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We extend the Su-Schrieffer-Heeger model to include both an additional real intercell coupling
and a complex intracell coupling whose phase can be interpreted as the Peierls phase associated with
a synthetic gauge field. Using different Peierls phases for the two halves of a sample, we can realize
an heterostructure supporting a topologically protected interface state, depending on the existence
of one trivial and two nontrivial phases of distinct winding numbers. The spatial adiabatic passage
of this localized state from the inner interface to either open boundary can be attained simply by
modulating the corresponding Peierls phase, while its decay or growth rate is controlled by the
on-site parity-time symmetric loss and gain terms. Our results provide a novel scheme to achieve
dynamical control of topologically protected states while being of potential interest to topological
lasers with an adjustable spatial profile.
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I. INTRODUCTION

As a new phase of matter, topological insulators (TI)
are characterized by an insulating bulk and a conducting
surface [1, 2]. According to the conventional bulk-edge
correspondence, one can observe gapless edge modes near
the interface between a TI and a trivial medium. While
in two-dimensional TIs, waves typically propagate along
the edges as chiral states, in one-dimensional TIs edge
states are simply localized at the boundaries, decaying
rapidly into the bulk. One crucial advantage of topo-
logically protected edge states is that they are robust
against fabrication imperfections and disorders. For Her-
mitian TIs, the bulk-edge correspondence is well explored
and understood, and various topological invariants have
been proposed to characterize distinct topological phases
[3]. However, many realistic physical systems, such as
open systems [4–7] and photonic systems with loss and/or
gain [8–12], are described by non-Hermitian Hamiltoni-
ans, the topological properties of which are intensively
being investigated [13]. Topological photonics, in partic-
ular, has attracted a great deal of interest accompanied
with rapid progress [14, 15]. The experimental realiza-
tion of topological edge states in a lossy waveguide array
[16] has revived the debate about the bulk-edge corre-
spondence for non-Hermitian TIs, a notion that is recon-
sidered in systems exhibiting an anomalous localization
or non-Hermitian skin effect, whereas in other instances
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holds true as typically described by topological invariants
[17–29]. Compared with condensed matter electronic sys-
tems, photonic systems exhibit three major advantages
in studying topological effects: first, in photonics, loss
and gain are ubiquitous and can be controlled [30]; sec-
ond, optical nonlinearities enable richer phenomena in
topological photonics [31]; third, due to various inter-
nal degrees of freedom, it is possible to realize synthetic
dimensions in photonic systems [32]. To date, a lot of
breakthroughs have been achieved based on such proper-
ties, such as optical delay lines with enhanced transport
properties [33], backscattering-free edge states [34, 35]
and topological polaritons [36], to name a few. In partic-
ular, the concept of topological lasing has been put forth
and demonstrated by exploiting the confinement of light
to a topological protected edge mode in an active TI to
achieve single-mode laser operation [37–42].

The tight-binding Su-Schrieffer-Heeger (SSH) model
[43], which in its most basic version only includes a real
intracell and a real nearest-neighbor intercell hopping
terms, has been widely studied as a one-dimensional pro-
totype allowing for a nontrivial topological phase [44, 45].
This model has been extended in a variety of Hermi-
tian [46–49] and non-Hermitian forms [16, 20, 21, 27, 39–
41, 50–58]. In particular, the non-Hermitian extensions,
which are also called complex SSH (cSSH) models, are
a powerful platform for studying interactions of topo-
logical properties with non-Hermiticity and many break-
throughs have been made based on them, such as anoma-
lous edge states [21], non-Bloch bulk-edge correspon-
dence [27], topological lasing [39–41], and spontaneous
topological pumping [58]. Here, we consider a further ex-
tension of the non-Hermitian SSH model to include for:
(i) a complex intracell hopping term; (ii) an additional
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FIG. 1: (Color online) (a) The schematic illustration of a
generalized SSH model. (b) The equivalent ladder lattice of
the SSH model in (a). While the intercell hopping terms J1
and J2 are real-valued, the intracell hopping term is complex
with modulus v (which will be taken as units of energies) and
Peierls phase φ. On-site loss and gain terms can be introduced
in a balanced fashion on sites A and sites B, respectively, to
realize a non-Hermitian PT-symmetric system.

