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Abstract According to the implicit commitment thesis, once accepting a mathe-

matical formal system S, one is implicitly committed to additional resources not

immediately available in S. Traditionally, this thesis has been understood as

entailing that, in accepting S, we are bound to accept reflection principles for S and

therefore claims in the language of S that are not derivable in S itself. It has recently

become clear, however, that such reading of the implicit commitment thesis cannot

be compatible with well-established positions in the foundations of mathematics

which consider a specific theory S as self-justifying and doubt the legitimacy of any

principle that is not derivable in S: examples are Tait’s finitism and the role played

in it by Primitive Recursive Arithmetic, Isaacson’s thesis and Peano Arithmetic,

Nelson’s ultrafinitism and sub-exponential arithmetical systems. This casts doubts

on the very adequacy of the implicit commitment thesis for arithmetical theories. In

the paper we show that such foundational standpoints are nonetheless compatible

with the implicit commitment thesis. We also show that they can even be com-

patible with genuine soundness extensions of S with suitable form of reflection. The

analysis we propose is as follows: when accepting a system S, we are bound to

accept a fixed set of principles extending S and expressing minimal soundness

requirements for S, such as the fact that the non-logical axioms of S are true. We call

this invariant component the semantic core of implicit commitment. But there is also

a variable component of implicit commitment that crucially depends on the justi-

fication given for our acceptance of S in which, for instance, may or may not appear
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(proof-theoretic) reflection principles for S. We claim that the proposed framework

regulates in a natural and uniform way our acceptance of different arithmetical

theories.

1 Preamble

The acceptance of a system formalizing some portion of mathematics is the

outcome of a complex justificatory process that is constrained by philosophical and

ontological attitudes, influenced by pragmatical considerations (fruitfulness, gen-

erality), and also hospitable to aesthetical ones (simplicity, elegance). The

acceptance of a formal system S, therefore, encompasses the possibility that some

of the components of this justificatory process are not expressible or even

formalizable in the language of S and that some crucial constituents of this

acceptance are only left implicit by the process itself. Examples abound: just to

remain on the formal side, for instance, soundness assertions for S involving the

notion of truth are not expressible in the language of S, while most of their truth-free

surrogates are not provable in S.

We have come to the core idea underlying the notion of implicit commitment:

when accepting a theory S, we are also bound to embrace a cluster of formal or

semi-formal assertions that are not immediately available in S itself.1 Historically,

the notion of implicit commitment of formal systems of arithmetic, and for

mathematical theories more in general, emerged in the work of logicians and

philosophers already in the 50s and 60s of the last century. Their main concern is

clearly expressed in a later work by Solomon Feferman:

To what extent can mathematical thought be analyzed in formal terms?

Gödel’s theorems show the inadequacy of single formal systems for this

purpose, except in relatively restricted parts of mathematics. However at the

same time they point to the possibility of systematically generating larger and

larger systems whose acceptability is implicit in acceptance of the starting

theory. The engines for that purpose are what have come to be called reflection

principles (Feferman 1991, p. 1).

The articulation of this version of implicit commitment was crucial for the analysis

of predicativism and, in particular, for the identification of predicatively definable

sets of natural numbers.2 In one well-known Feferman’s formulation, the limit for

the generation of such sets is articulated in terms of iterations of uniform reflection

principles and predicative comprehension over Peano Arithmetic (see Feferman

1962, 1964; Kreisel 1970). This project was refined and reshaped several times by

Feferman in the past decades, moving from iterations of ramified analysis (Feferman

1964) to more succinct formulations such as the reflective closure of the starting

theory involving a primitive notion of truth (see Sects. 3, 4).

1 In what follows, we will always deal with systems S formulated in a language LS extending the

language of arithmetic L ¼ f0;S;þ;�; �g.
2 For an overview of this debate, see Feferman (2005).

C. Nicolai, M. Piazza

123



At any rate, no matter what formulation of Feferman’s hierarchy of systems one

chooses, the resulting picture of implicit commitment will entail that in accepting a

starting theory S one is committed to statements that are not provable in S itself.

Nevertheless, as we shall see later in the paper, it has recently become clear that the

inclusion of reflection principles for the starting theory among the claims we are

implicitly committed to when accepting it, although integral part of Feferman’s

foundational program, may clash with other philosophical standpoints. Therefore,

we opt for a more neutral and more general formulation of the implicit commitment

thesis:

(ICT) In accepting a formal systems S one is also committed to additional

resources not available in the starting theory S but whose acceptance is

implicit in the acceptance of S.3

As it is formulated, (ICT) has the advantage of reflecting many instances of

disagreement in the existing literature over what these ‘‘additional resources’’

should amount to. Several authors, following Feferman, allow for conceptual

resources that are not immediately available in S due to familiar Gödelian

phenomena, such as consistency statements and reflection principles. Some of these

authors go even further and argue that, once soundness extensions of S are admitted,

they should be formulated by explicitly resorting to a notion of truth and not merely

by implicitly referring to it via schemata (Feferman 1991; Shapiro 1998; Ketland

1999; Cieśliński 2010). Other authors maintain instead that whatever we are

committed to when endorsing the system S should already be expressible in the very

language of S (Tennant 2002). And finally, proponents of a more drastic view, like

Jean-Yves Girard, even deny that reflection on our acceptance of S may have any

epistemological value because it relies on a pre-existing agreement on what axioms

and rules should be believed to be true (Girard 1987).

It’s important to notice, nonetheless, that the positions just sketched are extracted

from works that are not directly concerned with a clarification of the notion of

implicit commitment, but mainly with the notion of truth in the context of truth-

theoretic deflationism.4 A direct analysis of the notion of implicit commitment,

however, is much needed. As Horsten and Leigh put it:

philosophers of mathematics have hitherto largely failed to investigate the

notion of implicit commitment, and have not spent much philosophical energy

on analysing our warrant for reflection principles (Horsten and Leigh 2017, p.

32).

Recently Walter Dean has claimed that what is traditionally taken as part of the

principles we are committed to when accepting a system S—such as reflection

principles—may clash with the justification provided for the acceptance of S itself

(Dean 2015). In particular, he focuses on the well-known theses by William Tait and

Daniel Isaacson, according to which finitary mathematics coincides with what can

3 A similar formulation can be found in Dean (2015, p. 32).
4 Girard and Feferman are obvious exceptions, although they also do not directly deal with conceptual

analysis of the notion of implicit commitment.

The Implicit Commitment of Arithmetical Theories…

123



be proved in Primitive Recursive Arithmetic (PRA) and first order Peano

Arithmetic (PA) respectively. Dean observes that both theses can be understood

as suggesting that PRA and PA are epistemically stable, ‘‘in the sense that there

exists a coherent rationale for accepting [these systems] which does not entail or

otherwise oblige a theorist to accept statements which cannot be derived from

[their] axioms’’(Dean 2015, p. 53). Although we are not primarily interested in

analyzing the notion of epistemic stability introduced by Dean, we will be

concerned with some of its effects: the predicativist à la Feferman and the first-

orderist à la Isaacson—who takes PA to delimit the boundaries of finite

mathematics, although both assigning a privileged status to Peano Arithmetic, will

do so on different grounds and this will heavily affect their stance on (ICT). For

Feferman there will be a recognizable set of statements that are not derivable in PA,

while being part of our implicit commitment to it; for Isaacson, by contrast, the

additional resources hinted at in (ICT) will likely be non-existent. This determines a

form of relativity of implicit commitment with respect to the acceptance of one’s

preferred arithmetical system that will be a recurring theme of this paper.

