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In this article, we present a black-box approach for the selection of orbital spaces when computing
core excitation energies in the multilevel coupled cluster (MLCC) framework. Information available
from the lower level of theory is used to generate correlated natural transition orbitals (CNTOs)
for the high-level calculation by including both singles and doubles information in the construction
of the transition orbitals. The inclusion of the doubles excitation information is essential to obtain
a set of orbitals that all contain physical information, in contrast to the natural transition orbitals
where only a small subset of the virtual orbitals contains physical information. The CNTOs may
be included in an active space based on a cutoff threshold for the eigenvalues corresponding to the
orbitals. We present MLCC results for core excitation energies calculated using coupled cluster singles
and doubles (CCSD) in the inactive space and CCSD with perturbative triples (CC3) in the active
space. The use of CNTOs results in small errors compared to full CC3. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979908]

I. INTRODUCTION

The coupled cluster (CC) hierarchy of electronic wave
function models has been successful for the accurate descrip-
tion of molecular systems and provides a systematic route
for calculating accurate molecular properties such as excita-
tion energies. However, a disadvantage of the CC hierarchy is
the computational scaling with system size and much effort
has been focused on formulating CC models with reduced
computational scaling. Approaches exploiting the locality of
electron correlation were proposed more than 30 years ago1–7

and extensive steps in this direction have been taken8–20 where
each approach has numerous further developments and differ-
ent flavours. Many molecular properties are size-intensive and
only depend on a particular region of the molecular system.
This is the foundation for the multilevel CC method21,22 in
which the region of interest is treated at high levels of theory
and the remainder using lower level of theory. This is achieved
by dividing the orbital space into two (or more) subspaces and
associating an excitation manifold to each set.

Previously, the active space in multilevel CC theory21

has been determined by classifying atoms and their associ-
ated atomic orbitals (AOs) as active or inactive. The active
space is then determined by a Cholesky decomposition of
diagonal elements of the Hartree–Fock (HF) density matrix
corresponding to active AOs, and similarly for inactive AOs.
This procedure is detailed by Myhre et al.21 The Cholesky
decomposition generates a set of orthogonal orbitals23 that are
less local than explicitly localized orbitals, but which are very
convenient for partitioning the orbital space. Using explicitly

a)Electronic mail: henrik.koch@ntnu.no

localized orbitals gives more compact orbital spaces than the
Cholesky orbitals. However, if the excitation is nonlocal, the
active space must be large to obtain sufficient accuracy for
both types of orbitals. Furthermore, if the HF density matrix
is nonlocal, the Cholesky orbitals are nonlocal and inappro-
priate for the description of an excitation in a reduced orbital
space. Using explicitly localized HF orbitals one may gener-
ate local orbitals also for electronically nonlocal systems, see
Ref. 24 and references therein for an overview of such meth-
ods. The local HF orbitals may remedy some of the problems
of the Cholesky orbitals, but two important drawbacks remain:
(1) local HF orbitals are not well-suited to express nonlocal
excitation processes and (2) some user input to define a region
in space is still required. For nonlocal excitations, we need a
particular nonlocal basis that can give a good description in a
reduced orbital space.

Recently, CC models that use natural transition orbitals
(NTOs) have been developed for the efficient computation
of electronic transitions. NTOs were introduced as a com-
pact orbital representation for the transition density matrix
by Luzanov et al.25 and are generated by a diagonalization
of matrices constructed from the single excitation vector of
the transition. NTOs have been used in some mixed orbital
representation schemes. Mata and Stoll26 use a pair of NTOs
and localized molecular orbitals for the occupied space, while
the virtual space is unchanged. Helmich and Hättig27 have
discussed the use of pair natural orbitals (PNOs) in combina-
tion with NTOs and conclude that using an incomplete set of
NTOs corrupts the localization and leads to an extended PNO
space. Rather they use an implementation of CC2 excitation
energies28 with orbital-specific virtuals (OSVs) and PNOs to
reduce the dimension of the virtual space. Baudin and Kris-
tensen29 use NTOs in combination with local occupied orbitals
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and local virtual orbitals to generate a reduced orbital space
specific to a given transition in which a CC calculation is car-
ried out. The orbital space is optimized to ensure that the
obtained excitation energies are determined to a predefined
precision. The need to use mixed orbital spaces with only
one occupied-virtual pair of NTOs is a consequence of the
way the NTOs are constructed. Since only single excitation
information is used to construct the matrices, the diagonaliza-
tion of the virtual matrix yields only the number of occupied
(nocc) nonzero eigenvalues, and consequently only nocc virtual
orbitals of any significance to the given transition. This is not
sufficient for an accurate description of the excitation.

In this article, we present a black-box procedure to obtain
the active space in multilevel CC calculations by including
information from the double excitation vector. The single and
double excitation information is available from the lower level
of theory and is used to tailor an active orbital space for the
high-level calculation. We refer to the resulting orbitals as cor-
related natural transition orbitals (CNTOs). The CNTO eigen-
values provide a simple measure to determine which orbitals
should be included in the orbital space. In this way, rather than
selecting an active region of the molecule we use a threshold
for which eigenvalues with corresponding orbitals to include.
In the limit of a zero threshold, the full orbital space is included
in the active space and the full molecular system is treated at
the high level of theory.

II. THEORY

The coupled cluster (CC) wave function can be written as

|CC
〉
= exp(T )|HF

〉
, (1)

where |HF
〉

is the HF reference determinant and T is the cluster
operator. For an N-electron system, the cluster operator is given
by T = T1 + T2 + · · · + TN , where

T1 =
∑

ai

ta
i Eai, (2)

T2 =
∑

(ai)≥(bj)

tab
ij EaiEbj, (3)

and so on for higher excitations. ta
i , tab

ij , etc., are the CC ampli-
tudes and Epq are singlet excitation operators in the second
quantization formalism. We employ the usual notation for the
orbital indices, where i, j, k, . . . denote orbitals which are occu-
pied and a, b, c, . . . denote unoccupied (virtual) orbitals in the
HF reference determinant. For convenience, we introduce the
notation T =

∑
µ tµτµ for the cluster operator, where tµ are the

cluster amplitudes and τµ the excitation operators. The energy
and amplitude equations may be obtained from projecting the
CC Schrödinger equation with

〈
HF | and

〈
µ| ≡

〈
HF |τ†µ , and

can be written as

E =
〈
HF |H |CC

〉
, (4)

Ωµ =
〈
µ| exp(−T )H |CC

〉
= 0. (5)

In CC response theory,30,31 the excitation energies are usu-
ally determined as the eigenvalues of the non-symmetric CC
Jacobian, e.g., for excitation ω, we have

AR = ωR, (6)

and the CC Jacobian is defined as

Aµν =
∂Ωµ

∂tν
. (7)

The right excitation vector R of Eq. (6) contains components
from excitation levels, i.e., single and double excitation com-
ponents R1 and R2 in the case of coupled cluster singles and
doubles (CCSD).

A. Multilevel CC3 theory

In this article, we present results from MLCC3 using
CNTOs. The MLCC3 model is the multilevel coupled clus-
ter model where CCSD32 is used in the inactive orbital space
and CCSD with perturbative triples33 (CC3) is employed for
the smaller active space. The theory and implementation for
MLCC3 theory is presented by Myhre and Koch,22 and here
we reiterate the most important points. Note that we have
used a notation for cluster operators opposite of what is used
by Myhre et al. In MLCC3, we write the cluster operator
introduced in Section II as

T = T1 + T2 + X3, (8)

where T1 and T2 are the singles and doubles cluster operators,
and X3 is the triples cluster operator. T1 and T2 are treated
the same way in CCSD and CC3, and no special notations are
needed for these. All X3 amplitudes referencing one or more
orbitals in the inactive orbital space are set to zero. Similar
to the cluster operator, the projection manifold consist of all
singles and doubles, but only the reduced set of triples

{
〈
µ|} = {

〈
µ1 |} ⊕ {

〈
µ2 |} ⊕ {

〈
µX

3 |}. (9)

For working equations for the amplitudes and an expression
for the MLCC3 Jacobian, we refer the reader to the original
MLCC3 article.22

B. Construction of correlated natural transition orbitals

Exploiting the information from the low-level coupled
cluster calculation in a multilevel coupled cluster approach
(e.g., CC228 or CCSD), we may generate an orbital space
which is efficient for carrying out higher level theory (e.g.,
CC3) in a reduced space. Using the excitation vector of Eq. (6),
we may generate orthogonal transformation matrices for the
occupied and virtual orbitals which provide the CNTOs. These
are obtained by constructing and diagonalizing an occupied-
occupied matrix, M, and a virtual-virtual matrix, N, from the
excitation vectors.

Mij =
∑

a

RaiRaj +
1
2

∑
abk

(1 + δai,bkδij)RaibkRajbk , (10)

Nab =
∑

i

RaiRbi +
1
2

∑
ijc

(1 + δai,cjδab)RaicjRbicj. (11)

We diagonalize the M and N matrices as

Mui = λ
o
i ui, i = 1, . . . , nocc, (12)

Nva = λ
v
ava, a = 1, . . . , nvir. (13)

Due to the normalization of the excitation vectors we have∑
ai

RaiRai +
1
2

∑
aibj

(1 + δai,bj)RaibjRaibj = 1 (14)
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FIG. 1. CNTOs for butanal in aug-cc-pV(CT)DZ basis.
The four occupied CNTOs with largest λo (top) and the
four virtual CNTOs with largest λv (bottom) are plotted
using contour value 0.03.

such that Tr(M) = Tr(N) = 1.0 and
∑

i λ
o
i = 1.0 and

∑
a λ

v
a = 1.0.

The eigenvectors of M and N form the transformation matrices
for the occupied and virtual space that generate the CNTOs.
To determine which CNTOs to include in the active orbital
space of the multilevel CC calculation, we use the sum of
eigenvalues. Ordering the orbitals with descending λo

i and λv
a,

we include orbitals in the active space until

1 −
∑
i∈act

λ
o
i < δo,

1 −
∑

a∈act

λ
v
a < δv.

(15)

The inclusion of the doubles component of the excitation vec-
tor is essential for this scheme, because there are only nocc

nonzero eigenvalues with standard NTOs, as discussed pre-
viously. Including only nocc virtual orbitals is not sufficient
to describe the virtual space adequately. Thus, the described
approach is not possible for the NTO approach of Luzanov.25

We treat excitations that are closer than approximately
1 eV in CCSD in the same basis, and a combined basis based on
a sum of the excitation vectors is used. The sum is normalized
so that Eq. (15) is still valid for selecting the active space.

C. Example of correlated natural transition orbitals

Here we present illustrations of CNTOs for an oxygen core
excitation in butanal in the MLCC3 framework.22 The CNTOs
are generated from a full space CCSD calculation, and in
Figure 1 we have visualized the four most important occupied
and virtual CNTOs corresponding to the four largest λo and λv

values, respectively. Dunning’s aug-cc-pCVTZ34 basis set is
used on the active oxygen and aug-cc-pVDZ35,36 on the other
atoms. We denote this basis as aug-cc-pV(CT)DZ. As can be
seen from Figure 1, the most important occupied CNTOs for
the core excitation resembles an oxygen 1s-orbital, whereas
the other three CNTOs are localized around the oxygen atom.
The remaining occupied CNTOs have also been investigated
and orbitals with lower λo values are centered further away
from the oxygen atom. The same trend is observed for the
virtual orbitals.

D. Storing double excitation vectors

For molecules of a moderate size, storing R2 will not pose
a problem. However, we eventually want to carry out these
calculations on molecules where storing doubles information
in the full space is unfeasible. In such cases, we may consider
using more than two spaces and carry out the CC2 or CCSD cal-
culation in a subspace. The lower level spaces may be treated

with CCS or even HF. Alternatively, if storing double infor-
mation is to be avoided in general, one may consider CC2 and
recognize the fact that CC2 doubles need not be stored, as they
may be calculated on the fly. The doubles-doubles block, A22,
of the CC2 Jacobian is diagonal if the Fock matrix is diagonal
in the CC2 orbital space. If this is the case, one may construct
the double excitation vector from the single excitation vector

R2 = −(A22 − Iω)−1A21R1, (16)

where we have solved for ω. In the current implementation,
the doubles information has been stored on disk.

III. ILLUSTRATIVE RESULTS

In this section, we first investigate the effect of δv and δo on
the accuracy of core excitation energies, before we employ the
experience gained to a more complicated example by perform-
ing a core excitation energy calculation on thymine. At the end,
we discuss speedups of the MLCC3 calculations compared to
full CC3 calculations.

A. The effect of δv and δo

We present oxygen core excitation energies obtained using
CNTOs and the MLCC3 model. The core excitations were cal-
culated using the core-valence separation approximation.37,38

All calculations employ aug-cc-pV(CT)DZ (see Section II C).
Using aug-cc-pCVTZ on the atom of interest can provide exci-
tation energies comparable to experiment.39 Excitations which
are seen to be degenerate or nearly degenerate at the lower level
of theory (CCSD in this case) are treated in a combined basis,

TABLE I. Two lowest MLCC3 oxygen core excitation energies for glycine
using aug-cc-pV(CT)DZ. Since excitations are nearly degenerate in CCSD,
they are computed in a combined CNTO basis. All excitation energies and
errors are in eV.

log(δo) log(δv) Exc. 1 Exc. 2 Err. 1 Err. 2 nocc nvirt

�4 �4 535.41 535.70 0.25 0.48 12 53
�4 �5 535.26 535.27 0.10 0.05 12 102
�4 �6 535.21 535.26 0.05 0.04 12 141
�4 �7 535.19 535.25 0.03 0.03 12 168

�5 �4 535.39 535.69 0.23 0.47 15 53
�5 �5 535.24 535.25 0.08 0.03 15 102
�5 �6 535.19 535.23 0.03 0.01 15 141
�5 �7 535.17 535.23 0.01 0.01 15 168

CC3 535.16 535.22 . . . . . . 20 180
CCSD 537.34 537.88 . . . . . . 20 180
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TABLE II. Three lowest MLCC3 nitrogen core excitation energies for glycine using aug-cc-pV(CT)DZ. Exci-
tations two and three are nearly degenerate in CCSD, and therefore computed in a combined CNTO basis. All
excitation energies and errors are in eV.

log(δo) log(δv) Exc. 1 Err. 1 nocc nvirt Exc. 2 Exc. 3 Err. 2 Err. 3 nocc nvirt

�4 �4 401.49 0.15 11 60 402.54 402.73 0.19 0.19 12 68
�4 �5 401.39 0.05 11 113 402.43 402.62 0.08 0.08 12 123
�4 �6 401.38 0.04 11 151 402.42 402.60 0.06 0.06 12 157
�4 �7 401.37 0.03 11 171 402.41 402.60 0.05 0.06 12 170

�5 �4 401.47 0.13 15 60 402.53 402.71 0.17 0.17 15 68
�5 �5 401.37 0.02 15 113 402.40 402.58 0.04 0.05 15 123
�5 �6 401.36 0.01 15 151 402.38 402.57 0.02 0.03 15 157
�5 �7 401.34 0.00 15 171 402.37 402.56 0.01 0.02 15 170

CC3 401.34 . . . 20 176 402.36 402.54 . . . . . . 20 176
CCSD 402.90 . . . 20 176 403.99 404.52 . . . . . . 20 176

as described at the end of Section II B. The thresholds consid-
ered range from 10�4 to 10�5 for δo and from 10�4 to 10�7 for
δv.

Tables I–IV contain the results for glycine, butanal, and
pentanal with geometries optimized using CCSD(T) and aug-
cc-pVDZ in CFOUR40 (see supplementary material). For
glycine, we have computed the two lowest core excitation ener-
gies for the oxygen highlighted in Figure 2 and the three lowest
core excitation energies of nitrogen, whereas for butanal and
pentanal, we have computed the four lowest core excitation
energies.

Considering the results for glycine (Tables I and II), we
see that all combinations of thresholds except the combination

with δv = 10−4 give errors on the order of 0.1 eV or less com-
pared to CC3. Excluding the results for δv = 10−4, where the
nitrogen errors are smaller than those for oxygen, the size of
the orbital spaces and errors are similar for the oxygen and
nitrogen core excitation energies. The difference between the
CC3 and CCSD excitation energies range from 1.56 eV (low-
est nitrogen excitation) to 2.66 (second oxygen excitation).
Considering the errors are on the order of 0.1 eV, the effects of
CC3 on the core excitation energies are captured by MLCC3.