intercell hopping term beyond the nearest-neighbor one;
(iii) non-Hermitian on-site loss and gain terms. The
phase of the complex intracell hopping term can be tuned
via a synthetic gauge field (Peierls phase) [32, 59–66].
While loss and gain are needed for lasing action, the
Peierls phase degree of freedom would be immaterial in
the absence of the additional intercell coupling as dis-
cussed below. Thus, our extension represents the min-
imal SSH model apt to implement a topologically pro-
tected mode the spatial profile of which can be controlled
via the Peierls phase: by dividing a finite sample into two
parts with different Peierls phases, we can observe a topo-
logically protected mode at the interface which can be
adiabatically transferred between the interface and one
open boundary by adjusting the synthetic gauge field.
During the process, this mode remains topologically pro-
tected because its eigenvalue does not merge into the
bulk bands; moreover, in the presence of suitable loss
and gain terms, we show that this adiabatic process also
holds when the mode is amplified so that it is of poten-
tial interest in topological lasing with a tunable spatial
profile, a highly sought-after feature for signal spatial en-
coding and broad-area emission [38, 53].

The focus of the work is to elucidate the main fea-
tures of the proposed extension of the Su-Schrieffer-
Heeger model through a specific single-particle tight-
binding Hamiltonian. Hence we are not committed here
to any particular platform for exploring the new topo-
logical physics associated with such an extension though
possible settings will be briefly suggested in Sect. IV. A
summary is also given there, while details of our extended
model are presented in Sect. II with the main results be-

ing discussed in Sect. III.
II. THE GENERALIZEDSSH MODEL

We consider the generalized SSH model shown in
Fig. 1(a) having two sites per unit cell, sites A (red) and
B (blue), and three distinct hopping terms, the intracell
coupling (orange single line), the nearest-neighbor inter-
cell coupling (J1, gray thick line) and an additional next-
nearest-neighbor intercell coupling (J2, gray dotted line).
While we assume both intercell hopping terms J1 and J2
to be real-valued, we consider a complex-valued intracell
coupling of modulus v and a tunable Peierls phase φ, i.e.,
the intracell hopping term is vAB = v∗BA = v eiφ. In fact,
this generalized SSH model is equivalent to a ladder lat-
tice with sites A and B arranged alternately around each
plaquette as shown in Fig. 1(b), and a tunable synthetic
gauge field enables the control of the phase φ. Here,
the synthetic gauge field should be opposite in adjacent
plaquettes in order to introduce uniform Peierls phase
in Fig. 1(a). Unlike other SSH models [27, 53, 55], we
note that all hopping terms preserve Hermiticity. Since
a nonvanishing average value of gain (or loss) would not
affect the spatial profile of the edge mode we are inter-
ested in [40], we choose to introduce loss on every A sites
and gain on every B sites in a balanced fashion. In this
way, our model respects either chiral or parity-time (PT)
symmetry when the loss and gain rate is taken to be,
respectively, vanishing or nonvanishing.

Since the homogeneous model is translationally invari-
ant, using the Bloch theorem, the k-space Hamiltonian
is obtained as

H(k) = hx(k)σx + hy(k)σy + hzσz (1)

with

hx(k) = v cosφ+ (J1 + J2) cos k ,

hy(k) = −v sinφ+ (J1 − J2) sin k ,

hz = − i γ .

Here, σj (j = x, y, z) are the Pauli matrices and k is
the dimensionless scaled Bloch wave number in the first
Brillouin zone (−π 6 k < π). While hx and hy are real
and k dependent, hz is purely imaginary and constant,
with a positive value of γ corresponding to loss on the
A sites and gain on the B sites. Then, the symmetries
mentioned above lead to the pseudo-anti-Hermiticity of
H(k) with σzH(k)† σz = −H(k) [18, 52], as well as to the
so-called chiral-time symmetry [40] of H(k), which can
be represented by the anti-unitary operator σxK, being
K the complex conjugation, with [σxK, H(k)] = 0. The
eigenvalues of H(k) are given by
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FIG. 2: (Color online) Topological phase diagrams of the generalized SSH model with (a) φ = 0, (b) φ = π/4, (c) φ = π/2. In
each panel, the yellow, blue and green regions correspond to the winding numbers w = 1, w = −1 and w = 0, respectively. The
red (black) dots in (a)-(c) correspond to J1 = 1.4 and J2 = 1.8 (J1 = 1.5 and J2 = 1.2), v = 1 being taken as unit of energies.