In what follows, we propose an alternative analysis of the notion of implicit

commitment of arithmetical theories. On our account, implicit commitment exhibits

a variable and invariant component. We maintain, with Dean, that the set of

principles defining the implicit commitment with respect to the acceptance of a

theory S is relative to the justification given for this very acceptance. However, we

also argue—contra Dean—that the acceptance of a system does involve an explicit

soundness extension in the form of a fixed set of semantic principles, which we call

‘semantic core’. The relative aspect of implicit commitment thus takes the form of

different, possible extensions of this ubiquitous core. In other words, we will claim

that there is a fundamental body of ‘reflection’ principles formulated through the

notion of truth—such as the claim that all non-logical axioms of the accepted theory

S are true—that are part of the implicit commitment relative to any reasonable

justification offered for the acceptance of a theory S. What extends such a kernel is

variable and constrained by the justification given by the idealized mathematician.

Here is a sketch of the structure of the paper. In the next section, we briefly

discuss Dean’s critical analysis of (ICT) in relation to Tait’s and Isaacson’s theses

and we extend his remarks to Nelson’s ultrafinitism. We claim that Dean’s analysis

does not lead to a dismissal of (ICT) but rather to an alternative interpretation of it.

In Sect. 3, in fact, we introduce the necessary toolbox to take up this possible

interpretation of (ICT), whereby the ‘‘additional resources’’ we are committed to

when accepting a system S do not entail statements that are unprovable in S. Our

aim is to isolate the semantic core of an arithmetical theory, amounting to the fixed,

invariable component of our commitment to it. In Sect. 4 we defend the thesis that

the distinction between semantic core and variable components of implicit

commitment resolves the tension between Tait’s and Isaacson’s theses and (ICT);

in addition, we show that the resulting picture of implicit commitment is also

compatible with the traditional reading of (ICT) associated with positions such as

Feferman’s. Section 5 contains some concluding remarks.
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2 Implicit Commitment and Foundational Theses

As we mentioned in the previous section, Dean (2015) examines the way in which

Tait and Isaacson respectively justify the acceptance of PRA and PA from a

‘‘finitist’’ and a ‘‘first-orderist’’ perspective. In both cases he concludes that (ICT) is

incompatible with the justification that they give for the acceptance of the theories.

Let us now briefly recall Tait’s and Isaacson’s theses and how Dean employs them

to criticize this strong reading of (ICT).

On the view articulated by Tait, the formal system of PRA captures precisely the

finitist portion of mathematics.5 Inasmuch as the ‘‘finitist portion of mathematics’’ is

not itself a mathematical notion, Tait draws an analogy between his thesis and

Church’s thesis, suggesting that ‘‘any plausible attempt to construct a finitist

function that is not primitive recursive either fails to be finitist [...] or else turns out

to be primitive recursive after all’’ (Tait 1981, p. 533, 537). In accordance with the

spirit of Hilbert’s program, Tait then investigates what counts as finitistic proof of

an open formula uðx~Þ of the language of PRA, and concludes that its proofs are

precisely the formal proofs of uðx~Þ in PRA. Tait’s proof principles involve only a

limited form of induction for finitistically acceptable types (cf. Tait 1981, p. 537),

much closer to primitive recursion than to the first-order schema of induction.6 In

fact, already the schema of induction for R2-formulas, let alone the full schema of

induction, would enable one to define recursive but not primitive recursive

operations such as the Ackermann function. Such instances of induction are

therefore not available to the finitist.

To discuss the consequences of accepting (ICT) for the finitist à la Tait, we move

from the quantifier-free language to a more comfortable base theory formulated in

the first-order language of arithmetic. As Dean emphasizes, Kalmar Elementary

Arithmetic (EA) (cf. Beklemishev 2005) is a good choice because (1) it enjoys a

smooth arithmetization of the syntax and (2) it is a proper subtheory of the

conservative extension of PRA in which we allow for full-predicate logic but still

quantifier-free induction.7 Let us then consider the so-called uniform reflection

principle for an elementary theory S, namely the claim

8x ðPrSðp/ð _xÞqÞ ! /ðxÞÞ RFNðSÞ

for /ðvÞ a formula of LS with only v free, where PrSðp/ð _xÞqÞ canonically expresses

that the result of formally substituting the variable v with the numeral for x in /ðvÞ
is provable in S. The following is well-known:

5 In the literature one can find many formal systems that fall under the label PRA. In the following we

refer to PRA as the extension of propositional logic with the defining equations of all primitive recursive

functions and the schema of quantifier-free induction—for a precise definition, see for instance Troelstra

and Schwichtenberg (2000, Chap. 4, §5).
6 The finitistic justification process for PRA sketched by Tait is rooted in the fundamental operation of

manipulating finite sequences of objects. All operations and notions obtained by bootstrapping this

operation are finistically kosher. In particular, this process of justification is not itself legitimate for the

finitist because it assumes the general notion of function, which is not finitistically definable (cf., e.g., Tait

1981, pp. 531–533).
7 This theory is called QF-IA in Sieg (1981).
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Proposition 1 (Kreisel and Lévy 1968) Over EA, full induction is equivalent to

RFN(EA).

Therefore, if one understands (ICT) as including RFN(EA), then the finitist

should also be committed to the very induction principle of PA, which clearly isn’t

available in the finitist’s preferred theory PRA—nor obviously in its first-order

variant QF-IA. Dean thus concludes that the finitist à la Tait cannot include

RFN(EA) (and a fortiori RFN(PRA)) into the set of principles she is implicitly

committed to when embracing PRA. If principles such as RFNðPRAÞ are taken to

be, as in Feferman’s own reading, necessary for (ICT), then (ICT) is simply an

inadequate account of implicit commitment across reasonable arithmetical systems.

This is basically Dean’s conclusion.

Such conclusion is based on the presuppositions that (ICT) can only be

interpreted along the lines of Feferman’s own account of it and, as a consequence,

the reference to ‘‘resources not available in S’’ in the formulation of (ICT) could

only be read in terms of assertions that imply, or even that are equivalent, to

sentences in the language of S that are not provable in it. As we shall see later on,

however, our proposal will rest indeed on refuting such presupposition; there are in

fact many senses in which a resource not available in S may fail to entail unprovable

sentences in S. Indeed, the lesson that we draw from Dean’s point is not that (ICT)
has to be rejected given the incompatibility of the finitist’s justification of PRA and

RFN(PRA). On the contrary, Dean’s objection points at the possibility of

embracing a plausible version of (ICT) that—relative to certain restrictive

standpoints such as the finitist’s—does not invoke principles equivalent to or

stronger than RFN(EA). Such a version of (ICT) will be articulated in the following

sections.

Dean draws a similar conclusion in relation to Isaacson’s thesis, according to

which PA captures ‘‘an intrinsic, conceptually well-defined region of arithmetical

truth’’ (Isaacson 1996, p. 203). Indeed, Isaacson suggests that PA may be regarded

as sound and complete with respect to a conception of arithmetical truths as

‘‘directly perceivable’’ by articulating ‘‘our grasp of the structure of the natural

numbers’’ (Isaacson 1996, p. 217, 1991). Unprovable truths in PA such as

Goodstein theorem and the Paris-Harrington sentence are ones that involve hidden

higher-order (or infinitary) concepts.8 If these claims have a clear mathematical

meaning, however, it is also well-known that they are equivalent, over PA, to claims

of apparent meta-mathematical meaning such as the Gödel sentence for PA or a

canonical consistency statement Con(PA).
A similar correspondence between the mathematical and the meta-mathematical

can be found at the level of the principles which are usually involved in strong

readings of (ICT) such as Feferman’s. Let’s consider again RFN(PA). It is a

classical result by Gentzen that PA proves transfinite induction up to any ordinal

8 Note that Isaacson characterization of arithmetical truth seems to entail that sentences like the

Goldbach conjecture are un-arithmetical, being neither directly perceivable by grasping the structure of

natural number, nor perceivable from some arithmetical truth (Arana 2008). Against the claim that a proof

of any true PA sentence which is independent of PA needs ideas that go beyond those that are required in

understanding PA, see Piazza and Pulcini (2016).
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smaller than e0 (henceforth TIxn
)—i.e. up to the limit of all ordinals of the form

for towers of order n (Gentzen 1969). Hence, by the properties of formal

provability, PA proves the formalization of this fact for all n. By RFN(PA),
therefore, one can conclude, within PA ? RFN(PA), the claim that for all n, TIxn

,

that is the schema of transfinite induction up to e0 (TIe0
). Also the other direction—

that is the claim that PAþ RFNðPAÞ proves TIe0
—is well-known, although the

proof, which can be found in Kreisel and Lévy (1968), is definitely more involved.

