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1 Introduction

The B0→ K∗0K∗0 decay is a Flavour-Changing Neutral Current (FCNC) process.1 In the

Standard Model (SM) this type of processes is forbidden at tree level and occurs at first

order through loop penguin diagrams. Hence, FCNC processes are considered to be excel-

lent probes for physics beyond the SM, since contributions mediated by heavy particles,

contemplated in these theories, may produce effects measurable with the current sensitivity.

Evidence of the B0→ K∗0K∗0 decay has been found by the BaBar collaboration [1]

with a measured yield of 33.5+9.1
−8.1 decays. An untagged time-integrated analysis was pre-

sented finding a branching fraction of B = (1.28+0.35
−0.30 ± 0.11) × 10−6 and a longitudinal

polarisation fraction of fL = 0.80+0.11
−0.12 ± 0.06. In untagged time-integrated analyses the

distributions for B0 and B0 decays are assumed to be identical and summed, so that they

can be fitted with a single amplitude. However, if CP -violation effects are present, the

distribution is given by the incoherent sum of the two contributions. The Belle collabora-

tion also searched for this decay [2] and a branching fraction of B = (0.26+0.33+0.10
−0.29−0.07)× 10−6

was measured, disregarding S-wave contributions. There is a 2.2 standard-deviations dif-

ference between the branching fraction measured by the two experiments. The predictions

1Throughout the text charge conjugation is implied, (Kπ) indicates either a (K+π−) or a (K−π+) pair,

B0
(s) indicates either a B0 or a B0

s meson and K∗0 refers to the K∗(892)0 resonance, unless otherwise stated.
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Figure 1. Leading order Feynman diagrams for the B0→ K∗0K∗0 and B0
s → K∗0K∗0 decays. Both

modes are dominated by a gluonic-penguin diagram.

of factorised QCD (QCDF) are B = (0.6+0.1+0.5
−0.1−0.3) × 10−6 and fL = 0.69+0.01+0.34

−0.01−0.27 [3]. Per-

turbative QCD predicts B = (0.64+0.24
−0.23) × 10−6 [4].2 These theoretical predictions agree

with the experimental results within the large uncertainties. The measurement of fL agrees

with the näıve hypothesis, based on the quark helicity conservation and the V−A nature

of the weak interaction, that charmless decays into pairs of vector mesons (V V ) should be

strongly longitudinally polarised. See, for example, the Polarization in B Decays review

in ref. [5].

The B0
s → K∗0K∗0 decay was first observed by the LHCb experiment with early

LHC data [4]. A later untagged time-integrated study, with data correspond-

ing to 1 fb−1 of integrated luminosity, measured B = (10.8± 2.1± 1.5)× 10−6 and

fL = 0.201± 0.057± 0.040 [6]. More recently, a complete CP -sensitive time-dependent

analysis of B0
s → (K+π−)(K−π+) decays in the (Kπ) mass range from 750 to 1600MeV/c2

has been published by LHCb [7], with data corresponding to 3 fb−1 of integrated lumi-

nosity. A determination of fL = 0.208± 0.032± 0.046 was performed as well as the first

measurements of the mixing-induced CP -violating phase φdds and of the direct CP asym-

metry parameter |λ|. These LHCb analyses of B0
s → (K+π−)(K−π+) decays lead to three

conclusions: firstly, within their uncertainties, the measured observables are compatible

with the absence of CP violation; secondly, a low polarisation fraction is found; finally, a

large S-wave contribution, as much as 60%, is measured in the 150MeV/c2 window around

the K∗0 mass. The low longitudinal polarisation fraction shows a tension with the predic-

tion of QCDF (fL = 0.63+0.42
−0.29 [3]) and disfavours the hypothesis of strongly longitudinally

polarised V V decays. Theoretical studies try to explain the small longitudinal polarisation

with mechanisms such as contributions from annihilation processes [3, 8]. It is intrigu-

ing that the two channels B0→ K∗0K∗0 and B0
s → K∗0K∗0, which are related by U-spin

symmetry, implying the exchange of d and s quarks as displayed in figure 1, show such

different polarisations. A comprehensive theory review on polarisation of charmless V V

neutral B-meson decays can be found in ref. [9].

Some authors consider the B0
s → K∗0K∗0 decay as a golden channel for a precision

test of the CKM phase βs [10]. High-precision analyses of this channel, dominated by the

2This reference considers two scenarios for its predictions, both giving compatible results. Only the first

scenario considered therein is quoted here.
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gluonic-penguin diagram, will require to account for subleading amplitudes [9, 11]. The

study of the B0→ K∗0K∗0 decay allows to control higher-order SM contributions to the

B0
s → K∗0K∗0 channel employing U-spin symmetry [10, 12]. In refs. [12, 13] more precise

QCDF predictions, involving the relation between longitudinal branching fractions of the

two channels, are made.

In this work, an untagged and time-integrated amplitude analysis of the

B0→ (K+π−)(K−π+) and B0
s → (K+π−)(K−π+) decays in the two-body invariant mass

regions of 150MeV/c2 around the K∗0 mass is presented, as well as the determination of

the B0→ K∗0K∗0 decay branching fraction. The analysis uses data recorded in 2011 and

2012 at centre-of-mass energies of
√
s = 7 and

√
s = 8TeV, respectively, corresponding to

an integrated luminosity of 3 fb−1.

This paper is organised as follows. In section 2 the formalism of the decay ampli-

tudes is presented. In section 3 a brief description of the LHCb detector, online selec-

tion algorithms and simulation software is given. The selection of B0→ (K+π−)(K−π+)

and B0
s → (K+π−)(K−π+) candidates is presented in section 4. Section 5 describes the

maximum-likelihood fit to the four-body invariant-mass spectra and its results. The am-

plitude analysis and its results are discussed in section 6. The estimation of systematic

uncertainties is described in section 7, and the determination of the B0→ K∗0K∗0 decay

branching fraction relative to the B0
s → K∗0K∗0 mode in section 8. Finally, the results are

summarised and conclusions are drawn in section 9.

2 Amplitude analysis formalism

The B0→ K∗0K∗0 and B0
s → K∗0K∗0 modes are weak decays of a pseudoescalar parti-

cle into two vector mesons (P → V V ). The B-meson decays are followed by subsequent

K∗0→ K+π− and K∗0→ K−π+ decays. The study of the angular distribution employs

the helicity angles shown in figure 2: θ1(2), defined as the angle between the direction of

the K+(−) meson and the direction opposite to the B-meson momentum in the rest frame

of the K∗0 (K∗0) resonance, and φ, the angle between the decay planes of the two vector

mesons in the B-meson rest frame. From angular momentum conservation, three relative

polarisations of the final state are possible for V V final states that correspond to longitudi-

nal (0 or L), or transverse to the direction of motion and parallel (‖) or perpendicular (⊥)

to each other. For the two-body invariant mass of the (K+π−) and (K−π+) pairs, noted

as m1 ≡ M(K+π−) and m2 ≡ M(K−π+), a range of 150MeV/c2 around the known K∗0

mass [5] is considered. Therefore, (Kπ) pairs may not only originate from the spin-1 K∗0

meson, but also from other spin states. This justifies that, besides the helicity angles, a

phenomenological description of the two-body invariant mass spectra, employing the isobar

model, is adopted in the analytic model. In the isobar approach, the decay amplitude is

modelled as a linear superposition of quasi-two-body amplitudes [14–16].

