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Abstract

An integrated environment for the analysis of chemical bonding based on immer-
sive virtual reality is presented. By employing a multi-screen stereoscopic projection
system, researchers are cast into the world of atoms and molecules, where they can visu-
alize at a human scale the electron charge rearrangement (computed via state-of-the-art
quantum-chemical methods) occurring upon bond formation throughout the molecular
region. Thanks to specifically designed features, such a virtual laboratory couples the
immediacy of an immersive experience with a powerful, recently developed method
yielding quantitative, spatially-detailed pictures of the several charge flows involved in
the formation of a chemical bond. By means of two case studies on organometallic
complexes, we show how familiar concepts in coordination chemistry, such as donation
and back-donation charge flows, can be effectively identified and quantified to predict
experimental observables.
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Based on state-of-the-art virtual-reality technology, we have developed an integrated envi-
ronment for the immersive analysis of chemical bonding allowing chemists to perceive at a
human scale how electrons rearrange upon bond formation and to perform, in an interactive
and cooperative way, numerical analysis on the visualized data towards a new paradigm of
conducting research in chemistry.
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INTRODUCTION

Modern molecular sciences make extensive use of computational methods to predict prop-

erties and rationalize experimental outcomes for a great variety of physical systems over a

wide range of space and time scales. Due to the recent growth of the available computa-

tional power, the results of these theoretical calculations produce data sets of increasing size

and complexity. While this situation has had the benefit of encouraging the development

of automatic data analysis procedures, it has not diminished the need for the insight ability

and reasoning capabilities of the human mind.

Scientific Visualization (SV) approaches this problem by trying to meaningfully represent

complex data sets by means of interactive Computer Graphics (CG). The aim is, in fact, to

exploit the capability of the human visual system to identify structures, patterns, relations

and anomalies in the images for a quicker and deeper understanding of the visualized data.

In this respect, recent advances in CG and Immersive Virtual Reality (IVR) technologies

have opened unprecedented scenarios whereby users are immersed in three-dimensional (3D)

representations of their molecular simulations at a human scale. In this way, IVR allows users

to interact naturally with the visualized data and to exploit their proprioceptive system to

enhance the perception of the represented system, thus fostering spatial deductions about

the dimensions, proportions and topology of complex data such as surfaces, volumetric data

and vector fields.

Whereas IVR technology has been so far the preserve of a few laboratories that could

afford expensive, highly specialized hardware to assemble room-sized multi-screen projection

theaters, such as the Cave Automatic Virtual Environment (CAVE),1,2 the recent introduc-

tion of a new generation of consumer-grade immersive helmets (known as Head-Mounted

Displays, HMDs), such as the Oculus Rift3 or HTC Vive,4 is rapidly changing this scenario

and, thanks to their relatively low cost, will presumably lead in the near future to a wide

spreading of IVR technologies also among scientists. However, a critical aspect for the suc-

cess of this IVR revolution will be the conception of new visualization paradigms able to

speed up cognitive processes beyond the simple wonder of being immersed in the nanoscopic

world.
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Chemistry is itself a deeply visual discipline, its very language being actually based on

graphical diagrams. The reader is certainly familiar with 3D ball-and-stick molecular models

(with balls representing atoms and sticks signifying chemical bonds). The mathematical

modeling underlying these simplified abstractions, on the other hand, is inherently complex

(being itself an active research field) and requires appropriate visualization and analysis

tools. Indeed, an accurate description of the molecular world involves the computation, by

means of rigorous quantum-chemical models, of quantities such as molecular orbitals and

electron densities that are formally 3D mathematical functions spanning the entire physical

space. As far as chemical bonding is concerned, the pioneering works of Bader on diatoms5

showed for the first time that a deep insight into the nature of a chemical bond can indeed

be gained through a careful analysis of the topology and features of the electron charge

rearrangement occurring upon bond formation. In his late-sixties works, Bader made use of

2D contour-line plots analogous to those used for representing reliefs in geographic maps or

potential energy surfaces.6,7 Although merging the benefits of immersive visualization with

precise numerical analysis is still a major challenge,8 nowadays the possibility provided by

IVR of interacting with these quantities at a human scale opens unexplored perspectives in

the analysis of such data.

Prompted by these ideas and based on the IVR equipment available at the SMART

Laboratory of the Scuola Normale Superiore in Pisa, we have developed an integrated envi-

ronment for the immersive analysis of chemical bonding which couples the immediacy of an

IVR experience with interactive analysis tools providing chemical insight on the numerical

outcomes of state-of-the-art quantum-chemical calculations.

BOND-ANALYSIS TECHNIQUES

Current theories of chemical bonding originated from Lewis’ intuition of electron-pair sharing

in his 1916 seminal paper,9 which received formal justification on the basis of quantum

mechanics a few decades later through the Heitler-London treatment of the H2 molecule10 and

Pauling’s work on the chemical bond.11 One century after Lewis’ work, thanks especially to

the advent of molecular-orbital (MO) and density functional theory (DFT), several successful
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methods for the analysis of chemical bonding based on quantum-chemical calculations have

been devised (the reader is referred to Ref. 12 for a comprehensive review). We have recently

specialized in a simple, yet powerful method proposed by one of us in collaboration with

others – the so-called natural orbital for chemical valence/charge displacement (NOCV/CD)

analysis13,14 – focusing on the changes that the electron density undergoes upon formation

a chemical bond.

