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INTRODUCTION

Quantum transport and thermodynamics at nanoscale has been a subject of
growing interest in modern research for some time. It is a widely studied
field and ranges from the theoretical study of nanoscale devices using the
principles of statistical and quantum mechanics to the experimental realisa-
tion of those devices. In addition, the field of nanoscience has represented
itself as a common playground for physicists, chemists, material scientists,
biologists as well as engineers. The main motivation being the theoretical pro-
posal and experimental realisation of devices with novel properties emerging
at the nanoscale. Moreover, the interest in this field has been further bolstered
by the fact that the nanoscale devices have a wide range of application, from
electronic and thermal devices to quantum computers. The inevitable appli-
cation of quantum mechanics at this scale gives rise to interesting physics
not observed in the classical regime. For instance, quantum Hall effect, quan-
tized adiabatic pumping and so on. On the other hand, transistors used
in contemporary computers and other electronic devices have the size of
around 20 nm. Therefore, modern devices are already at the nanoscale and
further miniaturisation of these devices makes the understanding of energy
dynamics in this regime essential. The fabrication and application of devices
at such a small scale entails serious technical challenges: noise and heat
dissipation are the most significant ones.

When the system is attached to two reservoirs, thermal transport can be
mediated by maintaining a thermal or potential bias, or by driving in time the
system parameters. When it comes to nanoscale devices, thermal transport
becomes as significant as particle transport. This has led to the invention of
devices based on thermal transport such as thermal transistors and thermal
diodes. Quantum thermodynamics governs the statistics, work production,
entropy and other thermodynamic quantities in the quantum regime. To
summarize, the study of thermal transport and thermodynamics at nanoscale
not only helps in understanding the physics at nanoscale but also presents
novel direction for technological advancement along with the miniaturisation
of devices. Arguably, quantum transport and quantum thermodynamics have
become the leading subject of interest in nanoscience.

In this thesis, we shall study quantum transport and quantum thermody-
namics in nanoscale using different techniques (quantum master equation[1,
2], non-equilibrium Green'’s function[3, 4], linear response theory|[s, 6]). We
will be mainly focused on heat dynamics in the static as well as driven
systems (for example quantum dots, metallic islands, resonators and qubits)
attached to thermal reservoirs.

When we discuss about a modern field in science, for example thermal
transport in nanoscale which has been so widely studied, there is always a
problem of being too specific or too general. When we are too specific, there
is a good chance we miss the forest for the details of the trees. On the other



INTRODUCTION

hand, being too general might give us an over all comprehensive picture, but
might render the discussion impractical or even inapplicable due to the lack
of technical details. Although a balance between these two fronts is highly
desirable, mostly it becomes inevitable to sacrifice one for the other. In order
to address this issue, in the first three chapters we shall provide a general
but a brief review on thermal transport and thermodynamics in nanoscale
systems. In the last six chapters (from Chapter IV to Chapter IX), we will
discuss about the specific properties and applications of thermal transport in
static and driven nanoscale devices.

In particular, in Chapter II we will introduce different models of nanoscale
devices that will be studied in the forthcoming chapters. We will also present
a microscopic derivation of heat current for static as well as driven systems
using Keldysh non-equilibrium Green’s function.

In Chapter III, we will give a brief review of thermodynamics and thermal
machines. We will talk about both theoretical and experimental develop-
ments in the field of classical as well as quantum thermodynamics, thermal
transport and thermoelectrics.

In chapter IV, we will study the electronic thermal drag in two different
Coulomb-coupled systems, the first one composed of two Coulomb block-
aded metallic islands and the second one consisting of Coulomb coupled
quantum dots. The two conductors of each system are electrically isolated
and placed in the two circuits (the drive and the drag) of a four-electrode
setup. The systems are biased, either by a temperature AT or a voltage V
difference, on the drive circuit, while no biases are present on the drag circuit.
We will use a master equation approach to determine the general properties
of the dragged heat current, accounting also for co-tunneling contributions
and the presence of large biases. Analytic results will be obtained in the
sequential tunneling regime for small biases, finding, in particular, that the
drag heat current is quadratic in AT or V and non-monotonous as a function
of the inter-island coupling. Finally, by replacing one of the electrodes in
the drag circuit with a superconductor or taking charge state dependent
transition rates (in the case of quantum dots), we will find that heat can be
extracted from the other normal electrode.

In chapter V, we will analyze a simple implementation of an absorption
refrigerator, a system that requires heat and not work to achieve refrigeration,
based on two Coulomb-coupled single-electron systems. We will determine
the general condition to achieve cooling-by-heating. We will propose two
possible experimental setups based on quantum dots or metallic islands that
implement the nontrivial cooling condition. Using realistic parameters, we
will show that these systems, which resemble existing experimental setups,
can develop an observable cooling power.

In chapter VI, we will study thermal rectification. We will present a com-
prehensive and systematic study of thermal rectification in low-dimensional
quantum systems. Focusing on various prototypical systems - a qubit, a
non-linear harmonic oscillator and a Coulomb coupled quantum dot system
- we identify necessary conditions to observe thermal rectification and we
discuss strategies to maximize it. In particular, in the qubit case we will
derive general upper bounds on rectification which hold in the weak system-
bath coupling regime, and we show how the Lamb shift can be exploited to
enhance rectification. We then go beyond the weak coupling regime using
the non-equilibrium Green’s function formalism and the Feynman-Vernon
path integral approach. We will find that the strong coupling regime allows
us to violate the bounds derived in the weak coupling regime, providing us
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with clear signatures of high order coherent processes visible in the thermal
rectification. In the non-linear harmonic oscillator, we will study the heat
rectification using two different approximate schemes 1) mean field Hartree
approximation and 2) equation of motion method that goes beyond mean
field. The mean field calculations reproduces the results of the equation
of motion method when the interaction is small compared to other energy
scales of the system. Thermal rectification is enhanced in the large interaction
limit, making equation of motion better suited to study thermal rectification
in non-linear resonators. Finally, we will study non-local thermal rectification
in Coulomb coupled quantum dots. For a suitable choice of parameters, we
will show that a perfect non-local thermal rectification can be obtained.

In chapter VII, we will study thermal transport in two different single
electron devices using master equations. In the first section, we will theoreti-
cally reproduce the experimental results of thermovoltage measurements in
a single-electron transistor, both in the linear and non-linear regimes. Using
a model which accounts for co-tunneling, we will find excellent agreement
with the experimental data with no free parameters even when the tem-
perature difference is larger than the average temperature (far-from-linear
regime). This will allow us to confirm the sensitivity of the thermovoltage
on co-tunneling and to find that in the non-linear regime the temperature
of the metallic island is a crucial parameter. In the second section, using
master equations we will theoretically match the experimental results for
work extraction (beyond the free energy difference) from a single electron
transistor at the single thermodynamic trajectory level. With a carefully
designed out-of-equilibrium driving cycles featuring kicks of the control
parameter, we will demonstrate work extraction up to large fractions of kgT,
despite zero free energy difference over the cycle. Our results are explained
in the framework of nonequilibrium fluctuation relations. We thus shall show
that irreversibility can be used as a resource for optimal work extraction even
in the absence of feedback from an external operator.

