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regions but also of other phases (i.e. neutral, molecular) of the
ISM in galaxies.

2 OVERV IEW O F EMISSION-LINES
D I AG N O S T I C S

In this section, we briefly discuss some popular emission-line di-
agnostics used to estimate specific physical parameters of the ISM
of galaxies. For an extensive review on emission lines, we refer the
interested reader to Stasińska (2007).

Let us first consider the classical case of density indicators. This
is often done by using two similar energy transitions (but differ-
ent transition probabilities) of a given ion (Osterbrock 1989). Ions
(transitions) typically used are the [O II] (λ3726, 3729) or [S II]
(λ6716, 6731). In both cases, the transitions are excited from the
ground level to two slightly different upper levels; they correspond
to different critical densities. The intensity ratio of the two lines is
sensitive to gas density.

One of the most popular indicators for the metallicity of the gas
is the R23 parameter proposed by Pagel et al. (1979). This is defined
as follows:

R23 = I([O II] λ3727) + I([O III] λ4959) + I([O III] λ5007)

I(Hβ)
, (1)

where I denotes the emission-line intensity. A problem is that the in-
dicator is non-monotonic, i.e. for a given value of R23, two different
metallicity values are possible solutions. To break this degeneracy,
additional diagnostics have been proposed. However, most of these
methods rely on the [N II ] λ6584 line (Pettini & Pagel 2004) that
is usually very weak and tends to become difficult to measure es-
pecially at low metallicities, i.e. [N II] λ6584/Hα < 0.1 at Z �
0.6 Z�.

Another alternative to the metallicity calibration is the S23 pa-
rameter, introduced by Dı́az & Pérez-Montero (2000). This is based
on the use of the sulphur abundance parameter S23 (Vilchez &
Esteban 1996):

S23 = I([S II] λλ6717, 6731) + I([S III] λλ9069, 9532)

I(H β)
. (2)

With the recent availability of large data sets with known metal-
licity, empirical calibrations for metallicity diagnostics over a rela-
tively large range of values have been proposed (Nagao, Maiolino
& Marconi 2006; Maiolino et al. 2008; Nagao et al. 2011).

Other useful indicators, along with a critical analysis of differ-
ent techniques, can be found in Kewley & Ellison (2008). These
authors suggest the use of calibrators as [N II] λ6584/Hα (Kewley
& Dopita 2002) or [N II] λ6584/[O II] (λλ3726, 3729) (Pettini &
Pagel 2004), since these two methods give low residual discrep-
ancies in the estimation of metallicities thus providing also new
‘revised’ formulae for these calibrators.

All the previous works typically use rest-frame optical diagnos-
tics. Therefore, they are considerably affected by dust extinction and
additional assumptions must be made in order to apply a differen-
tial correction to line intensitT
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Figure 1. Geometry adopted to build our library. A central source S (with a
given ionization parameter U) illuminates the inner part of the cloud located
at 1 parsec from the centre. The density (n) and metallicity (Z) of the cloud
are assumed to be constant. The outer radius of the cloud is the distance at
which our column density (NH) reaches the required value for the model
under consideration.

3.1 Definitions

The ionization parameter is the number of ionizing photons per
hydrogen atoms and we adopt the following definition (e.g. Yeh &
Matzner 2012):

U = 1

4πR2
Snc

∫ ∞

νe

Lν

hν
dν = Q(H )

4πR2
Snc

, (6)

where Q(H) is the ionizing photon flux, c the speed of light and RS

is the Strömgren radius (Strömgren 1939):

R3
S = 3Q(H )

4πn2α(T )
, (7)

where α is the temperature- (T) dependent recombination rate. By
combining equations (6) and (7), we obtain:

U = 1

c

3

√
Q(H )nα2

36π
. (8)

The minimum ionization parameter inside a H II region generated
by a single early-spectral type star can be estimated as follows.
If we assume a density n ∼ 100 cm−3, a recombination rate α ∼
2.6 · 10−13 cm3s−1 and consider the Q(H) from a star with Z� � Z�
and mass M� = 10 M�, we get log Umin ∼ −4.0 (Schaerer 2002).
Hence, this justifies the minimum value for log U in Table 1.