As a consequence, a principle that is naturally justified by appealing to semantic

or metamathematical considerations such as RFN(PA) on the one hand, and a

principle concerning how many countable transfinite ordinals can be well-ordered

on the other, are equivalent over PA. Therefore, if Isaacson’s thesis on PA is to be

understood in a radical way as to entail that anything that is unprovable in PA
should not be part of the principles allowed by (ICT), both RFNðPAÞ and TIe0

should be ruled out. In a less categorical reading of Isaacson’s thesis, one may still

think that principles that are not provable in PA may be allowed in the set specified

by (ICT); however, as stressed by Dean himself, these truths should now assume the

instrumental role of confirming the theorems of PA as clear boundaries for finite

mathematics (see Isaacson 1996, sect. 3).9 However, it is not clear to us in which

sense this more liberal reading of (ICT) should differ from the radical one, since the

inclusion of these additional arithmetical truths in the set specified by (ICT) only

reaffirms and does not characterize PA as a self-standing portion of mathematical

truth. The message that Dean extracts from Isaacson’s thesis looks, again,

uncontroversial: if one endorses it, she is also committed to a reading of (ICT)
that eschews claims that are unprovable in PA, casting serious doubts on the

plausibility of (ICT) itself. And again, we will see in the next section that there are

senses in which the ‘‘resources not available in PA’’ we might be implicitly

committed to when accepting PA may fail to imply statements that are unprovable

in PA itself.

In addition to the cases examined by Dean, similar questions arise in analogous

foundational theses that rely on a restriction of the full induction schema of PA. For

instance, one might look at the ultrafinitist thesis advocated by Nelson (1986), and

echoed in several commentator’s works, according to which one should mistrust the

assumption of the totality of exponentiation.10 A theory that fully meets Nelson’s

standards is the theory S1
2 from Buss (1986, 1998). S1

2 has several further

9 It should be noticed that we haven’t made any reference to the notions of ‘‘higher-order’’ or ‘‘infinitary’’

in this description, and this is not by accident: it is not completely clear to us, indeed, where the boundary

between finitary and infinitary should lie in the case of PA. Isaacson seems to think that such a boundary

coincides with the distinction between what can be proved or not in PA: but can there be a sense in which

‘‘higher-order’’ or ‘‘infinitary’’ notions are not at odds with PA? To cite one simple example, consider

well-orderings of order type a\e0, that can be proved in PA by a well-known theorem of Gentzen; other

examples that come to mind are versions of semantical reflection that, unlike RFN(PA), are conservative

over PA and therefore do not lead us outside of the realm of what is acceptable by the ‘‘first-orderist’’.

The next section will present and discuss examples of semantical reflection of this sort.
10 In particular, Nelson sketches in (1986, Chap. 31) a foundational program under the assumption of the

negation of the totality of exponentiation. Admittedly, much less clear are the reasons why Nelson

advocates such position. Besides his clear nominalistic stance (cf. Nelson 1986, Chap. 18), Nelson’s

position can be taken to hold that
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advantages: besides being consistent with the negation of exponentiation, S1
2 is also

remarkable from a purely proof-theoretic point of view: it can be seen as improving

on EA as a theory for formalizing in a natural way the syntax of first-order theories

as it is commonly done for the incompleteness theorems and as it is required for

formulating reflection principles and semantic extensions of our starting theories.

These notions are in fact all p-time and the functions R1-definable in S1
2 coincide

with the p-time computable functions. S1
2 is formulated in

L� ¼ L [ f0;S;þ;�; j � j;#; b1
2
�cg, where j � j is the length function that gives the

number of symbols in the binary representation of the input, # is such that x#y ¼
2jxj�jyj and b1

2
�c gives the lower integer part of x

2
. Its axioms are the defining equation

of these symbols and the schema

uð0Þ ^ 8x ðuðb1

2
xcÞ ! uðxÞÞ ! 8xuðxÞ ðPINDÞ

for u in the class Rb
1, which is similar to the usual class R1 formulas with the

additional assumption that quantifiers in the formula have to be bounded by a term

of the form |t|, except the outermost string of existential quantifiers that can be

bounded by an arbitrary term. Crucially, S1
2 is interpretable in Robinson arithmetic

Q, witnessing its minimality, and is finitely axiomatizable (Hájek and Pudlák 1998,

Chap. V).

Assuming therefore that S1
2 is ultrafinitistically acceptable, let us consider a

reflection principle of the form

8x ðPr£ðpuð _xÞqÞ ! uðxÞÞ RFNð£Þ

where Pr£ðpuð _xÞqÞ expresses the fact that an arbitrary numeral instance of the

formula u is provable in first-order predicate logic. It’s important to notice that now,

for the formalization of provability in S1
2, instead of non standard numerals one has

to consider but dyadic numerals whose formalization is polynomially bounded.11

However, even under these minimal assumptions, we obtain a result similar to

Proposition 1.

Proposition 2 PA is a subtheory of S1
2þ RFNð£Þ

Proof Sketch It is clear that, for each m 2 x,

Footnote 10 continued

...the basic informal argument says, roughly, that the number of steps needed to terminate a

recursion defining exponentiation is of the order of magnitude of exponentiation itself—a per-

ceived circularity (Ferreira and Ferreira 2013, p. 2).

11 Dyadic numerals are defined as

2 � n ¼ ðSS0Þ � n 2 � nþ 1 ¼ SððSS0Þ � nÞ

The codes of the numeral n, in this way, is of order nc for a fixed c—therefore can be handled with #—

and not 2cn for fixed c, which would require exponentiation.
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uð�0Þ ^ 8xðuðxÞ ! uðxþ 1ÞÞ ! uð �mÞ ð1Þ

is provable in first-order logic by a series of modus ponens and universal instanti-

ations starting from uð�0Þ. This proof, however, may not be captured in general by

S1
2. Therefore we argue as follows: assuming that u is provably progressive in S1

2—

that is, S1
2 proves that it holds for 0 and that, if it holds for x, it holds for xþ 1 as

well —, by employing Solovay’s shortening of cuts technique (cf. again Hájek and

Pudlák 1998, Chap. V), we downwards close u under � so that the resulting

formula defines an initial segment of the S1
2-numbers J . We can safely assume J to

be closed under multiplication and the function #.

Then we can prove that

S1
2 ‘ 8xPrS1

2
pJ ð _xÞq ð2Þ

by crucially considering dyadic numerals.

Now reasoning in S1
2 and starting with the proof of J ð0Þ, we can reason as usual

to obtain a proof of J ðnÞ. Therefore, in S1
2, which can be expressed as a single

sentence A, plus RFNð£Þ,

8xPr£ðpA ! Jð _xÞqÞ
J ðxÞ byA andRFNð£Þ

J ðxÞ ! uðxÞ by def:of J
8xuðxÞ logic

h

Proposition 2 strengthens the conclusion that, if one reads (ICT) as referring to

‘‘resources not available in S’’ that entail claims that are not provable in S, then S

cannot be taken to capture a self-standing, self-justifying portion of mathematical

reality. The ultrafinitist embracing S1
2, in fact, cannot even be committed to a

reflection principle for logic, on the pain of the acceptance of the full induction

schema of PA that, obviously, also entails the claim that the exponentiation function

is total.