For the S-wave (J = 0), the K∗
0 (1430)

0 resonance, the possible K∗
0 (700)

0 (or κ) and a

non-resonant component, (Kπ)0, need to be accounted for. This is done using the LASS

parameterisation [17], which is an effective-range elastic scattering amplitude, interfering

with the K∗
0 (1430)

0 meson,

M0(m) ∝ m

q

(
1

cot δβ − i
+ e2iδβ

M0Γ0(m)

M2
0 −m2 − iM0Γ0(m)

)
, (2.1)

– 3 –
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Figure 2. Definition of the helicity angles, employed in the angular analysis of the B0
(s)→ K∗0K∗0

decays. Each angle is defined in the rest frame of the decaying particle.

where

Γ0(m) = Γ0
M0

m

(
q

q0

)
(2.2)

represents the K∗
0 (1430)

0 width. In eq. (2.1) and eq. (2.2) q is the (Kπ) centre-of-mass

decay momentum, and M0, Γ0 and q0 are the K∗
0 (1430)

0 mass, width and centre-of-mass

decay momentum at the pole, respectively. The effective-range elastic scattering amplitude

component depends on

cot δβ =
1

aq
+

1

2
bq,

where a is the scattering length and b the effective range.

For the P-wave (J = 1), only the K∗(892)0 resonance is considered. Other P-wave

resonances, such as K∗(1410)0 or K∗(1680)0, with pole masses much above the fit region,

are neglected. Resonances with higher spin, for instance the D-wave K∗
2 (1430)

0 meson, are

negligible in the considered two-body mass range [7] and are also disregarded. The K∗0

amplitude is parameterised with a spin-1 relativistic Breit-Wigner amplitude,

M1(m) ∝ m

q

M1Γ1(m)

(M2
1 −m2)− iM1Γ1(m)

. (2.3)

The mass-dependent width is given by

Γ1(m) = Γ1
M1

m

1 + r2q21
1 + r2q2

(
q

q1

)3

, (2.4)

where M1 and Γ1 are the K∗0 mass and width, r is the interaction radius parameterising

the centrifugal barrier penetration factor, and q1 corresponds to the centre-of-mass decay

momentum at the resonance pole. The values of the mass propagator parameters are

summarised in table 1.
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(Kπ)0 K∗0

J = 0 [17, 18] J = 1 [5]

MJ [MeV/c2] 1435± 7 895.81± 0.19

ΓJ [MeV] 279± 22 47.4 ± 0.6

r [c/GeV] − 3.0 ± 0.5

a [c/GeV] 1.95± 0.11 −
b [c/GeV] 1.76± 0.76 −

Table 1. Parameters of the mass propagators employed in the amplitude analysis.

The differential decay rate for B0
(s) mesons3 at production is given by [6, 19],

d5Γ

dcos θ1dcos θ2dφdm1dm2
=

9

8π
Φ4(m1,m2)

∣∣∣∣∣

6∑

i=1

Aigi(m1,m2, θ1, θ2,φ)

∣∣∣∣∣

2

=
6∑

i=1

6∑

j≥i

Re[AiA
∗
jFij ], (2.5)

where Φ4 is the four-body phase space factor. The index i runs over the first column

of table 2 where the different decay amplitudes, Ai ≡ |Ai|eiδi , and the angular-mass func-

tions, gi, are listed. The angular dependence of these functions is obtained from spherical

harmonics as explained in ref. [19]. For CP -studies, the CP -odd, A+
S , and CP -even, A−

S ,

eigenstates of the S-wave polarisation amplitudes are preferred to the vector-scalar (V S)

and scalar-vector (SV ) helicity amplitudes, to which they are related by

A+
S =

AV S +ASV√
2

and A−
S =

AV S −ASV√
2

.

The remaining amplitudes, except for A⊥, correspond to CP -even eigenstates. The contri-

butions can be quantified by the terms Fij , defined as

Fij =
9

8π
Φ4(m1,m2)gi(m1,m2, θ1, θ2,φ)g

∗
j (m1,m2, θ1, θ2,φ)(2− δij), (2.6)

which are normalised according to
∫

Fijdm1dm2dcos θ1dcos θ1dφ = δij .

This condition ensures that
∑6

i=1 |Ai|2 = 1.

The polarisation fractions of the V V amplitudes are defined as

fL,‖,⊥ =
|A0,‖,⊥|2

|A0|2 + |A‖|2 + |A⊥|2
,

3Charge conjugation is not implied in the rest of this section. For the charge-conjugated mode,

B0
(s)→ (K+π−)(K−π+), the decay rate is obtained applying the transformation Ai → ηiĀi in eq. (2.5)

where the corresponding CP eigenvalues, ηi, are given in table 2.
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i Ai ηi gi(m1,m2, θ1, θ2,φ)

1 A0 1 cos θ1 cos θ2M1(m1)M1(m2)

2 A‖ 1 1√
2
sin θ1 sin θ2 cosφM1(m1)M1(m2)

3 A⊥ −1 i√
2
sin θ1 sin θ2 sinφM1(m1)M1(m2)

4 A+
S −1 − 1√

6
(cos θ1M1(m1)M0(m2)− cos θ2M0(m1)M1(m2))

5 A−
S 1 − 1√

6
(cos θ1M1(m1)M0(m2) + cos θ2M0(m1)M1(m2))

6 ASS 1 − 1
3M0(m1)M0(m2)

Table 2. Amplitudes, Ai, and angle-mass functions, gi(m1,m2, θ1, θ2,φ), of the differential de-
cay rate of eq. (2.5). In particular, A0, A‖ and A⊥ are the longitudinal, parallel and transverse
helicity amplitudes of the P-wave whereas A+

S and A−
S are the combinations of CP eigenstate am-

plitudes of the SV and V S states and ASS is the double S-wave amplitude. The table indicates
the corresponding CP eigenvalue, ηi. The mass propagators, M0,1(m), are discussed in the text.

where A0, A‖ and A⊥ are the longitudinal, parallel and transverse amplitudes of the P-wave.

Therefore, fL is the fraction of B0
(s)→ K∗0K∗0 longitudinally polarised decays. The polar-

isation fractions are preferred to the amplitude moduli since they are independent of the

considered (Kπ) mass range. The P-wave amplitudes moduli can always be recovered as

|A0,‖,⊥|2 = (1− |A+
S |

2 − |A−
S |

2 − |ASS |2) fL,‖,⊥.

The phase of all propagators is set to be zero at the K∗0 mass. In addition, a global

phase can be factorised without affecting the decay rate setting δ0 ≡ 0. The last two

requirements establish the definition of the amplitude phases (δ‖, δ⊥, δ
−
S , δ

+
S and δSS) as

the phase relative to that of the longitudinal P-wave amplitude at the K∗0 mass.

