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Abstract

Protein structure is tightly intertwined with function according to the laws of evolution. Understanding how structure
determines function has been the aim of structural biology for decades. Here, we have wondered instead whether it is
possible to exploit the function for which a protein was evolutionary selected to gain information on protein structure
and on the landscape explored during the early stages of molecular and natural evolution. To answer to this question, we
developed a new methodology, which we named CAMELS (Coupling Analysis by Molecular Evolution Library
Sequencing), that is able to obtain the in vitro evolution of a protein from an artificial selection based on function.
We were able to observe with CAMELS many features of the TEM-1 beta-lactamase local fold exclusively by generating
and sequencing large libraries of mutational variants. We demonstrated that we can, whenever a functional phenotypic
selection of a protein is available, sketch the structural and evolutionary landscape of a protein without utilizing purified
proteins, collecting physical measurements, or relying on the pool of natural protein variants.

Key words: b-lactamase, beta-lactamase, AmpR, DCA, direct coupling analysis, evolutionary couplings, Sequel, PacBio,
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Introduction
Deleterious mutations can damage the fold and the function of
proteins. These mutations are usually rescued, in the course of
evolution, by compensatory mutations at spatially close sites
that restore contacts and thus preserve structure and function.
This creates a correlation between protein contacts and the
mutational space of the residues involved that can be com-
pared with shackles. These shackles, that are called evolutionary
couplings, can be observed by looking at the covariation be-
tween positions in a multiple sequence alignment. Through
them, it is possible to predict the network of contacts that
determine protein fold. Recently, direct coupling analysis
(DCA) and other techniques based on the interpretation of
evolutionary couplings have emerged as powerful novel meth-
odologies that enable to predict protein architecture, fold and
interactions (Weigt et al. 2009; Marks et al. 2011; Morcos et al.
2011; Ekeberg et al. 2013; Kamisetty et al. 2013; Ovchinnikov
et al. 2014, 2017). These techniques have immensely increased
the arsenal of tools at the scientists’ disposal to obtain

structural information (Altschuh et al. 1987; Göbel et al.
1994; Pazos et al. 1997). One of the several advantages of an
evolution-based approach is also the possibility to obtain struc-
tural information of proteins notably difficult to crystalize and/
or model, such as membrane (Hopf et al. 2012) or disordered
proteins (Toth-Petroczy et al. 2016). DCA has been successfully
applied at the proteome scale leading, for instance, to the
successful prediction of all the binary protein interactions in
Escherichia coli (Hopf et al. 2014) and the retrieval of the
structures of entire protein families and subfamilies present
in the PFAM database (Uguzzoni et al. 2017).

We wondered if these tools could be applied to other types
of evolutionary data such as libraries of proteins evolved
in vitro by carefully controlled mutations and selection
(Chen and Arnold 1993; Zaccolo and Gherardi 1999). This
artificial form of evolution generates a collection of functional
variants of the protein of interest by coupling a targeted
mutagenesis of the gene to a strong selection pressure for
the desired phenotypic trait. The method is widely used in
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synthetic biology as a tool of protein engineering. It is also
important in studies aimed at understanding evolutionary
pathways. The application of DCA on an artificial library
would give the possibility to generate data without the
need of relying on natural evolution, paving the way for struc-
ture determination by artificial selection in vitro. This process
is however very challenging, because the construction of mo-
lecular evolution libraries requires a platform able to sequence
the whole gene, at the risk of losing the co-occurrence of
mutations in distant positions. Another constraint lies in
the size of the mutational space sampled by molecular evo-
lution because coupling techniques need a high-complexity
highly mutated collection of sequences to retrieve couplings.

Here, we describe a general methodology based on molec-
ular biology techniques coupled to computational analysis.
Our method goes all the way from an original ancestor gene
sequence, to the generation and collection of sequences, to
data analysis using molecular evolution. We generated a large
library of variants of a target gene, followed by in vivo phe-
notypic selection to isolate functional variants of the ancestor
protein. The plasmid library carrying the mutants was then
sequenced and analyzed by DCA. By this method, we were
able to demonstrate that we can retrieve evolutionary con-
straints and get partial information on protein structure.
During the course of this artificial evolution of an ancestor
gene, we noticed that the sequences collected after cumula-
tive rounds of mutagenesis become progressively more sim-
ilar to the collection of natural variants. They are ultimately
comparable to an early stage of the natural evolution of the
protein, when the variants explored are still fairly similar to
the founding progenitor that underwent mutagenesis.

By substituting natural with in vitro evolution, we explored
a brand new application of DCA which overcomes the lim-
itations that have so far hindered the generality and scalability
of the method. As a proof of concept, we chose TEM-1 beta-
lactamase (b-lactamase), a member of the b-lactamase family
of enzymes that confer to bacteria the ability to destroy the
beta lactam ring of penicillin and derivatives such as ampicil-
lin (Abraham and Chain 1940). Resistance allows bacteria to
grow in the presence of these antibiotics, a function that is
easily amenable to a phenotypic selective pressure. TEM-1 is a
golden standard for molecular evolution experiments
(Bershtein et al. 2006; Salverda et al. 2010; Deng et al. 2012;
Jacquier et al. 2013; Firnberg et al. 2014; Stiffler et al. 2015). Our
data clearly demonstrate that proteins evolved by molecular
evolution can be used to collect evolutionary and structural
data and provide a new tool to all branching fields of evolu-
tionary coupling and molecular evolution research.

Results

Experimental Design
We employed random mutagenesis from error-prone PCR
(Wilson and Keefe 2001) to generate a large library of variants
of the target gene, followed by transformation into bacterial
cells and in vivo phenotypic selection to isolate functional
variants of the ancestor protein (fig. 1A). The plasmid library
carrying the mutants was then collected from the surviving

bacteria and subjected to Pacific Bioscience single-molecule
real-time (SMRT) sequencing (Eid et al. 2009). We used the
TEM-1 b-lactamase of the pUC19 plasmid (Norrander et al.
1983). TEM lactamases are encoded by genes around
�900 bp in length and are present in several natural variants
(Bush 1997). Their structure consists of a three-layer (aba)
sandwich (fig. 1B). As a reference for the mutational land-
scape, a collection of b-lactamase sequences (named
“UniProt” data set) was obtained from the UniProt database.
To obtain a heavily mutagenized b-lactamase without dam-
aging the survival rate, the library was subjected to consecu-
tive cycles of mutations, selection, and amplification through
the use of error-prone PCR (Wilson and Keefe 2001) and
growth in selective semisolid media (Elsaesser and Paysan
2004; Fantini, Pandolfini, et al. 2017).