To summarize, the discussion of the theses of Tait, Isaacson, and Nelson, coupled

with a strong reading of (ICT) à la Feferman that seems to be taken for granted by

Dean, leads to at least two options: either we reject (ICT) across the board, deeming

it as inadequate, or we provide a different interpretation of (ICT) equipped with an

alternative reading of what the ‘‘resources not available’’ in the chosen system could

amount to. In the next section we set the basis for such an alternative interpretation:

we will introduce in particular a wide array of semantical extensions of an

arithmetical system S that, although crucially resorting to notions that are not

immediately available in S—such as a truth predicate—do not entail sentences in

the language of S that are not provable in S itself.
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3 Soundness Extensions and the Semantic Core

As noticed by several authors,12 resorting to schemata such as RFNðSÞ above may

be plausibly seen as a surrogate for single sentences of the form

8x ðPrSðxÞ ! TxÞ GRPðSÞ

where T is unary truth predicate. These surrogates only become necessary when a

notion of truth is not part of the signature of the theory. Any soundness claim seems

in fact to be intrinsically related to the notion of truth. If one wants to express in the

object language that all non-logical axioms of S are true, for instance, one can of

course resort to a schema of the form

AxSðpuqÞ ! u

where AxSð�Þ is the representation of all non-logical axioms of S. Yet, this option

merely highlights the fact that we are relegating the notion of truth in the meta-

theory.

Clearly someone might have independent motivations to stick with the expressive

limitations of the arithmetical language in asserting the soundness of a theory.

Tennant (2002), for example, has made use of the well-known fact that schematic

versions of reflection, such as RFNðSÞ, enable us to go beyond what’s provable in S

to defend the possibility of a deflationary account of the notion of truth employed in

these soundness claims. However, Tennant does not fully articulate a justification

for these principles, although he hints at the schematic version of reflection as

sufficient for fixing the norms for assertion of these soundness claims (Tennant

2002, p. 574). More generally, while it is uncontroversial that a soundness extension

of S will contain forms of reflection such as RFNðSÞ, it remains problematic

whether the presence of RFNðSÞ is sufficient for defining a soundness extension, in

the sense that its principles amount to a coherent articulation of the concepts needed

to state soundness claims for S. A good illustration of how soundness claims can be

derived within an adequate framework for provability and truth is provided by

Feferman’s reflective closure of PA (RefðSÞ), nowadays commonly known as KF
from ‘‘Kripke-Feferman’’13:

Which statements in the base language L of S [. . .] ought to be accepted if one

has accepted the basic axioms and rules of S? The answer is given as an

ordinary theory Ref(S) formulated in a language L(T, F) [. . .] where T and F

are partial truth and falsity predicates which are self-applicable in the sense

that they apply to (codes of) statements of L(T, F) [...] Thus, for example, we

may reason in Ref(PA) by induction about the truth of statements which

contain the notion of truth, and so arrive at statements of the form:

8x½ProvPAðxÞ ! TðxÞ�, and by repeating this kind of argument derive iterated

reflection principles for arithmetic (Feferman 1991, p. 2).

12 Cf. for instance, Kreisel and Lévy (1968), Halbach (2011, p. 309).
13 See footnote 22 for a precise definition of KF.
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Note well that we are not suggesting the impossibility of convincing arguments

supporting the absence of the notion of truth from soundness extensions of a given

theory; we are simply holding that given the usual way of introducing and justifying

soundness claims for a theory S, the notion of truth is hard to do without. Proposals

such as Tennant’s, and the subsequent debate it generated (Ketland 2005; Cieśliński

2010; Piazza and Pulcini 2015), clearly show how hard it is to eradicate the intuition

that reflection principles are conceptually dependent on the notion of truth. But the

onus is on those who do not share this intuition to tell a principled story about

soundness claims by resorting to surrogates that can play the role of semantic

notions. It’s hard to say what this story could amount to. Thus, throughout the paper

we will stick with the widespread view and hold that soundness claims are best

formulated by employing a notion of truth governed by suitable axioms.

However, this does not immediately mean that these axioms added on top of S

need to entail GRPðSÞ. Such a requirement, indeed, would be too strong for an

arbitrary S (namely, when S also varies over, for instance, theories with restricted

induction). The case made by Tait for PRA from the finitist point of view is indeed

one example where one needs to be careful in calibrating the strength of the

principles for the truth predicate. Similar considerations apply to Isaacson’s thesis

on PA and ultrafinitist’s position viewed through the lens of S1
2. Prima facie, there is

not much room for the choice of the truth principles: for instance, the next

proposition shows that already weak truth axioms seem to collapse the fine structure

of the subsystems of PA.

Proposition 3 The result of extending S1
2—whose language is expanded with a

fresh predicate T—with the schema14

8x ðT puð _xÞq $ uðxÞÞ ðutbÞ

for all L-formulas uðvÞ derives the full induction schema of L.

Proof Since S1
2 in LT :¼ L [ fTg contains ID0 in LT, the following is derivable in

the former

Tpuð0Þq ^ 8x ðTpuð _xÞq ! Tpuð _xþ 1ÞqÞ ! 8xTpuð _xÞq ð3Þ

for a formula uðvÞ of L of arbitrary complexity, because Tpuð _xÞq is a D0-formula of

LT. By employing (utb), (3) yields the desired result. h

The argument employed in Proposition 3 applies equally well—with the obvious

modifications—to other subsystems of PA obtained by restricting induction such as

EA, PRA, of IRn for every n.15 At any rate, Proposition 3 seems to slim our chances

of finding a reasonable truth-theoretic extension of an arbitrary arithmetical theory

S, that is fixing a set of reasonable truth axioms that are compatible with the

principles we are implicitly committed to when we endorse S. Proposition 2 and

14 Recall the slight shift in meaning of the numerals (cf. footnote 11).
15 A similar argument would even hold in the case of set theories formulated by syntactically restricting

schemata.
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Kreisel and Levy’s result already told us that a soundness extension involving the

uniform reflection principle for S may clash with the foundational standpoints —

such as the ones just discussed in the previous section—advocating a restriction of

the full schema of induction of PA. Proposition 3 extends these limitations to the

truth-theoretic context: if even weak axioms such as (utb) are sufficient to lead us

from, S1
2, EA, or PRA to full PA, then there seems to be no hope to harmonize

(ICT) and foundational positions that do not permit arithmetical consequences

exceeding those of the systems associated with such positions.

Nevertheless, concluding this would simply be trading on a confusion on the

meaning of ‘‘truth axiom’’. The theory of truth employed in Proposition 3 is

obtained by extending the mathematical induction schemata of the base theory to

the truth predicate. If the axioms (utb) are unequivocally truth-theoretic in

character, it is natural to think of the extended induction as a mathematical and not

as a truth-theoretic axiom. There seems to be in fact a substantial difference between

metalinguistic principles declaring the truth conditions for a sentence of L, as (utb)
seems to be (partially) doing, and the extension to the truth predicate of a schema

whose justification is apparently non-metalinguistic. As observed by Hartry Field,

such a justification essentially depends on a ‘‘fact about natural numbers, namely,

that they are linearly ordered with each element having finitely many predecessors’’

(Field 1999, p. 538).

For example, the formula Tp0 ¼ 0q ^ 2x [ x can occur into instances of the

induction schema of EA formulated in LT ð:¼ L [ f2�;TgÞ; however, it would be

rather implausible to consider the corresponding instance of induction as a

genuinely truth-theoretic sentence. By contrast, the truth predicate in it is merely

idling and the bulk of the induction is instead a basic mathematical property of the

exponential function. On the contrary, the induction instance corresponding to the

LT-formula Tp2 _x [ _xq is expressing a metalinguistic fact, namely that all

substitutional instances of the formula 2x [ x are true. The shift in meaning

between the two properties is subtle but crucial: in one case we talk about properties

of a mathematical function, in the second one about formulas of L.