Since B0
(s) mesons oscillate, the decay rate evolves with time. The time-dependent

amplitudes are obtained replacing Ai → Ai(t) and Āi → Āi(t) in eq. (2.5) being

Ai(t) =

[
g+(t)Ai + ηi

q

p
g−(t)Āi

]
and Āi(t) =

[
p

q
g−(t)Ai + ηig+(t)Āi

]
,

with

g+(t) =
1

2

(
e
−
(
iML+

ΓL
2

)
t
+ e

−
(
iMH+

ΓH
2

)
t
)

and g−(t) =
1

2

(
e
−
(
iML+

ΓL
2

)
t − e

−
(
iMH+

ΓH
2

)
t
)
,

where ΓL and ΓH are the widths of the light and heavy mass eigenstates of the B0
(s) −B0

(s)

system and ML and MH are their masses. The coefficients p and q are the mixing terms

that relate the flavour and mass eigenstates,

B0
(s)H

= pB0
(s) + qB0

(s) and B0
(s)L

= pB0
(s) − qB0

(s).

Masses and widths are often considered in their averages and differences,

M = (ML +MH)/2, ∆M = ML − MH, Γ = (ΓL + ΓH)/2 and ∆Γ = ΓL − ΓH, in

– 6 –



J
H
E
P
0
7
(
2
0
1
9
)
0
3
2

particular in their relation with the mixing phase,

tanφ(s) = 2
∆M

∆Γ

(
1− |q|

|p|

)
. (2.7)

In this analysis, no attempt is made to identify the flavour of the initial B0
(s) meson and

time-integrated spectra are considered. Consequently, the selected candidates correspond

to untagged and time-integrated decay rates and there is no sensitivity to direct and mixing-

induced CP violation. Moreover, since the origin of phases is set in a CP -even eigenstate

(δ0 = 0), for the CP -odd eigenstates, the untagged time-integrated decay is only sensitive

to the phase difference δ⊥ − δ+S . The present experimental knowledge is compatible with

small CP violation in mixing [20] and with the absence of direct CP violation in the

B0
s → (K+π−)(K−π+) system [7].

The dependence of the decay rate in an untagged and time-integrated analysis of a

B0
(s) meson can be expressed as

d5(Γ + Γ)

dcos θ1 dcos θ2 dφ dm1 dm2
= N

6∑

i=1

6∑

j≥i

Re

[
AiA

∗
j

(
1− ηi

ΓH
+

1 + ηi
ΓL

)
Fijδηiηj

]
, (2.8)

where the Ai amplitudes account for the the average of B0
(s) and B0

(s) decays and N is a

normalisation constant. For the B0 meson, a further simplification of the decay rate is

considered, since ∆Γ/Γ = −0.002± 0.010 [20] the light and heavy mass eigenstate widths

can be assumed to be equal,
(
1− ηi

ΓH
+

1 + ηi
ΓL

)
≈ 2

Γ
,

and this factor can be extracted as part of the normalisation constant in eq. (2.8). For the

B0
s meson the central values ΓH = 0.618 ps−1 and ΓL = 0.708 ps−1 [20] are considered.

3 Detector and simulation

The LHCb detector [21, 22] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.

The detector includes a high-precision tracking system consisting of a silicon-strip vertex

detector surrounding the pp interaction region, a large-area silicon-strip detector located

upstream of a dipole magnet with a bending power of about 4Tm, and three stations of

silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking

system provides a measurement of the momentum, p, of charged particles with a relative

uncertainty that varies from 0.5% at low momentum to 1.0% at 200GeV/c. The minimum

distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with

a resolution of (15 + 29/pT)µm, where pT is the component of the momentum transverse

to the beam, in GeV/c. Different types of charged hadrons are distinguished using infor-

mation from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are

identified by a calorimeter system consisting of scintillating-pad and preshower detectors,

– 7 –
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an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed

of alternating layers of iron and multiwire proportional chambers.

The magnetic field deflects oppositely charged particles in opposite directions and

this can lead to detection asymmetries. Periodically reversing the magnetic field polarity

throughout the data-taking almost cancels the effect. The configuration with the magnetic

field pointing upwards (downwards), MagUp (MagDown), bends positively (negatively)

charged particles in the horizontal plane towards the centre of the LHC ring.

The online event selection is performed by a trigger [23], which consists of a hardware

stage, based on information from the calorimeter and muon systems, followed by a software

stage, which applies a full event reconstruction. In the offline selection, trigger signatures

are associated with reconstructed particles. Since the trigger system uses the pT of the

charged particles, the phase-space and time acceptance is different for events where signal

tracks were involved in the trigger decision (called trigger-on-signal or TOS throughout)

and those where the trigger decision was made using information from the rest of the event

only (noTOS).

Simulated samples of the B0→ K∗0K∗0 and B0
s → K∗0K∗0 decays with longitudinal

polarisation fractions of 0.81 and 0.64, respectively, are primarily employed in these anal-

yses, particularly for the acceptance description as explained in section 6. Simulated sam-

ples of the main peaking background contributions, B0→ K∗0φ(K+K−), B0→ ρ0K∗0 and

Λ0
b→ K∗0pπ−, are also considered. In the simulation, pp collisions are generated using

Pythia [24] with a specific LHCb configuration [25]. Decays of hadronic particles are de-

scribed by EvtGen [26], in which final-state radiation is generated using Photos [27]. The

interaction of the generated particles with the detector, and its response, are implemented

using the Geant4 toolkit [28, 29] as described in ref. [30].

4 Signal selection

Both data and simulation are filtered with a preliminary selection. Events containing

four good quality tracks with pT > 500MeV/c are retained. In events that contain more

than one PV, the B0
(s) candidate constructed with these four tracks is associated with

the PV that has the smallest χ2
IP, where χ

2
IP is defined as the difference in the vertex-fit

χ2 of the PV reconstructed with and without the track or tracks in question. Each of

the four tracks must fulfil χ2
IP > 9 with respect to the PV and originate from a common

vertex of good quality (χ2/ndf < 15, where ndf is the number of degrees of freedom of the

vertex). To identify kaons and pions, a selection in the difference of the log-likelihoods

of the kaon and pion hypothesis (DLLKπ) is applied. This selection is complemented

with fiducial constraints that optimise the particle identification determination: the pion

and kaon candidates are required to have 3 < p < 100GeV/c and 1.5 < η < 4.5 and

be inconsistent with muon hypothesis. The final state opposite charge (Kπ) pairs are

combined into K∗0 and K∗0 candidates with a mass within 150MeV/c2 of the K∗0 mass.

The K∗0 and K∗0 candidates must have pT > 900MeV/c and vertex χ2/ndf < 9. The

intermediate resonances must combine into B0
(s) candidates within 500MeV/c2 of the B0

s

mass, with a distance of closest approach between their trajectories of less than 0.3mm.

– 8 –
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To guarantee that the B0
(s) candidate originates in the interaction point, the cosine of the

angle between the B0
(s) momentum and the direction of flight from the PV to the decay

vertex is required to be larger than 0.99 and the χ2
IP with respect to the PV has to be

smaller than 25.