In chapter VIII, we will present a general unified approach for the study
of quantum thermal machines, including both heat engines and refrigerators,
operating under periodic adiabatic driving and in contact with thermal reser-
voirs kept at different temperatures. We will show that many observables
characterizing this operating mode and the performance of the machine
are of geometric nature. Heat-work conversion mechanisms and dissipation
of energy can be described, respectively, by the antisymmetric and sym-
metric components of a thermal geometric tensor defined in the space of
time-dependent parameters generalized to include the temperature bias. The
antisymmetric component can be identified as a Berry curvature, while the
symmetric component defines the metric of the manifold. We will show that
the operation of adiabatic thermal machines, and consequently also their
efficiency, are intimately related to these geometric aspects. We will illustrate
these ideas by discussing two specific cases: a slowly driven qubit asymmet-
rically coupled to two bosonic reservoirs kept at different temperatures, and
a quantum dot driven by a rotating magnetic field and strongly coupled to
electron reservoirs with different polarizations. Both examples are already
amenable for an experimental verification.

In chapter IX, we will present a systematic derivation of the quantum mas-
ter equation which describes the adiabatic dynamics of a driven quantum
system weakly coupled to reservoirs kept at different temperatures. Starting
from the microscopic Hamiltonian, we will derive such quantum master equa-
tion by means of the Schwinger-Keldysh non-equilibrium Green'’s functions
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performing a perturbation expansion in the coupling between the system and
the reservoirs. We will also calculate the charge and energy fluxes, as well
as the power developed by the driving forces within the same framework.
We will analyze the instantaneous as well as adiabatic contributions to the
diagonal and off-diagonal elements of the density matrix in two specific ex-
amples, namely a qutrit attached to bosonic reservoirs and a pair of coupled
quantum dot attached to fermionic reservoirs. Finally, we will also study
heat rectification in adiabatically driven systems.

In Appendices A, B and C, we shall give a brief introduction of all the
formulations used in the thesis to study thermal transport in nanoscale quan-
tum devices: quantum master equation formulation based on Fermi golden
rule will be presented in Appendix A, Keldysh-Schwinger formulation based
on non-equilibrium Green’s functions will be presented in Appendix B
and Kubo formulation based on Luttinger theory of thermal transport in
Appendix C.



MODEL AND FORMULATION

In this chapter, we will present different nanoscale devices that will be studied
in the upcoming chapters. We will also present a microscopic derivation of
heat current for static and driven systems which would be essential to study
thermal transport properties of specific devices in upcoming chapters.

2.1 MODEL

Figure 2.1: A nanoscale system S connected to baths L and R. A thermal and a
potential bias has been maintained between the two baths.

As shown in Fig. (2.1), a nanoscale device is composed of three components,
1) system, 2) baths and 3) contacts. The baths represented by red and blue
blocks on the two sides of the system (S) can be maintained at a thermal or
potential bias. The total Hamiltonian is given by

H = Hg + Hp + Hc, (2.1)

where Hg represents the Hamiltonian for the system, Hp represents the bath
Hamiltonian and Hc gives the coupling between the system and the baths.

2.1.1  System

We will generally consider three different type of systems: 1) fermionic,
for example quantum dots and metallic islands, 2) bosonic, for example
resonators. The Hamiltonian for a quantum dot is given by:

HQD = Zeiaz—ﬂi —+ sz (ﬂ;ﬂl‘+1 + hc) + Z ul]n;rn]/ (2‘2)
i i i#j
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where a;(a}) represent the fermionic annihilation (creation) operator of the
electron in the quantum dot (QD) labelled by i, U;; represents the inter-dot
Coulomb interaction between QDs i and j, €; is the onsite potential of quan-
tum dot i and w; gives the tunneling strength between QD i and i + 1. The
inter-dot Coulomb interaction will serve for studying non-local thermoelec-
tric phenomena. The fermionic annihilation and creation operators satisfy the
commutation relations, {ai, a;r} = 1. The Hamiltonian for Coulomb coupled
metallic islands is given by

s
Hyp = Y, exagiani +U Y nanpn. (2.3)
ki=12 Kk

The strength of inter-metallic island Coulomb interaction is given by U, €,

represents the energy of mode k in the metallic island i and ay;(a},) is the

fermionic annihilation (creation) operator of an electron in metallic island i.
The Hamiltonian for a single mode harmonic resonator is

Hg = Abtb+ Ubtb'bb, (2.4)

where A gives the frequency of the resonator, the strength of non-linearity
is determined by U and b(b*') represents the bosonic annihilation (creation)
operator of the resonator. The bosonic operators satisfy the commutation
relation, [b,b'] = 1.

Finally, the qubit Hamiltonian is

Hg = Zoz, (2.5)

where A gives the qubit gap.

2.1.2 Baths

The baths are considered to be macroscopic systems with continuous degrees
of freedom. The baths have a large enough heat capacity and are at thermal
equilibrium with a fixed temperature T, and chemical potential . Since the
baths are kept at thermal equilibrium, the statistics of the baths can be defined
by a thermal Gibbs state p, = e Ha/ksTe / Z  where H, is the Hamiltonian

of the bath « with partition function Z, = Tr [e_H‘“ / kBT“} . When the baths

maintained at a thermal or potential gradient are connected to a system,
thermal conduction takes the bath out of thermal equilibrium. Due to the
presence of inelastic scattering, the baths quickly attain thermal equilibrium.
We consider that the time scale corresponding to the attainment of thermal
equilibrium is the smallest time scale. In other words, the dynamics of bath
is fast enough compared to the dynamics of the system. In this scenario, the
coarse grained Markov approximation will be valid, provided the system-
bath coupling is weak. The Hamiltonian of the Bosonic (B) and Fermionic (F)
baths are given by

HY = Y erblybea (2.6)
k

HY = Y (e — Ma)lyChar (2.7)
k

where by, (cky) and bza (CZ“) are the creation and annihilation operators for
bosons (fermions) with energy ey, for bath a. These operators satisfy the
usual commutator and anti-commutator relations, by, b;cr, “,} = OOy and

{Ckwcltla/} = Ok O -
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2.1.3 Coupling

In general, we will consider a linear system-bath coupling. The coupling acts
as a medium for the exchange of energy and particle between the system and
the baths. The coupling contains both system and bath degrees of freedom,
so it changes when either the system or bath changes. In the case of quantum
dot 7 attached to fermionic bath «, the coupling Hamiltonian takes the form

Hzx,QD = ZVkaa:»rcka + h.c. (2.8)
k

For the case of a metallic island, the coupling Hamiltonian should be modi-
fied to address the continuous energy modes in the system, i.e.

