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The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented.
The main contribution to this result is from processes in which Higgs bosons are produced in association
with aW or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two
identified bottom quark jets. The results from the measurement of these processes in a data sample recorded
by the CMS experiment in 2017, comprising 41.3 fb−1 of proton-proton collisions at

ffiffiffi
s

p
¼ 13 TeV, are

described. When combined with previous VH measurements using data collected at
ffiffiffi
s

p
¼ 7, 8, and

13 TeV, an excess of events is observed at mH ¼ 125 GeV with a significance of 4.8 standard deviations,
where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is
1.01" 0.22. The combination of this result with searches by the CMS experiment for H → bb̄ in other
production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a
signal strength of 1.04" 0.20.
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Since the discovery of a new boson with a mass near
125 GeV by the ATLAS [1] and CMS [2,3] Collaborations,
rapid progress in the understanding of its properties and
couplings has revealed that the new particle is compatible
with the standard model (SM) Higgs boson H [4–9].
Observation of Higgs boson decays in the γγ, ZZ, WW,
and ττmodes have been reported [10–20], and all measured
properties [21–29] support this hypothesis. Recently, the
CMS and ATLAS Collaborations reported observations of
the Higgs boson produced in association with a top quark
pair that are compatible with the SM prediction, represent-
ing the first direct measurements of the Higgs boson
coupling to quarks [30,31].
The decay H → bb̄, with a predicted branching fraction

of about 58% [32] for a Higgs boson mass of
mH ¼ 125 GeV, is the most prevalent decay mode but
has not yet been established unequivocally. A precise
measurement of the rate for this process directly probes
the Yukawa coupling of the Higgs boson to a down-type
quark, and provides a necessary test of the hypothesis that
the Higgs field is the source of mass generation in the
charged fermion sector of the SM [33,34]. At both the LHC
and the Tevatron the most sensitive production process in
the search for H → bb̄ decays is when the Higgs boson is
produced in association with a vector boson (VH). The

CDF and D0 Collaborations at the Tevatron reported an
excess of events in this channel with a significance of 2.8
standard deviations (σ) at a mass of mH ¼ 125 GeV [35].
Last year, the ATLAS and CMS Collaborations reported
evidence for the VH, H → bb̄ process at a mass of
mH ¼ 125 GeV corresponding to observed (expected)
significances of 3.6 ð4.0Þσ and 3.8 ð3.8Þσ, respectively,
combining data collected during run 1 at

ffiffiffi
s

p
¼ 7 and

8 TeV, and run 2 at 13 TeV [36,37]. Searches for the
H → bb̄ decay in other production processes, with less
sensitivity than VH, have also been reported at the
LHC [38–44].
In this Letter we present the observation of the Higgs

boson decay to bottom quarks. The measurement described
here examines the VH production process, where the Higgs
boson is produced in association with a W or Z boson and
decays into bb̄. The data comprise proton-proton (pp)
collisions recorded at

ffiffiffi
s

p
¼ 13 TeV by the CMS detector

at the LHC in 2017, corresponding to a total integrated
luminosity of 41.3 fb−1 [45]. Five distinct final states are
considered: ZðννÞH, WðμνÞH, WðeνÞH, ZðμμÞH, and
ZðeeÞH, corresponding to three channels with 0, 1, or 2
charged leptons from the vector boson decay. In addition,
two identified jets due to hadronization of bottom quarks (b
jets) from the Higgs boson decay are required. Important
background processes include the production of W and Z
bosons in association with jets (V þ jets), production of top
quark pairs (tt̄) and single top quarks (t), diboson (WW,
WZ, ZZ), and multijet (QCD) events.
The analysis presented here closely follows the methods

previously used to search for the VH,H → bb̄ process [37]
and incorporates several improvements, including more
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efficient identification of b jets, better dijet mass resolution,
and the use of different multivariate discriminant techniques
that better separate signal from background. For each
channel, a signal region enriched in VH events is selected
together with several control regions, each enriched in events
from individual background processes. A simultaneous
binned-likelihood fit to the shape and yield (normalization)
of specific distributions for the signal and control regions for
all channels combined is used to extract a possible Higgs
boson signal. To validate the procedure, the same method-
ology is used to extract a signal for the associated production
process VZ, with Z → bb̄, which has an identical final state
to VH with H → bb̄, but with a production cross section
5 to 15 times larger, depending on the kinematic regime
considered. The result from this measurement is combined
with those of similar measurements performed by the CMS
Collaboration using 2016 data and run 1 data, in the VH and
other production processes. This combination leads to an
observation of the Higgs boson decay to bottom quarks.
An observation of this decay mode by the ATLAS
Collaboration [46] was submitted for publication at the
same time as this Letter.
The central feature of the CMS apparatus is a super-