A multivariate selection based on a Boosted Decision Tree with Gradient Boost [31, 32]

(BDTG) is employed. It relies on the aforementioned variables and on the B0
(s) candi-

date flight distance with respect to the PV and its pT. Simulated B0→ K∗0K∗0 decays

with tracks matched to the generator particles and filtered with the preliminary selec-

tion are used as signal sample, whereas the four-body invariant-mass sideband 5600 <

M(K+π−K−π+) < 5800MeV/c2, composed of purely combinatorial (K+π−)(K−π+) com-

binations, is used as background sample for the BDTG training. The number of events in

the signal training sample of the BDTG is determined using the ratio between the B0
s and

the B0 yields from ref. [6] and the B0
s yield obtained with a four-body mass fit to the data

sample after the preliminary selection. The number of events in the background training

sample of the BDTG is estimated by extrapolating the background yield in the sideband

into the ±30MeV/c2 window around the B0 mass. The requirement on the BDTG output is

chosen to maximise the figure of merit NS/
√
NS +NB, where NS and NB are the expected

output signal and background yields, respectively. Different BDTGs are implemented for

2011 and 2012 data.

A comprehensive search for peaking backgrounds, mainly involving intermediate charm

particles, is performed. Decays of B mesons sharing the same final state with the signal,4

such as B0→ D0(K+K−)π+π− (B ∼ 3×10−6) and B0→ D0(π+π−)K+K− (B ∼ 6×10−8)

decays, are strongly suppressed by the requirement in the (Kπ) mass. Resonances in three-

body combinations (K+K−π+) and (K+π+π−) are also explored. In the case of the former,

the three-body invariant mass in the data sample is above all known charm resonances.

For the latter, no evidence of candidates originated in B0→ D∓K± and B0→ D∓
s K

±

decays (B ∼ 10−7) or in B0
s → D∓

s K
± decays (B ∼ 10−6) is found. Three-body com-

binations with a pion misidentified as a kaon are reconstructed, mainly searching for

B0→ D−(π−π−K+)π+ decays (B = 2.45 × 10−4), but also for B0
s → D±

s K
∓ (B ∼ 10−5),

B0→ D−K+ and B0→ D−
s K

+ (B ∼ 10−6) decays. All of them are suppressed to a neg-

ligible level by the applied selection. A search of three-body combinations with a proton

misidentified as a kaon is performed, finding no relevant contribution from decays involving

a Λ+
c baryon. Decays into five final-state particles are also investigated. Contributions of

the B0→ η′(γπ+π−)K∗0 decay can be neglected due to the small misidentification proba-

bility and the four-body mass distribution whereas the B0
s → φ(π0π+π−)φ(K+K−) decay

is negligible due to the requirement on the (Kπ) mass.

5 Four-body mass spectrum

The signal and background yields are determined by means of a simultaneous extended

maximum-likelihood fit to the invariant-mass spectra of the four final-state particles in the

2011 and 2012 data samples. The B0
(s)→ (K+π−)(K−π+) signal decays are parameterised

4The branching fractions in this section are taken from ref. [5].
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with double-sided Hypatia distributions [33] with the same parameters except for their

means that are shifted by the difference between the B0 and B0
s masses, 87.13MeV/c2 [5].

Misidentified B0→ (K+π−)(K−K+) (including B0→ K∗0φ decays), Λ0
b→ (pπ−)(K+π−)

and B0→ ρ0K∗0 decays are also considered in the fit. Both the B0→ (K+π−)(K−K+)

and Λ0
b→ (pπ−)(K−π+) contributions are described with the sum of a Crystal Ball [34]

function and a Gaussian distribution which shares mean with the Crystal Ball core. The

parameters of these distributions are obtained from simulation, apart from the mean and

resolution values which are free to vary in the fit. Whereas the distribution mean val-

ues are constrained to be the same in the 2011 and 2012 data, the resolution is allowed

to have different values for the two samples. The small contributions from B0→ ρ0K∗0

and Λ0
b→ (pπ−)(K−π+) decays have a broad distribution in the four-body mass and are

the object of specific treatment. The contribution from B0→ ρ0K∗0 decays has an ex-

pected yield of 3.5 ± 1.3 (6.6 ± 2.3) in the 2011 (2012) sample. It is estimated from the

detection and selection efficiency measured with simulation, the collected luminosities, the

cross section for bb production, the hadronisation fractions of B0 and B0
s mesons and the

known branching fraction of the mode. Simulated events containing this decay mode are

added with negative weights to the final data sample to subtract its contribution. The

contribution of Λ0
b→ (pπ−)(K−π+) decays in the 2011 (2012) sample is determined to be

36± 16 (120± 28) from a fit to the (pπ−K−π+) four-body mass spectrum of the selected

data. In this study the four-body invariant mass is recomputed assigning the proton mass

to the kaon with the largest DLLpK value. In these fits the Λ0
b component is described

with a Gaussian distribution and the dominant B0
s → (K+π−)(K−π+) background is de-

scribed with a Crystal Ball function. The parameters of both lineshapes are obtained

from simulation. The remaining contributions, mainly B0→ (K+π−)(K−K+) and par-

tially reconstructed events, are parameterised with a decreasing exponential with a free

decay constant. The Λ0
b→ (pπ−)(K−π+) decay angular distribution is currently unknown

and its contribution can not be subtracted with negatively weighted simulated events. Its

subtraction is commented further below.

Finally, contributions from partially reconstructed b-hadron decays and combinatorial

background are also considered. The former is composed of B- and B0
s -meson decays

containing neutral particles that are not reconstructed. Because of the missing particle,

the measured four-body invariant mass of these candidates lies in the lower sideband of the

spectrum. All contributions to this background are jointly parameterised with an ARGUS

function [35] convolved with a Gaussian resolution function, with the same width as the

signal. The endpoint of the distribution is also fixed to the B0
s mass minus the π0 mass. The

combinatorial background is composed of charged tracks that are not originating from the

signal decay chain. It is modelled with a linear distribution, with a free slope parameter,

separate for 2011 and 2012 data samples.

The results of the fit to the four-body mass spectrum are shown in figure 3 and the

yields are reported in table 3. In total, about three hundred B0→ (K+π−)(K−π+) signal

candidates are found, a factor seven larger than previous analyses [1, 2]. To perform a

background-subtracted amplitude analysis, the sPlot technique [36, 37] is applied to isolate

either the B0→ (K+π−)(K−π+) or the B0
s → (K+π−)(K−π+) decays. The contribution
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Figure 3. Aggregated four-body invariant-mass fit result of the 2011 and 2012 data. The solid
red distribution corresponds to the B0

s → (K+π−)(K−π+) decay, the solid cyan distribution to
B0→ (K+π−)(K−π+), the dotted dark blue line to Λ0

b→ (pπ−)(K−π+), the dotted yellow line to
B0→ (K+π−)(K−K+) and the dotted cyan line represents the partially reconstructed background.
The tiny combinatorial background contribution is not represented. The black points with error
bars correspond to data to which the B0→ ρ0K∗0 contribution has been subtracted with negatively
weighted simulation, and the overall fit is represented by the thick blue line.