Hy, mp = Z qu,,xazicqa + h.c. (2.9)
k.q

In the case of single mode harmonic resonator attached to bosonic bath the
Hamiltonian takes the form

Hyg = ; Vi (b,ﬁa n bk,x> (b* n b) . (2.10)

For the sake of simplicity, in some cases we will take only the particle
conserving term in the latter contact Hamiltonian such that the coupling
Hamiltonian for a single mode resonator connected to bosonic baths reduces
to
Hyr = Z Vk,xb,fab + h.c. (2.11)
k

Finally, the most general system-bath interaction for a qubit is given by

H"‘/Q = Z Vi (bkﬂé @+ b;;x ® U_) + Byz ® 07+ By @1, (2.12)
k

where B, and B, are Hermitian operators acting on the space of bath «.
When we shall consider arbitrary spin coupling between the qubit and the
bosonic baths, we will use a modified version of coupling Hamiltonian given
by
H,X/Q = ka“ Z M o 0; & (bklx + bZa) , (2.13)
k i=x,Y,z

where m, = (sin 6, cos ¢, sin 6, sin ¢,, cos O, ) is a unit vector parameterized
by the angles 6, and ¢,.

As we will see in the following chapters, the system-bath interaction can
be conveniently characterized by the spectral density

Tu(e) =27 25(6 — €ak) Vak Vigg- (2.14)
k

In the following, we will consider generic spectral densities for the two baths.
In the cases of bosonic baths, we will consider Ohmic spectral densities with
an exponential cut-off energy ec (unless mentioned otherwise), i.e.

T.(€) = mKyee ¢/°c = K (), (2.15)

where K, is the dimensionless Ohmic coupling strength [7]. And for the
fermionic baths, we will generally consider characterless spectral density
given by

Ty(e) = 27T|Va|2pa (€) =Ta. (2.16)
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2.2 HEAT CURRENT

We are interested in studying the steady-state heat current flowing across the
device when a temperature bias is imposed between the baths. Specifically,
as depicted in Fig. 2.1, we fix T, = T+ AT/2 and Tr = T — AT/2, where T
is the average temperature. Even in the fermionic case, we will consider the
case of zero chemical potential. Furthermore, since we consider steady state
currents, the heat flowing out of one bath is equal to the one flowing into the
other bath. In addition, in the absence of chemical potential the heat current

and energy current are the same, i.e. ],,Eh) = ],,EE). Therefore, for simplicity we
define the heat flowing out of the left lead as

M(AT) = — lim %

Jo " (AT) = = lim = (Ha) (1), (217)
where (...) (t) = Tr[p(t)...], p(t) being the density matrix representing the
state of the total system at time ¢. Notice that the time variation of the energy
associated with the coupling Hamiltonian vanishes in steady state [8]. In

addition, since the energy current is conserved we have, ]ﬁE) =— ]lgE) =] (E),

Starting from the formal definition of the heat current given in Eq. (2.17),
we can simplify the calculation of the heat current using a standard procedure
known as “bath embedding”[4], which is valid whenever the operators of
the bath appear linearly in H,g. This approach applies to all models with
linear coupling between the system and the baths. Under such hypothesis,
the formally exact Meir-Wingreen-type formula [9] for the heat current can
be written as [10, 11, 12, 13, 14]

I () = F2 L e Vial? [ dtiRe [Gis(t 1)gis (b1, 1) + G (1) (11, 1)]
k

(2.18)
where S is the system degree of freedom in the contact Hamiltonian H, s
(see Subsection (2.1.3)): in the quantum dot case S = a4; where g; is the
annihilation operator of the quantum dot i attached to bath «, in the case of
metallic islands S = ay; where ay; is the annihilation operator of the metallic
island i attached to bath «, in the case of resonator with resonator bath
coupling defined through Eq (2.10), S = b* + b where b'(b) are the creation
(annihilation) operator for the resonator attached with bath a and for the
case of qubit S = }; , m; ,0; where m; , associated with coupling to bath « is
defined below Eq. (2.13). The minus sign in front of the integral applies only
when both the system and the baths are fermionic. The greater and lesser
Green’s functions for the system are respectively defined as

Ggs(tt') = =i (S(t)st(t))
G5 () = i <5+(t’)5(t)>, (2.19)

with the retarded Green’s function Gg¢(t, ') = 0(t —t')[GS(t, t') — G55 (¢, 1)].
The greater and lesser Green’s function for the bath & can be similarly defined
as

S () = —i (d (1)df (1))

Siat,t) = i [, ()i (1), (2.20)
respectively with the retarded Green’s function g} (t,') = 6(t —t')[g. (t, ) —
8o (tt)] and the advanced Green’s functiong? () = [gf (#,t)]". The

plus sign in lesser Green’s function applies for fermionic systems attached to
fermionic baths.



2.2 HEAT CURRENT

2.2.1 Static case

For time-independent systems, one can use the relative time Fourier transfor-
mation

Gle) = / drG(t, ¢)eet—) (2.21)

After some calculations (the details are presented in the Appendix B), we
arrive at the final expression for heat current written in terms of lesser and
greater Green'’s function

(2.22)

JOGT) =+ [ € e (65057 (€) - 67 (€)% )]s,

where the integration is performed over [0, +oo] ([—co,+o0]) for bosonic
(fermionic) baths. ngs (€) is the Fourier transform of the lesser/greater
Green'’s function of the system in the presence of the baths, while Zf (€) is the
Fourier transform of the lesser/greater embedded self energy induced by the
left bath. The lesser and greater embedded self energies can be determined
from the Keldysh contour components %, (z,z") = [ de/(271) Ta(€x)8ka(2,2'),
where gy, (z,2') = —i (Te{dyo(2)d},(2')}) is the free contour Green function
of bath «, 7. denoting the contour ordering. The only quantities which must
be determined in Eq. (2.22) are ngs(e).