Given an adduct AB formed by fragments A and B, the electron charge rearrangement

taking place after formation of the A−B bond may be formulated as the difference ∆ρ(x, y, z)

between the total electron density of the adduct and a reference electron density, which

is associated with the unbound fragments A and B (taken at their in-adduct geometries)

and constructed from the occupied molecular orbitals of the isolated fragments previously

made orthonormal to each other. As shown in detail in Refs. 15–18, if all densities are

worked out from single-determinant wavefunctions (as is the case in Hartee-Fock or DFT

calculations), by diagonalizing the so-called ‘valence operator’19–21 and finding its eigenvalues

vk and eigenfunctions ϕk termed as ‘natural orbitals for chemical valence’ (NOCVs), ∆ρ can

be decomposed into weighed contributions ascribable to pairs of NOCVs coupled by the

eigenvalue vk:

∆ρ =
∑
k

vk
(
|ϕk|2 − |ϕ−k|2

)
=
∑
k

vk∆ρk , (1)

where the spatial dependence of densities and orbitals has been dropped for clarity. In

other words, the total electron charge rearrangement taking place after the bond formation

results from additive charge flows of vk electrons flowing from the orbital ϕ−k to the orbital

ϕk, with k ranging from one to the number of occupied molecular orbitals of the adduct.

Only a few NOCV components in Eq. 1 have a significant weight and thus contribute non-

negligibly to the overall charge rearrangement. As will be shown later on in this article,

a qualitative visual inspection in a 3D space of these few important contributions to the

overall charge rearrangement reveals that they have a clear chemical meaning. On the other

hand, a quantitative estimate of the charge flow along a suitably chosen direction is often

desirable and even mandatory if a comparison with experimental data is in order. This can

be easily achieved by building, for each of the charge-flow components, the so-called charge-
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displacement (CD) function,13,22 ∆qk(z), defined as a progressive partial integration along a

suitable axis z of the related electron density difference ∆ρk multiplied by its weight vk (see

Eq. 1), and providing a clear and quantitative picture of the charge flow along a selected

direction in space:23,24

∆qk(z) = vk

∫ z

−∞
dz′
∫ ∞
−∞

∫ ∞
−∞

∆ρk(x, y, z′) dx dy (2)

with the z axis usually chosen to be the bond axis between the fragments. Accordingly, the

CD function at a given point z quantifies the exact amount of electron charge that, upon

formation of the bond, is transferred from right to left (the direction of decreasing z) across

a plane perpendicular to the bond axis through z.

Molecular orbitals and electron densities are the outcome of electronic-structure calcu-

lations routinely carried out with quantum-chemistry packages such as Gaussian, Dalton,

ADF and Molpro. Whereas these quantities are formally represented as vectors or matrices

reflecting their expansion in a basis set of known functions, for visualization purposes they

are commonly discretized onto a finite-volume uniform grid1 and saved in dedicated file for-

mats (such as gopenmol .plt files and Gaussian Cube files).25 Unfortunately, most molecular

graphics programs provide poor or no support for operating on cube files, and the required

numerical data analysis is usually demanded to external utilities such as Gaussian’s CUBE-

MAN, allowing for a few basic operations like add or subtract, or the CUBES suite26, fully

capable of carrying out CD analysis, which however require an additional computational

expertise not always part of a chemist’s scientific background.

1With the term ‘uniform grid’ we mean a partitioning of a region of the 3D space into equally sized cells.

The sampling points are located at the vertices of the cells, and thus are equally spaced along the axes of the

grid. Though usually uniform grids are defined on cubic cells, in a general case these can be parallelepipeds.

In other words, whereas, as mentioned above, all cells in a uniform grid have the same shape and size, the

sides of each cell can have different lengths and may not be orthogonal to each other.
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CAFFEINE AND THE VIRTUAL LABORATORY

The benefit of visualizing systems of chemical interests through immersive environments has

already been demonstrated27 and many popular molecular visualizers such as VMD,28,29

PyMol,30,31 and Chimera32 have been adapted to support IVR. The Caffeine project33,34

was started with the intent of creating a new molecular viewer specifically designed and

developed to take the advantage of IVR technologies. Caffeine is conceived to work both on

desktops and in CAVE-like IVR facilities and allows the user to visualize both static and

dynamic structures in standard representations (all-atoms and ribbons), isosurfaces extracted

interactively by volume data sets, and line charts displaying additional scalar data resulting

from further data analyses in an augmented-reality fashion. Support for the latest generation

of HDMs is under development.

In its latest developments implemented for the present work, Caffeine has been upgraded

with computational procedures for carrying out operations on molecular electron densities

and orbitals, that as mentioned are routinely computed by popular quantum-chemistry pack-

ages and commonly discretized onto a finite-volume uniform grid in dedicated file formats.

The required operations for bond analysis that have been implemented in Caffeine range

from the basic ones (i.e., linear combinations of 3D grids) to those more complex such as the

computation of the CD function over a 3D grid along an arbitrary directional axis z. The

reader is referred to Section 3 of the Supporting Information (SI) for a full account of the

introduced features.

As already mentioned, we based our virtual laboratory on the CAVE multi-screen projec-

tion theater available at the SMART Laboratory of the Scuola Normale Superiore interfaced

with the Caffeine software. As will be detailed in the following, researchers interact with the

system at hand and with the analysis tools through a remote control application for tablet

computers. We note here that even if this work focuses on bond analysis performed in an

IVR context, all analysis tools are also available in the desktop version and a step-to-step

tutorial is provided in Section 3 of the SI on how to use these tools with the desktop version

of Caffeine.
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TWO CASE STUDIES OF COORDINATION CHEMISTRY

To illustrate how the developed environment works and show the potential of an IVR-based

virtual laboratory for the analysis of chemical bonding, we resort to the rich and complex

world of coordination complexes. In this context, a deep comprehension of the several con-

tributions to the electron charge rearrangement taking place after bond formation plays a

fundamental role in rationalizing the outcome of experiments and developing new compounds

with predetermined characteristics, such as organometallic catalysts capable of driving the

outcome and efficiency of catalytic reactions.35 After giving the relevant computational de-

tails, in a first subsection we show the features and the potentialities of the NOCV/CD

analysis through the simple case of the metal-carbonyl bond in two complexes, [CuCO]+

and [FCuCO] (the former is also used in the tutorial in the SI). Then, in a second subsec-

tion, we show the immersive analysis applied to a real case study on chelation bonding.

