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ITERATIVE METHODS FOR DOUBLE SADDLE POINT SYSTEMS∗
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Abstract. We consider the iterative solution of a class of linear systems with double saddle point
structure. Several block preconditioners for Krylov subspace methods are described and analyzed.
We derive some bounds for the eigenvalues of preconditioned matrices and present results of numerical
experiments using test problems from two different applications: the potential fluid flow problem and
the modeling of liquid crystals directors.
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1. Introduction. In this paper we consider iterative methods for solving large,
sparse, linear systems of equations of the form

(1.1) A u ≡

 A BT CT

B 0 0
C 0 −D

 x
y
z

 =

 b1
b2
b3

 ≡ b,
where A ∈ Rn×n is symmetric positive definite (SPD) and B ∈ Rm×n, C ∈ Rp×n, and
D ∈ Rp×p are symmetric positive semidefinite (SPS) and possibly zero. Throughout
the paper we assume that n ≥ m+ p.

Linear systems of the form (1.1) arise frequently from mixed and mixed-hybrid
formulations of second-order elliptic equations [7, sect. 7.2], [12] and elasticity [7,
sect. 9.3.1] problems. Numerical methods in constrained optimization [13, 14] and
liquid crystal modeling [18] also lead to sequences of linear systems of the type (1.1).
We further mention that finite element models of certain incompressible flow problems
arising in the analysis of non-Newtonian fluids and in geophysics lead to large linear
systems with coefficient matrices of the form

B =

 A CT BT

C −D 0
B 0 0

 and C =

 −D C 0
CT A BT

0 B 0

 ;

see, e.g., [3] and [8], respectively. It is easy to see that both B and C can be brought
into the same form as matrix A in (1.1) by means of symmetric permutations (row
and column interchanges).

It is important to observe that matrix A can be regarded as a 2× 2 block matrix
in two different ways, according to which of the following partitioning strategies are
used:
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(1.2) A =

 A BT CT

B 0 0
C 0 −D

 or A =

 A BT CT

B 0 0
C 0 −D

 .
The first partitioning highlights the fact that problem (1.1) can in principle be treated
as a “standard” saddle point problem, possibly stabilized (or regularized) when D 6= 0;
see, e.g., [6]. On the other hand, the second partitioning shows that (1.1) can also be
regarded as having a double saddle point structure, since the (1,1) block is itself the
coefficient matrix of a saddle point problem; see, e.g., [18]. While in this paper we
make use of both partitionings, we are especially interested in studying solvers and
preconditioners that make explicit use of the 3× 3 block structure of A .

The paper is organized as follows. In section 2 we give a detailed discussion
of conditions that ensure the unique solvability of (1.1). Block preconditioners for
Krylov-type methods are discussed and analyzed in section 3. Illustrative numerical
experiments are presented in section 4. Section 5 contains brief concluding remarks.

2. Solvability conditions. In this section we investigate the solvability of (1.1)
under various assumptions on the blocks A, B, C, and D. Invertibility conditions for
the coefficient matrix A in (1.1) under different assumptions on the blocks can be
found scattered in the literature; see, for instance, [6], [7, Chapter 3], as well as [4]
and [10] for eigenvalue bounds. While our results overlap in part with known ones,
we find it useful to collect all the needed statements with complete proofs here, also
in order to make the paper self-contained. In the following, for a real square matrix
A we write A � 0 (A < 0) if A is SPD (respectively, SPS) and A � B (A � B) if
A and B are real symmetric matrices such that A − B is SPD (respectively, SPS).
Moreover, we write (x; y; z) to denote the vector (xT , yT , zT )T .

The following theorem provides a necessary and sufficient condition for the in-
vertibility of the matrix A in the case that the (1, 1) and (3, 3) blocks are both SPD.

Proposition 2.1. Assume that A � 0 and D � 0. Then matrix A is invertible
if and only if B has full row rank.

Proof. Let B have full row rank and assume that A u = 0 for u = (x; y; z), i.e.,

Ax+BT y + CT z = 0,(2.1)

Bx = 0,(2.2)

Cx −Dz = 0.(2.3)

If x = 0, then (2.3) implies z = 0 (since D � 0) and thus from (2.1) we conclude that
y = 0, since BT has full column rank. Hence, u = 0. If z = 0, then from (2.1) and
(2.2) we obtain 0 = Bx = −BA−1BT y and thus y = 0 since BA−1BT is SPD. Hence,
x = 0 and thus again it must be u = 0. Let us assume now that both the vectors x
and z are nonzero. Multiplying (2.1) by xT from the left, we find

(2.4) xTAx+ xTBT y + xTCT z = 0.

From (2.3), it can be seen that zTCx = zTDz. Substituting zTCx = zTDz and (2.2)
into (2.4), we have

(2.5) xTAx = −zTDz.
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In view of the positive definiteness of A and D, the preceding equality implies that
x = 0 and z = 0 which shows that u = 0.

Conversely, suppose that A is nonsingular. Let y ∈ Rm be such that BT y = 0.
Setting u = (0; y; 0), we obtain A u = 0. In view of the invertibility of A , we conclude
that y = 0. This completes the proof.

Next, we consider relaxing the assumptions of Proposition 2.1 so that either A < 0
or D < 0. In the following theorem we establish sufficient conditions which guarantee
the nonsingularity of A . We further show that some of these conditions are also
necessary.

Theorem 2.2. Let A and D 6= 0 be SPS matrices. Assume that at least one of
them is positive definite and B has full row rank. Then the following statements hold
Case 1. Suppose that A � 0 and D < 0.

• If ker(CT ) ∩ ker(D) = {0} and range(BT ) ∩ range(CT ) = {0}, then A
is nonsingular.

• If A is nonsingular then ker(CT ) ∩ ker(D) = {0}.
Case 2. Suppose that A < 0 and D � 0. Then A is nonsingular if and only if

ker(A) ∩ ker(B) ∩ ker(C) = {0}.
Proof. For clarity we divide the proof into two steps. In the first step, we show

the validity of the stated sufficient conditions for the invertibility of A for both cases.
In the second step, it is proved that in each case one of the conditions is also necessary.

Step I. Let u = (x; y; z) be an arbitrary vector such that A u = 0. We recall
from the proof of Proposition 2.1 that relation (2.5) must hold true.

Let us first consider the case that A � 0. From (2.5), it can be seen that x = 0,
hence Dz = 0 from (2.3). Note that BT y + CT z = 0 together with the assumption
range(BT ) ∩ range(CT ) = {0} imply that CT z = 0 and BT y = 0. Since BT has
full column rank, BT y = 0 implies y = 0. From z ∈ ker(CT ) and Dz = 0, we may
immediately conclude from the assumption that z = 0, hence u = 0 and thus A is
nonsingular.