Yield 2011 sample 2012 sample

B0→ (K+π−)(K−π+) 99± 12± 3 249± 19± 5

B0
s → (K+π−)(K−π+) 617± 26± 8 1337± 39± 12

Misidentified B0→ (K+π−)(K−K+) 145± 17± 2 266± 27± 8

Partially reconstructed background 100 ± 15± 4 230± 25± 6

Combinatorial background 7± 5± 11 48± 25± 25

Table 3. Signal and background yields for the 2011 and 2012 data samples, obtained from the fit
to the four-body mass spectrum of the selected candidates. Statistical and systematic uncertainties
are reported, the latter are estimated as explained in section 8.

from Λ0
b→ (pπ−)(K−π+), for which the yield is fixed, is treated using extended weights

according to appendix B.2 of ref. [36]. The sPlot method suppresses the background con-

tributions using their relative abundance in the four-body invariant mass spectrum and,

therefore, no assumption is required for their phase-space distribution.

6 Amplitude analysis

Each of the background-subtracted samples of B0→ (K+π−)(K−π+) and

B0
s → (K+π−)(K−π+) decays is the object of a separate amplitude analysis based

on the model described in section 2. As a first step, the effect of a non-uniform efficiency,
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depending on the helicity angles and the two-body invariant masses, is examined. For this

purpose, four categories are defined according to the hardware trigger decisions (TOS or

noTOS) and data-taking period (2011 and 2012). The efficiency is accounted for through

the complex integrals [38]

ωk
ij =

∫
ε(m1,m2, θ1, θ2,φ)Fijdm1dm2dcos θ1dcos θ2dφ, (6.1)

where ε is the total phase-space dependent efficiency, k is the sample category and Fij

are defined in eq. (2.6). The integrals of eq. (6.1) are determined using simulated signal

samples of each of the four categories, selected with the same criteria applied to data. A

single set of integrals is used for both the B0
s and the B0 amplitude analyses. A probability

density function (PDF) for each category is built

Sk(m1,m2, θ1, θ2,φ) =

6∑
i=1

6∑
j≥i

Re
[
AiA∗

j

(
1−ηi
ΓH

+ 1+ηi
ΓL

)
Fijδηiηj

]

6∑
i=1

6∑
j≥i

Re
[
AiA∗

j

(
1−ηi
ΓH

+ 1+ηi
ΓL

)
ωk
ijδηiηj

] , (6.2)

where Ai and ηi are given in table 2.

Candidates from all categories are processed in a simultaneous unbinned maximum-

likelihood fit, separately for each signal decay mode, using the PDFs in eq. (6.2). To

avoid nonphysical values of the parameters during the minimisation, some of them are

redefined as

f‖ = xf‖(1− fL),

f⊥ = (1− xf‖)(1− fL),

|A+
S |

2 = x|A+
S |2(1− |A−

S |
2),

|ASS |2 = x|ASS |2(1− |A−
S |

2 − |A+
S |

2),

where xf‖ , x|A+
S |2 and x|ASS |2 are used in the fit, together with fL, |A−

S |2,δ‖, δ⊥−δ+S , δ
−
S and

δSS . The former three variables are free to vary within the range [0, 1], ensuring that the

sum of all the squared amplitudes is never greater than 1. The fit results are corrected for a

small reducible bias, originated in discrepancies between data and simulation, as explained

in section 7. The final results are shown in table 4.

Figures 4 and 5 show the one-dimensional projections of the amplitude fit to the

B0→ (K+π−)(K−π+) and B0
s → (K+π−)(K−π+) signal samples in which the background

is statistically subtracted by means of the sPlot technique. Three contributions are shown:

V V , produced by (K+π−) (K−π+) pairs originating in a K∗0K∗0 decay; V S, accounting

for amplitudes in which only one of the (Kπ) pairs originates in a K∗0 decay; and SS,

where none of the two (Kπ) pairs originate in a K∗0 decay.

The fraction of V V decays, or purity at production, of the B0→ K∗0K∗0 signal, fP
B0 ,

is estimated from the amplitude analysis and found to be

fP
B0 ≡ 1− |ASS |2 − |A+

S |
2 − |A−

S |
2 = 0.592± 0.050 (stat)± 0.017 (syst).
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Parameter B0→ K∗0K∗0 B0
s → K∗0K∗0

fL 0.724± 0.051± 0.016 0.240± 0.031± 0.025

xf‖ 0.42± 0.10± 0.03 0.307± 0.031± 0.010

|A−
S |2 0.377± 0.052± 0.024 0.558± 0.021± 0.014

x|A+
S |2 0.013± 0.027± 0.011 0.109± 0.028± 0.024

x|ASS |2 0.038± 0.022± 0.006 0.222± 0.025± 0.031

δ‖ 2.51± 0.22± 0.06 2.37± 0.12± 0.06

δ⊥ − δ+S 5.44± 0.86± 0.22 4.40± 0.17± 0.07

δ−S 5.11± 0.13± 0.04 1.80± 0.10± 0.06

δSS 2.88± 0.35± 0.13 0.99± 0.13± 0.06

f‖ 0.116± 0.033± 0.012 0.234± 0.025± 0.010

f⊥ 0.160± 0.044± 0.012 0.526± 0.032± 0.019

|A+
S |2 0.008± 0.013± 0.007 0.048± 0.014± 0.011

|ASS |2 0.023± 0.014± 0.004 0.087± 0.011± 0.011

S-wave fraction 0.408± 0.050± 0.017 0.694± 0.016± 0.010

Table 4. Results of the amplitude analysis of B0→ (K+π−)(K−π+) and B0
s → (K+π−)(K−π+)

decays. The observables above the line are directly obtained from the maximum-likelihood fit
whereas those below are obtained from the former, as explained in the text, with correlations
accounted for in their estimated uncertainties. For each result, the first quoted uncertainty is
statistical and the second systematic. The estimation of the latter is described in section 7.

The significance of this magnitude, computed as its value over the sum in quadrature of

the statistical and systematic uncertainty, is found to be 10.8 standard deviations. This

significance corresponds to the presence of B0→ K∗0K∗0 V V decays in the data sample.

The S-wave fraction of the decay is equal to 0.408 = 1− fP
B0 . For the B0

s → K∗0K∗0 mode

the S-wave fraction is found to be 0.694± 0.016 (stat)± 0.010 (syst).

7 Systematic uncertainties of the amplitude analysis

Several sources of systematic uncertainty that affect the results of the amplitude analysis

are considered and discussed in the following.

Fit method. Biases induced by the fitting method are evaluated with a large ensemble

of pseudoexperiments. For each signal decay, samples with the same yield of signal

observed in data (see table 3) are generated according to the PDF of eq. (2.8) with

inputs set to the results summarised in table 4. The use of the weights defined

in eq. (6.1) to account the detector acceptance would require a full simulation and,

instead, a parametric efficiency is considered. For each observable, the mean deviation

of the result from the input value is assigned as a systematic uncertainty.