Computational details

Geometry optimization and frequency calculations were performed using density functional

theory (DFT) with the Gaussian suite of programs (G16 Rev. A.03)36 adopting the B3LYP37,38

exchange-correlation functional. Calculations on [CuCO]+ and [FCuCO] were performed

in vacuo using a LANL2DZ basis set with effective core potential for copper39 and a 6-

31+G*40–42 basis set for the other atoms. Calculations on the nickel complexes were per-

formed including the bulk solvent effects by means of the Polarizable Continuum Model

(PCM)43–45 through the integral equation formalism model (IEFPCM) as implemented in

Gaussian46 and using a 6-31G*40,41,47 basis set for all atoms. In all cases, semiempirical

dispersion contributions were taken into account by inclusion of Grimme’s D3BJ48 model

as implemented in Gaussian. Anharmonic calculations were performed with the GVPT2

model.49,50 Cubic and semi-diagonal quartic force constant were computed by numerical dif-

ferentiation (with displacements of 0.01 Å) of the analytical Hessian along each active normal

coordinate. In order to reproduce the anharmonic effects at a reasonable computational cost,

a reduced dimensionality (RD) approach51,52 was adopted where only carbonyl stretching

modes were considered as active. Bond analysis was performed by means of the recently
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Figure 1: Schematic representation of the σ donation and π back-donation charge flows in

the copper-carbonyl coordination bond.

proposed natural orbitals for chemical valence/charge displacement (NOCV/CD) scheme.

NOCV analysis was performed by interfacing G16 with an ad hoc written program.53 Charge-

displacement analysis on discretized electron densities in the form of Gaussian cube files was

carried out with the analysis tools made available in Caffeine.

How NOCV/CD analysis works. The metal-carbonyl bond

The chemical bond between carbon monoxide CO and a transition metal is commonly ex-

plained through the synergistic interplay between σ-donation and π-back-donation charge

flows (see for example Ref. 54). Considering for instance the prototype case of [CuCO]+,

upon coordination of carbon monoxide CO to the copper cation Cu+, a fraction of the elec-

tronic charge from the CO lone pair on the carbon side (the CO highest occupied molecular

orbital, HOMO) is expected to flow in the empty orbital of σ symmetry available at the metal

center and, at the same time, a fraction of charge from the filled d orbitals of copper having

π symmetry is expected to flow in the lowest unoccupied molecular orbital (LUMO) of CO

of similar symmetry. These two concurrent charge flows, commonly termed as σ donation

and π back-donation, respectively, are sketched in Fig. 1.

To get an accurate and quantitative description of these phenomena, we performed DFT

calculations for the [CuCO]+ system and carried out a detailed analysis of the copper-

carbonyl bond. The principal results of the NOCV/CD analysis are reported in Table 1 and

displayed in Figure 2 while a full account is given in the SI. As apparent from the obtained

data, the overall charge rearrangement upon formation of the copper-carbonyl bond results

mainly from the NOCV contributions with k ≤ 4, the others having weight vk ≤ 0.05 e and

thus contributing negligibly to the overall ∆ρ. A visual inspection of components k = 1, 2
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and 3 (reported in the left panel of Figure 2) reveals that the most important one (k = 1

and weight vk = 0.40) can be identified with the σ donation of the scheme of Figure 1 and is

followed by two degenerate components (vk = 0.23) representing the π back-donation. The

fourth component which, as detailed in the SI, has a smaller though non negligible weight of

0.17 e, represents only intra-fragment charge rearrangement and is omitted here for clarity

because it does not contribute to the inter -fragment charge transfer that we are interested

in.

As mentioned in the previous Section, quantitative estimates of the charge-flow profile

associated with each bond component can be obtained by computing the related CD func-

tion (Eq. 3). It is worth recalling here that the CD function quantifies the exact amount

of electron charge that, upon formation of the bond, is transferred from right to left. Ac-

cordingly, negative values of the CD function correspond to charge flow in the opposite

direction, i.e. form left to right. CD functions associated with the σ-donation (red line)

and the degenerate π-back-donation components (blue line and dots) in the metal-carbonyl

bond in [CuCO]+ are shown as full-color curves in the right panel of Figure 2. As evident,

the CD curve associated with σ donation is almost always positive in the molecular region,

thus indicating a charge flow from right to left, with the only exception of a small portion

in the negative z axis in the backside of the metal centre. This behavior can be explained

by the related 3D isosurface plots in the left panel of the figure. The charge-rearrangement

contribution associated with the NOCV k = 1 component results in fact from a flow of 0.40

e from the molecular orbital φ−1 (displaying amplitude in the carbon lone pair region and

Table 1: Weights (NOCV eigenvalues vk) and charge-transfer values (CTk) associated with

the σ-donation and π-back-donation components of the charge rearrangement upon forma-

tion of the metal-carbonyl bond in [CuCO]+ and [FCuCO].