Classical directed evolution performs the selection process
in solid media and the results is usually limited to few tens of
thousands colonies directly proportional to the number of
Petri dishes employed. Cultures grown on solid media are
not easily scalable and the biomass they produce is limited.
On the other hand, liquid media cultures are easily scalable
and produce a large amount of biomass but fail to preserve
the library complexity and distribution. In liquid media, fast
growing phenotypes are not constrained and thus tend to
dominate the culture while rare variants are prone to disap-
pear. Maintaining a high complexity is critical, so neither solid
nor liquid culture is the optimal solution. The issue was
bypassed by encapsulating the colony forming units (CFUs)
able to survive the selection in a matrix of a semisolid medium
which allows local growth but prevents diffusion (supplemen-
tary fig. S1, Supplementary Material online). After colonial
growth the plasmid library can be collected from the media
by centrifugation. We will refer hereafter to the library at the
end of each cycle as a generation of molecular evolution. In
total, we performed 12 generations. The 1st, 5th and 12th
generations were sequenced with the Pacific Bioscience
(PacBio) Sequel platform and analyzed. Deep sequencing is
able to sequence millions of reads.

Molecular Evolution Libraries Mimic Natural
Variability
We first thought to perform complete combinatorial two-
residue deep mutational scanning to create a library (Olson
et al. 2014). However, although powerful, deep mutational
scanning does not represent the mutational space that na-
ture would explore during evolution. We used instead error-
prone PCR to drive mutagenesis and a phenotypic selection
to collect the functional variants to mimic natural evolution.
To survive the selective environment, the bacterial cells had
to incorporate one of the plasmids of the mutant library. The
variant of b-lactamase carried by the plasmid had to maintain
functionality after mutagenesis. The first event is favored by a
high transformation efficiency allowed by the use of the
pUC19 plasmid vector, while the enzyme functionality is
expected to decrease with the incremental number of muta-
tions introduced in the lactamase sequence. The mutations
generated during mutagenesis are at the same time necessary
for evolution but harmful for survival. To obtain a high
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mutational load while still guaranteeing a good amount of
survivors, we applied a generational approach, where new
mutations were built on a collection of mutated but func-
tional sequences from the previously selected generations.
The number of mutations and the related final 2.5–3% sur-
vival rate was regulated by limiting the error-prone PCR to 20
cycles every generation. To verify the progress of molecular
evolution and maintain libraries with a fair amount of com-
plexity, we controlled three parameters throughout 12 gen-
erations: the number of transformants in the bacterial
growth, the number of mismatching amino acids in a small
sample of clones and the information entropy at each amino
acid position.

Since each bacterial colony in the selection medium
expresses a single-functional variant of the protein, the num-
ber of transformants poses a theoretical upper limit to the
library diversity. We kept the number of transformants at
least in the same order of magnitude of the sequencing ca-
pacity of the next-generation sequencing (NGS) platform
(between 100,000 and 1 million) to guarantee a good library
complexity (supplementary fig. S2, Supplementary Material
online). We raised this limit to 400 thousand clones in the last
few generations to increase the probability to sequence
unique variants. After each generation a small sample of
clones underwent sequencing to estimate the number of
mismatching nucleobases and amino acids with respect to
the ancestor sequence (fig. 2A). After 12 generations of mo-
lecular evolution when sequences had a median of 25 muta-
tions in the peptide chain, the system is still showing a nearly
linear increment in the number of mutations per generation.

To complement this information, the same parameter was
estimated from the sequencing results of the three sequenced
generations. The distribution of the number of mismatches
per sequence fitted the theoretical Poissonian model
expected for a mutagenesis (gen1: k¼ 5.12 s¼ 0.0054; gen5:
k¼ 12.54 s¼ 0.0084; gen12: k¼ 26.9 s¼ 0.0159) (fig. 2B). The
median number of mutated residues observed when the col-
onies were picked matched perfectly that obtained from NGS
(fig. 2A) and what was expected from a Poissonian model,
proving that the handful of colonies picked are representative
of the mutations present in the library. We concluded from
the observed steady increase in the number of mutations
throughout molecular evolution that the final mutation frac-
tion of the evolved protein library can be regulated by in-
creasing the number of generations. Sequencing data also
allowed us to calculate the mutation fraction per amino
acidic position, defined as the frequency of the observed
mismatching amino acids compared with the original
pUC19 b-lactamase sequence. After 12 generations of molec-
ular evolution, we started to observe several instances of ge-
netic drifts, in which a mutation became more common than
the original residue at a given position (supplementary fig. S3,
Supplementary Material online). This phenomenon makes
the mutation fractions less informative, since they involve a
comparison to the original residue that is now a minority. To
circumvent the problem, we measured the Shannon infor-
mation entropy of each residue, obtaining an approximation
of the mutagenesis impact for each position, without the
need of a reference sequence (fig. 3A and supplementary
fig. S4, Supplementary Material online). The proportion of

FIG. 1. Schematic representation of the pipeline and structure of the target protein. (A) The coding sequence of target protein is cloned in a plasmid
vector for mutagenesis. After several rounds of mutation and selection for the desired function, the new protein variants are collected in a DNA
library. NGS of this library provides sequences that after processing are used for generating the prediction. (B) Experimental structure and main
features of TEM-1 beta-lactamase (derived from PDB 1ZG4). The N- and C-terminal helices (orange) form a subdomain with the five stranded
central beta sheet (blue) linked to the helical subdomains (red) by two hinge regions on the opposite side of the sheet. The catalytic pocket resides
at the interface between the beta sheet and the helical domain. Helix H2 (purple) is the innermost helix of the helical domain and comprises both a
catalytic and a structural function.
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mutants and the information entropy of each residue were
strongly correlated to each other and with those observed
from the UniProt data set (mutant frequency: rho 0.624,
P< 1e-15; entropy: rho 0.632, P< 1e-15) (supplementary
fig. S5, Supplementary Material online). We also observed
that, at each position, both the entropy and the mutation
frequency of the molecular evolution libraries are almost al-
ways lower than the corresponding ones from natural evolu-
tion (fig. 3B and supplementary fig. S5, Supplementary
Material online). This is likely a limit to which a molecular
evolution library would tend, given enough mutagenesis
rounds.

For reference, the Ostermeier’s mutational database from
deep mutational scanning experiments on TEM-1 has a sim-
ilar entropy profile (Firnberg et al. 2014). We constructed a list
of viable mutations by pooling together the mutations from
Ostermeier’s data able to grow in 32 lg/ml ampicillin and
above in a single collection. The Shannon entropy of the
Ostermeier’s database correlates with all our sequenced gen-
erations and in particular with the first generation (correla-
tion with gen1: rho 0.560; gen5: rho 0.530; gen12: rho 0.494; all
of these with a P value <1e-15). In the first generation, the
accumulation of mutations is reduced and the network of
interconnected residues is less developed compared with the
last generation. Thus our entropy profile is more similar to
what can be obtained from a single-residue deep-mutational
scanning.

Single-Molecule Sequencing Overcomes Library
Restrictions
We used the PacBio single-molecule real-time (SMRT) se-
quencing platform (Sequel) (Eid et al. 2009) that can obtain
up to a million readings per sequencing cell (van Dijk et al.
2018) and is compatible with the complexity of a molecular
evolution library. The total number of transformants for the

three sequenced libraries, that pose a limit to the library com-
plexity, were 200, 260, and 400 K CFUs, respectively, while
each sequencing run generated 192, 289, and 157 K raw read-
ings after quality filtering. The sequenced DNA fragment was
over 800 base pairs. Other more common NGS platform like
Illumina HiSeq or MiSeq are instead characterized by decreas-
ing quality with increasing base position (Kircher et al. 2009)
and thus cannot sequence more than few hundreds base
pairs. It is possible to scale up the number of sequencing cells,
the amount of bacteria that undergo the selection process
and the size of the DNA fragment used in mutagenesis to
satisfy the requirement of this technique for any desired pro-
tein. Our mutational library is the first molecular evolution
library sequenced in a third generation sequencer, thus
guaranteeing a high volume of high quality single-molecule
data. This library is also one of the most mutated TEM b-
lactamase libraries ever produced, where its elements diverge
from the ancestral protein for ca. 10% of their original amino
acidic composition.

The Mutational Landscape of the Evolved Library
Reflects the Structural Features of TEM b-Lactamases
The b-lactamase structure (PDB entry 1ZG4, Stec et al. 2005)
was used as a reference structure to assess the contact pre-
dictions and the accuracy of the analysis. TEM1 b-lactamase is
a globular protein with a roughly ellipsoidal shape (fig. 1B)
(Jelsch et al. 1993). It can be divided into two subdomains.
One is composed of a five stranded beta sheet, the N-termi-
nus and the two last C-terminal helices. The second is a big
helical subdomain located on the other side of the sheet. The
protein contains a large hydrophobic core between the beta
sheets and the helical subdomain, and a second hydrophobic
region in the core of the helical domain. The innermost helix
of this domain, H2, contains both structural and catalytic
residues. The PDB structure lacks the first 23 amino acids,

FIG. 2. Sequencing and molecular evolution results. (A) Boxplot showing the number of amino acid mutations (mismatches) observed in the
sample of clones sequenced after each generation (Sanger sequencing, black border) and after NGS (red border). The white diamond dots indicate
the mean. (B) Frequency distribution of the number of aminoacidic mutations observed in the sequenced libraries (solid lines) and their respective
Poissonian regressions (dotted lines: gen1: k¼5.12; gen5: k¼12.54; gen12: k¼26.9).
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corresponding to the leader sequence for secretion, which is
cleaved during protein maturation to allow protein release.

The profiles of the mutation rate and entropy per residue
observed in our molecular evolution libraries are conserved
and increase across generations, in line with what is observed
in the UniProt data set of the naturally evolved b-lactamase
family (fig. 3B). This profile reflects the different mutation
propensities of the various residues as well as the interactions
with the solvent and the polarity of the local environment.
We observed a high degree of conservation in the presence of
bulky nonpolar amphipathic residues like tryptophans
(W2108, W227, and W286) and methionines (M184, M209,
and M268) and in cysteines involved in the sulfur bridge (C75
and C121), whereas small residues show in general an

increased variability (supplementary fig. S6, Supplementary
Material online). Small nonpolar amino acids such as valine,
leucine, and isoleucine form a group of interchangeable res-
idues in several positions (45, 54, 171, 196, and 244). The small
polar counterparts glutamate and aspartate can be found
replacing one another in others (33, 36, 113, 195, and 269).

A periodic alternating pattern of high and low entropy can
be seen in the long alpha helices H1, H9, H10, and H12. This
reflects the nature of the two halves of the helices, one being
hydrophilic partially exposed to the solvent, the other con-
taining hydrophobic residues packed against the protein core.
H2 is different from the other helices because it is located
deeply inside the hydrophobic core of the protein and medi-
ates most of the hydrophobic interactions of the protein. This

FIG. 3. Sequencing and molecular evolution results. (A) Shannon information entropy (H) per residue position of the sequenced 12th generation
library. The colors and annotations follow the secondary structure classification present in the PDB structure 1ZG4 (red: alpha helices, blue: beta
sheets, tan: coils). The leader peptide sequence (light gray) is missing in the structure. (B) Comparison of the Shannon information entropy
between the UniProt and the in vitro evolved data sets. (C) Relationship between the entropy of the residues obtained in molecular evolution and
the mean B factor of the residues observed in the reference structure 1ZG4. Since the reference structure is missing the leader peptide, the first 23
amino acids do not have an associated Bfactor. (D) t-SNE dimensionality reduction applied to the joined UniProt/error-prone PCR 12th generation
library data set. Hamming distance between sequences was used as distance metric. Gray and cyan represent the original data set (gray UniProt,
cyan epPCR library). Overlaid on top, the UniProt sequence membership to one of the three main families of type A beta-lactamases retrieved from
the corresponding UniProt annotation are displayed in bright colors. The original pUC19 beta-lactamase before molecular evolution is classified as
a TEM beta-lactamase (red).
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parallels the lower mutation frequency and entropy observed
in all our libraries (fig. 3A and supplementary figs. S3 and S4,
Supplementary Material online), since mutations in the hy-
drophobic core have a high chance to damage the fold and
thus impair protein function.

It is also noteworthy the correlation (Spearman correla-
tion: rho 0.53, P< 1e-15) between the mean crystallographic
B factors of residues in the reference structure and the infor-
mation entropy retrieved from the evolved library (fig. 3C).
This correlation likely reflects the tendency of residues that
are part of ordered structures to be averse to mutation.

Although the mutational landscape of TEM-1 b-lactamase
covers a broad range of substitutions, four mutations became
more frequent than the original sequence in the last gener-
ation of molecular evolution by genetic drift: M180T, E195D,
L196I, and S281T (supplementary fig. S3, Supplementary
Material online). Among these, M180T (M182T in the stan-
dard numbering scheme of class A b-lactamases, Ambler et al.
1991) is a well-documented mutation known to contribute
to the protein stability and found both in natural variants
(Huang and Palzkill 1997; Wang et al. 2002) and in mutagen-
esis experiments (Goldsmith and Tawfik 2009). E195D and
L196I (E197D and L198I in standard numbering) are muta-
tions in the H8/H9 turn which are commonly found during
mutagenesis (Salverda et al. 2010). D197 is the consensus
amino acid for this position (197) in the original alignment
of class A b-lactamase (Ambler et al. 1991).

We next used principal component analysis (PCA) on the
Shannon entropies associated to each position of each data
set, to evaluate the evolution of the mutagenized libraries
toward the natural diversity (supplementary fig. S7,
Supplementary Material online). We also applied PCA (sup-
plementary fig. S8, Supplementary Material online) (Wang
and Kennedy 2014) and t-SNE (fig. 3D) on the sequences
themselves, to evaluate the degree of dispersion for each
generation in comparison to the natural variants. These anal-
yses suggest that subsequent mutagenesis cycles consistently
evolve the sequences in a concerted direction that is similar
to that observed in the natural data set. t-SNE also suggests
that the cluster of the evolved lactamase is only an extension
of the TEM family and does not cluster with other members
of class A b-lactamase (fig. 3D). Thus the molecular evolution
libraries describe the mutational space of a specific protein
and not of a protein family.

From this analysis, we may conclude that the library has
retained the most salient characteristics of natural b-
lactamase variants and exclusively represents the mutational
landscape around the protein of interest. This means that the
library provides a snapshot of the early stages of evolution,
neither too similar nor too diverse from the original sequence,
but exploring the landscape of mutational substitutions in a
direction analogous to that followed by natural selection.

The Observed Mutational Events Mimic the Early
Stages of Protein Folding
After several generations, we extracted the longest open read-
ing frame from each of the 157 K circular consensus reads
obtained after sequencing the last generation of mutagenesis

and removed those shorter than the wild type protein. We
built a multiple sequence alignment (MSA) from the remain-
ing 106 K (68.9%) translated peptides and kept only the orig-
inal 286 positions related to the wild type enzyme. To predict
which residue pairs interact, we applied a custom implemen-
tation of DCA that applies a pseudolikelihood approximation
(Balakrishnan et al. 2011) to this MSA as well as to the MSA
obtained similarly from the other two sequenced generations
of mutagenesis (see Materials and Methods). We retained the
286 residue pairs (0.72% of the total possible contacts) which
showed the highest DCA score and were more than five res-
idue apart in the MSA and compared them to the contact
map of the reference structure (gen1: supplementary fig. S9,
Supplementary Material online, gen5: fig. 4A, gen12: fig. 4B).

The first generation library was clearly unable to provide
any meaningful result, while the fifth generation showed an
interesting pattern. We may observe that the predictions of
interacting residues made from the fifth generation library
tend to cluster and are crowded in the area near the diagonal.
Of particular interest are the elements at the N-terminus
(residues 1–60) where the prediction clearly overlaps with
the interactions made by the first few N-terminal secondary
structure elements (helix H1 with the first two strands of the
central beta sheet). Other important clusters can be seen in
correspondence to the branching points from the diagonal
(near the diagonal around residues 100, 160, 200, and 260).
This set of contacts running perpendicular to the diagonal
reflects the presence of hairpins. The clustering at the branch-
ing point should be expected because the branching point is
where the chain inversion takes place. Since loops are more
flexible and solvent exposed than other secondary structure
elements (Schlessinger and Rost 2005), their composition is
less critical for protein fold and allows a broader range of
variation. More variations in amino acid composition increase
the probability to observe a covariation pattern in DCA. Long-
range contacts, the most important interactions to recon-
struct the tertiary structure of a protein, were also observed
(fig. 4A). Most of them overlap with the structural trace, with
only five exceptions that do not match the reference (M180 is
the position that shows the strongest genetic drift and is very
noisy). Two of these long-range contacts predict the interac-
tions between the N- and C-terminal helices (Q274-K30, R73-
Q37). The other two mediate the interaction of the terminal
helices with the beta sheet: T261-L38 mediates the interaction
between the middle strand B9 of the sheet and the N-termi-
nal helix H1; S281-E46 mediates the interaction between the
C-terminal helix H12 with the first beta strand B1. M180-
F58 is a contact between the loop between B6 and H9 and
the lateral beta strand B2. This is an interesting area be-
cause F58 stands at the very beginning of one of the two
hinge regions that connect the two domains of the pro-
tein. The last two contacts are at the opposite ends of the
innermost helix H2 that carries both a catalytic and struc-
tural function. Q240-L89 is an interaction between H10,
the last helix of the helical domain, and the loop at the
end of H2, while S240-M67 mediates the interaction of H2
with a conserved serine in the loop between the beta
strands B7 and B8.
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The data are still too sparse to define clear cut interaction
zones and tend to cluster around the diagonal. The protein
prediction also shows a cluster of points (residues in positions
40–70 against residues around positions 100) that do not
reflect any structural contact.

We tried to improve the prediction power of the analysis
by increasing the number of mutations with successive

generations of molecular evolution, but we observed only a
strong enrichment of proximal interactions (near the diago-
nal of the contact map), at the expense of long-range con-
tacts. The strongest predictions from these mutational data
appear to mimic the interactions observed during the early
events of protein folding (Rose 1979), where the first and
stronger connections are established between adjacent

FIG. 4. DCA predictions of the beta-lactamase contact map. (A) DCA plot showing the top L (L¼ 286, the length of the protein amino acid chain)
contact predictions by DCA obtained from the fifth generation of molecular evolution. The graph is an L�L grid where each axis represents the
amino acid positions of the lactamase chain, from the N- to C-terminals. Each point represents the pair of residues described by its coordinates. The
graph is separated in two halves. In the lower half black dots represent pairs of residues that have at least a pair of their respective nonhydrogen
atoms<8.5 Å apart in the reference crystallographic structure (PDB ID: 1ZG4). These positions are considered residues in contact with each other.
In the upper half the top L DCA predictions from the molecular evolution data set are plotted above the gray-mirrored silhouette of the
crystallographic contacts. Pairs where the respective residues are less than five positions apart in the lactamase alignment are excluded from
this ranking to promote visualization of long-range interactions. In the graph the color indicates the shortest path (as the lowest L1 norm in the
graph grid space) connecting the point to a contact pair position (a pair of residues that have nonhydrogen atoms<8.5 Å apart in the reference
structure). (B) DCA plot showing the top L (L¼ 286, the length of the protein amino acid chain) contact predictions by DCA obtained from the
12th generation of molecular evolution. (C) Plot of the top L DCA predictions of the UniProt data set. (D) Plot of the top L/2 partial correlations of
residue positions on DCA score obtained from the 12th generation of molecular evolution.
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secondary structure elements. In general, the predicted con-
tact distribution was nonrandom and contacts tended to
crowd near the extremities of helices ignoring highly con-
served areas like H2 (residues 67–83). Other minor crowding
was observed around two big loop regions (90–100 and 160–
170). The N-terminal crowding of contacts is likely the con-
sequence of the degeneration and duplication around the
starting site that was already observed during Sanger se-
quencing, while the C-terminal density is probably caused
by sequential mutated positions in sequences where a C-ter-
minal frameshift creates a block of strongly correlated posi-
tions without significantly affecting the functionality of the
protein. The sparse number of contacts in conserved areas
like H2 reflects the difficulty of creating a robust prediction
when observing an inadequate number of mutations (fig. 3A).
We thus face an interesting problem: the more contacts a
residue is involved in, the more harmful a mutation becomes
and we observe a limited number of variations. Since the
mutational space at each position dictates the prediction
power, the contacts formed by the most important residues
will also be the ones harder to predict.

Improving the Prediction Power in Key Areas and
Retrieval of Long-Range Interactions
To improve the accuracy and the spread of the predictions,
we applied a correlation-based approach identical to that
proposed for fitness (Schmiedel and Lehner 2019). Residues
in structural proximity are often deeply interconnected and
likely to share the same environment. Consequently they
produce similar interaction patterns. Exploiting this similarity,
we could obtain interactions from conserved positions by
calculating partial correlation of the protein positions on
the DCA patterns. This is because highly interconnected posi-
tions will have a characteristic association pattern across the
protein easily recognizable by partial correlation, even if the
original DCA predictions are inaccurate.

To validate this approach, we calculated the partial corre-
lation with the UniProt data set (supplementary fig. S10,
Supplementary Material online). As expected, the predictions
from partial correlation are similar to the coupling scores
obtained by DCA (fig. 4C) and are in general less densely
packed around the diagonal albeit showing a few more in-
correct predictions.

The partial correlation approach applied to the molecular
evolution data set gave very different results compared with
the original coupling score (fig. 4D) and resulted more similar
to what observed in the UniProt data set, where the predicted
interactions were more broadly distributed and both the
terminals and the diagonal far less crowded (long-range con-
tacts [>50 residues]: gen5: 55; gen12: 13; gen12 [partial
correlation]: 31; Uniprot: 71). The accuracy of the prediction
was relatively low (supplementary fig. S11, Supplementary
Material online), even though several times bigger than the
random expectation. This inaccuracy was caused by low pre-
cision and not by a low trueness to the underlying values as
proven by the low value of shortest path from a true contact
observed for the predicted pairs (supplementary fig. S12,
Supplementary Material online). Along the contact map

diagonal, we observed densities in correspondence to strong
secondary structure interactions, like the proximity between
N-terminal sheets and helix H1 represented in the graph by
the cluster of contacts near residues 25–60. Other off-
diagonal crowding (around residues 90–170) could be ob-
served in the helical domain in correspondence to the inter-
actions formed by the bending of the peptide chain in a turn.
These interactions and similar ones, formed between the C-
terminal half of the five stranded sheet and the C-terminal
helices of the protein (200–285), were also visible in the orig-
inal DCA score (fig. 4B) and the most evident areas along the
diagonal of the UniProt data set where the predicted inter-
actions clustered (fig. 4C). Long-range contacts, represented
in the contact map by data points far from the diagonal, were
significantly different if we evaluated the interactions
obtained by partial correlation and those predicted by the
original DCA score. Partial correlation prediction showed sev-
eral off-diagonal prediction points, mainly associated with
highly interconnected regions or between elements of the
hydrophobic core. In particular, we observed several contacts
of H2 (67–83) with other elements of the helical domain (H2
to H10, residues 65–210). This demonstrated the centrality of
H2, even though the region is per se characterized by a small
mutational landscape (fig. 3A). The analysis identified also
another cluster in the helical domain describing the proximity
of helix H10 (199–210) to helix H5 (117–126).

Overall, we were able to obtain a contact map that
matches effectively that of the crystal structure without any
prior structural information. Our analysis demonstrated the
possibility to obtain evolutionary couplings from a collection
of sequences evolved in vitro. DCA highlighted the strongest
evolutionary signal of proximal interactions (around the di-
agonal of the contact map) while partial correlation extracted
information on the relations between secondary structure
elements. These results demonstrate that molecular evolu-
tion can be used as a powerful tool for structural prediction.

Discussion
The study of evolutionary couplings is an emerging frontier of
bioinformatics, able to retrieve the network of interactions
that dictate protein fold and function (Weigt et al. 2009;
Marks et al. 2011; Morcos et al. 2011; Ekeberg et al. 2013;
Kamisetty et al. 2013; Ovchinnikov et al. 2014, 2017). The
innovation brought by the technique is the ability to produce
structural information without the need of experimental
structure determination, relying only on the traces left by
evolution on protein sequence. The correlations are obtained
from the continuous polishing process that the flow of time
exerts on sequence to optimize/retain function. This makes
any structural information retrieved by the analysis like a fossil
imprint of an in vivo interaction.

The current computational techniques based on evolu-
tionary couplings require thousands of sequences to provide
statistically meaningful results (Morcos et al. 2011; Marks et al.
2012; Ekeberg et al. 2013). Thus, current evolutionary coupling
methods are limited to ancient and universal protein families,
for which sequence data are available across a huge variety of
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species. This is a major limitation: a large number of human
proteins, for instance, do not have ancient phylogenetic origin
(Lander et al. 2001). They are therefore not amenable to
evolutionary coupling methods based on phylogenetic data-
bases and can only be tackled by experimental approaches.

Another advantage of mutational libraries with respect
to the classical phylogenetic data is the representation of a
sequence instead of a family, since the Markovian models
that retrieve the sequences for the alignments in the stan-
dard analysis do not differentiate close paralogs from true
orthologs. This poses a serious limitation for protein fam-
ilies rich in paralogs like globulins, for which it is nearly
impossible to obtain information for a specific member of
the family. The ability to represent a protein instead of a
family is a new feature that can enable to distinguish a
different level of details during the biological interpretation
of the data.

Here, we presented a strategy (CAMELS, Coupling Analysis
by Molecular Evolution Library Sequencing) that overcomes
this limitation and lays the bases to develop a general method
to gather structural information on protein contacts without
performing experimental structural studies or the need for
thousands of natural variants of the target protein across
natural evolution. We provided a unique pipeline from the
molecular to the computational levels using most advanced
techniques and solved a number of crucial technical prob-
lems. Because DCA is good at capturing compensating muta-
tions, a high mutational load in the collection of functional
sequence variants is recommended. When a single harmful
mutation appears in the sequence, the protein will likely not
be functional and bacteria that carry that specific variant will
die. However, if a second mutation able to compensate the
damage is also present in the sequence, the function of the
protein can be restored and the host cell survives. At the time
that the selection is introduced, both mutations must already
be present in the sequence, hence the more mutations are
inserted in each round of mutagenesis, the better. We favored
this coincidence by increasing the selective pressure in the
generations that we sequenced. This way, if a single mutation
is harmful but still barely allows survival in a low selective
pressure, there will still be few generations in which the sec-
ond compensating mutation could occur before the strong
selection of the last generation reaps all the sequences carry-
ing mutations that are not compensated.

The CAMELS method is based on the power of phenotypic
selection. We produced one of the largest and most diversi-
fied molecular evolution libraries that shows high single-mol-
ecule sequencing quality and sequence divergence of nearly
10% (i.e., 25 amino acid mutations and around 55 mismatch-
ing nucleobases) from the original ancestral protein. It is also
the first library to have been sequenced at the full-length
protein level by third NGS. Other databases of TEM-1 muta-
genic variants are available, some of which were created using
epPCR (Jacquier et al. 2013) or deep mutational scanning
(Firnberg et al. 2014) as the mutagenic mechanism. These
public data sets cannot be used to infer structural informa-
tion because they are mostly composed of single amino acid
variants and thus cannot generate evolutionary coupling. The

sequencing reads do also not always cover the full-length
molecule thus losing long-range information (Firnberg et al.
2014). Our method is different since it produces a deep, high
quality and full-length sequencing of a prolonged selection-
driven evolution of the TEM-1 lactamase instead of focusing
on the effects of single mutations.

We used our library to obtain structural information, by
creating sequence diversity through mutation and analysis of
artificial evolutionary couplings. We showed that the pre-
dicted contact map matches successfully that of the reference
crystal structure even though at the cost of a bias toward
short- and medium-range contacts. These results show that
we are effectively simulating the course of evolution even if
we cannot entirely compress the millions of years of natural
selection into the couple of months of in vitro mutagenesis
and selection. We are nevertheless successfully following the
early stages of the landscape exploration of the evolving pro-
tein using this to extract direct information about protein
folding.

Pilot work on structure prediction from molecular evolu-
tion experiments have been published during the develop-
ment of the present study (Figliuzzi et al. 2016; Rollins et al.
2019; Schmiedel and Lehner 2019). Our approach offers sev-
eral advantages as compared with these methods. The strat-
egies previously used can only be applied to proteins strictly
under 200 amino acids and can thus be used solely on a small
fraction of the proteome from all three domains of life (Zhang
2000). In particular, crucial for the success of our method is
the growth of the library in a matrix of a semisolid medium,
which allows local growth but prevents diffusion.
Importantly, the use of third-generation sequencing is a
strong advantage of our method that can be used to easily
overcome the sequence read length limitations of traditional
sequencing platforms. A key advantage of CAMELS is the
absence of protein length constraints, since both the muta-
genesis strategy and the sequencing allow processing of pro-
teins of any length.

Another limit of previous techniques is the impossibility to
exhaustively sampling all double mutants in the limited li-
braries that can be screened in complex systems like human
tissue cultures. Structure determination with the previous
methods would only be achievable if the libraries were biased
to massively reduce diversity. Therefore previous strategies
are best suited to small proteins, or to protein systems where
the directed evolution strategy can handle large libraries, such
as in the case of the GB1 domain (Olson et al. 2014). CAMELS
employs instead multiple rounds of mutation enrichment to
compress the variability in a library of few hundred thousand
elements. This solves the problem of limited library diversity
and has the potential to be of practical value to investigations
of moderately sized proteins in systems where the library size
is an important constraint.

The CAMELS method is in principle generalizable: by gen-
erating hundreds of thousands of mutagenic functional var-
iants, it permits to focus on any protein and builds the
foundation for a targeted structural analysis. This may allow
to investigate by DCA-like methods evolutionary younger
proteins, like eukaryotic-only or vertebrate-only proteins or
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human proteins of neurobiological interest, ultimately solving
species-specific questions that need species-specific answers.

What are the current limits of CAMELS? The most impor-
tant one is the inability to fully reconstruct the protein struc-
ture in the current proof of concept formulation of the
technology. Nevertheless CAMELS provides local and long-
range contacts. Improvements might be envisaged to over-
come this limitation in future work. The main factors that
could allow a complete structure determination are likely the
number and distribution of mutations, the sequencing depth,
and the strength of the selective pressure. All these parame-
ters can be easily scaled up, under straightforward conditions,
that were, however, beyond the scope of the present proof-
of-concept study.

The data revealed a strong correlation between the mean
crystallographic B factor of residues in the reference structure
and the information entropy retrieved from the evolved
library. This happens because residues that are part of or-
dered regions as in the protein core are adverse to muta-
tion and thus the most conserved ones. Harming these
zones would affect the fold and function. A drastic increase
in the number of mutations would help to generate vari-
ability in these conserved key residues that could be trans-
lated in better evolutionary couplings. The same logic
applies by forcing a distortion in the mutation propensities
to favor the generation of mutations in key areas. The
problem of this approach is that we would distort
the landscape obtained by unbiased epPCR. Modifying
the driving force of the mutagenesis from epPCR to deep
mutational scanning could provide a diverse landscape
that might produce more precise couplings for the reasons
mentioned. A critical comparison between the landscapes
and couplings produced by epPCR and deep mutational
scanning may be important to improve the technique in
future implementations. Increasing the sequencing depth
and the corresponding scale of selection is also an easy
albeit currently expensive solution. This would likely in-
crease the statistical power and allow low-entropy regions
to show enough variation to be translated in couplings.

We noted that the fifth generation produced more long-
range contacts in the standard DCA prediction in respect to
the 12th generation. A possible explanation could be that the
fifth generation produced nearly twice the number of reads of
the 12th generation that in turn could alter the number of
mutations in key areas. Another interpretation is that accu-
mulation of mutations over the generations could create a
broad compensatory effect that partially hinders the results.
The correlated mutations accumulating throughout evolu-
tion are a mixture consisting of directly and indirectly inter-
acting mutations. Since most random mutations are
destabilizing, under the severe mutational load exerted on
TEM-1 by selective pressure, most of the variants in the library
should have a compromised stability. This strong selection
pressure toward fixation of stabilizing mutations might thus
favor the accumulation of correlated mutations of residues
that do not directly interact. A more systematic investigation
of this point using different target proteins will be important
in the future.

An important requirement of CAMELS is phenotypic se-
lection, a necessity that makes the method truly evolutionary:
like in the natural environment, selection is always based on
the target protein function. As a consequence, selection must
be designed on a case-by-case basis. For some proteins (such
as TEM1 b-lactamase), a phenotypic selection scheme is read-
ily designed. More in general, selection schemes based on
interactions could be considered that is probably the best
approach to generalize the method. CAMELS could easily
be modified, for instance, for the study of protein–protein
interactions, exploiting selection schemes for interacting pro-
teins coupled to SMRT sequencing, which would allow ob-
servation of protein pairs in a single-sequencing read.
Selection schemes based on signaling by the mutated target
protein could also be envisaged.

The next obvious step will be to exploit standard and
generic selection methods that rely on the folding and bind-
ing properties of the mutant proteins in the library, regardless
of their functional activity. We have, for instance, already
planned to use selection schemes to select for interacting
partners, using a strategy, we already pioneered for screening
more stable antibodies against a given target (Visintin et al.
1999; Chirichella et al. 2017). We could apply CAMELS to two
covariant interacting proteins, which could then be
coselected by a two-hybrid scheme for preserving their mu-
tual binding. This strategy will provide information on the
direct or indirect structural determinants for protein–protein
interacting domains. This would be a revolutionary break-
through that is not restricted to specific cases. It should be
noted however that to successfully apply CAMELS, a good
selection is critical. Although testing the function of a protein
may seem a simple requirement on paper, the difficulty of
developing an effective screening strategy cannot be under-
estimated especially for understudied proteins.

An elegant recent study successfully used deep mutagen-
esis to attempt determination of an unknown structure of a
large complex human receptor in a physiologically relevant
active conformation (Park et al. 2019). However, this example
was somewhat limited to the specific structure of the protein.
It will be interesting to apply CAMELS to members of the
GPCR family, exploiting the signal transduction propriety of
the receptors coupled to a screenable selection readout.

Finally, one of the biggest obstacles to an in vitro evolution
approach was the precarious equilibrium between mutagenic
strength and selection survival rate. We solved this issue with
a generational approach. We can further envisage future
applications of the method to a continuous evolution in a
specialized bioreactor. Overall, the CAMELS method provides
a solid methodology that bypasses the most limiting factors
of evolutionary coupling analysis techniques and opens a new
page in structural biology and evolution.

Materials and Methods

Plasmid Construction and Cloning
The backbone plasmid vector pUC19 (Norrander et al. 1983)
(ATCC 37254) from ThermoFisher Scientific (SD0061) was
modified to add flanking XhoI and NheI restriction sites to
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the already present AmpR ORF to be able to easily clone in
later steps the mutagenized AmpR,. To construct the plasmid,
both the b-lactamase gene and the complementary plasmid
vector fragments were amplified with oligonucleotides carry-
ing the XhoI and NheI restriction sites (XhoI_bla_fw:
tgaaaactcgaggaagagtATGAGTATTCA, NheI_bla_rv:
acttgggctagctctgacagTTACCAATGC; NheI_backbone_fw:
gtcagagctagcccaagtttactcatatat, XhoI_backbone_rv:
ctcttcctcgagttttcaatattattgaag). They were then digested
with the restriction enzymes and ligated with T4 ligase (sup-
plementary fig. S12, Supplementary Material online). The 50

restriction site was placed just behind the Shine–Dalgarno
sequence and the ability to metabolize ampicillin was
assessed by growth of E. coli carrying the plasmid in selective
media. The new plasmid is named pUC19a (supplementary
fig. S13, Supplementary Material online). The AmpR gene of
pUC19 (GenBank: M77789.2) expresses a TEM-1 (class A) b-
lactamase whose structure can be viewed in the 1ZG4 PDB
entry.

Error-Prone PCR
Mutagenesis of the AmpR gene was achieved with epPCR
(Wilson and Keefe 2001) in a mutation prone buffer with
manganese ions, low magnesium, unbalanced dNTPs concen-
trations, and a low fidelity DNA polymerase. Both low mag-
nesium and the presence of manganese ions affect the
efficiency of magnesium ions as cofactors of the polymerase
by competition or by sheer low availability, while the unbal-
anced dNTP concentration favors mutations by scarcity of
substrate and the deliberate usage of a low fidelity polymerase
further increases the mutation rate. The reaction mix con-
tained Tris–HCl pH 8.3 10 mM, KCl 50 mM, MgCl2 7 mM,
dCTP 1 mM, dTTP 1 mM, dATP 0.2 mM, dGTP 0.2 mM, 50

primer (bla_mut_fw: tgaaaactcgaggaagagtATG) 2mM, 30

primer (bla_mut_rv: acttgggctagctctgacagTTA) 2mM, tem-
plate DNA 20 pg/ml, MnCl2 0.5 mM (added just before reac-
tion starts), Taq G2 DNA polymerase (Promega M784A)
0.05 U/ml (added just before reaction starts). The error-prone
PCR was carried out in serial reactions of four cycles in 100ml
in the recommended supplier reaction conditions and with
an annealing temperature of 62 �C. In the first reaction tube,
the DNA template was a gel purified XhoI/NheI digested b-
lactamase fragment 20 pg/ml, while subsequent reactions
were fed with 10ml of the previous PCR product.

Library Construction
The purification and digestion protocols before library con-
struction changed slightly among generations. However, the
optimized version of the pipeline employed in the last gen-
erations proceeded as follows: gel purify �80ml of the PCR
reaction mixture underwent a cumulative amount of 20
cycles of error-prone PCR, avoiding carrying over other reac-
tion byproducts as much as possible. PCR was performed in
standard reaction conditions to amplify the product and
guarantee that the two strands of the amplicons did not
contain mismatching base pairs. This step helped reducing
the ambiguity in base calling during the circular consensus
analysis. The purified PCR product was digested with XhoI

and NheI restriction enzymes for 3 h in CutSmart buffer
(NEB). One hour before the end of the reaction, an appropri-
ate amount of calf intestinal phosphatase (CIP) (NEB
M0290S) was added following the supplier’s instruction.
Adding CIP during insert digestion strongly reduced the for-
mation of insert concatemers, guaranteeing a single b-lacta-
mase variant per plasmid. After gel purification to remove the
CIP, the ligation between the fragment and the XhoI/NheI
digested backbone of pUC19a was performed in a 1:1 insert:
vector ratio. Formation of backbone concatemers was
expected and unavoidable, but did not hinder the selection
efficiency.

Selection
The ligated library was purified and then transformed by
electroporation in ElectroMAX DH5a-E competent cells
(Invitrogen No. 11319019). We employed ultralow gelling aga-
rose (SeaPrep, Lonza No. 50302) 0.3% in Luria Broth (LB)
medium with ampicillin 25mg/ml to grow the bacteria
(Elsaesser and Paysan 2004; Fantini, Pandolfini, et al. 2017)
obtaining between 0.4 and 3 million surviving colonies per
liter. The bacterial growth in the 5th and 12th generation was
performed in LB medium with ampicillin 100mg/ml to in-
crease the stringency of the selection before the sequencing.
After 40 h growth, the bacterial pellet was retrieved by cen-
trifugation 7500RPM at RT and the plasmids extracted by a
maxi prep.

Sequencing
Construction of the libraries and sequencing on PacBio
Sequel platform were carried out by Arizona Genomics
Institute (AGI). After sequencing, the library was processed
with the PacBio official analysis software SMRTlink to obtain
the circular consensus (using ccs2) of the reads. In this step,
the sequences where the consensus was built from less than
ten sequencing polymerase passes or when the predicted
accuracy was <100 ppm (Phred 40) were filtered out from
the data set. The result was then mapped to the wild type b-
lactamase XhoI-NheI digestion fragment of pUC19a with
bowtie2 (Langmead and Salzberg 2012) to retrieve the coding
strand and the start site of the lactamase. After in silico trans-
lating the data set, protein collection was further refined
keeping only the elements coding a protein of 286 amino
acids (as the wild type) and then aligned using MAFFT
(http://mafft.cbrc.jp/alignment/software/; last accessed
November 14, 2019) (Katoh 2002) to construct the MSA.
The 12th generation had issues with the in silico translation
step caused by degeneration of the N-terminus as well as the
starting site, resulting in a big amount of sequence with a
premature termination codon. To circumvent the problem,
the longest open reading frame, identified with a custom
script, was considered the correct genetic sequence and the
translated products were filtered to keep the sequences cod-
ing for proteins of at least the wild type length. This procedure
was required to remove from the alignment bad quality reads,
unrelated sequences and protein variants carrying a frame-
shift which would generate a strong correlation noise be-
tween adjacent amino acid positions. It is interesting to
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notice that classical evolutionary data supplied to the algo-
rithm do not have this problem, and thus this is a new issue
brought by the mutagenic data. This is probably because
frame shifted sequences do not carry a sufficient neutrality
to the system to be retained throughout natural evolution,
while in the small landscape generated by the mutagenesis,
every protein that satisfies the selection criteria of activity will
be part of the collection.

To compare our data to the natural occurring mutations
of TEM b-lactamase, we created a reference data set by run-
ning a small seed of TEM b-lactamases in Hmmer (Finn et al.
2011) on the UniProt database (https://www.uniprot.org; last
accessed November 14, 2019). An alternative data set that
could be used as a control is the Pfam family of b-lactamase 2
(PF13354). Since the Hmmer data set from Uniprot is a col-
lection of sequences that specifically matched the profile of
the TEM family while Pfam family is a more general b-
lactamase collection, we preferred the former as reference
for our analysis.

Direct Coupling Analysis
The predicted contact pairs were obtained using a custom
implementation (Fantini, Malinverni, et al. 2017) of the asym-
metric version of the DCA (Weigt et al. 2009; Morcos et al.
2011) that applies the Pseudo-likelihood method to infer the
parameters of the Potts model (Balakrishnan et al. 2011;
Ekeberg et al. 2013):

P Xð Þ ¼ 1

Z
exp

XN

i
hiðXiÞ þ

XN;N

i;j
JijðXi; XjÞ�;

h

where X is a sequence of the MSA and Z is the partition
function.

Sequences were reweighed using an identity threshold that
reflects the mutation rate of the generation analyzed to re-
move parental inheritance (intended as “phylogenetic” bias
created during mutagenesis) and sampling biases in the MSA.
The first generation was too similar to the wild type to apply
any sampling correction without unreasonably reducing the
number of effectively nonredundant sequences (Morcos et al.
2011). The 5th generation used a 95% identity threshold and
the 12th generation a 90%. A standard L2 regularization was
added following the original regularization described in
Ekeberg et al. (2013) (k¼ 0.01). The code used the scoring
scheme for contacts where the DCA scores were computed
as the Frobenius norm of the local coupling matrices of the
Potts model. Dunn et al. (2008) average product correction
(APC) was subtracted to remove background correlation. The
N top scoring contact predictions (N equals the MSA se-
quence length) were compared with the contact map of
the reference structure (1ZG4) constructed considering two
residues to be in contact if at least a pair of their respective
heavy-atom (nonhydrogens) was<8.5 Å apart (Ekeberg et al.
2013). As it is standard practice, we removed predictions
along the diagonal of the contact map if the residue pairs
were less than five positions apart to promote enrichment of
long-range predictions. Increasing this threshold to 8 or more
did not change significantly the contact map prediction (data
not shown). We used the shortest path (SP) distance

(Malinverni et al. 2015) defined as the L1 norm in the contact
map lattice to join DCA predictions and the closest structural
contact to visualize the agreement between predictions and
empirical observations.

Partial Correlation
Partial correlation is a measure of the correlations between
two variables after removing from both the possible correla-
tions they might have with another set of confounding var-
iables. In other words partial correlation is the correlation
between the residuals obtained from the regression of the
variables of interest to the confounding variable set. In the
present work, partial correlation is used to infer the correla-
tion between each set of two rows of the DCA score matrix,
removing the correlation these rows might have to all other
rows of the matrix. Each row of the DCA matrix is a vector of
the strength of association between the residue represented
by the row and every other residues of the protein. Thus the
partial correlation of the DCA matrix represents the similarity
of the profile of these vectors, considering and removing the
correlation with the profile of all the other residues. To obtain
the partial correlation matrix from the symmetrical DCA
score matrix, we first set all the diagonal elements of the
matrix to 1 and then approximated the partial correlation
between rows with the pcor.shrink function of the corpcor R
package. The package implements a James–Stein estimator
for the covariance matrix. The details of the method are
explained in (Sch€afer and Strimmer 2005) and in the manual
of the package (https://cran.r-project.org/web/packages/
corpcor/corpcor.pdf; last accessed November 14, 2019).

Other Bioinformatic Tools
Graph generation was performed with R version 3.2.3
(December 10, 2015). Poisson regression was performed
with the fitdistrplus R package, while PCA was performed
with the base R prcomp function. Mutation rates and
Shannon information entropies were calculated with custom
scripts. t-SNE was performed in Matlab version R2018b using
the Hamming distance as metric.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Note Added in Proof
While this paper was in review, a similar approach was de-
posited in bioRxiv (Stiffler MA, Poelwijk FJ, Brock K, Stein RR,
Teyra J, Sidhu S, Marks DS, Gauthier NP, Sander C. 2019.
Protein structure from experimental evolution.
bioRxiv:667790).
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16(4):364–383.

Kamisetty H, Ovchinnikov S, Baker D. 2013. Assessing the utility of
coevolution-based residue-residue contact predictions in a se-
quence- and structure-rich era. Proc Natl Acad Sci U S A.
110(39):15674–15679.

Katoh K. 2002. MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids Res.
30(14):3059–3066.

Kircher M, Stenzel U, Kelso J. 2009. Improved base calling for the Illumina
Genome Analyzer using machine learning strategies. Genome Biol.
10(8):R83.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon
K, Dewar K, Doyle M, Fitzhugh W, et al. 2001. Initial sequencing and
analysis of the human genome. Nature 409(6822):860–921.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat Methods. 9(4):357–359.

Malinverni D, Marsili S, Barducci A, de Los Rios P. 2015. Large-scale
conformational transitions and dimerization are encoded in the
amino-acid sequences of Hsp70 chaperones. PLoS Comput Biol.
11:1–15.

Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Sander C. 2011.
Protein 3D structure computed from evolutionary sequence varia-
tion. PLoS One 6:e28766.

Marks DS, Hopf T. A, Sander C. 2012. Protein structure prediction from
sequence variation. Nat Biotechnol. 30(11):1072–1080.

Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C,
Zecchina R, Onuchic JN, Hwa T, Weigt M. 2011. Direct-coupling
analysis of residue coevolution captures native contacts across
many protein families. Proc Natl Acad Sci U S A. 108(49):
E1293–E1301.

Norrander J, Kempe T, Messing J. 1983. Construction of improved M13
vectors using oligodeoxynucleotide-directed mutagenesis. Gene
26(1):101–106.

Olson CA, Wu NC, Sun R. 2014. A comprehensive biophysical descrip-
tion of pairwise epistasis throughout an entire protein domain. Curr
Biol. 24(22):2643–2651.

Ovchinnikov S, Kamisetty H, Baker D. 2014. Robust and accurate pre-
diction of residue-residue interactions across protein interfaces using
evolutionary information. Elife 2014:1–21.

Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE,
Kamisetty H, Kyrpides NC, Baker D. 2017. Protein structure deter-
mination using metagenome sequence data. Science
355(6322):294–298.

Park J, Selvam B, Sanematsu K, Shigemura N, Shukla D, Procko E. 2019.
Structural architecture of a dimeric class C GPCR based on co-
trafficking of sweet taste receptor subunits. J Biol Chem.
294(13):4759–4774.

In Vitro Evolution to Obtain Structural Information . doi:10.1093/molbev/msz256 MBE

1191



Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. 1997. Correlated
mutations contain information about protein-protein interaction. J
Mol Biol. 271(4):511–523.

Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP, Sander C,
Marks DS. 2019. Inferring protein 3D structure from deep mutation
scans. Nat Genet. 51(7):1170–1176.

Rose GD. 1979. Hierarchic organization of domains in globular proteins. J
Mol Biol. 134(3):447–470.

Salverda ML, De Visser J, Barlow M. 2010. Natural evolution of TEM-1 b-
lactamase: experimental reconstruction and clinical relevance. FEMS
Microbiol Rev. 34(6):1015–1036.

Sch€afer J, Strimmer K. 2005. A shrinkage approach to large-scale covari-
ance matrix estimation and implications for functional genomics.
Stat Appl Genet Mol Biol. 4:32.

Schlessinger A, Rost B. 2005. Protein flexibility and rigidity predicted from
sequence. Proteins Struct Proteins. 61(1):115–126.

Schmiedel JM, Lehner B. 2019. Determining protein structures using
deep mutagenesis. Nat Genet. 51:1177–1186.

Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER. 2005. Structure of
the wild-type TEM-1 b-lactamase at 1.55 Å and the mutant enzyme
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