameters
are as in Fig. 3 except N0 = 6.5 × 1011 cm−3 (a); 8.7 × 1011

cm−3 (b); 10.8× 1011 cm−3 (c); 13.0× 1011 cm−3 (d).

Figure 4 reports instead the diffraction intensity dis-
tribution for a 2D PT -symmetry pump grating. We ob-
serve (i) diffracted photons only in the II and IV quad-
rants, corresponding to regions where χI

p(x, y) > 0 (gain)

and χR
p (x, y) < 0 (abnormal dispersion) with (ii) the d-
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FIG. 5: Diffraction patterns of double diagonal symmetry
attained for PT -symmetry modulations along both x and y
directions. Parameters are as in Fig. 3(b) except δp = 5.96
MHz and βy = 0 (a); δp = −5.96 MHz and βy = π (b);
δp = 5.96 MHz and βy = π (c); δp = −5.96 MHz and βy =
0 (d). The insets show corresponding absorption (left) and
dispersion (right) distributions in a single square lattice.

iffraction pattern largely dependent on N0, having more
photons scattered into higher diffraction orders as N0 in-
creases. Therefore, 2D PT -symmetry modulations lead
to diffraction patterns of double diagonal symmetry with
respect to the x = y and x = −y lines, being N0 a crucial
parameter to control how probe photons are distributed
among different diffraction orders.

Finally we address the question as to whether one may
dynamically control “on demand” such an intriguing d-
iffraction pattern. Figure 5 shows that the double diag-
onal symmetric diffraction, either in the II and IV or
in the I and III quadrants, depends on the signs of the
probe detuning δp and the modulating factor f(x, y), the
latter being controlled through the shifts βx and βy [67].
In particular, if we change the signs of both δp and f(x, y)
from “ + ” to “− ” the pattern remains bound to the II
and IV quadrants, yet when only one sign is changed the
whole pattern undergoes a π/2 rotation into the I and
III quadrants. Because (i) the simultaneous sign change
of δp and f(x, y) results in the simultaneous sign change
of χI

p(x, y) and χR
p (x, y) and (ii) the sign change of only

δp or f(x, y) results in the sign change of only χI
p(x, y)

or χR
p (x, y), it is clear that the spatial interplay between

the amplitude ∝ χI
p(x, y) and phase ∝ χR

p (x, y) modula-
tions of the transmission TL(x, y), are responsible for this
double diagonal symmetric type of diffraction. We may
further conclude from the insets that probe photons are
always diffracted into the quadrants where (1.) χI

p(x, y)

is positive (gain) when χR
p (x, y) is negative (anomalous

dispersion) or where (2.) χI
p(x, y) is negative (loss) when

χR
p (x, y) is positive (normal dispersion).

B. Hybrid non-Hermitian modulation

We now consider two cases when our atomic lattice is
driven by the 2D pump cross-grating into a hybrid non-
Hermitian regime, whereby (i.) a PT -symmetry (Her-
mitian) modulation is applied along the x (y) or y (x)
axis; (ii.) different non-Hermitian modulations are ap-
plied along the x and y axes. A Hermitian modulation
along the x axis is attained by setting βx = ±π/2, while
a non-Hermitian modulation along the x axis is attained
by setting βx = ±π/4 or ±3π/4 in the modulating factor
f(x, y). Similarly when a Hermitian or non-Hermitian
modulation along the y axis is sought for.

Figure 6 shows that in case (i.) probe photons are d-
iffracted into adjacent quadrants, leading to single axial
symmetric far-field diffraction. In particular, we have ob-
served symmetric (asymmetric) diffraction in quadrants
II and III with respect to the x (y) axis for βx = 0
and βy = π/2 [see Fig. 6(a)], quadrants I and IV with
respect to the x (y) axis for βx = 0 and βy = −π/2 [see
Fig. 6(b)], quadrants III and IV with respect to the y
(x) axis for βy = 0 and βx = π/2 [see Fig. 6(c)], and
quadrants I and II with respect to the y (x) axis for
βy = 0 and βx = −π/2 [see Fig. 6(d)]. We then control
the single axial symmetric type of diffraction to realize
π/2-rotations through an appropriate choice of βx and
βy among the values {0;±π/2}. Such a control results
into light diffraction symmetric along the direction dis-
playing Hermitian modulation, yet asymmetric along the
direction exhibiting PT -symmetry modulation.

Figure 7 shows that in case (ii.) probe photons are d-
iffracted into single quadrants leading to single diagonal
symmetry with respect to the x = y or x = −y line. Con-
trol of this diffraction pattern takes place through an ap-
propriate choice of the shifts βx and βy among the values
{±π/4,±3π/4}, whereby the modulating factor f(x, y)
is neither odd nor even along both x and y axes. Once
again, the hybrid non-Hermitian regime, realized via the
modulations (i.) and (ii.) responsible respectively for
the single axial symmetry in Fig. 6 and the single diago-
nal symmetry in Fig. 7 of far-field diffraction, hinges on
the spatial interplay between the amplitude ∝ χI

p(x, y)

and phase ∝ χR
p (x, y) modulations of the transmission

TL(x, y); the probe photons are always diffracted into
the quadrants where (1.) χI

p(x, y) is positive (gain) when

χR
p (x, y) is negative or (2.) χI

p(x, y) is negative (loss)

when χR
p (x, y) is positive as shown by the insets.

The results shown in the last two subsections are finally
summed up in Tab. I where the relationship between pa-
rameters and types of the 2D cross SW modulations (A.
and B.) and patterns and symmetries of the correspond-
ing far-field Fraunhofer diffraction are sketched. For com-
pleteness, we also give the results corresponding to the
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TABLE I: Diffraction patterns and symmetries for four pure or hybrid cross-modulations

SW pump phases modulation types diffraction patterns diffraction symmetries

βx = π/2 & βy = π/2 Hermitian & Hermitian 4 quadrants centro symmetry

βx = 0 & βy = 0 PT symmetry & PT symmetry 2 diagonal quadrants double diagonal symmetry

βx = 0 & βy = π/2 PT symmetry & Hermitian 2 adjacent quadrants single axial symmetry

βx = π/4 & βy = π/4 non-Hermitian & non-Hermitian 1 quadrant single diagonal symmetry

FIG. 6: Diffraction patterns of single axial symmetry attained
for a PT -symmetry modulation along the x (or y) direction
and a Hermitian modulation along the y (or x) direction.
Parameters are as in Fig. 3(b) except that here βx = 0 and
βy = π/2 (a); βx = 0 and βy = −π/2 (b); βy = 0 and
βx = π/2 (c); βy = 0 and βx = −π/2 (d). The insets show
corresponding absorption (upper or left) and dispersion (lower
or right) distributions in a single square lattice.

normal grating with a Hermitian modulation along both
x and y axes (βx = βy = π/2). In this case, photons can
be scattered into all four quadrants with diffraction pat-
terns of the centro symmetry. It is not difficult to imagine
that diffraction patterns exhibiting more involved sym-
metries/asymmetries could be observed upon choosing
values for βx and βy different from those we have used.
On more general grounds, our results are relevant to nov-
el all-optical switching as well as optical imaging even
for very weak probe fields. To this extent, as often the
case with driven atomic level configurations, it is worth
noting that the 2D non-Hermitian cross-gratings investi-
gated here exhibit a certain versatility. In principle, they
could be adapted to atom photonic crystal fiber inter-
faces, dealing even with few-photon light signals [68, 69],
or to solid interfaces with rare-earth-ions doped crystal-
s [70, 71] or NV color centers in diamond [72] where sim-
ilar four-level N configurations exist.

FIG. 7: Diffraction patterns of single diagonal symmetry at-
tained for non-Hermitian modulations along both x and y ax-
es. Parameters are as in Fig. 3(b) except that βx = π/4 and
βy = π/4 (a); βx = −π/4 and βy = −3π/4 (b); βx = −π/4
and βy = −π/4 (c); βy = π/4 and βy = 3π/4 (d). The insets
show corresponding absorption (upper or left) and dispersion
(lower or right) distributions in a single square lattice.

IV. CONCLUSIONS

The 2D optical lattices of driven cold atoms can pro-
vide an interesting venue to realize non-Hermitian EIG
structures with novel diffraction symmetry features. We
have examined the far-field Fraunhofer diffraction off a
thin 2D atomic lattice subject to transversely periodic
cross-modulations, including pure PT -symmetry ones as
well as hybrid ones as a combination of Hermitian, PT -
symmetry, and non-Hermitian modulations along two or-
thogonal axes. These spatial modulations, now realizable
through standard laboratory routines [73], can be all-
optically controlled to generate nontrivial far-field pat-
terns that span from double diagonal symmetric diffrac-
tion in two diagonal quadrants to single axial symmetric
diffraction in two adjacent quadrants and single diagonal
symmetric diffraction in a single quadrant. These pat-
terns appear to be fairy robust against standard sources
of noises (fluctuations), e.g., in the atomic density or in
the intensity of trapping/pumping lasers [74]. The ori-
gin of the peculiar diffraction patterns we anticipate is
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discussed in terms of the out-of-phase interplay of the
amplitude ∝ χI

p(x, y) and phase ∝ χR
p (x, y) of the trans-

mission T (x, y) through the atomic lattice.
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