[CuCO]+ [FCuCO]

k vk /e CTk /e k vk /e CTk /e

1 (σ-don) 0.40 0.16 1 (πx-back) 0.36 0.11

2 (πx-back) 0.23 0.04 2 (πy-back) 0.36 0.11

3 (πy-back) 0.23 0.04 3 (σ-don) 0.29 0.13
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Figure 2: Left panel: NOCV pairs (ϕ−k and ϕk, isodensity surfaces at ±0.05 (e/bohr3)1/2)

and charge rearrangement (∆ρ, isodensity surfaces at ± 0.005 e/bohr3) associated with

the σ-donation (k = 1) and π-back-donation (k = 2, 3) components of the metal-carbonyl

bond in [CuCO]+. In ∆ρ plots, red isosurfaces represent regions of electron depletion, blue

isosurfaces represent regions of electron accumulation. Right panel: CD functions for the

σ-donation and π -back-donation components of the metal-carbonyl bond in [CuCO]+ and

[FCuCO].

in a dz2-like region at the metal centre) to the molecular orbital φ+1 (mainly representing

a s orbital of the metal). This means that a sd hybridization is taking place at the metal

once accepting charge due to the σ donation from CO, and it is precisely to this internal

charge rearrangement that the above mentioned negative portion of the CD curve is due. It

is interesting to note that only a fraction of the overall rearrangement of 0.40 e is actually

transferred from CO to the metal upon bond formation, the remaining part being involved

in the intra-fragment rearrangement only. A reasonable estimate of the charge transfer (CT)

between the two fragments may indeed be obtained by taking the value of the CD function

at the middle of the bond (solid gray line in Figure 2). Indeed, according to Table 1, the

fraction of electron transferred from right to left across the gray line is only 0.16 e.

As to the degenerate π-back-donation components, the associated CD curves show neg-

ative values in the metal-carbon region. As expected, this corresponds to a positive charge
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flow in the direction from left to right, i.e. from the metal to the carbonyl group. At the

same time, the curve shows a positive peak at the carbon-oxygen bond, thus indicating (as

extensively shown in Ref. 24) a polarization of the CO electrons in the C← O direction due

to the positive charge on the copper atom. As appears in Table 1, whereas a total of 0.23

e is involved in each of the two degenerate π-back-donation charge flows, only a fraction of

0.04 e is actually being transferred from the metal to the carbonyl moiety.

The overall picture radically changes if a fluorine ion is added as a ligand to copper

and the complex [FCuCO] is considered. As the reader may easily get from the related CD

functions shown as light-color curves in Figure 2, the absence of a positive charge at the

metal centre enhances the π back-donation and reduces the C← O polarization of the π CO

orbitals. Also, the σ-donation component appears affected, thus featuring a smaller amount

of inter -fragment charge transfer and a larger spatial extension of the charge flow donated

from the carbonyl group which reaches far into the backside of fluorine.

Immersive bond analysis applied to a real case study

The simple cases reported in the previous section nicely illustrate the amount and quality

of information that can be extracted from the NOCV/CD analysis of a chemical bond. The

relative simplicity of the data involved made it feasible to get satisfactory results based on 2D

representations. Indeed, real research studies may involve much more complicated molecular

systems and the assignment of a chemical character to charge-flow components upon bond

formation may become a tough and error-prone task if based on whatever nice isosurface plots

such as those of Figure 2. However, the possibility of an immersion into these quantities by

exploring their topological features in a full 3D space through IVR can enormously simplify

this task and allows for gaining perspectives which would remain unexplored otherwise.

In a recent study55 we investigated the detailed metal-ligand bonding features in the

nickel dicarbonyl complexes of general formula [Ni(CO)2(PP)], with PP being one of the

atropoisomeric chelating diphsophine ligands in the top row of Figure 3. It was thanks to a

number of IVR sessions that we could find the key to the understanding of the amount of

computational data produced.

A typical session in our virtual laboratory starts with a preparatory stage where the
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required files (volumetric data sets and geometries) are loaded into Caffeine from a desktop-

based control panel outside the CAVE (additional scalar grids can be derived as linear

combination of the previously loaded/computed ones). Then researchers, equipped with

active glasses and a tracking sensor, enter the CAVE room and interact in a cooperative

fashion with the 3D representations of the loaded volumetric data through a remote control

application for tablet computers.2 The remote control allows the user to move, rotate and

scale the displayed molecular system. A second panel contains the controls related to the

directional analysis described in the previous section. When activated, a special reference

frame is shown in the 3D scene, whose origin and z axis are used as parameters for the

CD function. Users can therefore position and orientate the representation of the molecular

structure and of the related electron charge rearrangement until an optimal point of view of

the system under investigation is obtained as well as can physically move themselves within

the CAVE. Then, they can activate the analysis mode to move and rotate the analysis

reference frame according to their needs. By pressing a dedicated button of the remote

control, the CD function is evaluated for each point along the chosen axis, and the result

is plotted on a line chart displayed within the 3D scene in an augmented-reality fashion

as if it were the outcome of an experimental measurement (see Figure 4 for a real picture

portraying two users in an IVR session in our virtual laboratory). By default the chart is

always in front of the tracked user and drawn on a semi-transparent quad. However, the

user can in any time ‘pin’ the chart in a particular position, switch to a different chart or

hide it. Finally, a special tool, denoted as ‘marking plane’ is provided to further support

the numerical analysis of the CD function. The ‘marking plane’ is a plane orthogonal to the

chosen analysis direction and can be moved along it. Its purpose is to query the value of

the CD function for particular points of interest: once the ‘marking plane’ has been placed

at the desired position, it is sufficient to press a dedicated button on the remote control to

insert a corresponding vertical marker on the currently displayed chart and get the associated

2It is important to note that even if, strictly speaking, CAVEs are usually single-user systems (in the

sense that the images are generated by taking into account the position and the orientation of the head of

the user wearing the tracking markers), small groups of people (2-3) can participate to the IVR session with

satisfactory results as long as they stay close enough to the tracked user and watch approximately in the

same direction.
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<x,y> value pair displayed in a dedicated table placed below the chart. This process can be

repeated, so as to mark the plotted CD function in several points of interest.

After inspection of the main charge-flow contributions to the overall charge rearrange-

ment upon the metal-ligand bond formation, we could isolate the charge-flow component

associated with the σ donation from the phosphorus lone pairs of the chelating diphosphane

and resulting from the additive contribution of NOCV components with k = 1 and k = 2 (see

a sketch of the resulting component in the bottom left panel of Figure 3). We could further

demonstrate that the amount of charge transferred due to such charge-flow component is

in strict correlation with a structural property of the complex itself that can be measured

experimentally, namely the symmetric carbonyl stretching frequency νCO (sym). In other

words, besides proving the robustness of the NOCV/CD analysis scheme, we provided the

framework in which spectroscopic data on coordinated CO may be used to predict electronic

properties of the ligands such as, in the case at hand, the σ-donor ability (see Ref. 56 for

a scheme, based on these analysis tools, to switch the carbonyl stretching frequency into a

selective probe of the π-acceptor ability).

In the bottom right panel of Figure 3 we report newly calculated correlations of CTs

with νCO (sym), obtained through the developed machinery as follows. Red circles are CTs

resulting from a CD analysis along the z axis of the red reference frame (as sketched in

the bottom left panel of Figure 3) connecting Ni with one chelating P and determined by

placing the ‘marking plane’ at the middle of the Ni-P bond. Blue circles are CTs resulting

from a CD analysis along the z axis of the blue reference frame connecting Ni with the other

chelating P and determined by placing the ‘marking plane’ at the middle of the Ni-P bond.

Black circles are CTs extracted from a CD analysis along the black z axis (bisecting the

̂(P)Ni(P) angle and lying on the Ni(P)2 plane) and derived by placing the ‘marking plane’

at the average z coordinate of the two P’s. The R2 correlation values reported in the plot

(0.663, 0.789 and 0.988 for the red, blue and black circles, respectively) clearly show that it

is the cooperative effect of each phosphorus-to-nickel donation that drives the CO stretching

in the complexes and that a poorer correlation is obtained when the donation of only one P

at a time is considered.
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Figure 3: Top row: chemical structures and abbreviated names for the six atropoiso-

meric chelating diphosphane ligands, PP, in considered series of nickel dicarbonyl complexes

[Ni(CO)2(PP)]. Bottom, left panel: charge rearrangement (∆ρ, isodensity surfaces at ± 0.006

e/bohr3) associated with the σ-donation (resulting from the components k = 1 and k = 2) of

the metal-carbonyl bond in the Ni(CO)2(bitiop) complex. Red isosurfaces represent regions
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right panel: Correlation between the symmetric carbonyl stretching frequencies νCO (sym)
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tion from the phosphorus lone pairs of the ligands. Labels bifurp1 and bifurp2 refer to two

conformers of the bifurp complex of comparable energy.
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Figure 4: Two users in the virtual laboratory while analyzing the chemical bond between

nickel and a chelating disphosphane in one of the nickel dicarbonyl complexes considered

in this work. Researchers interact with the electron charge rearrangement at hand (red

lobes: depletion, blue lobes: accumulation) and with the analysis tool (represented by a

reference frame for the directional analysis discussed in the article) through a remote control

application for tablet computers. For the sake of clarity, the stereo mode of projectors was

temporarily disabled to shoot this photo.
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PERSPECTIVES

Modern IVR technologies are increasingly used in the world of academic research in chem-

istry, thus offering a novel, unprecedented perspective for representing and analyzing the

realm of atoms and molecules, and thus demanding a radical change in the paradigms

adopted so far to this purpose. It is in this context that we have conceived and developed

an IVR-based virtual laboratory for the analysis of chemical bonding. This casts researchers

into the molecular world and provides them with interactive analysis tools for studying the

detailed features of chemical bonding based on accurate theoretical calculations, in a way

that resembles much closely that of experimentalists in a laboratory experiment (the reader

is referred to the Caffeine Web page (http://smart.sns.it/caffeine) where video recordings

of IVR sessions in the virtual laboratory can be accessed and instructions on how to get

the Caffeine software are made available). The potentialities of our virtual laboratory have

been illustrated through two case studies taken from coordination chemistry, thus providing

a thorough, quantitative analysis of the detailed features of the metal-carbonyl bonding.

Clearly, the applicability of the developed machinery goes well beyond coordination chem-

istry, naturally extending to all kinds of chemical interactions and also to the analysis of

the electron charge rearrangement upon electron excitation as well as to the representation

of condensed-phase processes. From a technical point of view, there are virtually no limita-

tions to the size of the system to be analyzed as these are largely preceded by limitations in

solving the related electronic-structure problem. Moreover, the analysis can be performed

on the charge rearrangement computed by the most popular quantum-chemistry programs

as far as it is provided to the virtual laboratory in the widely supported .cube file format

(or converted to .cube file from other similar formats).

We believe that the development of virtual laboratories, like that presented in this article,

will pave the way for a revolutionary paradigm of teaching and doing research in chemistry.

This would allow for the inherent complexity of a theoretical and computational treatment

to become increasingly transparent to scientists, with the old-style keyboard & terminal

approaches to the interaction and analysis of data being replaced by more ‘natural’ ones. To

pursue this aim, our group is actively working on improving the user interaction by replacing
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the tablet with handheld VR controllers and designing an internal 3D graphical user interface

(GUI), thus allowing the user to place, scale and orient the molecular system and to handle

the analysis tools via hand-driven gestures. Another crucial feature we are working on is the

support for latest generation of consumer-grade HMDs, so as to allow individuals and small

research groups to take advantage of IVR for educational and research purposes.

ACKNOWLEDGMENTS

The authors are grateful to Cristina Puzzarini (Università di Bologna) for careful reading of
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APPENDIX: DETAILS ON THE ALGORITHM FOR INTE-

GRATION ALONG AN ARBITRARY DIRECTIONAL AXIS

The main issue in performing the integration of Eq. 2 in the article is that the 3D function

to be integrated is discretized as ‘volume data’ onto a finite-size 3D grid. This means that,

as is common, if the integration axes and steps are not the same of the mentioned grid, a 3D

interpolation is in order. We discuss here the algorithm to perform the integration of Eq. 2

focusing on the calculation of the following quantity:

∆ρ(z) =

∫ ∞
−∞

∫ ∞
−∞

∆ρ(x, y, z) dx dy , (3)

the remaining cumulative integration over the z variable being a trivial task on a 1D function.

In the following, the relevant steps of the algorithm will be discussed. For sake of clarity,

we will make use of a simplified source code written in a “pseudo-C++” programming

language, in which the details which are not relevant for this discussion have been omitted.

1 vector<pair<double , double>> i n t e g ra t eA longD i r e c t i ona lAx i s ( Grid3D

grid , vec3 Pintg , vec3 ~Zintg )

2 {
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3 vector<pair<double , double>> r e s u l t ;

The signature of the function is shown above. It takes three parameters as input: a 3D

uniform grid representing the volumetric data set (grid), the origin of the analysis reference

frame (Pintg), and the directional axis (~Zintg). Substantially, the algorithm “marches” along

~Zintg with steps of fixed size. For each point PZ encountered during the march, the integral

over the plane orthogonal to ~Zintg and passing through PZ is computed. The function returns

a vector (dynamic array) of pairs, in which the first element of the pair is the distance between

PZ and Pintg, while the second element is the value of the integral computed over the related

plane. The only precondition is that Pintg must lie within the bounds of the grid.

4 vec3 ~Xintg , ~Yintg = computeOrthogonalBasis ( ~Zintg ) ;

5 double de l t a = 0 .5 ∗ min( g r id . ce l lLengthX ( ) , g r i d . ce l lLengthY

( ) , g r id . ce l lLengthZ ( ) ) ;

The first step of the algorithm consists in computing two versors, named ~Xintg and ~Yintg,

such that the triple { ~Xintg, ~Yintg, ~Zintg} is an orthogonal basis. ~Xintg and ~Yintg represent the

integration directions over the plane. The steps of the march along ~Zintg, as well as the

integration steps along ~Xintg and ~Yintg, have a fixed size equal to the half of the smallest side

of the cell of the grid.

6 P a r a l l e l e p i p e d bounds = computeBounds ( g r id ) ;

Although in theory the integral should be computed in the range [−∞,+∞] along ~Xintg

and ~Yintg, in practice we can sample the value of the 3D function only within the bounds

of the grid. This is not a problem as long as the 3D function tends to zero in proximity

and over the bounds. However, we must compute proper integration ranges by taking into

account the bounds of the grid. In the general case, the shape of the cells of the grid, and

therefore of the whole grid, is a parallelepiped. Therefore, we store the bounds of the grid

in a data structure designed to represent a parallelepiped.

7 double tmin
Z = MAX DOUBLE;

8 double tmax
Z = LOWEST DOUBLE;

9 for ( int i = 0 ; i < 8 ; i++)
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10 {

11 double t = dot ( ~Zintg , bounds . v e r t i c e s [ i ]−Pintg ) ;

12 tmin
Z = min(tmin

Z , t ) ;

13 tmax
Z = max(tmax

Z , t ) ;

14 }

15 int imin
Z = c e i l (tmin

Z /delta) ;

16 int imax
Z = f l o o r (tmax

Z /delta) ;

The range to be used in the march along ~Zintg is computed by taking the minimum and

the maximum scalar values (tmin
Z and tmax

Z ) resulting from the projection of the vertices of

the parallelepiped on ~Zintg. To simplify the implementation of the iteration over this range,

tmin
Z and tmax

Z are converted in integer multiples of the step size (“delta”): imin
Z and imax

Z .

Note that we round up imin
Z to the next integer and instead round down imax

Z to the previous

integer, so to be sure to remain inside the bounds of the grid.

17 for ( int i t e r Z = imin
Z ; i t e r Z <= imax

Z ; ++i t e r Z )

18 {

19 vec3 PZ = Pintg + ( ~Zintg ∗ i t e r Z ∗ de l t a ) ;

20 double valuesSum = 0 . 0 ;

The march along ~Zintg is implemented as a “for” loop from imin
Z to imax

Z . Each iteration

begins by computing the coordinates of the corresponding PZ . We also declare (and initialize

to zero) the variable “valuesSum”, in which we will store the sum of the values of the

volumetric data set sampled over the plane orthogonal to ~Zintg and passing through the

current PZ .

21 double tmin
Y , tmax

Y = bounds . i n t e r s e c t s L i n e (PZ , ~Yintg ) ;

22 int imin
Y = c e i l (tmin

Y /delta) ;

23 int imax
Y = f l o o r (tmax

Y /delta) ;

24 for ( int i t e rY = imin
Y ; i t e rY <= imax

Y ; ++ite rY )

25 {

26 vec3 PY = PZ + ( ~Yintg ∗ i t e rY ∗ de l t a ) ;

27 double tmin
X , tmax

X = bounds . i n t e r s e c t s L i n e (PY , ~Xintg ) ;
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28 int imin
X = c e i l (tmin

X /delta) ;

29 int imax
X = f l o o r (tmax

X /delta) ;

30 for ( int i t e rX = imin
X ; i t e rX <= imax

X ; ++ite rX )

31 {

32 vec3 PX = PY + ( ~Xintg ∗ i t e rX ∗ de l t a ) ;

33 valuesSum += gr id . sampleValue (PX ) ;

34 } // End o f the march a long ~Xintg

35 } // End o f the march a long ~Yintg

The listing above describes the marching procedure over the plane. Starting from PZ , we

perform a march over ~Yintg where, at each step, we compute the coordinates of a point PY .

Such point will then be used in turn as the starting point of the march along ~Xintg. In terms

of code, this corresponds to two nested loops. For the reasons explained above, we need to

find proper ranges to iterate along ~Yintg and ~Xintg. In particular, these ranges are obtained

by computing the intersection between the parallelepiped and (i) the line directed along ~Yintg

passing through PZ and (ii) the line directed along ~Xintg passing through PY . To this purpose,

we implemented the intersection algorithm described in.57 Again, we express these ranges as

integer multiples of the step size (“delta”). Each iteration along ~Xintg corresponds to a point

PX at which we sample the volume by means of a trilinear interpolation. During the march

along the plane, we incrementally sum the sampled values in the variable “valuesSum”.

36 double deltaArea = de l t a ∗ de l t a ;

37 double i n t e g r a l = deltaArea ∗ valuesSum ;

38 double tPZ
= de l t a ∗ i t e r Z ;

39 r e s u l t . append (tPZ
, i n t e g r a l ) ;

40 } // End o f the march a long ~Zintg

41 return r e s u l t ;

42 }

Once the march along the plane is over, it is easy to obtain the integral of the 3D function

over the plane by multiplying the sum of the sampled values by the sampling area. Finally,

PZ is expressed as the signed distance from Pintg, and inserted in pair with the value of the
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related integral in the vector of the results. The function ends with the end of the march

along ~Zintg, by returning the vector of the results.

The complete pseudo code of the function is reported in Listing 1 at the end of this

subsection.

In order to maximize the performance of the algorithm, and consequently to reduce the

waiting times, we parallelized the computation of the integral of a plane (lines 24-35 in the

above code listing) by means of the OpenMP technology (http://www.openmp.org/). By

doing so, we speed up the algorithm up to a factor of about 5X on our machine equipped with

8 logical processors. Table 2 lists the average completion times, and the related standard

deviation, of the algorithm described in this subsection obtained when varying the number

of OpenMP threads. It is important to note that, since the areas on which the integral is

computed during the march along the directional axis depends on the choice of the directional

axis, the workload assigned to each thread of the available pool changes too. For this reason,

we performed the benchmark for two representative cases of the directional axis: a cardinal

axis (uniform integration area along the march) and an arbitrary one (varying integration

area along the march). The benchmarks has been performed on a machine equipped with

32GB of RAM and an Intel Core i7 6700 CPU featuring 4 physical cores and Hyper-Threading

technology, for a total of 8 logical processors. The employed operating system is Windows

10 Enterprise 64 bit. The program has been compiled with the Microsoft Visual C++ 14

compiler, supporting OpenMP version 2.0. We found that, on this platform, the “dynamic”

scheduling policy is the one that provides the best performance. It can be noticed that

increasing the number of OpenMP threads over the number of logical processors does not

have a significant impact on the completion time. In fact, as you can observe in Figure 5, the

average value and dispersion of the completion times obtained when increasing the number

of threads over the number of logical processors is very similar. The reason is that, by using

the dynamic scheduling policy with a default “chunk size” of 1, the scheduler initially assign

the execution of an iteration of the loop to a thread of the pool, up to reach the number

of logical processors. Then, whenever a thread finishes its job, the scheduler dynamically

assign one of the remaining iterations to one of the awaiting threads. Therefore, if the

number of the threads in the pool exceeds the number of logical processors, those in excess
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will simply remain unused. Although during these tests we manually set the number of

OpenMP threads used by the program, the average user does not have to manually tune the

OpenMP parameters to obtain good performance: OpenMP by default employs a number

of threads equals to the number of the available logical processors, so to provide very good

performance without the need of an explicit configuration.
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Directional axis: X Directional axis: [1, 1, 1] · (1/
√

3)

Num. OMP Average completion Standard Average completion Standard

threads time (ms) deviation (ms) time (ms) deviation (ms)

1 8566.6 72.43 9107.3 63.26

2 4130.3 21.89 4340.1 25.91

4 2118.2 56.56 2280.0 49.17

6 1951.7 26.42 2106.2 28.86

8 1727.7 16.61 1854.0 18.37

10 1722.9 15.67 1853.5 15.33

12 1724.7 26.90 1849.8 15.32

14 1715.6 14.04 1846.3 17.34

Table 2: Average completion times and related standard deviation of the algorithm of List-

ing 1, obtained when varying the number of OpenMP threads and for different directional

axes. For each examined directional axis and number of threads, ten measurements of the

completion time have been performed, on the base of which the average times and standard

deviations have been computed. The 3D uniform grid used as input for the algorithm is

composed by 283 x 177 x 147 sampled points (“voxels”). The results highlighted in red

has been obtained by disabling the OpenMP support when compiling the program, so to

evaluate the serial version of the algorithm. The results highlighted in blue, instead, been

obtained using OpenMP with a thread pool equals to the number of logical processors. For

all the measurements apart from the first, we employed a “dynamic” scheduling policy with

a default “chunk size” of 1. The program has been compiled with the Microsoft Visual C++

14 compiler, supporting OpenMP version 2.0. The “/O2” compilation flag has been used

so to optimize the executable for maximum speed. The benchmarks has been performed

on a machine running Windows 10 Enterprise 64 bit, equipped with 32GB of RAM and an

Intel Core i7 6700 CPU featuring 4 physical cores with a dynamic clock frequency ranging

from 3.4 to 4 GHz. Thanks to the Hyper-Threading technology, it exposes to the operating

system 8 logical processors.
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Figure 5: Dispersion of the completion times of the algorithm of Listing 1 with a number

of OpenMP threads equals to or greater the number of logical processors (8). For each

examined directional axis and number of threads, ten measurements of the completion time

have been performed (showed in the charts as points. The overall average values and standard

deviations are reported in the figures, and graphically represented respectively by a red

horizontal marker at the center of a gray region.
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Listing 1: “Pseudo-code of the algorithm to perform the integration of Eq.2 in the article.”

/∗

∗ PARAMETERS:

∗ g r i d - The volumetric dataset.

∗ Pintg - Origin of the analysis reference frame.

∗ ~Zintg - The directional axis.

∗ PRECONDITION: The starting point must lie within the bounds of the grid.

∗/

vector<pair<double , double>> i n t e g ra t eA longD i r e c t i ona lAx i s ( Grid3D

grid , vec3 Pintg , vec3 ~Zintg )

{

vector<pair<double , double>> r e s u l t ;

// Given the d i r e c t i o n a l ax i s , computes two v e r s o r s so to

o b t a i n an o r t h o g o n a l b a s i s .

vec3 ~Xintg , ~Yintg = computeOrthogonalBasis ( ~Zintg ) ;

// I n t e g r a t i o n s t e p s i z e : h a l f o f the s m a l l e s t s i d e o f the

c e l l s .

double de l t a = 0 .5 ∗ min( g r id . ce l lLengthX ( ) , g r i d . ce l lLengthY

( ) , g r id . ce l lLengthZ ( ) ) ;

// Computes the bounding volume o f the 3D g r i d .

P a r a l l e l e p i p e d bounds = computeBounds ( g r id ) ;

// The i t e r a t i o n i n t e r v a l a long ~Zintg i s computed by t a k i n g the

minimum

// and the maximum s c a l a r v a l u e s r e s u l t i n g from the p r o j e c t i o n

o f the v e r t i c e s o f the

// bounding volume on the d i r e c t i o n a l a x i s .
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double tmin
Z = MAX DOUBLE;

double tmax
Z = LOWEST DOUBLE;

for ( int i = 0 ; i < 8 ; i++)

{

double t = dot ( ~Zintg , bounds . v e r t i c e s [ i ]−Pintg ) ;

tmin
Z = min(tmin

Z , t ) ;

tmax
Z = max(tmax

Z , t ) ;

}

// Express tmin
Z and tmax

Z as m u l t i p l e s o f d e l t a .

// The r e s u l t i s rounded up f o r imin
Z and rounded down f o r imax

Z ,

// so to be sure to remain i n s i d e the g r i d .

int imin
Z = c e i l (tmin

Z /delta) ;

int imax
Z = f l o o r (tmax

Z /delta) ;

// I t e r a t e s a long ~Zintg

for ( int i t e r Z = imin
Z ; i t e r Z <= imax

Z ; ++i t e r Z )

{

vec3 PZ = Pintg + ( ~Zintg ∗ i t e r Z ∗ de l t a ) ;

// S t o r e s the sum of the volume v a l u e s sampled from

// the ~Xintg
~Yintg p lane p a s s i n g through PZ .

double valuesSum = 0 . 0 ;

// The i n t e g r a t i o n i n t e r v a l a long ~Yintg i s ob ta ined by

computing the

// i n t e r s e c t i o n between the bounding volume o f the g r i d

and the l i n e

// d i r e c t e d a long ~Yintg and p a s s i n g through PZ .

// The r e s u l t s are then e x p r e s s e d as m u l t i p l e s o f d e l t a
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and rounded .

double tmin
Y , tmax

Y = bounds . i n t e r s e c t s L i n e (PZ , ~Yintg ) ;

int imin
Y = c e i l (tmin

Y /delta) ;

int imax
Y = f l o o r (tmax

Y /delta) ;

// I t e r a t e s a long ~Yintg

for ( int i t e rY = imin
Y ; i t e rY <= imax

Y ; ++ite rY )

{

vec3 PY = PZ + ( ~Yintg ∗ i t e rY ∗ de l t a ) ;

// The i n t e g r a t i o n i n t e r v a l a long ~Xintg i s ob ta ined by

computing the

// i n t e r s e c t i o n between the bounding volume o f the

g r i d and the l i n e

// d i r e c t e d a long ~Xintg and p a s s i n g through PY .

// The r e s u l t s are then e x p r e s s e d as m u l t i p l e s o f

d e l t a and rounded .

double tmin
X , tmax

X = bounds . i n t e r s e c t s L i n e (PY , ~Xintg ) ;

int imin
X = c e i l (tmin

X /delta) ;

int imax
X = f l o o r (tmax

X /delta) ;

// I t e r a t e s a long ~Xintg

for ( int i t e rX = imin
X ; i t e rX <= imax

X ; ++ite rX )

{

vec3 PX = PY + ( ~Xintg ∗ i t e rX ∗ de l t a ) ;

// Sum of the v a l u e s sampled from the g r i d in

correspondence o f PX .

// The sampling i s computed by l i n e a r l y

i n t e r p o l a t i n g the v a l u e s mapped
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// to the v e r t i c e s o f the c e l l c o n t a i n i n g the

sampling p o i n t PX .

valuesSum += gr id . sampleValue (PX ) ;

} // End o f the march a long ~Xintg

} // End o f the march a long ~Yintg

// Computes the v a l u e o f the i n t e g r a l a long the ~Xintg
~Yintg

p lane p a s s i n g through PZ .

double deltaArea = de l t a ∗ de l t a ;

double i n t e g r a l = deltaArea ∗ valuesSum ;

// S t o r e s PZ and the corresponding v a l u e o f the i n t e g r a l

computed above

// in a v e c t o r ( dynamic array ) . Note that , f o r t h i s

purpose , PZ i s e x p r e s s e d

// as the d i s t a n c e between Pintg and PZ .

double tPZ
= de l t a ∗ i t e r Z ;

r e s u l t . append (tPZ
, i n t e g r a l ) ;

} // End o f the march a long ~Zintg

return r e s u l t ;

}
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