For the second case, assume that D � 0. From (2.5), we can see that z = 0 since
A � 0. In addition xTAx = 0 which implies that Ax = 0, i.e., x ∈ ker(A). Since
A u = 0, we have Bx = 0 and Cx = 0, i.e., x ∈ ker(B) and x ∈ ker(C). Consequently,
we deduce that x = 0 and therefore y = 0 in view of the fact that BT has full column
rank. Hence, u = (x; y; z) is the zero vector, which shows the invertibility of A .

Step II. Suppose that A is a nonsingular matrix.
Consider the case that A � 0. Assume there exists a nonzero vector z ∈ ker(CT )∩

ker(D). Then letting u = (0; 0; z), we get A u = 0, which is a contradiction. Hence,
ker(CT ) ∩ ker(D) = {0} is a necessary condition for the invertibility of A .

Finally, let us consider Case 2 and show that ker(A) ∩ ker(B) ∩ ker(C) = {0}
is a necessary condition for the invertibility of A . If there exists a nonzero vector
x ∈ ker(A) ∩ ker(B) ∩ ker(C), then for u = (x; 0; 0), we have A u = 0, which is again
a contradiction. Therefore, ker(A) ∩ ker(B) ∩ ker(C) = {0}.

It is worth noting that the sufficient condition range(BT ) ∩ range(CT ) = {0}
given in Case 1 of Theorem 2.2 is not a necessary condition for A to be invertible
in the case that D 6= 0. We illustrate this fact with the following simple example in
which A is nonsingular and range(BT )∩ range(CT ) 6= {0}. Consider the 8×8 matrix

A =

 I4 BT CT

B 0 0
C 0 −D

 ,
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where In stands for the n×n identity matrix, and the matrices B, C, and D are given
as follows:

(2.6) B =

[
1 1 1 1
1 0 1 0

]
, C =

[
1 0 0 0
1 1 1 1

]
, and D =

[
0 0
0 1

]
.

Then matrix A is invertible but range(BT ) ∩ range(CT ) 6= {0}.
The following proposition addresses the case where D is a zero matrix. We begin

by noting that, in this case, a necessary condition for A to be invertible is that C
has full row rank. Indeed, if there exists a nonzero vector z such that CT z = 0, then
A u = 0 for u = (0; 0; z) 6= 0 and thus A cannot be invertible.

Proposition 2.3. Let A � 0 and assume that B and C have full row rank.
Consider the linear system (1.1) with D = 0. Then range(BT ) ∩ range(CT ) = {0} is
a necessary and sufficient condition for the coefficient matrix A to be invertible.

Proof. As seen in the proof of Theorem 2.2, range(BT ) ∩ range(CT ) = {0} is a
sufficient condition for invertibility of A . Therefore we only need to show that it is
also a necessary condition when D = 0 in (1.1). To this end, suppose that there exists
a nonzero vector v ∈ range(BT ) ∩ range(CT ). As a result, v = BT y and v = CT z for
some nonzero vectors y and z, and letting u = (0; y;−z), we get A u = 0, contradicting
the invertibility of A . Hence, it must be range(BT ) ∩ range(CT ) = {0}.

Remark 2.4. We stress that in the case D = 0, both B and C must have full row
rank for A to be invertible. In contrast, in the case that D � 0 and D 6= 0, only the
matrix B is required to have full row rank while the matrix C can be rank deficient.

In the remainder of the paper we will always assume that A is nonsingular.

3. Preconditioning techniques. In this section we develop and analyze several
block preconditioners to be used in conjunction with Krylov subspace methods to
solve linear systems of equations of the form (1.1). The section is divided into two
subsections which correspond to the two main cases D = 0 and D 6= 0, respectively.

3.1. Block preconditioners of the first type. In this part we discuss the
eigenvalue distribution of the preconditioned matrices corresponding to the following
block diagonal and block triangular preconditioners for solving systems of the form
(1.1) with D = 0:

P
D

=

 A 0 0
0 BA−1BT 0
0 0 CA−1CT

 , P
T

=

 A BT CT

0 −BA−1BT 0
0 0 −CA−1CT

 ,
(3.1)

P
GD

=

 A 0 0
0 BA−1BT BA−1CT

0 CA−1BT CA−1CT

 , P
GT,1

=

 A 0 0
B −BA−1BT −BA−1CT
C −CA−1BT −CA−1CT

 ,
and

(3.2) P
GT,2

=

 A BT 0
B 0 0
C 0 −S̄

 ,
where

(3.3) S̄ = C(A−1 −A−1BTS−1
B
BA−1)CT .
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These preconditioners can be regarded as extensions or generalizations of “stan-
dard” block diagonal and block triangular preconditioners for saddle point problems
(see, e.g., [6] and [9] for extensive treatments). We note that the two block triangular
preconditioners P

GT,1
and P

GT,2
correspond to the two natural possible partition-

ings of the matrix A shown in (1.2). We also remark that all these preconditioners
are examples of “ideal” preconditioners, in the sense that in general the matrices
SB = BA−1BT , SC = CA−1CT , BA−1CT (or CA−1BT ), and S̄ will be full and
therefore cannot be formed explicitly. In practice, they (or their inverses) will have to
be approximated, possibly by some iterative process; the same applies to the action of
A−1 when solving the systems associated with the preconditioners.1 Hence, in prac-
tice, the preconditioners will have to be applied “inexactly,” possibly necessitating
the use of a flexible Krylov subspace method. Nevertheless, the spectral analysis for
the ideal case is still useful as it provides insight on the performance of the inexact
preconditioners, at least for “sufficiently accurate” inexact solves.

We also mention that one can just as well adopt block upper triangular variants
of the preconditioners P

GT,1
and P

GT,2
. It has been shown in [17] that the differ-

ence between employing block lower and upper preconditioners should not be very
significant, with the block upper triangular versions often working slightly better in
practice. Nevertheless, in our numerical experiments we opted for P

GT,1
instead of

the block upper triangular version as the subsystem corresponding to the submatrix

(3.4) S =

[
BA−1BT BA−1CT

CA−1BT CA−1CT

]
is solved inexactly by an inner iteration, while the subsystem associated with coeffi-
cient matrix A is solved “exactly.” Hence, using forward substitution leads to a more
accurate application of the preconditioner. For consistency we also chose to adopt the
lower triangular form for P

GT,2
.

Our first result concerns the block diagonal preconditioner P
D

. It is obvious that
P

D
is invertible (indeed, SPD) if and only if A � 0 and B and C have full rank. Under

these assumptions, P
D

can be used to precondition the minimal residual (MINRES)
method [16]. Here and thereafter, Λ(·) is used to denote the spectrum of a matrix.