conducting solenoid of 6 m internal diameter, providing
a magnetic field of 3.8 T. A silicon pixel and strip tracker, a
lead tungstate crystal electromagnetic calorimeter, and a
brass and scintillator hadron calorimeter, each composed
of a barrel and two end cap sections, reside within the
solenoid. Forward calorimeters extend the pseudorapidity
coverage provided by the barrel and end cap detectors.
Muons are detected in gas-ionization chambers embedded
in the steel flux-return yoke outside the solenoid. A more
detailed description of the CMS detector, together with a
definition of the coordinate system and the relevant
kinematic variables, can be found in Ref. [47].
Signal and background processes are simulated with

several Monte Carlo (MC) event generators, while the CMS
detector response is modeled with GEANT4 [48]. The quark-
induced ZH andWH signal processes are generated at next-
to-leading order (NLO)QCDaccuracy using the POWHEGv2
[49–51] event generator extended with the MiNLO pro-
cedure [52,53], while the gluon-induced ZH process is
generated at leading order (LO) accuracy with POWHEG v2.
The Higgs boson mass is set to 125 GeV for all signal
samples. Diboson background events are generated with
MADGRAPH 5_AMC@NLO v2.4.2 [54] at NLOwith the FxFx
merging scheme [55] and up to two additional partons. The
same generator is used at LO accuracy with the MLM
matching scheme [56] to generate V þ jets events in
inclusive and b-quark enriched configurations with up to
four additional partons, and to generate a sample of QCD
events. The tt̄ [57] and single t production processes in
the tW [58] and t [59] channels are generated to NLO
accuracy with POWHEG v2, while the s channel [60] single t
process is generated with MADGRAPH 5_AMC@NLO v2.4.2.

The parton distribution functions used to produce all
samples are the next-to-next-to-leading order (NNLO)
NNPDF3.1 set [61]. For parton showering and hadroniza-
tion, the matrix element generators are interfaced with
PYTHIA v8.230 [62]. For all samples, simulated additional
pp interactions (pileup) are added to the hard-scattering
process with the multiplicity distribution matched to the
2017 data.
The production cross sections for the signal samples are

rescaled as a function of the vector boson transverse
momentum, pTðVÞ, to NNLO QCDþ NLO electroweak
accuracy combining the VHNNLO [63–66], VH@NNLO

[67,68], and HAWK v2.0 [69] generators as described in
Ref. [32]. The production cross sections for the tt̄ samples
are rescaled to the NNLO prediction with the next-to-next-
to-leading-log result obtained from TOP++ v2.0 [70], while
the V þ jets samples are rescaled to the NNLO cross
sections using FEWZ 3.1 [71]. In the V þ jets samples used
in this analysis, thepTðVÞ spectrum in data is observed to be
softer than in simulated samples, as expected from higher-
order electroweak corrections to the production processes
[72]. Events in each channel are reweighted to account for
electroweak corrections to pTðVÞ, which reach up to 10%
for pTðVÞ near 400 GeV. In addition, a differential LO-to-
NLO correction is applied as a function of the separation
in η between the two jets from the Higgs boson decay [37].
The tt̄ samples are reweighted as a function of top quark
pT to account for the known difference between data and
simulation [73].
The CMS particle-flow (PF) event algorithm [74] is used

to reconstruct and identify individual particles (PF objects)
with an optimized combination of information from the
various elements of the CMS detector. This algorithm is
employed at the trigger level, and in the more detailed
reconstruction of data that occurs off-line. The objects
identified by the algorithm comprise candidate electrons,
muons, photons, and charged as well as neutral hadrons.
Jets are reconstructed from PF objects using the anti-kt
clustering algorithm [75] implemented in the FASTJET

package [76,77], with a distance parameter of 0.4. The
missing transverse momentum vector p⃗miss

T is defined as the
negative vectorial pT sum of all the PF objects identified in
the event, and its magnitude is referred to as pmiss