Let’s be clear about this point to avoid further confusion: from the internal point of

view of the theory of truth, the two instances of induction corresponding to the

formulas Tp0 ¼ 0q ^ 2x [ x and Tp2 _x [ _xq are, strictly speaking, indistinguishable.

However, from the external point of view of our informal metamathematical practice,

they are clearly distinct. It is only because arithmetic plays a double role of theory of

syntax and of object theory, that we can consider both instances as belonging to

essentially the same class. This observation even led to the formulation of theories of

truth that keep separate the domain of syntactic objects from the mathematical or, more

generally, the object theoretic universe (see Halbach 2011; Heck 2015; Nicolai 2015).

It’s not our intention here to consider the details of this alternative framework: we will

keep implicit the distinction between metalinguistic and object-linguistic instances of

the induction schema. However, in what follows we will not extend the induction

schema of S to the truth predicate to avoid any conflation between the two levels.

This is not to say, however, that we will not be able to state the truth of the

induction schemata of S: if in fact the extended induction schema in combination
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with natural truth axioms would lead us to very strong theories, the assumption of

the truth of all its instances is fairly innocent. As we shall see shortly, indeed, the

result of adding to a wide class of base theories S the claim ‘‘all instances of the

induction schema of S are true’’ is still compatible with the alternative reading of

(ICT) that we suggested in the previous section and that is aimed at harmonizing

(ICT) with foundational standpoints such as Tait’s, Isaacson’s and Nelson’s.

3.1 The Semantic Core

We have seen that a strong reading of (ICT) may conflict with foundational

standpoints based on a form of ‘‘arithmetical completeness’’ or ‘‘epistemic stability’’

of some arithmetical system S. In fact, if (ICT) entails reflection principles for S and

therefore claims in the arithmetical language that are not provable in S alone, then in

accepting S one is also bound to accept arithmetical consequences that go beyond S,

thus contradicting its alleged completeness.

In concluding Sect. 2, we envisaged the possibility of an alternative reading of

(ICT) that could be immune from this problem. But how could this alternative

reading look like? A hasty thought may be to let (ICT) depend exclusively on one’s

foundational standpoint. This is highly problematic. Let’s consider, for example,

someone who embraces only what’s derivable or interpretable in PA: by a well-

known result of Feferman, she will also accept :ConðPAÞ.16 By contrast, we have

seen that there are several authors disposed to accept ConðPAÞ after accepting PA.

Under this relativistic view of (ICT), therefore, different readings of it would not

only lead to alternative sets of principles, but rather to sets of principles inconsistent

with each other. In the specific case of :ConðPAÞ just mentioned, moreover, there

is a clear departure from what we previously defended as a necessary condition for

any plausible reading of (ICT), namely the truth of the principles at play. The

interpretation of (ICT) that we now introduce will keep a strong link with the notion

of truth, while rejecting the sort of rigidity detected in Feferman’s reading of (ICT).

Our approach substantiates a dynamic reading of (ICT) as displaying a fixed,

semantic component—called the semantic core of implicit commitment—and a

variable component that is relative to one’s foundational standpoint.

The semantic core amounts to a set of principles of meta-theoretic nature that enable

us to reflect in a natural and uniform way on our acceptance of different arithmetical

theories. To introduce it, we argue in three stages. In the first step, we need to expand

the language of S with semantic resources, a truth predicate T in particular, and

characterize it with a minimal set of principles capturing its disquotational nature.

More precisely, given a suitable S, the theory TB½S� is obtained by expanding LS with

the predicate T and extending its axioms with the schema

Tpuq $ u ðtbÞ

for all LS-sentences u. An immediate consequence of tb is the truth of each axiom

of S; it is clear therefore that if S has finitely many non-logical axioms, tb suffices to

16 See Feferman (1960).
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conclude 8x ðAxSðxÞ ! TxÞ, that is the single sentence expressing the truth of all

(non-logical) axioms of S. Further claims of clear metalinguistic nature are also

provable in tb. For instance, TB½S� proves the claim that the global reflection

principle for S entails the consistency of S. Formally:

8x ðPrSðxÞ ! TxÞ ! ConðSÞ ð4Þ

This implication is simply obtained by instantiating (the code of) an S-falsity in

GRP(S).

Already in this first step, it should be clear that we aim at semantic extensions of

S in the sense of coherent articulations of a concept of truth over the base theory S.

For instance, one could simply extend S with the sentences 8x ðAxSðxÞ ! TxÞ or

GRP(S) as new axioms. The sentences above clearly do not suffice to count as

axioms for the truth predicate T: in the first case the resulting theory is clearly

interpretable in S by taking the truth predicate in question to be defined by AxSðxÞ
itself; in the second case, the full schema tb is not necessary to derive (4), as the

‘‘modal’’ axiom Tp/q ! / suffices. This suggests that, in these extensions of S,

concepts other than truth could be employed as natural readings for the predicate T.

From the perspective of the theorems of S, TB½S� looks fairly innocent. First of

all, it is conservative over S. Moreover, if S is reflexive [i.e. the consistency of any

finite sub-theories of S is provable in S, (Mostowski 1952)], TB½S� is also relatively

interpretable in S. This is because in any given proof in S the truth predicate T can

be replaced by a S-definable truth predicate. This suffices to witness the

conservativity and, by Orey’s compactness theorem (see Lindstrom 1997, §7), the

interpretability of TB½S� in S for reflexive S.

The disquotational principles tb, however, fall short of many further desiderata

that we would like to ascribe to the semantic core of implicit commitment. For

instance the schema tb cannot enable us to establish that instances of modus ponens

preserve truth because every generalization crucially involving truth provable in

TB½S� can be reduced to a finite conjunction. This means, in particular, that TB½PA�
can only prove the weaker

8x; y ðSentnLðxÞ ^ SentnLðyÞ ^ Tðx!
�
yÞ ^ Tx ! TyÞ ð5Þ

where SentnLðxÞ expresses that x is a sentence of L of complexity � n for any given

n but not for arbitrary sentences of L and the expression !
�

(and f
�

more generally)

represents in S the syntactic operation of entailment (resp. f).17

Therefore, pure disquotation is not sufficient for our purposes. As second step,

one might think of extending TB½S� with further truth-theoretic principles so as to

derive the non-restricted versions of (5). Obvious candidates are the so-called

compositional truth axioms such as ‘‘:u is true if and only if u is not true’’, which

govern the interaction of the truth predicate and the logical constants. For instance,

since we might safely assume that S is formulated in a calculus in which modus

17 Here the complexity of a formula can simply be taken as the number of logical symbols in it.
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ponens is the only logical rule of inference [see, for instance, Enderton (2001)], we

would only need to add to S the sentence

8x; y ðSentLðxÞ ^ SentLðyÞ ^ Tðx!
�
yÞ ^ Tx ! TyÞ ð6Þ

to derive the truth-preserving character of modus ponens.

If S is finitely axiomatized, therefore, TB½S� ? (6) enables us to prove that all

non-logical axioms of S are true and that—if the logic is rightly chosen—that all

rules of inferences of S preserve truth. However, there are at least two problems with

this theory: in the first place, it does not articulate a coherent semantic notion as we

usually demand that the truth of a compound sentence depends on the truth of its

compounds, and this theory has no such feature. In short, the theory is not (fully)

compositional. Secondly, if S is not finitely axiomatizable, it cannot prove that all

non-logical axioms of S are true. In fact, as the next lemma shows, it cannot do so

even if we add to S a fully compositional theory of truth:

Lemma 1 Let S be formulated in LT and assume it satisfies full induction for LS—

that is the truth predicate is not allowed into instance of induction. This theory

extended with the sentences

CtermLS
ðx1Þ ^ � � � ^ CtermLS

ðxnÞ !
�
TpRð _x1; . . .; _xnÞq $ Rðx1; . . .; xnÞ

�
ð7Þ

SentLS
ðxÞ !

�
Tð:

�
xÞ $ :Tx

�
ð8Þ

SentLS
ðx!

�
yÞ !

�
Tðx!

�
yÞ $ ðTx ! TyÞ

�
ð9Þ

SentLS
ð8
�
vxÞ !

�
Tð8

�
vxÞ $ 8yTxð _y=vÞ

�
ð10Þ

cannot prove that all axioms of S are true.

In (7), R ranges over the relation symbols of LS.

Proof Assume that S þ (7–10) proves

8x ðAxSðxÞ ! TxÞ; ð11Þ

We can then show that the formula

KðxÞ :$ ð8y� xÞ ðPrvSðyÞ ! TendðyÞÞ ð12Þ

is progressive in it. In (12), PrvS is a Db
1 predicate expressing the notion of being a

proof in S and endð�Þ is a Rb
1-function that outputs the last element of of a S-proof.

Therefore, still by Solovay’s result on subcuts (see Proposition 2), we find an initial

segment of the S-numbers satisfying the property expressed by KðxÞ in which all

logical axioms of S are true and then prove the consistency of S relative to this initial

segment.18 By a strengthening of Gödel’s second incompleteness theorem due to

Pudlák (1985, Cor. 3.5), therefore, this is sufficient to show that S cannot interpret

18 For details concerning this strategy, see Nicolai (2016).
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S þ (7–10). However, S þ (7–10) is known to be interpretable in S (see Enayat and

Visser 2015, §16.5). h

The full compositional clauses (7–10) are without doubt desirable features for a

notion of truth. Moreover, this notion of truth is a natural component of the acceptance

of S via soundness claims, and soundness claims are, in turn, an integral part of many

accounts of implicit commitment. As we have seen, however, there are also limitations

to which soundness claims one can assume, depending on one’s foundational stance.

We have considered already examples of such limitations: for example the ones related

to the reflection principles RFNðEAÞ or RFNðPAÞ—and, a fortiori, their global

versions—for positions such as finitism or first-orderism à la Isaacson. Nonetheless,

as we shall soon point out, no such limitations occur for the compositional truth

clauses. What is even more surprising is that we can allow explicit soundness claims

relative to the non-logical axioms of an arbitrary theory S without trespassing into the

realm of what’s unprovable in S. This can be established in full generality.

As the third, and final step of the construction of the semantic core we consider

the theory CT½S� obtained by expanding the language of the theory S with a truth

predicate not allowed into instances of the non-logical axiom schemata, and of

extending S with the principles (7–11).

Halbach (2011) attempts to prove the conservativity of CT½S�n(11) via a cut

elimination argument. His argument relies on a reformulation of CT½S� in a (finitary)

two-sided sequent calculus with cut by rewriting (7–10) as rules of inference, e.g.

and then proceeds via an attempt to eliminate cuts on formulas of the form Ts from

derivations in this theory. Leigh (2015) shows that this strategy can only remove

cuts of a provably fixed complexity (cf. Leigh 2015, §3.7). He then shows how to

fix Halbach’s strategy by finding suitable bounds to the complexity cð�Þ of truth-cut-

formulas in CT½S�-derivations—for S interpreting EA—so that CT½S� can be

embedded in the system resulting from replacing the full cut rule for formulas of the

form Ts with a weaker set of rules

for each n and a suitably bounded version of (11). Crucially, this system enjoys a

standard version of cut-elimination for cuts on truth ascriptions. Derivations of

truth-free sequents of the form C ) D are then regimented via the notion of

approximation of a sequent, first considered by Kotlarski et al. (1981), that enables

one to control such proofs in CT½S� and transform them into proofs of the same

sequent where only applications of the modified rules are employed. Finally, one
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eliminates cuts on formulas of the form Ts in a standard manner. This strategy

yields the following:

Proposition 4 (Leigh 2015, Thm. 2) For S � EA, CT½S� is a conservative

extension of S.

Proposition 4 tells us that the semantic principles of the theory CT½S� can safely

be included into the semantic core of the implicit commitment of S. Our main thesis

is now taking shape: in accepting an arithmetical theory S, we are always implicitly

committed to the theory CT½S�, which amounts to the fixed, invariable component of

our commitment. Crucially, whether or not CT½S� exhausts our commitments

depends on the particular foundational standpoint that led us to accept a given

theory S in the first place.19

This completes the presentation of the semantic core for implicit commitment: it

amounts to an extension of S with compositional truth axioms and the claim that all

the (non-logical) axioms of S are true. In our account, it is a necessary condition for

implicit commitment but possibly not a sufficient one: this will depend on the

foundational standpoint that one is adopting in justifying a specific formal system S.

Before giving concrete examples of how our reading of (ICT) in the light of the

semantic core applies to the positions considered above, we anticipate two possible

objections to the structure of the semantic core.20 The semantic core may be accused

of being too artificial given (1) the absence of natural soundness principles such as

ConðSÞ, and (2) the absence of the closure under first-order reasoning. We consider

the two objections separately.

To the first objection a natural reply is that it is not the task that we are assigning

to the semantic core to decide which soundness extension of the base theory S is

natural or not. The question we are addressing is in fact whether someone who

considers a base theory S as epistemically stable in the sense of Sect. 1 can

consistently accept (ICT): with the semantic core we aim at providing a framework

to answer this question affirmatively. In other words, we do not claim that, say,

ConðSÞ is not a natural principle to endorse once that one has endorsed S, but we

share with Dean the view that if the justification of ConðSÞ is equivalent to

principles that are incompatible with the alleged epistemic stability of S, as we have

seen is the case in the case of finitism and first-orderism, then such a justification

cannot be implicit in the mere acceptance of S but should stem from more general

considerations. For instance, as we shall see in a moment, although Isaacson

considers ConðPAÞ a principle of infinitary nature, this does not mean that its

acceptance should be denied: this principle simply follows from the acceptance of a

suitable portion of infinitary mathematics although it is not implicit in the

acceptance of PA that—according to first-orderism—delimits the boundaries of

19 If one grants a claim repeatedly reported in print (for instance by Fischer 2009, Thm 3.4) one might

think that the theory CT½S� could not be extended with the assertion of the truth of non-logical axioms of S

because CT½S�? ‘‘all logical axioms of S are true’’ proves the consistency of S. Unfortunately, the

argument for that claim contains a gap as shown in detail in the Appendix to Wcisło and Łełyk (2017).

We strongly conjecture that CT½S�?‘‘all logical axioms of S are true’’ is conservative over S, but no full

proof has been found yet.
20 We thank the anonymous referees for allowing us to clarify this point.
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finite mathematics. This is all compatible with the framework provided by the

semantic core.

To address the second objection a similar line of reasoning can be employed:

closure of truth under logical reasoning is not a principle that we deem incorrect or

undesirable. However, under the condition of the epistemic stability of a theory S,

the reflection principle for logic entails principles that are incompatible with this

epistemic status such as ConðSÞ. Still, we have shown that there are weaker forms

of soundness—such as the truth of all axioms of S—that are on the one hand not

available in S but on the other deductively innocent with respect to S: this makes, we

will argue, these weaker soundness claims fit the demands of the implicit

commitment thesis (ICT) without falling prey to Dean’s objections. Once again, the

point is that someone may be implicitly committed to the semantic core even if she

believes that in accepting S she is not implicitly committed to accept principles

unprovable in S: in turn, this does not rule out that she might also have an

independent justification for these unprovable claims such as ConðSÞ or the

reflection principle for logic.

4 Schematic Reasoning and the Structure of Implicit Commitment

Several foundational standpoints, including the ones considered above, can be

compared and distinguished by taking into account the role of the schemata of

induction of the arithmetical systems associated to them. In this section we employ

these different understandings of schematic reasoning to assess the effectiveness of

our dynamic analysis of implicit commitment based on the distinction between the

constant semantic core and its variable components.

At one end of the spectrum, we find advocates of restrictions of the arithmetical

induction schema. Tait’s finitism and Nelson’s ultrafinitism are paradigmatic

examples of this sort: in both cases claims about the totality of natural numbers can

only be reached for a class of ‘‘acceptable’’ predicates that are proper subclasses of

the ones expressible by formulas of the language of arithmetic. The remaining

instances of the induction schemata are, according to these standpoints, at least

suspicious if not false. At the other end of the spectrum, we find authors defending

the view that, once accepting a system S, not only we should impose no restriction

to non-logical axiom schemata, but we should also allow for extensions of these

schemata to possible expansions of the starting language.

This latter view can be understood of course in different senses. On a radical

reading, similar to what Vann McGee suggested in (1997), the acceptance of, say,

PA, should commit us to instances of induction corresponding to any subset of

natural numbers. This possibility is supposed to be rooted in how mathematical

language itself is learned and communicated.21 This radical form of open-endedness

21 As McGee writes:

Our understanding of the language of arithmetic is such that we anticipate that the Induction

Axiom Schema, like the laws of logic, will persist through all such changes. There is no single set

of first-order axioms that fully expresses what we learn about the meaning of arithmetical notation
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of axiom schemata leads quickly to very strong theories, in fact, categorical ones.

Critics of this position notice in fact that—despite McGee’s efforts—it is also

committed to the rich ontology of second-order logic (see Pedersen and Rossberg

2010).

Feferman’s notions of reflective closure of a theory S (see Feferman 1991)

represent a less radical alternative. It comes in two versions: the reflective closure of

S and the schematic reflective closure of S. In both cases, the interaction of

semantic resources and the power of the induction of PA enable one to reach strong

subsystems of second-order arithmetic. In the case of the reflective closure of PA
one reaches the strength of ramified analysis up to e0 via the theory of self-

applicable truth KF, whereas the schematic reflective closure of PA takes the form

of a type-free theory of truth as strong as ramified analysis up to the Feferman-

Schütte ordinal C0 (i.e, roughly speaking, the theory resulting form iterating

predicative comprehension a-times for a\C0) (Feferman 1964; Schütte 1965).22

Feferman’s approach therefore, although clearly committed to schematic reasoning,

is clearly weaker than McGee’s, since it only delivers a proper subsystem of second-

order arithmetic.

Among the authors that hold an intermediate position between the ones just

considered we find Isaacson himself. He does not seem to impose any restriction to

the class of formulas allowed to appear into instances of induction; however, he also

clearly states that any further instance of induction involving extra-vocabulary

would be intrinsically higher-order, inasmuch as the axioms of full PA suffice to

characterize what he calls ‘‘finite mathematics’’ (Isaacson 1996, p. 204).

4.1 Restricted Schemata and (ICT)

In Sect. 2, we have defended the claim that the notion of truth is integral to any

reasonable articulation of what we are implicitly committed to when accepting a

Footnote 21 continued

when we learn the Induction Axiom Schema, since we are always capable of generating new Induction

Axioms by expanding the language (McGee 1997, p. 58).

22 More precisely, such a theory amounts to an extension of the type-free theory of truth KF in LT [ fPg
equipped with a schematic rule of substitution wðPÞ=wðvÞ, with uðPÞ not containing truth, that replaces

every subformula P of wðPÞ with v. The axioms of KF are the axioms of PA formulated in L [ fTg and

the sentences

CtermLT
ðx~Þ !

�
ðTpRð _x~Þq $ Rðx~ÞÞ ^ ðTp:Rð _x~Þq $ :Rðx~ÞÞ

�
ð13Þ

ðTpTð _xÞq $ TxÞ ^ ðTp:Tð _xÞq $ T:
�
xÞ ð14Þ

SentLT
ðxÞ ! ðT:

�
:
�
x $ TxÞ ð15Þ

SentLT
ðx

�̂
yÞ ! ðTðx

�̂
yÞ $ Tx ^ TyÞ ð16Þ

SentLT
ðx

�̂
yÞ ! ðT:

�
ðx

�̂
yÞ $ T:

�
x _ T:

�
yÞ ð17Þ

SentLT
ð8
�
vxÞ ! ðT8

�
vx $ 8y ðCtermLT

ðyÞ ! Txðy=vÞÞ ð18Þ

SentLT
ð8
�
vxÞ ! ðT:

�
8
�
vx $ 9y ðCtermLT

ðyÞ ! T:
�
xðy=vÞÞ ð19Þ
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given arithmetical theory. Of course this comes as no surprise and, as we have seen,

our view is shared by many authors. Our intention, however, is not to reformulate a

widespread position on the role of truth in foundations, but to suggest something

further. What concern us, indeed, is to examine how the notion of truth, as a device

to unravel our commitments, can coexist with narrow readings of the implicit

commitment thesis (ICT), namely readings which do not allow for claims that are

underivable in the accepted arithmetical theory, above all uniform reflection

principles.

The case studies of narrow readings of (ICT) stem Dean’s analysis of Tait’s and

Isaacsons’ theses. For instance, in the case of Tait’s finitism, the uniform reflection

principle for the subtheory EA of PRA was sufficient to deliver the full schema of

induction of PA (see Proposition 1). If the finitist’s reading of (ICT) involved

principles such as RFN(PRA), she would also be committed to PA, which clearly

outstrips primitive recursive reasoning. There is, therefore, a strong temptation for

concluding that (ICT) is incompatible with finitism or, even more drastically, that it

is false. This temptation, we argue, should be resisted. The semantic core for

implicit commitment introduced in Sect. 3 gives us a way to accommodate the

strong intuition that, even for the finitist’s defense of PRA, (ICT) is best spelled out

in terms of truth; the semantic core also tells us, however, that these additional

resources, being clearly of meta-theoretic and not of object-theoretic nature, do not

interfere with the arithmetical content of PRA that the finitist wants to preserve.

Over PRA—or better its conservative extension in first-order logic QF-IA—

which is known to be not finitely axiomatizable, the semantic core does not only

involve compositional truth axioms of the form (7–10) on page 19, but also the

single sentence stating the truth of all the infinitely many non-logical axioms of

PRA. By Proposition 4, the resulting theory CT½PRA� does not yield new

arithmetical consequences. Nonetheless, it is capable of deeming true the equations

for all primitive recursive functions and all instances of the induction of PRA, all

instances of each individual propositional tautology of LT, and establishing that the

rules of inference of the chosen logical calculus are truth-preserving. The first and

last fact follow respectively from the assumption (11) and the axiom (9). The truth

of all instances of each propositional tautology follows from a suitable instance of a

logical axiom schema of CT½S� and the axioms (7–10): for instance, in the case of

the law of excluded middle, one starts with Tx _ :Tx for SentLS
ðxÞ and concludes,

by (8) and (9), 8xðSentLS
ðxÞ ! Tðx_

�
:
�
xÞÞ.

The bearing of this fact should now be clear: we have already argued that truth

provides a powerful and natural tool to express one’s commitment to a base theory,

PRA in the case at hand. Dean cast doubts on the possibility of harmonizing a

satisfactory notion of truth and the exclusive commitment to theorems of PRA that

appears to be essential to Tait’s standpoint. The semantic core offers a minimal

sense in which this balancing process can actually succeed; we do have a notion of

truth satisfying some adequacy requirements, such as the partial metalinguistic

reflection available in CT½PRA� just considered, and yet we cannot go beyond

what’s provable in PRA.
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Moving to what we called ultrafinitism, in order to draw conclusions along the

lines of the ones just obtained for PRA, we would need an analogue of Proposition 4

for all theories containing S1
2. This claim is, unfortunately, still only a likely

conjecture. At any rate, this more general version of Proposition 4 would then

establish that the semantic core for implicit commitment relative to a theory S gives

us a theory that does not give us new theorems in LS, and in particular P1-sentences

such as the consistency of Robinson arithmetic, ConðQÞ, that are not available in

ultrafinitistically acceptable theories.

4.2 Full Arithmetical Induction and Beyond

Isaacson considers PA as specifying a self-standing portion of mathematical reality.

In his view, full-induction on L still belongs to or even delimits the realm of finite

mathematics: principles that properly extend PA, such as RFN(PA), must therefore

appeal to infinitary resources. Again, the semantic core offers us the possibility of

identifying a metalinguistic component of the implicit commitment to PA and by

distinguishing it from the object-linguistic, or mathematical content of PA. The

conservativeness of CT½PA� over PA tells us that proofs of theorems in the language

of L in CT½PA� are not affected by the metalinguistic component embodied in the

truth principles of CT½PA�.
Arguably, Isaacson would regard the semantic components of CT½PA� as

intrinsically infinitary, but this is not a problem for our reading of (ICT). The

implicit commitment to PA, if one regards it as ‘‘arithmetically complete’’, would

be delimited by the semantic core, and its non-arithmetical, infinitary components

do not interfere in any way with its mathematical ones in CT½PA�-proofs. This is

once more an example of how the semantic core can combine the idea of a

privileged access to a definite portion of mathematical reality given by a specific

theory with the natural act of reflection on the metalinguistic aspects of this theory

via semantic notions.23

Isaacson’s position clearly contrasts with views such as Feferman’s, who

considers the extension of the induction schema of PA as essential to unravel the

class of arithmetical assertions we are implicitly committed to when accepting PA
in the first-place. In such positions, schemata are open-ended, and there is no need to

stop the truth predicate to interact with the arithmetical content of PA. The semantic

core CT½PA�, in such view, counts only as a class of necessary conditions that our

notion of truth has to satisfy. The theory of truth Feferman is putting forward to

fully articulate our commitment to PA, namely KF, contains CT½PA� and is

spectacularly stronger than it: it corresponds in fact to e0-many iterations of ACA. In

terms of classical ordinal analysis, KF will prove the same arithmetical theorems as

PA plus transfinite induction up to /e0
ð0Þ.24 According to our proposed reading of

23 This separation between object-linguistic and meta-linguistic aspects of theories can be made even

more drastic. We refer to Nicolai (2015) for an overview of such options.
24 For a definition of the Veblen functions, see Pohlers (2009).
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(ICT), therefore, Feferman’s acceptance of PA is tied not only to the semantic core,

but to a substantial amount of mathematical principles that can be measured by the

big gap separating the transfinite induction schemata for L associated to the ordinals

�0 and /e0
ð0Þ. In moving from Isaacson’s to Feferman’s position, the semantic core

stayed the same, whereas the variable component, which was empty in the case of

Isaacson, now includes a large amount of analysis.

There is, however, an unexpected bridge between Isaacson’s and Feferman’s

positions. Once the truth predicate is not allowed into the induction schema of PA,

KF becomes much closer to CT½PA�. This theory, called KF� in Halbach (2011), is

in fact conservative over PA. Any model M of PA can be expanded to a model

ðM; SÞ of KF� by tanking S to be a fixed point of a suitable positive inductive

definition capturing the clauses of the construction of a Kripke truth set (see Kripke

1975).

Instead of being a mere curiosity, this point highlights how the difference

between the view of implicit commitment associated with the first-orderist à la

Isaacson and with the predicativist may be seen as not lying in their conception of

truth, but in their understanding of schematic reasoning. If in fact our distinction

between object-linguistic and metalinguistic component of a truth theory is granted,

then the first-orderist can articulate a robust notion of truth and yet distinguishing

between the arithmetical reality that PA is isolating and the mere metalinguistic

consequences that become available once one moves to its extension CT½PA�. She

might even move to a type-free notion of truth, as articulated by KF�, for instance,

without exceeding the arithmetical consequence of PA. Once the truth predicate is

allowed to do mathematical work, however, the situation drastically changes.

This scenario reinforces the usefulness of our analysis of implicit commitment

via the semantic core: the latter in fact gives us necessary conditions for soundness

extensions of a mathematical theory we accept and it is compatible with both

restrictive and relaxed readings of ( ICT ).

Of course once one has reached a satisfactory halting point, such as KF for

Feferman’s analysis of implicit commitment, nothing prevents one from asking

herself what we are implicitly committed to when we are accepting the theory of

truth. If Feferman’s strategy is extended to the theory of truth, for instance, one can

obtain extensions of KF via uniform reflection principles. Indeed, Horsten and

Leigh (2017) have shown that extensions of KF can be obtained by starting with

TB½PA� via finitely many iterations of uniform reflection.25 However, since we are

not interested in the theory of truth itself, but only in the boundary between

acceptable and non-acceptable characterizations of the implicit commitment of the

base theory, we do not consider further this possible extension of our analysis.

25 A similar strategy for a nonclassical setting in which the starting point are type-free principles of the

form Tpuq , u, with , a suitable non classical biconditional has been carried out by Fischer et al.

(2017).
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5 Conclusion

The implicit commitment thesis (ICT) prescribes that, in accepting a system

S formalizing some portion of mathematics—arithmetic in our case studies—one is

committed to resources not immediately available in S. Traditionally, these

additional resources have been understood in terms of sentences in the language of

S that are not provable in S already, typically reflection principles for S expressing

the soundness of S.

As recently shown by Dean, however, certain foundational standpoints consider a

particular arithmetical theory S as delimiting a privileged region of mathematical

reality. Reflection principles for the theory S therefore, being closely related to

mathematically meaningful principles that lie beyond the space of mathematics

occupied by S (see Sect. 2), should be considered as incompatible with those

foundational standpoints. Examples of such positions are Tait’s justification of

PRA, Isaacson’s thesis on PA, and to some extent Nelson’s strict finitism.

Starting with the observation that soundness claims of S can only be fully

articulated by resorting to the notion of truth, we have proposed a dynamic and

widely applicable reading of (ICT). The additional resources we are committed to

when accepting S will contain principles for truth: these principles, what we called

the semantic core for implicit commitment, are fixed and shared by any reasonable

justification for the acceptance of a system S. They amount to compositional truth

principles and include minimal soundness claims for S such as the truth of all its

non-logical axioms, the truth of all instances of each propositional tautology and, in

reasonably chosen cases, the truth-preserving character of its rules of inference.

Further principles extending the semantic core of implicit commitment depend on

the justification for S provided by the idealized mathematician.

This analysis that we have provided is adequate with respect to the case studies

considered in the first part of the paper: the semantic core, when added to S,

prevents one from proving new consequences in the language of S besides the ones

already available in S itself. Moreover, all natural articulations of soundness

assertions of S in the form of stronger truth principles will contain the semantic

core; whatever variable components one is willing to add to the semantic core,

therefore, they will not be incompatible with it.26
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Ketland, J. (2005). Deflationism and the Gödel phenomena: Reply to Tennant. Mind, 114, 75–88.

Kotlarski, H., Krajewski, S., & Lachlan, A. H. (1981). Construction of satisfaction classes for nonstandard

models. Canadian Mathematical Bulletin, 24, 283–293.

Kreisel, G. (1970). Principles of proof and ordinals implicit in given concepts. In J. Myhill & R. E. Vesley

(Eds.), Intuitionism and proof theory, studies in logic and the foundations of mathematics (Vol. 60,

pp. 489–516). Amsterdam: North-Holland.

C. Nicolai, M. Piazza

123
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