For our CLOUDY calculations, we consider a spherical geometry
and static conditions. A central ionizing source illuminates the inner
part of the cloud situated at distance 1 pc from the centre (see Fig. 1).
The outer part of the cloud defines the end of the calculation. For
each model (n = cost), the outer cloud distance is set in order to
reach the required value for the column density (see Table 1). We
have therefore removed the default stopping criterion based on a
lower limit on the gas kinetic temperature (4000 K).

Metal abundances for all calculations are assumed to be solar
(Grevesse et al. 2010). For dust, we consider contribution from
graphite and silicate components that reproduce the observed over-
all extinction properties of the MW ISM: RV = AV/E(B−V) = 3.1.
The grain size distribution is described by a power-law distribution
(Mathis, Rumpl & Nordsieck 1977) resolved by default in CLOUDY

into 10 size bins. We did not include the contribution from poly-
cyclic aromatic hydrocarbons (PAHs) in the library used in this
work. Observations for local galaxies with lower metallicities (e.g.
IZw18 and SBS0335-052) show in fact a suppressed PAH emission
(Wu et al. 2007, 2009; Hunt et al. 2010) and these are the proto-
types for the high-redshift galaxies (z ∼ 6) we are interested in (see
Section 4.3). The temperature within the cloud is computed by
CLOUDY from the balance between heating and cooling.

3.2 Stellar model spectra

The flux illuminating the cloud defines the ionization parameter U
(see equation 6) that can be computed by using the STARBURST99 code
(Leitherer et al. 1999; Smith, Norris & Crowther 2002; Leitherer
et al. 2014). This code computes theoretical spectral energy distri-
butions (SED) combining a stellar atmosphere model with grids of
stellar evolutionary tracks that account for different metallicities,
star formation histories, IMF and age of stellar populations.

We adopted a Salpeter IMF (Salpeter 1955) in the 0.1–120 M�
mass range and a constant SFR of 1 M� yr−1. The metallicities of
the input spectra considered are Z = 0.001, 0.008, 0.020 (Z�) and
0.040. We calculated models using the set of evolutionary tracks
produced by the Geneva group (Schaller et al. 1992). We use the
‘Lejeune/Schmutz’ option that adopts the extended model atmo-
spheres of Schmutz, Leitherer & Gruenwald (1992) in the case of
stars with strong winds and the plane-parallel atmospheric grid of
Lejeune, Cuisinier & Buser (1997) otherwise. We fix the stellar
population cluster age to 10 Myr. Note that the shape of the EUV
spectrum (100 < λ < 1000 Å) does not change for older stellar
populations (Kewley et al. 2001).

STARBURST99 spectra obtained with these prescriptions are given
as input to the CLOUDY code. Different examples of the emerging
spectra are reported in Fig. 2, for Z = 0.005 Z� (upper panel) and
Z = 0.5 Z� (lower panel) and different values of the ionization
parameter (log U = −2, 0, 1), at fixed n = 102 cm−3 and NH =
1020 cm−2. The spectrum includes the stellar and dust continuum
with the superimposed emission lines of hydrogen, helium and the
major elements commonly found in the ISM of galaxies. The figure
also shows that the IR/FIR peak due to the dust continuum emission
is shifting towards larger wavelengths (i.e. colder dust) at decreasing
ionization parameter.

Each CLOUDY output spectrum is then labelled with its correspond-
ing parameters and stored in the library. Then, we implement and
train an SML algorithm, described in the following section, which
allows us to recover the parameters associated with any given input
spectrum.

4 ML M E T H O D S

In this section, we describe the SML approach used in this work
and we briefly review its main algorithms, namely Decision Trees
and AdaBoost. The main idea of SML is that an observable quantity
(i.e. a spectrum) is a set of xs (e.g. spectral lines) that we relate to a
set of ys (i.e. the four physical properties n, Z, NH and U). The task
is to use a training set in order to find an algorithm f(x) such that for
future x in a test set, it will be a good predictor of y.