There is a typical situation in which Eq. (2.22) can be written as a simpler

and more transparent form. Namely, if the spectral densities I'y(€) of the
baths are proportional, i.e. I't (¢) o I'r(€), we can write Eq. (2.22) as [15]

) = [ %ene, T, AT) [me.(€) — nr(e)], (2.23)
where
T(e, T,AT) =i {Im[G>(e> —G<(e)] }ss (2.24)

and n,(e) denotes the energy distribution of bath a. Therefore, n,(e) =
(e¢/k8Te) —1)~1 for bosonic baths, while 1, (€) = (el¢~#)/(ksTa) 1 1)~ for
fermionic baths. The dependence of 7 (¢, T, AT) on the temperatures may
arise from GS(e), which are indeed correlation functions of the system
computed in the presence of the baths. For non-interacting systems, Eq. (2.24)
reduces to the well known scattering formula with a transmission function
that does not depend on the temperature of the baths.

2.2.2 Driven case

In this subsection, we will discuss the dynamics of a driven quantum system
using Floquet formulation along with non-equilibrium Green’s functions.
Considering periodic driving with period (), we apply the Floquet-Fourier
transform given by:

G(t€) = /dt’G(t, t)ete(t=t),

T .
Gne) = - ["Glt e, (2.25)

where G(t,€) and G(n,€) are the Fourier transformed and Floquet-Fourier
transformed Green’s functions respectively. Using the Floquet Fourier trans-
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form in Eq. (B.8) and after some calculations (see Appendix B for details) we
arrive at following expression for heat current

1 =g, (2.26)

where
L R

—$<(e— no)] G (n,e — no)] + (zj:(e —10) - zg}(e)) G (—l,e)}

SS
(2.27)
and
de ol <
¢Z / (14 n,€)=<(e)
G (n,€) [yj;(e + Q) — Y (e +nQ+ IQ)] } , (2.28)
SS
where
Vile)= [ —e Fa( NP +ind(e —¢€)|, (2.29)
27 €e—¢€
and P represents the principal value, while Z/(e) = —ien, ()T, (€). Sum-

ming Eq. (B.22) and Eq. (B.24), one obtains the final expression for heat
current flowing in individual lead at time t. For driven systems, a finite
amount of heat is stored in the contact region, however, on average this
current goes to zero. The heat current stored in the contact between bath
and the system at time t given by

d
JUe) = 5 (Hea) = £2) Vig Tm { 2G5t t)] (2.30)
k

From Eq. (B.26), we have:

d
]o(cC = i22|Vlax| /dtﬂm{d (Gss(t t)

ORI ) | ICED
The second term in the right hand side goes to zero (the lesser Green'’s

function is imaginary by definition and we neglect the Lamb shift component
of the self energy for time being) giving:

d d
th = ¢IZW ? /26 I Gés(t,€) + Gis(t, 6))8f(€)~ (2.32)

After Fourier transformation, we obtain:
h . de _i
il = FAOY Vil [ 57 Liim (GEs(Le)e™™™) g5 @33)
k 1
The time averaged heat current over one cycle flowing in lead « is given by:
_ de r < r* ; h
= ;/ 27_[{ [G (n,€)Z<(e)G (G)LS ( F2ilm [ya (e + nQ)}

—2Zhe+ nQ)) [Gf(n, €)= (e)G" (e)} (et n0) } (2.34)



2.2 HEAT CURRENT

The adiabatic contribution can be obtained by expanding Eq. (2.34), upto
first order in driving frequency.

h
ZMhe+nQ) = Zl(e) + nQiade(e)
I
Ve +nQ) = Ye) + nQayge(e). (2.35)

In order to calculate the adiabatic contribution, it is sufficient to take only the

zeroth order contribution for the Green’s functions[8], G’ (n,€) = G"f (n, €),

where G™f (1, €) is the Green’s function which evolves with the instantaneous
Hamiltonian.
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THERMODYNAMICS AND THERMAL MACHINES: A
BRIEF REVIEW

The advent of thermal machines can be traced back to prehistoric times
when fire piston was used by tribes in Southeast Asia and Pacific islands to
make fire[16]. It was an ingenuous invention, where the gas in a cylinder
was rapidly compressed with the help of a piston creating high temperature
which in turn lit the tinder attached to the piston. Intriguingly, the practical
application of ideal gas law which was later developed by Boyle, Charles and
Emile Clapeyron was already experimented in the prehistoric times. There
were many extra-ordinary inventions from the prehistoric times to the 17th
century however the 17-19th centuries were arguably the golden years for the
field of thermodynamics and thermal machine. In the following we will try
to outline the significant breakthroughs in the field of thermodynamics and
thermal machines from the 17th century till now. The first major experiment
was done by Boyle[17] and Mariotte[18] in the 16th century where they
proved that the volume of a gas with fixed mass is inversely proportional to
pressure at constant temperature. Then as early as 1698, steam engine was
first patented by Thomas Savery, later James Watt presented a more efficient
version of steam engine with a separate condensing chamber in 1769. The
steam engines were used for pumping water, driving sawmills, for transport
like trains, driving factories and other purposes. In 1824, Sadi Carnot ana-
lyzed the efficiency of steam engine using Caloric theory and proposed the
maximum efficiency a heat engine can have: these days it is known as Carnot
efficiency. The steam engine were the only heat engines until 1876 when
Otto proposed the first four-stroke petrol engine[19]. Along with the diesel
engine developed by Rudolf Diesel in 189os[19], these inventions brought
a revolutionary trend in the field of thermal machines. The importance of
these inventions can be clearly illustrated by the fact that modern vehicles
still include a 4-stroke engine proposed by Otto, although modifications have
been done to increase the efficiency and performance. A heat engine always
suffers from inevitable and irreversible loss of heat in terms of dissipation.
One of the main criteria in the advancement of thermal machines has been
to increase efficiency by reducing dissipation.

On the other side, the field of thermodynamics was observing its own
glorious days. Both first and second law of thermodynamics were developed
in the first half of the 19th century. During the same period, ideal gas
law was developed combining Boyle’s and Charle’s law. The later half of
the century brought many significant observations into light when Clausis
introduced the concept of entropy and Maxwell proposed the distribution
law of molecular velocities. In the same period, Boltzmann proposed that
the probability for a system to be in a certain energy state depends only on
the energy of the state and the temperature known as Boltzman distribution
law. Till the beginning of the 2oth century, thermodynamics and statistical
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mechanics were largely considered separate fields of study. In the early 1900s,
Gibbs introduced the statistical mechanics definition of entropy where the
entropy was related to the probability distribution of energy microstates[20].
One other important development regarding the connection between the
statistical mechanics and thermodynamics was the fluctuation dissipation
theorem used by Johnson and Nyquist in 1928 to characterize the fluctuation
intrinsic to the system[21, 22]. The fluctuation-dissipation theorem brings
into attention the importance of environment since every irreversible process
is accompanied with dissipation.