E±(k) = ±
√
−γ2 + v2 + J2

1 + J2
2 + 2vJ1 cos (k + φ) + 2vJ2 cos (k − φ) + 2J1J2 cos (2k) , (2)

which satisfy E+(k) = −E−(k) and are either real or
purely imaginary. Eq. (2) also shows that the energy
bands have a nontrivial dependence on the Peierls phase
φ only when both J1 and J2 are present: if J2 vanishes,
the only effect of φ is a rigid displacement of the bands in
the k space. As a matter of fact, in the absence of J2, the
phase φ could always be gauged away via a redefinition
of the basis states [45], as also evident from the fact that
in this case there are no closed plaquettes in Fig. 1(b).

Differently from some non-Hermitian models [21, 23,
27, 53] while similarly to others [16, 40, 50, 52, 57], the
present generalized SSH model does not exhibit the non-
Hermitian skin effect. Thus, the characterization of its
nontrivial topological properties, in terms of the wind-
ing number corresponding to the non-Hermitian exten-
sion [19, 67] of the Zak phase [44, 68], can provide guid-
ance for the realization of heterostructures with spatially
tunable and robust localized modes suitable for topolog-
ical lasing [40]. We indicate with 〈ϕα(k)| and |ψα(k)〉
the left and right eigenvectors of H(k) corresponding to
the eigenvalue Eα(k), where α = ± labels the energy
bands as in Eq. (2), with the biorthogonal normalization
〈ϕα(k)|ψβ(k)〉 = δα,β [69]. Then, the complex single-
band Zak phase (in units of π) is given by

wα =
1

π

∫ π

−π
dk 〈ϕα|i ∂k|ψα〉 . (3)

For a model of the form of Eq. (1), the above formula
can be analytically rewritten as [55]

wα =
1

2π

∫ π

−π
dk

hx∂khy − hy∂khx
Eα(k)(Eα(k)− hz)

, (4)

and the global Zak phase wtot = w+ + w−, a proper
topological invariant for our non-Hermitian system [16,
19, 52, 57], making use of Eq. (2) becomes simply

wtot =
1

π

∫ π

−π
dk
hx∂khy − hy∂khx

h2x + h2y
. (5)

It is noticeable that the value of wtot equals to twice the
single-band Zak phase of the parent Hermitian model
(i.e., the one obtained by setting hz = 0 in Eq. (1))
which is the same for both bands and takes integer val-
ues. Thus, the topologically distinct phases of the present
generalized SSH model are inherited from its parent Her-
mitian one, similarly to other instances of non-Hermitian
systems [19, 50, 57]. In particular, the value of γ, which
characterizes the amount of loss and gain introduced in
the Hamiltonian and determines its PT-symmetry tran-
sition [70], does not affect the topological phase transi-
tions. In the following, our strategy is: (A) to harness
the degree of freedom provided by the Peierls phase φ in
order to realize a heterostructure between topologically
distinct phases; (B) to assess how the heterostructure is
affected by loss and gain allowing for topological lasing;
(C) to implement the control of the spatial profile of the
topologically protected mode and, finally, (D) to show
that the energy of this mode and its spatial adiabatic
passage are robust against disorder.

III. RESULTS AND DISCUSSION

A. Topological heterostructure

We start by assessing how the Peierls phase φ affects
the topological properties of the generalized SSH model
which, as discussed above, do not depend on the loss
and gain terms proportional to γ. We plot in Fig. 2
the winding number w ≡ wtot/2 for different parame-
ter values. As shown in Fig. 2(a), one can observe in a
wide range of parameters three topological phases, char-
acterized by w = ±1 and w = 0, respectively. While
w = 0 corresponds to a topologically trivial phase with no
edge states, w = ±1 correspond to two distinct topologi-
cally nontrivial phases with different types of edge states.
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FIG. 3: (Color online) (a) The energy spectrum of a finite het-
erostructure based on the Hermitian (γ = 0) generalized SSH
model with v = 1, J1 = 1.5, J2 = 1.2, φ1 = 0 and φ2 = π/2;
the inset shows in detail the two orange dots correspond to the
degenerate left edge and interface states; m labels the eigen-
values in order of increasing energy. (b) The spatial profiles
of the edge and interface states in this case. (c) and (d) The
zoom-in images of the edge and interface states, respectively.

In fact, similar results have already been discussed in
Refs. [47, 48]. Here, we show in Fig. 2(b) and Fig. 2(c)
that the topological phase diagram can be changed by
adjusting φ, being the parameter range of the topolog-
ical trivial phase with w = 0 most sensitive to φ. We
conclude that in the present extension of the SSH model
(J2 6= 0) the topological phase can be controlled by ad-
justing the value of φ.

Next, we consider a heterostructure between two afore-
mentioned generalized SSH models having different val-
ues of φ, which can be obtained by dividing the whole
sample into two halves subject to distinct synthetic gauge
fields. To be definite, here we consider a finite general-
ized SSH model with 150 unit cells (300 sites), assuming
that the left part contains the first 75 unit cells with the
Peierls phase φ1, while the right part contains the last
75 unit cells with the Peierls phase φ2. If φ1 = φ2, the
model recovers a (finite) homogeneous structure.

According to the specific results in Fig. 2, if φ1 6= φ2,
the left and right parts of the model may be topologically
distinct, and thereby we expect a topologically protected
state localized at the interface. In particular, choos-
ing the parameters corresponding to the black dots in
Fig. 2(a) and Fig. 2(b) and letting φ1 = 0 and φ2 = π/2,
the left part is topologically nontrivial with w = 1 while
the right part is topologically trivial with w = 0.

Considering first the Hermitian case with γ = 0, the
presence of a zero mode localized at the interface is shown
in Fig. 3. In Fig. 3(a), we plot the energy spectrum of a
finite heterostructure with open boundary conditions at
the outer edges, and find that there are two zero modes
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FIG. 4: (Color online) The real (a) and imaginary (b) parts
of the energy spectrum of the PT-symmetric heterostructure,
respectively, with φ1 = 0 and φ2 = π/2. The spatial pro-
files of the edge and interface states are depicted in (c) with
φ1 = 0 and φ2 = π/2, and in (d) with φ1 = π/2 and φ2 = 0.
Here, the profiles depicted by red lines correspond to grow-
ing states, while those depicted by blue lines correspond to
damped states. In particular, the edge (blue) and interface
(red) states in (c) correspond to the blue and red dots in (a)
and (b), respectively. Other parameters are the same as in
Fig. 3 except γ = 0.2.

residing within the band gap (see the two orange dot),
as typical of topological edge states. Indeed, as shown
in Fig. 3(b), the two degenerate modes correspond to a
localized state at the left edge and a localized state at the
middle interface. In Fig. 3(c) and Fig. 3(d), we further
demonstrate the zoom-in images of the edge and inter-
face states, respectively. They show that the left edge
state resides only on A sites (odd number of sites), while
the interface state resides only on B sites (even number
of sites). This is much similar to the case of a standard
SSH model, in which the two edge states reside on dif-
ferent sublattices, respectively. In contrast, if we choose
the coupling parameters corresponding to the red dots
in Fig. 2, the winding number of the left part becomes
w = −1 while that of the right part remains w = 0. In
this case, the left edge (interface) state resides only on B
(A) sites (not shown here).

B. Topological modes with gain and loss

We further extend the above results to the non-
Hermitian regime by introducing balanced loss and gain
terms alternately on the A and B sites. According to
Eq. (3)- Eq. (5) and related discussions, such an intro-
duction does not alter the topological phase transitions,
so it is still viable to find an interface state with its spatial
profile controlled by the Peierls phase. We start showing
the complex energy spectrum of the heterostructure in
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FIG. 5: (Color online) The real (a) and imaginary (b) parts
of the energy spectrum of the PT-symmetric heterostructure
as functions of γ with φ1 = 0 and φ2 = π/2. The red lines
depict the eigenvalues of the edge and interface states. Other
parameters are the same as in Fig. 4.

Fig. 4(a) and Fig. 4(b). Clearly, there are two midgap
modes, the eigenvalues of which have zero-valued real
parts and opposite imaginary parts (±γ). As shown in
Fig. 4(c), the two modes correspond, respectively, to a
damped left edge state with a negative imaginary eigen-
value and a growing interface state with a positive imag-
inary eigenvalue. Recently, it has been proved that an
edge mode whose eigenvalue has a positive imaginary
part can be used for realizing single-mode topological las-
ing [37–42, 57] robust against local perturbations. Gen-
erally, an edge (interface) state can be set to be either
damped or growing by a suitable choice of the loss and
gain terms [20, 24]. However, we anticipate here that
this can also be accomplished via a dynamic modula-
tion of the Peierls phases. For instance, if we exchange
the values of φ1 and φ2 in Fig. 4(c) to make the left
(right) half topologically trivial (nontrivial) instead, the
interface state becomes damped and a growing edge state
arises at the right open boundary, as shown in Fig. 4(d).
In the latter case, the interface state resides only on the
A sites with loss, while the right edge states resides only
on the B sites with gain.

To investigate the PT-symmetry transitions of the non-
Hermitian heterostructure, we plot in Fig. 5 its energy
spectrum as a function of γ. The vertical lines in Fig. 5
correspond to the case shown in Fig. 4, the different shad-
ing along this line in Fig. 5(a) representing the varying
density of states of the spectrum in Fig. 4(a). Since the
introduction of γ does not affect the topological phases,
no matter how large γ is, there are always only two topo-
logically protected modes (one edge and one interface)
with imaginary eigenvalues ±iγ. It is also clear that
as γ increases, the real part of the spectrum as well
as the band gap will shrink, while the imaginary part
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FIG. 6: (Color online) The spatial profiles of the edge and
interface states for the finite heterostructure based on the
Hermitian (γ = 0) generalized SSH model with (a) φ2 = π/4,
(b) φ2 = π/8, (c) φ2 = π/12 and (d) φ2 = π/20. Other
parameters are the same as in Fig. 3.

widens gradually. We find in particular two critical val-
ues γc1 = 0.30 and γc2 = 3.65 characterizing the PT-
symmetry transitions in this figure. For γ < γc1, the
eigenvalues of all bulk states are real while those of the
edge and interface states are imaginary and conjugate.
For γc1 < γ < γc2, a part of the bulk states become PT-
symmetry-broken (i.e., their eigenvalues become imagi-
nary) and the number of these bulk states increases with
γ. This is consistent with previous works [80, 81], where
relevant systems undergo PT-symmetry breaking imme-
diately once a nonvanishing γ is introduced because the
eigenvalues of the edge modes acquire imaginary parts.
Further increasing γ, we can see a second phase transition
at γ = γc2, above which all eigenvalues become imagi-
nary. It is worth noting that the PT-symmetry breaking
will induce a change from single edge-mode lasing to mul-
timode lasing [40].

C. Spatial adiabatic passage

In this section we show that the spatial profile of the
interface state can be controlled via the Peierls phase.
As shown in Fig. 6(a)-Fig. 6(c), if we reduce φ2 from π/2
gradually, the interface state becomes more and more
extended at first. With small enough φ2, its wavefunc-
tion extends into the bulk of the right part, as shown in
Fig. 6(c). If φ2 further decreases, we find from Fig. 6(d)
that the interface state eventually becomes localized to
the right open boundary. In particular, when φ2 van-
ishes, the heterostructure reduces to a homogeneous sam-
ple with winding number w = 1, and thereby one can ob-
serve two chiral edge states localized at the left and right
boundaries, respectively. Notice that as φ2 changes, the
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FIG. 7: (Color online) (a) The IPRs of the edge and inter-
face states, and the averaged IPR of all bulk states of a finite
heterostructure based on the Hermitian (γ = 0) generalized
SSH. The black dot, square, triangle and asterisk correspond
to φ2 = π/4, π/8, π/12, π/20, respectively. (b) A dynamic
SAP of the interface state shown in Fig. 3(b). (c) The inten-
sity profiles of the initial (orange) and the final (black) states
in (b). Other parameters are the same as in Fig. 3.

interface state remains on the same sublattice (i.e., it
always resides on B sites here), even when it becomes
extended during the process. At the same time, the left
edge state is insensitive to φ2.

We gain further insight by introducing the inverse
participation ratio (IPR) [71, 72] of an eigenstate ψ =∑
n ψn,

I =

∑
n |ψn|4

(
∑
n |ψn|2)2

, (6)

which is a measure of the state’s localization whereby
larger IPRs correspond to stronger localization. In
one-dimensional systems, the IPR of an extended state
roughly equals the inverse of the system length. In
Fig. 7(a), we plot the IPRs of the edge and interface
states denoted by Ie and Ii respectively, as well as the
average of the IPRs of all bulk states, denoted by Ia. The
variation of Ii indicates that the interface state becomes
at first more and more extended as φ2 decreases from π/2
until Ii reaches its minimum at around φ2 = π/10. With
φ2 further decreasing, the interface state rapidly becomes
localized again. In particular, if φ2 = 0, the heterostruc-
ture reduces to a homogeneous sample and thereby the
interface state becomes the standard right edge state,
possessing the identical IPR with the left edge state. The
black dot, square, triangle and asterisk correspond to Ii
of the interface states in Fig. 6(a)-Fig. 6(d), respectively.
We also find that the left edge state is completely insensi-
tive to φ2 with a large Ie while the bulk states are almost
insensitive to φ2 with a roughly vanishing Ia.

According to the adiabatic theorem [73, 74], a system
will remain in its instantaneous eigenstate for (1.) slow

FIG. 8: (Color online) A dynamic SAP of the growing inter-
face state in Fig. 6(c) for the PT-symmetric heterostructure.
The top inset depicts the spatial profiles of the initial (orange)
and the final (black) states. Other parameters are the same
as in Fig. 4(c).

enough perturbations and for (2.) large enough gap be-
tween the corresponding eigenvalue and the rest of the
spectrum. Thus we foresee as viable the spatial adiabatic
passage (SAP) of a topologically protected mode [75, 76]
through slow changes of the Peierls phase φ. In this case
excitations can be coherently transferred between spa-
tially separated localized states with high efficiency and
strong robustness. SAP was initially proposed following
the idea of stimulated Raman adiabatic passage (STI-
RAP) in three-level atomic systems, and has been ex-
tended to optical systems with more than three coupled
waveguides [77–79]. In our model, SAP is achieved by
initially exciting a zero-energy mode and then, by adia-
batically changing the Peierls phase of the half part of
the sample through which it is to be transferred. Here
we demonstrate this dynamic process in Fig. 7(b) by us-
ing the interface state shown in Fig. 3(b) as the initial
state and assuming φ2(t) = π/2− πtv/1600 for tv < 800
and φ2(t) ≡ 0 for tv ≥ 800. It is clear that the inter-
face state is adiabatically transferred to the right open
boundary and thereby evolves into the right edge state.
In Fig. 7(c), we plot the spatial profiles of the initial in-
terface and the final right edge states. These results are
consistent with those in Fig. 4 and confirm that the SAP
is highly efficient.

Moreover, an effective SAP can be realized also for the
non-Hermitian case. We demonstrate in Fig. 8 how the
growing interface state shown in Fig. 4(c) can be adia-
batically transferred to the right open boundary in the
same way as in Fig. 7(b). Note that the intensity profiles
here have been normalized by

∑
n |ψn(t)|2. The spatial

profiles of the initial and final states in the top inset indi-
cates that the SAP in this case maintains high efficiency.
It is worth noting that the SAP scheme does not always
hold in the non-Hermitian case as there are limitations
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FIG. 9: (Color online) The real (a) and imaginary (b) parts
of the energy spectrum of the PT-symmetric heterostructure
as functions of φ2 without disorder. The real (c) and imag-
inary (d) parts of the energy spectrum of the PT-symmetric
heterostructure as functions of φ2 with disorder described by
{δvn, δJ1, n, δJ2, n} ∈ [−0.2, 0.2]. The red lines depict the
eigenvalues of the edge and interface states. Other parame-
ters are the same as in Fig. 3 except γ = 0.2.

