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UPDATING AND DOWNDATING TECHNIQUES FOR OPTIMIZING
NETWORK COMMUNICABILITY∗

FRANCESCA ARRIGO† AND MICHELE BENZI‡

Abstract. The total communicability of a network (or graph) is defined as the sum of the entries
in the exponential of the adjacency matrix of the network, possibly normalized by the number of
nodes. This quantity offers a good measure of how easily information spreads across the network, and
can be useful in the design of networks having certain desirable properties. The total communicability
can be computed quickly even for large networks using techniques based on the Lanczos algorithm.
In this work we introduce some heuristics that can be used to add, delete, or rewire a limited number
of edges in a given sparse network so that the modified network has a large total communicability.
To this end, we introduce new edge centrality measures, which can be used as a guide in the selection
of edges to be added or removed. Moreover, we show experimentally that the total communicability
provides an effective and easily computable measure of how “well-connected” a sparse network is.
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1. Introduction. Network models are nowadays ubiquitous in the natural, in-
formation, social, and engineering sciences. The last 15 years or so have seen the
emergence of the vast, multidisciplinary field of network science, with contributions
from a wide array of researchers including physicists, mathematicians, computer sci-
entists, engineers, biologists, and social scientists [3, 18, 34]. Applications of network
science can be found in biology, public health, social network analysis, homeland
security, economics, the humanities, marketing, and information retrieval. Network
analysis is also an essential ingredient in the design of information, communication,
and transportation networks, as well as in energy-related disciplines such as power
grid maintenance, control, and optimization [35]. Graph theory and linear algebra
provide abstractions and quantitative tools that can be employed in the analysis and
design of large and complex network models.

Real-world networks are characterized by structural properties that make them
very different from both regular graphs and completely random graphs. Real networks
frequently exhibit a highly skewed degree distribution (often following a power law),
small diameter, high clustering coefficient (the latter two properties together are often
referred to as the small world property), the presence of motifs, communities, and
other signatures of complexity.

Some of the basic questions in network analysis concern node and edge centrality,
community detection, communicability, and diffusion [11, 18, 34]. Related to these
are the important notions of network robustness (or its opposite, vulnerability) and
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connectivity [13]. These latter properties refer to the degree of resiliency displayed by
the network in the face of random accidental failures or deliberate, targeted attacks,
which can be modeled in terms of edge or node removal. Generally speaking, it is
desirable to design networks that are at the same time highly sparse (in order to reduce
costs) and highly connected, meaning that disconnecting or disrupting the network
would require the removal of a large number of edges. Such networks should not
contain bottlenecks, and they should allow for the rapid exchange of communication
between nodes. Expander graphs [17, 28] are an important class of graphs with such
properties.

In this paper we describe some techniques that can be brought to bear on the
problems described above and related questions. Our approach is based on the notion
of total communicability of a network, which was introduced in [7] on the basis of
earlier work by Estrada and Hatano [20, 21]. Total communicability, defined as the
(normalized) sum of the entries in the exponential of the adjacency matrix of the
network, provides a global measure of how well the nodes in a graph can exchange
information. Communicability is based on the number and length of graph walks con-
necting pairs of nodes in the network. Pairs of nodes (i, j) with high communicability
correspond to large entries [eA]ij in the matrix exponential of A, the adjacency matrix
of the network.

Total network communicability can also be used to measure the connectivity of
the network as a whole. For instance, given two alternative network designs (with a
similar “budget” in terms of number of candidate edges), one can compare the two de-
signs by computing the respective total communicabilities and pick the network with
the highest one, assuming that a well-connected network with high node communi-
cability is the desired goal. It is important to stress that the total communicability
of a network can be efficiently computed or estimated even for large networks using
Lanczos- or Arnoldi-based algorithms without having to compute any individual en-
try of eA (only the ability to perform matrix-vector products with A is required). Of
course, total communicability is only one of a number of possible metrics that can be
used to quantify network robustness and effectiveness at diffusing information, and we
are not claiming that it is necessarily the best one for all types of networks. Indeed,
it is fair to say that the comparative study of such metrics is still in its infancy, and
much work remains to be done in this area.

In this paper we consider three different problems. Let G = (V,E) be a connected,
undirected, and sparse graph. The downdating problem consists of selecting an edge
(i, j) to be removed from the network so as to minimize the decrease in its total
communicability while preserving its connectedness.

The goal when tackling the updating problem, on the other hand, is to select a
pair of nodes i �= j such that (i, j) �∈ E in such a way that the increase in the total
communicability of the network is maximized.

Finally, the rewiring problem has the same goal as the updating problem, but it
requires the selection of two modifications which constitute the downdate-then-update
step to be performed.

The importance of the first two problems for network analysis and design is obvi-
ous. We note that an efficient solution to the second problem would also suggest how
to proceed if the goal were to identify existing edges whose removal would maximize
the decrease in communicability, which could be useful, e.g., in planning antiterror-
ism operations or public health policies (see, e.g., [40, 41]). The third problem is
motivated by the observation that for transportation networks (e.g., flight routes) it
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is sometimes desirable to redirect edges in order to improve the performance (i.e.,
increase the number of travelers) without increasing the costs by too much. Hence,
in such cases, one wants to eliminate a route used only by a few travelers and to add
a route that may be used by a lot of people.

The above problems may arise not only in the design of infrastructural networks
(such as telecommunication or transportation networks), but also in other contexts.
For instance, in social networks the addition of a friendship/collaborative tie may
dramatically change the structure of the network, leading to a more cohesive group,
and hence preventing the splitting of the community into smaller subgroups.

The work is organized as follows. Section 2 contains some basic facts from linear
algebra and graph theory and introduces the modifications of the adjacency matrix
we will perform. In this section we also provide further justification for the use of
the total network communicability as the objective function. In section 3 we describe
bounds for the total communicability via the Gauss–Radau quadrature rule, and we
show how these bounds change when a rank-two modification of the adjacency matrix
is performed. Section 4 is devoted to the introduction of the methods to controllably
modify the graph in order to adjust the value of its total communicability. Numerical
studies to assess the effectiveness and performance of the techniques introduced are
provided in section 5 for both synthetic and real-world networks. In section 6 we
discuss the evolution of a popular measure of network connectivity, known as the free
energy (or natural connectivity), when the same modifications are performed. This
section provides further evidence that motivates the use of the total communicability
as a measure of connectivity. Finally, in section 7 we draw conclusions and describe
future directions.

2. Background and definitions. In this section we provide some basic defini-
tions, notation, and properties associated with graphs.

A graph or network G = (V,E) is defined by a set of n nodes (vertices) V and a
set of m edges E = {(i, j)|i, j ∈ V } between the nodes. An edge is said to be incident
to a vertex i if there exists a node j �= i such that either (i, j) ∈ E or (j, i) ∈ E.
The degree of a vertex, denoted by di, is the number of edges incident to i in G. The
graph is said to be undirected if the edges are formed by unordered pairs of vertices.
A walk of length k in G is a set of nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k,
(il, il+1) ∈ E. A closed walk is a walk for which i1 = ik+1. A path is a walk with
no repeated nodes. A graph is connected if there is a path connecting every pair of
nodes. A graph with unweighted edges, no self-loops (edges from a node to itself),
and no multiple edges is said to be simple. Throughout this work, we will consider
undirected, simple, and connected networks.

Every graph can be represented as a matrix A = (aij) ∈ R
n×n, called the ad-

jacency matrix of the graph. The entries of the adjacency matrix of an unweighted
graph G = (V,E) are

aij =

{
1 if (i, j) ∈ E
0 otherwise

∀i, j ∈ V.

If the network is simple, the diagonal elements of the adjacency matrix are all equal
to zero. In the special case of an undirected network, the associated adjacency matrix
is symmetric, and thus its eigenvalues are real.

We label the eigenvalues in nonincreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. Since A is
a real-valued, symmetric matrix, we can decompose A into A = QΛQT , where Λ is a
diagonal matrix containing the eigenvalues of A and Q = [q1, . . . ,qn] is orthogonal,
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where qi is an eigenvector associated with λi. Moreover, if G is connected, A is
irreducible, and from the Perron–Frobenius theorem [33, Chapter 8] we deduce that
λ1 > λ2 and that the leading eigenvector q1, sometimes referred to as the Perron
vector, can be chosen such that its components q1(i) are positive for all i ∈ V .

We can now introduce the basic operations which will be performed on the adja-
cency matrix A associated with the network G = (V,E). We define the downdating of
the edge (i, j) ∈ E as the removal of this edge from the network. The resulting graph

Ĝ = (V, Ê), which may be disconnected, has adjacency matrix

Â = A− UWT , U = [ei, ej ], W = [ej , ei],

where here and in the rest of this work the vectors ei, ej represent the ith and jth
vectors of the standard basis of Rn, respectively.

Similarly, let (i, j) ∈ E be an element in the complement of E. We will call this
element a virtual edge for the graph G. We can construct a new graph G̃ = (V, Ẽ)
obtained from G by adding the virtual edge (i, j) to the graph. This procedure will
be referred to as the updating of the virtual edge (i, j). The adjacency matrix of the
resulting graph is

Ã = A+ UWT , U = [ei, ej ], W = [ej , ei].

Hence, these two operations can both be described as rank-two modifications of the
adjacency matrix of the original graph.

The operation of downdating an edge and successively updating a virtual edge
will be referred to as rewiring.

Remark 1. These operations are all performed in a symmetric fashion, since in
this paper we consider exclusively undirected networks.

2.1. Centrality and total communicability. One of the main goals when
analyzing a network is to identify the most influential nodes in the network. Over the
years, various measures of the importance, or centrality, of nodes have been developed
[11, 18, 34]. In particular the (exponential) subgraph centrality of a node i (see [22])
is defined as the ith diagonal element of the matrix exponential [27]:

eA = I +A+
A2

2!
+ · · · =

∞∑
k=0

Ak

k!
,

where I is the n × n identity matrix. As is well known in graph theory, given an
adjacency matrix A of an unweighted network and k ∈ N, the element (Ak)ij counts
the total number of walks of length k starting from node i and ending at node j.
Therefore, the subgraph centrality of node i counts the total number of closed walks
centered at node i, weighting walks of length k by a factor 1

k! , and hence giving more
importance to shorter walks. The subgraph centrality then accounts for the return-
ability of the information to the node which was the source of this same information.
Likewise, the off-diagonal entries of the matrix (eA)ij (subgraph communicability of
nodes i and j) account for the ability of nodes i and j to exchange information [20, 21].

Starting from these observations and with the aim of reducing the cost of the
computation of the rankings, in [7] it was suggested to use as a centrality measure the
total communicability of a node i, defined as the ith entry of the vector eA1, where 1
denotes the vector of all ones:

(2.1) TC(i) := [eA1]i =

n∑
j=1

[
eA
]
ij
.
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This measure of centrality is given by a weighted sum of walks from every node in
the network (including node i itself), and thus quantifies both the ability of a node
to spread information across the network and the returnability of the information to
the node itself.

The value resulting from summing these quantities over all the nodes can be
interpreted as a global measure of how effectively the communication takes place
across the whole network. This index is called total (network) communicability [7]
and can be written as

(2.2) TC(A) := 1T eA1 =

n∑
i=1

n∑
j=1

(eA)ij =

n∑
k=1

eλk(qT
k 1)

2.

This value can be efficiently computed, e.g., by means of a Krylov method as im-
plemented in Güttel’s MATLAB toolbox funm kryl (see [1, 26]) or by Lanczos-based
techniques as discussed below. In the toolbox [26] an efficient algorithm for evaluating
f(A)v is implemented; with this method the vector eA1 can be constructed in roughly
O(n) operations (note that the prefactor can vary for different types of networks) and
the total communicability is easily derived.

As is clear from its definition, the value of TC(A) may be very large. Several
normalizations have been proposed; the simplest is the normalization by the number
of nodes n (see [7]), which we will use throughout the paper. It is easy to prove that
the normalized total communicability satisfies

(2.3)
1

n

n∑
i=1

(
eA
)
ii
≤ TC(A)

n
≤ eλ1 ,

where the lower bound is attained by the graph with n nodes and no edges and the
upper bound is attained by the complete graph with n nodes.

Remark 2. The last equality in (2.2) shows that the main contribution to the
value of TC(A) is likely to come from the term eλ1‖q1‖21.

2.2. Rationale for targeting the total communicability. As already men-
tioned, total communicability provides a good measure of how efficiently information
(in the broad sense of the term) is diffused across the network. Typically, very high
values of TC(A) are observed for highly optimized infrastructure networks (such as
airline routes or computer networks) and for highly cohesive social and information
networks (such as certain types of collaboration networks). Conversely, the total net-
work communicability is relatively low for spatially extended, grid-like networks (such
as many road networks) or for networks that consist of two or more communities with
poor communication between them (such as the Zachary network).1 As a further
example, reduced values of the communicability between different brain regions have
been detected in stroke patients compared to healthy individuals [14]. We refer the
reader to [21] for an extensive survey on communicability, including applications for
which it has been found to be useful.

Another reason in support of the use of total communicability as an objective
function is that it is closely related to the natural connectivity (or free energy) of the
network, while being dramatically easier to compute; see section 6. Sparse networks

1Numerical values of the normalized total network communicability for a broad collection of
networks are reported in the experimental sections of this paper, in the supplementary material to
this paper, and in [7].
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with high values of TC(A) are very well connected and thus less likely to be disrupted
by either random failures or targeted attacks leading to the loss of edges. This justifies
trying to design sparse networks with high values of the total communicability.

An important observation is that the total network communicability TC(A) can
be interpreted in at least two different ways. Since it is given by the sum of all the
pairwise communicabilities C(i, j) = [eA]ij , it is a global measure of the ability of
the network to diffuse information. However, recalling the definition (2.1) of total
node communicability, the normalized total communicability can also be seen as the
“average total communicability” of the nodes in the network:

TC(A)

n
=

1

n

n∑
i=1

TC(i).

Since the total node communicability is a centrality measure [7], our goal can then be
rephrased as the problem of constructing sparse networks having high average node
centrality, where the node centrality is given by the total node communicability. Since
this is merely one of a large number of centrality measures proposed in the literature,
a legitimate question to ask is why the total node communicability should be used
instead of a different centrality index. In other words, given any node centrality
function f : V −→ R+, we could consider instead the problem of, say, adding a
prescribed number of edges so as to maximize the increase in the global average
centrality

f̄ =
1

n

n∑
i=1

f(i).

As it turns out, most other centrality indices either are computationally too ex-
pensive to work with (at least for large networks) or lead to objective functions which
do not make much sense. The following is a brief discussion of some of the most
popular centrality indices used in the field of network science.

1. Degree: Consider first the simplest centrality index, the degree. Obviously,
adding K edges according to any criteria will produce exactly the same vari-
ation in the average degree of a network. Hence, one may as well add edges
at random. Doing so, however, cannot be expected to be greatly beneficial if
the goal is to improve the robustness or efficiency of the network.

2. Eigenvector centrality: Let q1 be the principal eigenvector of A, normal-
ized so that ‖q1‖2 = 1. The eigenvector centrality of node i ∈ V is the
ith component of q1, denoted by q1(i). It is straightforward to see that the
problem of maximizing the average eigenvector centrality

q1(1) + q1(2) + · · ·+ q1(n)

n

subject to the constraint ‖q1‖2 = 1 has as its only solution

q1(1) = q1(2) = · · · = q1(n) =
1√
n
.

This implies that A has constant row sums or, in other words, that the graph
is regular—every node in G has the same degree. Hence, any heuristic aimed
at maximizing the average eigenvector centrality will result in graphs that
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are close to being regular. However, regular graph topologies are not, per
se, endowed with any especially good properties when it comes to diffusing
information or being robust: think of a cycle graph, for example. Regular
sparse graphs can be very well connected and robust (this is the case of
expander graphs), but there is no reason to think that simply making the
degree distribution of a given network more regular will improve its expansion
properties.

3. Subgraph centrality: the average subgraph centrality of a network is known
in the literature as the normalized Estrada index:

1

n
EE(A) =

1

n
Tr(eA) =

1

n

n∑
i=1

[eA]ii =
1

n

n∑
i=1

eλi .

It can also be interpreted as the average self-communicability of the nodes. As
we mentioned, this is a lower bound for the average total communicability.
Evaluation of this quantity requires knowledge of all n diagonal entries of
eA, or of all the eigenvalues of A, and is therefore much more expensive to
compute. The heuristics we derive in this paper have a similar effect on
TC(A) as on the Estrada index, as we demonstrate in section 6. So, using
subgraph centrality instead of total communicability centrality would lead to
exactly the same heuristics and results, with the disadvantage that evaluating
the objective function, if necessary, would be much more expensive.

4. Katz centrality: the Katz centrality of node i ∈ V is defined as the ith row
sum of the matrix resolvent (I − αA)−1, where the parameter α is chosen in
the interval (0, 1

λ1
), so that the power series expansion

(I − αA)−1 = I + αA+ α2A2 + · · ·

is convergent [30]. Since this centrality measure can be interpreted in terms
of walks, using it instead of the total communicability would lead to the same
heuristics and very similar results, especially when α is sufficiently close to
1
λ1

or if the spectral gap λ1 − λ2 is large; see [8]. Using Katz centrality,
however, requires the careful selection of the parameter α, which leads to
some complications. For example, after each update one needs to recompute
the dominant eigenvalue of the adjacency matrix in order to check whether
the value of α used is still within the range of permissible values or whether
it has to be reduced, making this approach computationally very expensive.
This problem does not arise if the matrix exponential is used instead of the
resolvent.

5. Other centrality measures: So far we have only discussed centrality mea-
sures that can be expressed in terms of the adjacency matrix A. These cen-
trality measures are all connected to the notion of walk in a graph, and they
can often be understood in terms of spectral graph theory. Other popular
centrality measures, such as betweenness centrality and closeness centrality
(see, e.g., [34]), do not have a simple formulation in terms of matrix proper-
ties. They are based on the assumption that all communication in a graph
tends to take place along shortest paths, which is not always the case (this
was a major motivation for the introduction of walk-based measures, which
postulate that communication between nodes can take place along walks of
any length, with a preference toward shorter walks). A further disadvantage
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is that they are quite expensive to compute, although randomized approxi-
mations can bring the cost down to acceptable levels [11]. For these reasons
we do not consider them in this paper, where the focus is on linear algebraic
techniques. It remains an open question whether heuristics for manipulating
graph edges so as to tune some global average of these centrality measures
can lead to networks with desirable connectivity and robustness properties.

Finally, in view of the bounds (2.3), the evolution of the total communicability
under network modifications is closely tied to the evolution of the dominant eigenvalue
λ1. This quantity plays a crucial role in network analysis, for example, in the definition
of the epidemic threshold; see, for instance, [34, p. 664] and [41]. In particular, a
decrease in the total network communicability can be expected to lead to an increase
in the epidemic threshold. Thus, edge modification techniques developed for tuning
TC(A) can potentially be used to alter epidemics dynamics.

3. Bounds via quadrature rules. In the previous section we saw the simple
bounds (2.3) on the normalized total network communicability. More refined bounds
for this index can be obtained by means of quadrature rules as described in [5, 6, 25,
23]. The following theorem contains our result on the bounds for the normalized total
communicability.

Theorem 3.1. Let A be the adjacency matrix of an unweighted and undirected
network. Then

Φ

(
β, ω1 +

γ2
1

ω1 − β

)
≤ TC(A)

n
≤ Φ

(
α, ω1 +

γ2
1

ω1 − α

)
,

where [α, β] is an interval containing the spectrum of −A (i.e., α ≤ −λ1 and β ≥
−λn), ω1 = −μ = − 1

n

∑n
i=1 di is the negative mean of the degrees, γ1 = σ =√

1
n

∑n
k=1(dk − μ)2 is the standard deviation, and

(3.1) Φ(x, y) =
c (e−x − e−y) + xe−y − ye−x

x− y
, c = ω1.

A proof of this result can be found in the supplementary material accompanying
the paper.

Analogous bounds can be found for the adjacency matrix of the graph after per-
forming a downdate or an update. These results are summarized in the following
corollaries.

Corollary 3.2 (downdating). Let Â = A−UWT , where U = [ei, ej ] and W =
[ej , ei], be the adjacency matrix of an unweighted and undirected network obtained
after the downdate of the edge (i, j) from the matrix A. Let ω1 = −μ = − 1

n

∑n
i=1 di

and γ1 = σ =
√

1
n

∑n
k=1(dk − μ)2, where di is the degree of node i in the original

graph. Then

Φ

(
β−, ω− +

γ2
−

ω− − β−

)
≤ TC(Â)

n
≤ Φ

(
α−, ω− +

γ2
−

ω− − α−

)
,

where ⎧⎨⎩
ω− = ω1 +

2
n ,

γ− =
√
γ2
1 − 2

n

(
di + dj − 1 + 2ω1 +

2
n

) ,
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α− and β− are approximations of the smallest and largest eigenvalues of −Â, respec-
tively, and Φ is defined as in (3.1) with c = ω−.