Most of the studies until the first half of the 19th century were based on
thermal machines and thermodynamics of systems with continuous degrees
of freedom. For macroscopic systems, much of the statistical and transport
properties are calculated using the “thermodynamic limit". In these devices,
quantum interference and coherence effects are insignificant as the particles
undergo many inelastic collision before being observed. However in the
1980s, with miniaturization of devices, the interest shifted to quantum inter-
ference and quantum coherence effects in microscopic devices. This led to the
experimental realisation of Aharonobov-Bohm oscillations in normal-metal
rings in 1985 by Webb et al[23]. The discovery of quantum effects in the mi-
croscopic devices motivated further experimental and theoretical research in
nanoscale systems. In the 1990s, the technology became advanced enough for
the experimental study of transport properties in tiny devices with discrete
energy states, for example the single electron transistor. At low tempera-
ture, when the classical dynamics becomes suppressed quantum mechanics
governs the dynamics. The nanoscale devices has been successfully used as
necessary ingredients in quantum computers. They have been used to study
quantum effects in various fields ranging from quantum information[24],
cryptography[25, 26] to quantum thermodynamics[27, 28]. In this thesis, we
shall study the thermal transport and thermodynamics in nanoscale quantum
devices. But mostly, we would be motivated to understand the nature and
dynamics of heat transfer in nanoscale device.

3.1 TRANSPORT THEORIES AND THERMOELECTRICS IN NANOSCALE
QUANTUM SYSTEMS

In this section, we will discuss about different thermoelectric coefficients
associated with nanoscale electronic thermal machines. But before diving
deeper into thermoelectrics, we deem it necessary to discuss the classical and
quantum transport theories which would be necessary to express the ther-
moelectric parameters in manageable form. In the following, we give a brief
introduction of the main formulations used to study transport properties in
solid state devices and their regime of validity. We start with the Boltzmann
transport theory. The charge and energy carriers in macroscopic objects like
metal or semiconductors move under the application of a bias (thermal or
potential) or when an external time-dependent driving field is applied. The
movement of carriers redistributes the particle as well as energy density
of the carriers as well as makes the particles scatter among themselves[29].
A transport theory has to take into account all these effects. It also has to
balance out different processes, for instance if the carriers move from one
point in space to another after acquiring a momentum, they can scatter with
other particles and lose this momentum. The simplest approach was studied
by Boltzman[29], where he considered three different processes by which the
local concentration of carriers can change 1) diffusion, 2) redistribution due
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to the presence of external field and 3) scattering. The net balance between
the above mentioned three different processes in steady state gives the Boltz-
man transport equations. The Boltzman transport equations describe the
semi-classical transport processes but fails to address the quantum mechan-
ical nature of the carriers. The quantum interference effects and quantum
coherence are not addressed by the Boltzman transport equations and require
more advanced techniques such as Green'’s function or Kubo formalism.

A transport theory for non-interacting mesoscopic devices based on scat-
tering matrices was developed by Rolf Landauer, Yoseph Imry and Markus
Biittiker[30, 31]. This approach is known as scattering formalism and gives a
correct description of coherent transport (when a single wave function can
be defined extending from one lead to another) in non-interacting nanoscale
devices. This formulation has been widely used to study current and noise in
nanoscale devices when the device size is effectively shorter than the phase
relaxation length.

Another way to study dynamics in nanoscale devices (even with interac-
tions present) is to use the Pauli master equation where the semi-classical
transition rates are calculated using the Fermi Golden rule which can describe
one as well as many electron tunneling processes. However, the semi-classical
master equations are inadequate to study the quantum dynamics. In order to
address the quantum effects in nanoscale devices, quantum master equation
can be employed which is obtained by studying the dynamics of reduced
density matrix of the system[1, 2]. The quantum master equation method
has been employed in a wide range of fields, for instance quantum thermo-
dynamics, quantum optics and quantum information. The quantum master
equation serves as a significant tool for studying the transport properties in
the weak coupling limit but fails to address the dynamics when the coupling
between the bath and system is strong enough. In order to address the
problem of strong coupling, the Schwinger-Keldysh formulation based on
perturbation theory employing non-equilibrium Green’s function is often
applied[3, 4]. On the other hand, when the bias as well as driving are weak
and when the linear response becomes sufficient to describe the dynamics,
Kubo formalism can be used[5, 6]. Using the Kubo linear response theory,
one can calculate the linear response coefficients which holds for both weak
and strong system-bath coupling. The linear response coefficient satisfy some
special set of relations known as Onsager relations.

After we have pointed out different formulations that can be applied to
calculate the observables related to thermal transport, we are ready to define
the different thermoelectric coefficients. Thermoelectricity has been studied in
a variety of nanoscale devices ranging from single electron transistors[32, 33]
to devices based on topological insultators[34]. Let us consider a microscopic
system attached to two thermal fermionic baths as shown in Fig. 2.1. The
two baths L and R have temperatures 11, and Ty respectively and chemical
potentials yj, = eV}, and ur = eVR respectively. V1, and V are the voltage
applied to left and right bath, where V|, — Vg = AV is the voltage bias
maintained between the two baths. In addition to voltage bias, a thermal
bias AT can also be maintained between the two baths, where AT = Ty — Tg.

The charge and energy currents flowing into the bath « are defined as ]éc)
and ],iE). In the steady state for the conservation of charge and energy, we
have ]]EC) = _]1(1C) = J© and ]{E) = —]I({E) = JE) In addition, the heat
current is defined as the difference between the total energy current and

the electrochemical potential energy current, ],,(Ch) = ],,(CE) — b ],,(f). When the
device acts as a thermal machine, a power P is either extracted from the
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machine or provided to the machine depending on whether the machine acts
as a heat engine or a refrigerator, respectively.

In the linear response regime, where |AT| < Ty g and |AV| < kgTy /R,
the charge and heat currents flowing out of the left lead can be expressed as

AV AT
I<C) = LCCTJ’_LC}IW
h AV AT
B = L=+ L (1)

where T = (Tr + T1)/2 is the average temperature of the two baths (as-
suming symmetric thermal bias) and the coefficients L,;(a,b = ¢, h) are the
Onsager coefficients. Different thermoelectric parameters can be written in
terms of Onsager coefficients in the linear response regime.

The electrical conductance (G) is defined as the ratio of charge current
and the applied potential bias when the thermal bias goes to zero

](C)
AV

, (3-2)
AT=0
where AV =V} — Vy is the potential bias maintained between the two baths
and J(©) is the charge current flowing in the device. The thermal conductance
() is defined as the ratio between the heat current and the applied thermal
bias, provided the charge current is zero.

](h)
K= | T ]<c>:0’ (3-3)

where for J(©) =0, ]ﬁh) = —]I({h) = [ The thermovoltage Vy, is defined as
the potential bias for which the charge current goes to zero in the presence
of a fixed thermal bias, i. e.

7© (Vi) (3.4)

AT#0

We will study the thermovoltage of single electron transistor in a highly
non equilibrium regime in Chapter VII. The thermovoltage is related to the
thermopower (S) where the later is defined as the ratio between the potential
bias and thermal bias, provided the charge current is zero.

AV

S= AT ](C):0~ (3-5)
And finally the Peltier IT coefficient can be expressed as
= [ 66)
J© AT=0 |

For a review on the relationships between different thermoelectric parameters,
the figure of merit and efficiency in the linear response, we ask the readers
to consult the review by Benenti et al[35].

3.2 HEAT TRANSFER AND THERMODYNAMICS IN NANOSCALE DEVICES

In this section, we will present a general discussion on thermal transport
in nanoscale devices. Nanoscale devices are generally composed of a mi-
croscopic system connected to macroscopic baths as shown in Fig. 2.1. The
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system can exchange particles or energy with the baths. Generally, a system
is connected to two or more baths in order to have a particle or energy flow
by maintaining a thermal and potential bias. Work can be either done by the
system or on the system. Heat engines are obtained by extracting work from
the system by maintaining a thermal bias between the baths. However, when
the heat is transported from the cold bath to hot bath by doing work on the
system, the device is called a refrigerator. If the work output is given by Wyt
and Qy is the heat out of the hot source, the efficiency of the heat engine is
defined through the expression

= Lout (37)
Qu - ’

In the case of two baths, the Carnot efficiency which is the efficiency of a
perfect thermal machine is given by

Tc
f=1-—_—, .8

where T¢ /1 is the temperature of the cold/hot bath. Similarly, the efficiency
of the refrigerator which is known as the ‘coefficient of performance’ is
expressed as

where Qc is the amount of heat extracted from the cold reservoir and Wy, is
the input work done on the system. The maximum coefficient of performance
of a perfect refrigerator is given by

Tc
CcC __
77R - TH _ TC' (3'10)

In this thesis, we will generally consider a quantum thermal machine, where
the work is performed on the system, either by driving the system by an
external ac supply (for example, see Chapters VIII and IX) or by means of a
coupled system (for example, see Chapters IV and V where the system under

study is Coulomb coupled to another system maintained at a thermal bias).

In these cases, depending on the energy exchanges in the system, the details

of the system, bath and coupling, the device can act as thermal machines of

different sorts, for example refrigerator, thermal accelerator, heat pump, etc.
e

g BRI
I;IUII: el Dl

Figure 3.1: A nanoscale system S connected to baths B. The work can be performed
on the system either (left panel) by driving the system or (right panel) by
coupling the system to another system (indicated by a light green shade
and represented by Hamiltonian Hys) through Coulomb interaction.

,/ \ -

Now, we will discuss about different thermodynamic parameters that
define the properties of a thermal machine when the system is both driven
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as well as coupled to an external system. As sketched in Fig. 3.1, we define
the total Hamiltonian
Htot =H + HM (3.11)

where H is the Hamiltonian for the device under consideration as defined
in Eq. (2.1), the system Hamiltonian, Hg = Hg(t) is time dependent (see the
left panel of Fig. 3.1), Hg = }_, Hy describes the baths (« labels the different
baths) and Hc =}, Hc . describes the coupling between the system and the
baths. Hy; gives the Coulomb coupled part, when the work is performed on
the system by means of a Coulomb coupled system (see the right panel of
Fig. 3.1).

Let’s start from the energy currents. To study the energy flux entering and
exiting different parts of the device, we consider the time evolution of total

Hamiltonian d (H) d(Hs) d(Hg) d{Hc)
i ar ar T ar o

The energy current entering the baths is given by

FN (1) = i ([H(t), Ha(1)]) - (3.13)

The energy current flowing in the contact region is

JEN () = i ([H(t), Hea (D) - (3.14)

And finally the energy current flowing through the system is expressed as

J$(6) = i ([H(1), Hs (1) (5.15)
On the other hand,
d(H . oH,
% - Z<[Ht0t/H]>+<ats>/
d (H, . oH,
<dts> = l<[Ht0t/HS]>+<atS>/
d (H, .
S i),
d (H .
< dtC,a> = 1 <[H, HC,!XD s (316)
where <aa$> = 0 for static systems. We define the power developed by the
ac source as SH
Poc(t) = <8ts> (3-17)
and define the power introduced by coupling
Pu(t) = i ([Hwm, Hs]) - (3.18)

Eq. (3.12) reduces to

Pac(t) + Put(t) = 1§(8) + Pua(t) + Pac(t) + LI (0) + I, (3.19)

o

where we used the fact that [Hiot, H| = [Hwy, Hs) and [Hiot, Hs] = [Hwm, Hs] +
[Hc ., Hs]. We obtain

1P+ IE O+ IE @ =o. (3.20)



3.3 EXPERIMENTS ON NANOSCALE QUANTUM THERMAL DEVICES

Upon time averaging, the heat current flowing in the contact region

1 /7
]éEi == /0 ]gi(t)dt =0, (3.21)

and the conservation of energy in the steady state is given by
]S(E) + Z],,(‘E) =0. (3.22)
o

Egs. (3.20) and (3.22) establish the first law of thermodynamics for the
nanoscale devices we will be considering in this thesis. Next we would like
to define entropy (S). The power developed by ac source and the power
introduced by coupling to a different system are non-conservative and hence
associated with dissipation. Therefore, when the baths are kept at a tempera-
ture T or have a relatively small thermal bias AT < T, the net rate of entropy
production is given by

TS = Psc + Py (3.23)

Since both effects are dissipative in nature, Pac, Py > 0 and hence S > 0. This
establishes the second law of thermodynamics for our quantum nanoscale
devices.

3.3 EXPERIMENTS ON NANOSCALE QUANTUM THERMAL DEVICES

We shall start with one of the basic properties of nanoscale thermal devices:
the quantum of thermal conductance. The quantization of thermal conduc-
tance is analogous to the quantization of electrical conductance in nanoscale
ballistic devices at low temperature. The limit value of thermal condutance
was first proposed theoretically by J. B. Pendry in 1983[36] employing the
relation between entropy and the quantum limit of information flow for a
finite size system in contact with a reservoir. Later, limiting value of thermal
conductance given by x = 712k3T/3h in single mode systems was observed in
a range of experimental devices: ballistic one dimensional nanostructure[37],
metallic islands[38] and single electron transistor[39] to name a few.

Single electron transistors are possible setups for studying quantum prop-
erties of thermal transport in nanoscale devices. The possibility of micro-
fabrication has led to the realisation of metallic tunneling junctions with
capacitances of the order of 10 1°F. This capacitance corresponds to a charg-
ing energy (E.) of 100ueV = kg x 1.16K. So, in the sub-Kelvin temperature
regime, one would have to overcome the charging energy in order to re-
alize the transport of electrons. This regime, known as Coulomb blockade
regime, enables the study of single electron transport. A metallic island
is characterized by the “charge state" which is defined through the num-
ber of electrons (1) present in the island. Thermometry based on N-I-S
tunnel junction[40] can be operated at millikelvin regime and are widely
used for thermal analysis in single electron devices. Apart from thermal
conductance, single electron transistors have been used to experimentally
observe dissipation[41] and transport of heat[27, 42] in nanoscale devices,
thermoelectric coefficients[32, 35], negative entropy processes[43], maxwell
demon[27] and the rate of information flow[44]. Single electron transistors
have also been used to engineer nanoscale thermal machines[42]. On the
other hand, thermal transport has also been widely studied in photon based
thermal devices. Josephson junctions and LC resonator circuits based on
metal-island junctions are the basic components of these devices. Recently,
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experiments based on photon based devices have led to the observation of
thermal rectification[45] and quantum heat valve[46].

Thermal machines have been miniaturized down to atomic scale, utilizing
cold atoms[47], colloidal particles[48, 49], single molecules[50], and moreover
even a single atom[51]. The recent experiments are precise up to the level of
single particle transport which would have been an impossible tasks some
decades back. Regarding refrigerators, absorption refrigeration was recently
observed in trapped ions [52]. On a different note, quantum dot based energy
harvester was recently observed experimentally by Thierschmann et al [53].



THERMAL DRAG IN COULOMB COUPLED SINGLE
ELECTRON SYSTEMS

Two electrically isolated conductors placed close together can still be coupled
via the Coulomb interaction. As a result, when a bias is only applied to
one conductor, electronic currents can be generated in the unbiased one
in such a way that a charge current is dragged in this second conductor.
This phenomenon, the Coulomb drag, arises because the carriers in the two
conductors are subject to a “mutual friction”, i.e. to scattering processes
mediated by the Coulomb interaction between the two conductors, and
can exchange momentum and/or energy. The phenomenon of drag, first
proposed in 1977 by Pogrebinskii [54] in layered conductors, has so far been
studied in a large variety of systems and it is still the subject of an intense
research activity (see Ref. [55] for a recent review).

___________________
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Figure 4.1: Sketch of Coulomb-coupled systems, which consists of an upper (drive)
biased circuit, and a lower (drag) unbiased circuit. The conductors are
represented as grey rectangles and are attached to two leads each. The
two conductors are coupled only through the Coulomb interaction. As
indicated by the black arrows, the sign of charge and heat currents is
positive when they enter an electrode.

So far most of the attention has been devoted to the effect of drag on the
charge current. More recently, the drag of charge between zero-dimensional
systems have been theoretically considered for single-level Quantum Dots
(QDs) in Refs. [56, 57, 58, 59]. Experimental investigations in systems com-
posed of two capacitively coupled QDs are reported in Ref. [60] (emphasizing
the importance of co-tunneling processes [58]) and in Refs. [61, 62] for the
case of graphene-based QDs. The drag of charge in coupled double QDs sys-
tems has been also experimentally addressed in Ref. [63]. In addition, energy
harvesting from thermal and voltage fluctuations in coupled QDs systems at-
tached to three terminals has been considered theoretically [64, 65, 66, 67, 35]
and experimentally [68, 69, 70, 71].

Another consequence of the Coulomb coupling between two nearby con-
ductors is the fact that a flow of heat can also be induced in the unbiased
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conductor. This phenomenon, which is distinguished from the drag of charge
that is constrained by the charge conservation within individual conduc-
tors, has been hardly considered in the literature so far [72]. In the case of
metallic islands, heat currents can be induced in the unbiased circuit as a
result of energy transfer, through the capacitive coupling, from the upper
island. Such energy transfer has been recently considered for the implemen-
tation of a heat diode [73], of a minimal self-contained quantum refrigeration
machine [74], of a three-terminal QD refrigerator [75], of an autonomous
Maxwell demon [76], of a Szilard engine [27], of a nanoscale thermocouple
heat engine [72], and for the study of a correlation-induced in SINIS refriger-
ator [77]. In this chapter we will investigate another important case of this
kind, thermal drag.

The setup we consider is represented in Fig. 4.1. Two mesoscopic conduc-
tors, represented by grey rectangles, are coupled through Coulomb inter-
actions, but cannot exchange electrons. One conductor is contained in the
upper (drive) circuit, which is either voltage or thermal biased, while the
other conductor is part of the lower (drag) circuit, which is unbiased. As
specified in Fig. 4.1, the left (right) electrode in the drive circuit is kept at a
voltage £V /2 and temperature T £ AT /2, while the electrodes in the drag
circuit are kept at the same temperature T and at zero voltage. Our goal is to
study the general properties of the heat currents flowing in the drag circuit,

IS) and II({};), as a result of energy transfer between upper and lower circuits,
due to Coulomb interaction.

We define the drag currents as
(/) _ 4le/h)

](c/h) _ R2

drag 2 ’ (4-1)

where ]£C2) and ]1(;2) are charge currents in the drag circuit. Notice that the
charge current is conserved separately on the upper and lower circuit ( IS) +

]1(;1) =0 and ]ﬁcz) + ]I(fz) = 0, respectively). We will focus on the following two
cases:

i) A pair of capacitively-coupled metallic islands in the Coulomb block-
ade regime

ii) A pair of capacitively-coupled quantum dots in the Coulomb blockade
regime.

Regarding system i) and ii), we study the general properties of the dragged
heat using a master equation approach up to second order tunnelling events

(co-tunneling)[78]. We find that the dragged heat current ]g;g . is finite, even in
the cases where the dragged charge vanishes (i. e. when the island-electrode
couplings are energy-independent). We study the behavior of the dragged
heat current, driven by either a voltage bias V or a thermal bias AT, as
a function of the various parameters characterizing the system, such as

the gate voltages and the capacitive coupling C; between the islands. We
find, in particular, that ]gr‘i exhibits a maximum as a function of Cj. By
expanding the dragged heat current for small values of V or AT, we find
analytic expressions for ]é}r‘;
moreover, that co-tunneling events yield an important impact on the dragged

. which result quadratic in V or AT. We find,
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heat current, though not changing the quadratic dependence on V or AT.

Finally, we find that the behavior of the dragged heat current can change
qualitatively if one replaces one of the electrodes in the drag circuit with a
superconductor. More precisely, under appropriate conditions we find that

heat can be extracted from the normal electrode in the drag circuit ( ]S;) < 0).

Additionally, the superconductor allows a finite dragged charge current
whose sign can be controlled by the gate voltages.

As far as system ii) is concerned, we find similar dependence of the drag
heat current on the thermal or potential bias as in system i). However, in the
case of QDs, the energy filtering mechanism can be made more efficient. We
observe a significant heat flow from one bath to another in the drag when
one of the system-bath coupling in the drag is made energy dependent.

The chapter is organized as follows: In the next Section we will discuss the
case i) in which the thermal drag occurs in the case of two coupled metallic
islands. We will consider the contribution to the drag due to sequential
tunneling and co-tunneling. In Section 4.2 we move to consider the second
setup of Coulomb coupled quantum dots.

4.1 THERMAL DRAG IN COULOMB COUPLED METALLIC ISLANDS

The first system considered, depicted in Fig. 4.2, consists of two metallic
islands (labeled 1 and 2), each one tunnel-coupled to two electrodes and
capacitively-coupled to a gate kept at a voltage V;, with i = 1,2. C, is the
capacitance and R, is the resistance associated to the tunnel junction between
lead « =Li, Ri and the island i, while Cgi is the capacitance associated to the
gate. The two metallic islands (assumed to be at equilibrium temperature
T) are coupled through a capacitance Cj, which does not allow electron
transfer. We assume that all capacitances are small so that the charging
energies relevant for transport (see below) are the largest energy scales in the
system and the islands are in the Coulomb blockade regime. Single electron
tunneling processes in each metallic island, thus, are associated to an increase
or decrease in the electrostatic energy of the system, which is given by

Ey(m,np) = Ecy (ny — nxy)* + Ecp (ny — 115,) +

+Ep (1 — ny,) (np —ny,) . 4-2)

Here 17 and n; represent the number of electrons present on island 1 and
2, respectively. Ec; = ¢?/(2C;) is the charging energy of island i (where
C; = CLi+ Cri + Cgi + Cri, with G = G 1+ C1, G =GP + G ! and
Ci = CL +Cgri + Cgi) and Ej is the inter-island interaction energy given
by E1 = ¢?(C; + C + C1C,/Cp) L. The symbols 7,1 and 1, represent the
“external charges” determined by the gate potentials, Vg1 and Vi respectively,
and dependent on the voltage bias V as

V/2Cry— V/2 Cri + Vg1 Cai

Nyx1 = e (4-3)

and
Ve2C2
o
For the sake of simplicity, we will assume that Cg1 = Cg» = Cg and that all
the capacitances relative to the tunnel junctions are equal, namely C;; =
Cr1 = Crp = Cry, so that C; = C; = C and we can define the charging
energy Ec = ¢2/(2C). Note that 11,; becomes independent of V and takes
the same form as 7,5.

Ny = (4-4)
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Figure 4.2: Sketch of the first system under consideration composed of two
capacitively-coupled metallic islands labeled by 1 (in the drive circuit) and
2 (in the drag circuit). L1, L2, R1 and Rz labels the four electrodes which
are tunnel-coupled to the islands.

Charge L,(‘C) and heat ],,((h) currents can be expressed in terms of the proba-
bility for the occupation of the islands, and the transition rates for electrons to
be exchanged between the islands and an electrodes. The actual expressions
for the currents depend on whether one has to account for only first order
tunneling processes (sequential tunneling regime) or second order processes
have to be considered too (co-tunneling). The probability p(ny,n;) for the
occupation of island 1 with n; electrons and island 2 with n, electrons is
determined through a set of master equations (see App. D) which accounts
for all possible tunneling processes in the system.

4.1.1  Sequential tunneling regime

Within the sequential tunneling regime, we have that the charge and heat
currents in the lower circuit take the form

]tJ(tC/h) _ Q(C/h) [rgfz/h) (nl,nz) p(l’l1,7’12) + l"gfz/h)(nl +1, 712) p(?’ll +1, 7’12)

— 15/ (m1,m2) pny,m2 1) = TE ™ (m +1,m2) p(m +1,m2 +1)], - (45)

respectively, where & = L2, R2 and Q(C) =e, Q(h) = 1. We have assumed
small temperatures and biases so that only four charge states contribute
to transport, namely (nq,n3), (n1 +1,n3), (n1,ny +1) and (nq + 1,1, +1).
In Eq. (4.5), Fici/ b (n1,ny) is the particle/heat transition rate for an electron
to reach island i from lead « [with the island initially in the state (11,712)],

and 1"5;/ h) (nq,n7) is the particle/heat transition rate for an electron leaving
island 7 to reach lead a [with the island in the final state (11,17)]. As long
as the energy-dependence of the lead-island couplings’ can be disregarded
(see Sec. 4.1.3, where this assumption will be lifted), the particle and heat
transition rates can be written as

1
Tgi/h)(nl,nz) = mﬂgf/h) [6Eyi(ny, ) —eVy], (4.6)

Lead-island couplings are energy-dependent when their tunnelling matrix elements depend on
energy or when at least one density of states (of the lead or of the island) depend on energy.
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and
T (m,m2) = o= G [BEui(m, m) — eVal (4.7)
o
In Egs. (4.6) and (4.7) the functions Féf/ " and Gl.(;/ M) are defined as
—+o00
S/ (E) = [ dezMfi(e) - file - B, 49)
—+o00
Gy (E) = [ ez M fie~E)L- fule)], 49

where fi(e) = (14 ¢/k8Tk)~1 is the Fermi distribution at temperature T,
and z(¢) =1, z0) = ¢, The two quantities

0Eui(ny,np) = Ey(ny +1,n3) — Ey(ng, ny)
dEu2(ny,ny) = Ey(ny, np +1) — Ey(ny, np) (4.10)

represent the jumps in the electrostatic energy related to the transitions [note
that they appear in Egs. (4.8-4.9) as chemical potentials of the islands]. In the
case where all temperatures are equal to T, Egs. (4.6) and (4.7) for the charge
reduce to

(©) 1 SEu(n, n2)
T 5(ny,n) = , (4.11)
w2 EZRQ exp |:§Eu%(§3n’11,ﬂ2)1| -1
and
r(c)(n1 ) = 1 —0Ey(ny,n2) (4.12)
2,x ’ - 2 _JE , : :
e Ra exp [ L]I(zB(gl nz)} —-1

The assumption of energy-independent couplings allows us to make gen-
eral statements thanks to the fact that the currents ]‘,(f/ M are proportional
to 1/R,. In the lower circuit, in particular, the proportionality constants
are equal for the two leads (i. e., ]IECZ) