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12201-970 São José dos Campos, São Paulo, Brazil and
3 Scuola Normale Superiore and CNISM, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

A theory for the electron (and hole) g-factor in lead-salt IV-VI semiconductor quantum wells
(QWs) is presented. An effective Hamiltonian for the QW electronic states in the presence of
an external magnetic field is introduced within the envelope-function approximation, based on the
multi-band k ·p Dimmock model for the bulk. The mesoscopic spin-orbit (Rashba type) and Zeeman
interactions are taken into account on an equal footing and the effective g-factor in symmetric
quantum wells (g∗QW ) is calculated analytically for each non-equivalent conduction (and valence)
band valley, and for QWs grown along different crystallographic directions.

I. INTRODUCTION

Since the development of the first semiconductor elec-
tronic devices the lead-salt IV-VI semiconductor com-
pounds have attracted great interest both for their ap-
plications (as narrow and direct gap materials for infrared
lasers and detectors) and for the interesting relativistic
physics involved in their electronic properties [1]. For
example, the spin-orbit interaction in these compounds
is particularly strong and is directly responsible for the
opening of the fundamental gap in the bulk [2], as well
as for the pure Rashba splitting in asymmetric QWs [3].
IV-VI semiconductor nanostructures have been success-
fully fabricated and applied to different electronic devices
[4–7]. More recently they have been at the center of the
research on the physics of the topological insulators and
new spintronic devices [8, 9].

However, the electronic structure of the IV-VI nanos-
tructures, specially in the presence of a magnetic-field
is not well known. In particular, the quantum confine-
ment effects on the g-factor of the carriers (electrons and
holes) are not well understood and form the main focus
of the present contribution. Within the multi-band enve-
lope function approximation, we present a simple theory
for the electronic states of IV-VI QWs in the presence of
a magnetic field, with analytical results for the g-factor
tensor, as a function of both growth and magnetic field
directions. The approach recently introduced to describe
the g-factor of carriers confined in III-V QWs is here ex-
tended to the case of multi-valley and anisotropic semi-
conductor structures.

We recall that the g-factor is a fundamental physical
quantity which determines the spin splitting of the elec-
tronic states in response to an external magnetic field
(Zeeman effect). Due to band structure effects, for elec-
trons (or quasi-particles) in a semiconductor, the corre-
sponding g-factor is renormalized from the bare value 2
and is referred to as the effective g-factor (g∗), in analogy
with the effective mass m∗. In a QW, g∗ is further renor-
malized by the confining potential, can be tuned and is
a main parameter for spintronic applications. Here we
discuss the physics of such mesoscopic g-factor renormal-

ization in the case of IV-VI PbTe-like QWs.

II. EFFECTIVE HAMILTONIAN

We first derive an effective Hamiltonian for the elec-
tronic states starting from the Dimmock k · p model for
the bulk [2]. Considering the four equivalent valleys at
the L-point as independent of each other and using a co-
ordinate system with the z-axis along the main axis of
the ellipsoidal valley, the conduction (or valence) band
can be described by the following (energy dependent) ef-
fective 2x2 Hamiltonian [10, 11]:

Heff = [
Eg
2

+ P 2
‖ k̂zγk̂z + P 2

⊥k̂xγk̂x + P 2
⊥k̂yγk̂y] +Hso ,

(1)
with

Hso = P‖P⊥(γ
[
k̂y, k̂z

]
+

[
k̂y, γ

]
k̂z −

[
k̂z, γ

]
k̂y)iσx(2)

+P‖P⊥(γ
[
k̂z, k̂x

]
+
[
k̂z, γ

]
k̂x −

[
k̂x, γ

]
k̂z)iσy

+P 2
⊥(γ

[
k̂x, k̂y

]
+
[
k̂x, γ

]
k̂y −

[
k̂y, γ

]
k̂x)iσz ,

γ = 1/(E+
Eg

2 ) and where the energy origin was set at the
middle of the gap (of width Eg), x and y are the trans-
verse directions, ~σ the Pauli matrices vector, P‖ (P⊥) the
usual kp momentum matrix element parallel (perpendic-

ular) to the valley main axis, and (k̂x, k̂y, k̂z) the electron
wave-vector operator. Note that Heff is the Dimmock
four-band model projected into the conduction band and
that it is written in a form which facilitates the inclusion
of both the magnetic field and the band-gap variation
in a QW structure. Note also that in the bulk (and zero

field), γ is constant, the envelope function is simply ei
~k·~r,

the k-vector components are c-numbers and all commuta-
tors above are equal to zero, so that one obtains the well
known non-parabolic dispersion relation around the gap
of these narrow-gap semiconductors, described by the en-

ergy dependent effective masses m‖,⊥ = h̄2

2P 2
‖,⊥

(E +
Eg

2 ),
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i.e.:

E =
Eg
2

+
h̄2

2
(

k2
‖

m‖(E)
+

k2
⊥

m⊥(E)
) , (3)

where k2
⊥ = k2

x + k2
y. Besides the energy gap Eg,

the only parameters are P‖ and P⊥ which are fixed
with the measured band-edge effective mass m∗‖,⊥, i.e.

P‖,⊥ =
√
h̄2Eg/2m∗‖,⊥, and are assumed constant along

the QW structure in the envelope function approxima-
tion. A specular equation is similarly obtained for the
valence band. Such model has been shown to describe
very well the band structure of the lead-salts near the
fundamental band gap and is here used to study the QW

in a ~B field problem. m In a QW the lack of trans-
lation symmetry along the growth direction, in general,
breaks the valley degeneracy, and it is convenient to use
a new coordinate system where now the z-axis is along
the growth direction (which, except for the longitudi-
nal valley in a [111] QW, is not parallel to the valley
main axis). So that Eg = Eg(z) and therefore γ = γ(z)
(the center of the band-gap is also allowed to vary along
the growth direction due to the band-offset described
by a step function Q(z)). In the cases of interest, such
new QW coordinate system is obtained from the valley-
system used above with a simple rotation around a trans-
verse direction (x), so that the components of a vector ~v
are given by: vx = vx′ , vy = vy′ cos(θ) + vz′ sin(θ) and
vz = vz′ cos(θ) − vy′ sin(θ), where θ is the angle of rota-
tion and the valley-system is now denoted by (x′, y′, z′).

In order to include the effects of an external mag-

netic field ~B, one then adds the Zeeman term of the
bulk, i.e. 1

2µ0(g‖Bz′σz′ + g⊥(Bx′σx′ + By′σy′)), where
g‖ and g⊥ are the g-factor Dimmock parameters for the
bulk conduction band valleys, which (as for the effec-
tive masses) are fixed with the measured band-edge g-
factor g∗‖,⊥ (including then the contributions from the

remote bands); and makes also the fundamental substi-

tution ~k = −i∇+ (e/h̄) ~A, in the k-vector operator.
Following the classic work by Stern and Howard [12],

we use the gauge ~A = (Byz − Bzy,−Bxz, 0), set the en-
velope function as F(~r) = eikxxF (y, z) (since Heff does
not depend on x), perform the unitary transformation
(or use a phase) so that

F = e−iD(k̂yz−bxz2/2)f

with

D = D(θ) =
(P 2
‖ − P

2
⊥) sin(θ) cos(θ)

P 2
‖ cos(θ)2 + P 2

⊥ sin(θ)2
.

(in order to simplify and eliminate the term linear in k̂y)
and use also the translation operator property

eiak̂yf(y) = f(y + a)eiak̂yf(y) .

After simple algebra, one obtains the following effective
Hamiltonian (as a sum of kinetic, mesoscopic potential,
Zeeman and Rashba terms):

Heff = Hki + V (z) +HZ +HR , (4)

where V (z) = Eg(z)/2 +Q(z),

Hki =
h̄2

2
[k̂z

1

m3
k̂z+

(k̂y − bxz)2

m2
+

(kx + byz − bz(y +Dz))2

m1
]

(5)

(with ~b = (e/h̄) ~B, m1 = m⊥, m2 = cos(θ)2m⊥ +
sin(θ)2m‖ and m3 = m‖m⊥/(m⊥ cos(θ)2 +m‖ sin(θ)2)),
where the energy and z-dependent effective masses are
given by

m‖,⊥(E, z) =
h̄2

2P 2
‖,⊥

(E +
Eg(z)

2
−Q(z)) , (6)

the Zeeman term

HZ =
µ0

2
~B · [g̃0 +

4me

h̄2 (γsog̃so + z
∂γso
∂z

g̃qw)]~σ , (7)

where the g̃s are the components of the effective g-factor
tensor (given bellow) and

γso =
P‖P⊥

E +
Eg(z)

2 −Q(z)
,

finally

HR = (
∂γso
∂z

) ~BR(kx, k̂y) · ~σ , (8)

with the effective k-dependent Rashba field given by

~BR = (−k̂y, (rs2 + c2)kx, (r − 1)sckx) ,

where, to simplify, we use c = cos(θ), s = sin(θ) and the
anisotropy parameter

r =
P⊥
P‖

=

√
m∗‖

m∗⊥
.

III. QW EFFECTIVE G-FACTOR TENSOR

As the main result, one gets the QW effective g-factor
tensor (Eq. (7)) given by the following three components:

g̃0 =

 g⊥ 0 0
0 g⊥c

2 + g‖s
2 (g‖ − g⊥)sc

0 (g‖ − g⊥)sc g⊥s
2 + g‖c

2

 , (9)

g̃so =

 1 0 0
0 rs2 + c2 (r − 1)sc
0 (r − 1)sc rc2 + s2

 , (10)
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and

g̃qw =

 1 0 0
0 rs2 + c2 (r − 1)sc
0 −(rs2 + c2)(yz +D) −(r − 1)sc (yz +D)

 .

(11)
For example, the result for the bulk is simply recovered

by noting that in this case γso is constant and, in the
valley coordinate system (i.e. with c=1 and s=0), one
then has:

g̃bulk =

 g∗⊥ 0 0
0 g∗⊥ 0
0 0 g∗‖

 , (12)

with

g∗⊥ = g⊥ +
4me

h̄2 γso (13)

and

g∗‖ = g‖ +
4me

h̄2 γsor , (14)

which are energy dependent and can also be written as a
function of the above defined parallel and perpendicular
effective masses, i.e.:

g∗⊥(E) = g⊥ +
2me√

m⊥(E)m‖(E)

and

g∗‖(E) = g‖ +
2me

m⊥(E)
.

Note that the Dimmock parameters g⊥ and g‖ correspond
to the remote bands contribution and that the III-V-like
spherical symmetric case is obtained only with gt = gl
and r = 1.

It is the third term in Hz above, proportional to ∂γso
∂z ,

that gives the QW contribution due to the mesoscopic
quantum confinement. As shown in Ref.[13] for GaAs
QWs, the QW effective g-factor (g∗QW ) can conveniently
be calculated with perturbation theory. Using the ground

state of H0 = Hki( ~B = 0) + V (z), one simply calculates
< f0|HZ |f0 >= H̄z where H0f0 = E0f0. Next, follow-
ing the same scheme, we consider the lead-salt QW ef-
fective g-factors for different growth directions and non-
equivalent valleys. Such approach for the calculation of
g∗QW is for instance much simpler and more transparent
then that used before for the L-valley electrons in SiGe
QW structures [14].

IV. [111] AND [100] QWS

We now consider common symmetric QWs grown
along the [111] and [100] crystallographic directions and

FIG. 1. Schematic illustration of the QW coordinate system,
of the L-valleys projected into the QW plane for growth direc-
tion (z) along both [111] and [100] crystallographic directions
(in A and B respectively) and in C, of the oblique valley (the
filled one) orientation.

with interfaces at z = ±L/2. For [111] QWs, the four
equivalent L-valleys in the bulk split into one longitudi-
nal and three oblique ones, while for [100] QWs we deal
with four degenerate oblique valleys. In the expressions
above, all one has to do is to set (s = 0; c = 1) for the lon-

gitudinal valley and for the oblique valleys (s = 2
√

2/3;

c = 1/3) for [111] QWs and (s =
√

2/3; c = 1/
√

3)
for [100] QWs. The applied magnetic field is considered
both longitudinal (along the growth direction) and trans-
verse (in the QW plane) and the corresponding effective
g-factors g∗QW,l and g∗QW,t are calculated.

For the numerical results and illustrative example,
PbSnTe/PbTe QWs are considered with the following
low-temperature empirical parameters: EPbTeg = 0.19

eV , m∗,PbTe‖ = 0.24me, m∗,PbTe⊥ = 0.024me [10],

g
∗(PbTe)
‖ = 58, g

∗(PbTe)
⊥ = 15 [15, 16] and EPbSnTeg = 0.1

eV . The Dimmock parameters g‖ (= −24.3) and g⊥

(= −11.4) are determined by g
∗(PbTe)
‖ and g

∗(PbTe)
⊥ re-

spectively, and assumed constant along the structure. A
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FIG. 2. Effective g-factor for the longitudinal valley electrons
in PbSnTe/PbTe [111] QWs and longitudinal B-field (along
the growth direction) as a function of the well width. The
limiting (well and barrier) energy dependent bulk effective
g-factors are also plotted, giving the effect of the QW con-
finement energy shift.

symmetrical 0.5 band-offset is used. The unperturbed
ground state energy Ei and corresponding envelope func-
tion f0 = fi(z) for each non-equivalent valley, i.e with
i = l (longitudinal) or i = o (oblique), are calculated
exactly following standard procedure as described in ref-
erences [10, 13].

A. Longitudinal valley

For the longitudinal valley and longitudinal magnetic-

field ~B = Bẑ one gets the QW effective g-factor simply
given by the bulk average, in perfect analogy to the III-V
case, i.e.

g∗QW,l =< g∗‖ >= g∗‖,w(El)Pw + g∗‖,b(El)Pb , (15)

where Pj (=
∫
j
|fl(z)|2dz) is the probability to find the

electron in the well (j = w) or in the barrier (j = b) (note
that for the longitudinal valley D = 0 so that for the lon-
gitudinal field, there is no QW or interface contribution,
i.e. from g̃qw). To simplify the notation, from now on,
as above, the energy dependent parameters are meant to
be calculated at El or at Eo depending on whether it is
a longitudinal or an oblique valley effective QW g-factor
(similarly, f0 stands for either fl or fo).

In Figure 2, g∗QW,l for electrons (or holes) in

PbSnTe/PbTe QWs is plotted as a function of the well
width. For comparison and as limiting cases, the energy
dependent bulk g-factors for both PbTe and PbSnTe are
also plotted. See for instance that as expected g∗QW,l
tends to the well (PbSnTe) bulk value and to the barrier
bulk value in the limits of L going to infinity and to zero
respectively.
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FIG. 3. Effective g-factor for the longitudinal valley electrons
in PbSnTe/PbTe [111] QWs and transverse magnetic field
g∗QW,t as a function of the well width. For the different con-
tributions to QW g-factor renormalization (i.e., barrier pen-
etration, confinement energy shift and interface SO contri-
butions), the energy dependent barrier and well g-factors, as
well as the average bulk g-factor, showing the wave-function
barrier penetration effect, are also plotted.

For a transverse B-field, again analogous to the III-V
QW case, one gets

g∗QW,t =< g∗⊥ > +
4me

h̄2 < z
∂γso
∂z

> , (16)

which is the average bulk g-factor plus an interface spin-
orbit contribution g∗int given by

g∗int = −4me

h̄2 δγso L |f0(L/2)|2 (17)

where δγso = γ
(w)
so − γ(b)

so . Recall that γso is a step func-

tion in z changing from γ
(w)
so to γ

(b)
so at the interface;

|f0(L/2)|2 = |f0(−L/2)|2 was also used. As in the III-V
QW case, the IV-VI longitudinal-valley g∗QW,t does not
depend on the B-field direction in the plane; therefore
the g-factor anisotropy ∆g∗QW = g∗QW,l − g∗QW,t in this
case is simply given by:

∆g∗QW =< g∗‖ − g
∗
⊥ > − g∗int . (18)

Differently to the III-V QW case, such IV-VI g-factor
anisotropy presents two contributions: a bulk aver-
age and an interface one determined by the mesoscopic
(Rashba type) spin-orbit interaction. Figure 2 shows the
well width dependence of such g∗QW,t in a PbSnTe/PbTe
QW. To compare and access the different contributions
to the QW g-factor, which include wave-function barrier
penetration, confinement energy shift and interface SO
interaction, it is also plotted the energy dependent bulk
g-factors and their average.
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B. Oblique valleys

For the oblique valleys instead the transverse g-factor
does depend on the B-field direction in the QW plane.
The transverse magnetic field actually breaks the oblique
valley degeneracy, while the perpendicular one does not.
Considering the specific oblique valley which sets the
valley-system in the above used coordinate-system rota-

tion, for the longitudinal ~B = Bẑ one gets:

< g0|Hz|g0 >=
µ0

2
B(g∗zyσy + g∗zzσz) , (19)

with

g∗zy = sc < g∗⊥ − g∗‖ > −(s2r + c2)Dgint (20)

and

g∗zz =< s2 g∗⊥ + c2 g∗‖ > −s c (r − 1)Dgint . (21)