Description of the kinematic acceptance. The uncertainty on the signal efficiency re-

lies on the coefficients of eq. (6.1) that are estimated with simulation. To evaluate

its impact on the amplitude analysis results, the fit to data is repeated several times
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Figure 4. Projections of the amplitude fit results for the B0→ K∗0K∗0 decay mode on the helicity
angles (top row: cos θ1 left, cos θ2 centre and φ right) and on the two-body invariant masses (bottom
row: M(K+π−) left and M(K−π+) centre). The contributing partial waves: V V (dashed red), V S
(dashed green) and SS (dotted grey) are shown with lines. The black points correspond to data
and the overall fit is represented by the blue line.

with alternative coefficients varied according to their covariance matrix. The stan-

dard deviation of the distribution of the fit results for each observable is assigned as

a systematic uncertainty.

Resolution. The fit performed assumes a perfect resolution on the phase-space variables.

The impact of the detector resolution on these variables is estimated with sets of

pseudoexperiments adding per-event random deviations according to the resolution

estimated from simulation. For each observable, the mean deviation of the result

from the measured value is assigned as a systematic uncertainty.

P-wave mass model. The amplitude analysis is repeated with alternative values of the

parameters that define the P-wave mass propagator, detailed in table 1, randomly

sampled from their known values [5]. The standard deviation of the distribution of

the amplitude fit results for each observable is assigned as a systematic uncertainty.

S-wave mass model. In addition to the default S-wave propagator, described in sec-

tion 2, two alternative models are used: the LASS lineshape with the parameters

of table 5, obtained with B0→ J/ψK+π− decays within the analysis of ref. [39], and

the propagator proposed in ref. [40]. The amplitude fit is performed with these two
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Figure 5. Projections of the amplitude fit results for the B0
s → K∗0K∗0 decay mode on the helicity

angles (top row: cos θ1 left, cos θ2 centre and φ right) and on the two-body invariant masses (bottom
row: M(K+π−) left and M(K−π+) centre). The contributing partial waves: V V (dashed red), V S
(dashed green) and SS (dotted grey) are shown with lines. The black points correspond to data
and the overall fit is represented by the blue line.

(K+π−)0

M0 [MeV/c2] 1456.7± 3.9

Γ0 [MeV] 323± 11

a [c/GeV] 3.83± 0.11

b [c/GeV] 2.86± 0.22

Table 5. Alternative parameters of the LASS mass propagator used in the S-wave systematic
uncertainty estimation.

alternatives and, for each observable, the largest deviation from the baseline result is

assigned as a systematic uncertainty.

Differences between data and simulation. An iterative method [41], is used to weight

the simulated events and improve the description of the track multiplicity and B0
(s)-

meson momentum distributions. The procedure is repeated multiple times and, for

each observable, the mean bias of the amplitude fit result is corrected for in the

results of table 4 while its standard deviation is assigned as a systematic uncertainty.

Background subtraction. The data set used in the amplitude analysis is background

subtracted using the sPlot method [36, 37] that relies in the lineshapes of the four-
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body mass fit discussed in section 5. The uncertainty related to the determination of

the signal weights is evaluated repeating the amplitude analysis fits with weights ob-

tained fitting the four-body invariant-mass with two alternative models. In the first

case, the model describing the signal is defined by the sum of two Crystal Ball func-

tions [34] with a common, free, peak value and the resolution parameter fixed from

simulation. In the second case, the model describing the combinatorial background

is assumed to be an exponential function. The amplitude fit is performed with the

sPlot-weights obtained with the two alternatives and, for each observable, the largest

deviation from the baseline result is assigned as a systematic uncertainty. This proce-

dure is also used when addressing the systematic uncertainties in the measured yields

of the different subsamples, as discussed in section 8.

Peaking backgrounds. The uncertainty related to the fluctuations in the yields of the

Λ0
b→ (pπ−)(K−π+) and B0→ ρ0K∗0 background contributions are estimated repeat-

ing the amplitude-analysis fit with the yield values varied by their uncertainties re-

ported in section 5. For each observable, the largest deviation from the default result

is assigned as a systematic uncertainty. This procedure is also used when addressing

the systematic uncertainties of the four-body invariant mass yields in section 8.

Time acceptance. The amplitude analysis does not account for possible decay-time de-

pendency of the efficiency, however, the trigger and the offline selections may have

an impact on it. This effect only affects B0
s -meson decays and is accounted for by

estimating effective shifts: ΓH = 0.618 → 0.598 ps−1 and ΓL = 0.708 → 0.732 ps−1,

which are obtained with simulation. For each observable, the variation of the result

of the fit after introducing these values in the amplitude analysis is considered as a

systematic uncertainty.

The resulting systematic uncertainties and the corrected biases, originated in the dif-

ferences between data and simulation, are detailed in table 6 for the parameters of the

amplitude-analysis fit. The corresponding values for the derived observables are sum-

marised in table 7. The total systematic uncertainty is computed as the sum in quadrature

of the different contributions.

8 Determination of the ratio of branching fractions

In this analysis, the B0→ K∗0K∗0 branching fraction is measured relative to that of

B0
s → K∗0K∗0 decays. Since both decays are selected in the same data sample and share

a common final state most systematic effects cancel. However, some efficiency corrections,

eg. those originated from the difference in phase-space distributions of events of the two

modes, need to be accounted for. The amplitude fit provides the relevant information to

tackle the differences between the two decays.

The branching-fraction ratio is obtained as

B(B0→ K∗0K∗0)

B(B0
s → K∗0K∗0)

=
εB0

s

εB0
×
λfLB0

s

λfLB0

×
NB0 × fD

B0

NB0
s
× fD

B0
s

× fs
fd

, (8.1)
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Decay mode B0→ (K+π−)(K−π+)

Parameter fL xf‖ |A−
S |2 x|A+

S |2 x|ASS |2 δ‖ δ⊥ − δ+S δ−S δSS

Bias data-simulation 0.001 0.00 0.006 −0.001 0.004 0.01 −0.01 0.00 0.01

Fit method 0.007 0.01 0.011 0.009 0.001 0.00 0.01 0.00 0.02

Kinematic acceptance 0.005 0.01 0.006 0.004 0.002 0.03 0.12 0.01 0.04

Resolution 0.007 0.00 0.005 0.001 0.002 0.00 0.16 0.00 0.02

P-wave mass model 0.001 0.00 0.004 0.001 0.002 0.00 0.01 0.00 0.02

S-wave mass model 0.007 0.01 0.016 0.003 0.002 0.03 0.03 0.03 0.02

Differences data-simulation 0.004 0.00 0.002 0.001 0.001 0.01 0.01 0.01 0.01

Background subtraction 0.002 0.01 0.006 0.001 0.002 0.01 0.06 0.01 0.09

Peaking backgrounds 0.009 0.02 0.009 0.003 0.003 0.04 0.06 0.01 0.08

Total systematic unc. 0.016 0.03 0.024 0.011 0.006 0.06 0.22 0.04 0.13

Decay mode B0
s → (K+π−)(K−π+)