to the observation of adiabatic transport [82–84]. In our
case, the SAP of damped states is unfeasible because they
vanish with time while non-adiabatic processes populate
other states which are amplified, similarly to what ob-
served in Ref. [58]. In the case shown in Fig. 8, the initial
state is actually amplified and adiabatically transferred
to the final state with high efficiency for any positive
value of γ (provided γ < γc1). As we are not concerned
here with the actual determination of the threshold for
a potential lasing action based on such state, we do not
consider gain saturation or nonlinear effects which would
eventually affect the propagation of the amplified mode.
The relevant message conveyed by the above results is
that the spatial profile of the mode potentially suitable
for topological lasing can be dynamically controlled via
the Peierls phase.

D. Robustness against disorder

Finally, we aim to show that both the edge and the
interface states remain topologically protected during a
SAP so that they are robust against certain types of dis-
order. In Fig. 9(a) and Fig. 9(b), we plot the complex
energy spectrum as a function of φ2 with its real part
only shown around the energy gap. Fig. 9(b) shows that
the eigenvalues of some bulk states become imaginary in
the vicinities of φ2 = 0.1π and 0.9π, while all of them are
real elsewhere. So changing φ2 may lead to PT-symmetry
transitions while the PT-broken regions may shrink or
even disappear if we reduce γ. Most importantly, though
the interface state becomes extended in its wavefunction
during a SAP, its eigenvalue remains invariant (see the
red lines) so that the SAP in our model is topologically
protected. This is quite different from other instances of
adiabatic pumping [85], whereby during the process the
edge state acquires a bulk-like character in terms of both
its wavefunction and eigenvalue, the latter shifting and
tending to merge into the bulk spectrum. One of the most
intriguing characteristics of the topologically protected
states is that they are robust against imperfections. To
prove this, we introduce disorders in the couplings, i.e.,
v → 1 + δvn and Jβ → Jβ + δJβn (β = 1, 2), with
−0.2 ≤ δvn, δJ1n, δJ2n ≤ 0.2 being three independent
stochastic (real) variables. In Fig. 9(c) and Fig. 9(d), we
can find that the edge and interface states are immune to
disorder, i.e., their eigenvalues are essentially identical to

those in Fig. 9(a) and Fig. 9(b). Moreover, we have nu-
merically verified that the edge and interface states also
resist real-valued on-site disorders, i.e., γ → γ+i∆n with
−0.2 ≤ ∆n ≤ 0.2. If we introduce complex-valued on-site
disorders instead, the real parts of their eigenvalues do
not change, while the imaginary parts undergo limited
random shifts (not shown here).

IV. CONCLUSIONS

The one-dimensional Su-Schrieffer-Heeger model, one
among the simplest to host topological properties, has
long served as an archetype of a topological structure
[45]. Our extended SSH model, with two distinct real
intercell couplings yet a complex intracell coupling, is
found to exhibit a trivial and two nontrivial topologi-
cal phases characterized by the non-Hermitian winding
numbers w = {0,±1}, respectively. Although these are
not affected by the degree of non-Hermiticity, yet they
are sensitive to the phase of the hopping term (Peierls
phase). A topologically protected mode, lying at the in-
terface between the two halves of a structure bearing dif-
ferent Peierls phases, is seen to be robust against disorder
and of potential interest to topological lasing. Dynamic
control of the spatial profile of this zero mode can be ef-
ficiently achieved through spatial adiabatic passage.

The emergence of topological phenomena in a simple one-
dimensional setting has clearly inspired a number of ex-
perimental investigations and remarkably using rather
different platforms such as, e.g., ultracold atoms [86, 87],
superconducting qbits [64] and RLC circuits [88]. One-
dimensional periodic [51] and quasiperiodic [85] waveg-
uide arrays have recently provided a complementary win-
dow into the physics of topological photonic structures.
It is within such a framework that aspects of the model
here proposed may be tested. In particular, structures
based on coupled ring resonators subject to synthetic
gauge fields control are envisaged as promising. Synthetic
gauge fields can in fact be realized via dynamically mod-
ulated couplers [62, 63] and via thermal or electro-optic
modulators [33, 65, 66].
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