Noting that D = 2
√

2(1 − r2)/(1 + 8r2) for [111] and =√
2(1−r2)/(1+2r2) for [100] QWs we then have explicitly

g∗zy =
2
√

2

9
[< g∗⊥ − g∗‖ > −

(8r + 1)(1− r2)

8r2 + 1
gint] , (22)

g∗zz =
< 8g∗⊥ + g∗‖ >

9
− 8

9

(r − 1)(1− r2)

8r2 + 1
gint , (23)

for [111] QWs, and

g∗zy =

√
2

3
[< g∗⊥ − g∗‖ > −

(2r + 1)(1− r2)

2r2 + 1
gint] , (24)

g∗zz =
< 2 g∗⊥ + g∗‖ >

3
− 2

3

(r − 1)(1− r2)

2r2 + 1
gint , (25)

for [100] QWs.
Due to the anisotropy (r 6= 1), the oblique valleys are

seen to present an interface contribution to their effective
g-factor even for a longitudinal magnetic-field, which in-
deed in these structures (due to the anisotropy) does not
drive the electrons along a purely transverse cyclotron
orbit. Again when g⊥ = g‖ and r = 1 the symmetrical
III-V like result is recovered. In Figure 3, as a function of
the PbSnTe/PbTe QW width, it is plotted the resulting
longitudinal effective g-factor for the oblique valleys in
both [111] and [100] QWs, given by

g∗o,l =
√
g∗zy

2 + g∗zz
2

and which determines the Zeeman splitting ∆E (=
µ0Bg

∗
o,l).

The last and most anisotropic situation is that of the
oblique valleys with a transverse B-field, where the crys-
tal growth, the magnetic-field and the valley-main axis
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FIG. 4. Longitudinal effective g-factor for the oblique valley
electrons in PbSnTe/PbTe [111] and [100] QWs as a function
of the well width.

are each along a different direction; and indeed in this
case one gets:

< Hz >=
µ0

2
B[cos(φ)g∗xxσx + sin(φ)(g∗yyσy + g∗yzσz)] ,

(26)

where φ is the in-plane angle between ~B and x̂,

g∗xx =< g∗⊥ > +g∗int (27)

(equal to the above longitudinal valley g∗QW,t except that
here, as mentioned, the average of the bulk and the
interface contribution g∗int ( Eq. (17)) are calculated
with the oblique valley unperturbed energy and envelope-
function) and

g∗yy = [< g∗⊥ + 8 g∗‖ > +(8 r + 1) g∗int]/9 (28)

g∗yz = 2
√

2[< g∗‖ − g
∗
⊥ > +(r − 1) g∗int]/9 , (29)

for [111] QWs, and

g∗yy = [< g∗⊥ + 2 g∗‖ > +(2 r + 1) g∗int]/3 (30)

g∗yz =
√

2[< g∗‖ − g
∗
⊥ > +(r − 1) g∗int]/3 , (31)

for [100] QWs.
Figures 5 and 6 show the oblique valley transverse QW

effective g-factor

g∗o,t =
√
cos(φ)2g∗xx

2 + sin(φ)2(g∗yy
2 + g∗yz

2)

as a function of φ for [111] and [100] PbSnTe/PbTeQWs,
respectevely, with different well widths.

To conclude it is interesting to note that a pure meso-
scopic g-factor anisotropy in IV-VI QWs can be seen with
the longitudinal valleys in [110] QWs. For these valleys
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we put c = 0 and s = 1 and for longitudinal magnetic
fields (i.e. along [110] ‖ ẑ) get

g∗QW,l =< g∗⊥ > ,

while for transverse B fields

g∗QW,t =
√
C2(< g∗⊥ > +gint)2 + S2(< g∗‖ > +r gint)2

where C = cos(φ) and S = sin(φ) with φ, as before, giv-
ing the direction of the magnetic field in the QW plane.

So that if one rotates ~B around ŷ (φ = 0) gets

∆g∗QW = g∗QW,t − g∗QW,l = gint .

V. CONCLUSIONS

Summarizing, an envelope-function theory for the elec-
tron and hole effective g-factor tensor in IV-VI semicon-
ductor QWs has been presented with analytical results
for simple structure. The effective g-factor in these struc-
tures is seen to be renormalized by the confining meso-
scopic potential through the Rashba spin-orbit coupling.
Contrary to the known III-V QWs, in IV-VI QWs the
effective g-factor presents anisotropy not only due to the
magnetic field direction but also due the actual crystal
growth and specific L-valley being considered.
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