Parameter fL xf‖ |A−
S |2 x|A+

S |2 x|ASS |2 δ‖ δ⊥ − δ+S δ−S δSS

Bias data-simulation 0.004 0.003 0.007 −0.003 0.021 0.05 0.00 0.05 0.07

Fit method 0.001 0.000 0.001 0.000 0.000 0.00 0.00 0.00 0.00

Kinematic acceptance 0.011 0.006 0.011 0.021 0.009 0.05 0.07 0.05 0.05

Resolution 0.002 0.001 0.000 0.002 0.000 0.00 0.00 0.00 0.00

P-wave mass model 0.001 0.000 0.001 0.002 0.009 0.00 0.01 0.00 0.01

S-wave mass model 0.021 0.001 0.007 0.011 0.028 0.03 0.02 0.03 0.02

Differences data-simulation 0.002 0.000 0.001 0.001 0.001 0.01 0.00 0.01 0.01

Background subtraction 0.000 0.001 0.001 0.001 0.004 0.01 0.01 0.01 0.01

Peaking backgrounds 0.003 0.008 0.002 0.002 0.002 0.02 0.01 0.02 0.01

Time acceptance 0.008 0.014 0.008 0.004 0.005 0.00 0.00 0.00 0.00

Total systematic unc. 0.025 0.010 0.014 0.024 0.031 0.06 0.07 0.06 0.05

Table 6. Systematic uncertainties for the parameters of the amplitude-analysis fit of the
B0

(s)→ (K+π−)(K−π+) decay. The bias related to differences between data and simulation is
included in the results shown in table 4.

where, for each channel, εB0
(s)

is the detection efficiency, λfL
B0

(s)
is a polarisation-dependent

correction of the efficiency, originated in differences between the measured polarisation

and that assumed in simulation, NB0
(s)

is the measured number of B0
(s)→ (K+π−)(K−π+)

candidates and fD
B0

(s)
represents the V V signal purity at detection. In this way NB0

(s)
×fD

B0
(s)

represents the B0
(s)→ K∗0K∗0 yield. Finally, fd and fs are the hadronisation fractions of

a b-quark into a B0 and B0
s meson, respectively.

The purity at detection and the λfL factor ratios, κk
B0

(s)
, are obtained for each decay

mode as

κkB0
(s)

≡
λfL
B0

(s)

fD
B0

(s)

=

6∑
i=1

6∑
j≥i

Re[AiA∗
j

(
1−ηi
ΓH

+ 1+ηi
ΓL

)
ωk
ij ]

(1− |A−
S |2 − |A+

S |2 − |ASS |2)
3∑

i=1

3∑
j≥i

Re[Asim
i Asim∗

j

(
1−ηi
ΓH

+ 1+ηi
ΓL

)
ωk
ij ]

,

(8.2)

– 17 –



J
H
E
P
0
7
(
2
0
1
9
)
0
3
2

Decay mode B0→ (K+π−)(K−π+)

Observable f‖ f⊥ |A+
S |2 |ASS |2 S-wave fraction

Bias data-simulation 0.001 −0.001 −0.001 0.002 0.007

Fit method 0.000 0.007 0.005 0.000 0.006

Kinematic acceptance 0.003 0.004 0.001 0.003 0.006

Resolution 0.001 0.003 0.000 0.001 0.006

P-wave mass model 0.000 0.001 0.000 0.001 0.005

S-wave mass model 0.000 0.007 0.002 0.002 0.008

Differences data-simulation 0.001 0.003 0.000 0.001 0.002

Background subtraction 0.005 0.003 0.001 0.001 0.002

Peaking backgrounds 0.010 0.003 0.002 0.002 0.009

Total systematic unc. 0.012 0.012 0.007 0.004 0.017

Decay mode B0
s → (K+π−)(K−π+)

Observable f‖ f⊥ |A+
S |2 |ASS |2 S-wave fraction

Bias data-simulation 0.001 −0.005 −0.002 0.007 0.012

Fit method 0.001 0.001 0.000 0.001 0.001

Kinematic acceptance 0.005 0.009 0.010 0.004 0.004

Resolution 0.000 0.002 0.000 0.001 0.002

P-wave mass model 0.000 0.001 0.001 0.003 0.005

S-wave mass model 0.006 0.016 0.004 0.009 0.006

Differences data-simulation 0.001 0.001 0.000 0.001 0.001

Background subtraction 0.001 0.001 0.001 0.002 0.002

Peaking backgrounds 0.007 0.005 0.001 0.001 0.001

Time acceptance 0.008 0.016 0.003 0.001 0.007

Total systematic unc. 0.010 0.019 0.011 0.011 0.010

Table 7. Systematic uncertainties for the derived observables of the amplitude-analysis fit of
the B0

(s)→ (K+π−)(K−π+) decay. The bias related to differences between data and simulation is
included in the results shown in table 4.

where the ωk
ij coefficients are defined in eq. (6.1), Asim

i are the amplitudes used to generate

signal samples, and the ηi values are given in table 2. Also in this case, for the B0→ K∗0K∗0

decay, the ΓH = ΓL approximation is adopted.

The detection efficiency is determined from simulation for each channel separately for

the different categories discussed in section 6: year of data taking, trigger type and, in

addition, the LHCb magnet polarity. An exception is applied to the particle-identification

selection whose efficiency is determined from large control samples of D∗+ → D0π+,

D0 → K−π+ decays. Differences in kinematics and detector occupancy between the con-

trol samples and the signal data are accounted for in this particle-identification efficiency

study [42, 43].

The different sources of systematic uncertainty in the branching fraction determination

are discussed below.

Systematic uncertainties in the factor κ. The uncertainties on the parameters of the

amplitude analysis fit described in section 7 affect the determination of the factors κ

defined in eq. (8.2) as summarised in table 8.
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Decay mode B0→ (K+π−)(K−π+) B0
s → (K+π−)(K−π+)

Year 2011 2012 2011 2012

Trigger TOS noTOS TOS noTOS TOS noTOS TOS noTOS

Bias data-simulation 0.01 0.03 0.02 0.01 0.04 0.03 0.02 0.02

Fit method 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kinematic acceptance 0.03 0.04 0.02 0.02 0.06 0.06 0.06 0.06

Resolution 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00

P-wave mass model 0.02 0.02 0.02 0.02 0.05 0.04 0.05 0.04

S-wave mass model 0.03 0.03 0.03 0.03 0.17 0.17 0.16 0.17

Differences data-simulation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Background subtraction 0.03 0.03 0.03 0.03 0.02 0.01 0.02 0.01

Peaking backgrounds 0.03 0.04 0.03 0.04 0.01 0.01 0.01 0.01

Time acceptance − − − − 0.08 0.07 0.08 0.07

Total systematic unc. 0.06 0.08 0.06 0.07 0.19 0.19 0.17 0.18

Table 8. Systematic uncertainties in the factor κ defined in eq. (8.2) split in categories. The
bias originated in differences between data and simulation is corrected for in the κ results shown
in table 9.