For butanal and pentanal (Tables III and IV), the same
trend as in glycine is observed for the first two excitations.
All combinations of thresholds except the combination with
δv = 10−4 give errors on the order of 0.1 eV or less compared

TABLE III. Four lowest MLCC3 oxygen core excitation energies for butanal using aug-cc-pV(CT)DZ. Excitations 3 and 4 are determined in the same CNTO
basis since they are nearly degenerate in CCSD. All excitation energies and errors are in eV.

log(δo) log(δv) Exc. 1 Err. 1 nocc nvirt Exc. 2 Err. 2 nocc nvirt Exc. 3 Exc. 4 Err. 3 Err. 4 nocc nvirt

�4 �4 531.23 0.10 10 56 534.48 0.31 12 63 535.63 536.67 0.72 1.64 12 62
�4 �5 531.16 0.03 10 101 534.26 0.09 12 123 535.19 536.03 0.28 1.00 12 121
�4 �6 531.15 0.02 10 140 534.22 0.05 12 165 535.06 535.27 0.15 0.24 12 164
�4 �7 531.15 0.02 10 172 534.21 0.04 12 190 534.99 535.13 0.08 0.10 12 191

�5 �4 531.23 0.10 14 56 534.46 0.29 15 63 535.60 536.65 0.69 1.62 15 62
�5 �5 531.15 0.02 14 101 534.24 0.07 15 123 535.15 536.00 0.24 0.97 15 121
�5 �6 531.14 0.01 14 140 534.20 0.03 15 165 535.02 535.25 0.11 0.22 15 164
�5 �7 531.14 0.01 14 172 534.19 0.02 15 190 534.95 535.10 0.04 0.07 15 191

CC3 531.13 . . . 20 203 534.17 . . . 20 203 534.91 535.03 . . . . . . 20 203
CCSD 532.80 . . . 20 203 537.49 . . . 20 203 538.21 538.44 . . . . . . 20 203

TABLE IV. Four lowest MLCC3 oxygen core excitation energies for pentanal using aug-cc-pV(CT)DZ. Excitations 3 and 4 are determined in the same CNTO
basis since they are nearly degenerate in CCSD. All excitation energies and errors are in eV.

log(δo) log(δv) Exc. 1 Err. 1 nocc nvirt Exc. 2 Err. 2 nocc nvirt Exc. 3 Exc. 4 Err. 3 Err. 4 nocc nvirt

�4 �4 531.23 0.09 10 57 534.45 0.29 12 66 535.64 536.57 0.72 1.57 13 66
�4 �5 531.16 0.03 10 104 534.24 0.08 12 133 535.19 535.94 0.26 0.93 13 133
�4 �6 531.15 0.02 10 149 534.22 0.05 12 183 535.06 535.19 0.14 0.18 13 187
�4 �7 531.15 0.01 10 189 534.20 0.04 12 219 534.99 535.11 0.06 0.11 13 224

CC3 531.14 . . . 24 240 534.16 . . . 24 240 534.92 535.00 . . . . . . 24 240
CCSD 532.80 . . . 24 240 537.49 . . . 24 240 538.21 538.43 . . . . . . 24 240

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-007715
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FIG. 2. The glycine molecule where we have circled the oxygen atom for
which we have computed the core excitation energies.

to CC3. However, for excitations three and four, the errors
are larger. These are more diffuse than excitations one and
two and the errors are more dependent on δv. In particular,
δv = 10−4 yield errors from 0.69 eV for excitation three in
butanal to 1.57 eV for excitation four in pentanal. A threshold
of δv = 10−6 is necessary to obtain acceptable errors for these
excitations. However, for the occupied orbitals, δo = 10−4

is sufficient for excitations three and four as was the case
for excitations one and two. The thresholds δo = 10−4 and
δv = 10−6 appear to be sufficient to obtain MLCC3 core exci-
tation energies with small errors relative to CC3. However, the
error is larger for higher excitations, and one could consider
running with a tighter threshold for the virtual space for higher
excitations.

B. A challenging example

To test the δo = 10−4 and δv = 10−6 combination of
thresholds on a system that will have a nonlocal excitation
and thus will be difficult to describe using reduced orbital
space methods, we consider a calculation of the core excitation
energy of an oxygen in thymine. This is a challenging case,
due to the conjugated ring. Using Cholesky orbitals21 to gen-
erate the active space for an MLCC3 calculation on thymine
yields large errors in the excitation energies. In Table V, we
have listed the results of a calculation using CNTOs and a
calculation using Cholesky orbitals for comparison. The cal-
culations are performed using the aug-cc-pCVDZ basis set on
the active atom and aug-cc-pVDZ on the rest, denoted aug-cc-
p(C)VDZ. From Table V, we see that the error in the thymine
core excitation with δo = 10−4 and δv = 10−6 is 0.12 eV,
which is larger than the errors presented in Tables I–IV. How-
ever, it is a good result considering the nonlocal nature of
the virtual space needed for the calculation. Furthermore, the

TABLE V. The lowest MLCC3 oxygen core excitation energy for thymine
using aug-cc-p(C)VDZ, computed using CNTOs (δo = 10−4 and δv = 10−6)
and Cholesky orbitals (previous approach). All excitation energies and errors
are in eV.

Approach Exc. Err. nocc nvirt

CNTOs 533.08 0.12 15 121
Cholesky 534.11 1.15 26 159

CC3 532.96 . . . 33 236
CCSD 535.46 . . . 33 236

difference between CCSD and CC3 core excitation energies
is 2.5 eV, so the CC3 description of the excitation is captured
with less than half of the orbital space. In Figure 3, we have
plotted the four most important occupied and virtual CNTOs
demonstrating their adaption to the nature of the excitation.
With Cholesky orbitals, the error is approximately ten times
larger, even though the active space included 11 more occupied
and 38 more virtual orbitals.

C. Computational savings

Computational savings of MLCC3 compared to full CC3
were extensively discussed in Ref. 22 and will only be briefly
discussed here. The most expensive terms in full CC3 scale as
V4O3, where V is the number of virtual and O is the number
of occupied orbitals. This is reduced to VV3

AO3
A in MLCC3,

where VA and OA are the numbers of active virtual and
occupied orbitals. A theoretical speedup factor is then given
by

ηtheo =

(
V × O

VA × OA

)3

. (17)

In practice, a CCSD/CC3 calculation will rarely be close
to the theoretical speedup factor because the CCSD calcula-
tion scales as V3O3 and will usually dominate the calcula-
tion. In addition, an integral transformation scaling as OAN4,
where N is the number of basis functions, is required. This
is demonstrated in Table VI where observed speedup fac-
tors are compared to the theoretical one. The active spaces
are from the first excitation in Table IV. The total observed
speedup factor changes relatively little due to the CCSD cal-
culation while the speedup in the CC3 part is smaller than
the theoretical due to the integral transformation. Looking
only at the Ω contribution, the speedup is greater than the

FIG. 3. CNTOs for thymine in aug-cc-p(C)VDZ basis.
The four occupied CNTOs with largest λo (top) and the
four virtual CNTOs with largest λv (bottom) are plotted
using contour value 0.03.
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TABLE VI. Observed and theoretical speedup factors for one energy iteration
of pentanal using the active space for the first core excitation. ηtot includes
the CCSD part and ηCC3 is the speedup in the CC3 part. ηΩ is the speedup
in the CC3 contribution to the Ω vectors without the integral transforms and
is the most appropriate to compare to the theoretical speedup, as described in
the text.

log(δo) log(δv) ηtot ηCC3 ηΩ ηtheo

�4 �4 14 44 1166 1032
�4 �5 11 37 187 170
�4 �6 11 25 60 58
�4 �7 9 17 28 28

theoretical, probably due to better cache utilization when
reordering t3 amplitudes. The reported speedups in Table VI
are for energy calculations. A Jacobi transformation normally
takes two and a half times longer, but the reduced scaling due
to the active space is the same. For core excitations, the Jacobi
transformation takes about the same time as an energy iteration
due to the effective number of occupied orbitals being much
smaller.

IV. SUMMARY AND CONCLUDING REMARKS

In this article, we have presented an approach for the
black-box selection of orbital spaces when computing exci-
tation energies in the multilevel coupled cluster framework.
Information available from the lower level of theory is used to
generate correlated natural transition orbitals for the high-level
calculation by including both singles and doubles information
in the construction of the transition orbitals. The inclusion of
the doubles excitation information is essential to obtain a set
of orbitals that all contain physical information, in contrast to
the natural transition orbitals where only a small subset of the
virtual orbitals contains physical information. The correlated
natural transition orbitals may be included in an active space,
using a threshold for the eigenvalues corresponding to the
orbitals. Calculated core excitation energies from the MLCC3
method are presented and the resulting errors compared to
CC3 are small, even for nonlocal excitations. Clearly, the cor-
related natural transition orbitals are appropriately adapted for
the electron transition. Using a threshold of 10�4 for occu-
pied orbitals and 10�6 for virtual orbitals are seen to give good
results for the molecules used in this article. However, a tighter
threshold for the virtual space may be necessary when con-
sidering higher excitations. In the future, we will explore the
approach for valence excitation energies.

SUPPLEMENTARY MATERIAL

See supplementary material for xyz-structures of the
molecules used as examples in this article.
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