T .
The reconstructed vertex with the largest value of summed

physics-object pT
2 is considered to be the primary pp

interaction vertex. The physics objects used in this calcu-
lation are jets clustered using the jet finding algorithm with
the tracks assigned to the vertex as inputs, and the associated
missing transverse momentum computed as the negative
vectorial pT sum of those jets. All charged hadrons that
originate from pileup are removed from consideration in the
event. In addition, the average neutral energy density from
pileup is evaluated from PF objects and subtracted from the
reconstructed jets as well as from the summed energy in the
vicinity of leptons (isolation), as described in Ref. [74].
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Events of interest are selected on-line using a two-tiered
trigger system [78] based on custom hardware processors
and a farm of commercial processors running a version of
the full off-line reconstruction software optimized for
speed. Events in the 0-lepton channel are selected primarily
by a trigger requiring both pT

miss andHmiss
T to be larger than

120 GeV, where Hmiss
T is defined as the magnitude of the

negative vectorial pT sum of all jets. Single-lepton triggers
are used to select events in the 1-lepton channel, where the
leptons are required to be isolated from other PF objects.
The single-muon trigger requires pT > 27 GeV, while the
single-electron trigger requires pT > 32 GeV. For the
2-lepton channel, dilepton triggers are employed with
minimum pT requirements of (17, 8) GeV for the two
muons and (23, 12) GeV for the two electrons. After off-
line requirements, the 0-lepton trigger efficiency reaches
100% above pmiss

T ∼ 220 GeV, while the 1-lepton triggers
have efficiencies of approximately 95% for muons and
90% for electrons, and the dilepton trigger efficiency is
approximately 91% for muons and 96% for electrons.
Events are selected off-line based on the presence of 0, 1,

or 2 leptons (muons or electrons) and two identified b jets.
Muons and electrons from W or Z boson decays are
identified using the selection criteria defined in Ref. [37],
including stringent quality and isolation requirements. The
lepton pT requirements are pT > 25ð30Þ GeV for muons
(electrons) in the 1-lepton channel, and pT > 20 GeV for
each lepton in the 2-lepton channel. In the 0- and 1-lepton
channels, events with additional isolated muons or electrons
are rejected.MinimumpT requirements of (60, 35), (25, 25),
and (20, 20) GeV are applied on the two jets forming the
Higgs boson candidate in the 0-, 1-, and 2-lepton channels,
respectively, which are also required to satisfy jηj < 2.5.
The reconstruction of vector boson decays differs by

channel. In the 0-lepton channel, pT
miss is interpreted as the

pT of the Z boson, while in the 2-lepton channel the Z
boson is reconstructed directly from lepton pairs requiring
an invariant mass in the range 75–105 GeV. In the 1-lepton
channel, the W boson candidate is reconstructed from the
p⃗T of the single isolated lepton and p⃗miss

T .
Higgs boson candidates are reconstructed from the pair

of jets (“jj”) in the event most likely to originate from b
quarks, as determined by a combined secondary vertex
algorithm (deepCSV) based on a deep neural network
discriminant (DNN) [79]. The deepCSValgorithm provides
a continuous discriminator score combining information
about tracks displaced from the primary vertex, identified
secondary vertices, jet kinematic variables, and information
related to the presence of soft leptons in the jet. Of the two
jets forming the Higgs boson candidate, the one with a
larger deepCSV score is required to satisfy a tight working
point with misidentification rate of 0.1% for light quark
and gluon jets, while the jet with a lower deepCSV score
(DCSV2) must satisfy a loose working point with a 10%
misidentification rate.

All backgrounds are substantially reduced by requiring
large pTðVÞ [80]. The requirements are pmiss

T > 170 GeV
and pTðVÞ > 150 GeV in the 0- and 1-lepton channels,
respectively, while two regions are used in the 2-lepton
channel: 50 < pTðVÞ ≤ 150 GeV and pTðVÞ > 150 GeV.
Residual backgrounds from tt̄ and QCD processes are
reduced in the 1-lepton channel by rejecting events with
more than one extra jet satisfyingpT>30GeV and jηj < 2.5,
and in the 0-lepton channel with additional requirements on
the angular separation between p⃗miss

T and its nearest jet.
After all event selection criteria are applied, the reso-

lution on the dijet invariant mass mðjjÞ of reconstructed
Higgs boson decays is approximately 15%. The mass
resolution is improved by applying a multivariate regres-
sion technique similar to that employed in Ref. [37], with a
DNN trained on b jets from simulated tt̄ events with input
variables that include several properties of any secondary
vertices in the jet, as well as the energy and composition of
the jet. In addition, recovery of final-state radiation is
achieved by adding to the mðjjÞ calculation the momenta
of jets near to either of the Higgs boson candidate jets. In
the 2-lepton channel, with no genuine p⃗miss

T from the hard-
scattering process, a kinematic fit of the entire event is
performed requiring pT balance between the dilepton and
dijet systems within the experimental uncertainty. All three
improvements are validated in data by studying the
pTðllÞ=pTðjjÞ distribution in samples of Z → ll events
containing at least one b-tagged jet, and by studying the top
quark mass distribution in a high-purity sample of tt̄ events.
After these improvements, the average resolution on mðjjÞ
is in the 10%–13% range, depending on the channel and the
pT of the reconstructed Higgs boson.
For each channel, a signal region enriched inVH events is

selected together with several control regions, each enriched
in events from individual background processes. The signal
regions are defined as 60<mðjjÞ<160GeV in the 0-lepton
channel, and 90 < mðjjÞ < 150 GeV in the 1- and 2-lepton
channels. The score of a DNN for events in each of these
signal regions, which further separates signal from back-
ground, is used in the signal extraction fit. The DNNs are
trained separately for each channel using simulated samples
for signal and all background processes. The set of input
variables is chosen by an iterative optimization procedure
from a large number of potentially discriminating variables.
Among themost discriminating variables for all channels are
mðjjÞ,pTðVÞ, DCSV2, the number of additional jets, and the
angular separation between the two jets forming the Higgs
boson candidate. Events in control regions are used in the fit
to normalize the major background processes directly from
data. These regions are selected for tt̄ production (TT), and
for the production of W and Z bosons in association with
either predominantly heavy-flavor (HF) or light-flavor (LF)
jets using the criteria described in Ref. [37].
The signal strength μ, defined as the measured produc-

tion cross section times branching fraction divided by the
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expected SM value, is extracted from a simultaneous
binned fit of the signal and control regions. The DNN
score is used as the fitted variable in each signal region,
while different strategies are used in the control regions.
For the TT and LF control regions, only the yields of these
processes are considered in the fit. For the HF control
region, DCSV2 is used as the fitted variable in the 2-lepton
channel, while the score of a dedicated DNN (DNNHF) is
used in the 0- and 1-lepton channels. The DNNHF uses the
same variables as the signal region DNN, but is trained
to individually distinguish the tt̄, single t, and V þ jets,
background processes.
The significance of the observed excess of events in the

fit is computed using the profile likelihood asymptotic
approximation [81–84]. All results reported here are
obtained for a Higgs boson mass of mH ¼ 125.09 GeV
[26]. For the 2017 data, the observed significance is 3.3σ
above the background-only hypothesis, while 3.1σ is
expected for the SM Higgs boson. The corresponding
measured signal strength is μ ¼ 1.08" 0.34, where the
uncertainty is a combination of statistical and systematic
components. Table I lists the major sources of uncertainty
and their observed impact on μ from the fit. Dominant
systematic uncertainties arise from the background nor-
malizations, simulated sample size, b-tagging efficiency
and misidentification rates, and V þ jets modeling. All
sources of systematic uncertainty are included in the fit as
independent nuisance parameters.

The VZ process with Z → bb̄, having an identical final
state as the VH process withH → bb̄, serves to validate the
methodology used in the search for the latter process. To
extract this diboson signal, the DNNs are trained using the
simulated samples for this process as signal. All other
processes, including VH production (at the predicted SM
rate), are treated as background. The only modification
made to the analysis is the requirement that the signal
region is in the interval [60, 160] GeV in mðjjÞ for all
channels. The excess of events for the combined WZ and
ZZ production processes has an observed significance of
5.2σ from the background-only hypothesis, where 5.0σ is
expected. The corresponding observed signal strength is
μ ¼ 1.05" 0.22.
Measurements of the VH process with H → bb̄ reported

above are combined with the results of a similar measure-
ment performed by the CMS Collaboration using data
collected at 13 TeV in 2016 corresponding to 35.9 fb−1

[37]. All systematic uncertainties are assumed to be
uncorrelated in this fit, except for theory uncertainties
and the dominant uncertainties in the measurement of the
jet energy scale, which are assumed to be fully correlated.
The run 2 (2016 and 2017 data sets) combination yields an
observed signal significance of 4.4σ, where 4.2σ is
expected, and a signal strength of μ ¼ 1.06" 0.26.
The results VH from run 2 are combined with the results

of a similar CMS analysis of the run 1 data using pp
collisions at

ffiffiffi
s

p
¼ 7 and 8 TeV with data samples corre-

sponding to integrated luminosities of up to 5.1 and
18.9 fb−1, respectively [25,44]. Systematic uncertainties
in this fit are assumed to be uncorrelated for separate
collision energies, except for the theory uncertainties. The
combination yields an observed signal significance of 4.8σ,
where 4.9σ is expected. The measured signal strength is
μ ¼ 1.01 " 0.22½0.17ðstatÞ " 0.09ðexpÞ " 0.06ðMCÞ "
0.08ðtheoÞ', where the decomposition of the total uncer-
tainty into its components is specified in brackets following
the definitions in Table I. Figure 1 (left) shows the
distribution of events in all channels sorted according to
the observed value of log10 ðS=BÞ for the combined run 1
and run 2 data sets, where signal S and background B yields
are determined from the corresponding discriminant score
used in each analysis (DNNs for the 2017 data set, boosted
decision trees for all other data sets). Figure 1 (right)
summarizes the signal strengths for VH production, with
H → bb̄, separately for the different data sets and the
combination, while Table II summarizes the significances,
also including a breakdown of the 2017 results separated by
channel.
An alternative to fitting the DNN score is to fit themðjjÞ

distribution, which results in less sensitivity but enables a
more direct visualization of the Higgs boson signal. As in
the VZ analysis, the signal region is defined to be in the
interval [60, 160] GeV in mðjjÞ. This study is performed
only with the 2016 and 2017 data sets, in which events are

TABLE I. Major sources of uncertainty in the measurement of
the signal strength μ, and their observed impact (Δμ) from a fit to
the 2017 data set, are listed. The total uncertainty is separated into
four components: statistical (including data yields), experimental,
MC sample size, and theory. Detailed decompositions of the
statistical, experimental, and theory components are specified.
The impact of each uncertainty is evaluated considering only that
source. Because of correlations in the combined fit between
nuisance parameters in different sources, the sum in quadrature
for each source does not in general equal the total uncertainty of
each component.

Uncertainty source Δμ
Statistical þ0.26 −0.26

Normalization of backgrounds þ0.12 −0.12
Experimental þ0.16 −0.15

b-tagging efficiency and misid þ0.09 −0.08
V þ jets modeling þ0.08 −0.07
Jet energy scale and resolution þ0.05 −0.05
Lepton identification þ0.02 −0.01
Luminosity þ0.03 −0.03
Other experimental uncertainties þ0.06 −0.05

MC sample size þ0.12 −0.12
Theory þ0.11 −0.09

Background modeling þ0.08 −0.08
Signal modeling þ0.07 −0.04

Total þ0.35 −0.33
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categorized into four bins of increasing signal-to-back-
ground ratio according to the score of their corresponding
discriminant, obtained with those input variables correlated
with mðjjÞ fixed to their mean values. The resulting four
mðjjÞ distributions in each data set are fit together with the
same distributions used in the control regions, described
above, to extract signal and background yields. The
fitted mðjjÞ distributions are combined and weighted by
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FIG. 1. Left: distributions of signal, background, and data event yields sorted into bins of similar signal-to-background ratio, as given
by the result of the fit to their corresponding multivariate discriminant. All events in the VH, H → bb̄ signal regions of the combined
run 1 and run 2 data sets are included. The red histogram indicates the Higgs boson signal contribution, while the gray histogram is the
sum of all background yields. The bottom panel shows the ratio of the data to the background, with the total uncertainty in the
background yield indicated by the gray hatching. The red line indicates the sum of signal plus background contribution divided by the
background yield. Right: best-fit value of the signal strength μ, atmH ¼ 125.09 GeV, for the fit of all VH, H → bb̄ channels in the run
1 and run 2 data sets. Also shown are the individual results of the 2016 and 2017 measurements, the run 2 combination, and the run 1
result. Horizontal error bars indicate the 1σ systematic (red) and 1σ total (blue) uncertainties, and the vertical dashed line indicates the
SM expectation.