Systematic uncertainties in the signal yields. As discussed in section 7 uncertainties

on the signal yields arise from the model used to fit the four-body invariant mass.

The uncertainties from the different proposed alternative signal and background line-

shapes are summed in quadrature to compute the final systematic uncertainty.

Systematic uncertainty in the efficiencies. A dedicated data method is employed to

estimate the uncertainty in the signal efficiency originated in the PID selection.

The inputs employed for measuring the relative branching fraction are summarised

in table 9. The factor κ is different for the two decay modes because of two main reasons:

firstly, the discrepancy between the polarisation assumed in simulation and its measurement

is larger for the B0
s → K∗0K∗0 than for the B0→ K∗0K∗0 decay. Secondly, the different

S-wave fraction of the decays. Also, the efficiency ratio of the two modes deviating from one

is explained upon the different polarisation of the simulation samples. The LHCb detector

is less efficient for values of cos θ1 (cos θ2) close to unity because of slow pions emitted in

K∗0 (K∗0) decays and these are more frequent the larger is the longitudinal polarisation.

The final result of the branching-fraction ratio is obtained as the weighted mean of the

per-category result obtained with eq. (8.1) for the eight categories of table 9, and found

to be

B(B0→ K∗0K∗0)

B(B0
s → K∗0K∗0)

= 0.0758± 0.0057 (stat)± 0.0025 (syst)± 0.0016

(
fs
fd

)
. (8.3)

Considering that

B(B0
s → K∗0K∗0) = (1.11± 0.22 (stat)± 0.12 (syst))× 10−5,
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Parameter 2011 TOS MagUp 2011 TOS MagDown 2011 noTOS MagUp 2011 noTOS MagDown

NB0 21.8± 4.8± 1.2 33.7± 5.5± 1.4 10.8± 3.6± 0.9 33.5± 5.4± 1.4

NB0
s

145.0± 10.9± 3.3 177.3± 11.6± 3.5 131.9± 10.5± 3.2 162.5± 11.3± 3.4

εB0
s
/εB0 1.127± 0.018± 0.022 1.074± 0.017± 0.030 1.102± 0.029± 0.029 1.144± 0.030± 0.026

κB0 1.88± 0.17± 0.06 2.11± 0.21± 0.08

κB0
s

3.25± 0.16± 0.19 3.27± 0.16± 0.19

Parameter 2012 TOS MagUp 2012 TOS MagDown 2012 noTOS MagUp 2012 noTOS MagDown

NB0 73.0± 8.7± 2.3 58.7± 8.1± 2.1 64.1± 8.4± 2.2 53.7± 7.9± 2.1

NB0
s

311 ± 16 ± 5 344 ± 17 ± 5 346 ± 17 ± 5 336 ± 17 ± 5

εB0
s
/εB0 1.102± 0.014± 0.053 1.100± 0.014± 0.048 1.180± 0.022± 0.065 1.108± 0.021± 0.060

κB0 1.92± 0.18± 0.06 2.07± 0.21± 0.07

κB0
s

3.27± 0.16± 0.17 3.14± 0.15± 0.18

fs/fd 0.259± 0.015

Table 9. Parameters used to determine B(B0→ K∗0K∗0)/B(B0
s → K∗0K∗0). When two uncer-

tainties are quoted, the first is statistical and the second systematic. The value of fs/fd is taken
from ref. [44].

from ref. [5], the absolute branching fraction for the B0→ K∗0K∗0 mode is found to be

B(B0→ K∗0K∗0) = (8.0± 0.9 (stat)± 0.4 (syst))× 10−7.

It is worth noticing that, since the B0
s → K∗0K∗0 branching fraction was determined with

the B0→ K∗0φ decay as a reference [6], the uncertainty on fs/fd, which appears in the

ratio of eq. (8.3), does not contribute to the absolute branching fraction measurement.

9 Summary and final considerations

The first study of B0→ (K+π−)(K−π+) decays is performed with a data set recorded

by the LHCb detector, corresponding to an integrated luminosity of 3.0 fb−1 at centre-of-

mass energies of 7 and 8TeV. The B0→ K∗0K∗0 mode is observed with 10.8 standard

deviations. An untagged and time-integrated amplitude analysis is performed, taking into

account the three helicity angles and the (K+π−) and (K−π+) invariant masses in a

150MeV/c2 window around the K∗0 and K∗0 masses. Six contributions are included in

the fit: three correspond to the B0→ K∗0K∗0 P-wave, and three to the S-wave, along

with their interferences. A large longitudinal polarisation of the B0→ K∗0K∗0 decay,

fL = 0.724± 0.051 (stat)± 0.016 (syst), is measured. The S-wave fraction is found to be

0.408± 0.050 (stat)± 0.023 (syst).

A parallel study of the B0
s → (K+π−)(K−π+) mode within 150MeV/c2 of the K∗0

mass is performed, superseding a previous LHCb analysis [6]. A small longitudinal

polarisation, fL = 0.240± 0.031 (stat)± 0.025 (syst) and a large S-wave contribution of

0.694± 0.016 (stat)± 0.012 (syst) are measured for the B0
s → K∗0K∗0 decay, confirming

the previous LHCb results of the time-dependent analysis of the same data [7].
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The ratio of branching fractions

B(B0→ K∗0K∗0)

B(B0
s → K∗0K∗0)

= 0.0758± 0.0057 (stat)± 0.0025 (syst)± 0.0016

(
fs
fd

)
,

is determined. With this ratio the B0→ K∗0K∗0 branching fraction is found to be

B(B0→ K∗0K∗0) = (8.0± 0.9 (stat)± 0.4 (syst))× 10−7.

This value is smaller than the measurement from the BaBar collaboration [1], due to

the S-wave contribution. The measurement is compatible with the QCDF prediction of

ref. [3]: (6+1+5
−1−3)× 10−7.

Using the B0
s -meson averages [20] for y ≡ ∆Γ/(2Γ) = 0.064 ± 0.005 and the mixing

phase, defined in eq. (2.7), φs = −0.021± 0.031, the ratio

Rsd =
B(B0

s → K∗0K∗0)fL(B0
s → K∗0K∗0)

B(B0→ K∗0K∗0)fL(B0→ K∗0K∗0)

1− y2

1 + y cosφs
, (9.1)

is found to be

Rsd = 3.48± 0.32 (stat)± 0.19 (syst)± 0.08 (fd/fs) ± 0.02 (y,φs) = 3.48± 0.38.

This result is inconsistent with the prediction of Rsd = 16.4 ± 5.2 [13]. Within models

such as QCDF or the soft-collinear effective theory, based on the heavy-quark limit the

predictions, longitudinal observables, such as the one in eq. (9.1), have reduced theoretical

uncertainties as compared to parallel and perpendicular ones. The heavy-quark limit also

implies the polarisation hierarchy fL + f‖,⊥. The measured value for Rsd and the fL
result of the B0

s → K∗0K∗0 decay put in question this hierarchy. The picture is even more

intriguing since, contrary to its U-spin partner, the B0→ K∗0K∗0 decay is confirmed to be

strongly polarised.
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p Università di Pisa, Pisa, Italy
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