Theorem 3.1. Suppose matrix A in (1.1) is nonsingular, with A � 0, B and C
of full row rank, and D = 0. Then

(3.5) Λ(P−1
D

A ) ⊂
(
−1,

1−
√

1 + 4γ∗
2

]
∪ {1} ∪

[
1 +
√

1 + 4γ∗
2

, 2

)
,

with

(3.6) 0 < γ∗ = min
xT (BTS−1B B + CTS−1C C)x

xTAx
< 2,

where the minimum is taken over all x ∈ Rn, x /∈ ker(B) ∩ ker(C), such that (x; y; z)

is an eigenvector of P−1
D

A . In particular, the set {1} ∪ [ 1+
√
1+4γ∗
2 , 2) contains n

eigenvalues and the negative interval (−1, 1−
√
1+4γ∗
2 ] contains m+p eigenvalues. Fur-

thermore, if λ 6= 1 is an eigenvalue of P−1
D

A , then 1− λ is also an eigenvalue.

1See section 4.1, however, for an example in which some of these matrices remain sparse and can
be formed explicitly.
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Proof. Since A is symmetric and P
D

is SPD, all the eigenvalues and correspond-
ing eigenvectors are real. Let λ be an arbitrary eigenvalue of P−1

D
A , then there exists

a vector (x; y; z) 6= (0; 0; 0) such that

Ax+BT y + CT z = λAx,(3.7)

Bx = λBA−1BT y,(3.8)

Cx = λCA−1CT z.(3.9)

Note that it must be x 6= 0; otherwise y = 0 and z = 0 by (3.8) and (3.9). If
ker(B) ∩ ker(C) 6= {0}, then λ = 1 is an eigenvalue, since any vector (x; 0; 0) with
x 6= 0, x ∈ ker(B)∩ker(C) will be a corresponding eigenvector of A . Conversely, any
eigenvector corresponding to λ = 1 is necessarily of this form.

Assume now that λ 6= 1. We compute y = 1
λ (BA−1BT )−1Bx ≡ 1

λS
−1
B Bx and

z = 1
λ (CA−1CT )−1Cx ≡ 1

λS
−1
C Cx from (3.8) and (3.9), respectively. Substituting

the computed y and z into (3.7) and premultiplying by xT , we obtain the following
quadratic equation:

(3.10) λ2 − λ− γ = 0,

where

γ =
xT
(
BTS−1B B + CTS−1C C

)
x

xTAx
> 0.

The roots of (3.10) are given by

(3.11) λ+ =
1 +
√

1 + 4γ

2
and λ− =

1−
√

1 + 4γ

2
,

which shows that λ± = 1− λ∓. Since

xTBTS−1B Bx

xTAx
≤ λmax(A−1BTS−1B B) = 1

and, in a similar way,
xTCTS−1C Cx

xTAx
≤ 1,

we obtain that γ ∈ (0, 2]. We now show that in fact γ ∈ (0, 2) since λ = 2 cannot be
an eigenvalue. Indeed, if λ = 2 then (3.7) implies that

BT y + CT z = Ax.

It follows that

Bx = BA−1BT y +BA−1CT z,

Cx = CA−1BT y + CA−1CT z.

From (3.8) and (3.9), we get Bx = 2BA−1BT and Cx = 2CA−1CT . Therefore,

Ss(y; z) = (0; 0),

where

Ss =

[
BA−1BT −BA−1CT
−CA−1BT CA−1CT

]
.
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But Ss = (Im;−Ip)S (Im;−Ip), where S is given by (3.4). From this and the
nonsingularity of S , it follows that y and z both must be zero and therefore x = 0,
which is contrary to the assumption that (x; y; z) is an eigenvector. Therefore, γ ∈
(0, 2) and thus −1 < λ− ≤ 1−

√
1+4γ∗
2 < 0 and 1 < 1+

√
1+4γ∗
2 ≤ λ+ < 2, proving (3.5).

Finally, recalling that A has n positive and m+ p negative eigenvalues (see, e.g.,

[6, sect. 3.4]) and observing that P−1
D

A is similar to P
− 1

2
D A P

− 1
2

D , we conclude by
Sylvester’s law of inertia that there are exactly n eigenvalues that are either 1 or lie
in the positive interval in (3.5), and exactly m + p eigenvalues lying in the negative
interval, counted with their multiplicities.

Remark 3.2. It is clear from the foregoing proof that for any positive eigenvalue
of the form λ+, there must be a corresponding negative eigenvalue λ− = 1− λ+; see
(3.11). On the other hand, we also showed that P−1

D
A must have n positive and

m+ p negative eigenvalues, and in general n > m+ p. This is true whether λ = 1 is
an eigenvalue or not. This apparent contradiction can be explained by observing that
the multiplicity of λ+ as an eigenvalue of P−1

D
A

D
will generally be different from that

of the corresponding λ−. Indeed, there may be a different number of eigenvectors of
the form (x; y; z) corresponding to λ+ and λ−, all with the same x (and thus the same
γ) but different y or z. Hence, while the negative and positive intervals must contain
the same number of distinct nonunit eigenvalues, the multiplicities of the positive and
negative eigenvalues must add up to n and m+ p, respectively.

Remark 3.3. While Theorem 3.1 shows that the positive eigenvalues are nicely
bounded (between 1 and 2), as it stands it does not provide any useful information on
the rightmost negative eigenvalue, since γ∗, while always strictly greater than zero,
can in principle be arbitrarily small. Nevertheless, in special cases, given additional
assumptions on the blocks A, B, and C, it is possible to say something about the value
of γ∗ and thus on the condition number of the preconditioned matrix. To see this,
let A = LLT be the Cholesky factorization of A and let B̂ = BL−T and Ĉ = CL−T .
Note that PB̂ := B̂TS−1B B̂ and PĈ := ĈTS−1C Ĉ are the orthogonal projectors onto

range(B̂T ) and range(ĈT ), respectively. Letting v = LTx, we can rewrite γ∗ as

γ∗ = min
vT (PB̂ + PĈ)v

‖v‖22
,

where the minimum is taken over all vectors v of the form v = LTx where x ∈ Rn
is subject to the restrictions stated in Theorem 3.1. If the subspaces range(B̂T ) and
range(ĈT ) happened to be mutually orthogonal we would have PB̂ + PĈ = I and
therefore γ∗ = 1. In this case the preconditioned matrix would have precisely three

distinct eigenvalues: 1 (provided that ker(B̂) ∩ ker(Ĉ) 6= {0}) and 1±
√
5

2 . (This is
also a simple consequence of the fact that under these assumptions, the double saddle
point problem decouples into two independent saddle point problems, and the pre-
conditioned system into two independent saddle point matrices each preconditioned
with the ideal block diagonal preconditioner in [15].) This argument suggests that the
preconditioned matrix P−1

D
A will be well conditioned if the transformed constrained

matrices B̂T and ĈT have “nearly orthogonal” ranges; this happens, for example, if
the constraints represented by B and C are only weakly coupled, and if A is either
(block) diagonal or has entries that decay rapidly away from the main diagonal.

On the other hand, if the two subspaces range(B̂) and range(Ĉ) are “nearly
collinear” and if for some x the vector v = LTx happened to be (nearly) orthogonal
to either of these two subspaces, we would have that γ∗ ≈ 0, and the preconditioned
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matrix will have at least one eigenvalue close to zero. Precise bounds on γ∗ might
be possible in terms of angles between the two subspaces, but the usefulness of such
bounds would be limited in view of the difficulty of procuring information on such
angles in practice.

Next, we prove a result concerning the spectrum of matrices preconditioned with
the block triangular preconditioner P

T
. We note that since this preconditioner is

nonsymmetric, it cannot be used with MINRES. Note that P
T

is guaranteed to be
nonsingular when A � 0 and B and C have full rank.

Theorem 3.4. Under the assumptions of Theorem 3.1, Λ(P−1
T

A ) ⊂ (0, 2) with
λ = 1 being an eigenvalue of multiplicity at least n. Moreover, the spectrum of P−1

T
A

is symmetric with respect to λ = 1, i.e., if λ1 6= 1 and λ2 6= 1 are two eigenvalues of
P−1

T
A , then λ1 + λ2 = 2.

Proof. Suppose that λ is an arbitrary eigenvalue of P−1
T

A with the corresponding
eigenvector (x; y; z), i.e.,

Ax+BT y + CT z = λ(Ax+BT y + CT z),(3.12)

Bx = −λBA−1BT y,(3.13)

Cx = −λCA−1CT z.(3.14)

Notice that x 6= 0; otherwise, in view of the fact that BT and CT are full column
rank, x = 0 implies (x; y; z) = (0; 0; 0) in contradiction with the fact that (x; y; z) is
an eigenvector.

Clearly, λ = 1 is an eigenvalue of P−1
T

A with corresponding eigenvector of the

form (x;−S−1B Bx;−S−1C Cx). The multiplicity of this eigenvalue is therefore at least
n. Assume now that λ 6= 1. From (3.12), we deduce that

(3.15) Ax+BT y + CT z = 0.

Similar to the proof of Theorem 3.1, we compute y and z from (3.13) and (3.14) in
terms of λ and x, respectively. Substituting the derived values of y and z into (3.15),
we get

(3.16) λ =
x∗
(
BTS−1B B + CTS−1C C

)
x

x∗Ax
.

(Note that since λ is real, the corresponding eigenvector can also be chosen to be real
and therefore x∗ in (3.16) can be replaced by xT .) Hence, λ has the same expression
as γ in the proof of Theorem 3.1, and by the same argument given there we conclude
that λ ∈ (0, 2).

Next, recall that Λ(A P−1
T

) = Λ(P−1
T

A ). Straightforward computations reveal
that

A P−1
T

=

 A BT CT

B 0 0
C 0 0

 A−1 A−1BTS−1B A−1CTS−1C
0 −S−1B 0
0 0 −S−1C


=

 I 0 0
BA−1 I BA−1CTS−1C
CA−1 CA−1BTS−1B I

 .
The above relation, incidentally, confirms that the number of eigenvalues which are
equal to one cannot be less than n, the order of the (1, 1)-block. In addition, it can
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be seen that the remaining m+ p eigenvalues of P−1
T

A are the eigenvalues of I + Ŝ ,
where

Ŝ =

[
0 BA−1CTS−1C

CA−1BTS−1B 0

]
=

[
0 BA−1CT

CA−1BT 0

] [
S−1B 0

0 S−1C

]
.

To conclude the proof, we only need to show that the distribution of the eigenvalues
of Ŝ is symmetric with respect to zero. Hence, all the eigenvalues of P−1

T
A must

lie in the interval (0, 2). In view of the fact that SB � 0 and SC � 0, matrix Ŝ is
similar to

Š =

[
S
−1/2
B 0

0 S
−1/2
C

] [
0 BA−1CT

CA−1BT 0

] [
S
−1/2
B 0

0 S
−1/2
C

]
and therefore the two matrices have the same eigenvalues. Evidently,

Š =

[
0 X
XT 0

]
with X = S

−1/2
B BA−1CTS

−1/2
C . It is well known that the eigenvalues of a matrix of

the above form are given by ±σi(X), where σi(X) stands for the ith singular value

of X. This shows the symmetric distribution of the eigenvalues of Ŝ with respect to
zero.

Remark 3.5. Similar to Remark 3.3, we note that additional assumptions on the
matrices A, B, and C are required in order to obtain a lower bound on the eigenvalues
of P−1

T A .

We conclude this section with a few brief remarks on the preconditioners PGD,
PGT,1, and PGT,2. We observe that the first two are just special cases of the “ideal”
block diagonal and block (lower) triangular preconditioners for saddle point problems
based on the first of the two partitionings in (1.2); the third one is the ideal block
(lower) triangular preconditioner based on the second partitioning of A in (1.2). The
spectral properties of preconditioned saddle point matrices with any of these block
preconditioners are well known; see [15] or [6, sects. 10.1.1–10.1.2]. In particular,
P−1
GDA has only three distinct eigenvalues and is diagonalizable, while P−1

GT,1A and

P−1
GT,2A have all the eigenvalues equal to 1 and are nondiagonalizable but have

minimum polynomial of degree 2. Hence, MINRES and the generalized minimum
residual (GMRES) method [20] will reach the exact solution in at most three and two
steps, respectively. As before, these ideal block preconditioners may be prohibitively
expensive to construct and apply; in practice, they are usually replaced by inexact
variants.

3.2. Block preconditioners of the second type. In this part the eigenvalue
distributions of the preconditioned matrices are discussed for the case that the coeffi-
cient matrix A has nonzero (3, 3)-block. We consider the two following types of block
triangular preconditioners:

(3.17) P̃
T

=

 A BT CT

0 −BA−1BT 0
0 0 −(D + CA−1CT )


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and

(3.18) P̂
T

=

 A BT CT

0 −BA−1BT −BA−1CT
0 0 −(D + CA−1CT )

 .
We note that these preconditioners will be nonsingular if A � 0, B has full row

rank, D � 0, and ker(D) ∩ ker(CT ) = {0}. From Theorem 2.2, these conditions also
guarantee the invertibility of A .

For ease of exposition, we present the analysis in several steps. Our first result is
the following.

Theorem 3.6. Assume that A � 0, B has full rank, D � 0, and ker(D) ∩
ker(CT ) = {0}. Then all the eigenvalues of A P̃−1

T
are real and nonzero. More-

over, λ = 1 is an eigenvalue of algebraic multiplicity at least n.

Proof. Under the stated assumptions, both A and P̃
T

are nonsingular. We have

A P̃−1
T

=

 A BT CT

B 0 0
C 0 −D

 A−1 A−1BTS−1B A−1CT S̃−1C
0 −S−1B 0

0 0 −S̃−1C


=

 I 0 0

BA−1 I BA−1CT S̃−1C
CA−1 CA−1BTS−1B I

 ,
where S̃C = D + CA−1CT . Similar to the proof of Theorem 3.4, we find that the
number of eigenvalues of A P̃−1

T
which are equal to one is at least n, the order of the

(1, 1)-block, with the remaining eigenvalues being those of the matrix I + S̃1, where

S̃1 =

[
0 BA−1CT S̃−1C

CA−1BTS−1B 0

]
=

[
0 BA−1CT

CA−1BT 0

] [
S−1B 0

0 S̃−1C

]
.

Since S̃1 is the product of two symmetric matrices, one of which is positive
definite, its eigenvalues are all real and the result is proved.

Next, we present bounds on the eigenvalues of the preconditioned matrices P̃−1
T A

and P̂−1
T A . To this end, we make use of the Cholesky factorization of the (1, 1)-block

of A , i.e., A = LLT . Consider the lower triangular matrix L defined by

L =

 L 0 0
0 I 0
0 0 I

 .
We define Â = L −1A L −T , which has the following structure:

Â =

 I B̂T ĈT

B̂ 0 0

Ĉ 0 D

 ,
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where again we set B̂ = BL−T and Ĉ = CL−T . Now we consider the following two
block triangular preconditioners for Â :

(3.19) ˜̄P
T

=

 I B̂T ĈT

0 −B̂B̂T 0

0 0 −(D + ĈĈT )


and

(3.20) ˆ̄P
T

=

 I B̂T ĈT

0 −B̂B̂T −B̂ĈT
0 0 −(D + ĈĈT )

 .
It is not difficult to check that the following two relations hold:

P̃−1
T

A = L −T ˜̄P−1
T

Â L T and P̂−1
T

A = L −T ˆ̄P−1
T

Â L T ,

which reveal that Λ(P̃−1
T

A ) = Λ( ˜̄P−1
T

Â ) and Λ(P̂−1
T

A ) = Λ( ˆ̄P−1
T

Â ).

Theorem 3.7. Under the same assumptions of Theorem 3.6, Λ(P̃−1
T

A ) =

Λ( ˜̄P−1
T

Â ) ⊂ (0, 1−
√
ξ] ∪ {1} ∪ [1 +

√
ξ, 2] where

(3.21) ξ =
σ̄2
min(Ĉ)

λmax(D) + σ̄2
min(Ĉ)

.

Here σ̄min(Ĉ) denotes the smallest nonzero singular value of Ĉ.

Proof. The equality Λ(P̃−1
T

A ) = Λ( ˜̄P−1
T

Â ) has already been noted. From The-
orem 3.6 we already know that the spectrum is real and that λ = 1 is an eigenvalue of

algebraic multiplicity at least n. Assume now that λ 6= 1 is an eigenvalue of ˜̄P−1
T

Â .
There exists a (real) nonzero vector (x; y; z) such that

x+ B̂T y + ĈT z = λ(x+ B̂T y + ĈT z),(3.22)

B̂x = −λB̂B̂T y,(3.23)

Ĉx −Dz = −λ(D + ĈĈT )z.(3.24)

Notice that x 6= 0, otherwise x = 0 implies that y and z are both zero in contradiction
with the fact that (x; y; z) is an eigenvector.

From (3.22), we get
x+ B̂T y + ĈT z = 0

and therefore

B̂x = −(B̂B̂T y + B̂ĈT z)

and

Ĉx = −(ĈB̂T y + ĈĈT z).

Substituting the preceding two relations into (3.23) and (3.24), respectively, we get

(λ− 1)B̂B̂T y = B̂ĈT z(3.25)
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and

(λ− 1)(D + ĈĈT )z = ĈB̂T y.(3.26)

We observe that the vectors y and z must both be nonzero. Indeed, our assumptions
imply that both B̂B̂T and D + ĈĈT are positive definite, and this fact, together
with (3.25) and (3.26), implies that y = 0 if and only if z = 0. Notice that ĈT z 6=
0, otherwise (3.25) implies that λ = 1 which is contrary to our assumption. By
computing y from (3.25) and then substituting it into (3.26), we obtain

(3.27) (λ− 1)2 =
zT ĈP ĈT z

zT (D + ĈĈT )z
,

where P = B̂T (B̂B̂T )−1B̂. Note that we can use zT instead of z∗ (since the eigenval-
ues and therefore the eigenvectors are necessarily real) and that P is an orthogonal
projector, i.e., P 2 = P and P = PT . Using the fact that ‖Pv‖2 ≤ ‖v‖2 for any vector
v, we obtain as a consequence of (3.27) that |λ − 1| ≤ 1, which is equivalent to say
that λ ∈ (0, 2] since 0 /∈ Λ(P̃−1

T
A ).

Finally, we apply the Rayleigh–Ritz theorem [11, Thm. 4.2.2] to obtain

(3.28)
1

λmax(D)/λ̄min(ĈĈT ) + 1
≤ zT ĈP ĈT z

zT (D + ĈĈT )z
≤ 1

λmin(D)/λmax(ĈĈT ) + 1
,

where λ̄min(ĈĈT ) denotes the smallest nonzero eigenvalue of ĈĈT . This shows that
|λ− 1| ≥

√
ξ. The proof is complete.

Remark 3.8. It can be seen from (3.27) that if either D � 0 or range(BT ) ∩
range(CT ) = {0} then λ = 2 cannot be an eigenvalue of P̃−1

T
A .

Remark 3.9. The previous theorem is rather unsatisfactory since the lower bound
for the eigenvalues of P̃−1

T
A is 0. This bound, unfortunately, cannot be improved

without making further assumptions on the problem. Also, it may seem odd that the
matrix B does not appear in the expression of the quantity ξ, in terms of which the
bounds are formulated. However, using (3.25) and (3.26) we can see that any nonunit
eigenvalue satisfies

(3.29) λ = 1 +
yT B̂ĈT z

yT B̂B̂T y
= 1 +

yT B̂ĈT z

zT (D + ĈĈT )z
,

where y and z are components of the eigenvector u = (x; y; z) associated with λ. In
general, the fractions in (3.29) could be arbitrarily close to −1; for example, it follows
from the first equality in (3.29) that λ→ 0 if CT z → −BT y. On the other hand, the
expressions in (3.29) can be useful if information is available on, e.g., the principal
angles between range(B̂T ) and range(ĈT ), or on the relative “size” of Ĉ with respect
to either B̂ or D. For instance, if σmax(Ĉ) becomes very small as the mesh size h→ 0
as compared to either σmin(B̂) or λmin(D), then the eigenvalues of P̃−1

T
A would

cluster around 1 as the mesh is refined.

We conclude this section with a result on the preconditioner P̂
T

.

Theorem 3.10. Assume that A � 0, B has full row rank, and D � CA−1CT .

Then Λ(P̂−1
T

A ) = Λ( ˆ̄P−1
T

Â ) ⊂ ( 1
2 , 1].
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Proof. First, we note that P̂−1
T

A is invertible and Λ(P̂−1
T

A ) = Λ( ˆ̄P−1
T

Â ),

where ˆ̄P
T

is given in (3.20). Let λ be an eigenvalue of ˆ̄P−1
T

Â with corresponding
eigenvector (x; y; z). We have

x+ B̂T y + ĈT z = λ(x+ B̂T y + ĈT z),(3.30)

B̂x = −λ(B̂B̂T y + B̂ĈT z),(3.31)

Ĉx −Dz = −λ(D + ĈĈT )z.(3.32)

If CT (and therefore ĈT ) does not have full column rank, we observe that λ = 1
is an eigenvalue with corresponding eigenvectors of the form (0; 0; z), where 0 6= z ∈
ker(CT ). Hence, the multiplicity of λ = 1 is at least equal to p−r, where r = rank(C).

Let us now assume that Ĉ has full row rank, and let x ∈ Rn be any nonzero

vector. It is then easy to see that λ = 1 is an eigenvalue of ˆ̄P−1
T

Â with corresponding
eigenvector (

x;−(B̂B̂T )−1(B̂ − B̂ĈT (ĈĈT )−1Ĉ)x;−(ĈĈT )−1Ĉx
)
.

Since there are n linearly independent vectors of this form, λ = 1 is an eigenvalue of
multiplicity at least n of P̂−1

T
A .

In the sequel we assume that λ 6= 1. From (3.30) we obtain

x+ B̂T y + ĈT z = 0.

It follows that

B̂x = −(B̂B̂T y + B̂ĈT z),(3.33)

Ĉx = −(ĈB̂T y + ĈĈT z).(3.34)

Substituting (3.33) and (3.34) into (3.31) and (3.32), respectively, we get

(λ− 1)(B̂B̂T y + B̂ĈT z) = 0,(3.35)

(λ− 1)(D + ĈĈT )z = ĈB̂T y.(3.36)

From (3.36) it can be deduced that y = 0 if (and only if) z = 0, in which case x = 0
in contradiction with the assumption that (x; y; z) is an eigenvector. Keeping in mind
that λ 6= 1, the vector y can be computed from (3.35) as y = −(B̂B̂T )−1B̂ĈT z. In
order to complete the proof, we first substitute y in (3.36), and then multiply both
sides of the resulting relation by zT (again, we can actually use zT in place of z∗ since
the eigenvalues are necessarily real). Thus,

λ = 1− zT ĈP ĈT z

zT (D + ĈĈT )z
,

where P = B̂T (B̂B̂T )−1B̂. As pointed before, the matrix P is an orthogonal projec-
tor. The result immediately follows from the inequality

zT ĈP ĈT z

zT (D + ĈĈT )z
<

1

2
,

which follows from the assumption that D − CA−1CT � 0.
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Remark 3.11. It is interesting to note that simply including in the preconditioner
the additional term −BA−1CT leads to much better bounds for the eigenvalues of the
preconditioned matrix than in the case of P̃

T
. This, however, does not imply that

the performance of P̂
T

will be necessarily better; rather, adding the extra term in
the preconditioner simply leads to a much more satisfactory lower bound. Also, it is
well known that eigenvalue information alone does not suffice, in general, to predict
the convergence behavior of nonsymmetric Krylov subspace methods like GMRES.
Nevertheless, experience shows that in many cases of practical interest convergence
can be expected to be fast when the spectrum is real, positive, and contained in an
interval of modest length bounded away from zero. This behavior is also observed
when the “ideal” preconditioners are replaced with inexact versions, as long as the
preconditioner is applied with a reasonable degree of accuracy.

4. Numerical experiments. In this section, we present a selection of numerical
tests aimed at illustrating the performance of some of the proposed preconditioners.
Due to space limitations, we present detailed results only for some of the methods
analyzed in the theoretical sections, and comment briefly on the remaining ones.
We focus on two sets of problems of the type (1.1) arising from two very different
applications, one with D = 0 and the other with D 6= 0. All of the reported numerical
results were performed on a 64-bit 2.45 GHz core i7 processor and 8.00 GB RAM using
MATLAB version 8.3.0532. In all the experiments we have used right-hand sides
corresponding to random solution vectors, performing ten runs, and then averaging
the CPU times. The iteration counts reported in the tables (under “Iter”) are also
averages (rounded to the nearest integer).

All the methods require repeated solution (whether “exact” or inexact) of SPD
linear systems as subtasks. These are either solved by sparse Cholesky factorization
with symmetric approximate minimum degree reordering or by the preconditioned
conjugate gradient (PCG) method. When using PCG, unless otherwise specified, the
preconditioner used is a drop tolerance-based incomplete Cholesky factorization [5, 20]
computed using the MATLAB function “ichol(.,opts)”, where

• opts.type = ’ict’,
• opts.droptol = 1e-2.

We comment that with the inexact variants, performing inner iterations is essential.
Just replacing the exact block solves with an incomplete Cholesky factorization leads
to a degradation of convergence rates for the outer Krylov solver.

In all the numerical tests below, the initial guess is taken to be the zero vector.
For the MINRES, GMRES, and Flexible GMRES (FGMRES) methods the iterations
are stopped once

‖b−A (x(k); y(k); z(k))‖2 < 10−10‖b‖2.

For the inner PCG iterations (whenever applicable), the stopping tolerances used are
specified below.

4.1. Saddle point systems from potential fluid flow modeling. Here we
consider linear systems of equations of the form

(4.1)

 A BT CT

B 0 0
C 0 0

 x
y
z

 =

 b1
b2
b3

 ,
arising from a low-order Raviart–Thomas mixed-hybrid finite element approximation
[7] of Darcy’s law and continuity equation describing the three-dimensional (3D) po-
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tential fluid flow problem in porous media. The continuous problem reads

Au = −∇p, ∇ · u = q,

where u is the fluid velocity, p is the piezometric potential (fluid pressure), A is
the symmetric and uniformly positive definite second-rank tensor of the hydraulic
resistance of the medium with [A(x)]ij ∈ L∞(Ω) for i, j = 1, 2, 3, and q represents
the density of potential sources in the medium. The underlying spatial domain Ω is
cubic, and the boundary conditions are given by

p = pD on ∂ΩD, u · n = uN on ∂ΩN ,

where ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD 6= ∅, ∂ΩD ∩ ∂ΩN = ∅, and n is the outward
normal vector defined (a.e.) on ∂Ω. We refer to [12] for details of the problem and
its discretization. The solution vectors x and y in (4.1) correspond to velocity and
pressure degrees of freedom (respectively), while z is a vector of Lagrange multipliers.
For this problem we have that A � 0, B and C have full row rank and that A
is nonsingular. Details on the dimensions of sub-blocks A, B, and C and further
information can be found in [12, Table 1].

For this test problem, the SPD matrix A is block diagonal with small blocks, and
linear systems associated with it can be solved very cheaply by means of Cholesky
factorization. Likewise, the Schur complements SB = BA−1BT , SC = CA−1CT , S̄
(see (3.3)) and the matrix BA−1CT are still relatively sparse matrices which can be
formed explicitly at low expense.2 Concerning the block preconditioners, the best
results were obtained with PGD and PGT,1 in (3.1) and PGT,2 in (3.2). The block
diagonal preconditioner PGD was used with MINRES and FGMRES, while the two
block triangular preconditioners PGT,1 and PGT,2 were used with both GMRES and
FGMRES.

Apart from the inexpensive solves associated with A, the implementation of P
GD

and PGT,1 requires solving linear systems associated with the Schur complement S
given in (3.4). In spite of the sparsity of S , solution by sparse Cholesky factorization
is expensive (recall that this is a 3D problem). Thus, we solve such systems with the
PCG method with a very stringent stopping criterion (inner relative residual norm
less than tol = 10−15) for MINRES and GMRES and a looser one (tol = 10−4) for
FGMRES.

The application of the preconditioner P
GT,2

, on the other hand, requires solving
at each step a linear system of the form P

GT,2
(w1;w2;w3) = (r1; r2; r3). This amounts

to solving a saddle point problem of size (n+m)× (n+m) of the form

(4.2)

[
A BT

B 0

] [
w1

w2

]
=

[
r1
r2

]
,

followed by solution of a linear systems with the coefficient matrix S̄ (see (3.3)). The
solution of (4.2) can be obtained in two steps as follows

• Step I. Solve SBw2 = BA−1r1 − r2, to find w2.
• Step II. Set w1 = A−1(r1 −BTw2).

We recall that for this particular test problem, A is block diagonal (with small
blocks) and SB is just a scalar multiple of the identity, so the above solution process is

2The Schur complement BA−1BT for this problem turns out to be a scalar multiple of the m×m
identity matrix.
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Table 1
Results for the block diagonal preconditioner PGD , potential fluid flow problem.

Method
MINRES FGMRES

Size Iter CPU time Iter Iterpcg CPU time
2125 3 0.0125 7 41 0.0115
17000 3 0.0947 7 73 0.0746
57375 3 0.4829 7 107 0.3390
136000 3 1.6226 7 137 1.0253
265625 3 3.9002 7 165 2.5793
459000 3 8.8899 7 196 5.8504

Table 2
Results for GMRES with block triangular preconditioners, potential fluid flow problem.

Preconditioner
PGT,1 PGT,2

Size Iter CPU time Iter CPU time
2125 2 0.0191 2 0.0180
17000 2 0.1284 2 0.1180
57375 2 0.5247 2 0.4516
136000 2 1.5425 2 1.2936
265625 2 3.6811 2 3.1080
459000 2 7.9861 2 6.8368

Table 3
Results for FGMRES with block triangular preconditioners, potential fluid flow problem.

Preconditioner
PGT,1 PGT,2

Size Iter Iterpcg CPU time Iter Iterpcg CPU time
2125 5 25 0.0085 5 25 0.0073
17000 6 47 0.0575 6 53 0.0534
57375 6 66 0.2361 6 72 0.2265
136000 6 87 0.7480 6 95 0.6563
265625 6 108 1.8190 6 112 1.5220
459000 6 134 4.2658 5 117 3.0442

extremely cheap within our GMRES and FGMRES iterative methods. As mentioned
earlier, in addition to solving (4.2), to apply P

GT,2
we also need to solve S̄w3 =

−r3 + Cw1, where S̄ is defined by (3.3). As pointed out, in this problem S̄ can be
formed explicitly as it is a sparse matrix. To solve S̄w3 = −r3 + Cw1 (we observe
that S̄ is SPD) the PCG method was used where the inner stopping tolerances were
chosen as before as 10−15 and 10−4 depending on whether GMRES or FGMRES is
used, respectively.

In Tables 1, 2, and 3 we report the results for the preconditioned MINRES,
GMRES, and FGMRES iterative methods. The total number n+m+ p of unknowns
is reported under “size”. As expected, MINRES/GMRES with the “ideal” block
diagonal/triangular preconditioners require exactly three and two steps to converge,
independent of problem size. In Tables 1 and 3, the cumulative number of inner PCG
iterations required is reported under “Iterpcg.”

These results show that for this particular example, the best results are obtained
with the inexact block triangular preconditioners P

GT,1
and P

GT,2
; of these two, the

latter one (based on the second of the two partitionings (1.2)) appears to be slightly
better in this particular case. We note the satisfactory scaling in terms of CPU time
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for sufficiently small h, especially for FGMRES with the inexact P
GT,2

preconditioner.
As for the other two preconditioners, PD and PT , their performance was generally
inferior, with worsening iteration counts for increasing problem sizes. The observed
behavior appears to be due to the fact that for this problem, some of the eigenvalues
of the preconditioned matrices corresponding to PD and PT approach zero as the
mesh is refined. Still, these preconditioners may well be useful in solving saddle point
systems arising from other applications.

4.2. Saddle point systems from liquid crystal directors modeling. Con-
tinuum models for the orientational properties of liquid crystals require the minimiza-
tion of free energy functionals of the form

(4.3) F [u, v, w, U ] =
1

2

∫ 1

0

[
(u2z + v2z + w2

z)− α2(β + w2)U2
z

]
dz,

where u, v, w, and U are functions of z ∈ [0, 1] subject to suitable end-point conditions,
uz = du

dz (etc.), α and β are positive prescribed parameters. Approximation via a
uniform piecewise-linear finite element scheme with k+1 cells using nodal quadrature
and the prescribed boundary conditions leads to replacing the functional F with a
function f of 4k variables:

F [u, v, w, U ] ≈ f(u1, . . . , uk, v1, . . . , vk, w1, . . . , wk, U1, . . . , Uk);

see [18, eq. (2.4)] for the precise form of f .
Minimization of the free energy (4.3) must be carried out under the so-called unit

vector constraint, which at the discrete level can be expressed by imposing that the
solution components uj , vj , and wj satisfy

u2j + v2j + w2
j = 1, j = 1, . . . , k.

Introducing Lagrange multipliers λ1, . . . , λk, the problem reduces to finding the crit-
ical points of the Lagrangian function

L = f +
1

2

k∑
j=1

λj(u
2
j + v2j + w2

j − 1).

Imposing the first-order conditions results in the system of 5k nonlinear equations
∇L(x) = 0, where the unknown vector x ∈ R5k collects the values (uj , vj , wj) (j =
1, . . . , k), (λ1, . . . , λk), and (U1, . . . , Uk) (in this order). Solving this nonlinear system
with Newton’s method leads to a linear system of the form

(4.4) ∇2L(x(`)) δx(`) = −∇L(x(`))

at each step `, where ∇2L(x(`)) denotes the Hessian of L evaluated at x(`). As shown
in [18], the Hessian has the following structure:

∇2L =

 A BT CT

B 0 0
C 0 −D

 ,
where A is n × n, B is m × n, C is p × n, and D 6= 0 is p × p with n = 3k and
m = p = k. Therefore, it is necessary to solve a system of the form (1.1) within each
Newton step. Details on the structure of the blocks A, B, C, and D can be found
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Table 4
Numerical results for preconditioner P̃T , liquid crystal problem.

Method
GMRES FGMRES

Size Iter CPU Iter Iterpcg CPU
5115 10 0.3535 9 40 0.0406
10235 10 0.6563 9 41 0.0667
20475 10 1.2761 9 39 0.1128
40955 9 2.5051 9 37 0.2093
81915 9 5.4725 9 36 0.4072
163835 9 12.4417 9 35 0.8647
327675 9 29.099 9 29 1.7507

in [18]. Here we note that A is SPD, B has full row rank and is such that BBT is
diagonal (and indeed BBT = Im if the unit vector constraints are satisfied exactly), C
is rank deficient, and D is tridiagonal and SPD. Hence, A is nonsingular.3 Moreover,
the condition D � CA−1CT in Theorem 3.10 is satisfied. We also mention that in
our experiments we used the following values of the parameters α and β appearing
in (4.3): α = 0.5αc and β = 0.5, where αc ≈ 2.721 is known as the critical switching
value. For further details we refer the reader to [18]; see also [1, 2].

We present a few results obtained with the block triangular preconditioners P̃
T

and P̂
T

given in (3.17)–(3.18). The application of these two preconditioners can
be performed “exactly” or inexactly, via block backsubstitution. Both versions of
the preconditioners require the solution (“exact” and approximate) of linear systems
with SPD coefficient matrices S̃C = D + CA−1CT , SB = BA−1BT , and A at each
(outer) GMRES or FGMRES iteration. The first two systems are solved via the
PCG method, which does not require forming the (full) matrices D + CA−1CT and
BA−1BT explicitly. The preconditioner used for D+CA−1CT is the (sparse) matrix
D+CD−1A CT , where DA is the diagonal part of A. Application of the preconditioner
is accomplished via a sparse Cholesky factorization. As for the subsystems with
coefficient matrix BA−1BT , the observation that B has (nearly) orthogonal rows
suggests that the matrix BABT would be a good approximate inverse of BA−1BT ,
and indeed it was found to be a very effective preconditioner. Note that only sparse
matrix-vector products are required for its application, and there is no construction
overhead. Within GMRES, we used a rather stringent convergence tolerance (10−12)
on the relative residual norm to terminate the inner PCG iterations. For FGMRES,
we used looser tolerances, namely, 10−1 for systems with S̃C and 10−3 for systems
with SB . Finally, the matrix A can be factored inexpensively and therefore we used
sparse Cholesky factorization to solve all linear systems associated with A.

The results for preconditioners P̃
T

and P̂
T

are shown in Tables 4 and 5, respec-
tively. In all cases we observe mesh-independent convergence rates, with no deteri-
oration when using the inexact variants of the block preconditioners in place of the
exact ones; indeed, in several cases FGMRES even requires one less iteration than
GMRES with the “exact” preconditioner. The CPU timings are clearly much better
for the inexact variants, especially for larger problems. Overall, the fastest solution
times are obtained with FGMRES preconditioned by the inexact variant of the block
preconditioner P̂

T
. With this method, solution times exhibit almost linear scaling

behavior.

3We are assuming here that the Hessian is being evaluated away from bifurcation points and
turning points; again, see [18].
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Table 5
Numerical results for preconditioner P̂T , liquid crystal problem.

Method
GMRES FGMRES

Size Iter CPU Iter Iterpcg CPU
5115 6 0.2236 6 25 0.0267
10235 6 0.4181 6 24 0.0449
20475 6 0.8210 6 22 0.0806
40955 6 1.6339 6 22 0.1563
81915 6 3.5996 6 19 0.2986
163835 6 8.3431 6 19 0.6427
327675 6 19.459 6 19 1.4221

An indirect comparison with the results reported in [18, Table 6.6] indicates that
the proposed approaches are competitive with existing methods, such as precondi-
tioned MINRES with constraint preconditioning.

5. Conclusions. In this paper we have introduced and analyzed several block
preconditioners for the solution of sparse linear systems with double saddle point
structure. While “standard” techniques for saddle point problems are certainly appli-
cable to systems of the form (1.1), several of the methods investigated in this paper
and their analysis make specific use of the 3 × 3 block structure of the coefficient
matrix. Furthermore, different block partitionings (see (1.2)) lead to different solvers
with distinct theoretical and practical properties.

Numerical experiments on test problems arising from two distinct application
domains show that some of the proposed solvers can be very efficient in situations of
practical interest, resulting in rapid convergence (independent of problem size) and
scalable behavior. Of course, the performance of each method is highly problem-
dependent, and specific information on the spectral properties of the problem at hand
may be needed in order to make a good choice. We stress that it is quite possible that
some of the methods that were found to be not competitive for the two test problems
considered here may well turn out to be useful on other problems and, conversely,
some of the methods found to be effective here may well perform poorly on other
problems.

In our analysis we assumed that the various preconditioners were implemented
exactly. Numerical experiments, however, showed that the rates of convergence do
not necessarily deteriorate when inexact solves are used instead, often leading to
significantly faster solution times relative to the “exact” versions. This is consistent
with previous experience for block preconditioners; see, e.g., [6] or [9].

We conclude by mentioning that there are applications leading to 3 × 3 block
linear systems in which all three diagonal blocks are nonzero:

(5.1) A u ≡

 A BT CT

B −E 0
C 0 −D

 x
y
z

 =

 b1
b2
b3

 ≡ b,
where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×n, and D ∈ Rp×p are as before, and E ∈ Rm×m
is SPS see, for example, [19]. When E and D are both nonzero, we can think of
this as a “fully stabilized” double saddle point system, whereas the case E = 0,
D 6= 0 corresponds to a “partially stabilized” problem. Block preconditioners for
(5.1) with B = C have been developed in [19]. Similar methods should also work well
in applications where B 6= C.
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