The SML method tries to infer the physical properties of a given
input from labelled data. The training data set consists of a set
of input features (i.e. an input vector) and a set of labels (i.e. the
desired output values) for each example (see Fig. 3). The SML
algorithm analyses the training data set and produces a model that
ideally should give as output the same labels required for the training
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Figure 2.Rest-frame spectra obtained from our grid of models with metallicityZ=03005 Z�(upper panel) andZ=035 Z�(lower panel). I n both panels,the d ensity and column d ensity are: log (n/cmŠ3)=2andlog( NH/cmŠ2)=20. Red, green and blue lines represent m odels with the logU=Š2, 0 and 1,respectively. The offset in intensity between spectra h as been inserted only f or visual clarity.process. This model can be used at this point to predict t he physicalvalues of new i nput examples.Fortheanalysis performedinthis work, we used thescikit-learn(Pedregosa et al.2011)P Y T H O Np a c k a g e .14.1 Decision Trees-based methodsDecision Trees (Breiman et al.1984; P e d r e g o s a e t a l .2 0 1 1) a r es u p e r v i s e d a l g o r i t h m s c o m m o n l y u s e d i n M L , w h o s e m a i n p u r p o s ei s t o c r e a t e a m o d e l i n t h e f o r m o f a t r e e s t r u c t u r e t h a t i s a b l et o p r e d i c t t h e v a l u e o f a t a r g e t v a r i a b l e s t a r t i n g f r o m a v e c t o r o fs e v e r a l i n p u t v a r i a b l e s . D e c i s i o n T r e e s a l g o r i t h m s fi n d fi n a l d e c i s i o nb o u n d a r i e s a u t o m a t i c a l l y b a s e d o n t h e d a t a . T h e y a r e v a l i d f o r a v e r yl a r g e r a n g e o f a p p l i c a t i o n s a n d a r e a l s o e x t r e m e l y f a s t .T h e c o r e a l g o r i t h m f o r b u i l d i n g D e c i s i o n T r e e s i s t h e I D 3 ( I t e r a -t i v e D i c h o t o m i z e r 3 ) d e v e l o p e d b y Q u i n l a n (1 9 8 6). This algorithmcreates a t ree and determines for each node the f eature yielding t helargest information gain f or targets. C435 (Quinlan1993)isthesuc- cessor to I D3 that has overcome some restrictions of the previousalgorithm. The new main features of C.4 are: ( i)it accepts both cat-egorical and numerical variables, (ii) it better handles overfitting byapplying ‘pruning’ techniques ( Breiman et al.1984; Mingers1989;Mehta, Rissanen & Agrawal1995). The scikit-learn package weused, adopts an optimized version of the CART (Classification andRegression Trees) algorithm based on C435. CART constructs1http://scikit-learn.org/Figure 3.Visual representation of the training data set f or our SML m ethod.The data set is composed by a set ofNspectra ( 3×104in our case); eachof them in turn consistsof a set of input features ( blue). To each spectrum isassigned a label (red) that represents the physical property that the model,once trained, tries to predict.binary trees using the input features (see Fig.3) and thresholdsthat yield t he largest i nformation gain at each node.A Decision Tree recursively partitions the i nput features spaceinto an increasing number of ‘leaves’. Each leaf represents a valuefor t he desired output and i t i s chosen to minimize the mean-squarederror o f t he output labels, which in our case are the p hysical param-eters defined i n Table1.4.2 AdaboostEnsemble l earning methods (Dietterich2000)arebasedontheas- sumption that many base learning algorithms, such as DecisionTrees-based methods, can be combined i nto an ‘ ensemble system’which can achieve better predictive performances. E nsemble l earn-ers have also the advantage that they are less prone to overfit thedata.MNRAS465,1144–1156 (2017)
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A common method to produce an ensemble of base learners is the
Adaptive Boosting or AdaBoost method (Freund & Schapire 1997;
Drucker 1997; Hastie, Tibshirani & Friedman 2009). In the case
of Decision Trees as the base learner, the algorithm adds trees se-
quentially to generate an ensemble of them. AdaBoost iteratively
improves the base algorithm by accounting for the incorrectly clas-
sified examples in the training set.

First of all, equal weights are assigned to each training examples.
At each step of the iteration, the base algorithm is applied to the
training set and the weights of the incorrectly classified examples
are increased. In each step, the base learner is applied on the training
set with updated weights, and after n iterations, the final model is
obtained as the weighted sum of the n learners.

4.3 Input features

Starting from a given synthetic SED (see Fig. 2) obtained with the
photoionization code CLOUDY, it is possible to obtain the continuum-
subtracted intensities of the emission lines. The input vector for the
ML algorithms (the input features in Fig. 3) is in our case a collection
of intensities associated with a discrete wavelength array and a label
containing the four physical properties (n, Z, NH and U) of the model
under consideration.

The range of wavelengths used to construct the model spans
from 1216 Å (corresponding to the Lyα transition) to 4.0 μm. This
particular choice would be equivalent to the rest-frame range in
wavelengths obtained by combining the NIRSpec (0.6–5 μm) and
MIRI (5–28 μm) instruments on board the James Webb Space Tele-
scope (JWST) and observing a source located at redshift z ∼ 6.
Emission lines from warm/neutral gas are relatively weak but
yet observable. For example, [N I] λ5200 and [O I] λ6300,6364
have been observed in the spectra of local galaxies (Moustakas &
Kennicutt 2006; Cresci et al. 2015). The strength of our method
relies on the fact that the ML algorithm can learn from all the lines
present in a spectrum, including the weakest one as those coming
from the neutral ISM components. It will then possible to provide
at least some constraints on the properties of these phases from
observed spectra.

The SML code implementing all the above features will be re-
ferred from now on as GAME (GAlaxy Machine learning for Emission
lines).

5 R ESULTS

5.1 Predictive accuracy

In this section, we present the results of the tests for the AdaBoost
SML algorithm in terms of the predicted values of (n, Z, NH, U).

The data set used to train GAME consists in a library of 3 × 104

models chosen by randomly selecting the values of the four physical
parameters in the ranges reported in Table 1. The data set used for
the test (i.e. to predict the labels) consists instead of a [test] sample
of 3 × 103 models, also randomly constructed. Thus, although the
way of constructing this testing sample is the same used to construct
the training data set, the AdaBoost algorithm had never seen these
objects before.

The results of the predictive GAME tests performed by using the
AdaBoost with Decision Tree as base learner are shown in Fig. 4.
The fraction of models for which the actual (i.e. the known values
used to generate the testing data set) and predicted values deviate by
a factor >2 are 14.8 per cent (n), 1.2 per cent (Z), 1.7 per cent (NH)
and 23.2 per cent (U). The lower quality predictive performances

are somewhat expected. In fact, the determination of the ionization
parameter is particularly challenging: it involves the reconstruction
from the emerging filtered spectrum of the original U value at
the source, which is highly degenerate with the NH. GAME delivers
top-quality predictions for Z and NH, which are almost perfectly
recovered by the algorithm.

A different way to appreciate GAME predictive performances is
to look at the probability distribution function (PDF, Fig. 5) of the
fractional variation between predicted and true physical properties,
defined as δX = log (XPRED/XTRUE). In each plot of Fig. 5, the
blue shaded area contains 95 per cent of the models. As previously
mentioned, the best predictive performances are achieved for NH

and Z. For example, for the column density, 95 per cent of the
predicted values differ by <60 per cent from the actual ones.

5.2 Weak lines

Up to now, we have considered idealized synthetic spectra. They
are idealized because of their ‘infinite SNR ratio’: they exhibit in
fact weak emission lines that would be extremely hard to detect
experimentally (e.g. up to 105 times fainter than the Hα or [O III]
lines). Hence, in our library of synthetic spectra, on average, 500
emission lines are available (i.e. with intensities different from zero).
Although GAME does not use all these lines because some of them
are unimportant for the construction of the Decision Trees, this
idealized situation is unlikely to be reached in a typical observational
setup.

We therefore investigated how GAME behaves when a ‘detection
threshold’ is added. We consider null the emission from lines whose
intensity is less than a certain fraction f(Hα) of the Hα, therefore
excluding them from the model. Formally, this approach is equiv-
alent to consider a spectrum whose signal-to-noise ratio (SNR) is
SNR =σ/f(H α), where σ is the rms noise.

In Fig. 6, we report the mean number of available lines in our
grid of synthetic spectra as a function of f−1(H α). The red dashed
line in the figure is the threshold f(H α) = 50 that we have adopted
as a reference in this work. This value is easily reached with state-
of-the-art instruments and it is typical of several spectra obtained in
observations (Cresci et al. 2015).

We construct two new data sets with spectra that contains only
emission lines with an intensity higher than 1/50 of the Hα line.
One set is used for the training and the other for the testing phase.

Results of this approach are shown as scatter plots in Fig. 7 and
the resulting PDFs are shown in Fig. 8. The fraction of models for
which the ‘real’ (i.e. the known values used to generate the testing
data set) and predicted values deviate by a factor >2 are 21.9 per cent
(density), 2.6 per cent (metallicity), 2.5 per cent (column density),
and 27.3 per cent (ionization parameter). For f(Hα) > 100, results
become similar to the ideal case.

We emphasize that GAME is easy to implement as well as extremely
fast even on a laptop computer. Typical run times to train models
using our library of 3 × 104 spectra is about 10 min for a single
processor run. Therefore, accurately training GAME based on the
SNR of the observed input spectra presents no difficulties.

5.3 Sum of different phases

A line of sight (los) passing through a galaxy can cross different ISM
phases, e.g. cold neutral medium (CNM), warm neutral medium
(WNM), warm ionized medium (WIM) or a dense giant molecular
cloud (GMC). The resulting spectrum is then the sum of the spectra
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Figure 4. Scatter plots for the predicted (inferred from the model) versus true (used to construct the spectrum) physical properties (density, column density,
metallicity and ionization parameter). The blue solid line is the locus of points where true = predicted. The error bars for the binned data (red) show the
standard deviation of distribution. δ represents the residuals 	log (PRED−TRUE) = log (PRED/TRUE).

from individual phases. This is the common case for observations,
hence it is important to test GAME in these conditions.

To this aim, we first select spectra from the library labelled
with parameters close to the typical values for ISM phases: WNM
(n ∼ 1 cm−3, U ∼ 10−4), CNM (n ∼ 102 cm−3, U ∼ 10−4), WIM
(n ∼ 10−2 cm−3, U ∼ 102) and GMC (n ∼ 103 cm−3, U ∼ 10−4).
The size of the CNM, WNM and WIM phases is l ∼ 20 pc, while for
GMC, we assumed a size of l ∼ 2 pc (Larson 1981; Falgarone, Puget
& Perault 1992; Ossenkopf & Mac Low 2002; Heyer et al. 2009).
Then we sum a variable number of spectra into the final one:

Sj (λ, Z, NH) =
∑

i

S
j
i

(
λ, nj , Zj , N

j
H , Uj

)
, (9)

where j labels the phase (j = CNM, WNM, WIM, GMC) and i = 1,
. . . , N is the ith component along the los. We have run cases with
Z � 1 and Z � 0.02 Z�.

The comparison between the Z, NH values inferred by GAME for
the final spectrum and the ones of the individual phases is shown in

Fig. 9. GAME performs quite well recovering the emission-weighted
values that are intermediate between the inputs of the individual
components. This has been verified for all four phases and indepen-
dently of the assigned mean Z.

As a next step in complexity, we tested a spectrum that is a random
combination of different phases along an los (Fig. 10). As GAME

returns a single quadruple of (n, Z, NH, U) values, the outcome is
biased towards the phases characterized by a larger column density.
In other words, GAME is most sensitive to the emitting phase with
the largest gas mass.

Although with this limitation, the outcome is very satisfactory as
the inferred (Z, NH) values are well within the range of the individual
phases.

5.4 Comparison with calibrated diagnostics

We compare the calibration of two popular metallicity diagnostics,
R23 (see equation 1) and [N II] λ6584/Hα, with GAME, in order to
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Figure 5. Probability distribution functions (PDF) of the δs reported in Fig. 4, i.e. the logarithm of the ratios between the predicted and true physical properties.
σ represents the standard deviation of the distributions. 95 per cent of the models reside within the shaded blue regions.

evaluate the relative performances. As already mentioned, these two
diagnostics are based on nebular emission lines and they have also
been calibrated on H II regions. For the comparison to be meaning-
ful, we have chosen in our library spectra with physical properties
describing standard ionized nebulae: T ∼ 104 K, ionized hydrogen
fraction >90 per cent, NH � 1020 cm−2.

In Fig. 11, we show the values of R23 and [N II] λ6584/Hα for
generic models (grey dots), and those representing an H II region
(blue circles) for 10−2 < Z/Z� < 3. The blue solid lines are the
empirical calibrations given by Maiolino et al. (2008) for R23:

log(R23) = 0.7462 − 0.7149x − 0.9401x2

−0.6154x3 − 0.2524x4 (10)

and for [N II] λ6584/Hα:

log

[
F([N II] λ6584)

F(H α)

]
= −0.7732 + 1.2357x − 0.2811x2

−0.7201x3 − 0.3330x4, (11)

where x = log (Z/Z�) = 12 + log (O/H) − 8.69 and F are the
reddening-corrected fluxes. As pointed by Maiolino et al. (2008),
the previous relations are strictly valid only in the range 7.0 �
12 + log (O/H) � 9.2. Outside this metallicity range, the use of
these relations relies on extrapolation.

The dashed lines represent theoretical calibrations based on the
grid of photoionization models provided by Kewley & Dopita
(2002) for an ionization parameter U = 1.6 × 10−4 (red dashed
lines in Fig. 11):

log(R23) = −27.0004 + 6.0391y − 0.327 006y2, (12)

log

[
F([N II] λ6584)

F(H α)

]
= −2700.08 + 1335.14y − 247.533y2

+ 20.3663y3 − 0.626 92y4; (13)
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Figure 6. Mean number of available lines in our library of synthetic spectra
as a function of f−1(H α), the fraction of the Hα line intensity used as a
threshold. For f(H α) = 1/50 (red dashed line), the mean number of available
lines is 50.

and U = 10−2 (black dashed lines in Fig. 11):

log(R23) = −45.6075 + 11.2074y − 0.674 460y2, (14)

log

[
F([N II] λ6584)

F(H α)

]
= −3100.57+1501.77y − 272.883 ∗ y2

+ 22.0132y3 − 0.6646y4, (15)

where y = 12 + log (O/H).
Some differences are present between our H II region models (blue

circles) and the considered theoretical and empirical calibrations
(solid and dotted lines). These are due to the different photoioniza-
tion code used, the assumption of spherical versus plane-parallel
geometry, isochoric versus isobaric assumptions for the gas. How-
ever, they are relatively minor.

We compute in this case Z inferred from two different kinds of H II

region models: (‘) spectra for which the R23 value is very close to the
empirical calibration (blue solid line in Fig. 11, taken as reference)
and (2) spectra whose R23 strongly differs from the calibration.

For case (a) (red panel of Fig. 11), the ‘true’ value (the
one used to generate the spectrum) and the GAME-predicted one

Figure 7. As in Fig. 4, but considering a threshold f (Hα) = 1/50 (see the text for the details).
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Figure 8. As in Fig. 8, but considering a line intensity threshold f(H α) = 1/50 (see the text for the details).

are ZTRUE = 0.332 and ZPRED = 0.365 Z�; the difference is
<10 per cent. For the same case though, the metallicity inferred
using calibrations based on the R23 and [N II] λ6584/Hα diagnostic
are instead Z23 = 0.660, and Z[N II] = 0.507 Z�, respectively. We
see that the performance is much worse than the one delivered by
GAME. In fact, the empirical methods predict values in excess by
almost a factor of 2 with respect to the actual value.

For case (b) (green panel of Fig. 11), the true and the predicted
value are, respectively, ZTRUE = 0.0792 and ZPRED = 0.1027 Z�,
i.e. still in good agreement. However, using the calibrations, we get
instead Z23 = 2.384 and Z[N II] = 0.850 Z�, i.e. they both largely
overestimate Z by more than one order of magnitude.

We conclude that GAME appears to be able to extract physical
conditions of the gas in a much more precise and reliable way with
respect to standard indicators.

Finally, we stress that for the spectra not arising from H II regions
(green dots in Fig. 11), the previous calibrators cannot be applied.
This happens since it does not longer exist a correlation between
the diagnostic value and Z. An SML approach, like the one imple-
mented by GAME, is however capable to extract information from all

detected lines. This allows a range of applications that is not only
restricted to H II regions, but can extend to a wide variety of ISM
phases.

5.5 Connecting theory and observations with GAME

The most natural use of GAME is to extract the physical proper-
ties of galaxies from spectroscopic emission-line observations of
galaxies. The full power of the code is manifest when it is used
in combination with spatially resolved spectroscopy, like the one
obtained from IFUs. From such data cubes, it will be possible to
readily and robustly obtain physical properties (density, metallicity,
ionization parameter) that represent key information to understand
galaxy evolution. As new instruments, like MUSE, and telescopes
(JWST, ALMA, TMT, E-ELT), will be able to obtain for the first
time this type of data also on high-redshift galaxies, a more com-
prehensive approach to interpret the spectra, as the one presented
here, is mandatory to completely exploit their power.

GAME can be also applied to synthetic maps constructed from
galaxy simulations. The aim of this procedure is twofold. On one
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Figure 11. Relations between emission-line ratios and gas metallicity. Green dots are generic models in our library and blue circles are models representing
H II regions. The blue solid line shows the empirical calibrations from Maiolino et al. (2008). The red and black dashed lines are the theoretical calibrations
reported in Kewley & Dopita (2002), respectively, for a U = 1.6 · 10−4 and 10−2, respectively. The red panel (a) shows a spectrum for which the calibrations
give a value for the metallicity near to the true value used to generate the model. The green panel (b) shows instead a spectrum for which the calibrations are
not good indicators for the metallicity.

to deal with complex, multiphase los, obtaining very satisfactory
answers (for details, see Section 5.3).

We emphasize that GAME is easy to implement as well as extremely
fast even on a laptop computer. Typical training times using our
library of 3 × 104 spectra are ≈10 min and the time required
to infer physical parameter values for a given input spectrum is
only less than few seconds. Therefore, accurately training GAME

to accommodate the specific SNR of the observed input spectra
presents no difficulties.

It is worthwhile to add some remarks concerning the comparison
with currently used methods, based on emission-line ratios. Differ-
ent galaxy properties can result in almost equal line ratio for some
of the lines. Thus, more line ratios are generally required to break
this degeneracy.

The SML approach can overcome these difficulties because (1)
it makes use of all the available information present in the spectrum
simultaneously, meaning that it is not necessary to choose a priori a
subset of lines to use; (2) the training phase is extremely fast and the
code can easily adapt to new conditions (e.g. a different SNR ratio
of the spectrum, see Section 5.2). The most fundamental aspect is
that without any calibration, once trained, the algorithm provides
an estimate of the main physical properties with no degeneracy.

Furthermore, we can compare the SML method adopted in this
work with the ‘traditional’ data fitting technique. For an excellent
review on the two cited approaches (‘algorithmic’ versus ‘tradi-
tional’), we refer the interested reader to the work by Breiman
(2001). There are advantages and disadvantages in both these tech-
niques and one should consider the best suited for the science case
under study.

Both approaches are based on a strong underlying assumption:
the model,2 the chosen physical properties range and the prescrip-
tions used to generate the library do capture the essential physics
governing the ISM. It must be stressed that to get an accurate
estimate of the ISM physical properties, one must explore the largest
possible range of parameter values when producing the library (see
Table 1). This is not always easy and the resulting grid from all the
possible combinations of these values can be very large. Although
model fitting techniques or Bayesian approaches (Blanc et al. 2015)
are very powerful, they suffer from some limitations. The best way

2 For example, photoionization codes alternative to CLOUDY are MAPPINGS

(Sutherland & Dopita 1993; Allen et al. 2008) and MOCASSIN (Ercolano
et al. 2003; Ercolano, Barlow & Storey 2005).
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to constrain a particular model is in fact to use as many observa-
tional constraints as possible. For a Bayesian approach, this can be
a problem because using hundreds of features at one time is ex-
tremely time consuming. Moreover, adapting a code to deal with an
observational spectrum with different wavelength range or with a
different SNR ratio can be computationally very expensive.

In this context, an important advantage of the SML method with
respect to the Bayesian one is that its performance is not affected
by the finite number of models within the library used during the
training. In fact, the SML technique, as suggested by the name itself,
is capable to ‘learn’ and explore hidden patterns within the library
parameter space. In other words, the SML method is not limited to
‘recover’ parameter values included in the library, but it can also
‘predict’ results that are not part of the original one.

Moreover, GAME can be effectively coupled to the analysis of IFU
spectroscopic data and synthetic data from numerical galaxy sim-
ulations. These applications will be demonstrated in a forthcoming
study.

We finally point out that in addition to H II regions, GAME allows
us to infer the physical properties of photodissociation regions.
These are now being resolved in nearby galaxies. With JWST and
ALMA, we will be able to obtain comparable results also for the
high-redshift systems.
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