TABLE II. Expected and observed significances, in σ, and
observed signal strengths for the VH production process with
H → bb̄. Results are shown separately for 2017 data, combined
run 2 (2016 and 2017) data, and for the combination of the run 1
and run 2 data sets. For the 2017 analysis, results are shown
separately for the individual signal strengths for each channel
from a combined simultaneous fit to all channels. All results are
obtained for mH ¼ 125.09 GeV combining statistical and sys-
tematic uncertainties.

Significance (σ)

Data set Expected Observed Signal strength

2017
0-lepton 1.9 1.3 0.73" 0.65
1-lepton 1.8 2.6 1.32" 0.55
2-lepton 1.9 1.9 1.05" 0.59
Combined 3.1 3.3 1.08" 0.34

Run 2 4.2 4.4 1.06" 0.26

Run 1þ run 2 4.9 4.8 1.01" 0.22
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FIG. 2. Dijet invariant mass distribution for events weighted by
S=ðSþ BÞ in all channels combined in the 2016 and 2017 data
sets. Weights are derived from a fit to the mðjjÞ distribution, as
described in the text. Shown are data (points) and the fitted VH
signal (red) and VZ background (grey) distributions, with all
other fitted background processes subtracted. The error bar for
each bin represents the presubtraction 1σ statistical uncertainty on
the data, while the gray hatching indicates the 1σ total uncertainty
on the signal and all background components.
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S=ðSþ BÞ, where S and B are computed from the Higgs
boson signal yield and the sum of all background yields for
each category considering their fitted normalizations,
respectively. The resulting combined mðjjÞ distribution,
after background subtraction, is shown in Fig. 2, where the
VH and VZ contributions are separately visible.
A combination of CMS measurements of the H → bb̄

decay is performed, including dedicated analyses for the
following production processes: VH (reported above),
gluon fusion [38], vector boson fusion [44], and associated
production with top quarks [30,41,42]. These analyses use
data collected at 7, 8, and 13 TeV, depending on the
process. In this fit, most sources of systematic uncertainty
are treated as uncorrelated. The dominant jet energy scale
uncertainties are treated as correlated between processes at
the same collision energy, while the theory uncertainties are
correlated between all processes and data sets. The
observed (expected) signal significance is 5.6 ð5.5Þσ,
and the measured signal strength is μ ¼ 1.04" 0.20. In
addition to the overall signal strength for the H → bb̄
decay, the signal strengths for the individual production
processes are also determined in this combination, where
contributions from a single production process to multiple
channels are properly accounted for in the fit. All results are
summarized in Fig. 3.
In summary, measurement of the standard model Higgs

boson decaying to bottom quarks has been presented. A
combination of all CMSmeasurements of the VH,H → bb̄
process using proton-proton collisions recorded at center of
mass energies of 7, 8, and 13 TeV, yields an observed
(expected) significance of 4.8 (4.9) standard deviations at

mH ¼ 125.09 GeV, and the signal strength is μ ¼ 1.01"
0.22. Combining this result with previous measurements by
the CMS Collaboration of the H → bb̄ decay in events
where the Higgs boson is produced through gluon fusion,
vector boson fusion, or in association with top quarks, the
observed (expected) significance increases to 5.6 (5.5)
standard deviations and the signal strength is μ ¼ 1.04"
0.20. This constitutes the observation of the H → bb̄ decay
by the CMS Collaboration.
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8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

10Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

11aUniversidade Estadual Paulista
11bUniversidade Federal do ABC

12Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
13University of Sofia, Sofia, Bulgaria
14Beihang University, Beijing, China

15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

17Tsinghua University, Beijing, China
18Universidad de Los Andes, Bogota, Colombia

19University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
20University of Split, Faculty of Science, Split, Croatia

21Institute Rudjer Boskovic, Zagreb, Croatia
22University of Cyprus, Nicosia, Cyprus

23Charles University, Prague, Czech Republic
24Escuela Politecnica Nacional, Quito, Ecuador

25Universidad San Francisco de Quito, Quito, Ecuador
26Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt
27National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

28Department of Physics, University of Helsinki, Helsinki, Finland
29Helsinki Institute of Physics, Helsinki, Finland

30Lappeenranta University of Technology, Lappeenranta, Finland

PHYSICAL REVIEW LETTERS 121, 121801 (2018)

121801-15
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76aINFN Sezione di Roma, Rome, Italy
76bSapienza Università di Roma, Rome, Italy
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