Note that if bounds α and β for the extremal eigenvalues of the original matrix are
known, we can then use α− = α and β− = β + 1. Indeed, if we order the eigenvalues

of Â in nonincreasing order λ̂1 > λ̂2 ≥ · · · ≥ λ̂n we obtain, as a consequence of Weyl’s
theorem (see [29, section 4.3]), that

α− 1 ≤ −λ1 − 1 < −λ̂1 < −λ̂2 ≤ · · · ≤ −λ̂n < −λn + 1 ≤ β + 1.

Furthermore, the Perron–Frobenius theorem ensures that, when performing a
downdate, the largest eigenvalue of the adjacency matrix cannot increase; hence,
we deduce the more stringent bounds α ≤ −λ̂1 ≤ −λ̂2 ≤ · · · ≤ −λ̂n ≤ β + 1.

Similarly, we can derive bounds for the normalized total communicability of the
matrix Ã obtained from the matrix A after performing the update of the virtual edge
(i, j).

Corollary 3.3 (updating). Let Â = A + UWT , where U = [ei, ej ] and W =
[ej , ei], be the adjacency matrix of an unweighted and undirected network obtained
after the update of the virtual edge (i, j) in the matrix A. Let ω1 = −μ = − 1

n

∑n
i=1 di

and γ1 = σ =
√

1
n

∑n
k=1(dk − μ)2, where di is the degree of node i in the original

graph. Then

Φ

(
β+, ω+ +

γ2
+

ω+ − β+

)
≤ TC(Ã)

n
≤ Φ

(
α+, ω+ +

γ2
+

ω+ − α+

)
,

where ⎧⎨⎩
ω+ = ω1 − 2

n ,

γ+ =
√
γ2
1 + 2

n

(
di + dj + 1 + 2ω1 − 2

n

) ,

α+ and β+ are bounds for the smallest and largest eigenvalues of −Ã, respectively,
and Φ is defined as in (3.1) with c = ω+.

Notice that again, if bounds α and β for the extremal eigenvalues of −A are
known, we can then take α+ = α − 1 and β+ = β. In fact, the spectrum of the
rank-two symmetric perturbations UWT and −UWT is {±1, 0}, and hence we can
use Weyl’s theorem as before and then improve the upper bound using the Perron–
Frobenius theorem.

In the next section we will see how the new bounds can be used to guide the
updating and downdating process.

4. Modifications of the adjacency matrix. In this section we develop tech-
niques that allow us to tackle the following problems.

(P1) Downdate: select K edges that can be downdated from the network without
disconnecting it and that cause the smallest drop in the total communicability
of the graph.

(P2) Update: select K edges to be added to the network (without creating self-
loops or multiple edges) so as to increase as much as possible the total com-
municability of the graph.

(P3) Rewire: select K edges to be rewired in the network so as to increase as much
as possible the value of TC(A). The rewiring process must not disconnect
the network or create self-loops or multiple edges in the graph.
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As we will show below, (P3) can be solved using combinations of methods devel-
oped to solve (P1) and (P2). Hence, we first focus on the downdate and the update
separately. Note that to decrease as little as possible the total communicability when
removing an edge, it would suffice to select (i∗, j∗) ∈ E so as to minimize the quantities

1TAk1− 1T (A− UWT )k1 ∀k = 1, 2, . . . ,

since TC(A) =
∑∞

k=0
1TAk1

k! . Similarly, to increase as much as possible TC(A) by

addition of a virtual edge, it would suffice to select (i∗, j∗) ∈ E that maximizes the
differences

1T (A+ UWT )k1− 1TAk1 ∀k = 1, 2, . . . .

However, it is easy to show that in general, one cannot find a choice for (i∗, j∗) that
works for all such k. Indeed, numerical experiments on small synthetic graphs (not
shown here) show that in general, the optimal edge selection for k = 2 is different
from that for k = 3. Because of this, it is unlikely that one can find a simple “closed
form solution” to the problem, and we need to develop approximation techniques.

The majority of the heuristics we will develop are based on new edge centrality
measures. The idea underlying these is that it seems reasonable to assume that an
edge is more likely used as a communication channel if its adjacent nodes are given a
lot of information to spread. Thus, in the following definitions we introduce three new
centrality measures for edges based on the principle that edges connecting important
nodes are themselves important.

Definition 4.1. For any i, j ∈ V we define the edge subgraph centrality of an
existing/virtual edge (i, j) as

(4.1) eSC(i, j) =
(
eA
)
ii

(
eA
)
jj
.

This definition, based on the subgraph centrality of nodes, exploits the fact that
the matrix exponential is symmetric positive definite, and hence (eA)ii(e

A)jj > (eA)2ij .

Therefore, the diagonal elements of eA somehow control its off-diagonal entries, and
hence they may contain enough information to infer the “payload” of the edges or of
the virtual edges of interest.

Definition 4.2. For any i, j ∈ V we define the edge total communicability
centrality of an existing/virtual edge (i, j) as

(4.2) eTC(i, j) = [eA1]i[e
A1]j .

It is important to observe that when the spectral gap λ1 − λ2 is “large enough,”
the subgraph centrality

(
eA
)
ii
and the total communicability centrality [eA1]i are es-

sentially determined by eλ1q1(i)
2 and eλ1q1(i)‖q1‖1, respectively (see, e.g., [7, 8, 17]);

it follows that in this case the two centrality measures introduced and a centrality
measure based on the eigenvector centrality for nodes can be expected to provide sim-
ilar rankings. This is especially true when attention is restricted to the top edges (or
nodes). This observation motivates the introduction of the following edge centrality
measure.

Definition 4.3. For any i, j ∈ V we define the edge eigenvector centrality of an
existing/virtual edge (i, j) as

(4.3) eEC(i, j) = q1(i)q1(j).
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As a further justification for this definition, note that

λ1 − 2 (eEC(i, j)) ≤ λ̂1 ≤ λ1, λ̃1 ≥ λ1 + 2 (eEC(i, j)) ,

where λ̂1 is the leading eigenvalue of the matrix Â and λ̃1 is the leading eigenvalue of
the matrix Ã, as defined in section 2. These inequalities show that the edge eigenvector
centrality of an existing/virtual edge (i, j) is strictly connected to the change in the
value of the leading eigenvalue of the adjacency matrix, which influences the evolution
of the total communicability when we modify A (see Remark 2).

Remark 3. The edge eigenvector centrality has been used in [40, 41] to devise edge
removal techniques aimed at significantly reducing λ1, so as to increase the epidemic
threshold of networks.

Note that we defined these measures of centrality for both existing and virtual
edges (as in [9]). The reason for this, as well as the justification for these definitions,
will become clear in the next subsections.

We now discuss how to use these definitions to tackle the problems previously
described. The computational aspects concerning the implementation of the heuristics
we are about to introduce and the derivation of their computational costs are described
in the supplementary material to this paper.

(P1) Downdate. The downdate of any edge in the network will result in a
reduction of its total communicability. Note that since we are focusing on the case
of connected networks, we will only perform downdates that keep the resulting graph
connected. In practice, it is desirable to further restrict the choice of downdates to a
subset of all existing edges, on the basis of criteria to be discussed shortly.

An “optimal” approach would select at each step of the downdating process a
candidate edge corresponding to the minimum decrease of communicability.2 Note
that for large networks, this method is too costly to be practical. For this reason
we aim to develop inexpensive techniques that will hopefully give close-to-optimal
results. Nevertheless, for small networks we will use the “optimal” approach (where
we systematically try all feasible edges and delete the one causing the least drop in
total communicability) as a baseline method against which we compare the various
algorithms discussed below. This method will be henceforth referred to as optimal.

The next methods we introduce perform the downdate of the lowest ranked ex-
isting edge according to the edge centrality measures previously introduced, whose
removal does not disconnect the network. We will refer to these methods as subgraph,
nodeTC, and eigenvector, which are based on Definitions 4.1, 4.2, and 4.3, respec-
tively. From the point of view of the communicability, these methods downdate an
edge connecting two nodes which are peripheral (i.e., have low centrality) and there-
fore are not expected to give a large contribution to the spread of information along the
network. Hence, the selected edge is connecting two nodes whose ability to exchange
information is already very low, and we do not expect the total communicability to
suffer too much from this edge removal. This observation also suggests that such
downdates can be repeatedly applied without the need to recompute the ranking of
the edges after each downdate. As long as the number of downdates performed re-
mains small compared to the total number of edges, we expect good results at a greatly
reduced total cost. Note also that such downdates can be performed simultaneously

2Strictly speaking, this would correspond to a greedy algorithm, which is only locally optimal.
In general, this is unlikely to result in “globally optimal” network communicability. In this paper,
the term “optimal” will be understood in this limited sense only.
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rather than sequentially. We will refer to these variants as subgraph.no, nodeTC.no,
and eigenvector.no.

Finally, we consider a technique motivated by the bounds obtained via quadrature
rules derived in section 3. From the expression for the function Φ in the special case
of the downdate (cf. Corollary 3.2), we infer that a potentially good choice may be
to remove the edge having incident nodes i, j, for which the sum di + dj is minimal,
if its removal does not disconnect the network. Indeed, this choice reduces the upper
bound only slightly, and the total communicability may mirror this behavior. Another
way to justify this strategy is to observe that it is indeed the optimal strategy if we
approximate eA with its second-order approximation I + A + 1

2A
2 in the definition

of total communicability. This technique will be henceforth referred to as degree.

We note that a related measure, namely, the average of the out-degrees
di+dj

2 , was
proposed in [9] as a measure for the centrality of an edge (i, j) in directed graphs.

(P2) Update. Most real-world networks are characterized by low average degree.
As a consequence, the adjacency matrices of such networks are sparse (m = O(n)).
For the purpose of selecting a virtual edge to be updated, this implies that we have
approximately 1

2 (n
2−cn) possible choices if we want to avoid the formation of multiple

edges or self-loops (here c is a moderate constant). Each one of these possible updates
will result in an increase of the total communicability of the network, but not every
one of these will result in a significant increment.

One natural updating technique is to connect two nodes having high centralities,
i.e., add the virtual edge having the highest ranking according to the corresponding
edge centrality. Its incident nodes, being quite central, can be expected to have an
important role in the spreading of information along the network; on the other hand,
the communication between them may be relatively poor (for example, think of the
case where the two nodes sit in two distinct communities). Hence, giving them a
preferential communication channel, such as an edge between them, should result in
a better spread of information along the whole network. Again, we will use the labels
subgraph, nodeTC, and eigenvector to describe these updating strategies. As be-
fore, in order to reduce the computational cost, we also test the effectiveness of these
techniques without the recomputation of the ranking of the virtual edges after each up-
date. These variants (referred to as subgraph.no, nodeTC.no, and eigenvector.no)
are expected to return good results as well, since the selected update should not rad-
ically change the ranking of the edges. Indeed, they make central nodes even more
central, and consequently the ranking of the edges remains almost unchanged. Note
again that these updates can be performed simultaneously rather than sequentially.

As for the case of downdating, the bounds via quadrature rules derived in section
3 suggest an updating technique, i.e., adding the virtual edge (i, j) for which di + dj
is maximal. Indeed, such a choice would maximize the lower bound on the total
communicability; see Corollary 3.3. Again, this choice can also be justified by noting
that it is optimal if eA is replaced by its quadratic Maclaurin approximant. We will
again use the label degree to refer to this updating strategy.

All these techniques will be compared with the optimal one, based on systemat-
ically trying all feasible virtual edges and selecting at each step the one resulting in
the largest increase of the total communicability. Due to the very high cost of this
brute force approach, we will use it only on small networks.

The heuristics introduced to tackle (P1) and (P2) are summarized in Table 1.
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Table 1

Brief description of the techniques introduced in the paper.

Method Downdate: (i, j) ∈ E Update: (i, j) �∈ E

optimal argmin{TC(A)− TC( ̂A)} argmax{TC(Ã)− TC(A)}
subgraph(.no) argmin{eSC(i, j)} argmax{eSC(i, j)}
eigenvector(.no) argmin{eEC(i, j)} argmax{eEC(i, j)}
nodeTC(.no) argmin{eTC(i, j)} argmax{eTC(i, j)}
degree argmin{di + dj} argmax{di + dj}

(P3) Rewire. As we have already noted, there are situations in which the rewire
of an edge may be preferable to the addition of a new one. There are various possible
choices for the rewiring strategy to follow. The greatest part of those found in the
literature are variants of random rewiring (see, for example, [10, 31]). In this paper,
on the other hand, we are interested in devising mathematically informed rewiring
strategies. For comparison purposes, however, we will compare our rewiring methods
to the random rewire method, random, which downdates an edge (chosen uniformly
at random from among all edges whose removal does not disconnect the network) and
then updates a virtual edge, also chosen uniformly at random.

Combining the various downdating and updating methods previously introduced,
we obtain different rewiring strategies based on the centralities of edges and on the
bounds for the total communicability. Concerning the methods based on the edge
subgraph, eigenvector, and total communicability centralities, we note that since
a single downdate does not dramatically change the communication capability of
the network, we do not need to recompute the centralities and the ranking of the
edges after each downdating step, at least as long as the number of rewired edges
remains relatively small (numerical experiments not shown here support this claim).
On the other hand, after each update we may or may not recalculate the edge cen-
tralities. As before, we use subgraph/subgraph.no, eigenvector/eigenvector.no,
and nodeTC/nodeTC.no to refer to these three variants of rewiring. Additionally, we
introduce another rewiring strategy, henceforth referred to as node, based on the sub-
graph centrality of the nodes. In this method we disconnect the most central node
from the least central node among its immediate neighbors; then we connect it to the
most central node among those it is not linked to. It is worth emphasizing that this
strategy is philosophically different from the previous ones based on the edge sub-
graph centrality in the downdating phase (the updating step is the same). In fact, in
those methods we use information on the nodes in order to deduce some information
on the edges connecting them; on the other hand, the node algorithm does not take
into account the potentially high “payload” of the edges involved, whose removal may
result in a dramatic drop in the total communicability.

5. Numerical studies. In this section we discuss the results of numerical stud-
ies performed in order to assess the effectiveness and efficiency of the proposed tech-
niques. The tests have been performed on both synthetic and real-world networks,
as described below. We refer the reader to the supplementary material for the re-
sults of computations performed on four small social networks, aimed at comparing
our heuristics with optimal. These results show that for these small networks, the
resulting total communicabilities are essentially identical to those obtained with the
optimal strategy.
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Table 2

Description of the data set.

NAME n m λ1 λ2 λ1 − λ2

Minnesota 2640 3302 3.2324 3.2319 0.0005
USAir97 332 2126 41.233 17.308 23.925
as-735 6474 12572 46.893 27.823 19.070
Erdös02 5534 8472 25.842 12.330 13.512
ca-HepTh 8638 24806 31.034 23.004 8.031
as-22july06 22963 48436 71.613 53.166 18.447
usroad-48 126146 161950 3.911 3.840 0.071

5.1. Real-world networks. All the networks used in the tests can be found
in the University of Florida Sparse Matrix Collection [15] under different “groups.”
The USAir97 and Erdös02 networks are from the Pajek group. The USAir97 network
describes the US Air flight routes in 1997, while the Erdös02 network represents the
Erdös collaboration network, with Erdös included. The network as-735, from the
SNAP group, is the communication network of a group of autonomous systems (ASs)
measured over 735 days between November 8, 1997 and January 2, 2000. Commu-
nication occurs when routers from two ASs exchange information. The Minnesota
network from the Gleich group represents the Minnesota road network. These latter
three networks are not connected, and therefore the tests were performed on their
largest connected component. We point out that the original largest connected com-
ponent of the network as-735 has 1323 ones on the main diagonal, which were retained
in our tests. The network ca-HepTh is from the SNAP group and represents the col-
laboration network of arXiv High Energy Physics Theory; the network as-22july06
is from the Newman group and represents the (symmetrized) structure of Internet
routers as of July 22, 2006. Finally, the network usroad-48, which is from the Gleich
group, represents the continental US road network. For each network, Table 2 reports
the number of nodes (n), the number of edges (m), the two largest eigenvalues, and
the spectral gap. We use the first four networks to test all methods described in
the previous section (except for optimal, which is only applied to the four smallest
networks; see the supplementary material) and use the last three to illustrate the
performance of the most efficient among the methods tested.

We first consider the networks Minnesota, as-735, USAir97, and Erdös02, for
which we perform K = 50 modifications. For these networks the set E (the comple-
ment of the set E of edges) is large enough that performing an extensive search for the
edge to be updated is expensive. Hence, we form the set S containing the top 10% of
the nodes ordered according to the eigenvector centrality, and we restrict our search
to virtual edges incident to these nodes only. An exception is the network USAir97,
where we have used the set S corresponding to the top 20% of the nodes, since in the
case of 10% this set contained only 52 virtual edges. In Figures 1 and 2 we show re-
sults for the methods eigenvector, eigenvector.no, subgraph, subgraph.no, and
degree. Before commenting on these, we want to stress the poor performance of node
when tackling (P3); this shows that the use of edge centrality measures (as opposed
to node centralities alone) is indispensable in this framework. The results for these
networks clearly show the effectiveness of the eigenvector and subgraph algorithms
and of their less expensive variants eigenvector.no and subgraph.no in nearly all
cases; similar results were obtained with nodeTC and nodeTC.no (not shown). The
only exception is in the downdating of the Minnesota network, where the eigenvector-
based techniques give slightly worse results. This fact is easily explained in view of
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Fig. 1. Evolution of the normalized total communicability versus number of downdates, updates,
and rewires for networks Minnesota and as-735.

the tiny spectral gap characterizing this and similar networks3 (see Table 2). Because
of this property, eigenvector centrality is a poor approximation of subgraph centrality
and cannot be expected to give results similar to those obtained with subgraph and
subgraph.no.

The results for the downdate show that the inexpensive degree method does
not perform as well on these networks, except perhaps on Minnesota. The relatively
poor performance of this method is due to the fact that the information used by this
method to select an edge for downdating is too local.

Note, however, the scale on the vertical axis in Figures 1–2, suggesting that for
these networks (excluding perhaps Minnesota) all the edge centrality-based methods
perform well with only very small relative differences between the resulting total
communicabilities.

Overall, these results indicate that the edge centrality-based methods, especially
the inexpensive eigenvector.no and nodeTC.no variants, are an excellent choice in
almost all cases and for tackling all the problems. In the case of downdating networks
with small spectral gaps, subgraph.no may be preferable but at a higher cost.

The behavior of the degree method depends strongly on the network on which
it is used. Our tests indicate that it behaves well in some cases (for example, P2 for
Erdös02) but poorly in others (P2 for Minnesota). We speculate that this method
may perform adequately when tackling (P2) on scale-free networks (such as Erdös02),
where a high degree is an indication of centrality in spreading information across the
network.

3Small spectral gaps are typical of large, grid-like networks such as the road networks or the
graphs corresponding to uniform triangulations or discretizations of physical domains.
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Fig. 2. Evolution of the normalized total communicability versus number of downdates, updates,
and rewires for networks USAir97 and Erdös02.

Some comments on the difference in the results for updating compared to those for
rewiring (downdating followed by updating) are in order. Recall that our downdating
strategies aim to reduce as little as possible the decrease in the value of the total
communicability, whereas the updating techniques aim to increase this index as much
as possible. With this in mind, it is not surprising to see that the trends of the
evolution of the total communicability after rewiring reflect those obtained with the
updating strategies. The values obtained using the updates are, in general, higher
than those obtained using the rewiring strategies, since updating implies the addition
of edges, whereas in rewiring the number of edges remains the same. Experiments
not reported here indicate that the methods based on the edge eigenvector and total
communicability centrality are more stable than the others under rewiring and for
dampening the effect of the downdates.

In Figures 3–4 we show results for the three largest networks in our data set
(ca-HepTh, as-22july06 and usroad-48). In the case of the updating, we have se-
lected the virtual edges from among those in the subgraph containing the top 1%
of nodes ranked according to the eigenvector centrality. We compare the methods
eigenvector, eigenvector.no, nodeTC, nodeTC.no, subgraph.no, and degree; ran-
dom downdating was also tested and found to give poor results. Note that network
usroad-48 behaves similarly to Minnesota; this is not surprising in view of the fact
that these are both road networks with a tiny spectral gap. Looking at the scale
on the vertical axis, however, it is clear that the decrease in total communicability is
negligible with all the methods tested here. The results on these networks confirm the
general trend observed so far; in particular, we note the excellent behavior of nodeTC
and nodeTC.no.
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Fig. 3. Downdates for large networks: normalized total communicability versus number of
modifications.
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Fig. 4. Updates for large networks: normalized total communicability versus number of modi-
fications.

5.2. Synthetic networks. The synthetic examples used in the tests were pro-
duced using the CONTEST toolbox for MATLAB (see [38, 39]). We tested two types
of graphs: the preferential attachment (Barabási–Albert) model and the small world
(Watts–Strogatz) model.

The preferential attachment model [4] was designed to produce networks with
scale-free degree distributions as well as the small world property, characterized by
short average path length and relatively high clustering coefficient. In CONTEST,
preferential attachment networks are constructed using the command pref(n,d),

where n is the number of nodes and d ≥ 1 is the number of edges each new node is
given when it is first introduced to the network. The network is created by adding
nodes one by one (each new node with d edges). The edges of the new node connect
to nodes already in the network with a probability proportional to the degree of the
already existing nodes. This results in a scale-free degree distribution.

The second class of synthetic test matrices used in our experiments corresponds
to Watts–Strogatz small world networks. The small world model was developed as
a way to impose a high clustering coefficient onto classical random graphs [42]. The
function used to build these matrices takes the form smallw(n,k,p). Here n is the
number of nodes in the network, originally arranged in a ring and connected to their k
nearest neighbors. Then each node is considered independently and, with probability
p, an edge is added between the node and one of the other nodes in the graph, chosen
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Fig. 5. Evolution of the total communicability when 50 downdates, updates, or rewires are
performed on two synthetic networks with n = 1000 nodes.

uniformly at random (self-loops and multiple edges are not allowed). In our tests, we
have used matrices with n = 1000 nodes, which were built using the default values
for the functions previously described. We used d = 2 in the Barabási–Albert model
and k = 2, p = 0.1 in the Watts–Strogatz model.

The results for our tests are presented in Figure 5. These results agree with what
we have seen previously on real-world networks. Interestingly, degree does not per-
form well for the downdate when working on the preferential attachment model; this
behavior reflects what we have seen for the networks USAir97, as-735, and Erdös02,
which are indeed scale-free networks.

5.3. Timings for synthetic networks. We have performed some experiments
with synthetic networks of increasing size in order to assess the scalability of
the various methods introduced in this paper. A sequence of seven adjacency ma-
trices corresponding to Barabási–Albert scale-free graphs was generated using the
CONTEST toolbox. The order of the matrices ranges from 1000 to 7000; the average
degree is kept constant at 5. A fixed number of modifications (K = 500) was car-
ried out on each network. All experiments were performed using MATLAB Version
7.12.0.635 (R2011a) on an IBM ThinkPad running Ubuntu 12.04.5 LTS, a 2.5 GHZ
Intel Core i5 processor, and 3.7 GiB of RAM. We used the built-in MATLAB func-
tion eigs (with the default settings) to approximate the dominant eigenvector of the
adjacency matrix A, the MATLAB toolbox mmq [32] to estimate the diagonal entries
of eA (with a fixed number of five nodes in the Gauss–Radau quadrature rule, hence
five Lanczos steps per estimate), and the toolbox funm kryl to compute the vector
eA1 of total communicabilities, also with the default parameter settings.
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The results are shown in Figure 6. The approximate (asymptotic) linear scaling
behavior of the various methods (in particular of nodeTC.no and eigenvector.no,
which are by far the fastest; see the insets) is clearly displayed in these plots.

5.4. Timings for larger networks. In Tables 3–4 we report the timings for
various methods when K = 2000 downdates and updates are selected for the three
largest networks listed in Table 2.

The timings presented refer to the selection of the edges to be downdated or
updated, which dominates the computational effort. For the method subgraph.no in
the case of downdates, we restricted the search of candidate edges to a subset of E in
order to reduce costs. For the three test networks we used 40%, 45%, and 15% of the
nodes, respectively, chosen by taking those with lowest eigenvector centrality, and the
corresponding edges. We found the results to be very close to those obtained working
with the complete set E, but at a significantly lower cost (especially for the largest
network).

These results clearly show that algorithms nodeTC.no and eigenvector.no are
orders of magnitude faster than the other methods; method subgraph.no, while sig-
nificantly more expensive, is still reasonably efficient4 and can be expected to give
better results in some cases (e.g., on networks with a very small spectral gap). The
degree algorithm, on the other hand, cannot be recommended in general since it
gives somewhat inferior results. The remaining methods eigenvector, nodeTC, and
subgraph (not shown here) are prohibitively expensive for large networks, at least
when the number K of modifications is high (as it is here).

We also observe that downdating is generally a more expensive process than
updating, since in the latter case the edges are to be chosen from among a fairly small
subset of all virtual edges, whereas in the downdating process we work on the whole
set E of existing edges (or on a large subset of E). For some methods the difference
in cost becomes significant when the networks are sufficiently large and the number
of modifications to be performed is high.

Summarizing, the method labeled nodeTC.no is the fastest and gives excellent
results, quite close to those of the more expensive methods, and therefore we can
recommend its use for the type of problems considered here. The methods labeled

4It is worth mentioning that in principle it is possible to greatly reduce the cost of this method
using parallel processing, since each subgraph centrality can be computed independently of the others.
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Table 3

Timings in seconds for K = 2000 downdates performed on the three largest networks in Table 2.

ca-HepTh as-22july06 usroad-48
eigenvector 278.13 599.83 11207.39

eigenvector.no 0.07 1.79 4.08
nodeTC 553.04 1234.49 2634.27

nodeTC.no 0.34 0.83 1.34
subgraph.no 107.36 383.34 1774.07

degree 29.67 53.42 153.52

Table 4

Timing in seconds for K = 2000 updates performed on the three largest networks in Table 2.

ca-HepTh as-22july06 usroad-48
eigenvector 192.8 436.9 1599.5

eigenvector.no 0.19 0.33 5.85
nodeTC 561.9 1218.8 2932.

nodeTC.no 0.30 0.55 1.59
subgraph.no 3.13 7.20 121.4

degree 11.1 12.4 175.8

eigenvector.no and subgraph.no are also effective and may prove useful in some
settings, especially for updating.

6. Evolution of other connectivity measures. In this section we want to
highlight another facet of the methods we have introduced for (approximately) op-
timizing the total communicability. In particular, we look at the evolution of other
network properties under our updating strategies. When building or modifying a net-
work, there are various features that one may want to achieve. Typically, there are
two main desirable properties: first, the network should do a good job at spreading
information, i.e., have a high total communicability; second, the network should be
robust under targeted attacks or random failure, which is equivalent to the require-
ment that it should be difficult to “isolate” parts of the network, i.e., the network
should be “well-connected.” This latter property can be measured by means of var-
ious indices. One such measure is the spectral gap λ1 − λ2. As a consequence of
the Perron–Frobenius theorem, adding an edge to a connected network causes the
dominant eigenvalue λ1 of A to increase. Test results (not shown here) show that
when a network is updated using one of our techniques, the first eigenvalue increases
rapidly with the number of updates. On the other hand, the second eigenvalue λ2

tends to change little with each update, and it may even decrease (recall that the
matrix UWT = eie

T
j + eje

T
i being added to A in an update is indefinite). Therefore,

the spectral gap λ1 − λ2 widens rapidly with the number of updates.5 It has been
pointed out by various authors (see, e.g., [17, 36]) that a large spectral gap is typical
of complex networks with good expansion properties.

Here we focus on a related measure, the so-called free energy (also known in the
literature as natural connectivity) of the network. In particular, we investigate the
effect of our proposed methods of network updating on the evolution of this index.

6.1. Tracking the free energy (or natural connectivity). The authors of
[43] discuss a measure of network connectivity which is based on an intuitive notion

5This fact, incidentally, may serve as further justification for the effectiveness of algorithms such
as nodeTC.no and eigenvector.no.
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of robustness and whose analytical expression has a clear meaning and can be derived
from the eigenvalues of A; they refer to it as the natural connectivity of the network
(see also [44]). The idea underlying this index is that a network is more robust if there
exists more than one route to get from one node to another; this property ensures
that if a route becomes unusable, there is an alternative way to get from the source
of information to the target. Therefore, intuitively a network is more robust if it has
a lot of (apparently) redundant routes connecting its vertices or, equivalently, if each
of its nodes is involved in a lot of closed walks. The natural connectivity aims at
quantifying this property by using an existing measure for the total number of closed
walks in a graph, namely, the Estrada index [16]. This index, denoted by EE(G), is
defined as the trace of the matrix exponential. Normalizing this value and taking the
natural logarithm, one obtains the natural connectivity of the graph:

λ(A) = ln

(
1

n

n∑
i=1

eλi

)
= ln(EE(G)) − ln(n).

It turns out, however, that essentially the same index was already present in the
literature. Indeed, the natural connectivity is only one of the possible interpretations
that can be given to the logarithm of the (normalized) Estrada index. Another,
earlier interpretation was given in [19], where the authors related this quantity to
the Helmholtz free energy of the network F = − ln (EE(G)). Therefore, since λ =
−F − ln(n), the behavior of F completely describes that of λ (and conversely) as the
graph is modified by adding or removing links.

The natural connectivity has been recently used (see [12]) to derive manipulation
algorithms that directly optimize this robustness measure. In particular, the updating
algorithm introduced in [12] appears to be superior to existing heuristics, such as those
proposed in [10, 24, 37]. This algorithm, which costs O(mt+Kd2maxt+Knt2), where
dmax = maxi∈V di and t is the (user-defined) number of leading eigenpairs, selects K
edges to be added to the network by maximizing a quantity that involves the elements
of the leading t eigenpairs of A.6

We have compared our updating techniques with that described in [12]. Results
for four representative networks are shown in Figure 7. In our tests, we use the value
t = 50 (as in [12]), and we select K = 500 edges. Note that, when K is large, the
authors recommend recomputing the set of t leading eigenpairs every l iterations. This
operation requires an additional effort that our faster methods do not need. Since the
authors of [12] show numerical experiments in which the methods with and without
the recomputation return almost exactly the same results, we did not recompute the
eigenpairs after any of the updates.

Figure 7 displays the results for the evolution of both the natural connectivity and
the normalized total communicability, where the latter is plotted in a semilogarithmic
scale. A total of 500 updates have been performed. The method labeled Chan selects
the edges according to the algorithm described in [12] choosing from all the virtual
edges of the graph. For our methods we used, as before, the virtual edges in the
subgraph obtained selecting the top 10% or 20% of nodes ranked according to the
eigenvector centrality. As one can easily see, our methods generally outperform the
algorithm proposed in [12]. In particular, nodeTC.no and eigenvector.no give gen-
erally better results than Chan and are much faster in practice. For instance, the
execution time with Chan on the network ca-HepTh was over 531 seconds and much

6A description of the algorithm can be found in the supplementary material.



B46 FRANCESCA ARRIGO AND MICHELE BENZI

0 500
10

0

10
5

10
10

to
ta

l c
om

m
un

ic
ab

ili
ty

 

 

eigenvector eigenvector.no nodeTC.no subgraph.no Chan et al.

0 500

0

5

10

15

20

25
Minnesota

na
tu

ra
l c

on
ne

ct
iv

ity

0 500

10
18

10
20

10
22

0 500
35

40

45

50
USAir97

0 500

10
20

10
21

10
22

0 500
38

40

42

44

as−735

0 500
10

10

10
12

10
14

0 500
16

18

20

22

24

26

28

30
Erdos02

Fig. 7. Evolution of the natural connectivity and of the normalized total communicability (in
a semilogarithmic scale plot) when up to 500 updates are performed on four real-world networks.

higher for the two larger networks. We recall (see Table 4) that the execution times
for nodeTC.no and eigenvector.no are about three orders of magnitude smaller.

It is striking to see how closely the evolution of the natural connectivity mirrors
the behavior of the normalized total communicability. This is likely due to the fact
that both indices depend on the eigenvalues of A (with a large contribution coming
from the terms containing λ1; see (2.2) and Remark 2), and all the updating strategies
used here tend to make λ1 appreciably larger.

Returning to the interpretation in terms of statistical physics, from Figure 7 we
deduce that the free energy of the graph decreases as we add edges to the network. In
particular, this means that the network is evolving toward a more stable configura-
tion and, in the limit, toward equilibrium, which is the configuration with maximum
entropy.7

These findings indicate that the normalized total communicability is equally ef-
fective an index as the natural connectivity (equivalently, the free energy) for the
purpose of characterizing network connectivity. Since the network total communi-
cability can be computed very fast (in O(n) time), we believe that the normalized
total communicability should be used instead of the natural connectivity, especially
for large networks. Indeed, computing the natural connectivity requires evaluating
the trace of eA; even when stochastic trace estimation is used [2], this is several times
more expensive for large networks than the total communicability.

7The relation between the free energy and the Gibbs entropy is described in more detail in the
supplementary material.



NETWORK UPDATING AND DOWNDATING B47

7. Conclusions and future work. In this paper we have introduced several
techniques that can be used to modify an existing network so as to obtain networks
that are highly sparse and yet have a large total communicability.

These heuristics make use of various measures of edge centrality, a few of which
have been introduced in this work. Far from being ad hoc, these heuristics are widely
applicable and mathematically justified. All our techniques can be implemented
using well-established tools from numerical linear algebra: algorithms for eigenvec-
tor computation, Gauss-based quadrature rules for estimating quadratic forms, and
Krylov subspace methods for computing the action of a matrix function on a vector.
Ultimately, the Lanczos algorithm is the main player. High quality, public domain
software exists to perform these modifications efficiently.

Among all the methods introduced here, the best results are obtained by the
nodeTC.no and eigenvector.no algorithms, which are based on the edge total com-
municability and eigenvector centrality, respectively. These methods are extremely
fast and returned excellent results in virtually all the tests we performed. For up-
dating networks characterized by a small spectral gap, a viable alternative is the
algorithm subgraph.no. While more expensive than nodeTC.no and eigenvector.no,
this method scales linearly with the number of nodes and yields consistently good
results.

Finally, we have shown that the total communicability can be effectively used as
a measure of network connectivity, which plays an important role in designing robust
networks. Indeed, the total communicability does a very good job at quantifying two
related properties of networks: the ease of spreading information, and the extent to
which the network is “well-connected.” Our results show that the total communica-
bility behaves in a manner very similar to the natural connectivity (or free energy)
under network modifications, while it can be computed much more quickly.

Future work should include the extension of these techniques to other types of
networks, including directed and weighted ones.

Acknowledgments. We are grateful to Ernesto Estrada for providing some of
the networks used in the numerical experiments and for pointing out some useful
references. The first author would like to thank Emory University for the hospitality
offered in 2014, when this work was completed. We also thank two anonymous referees
for helpful suggestions.

REFERENCES

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Implementation of a restarted
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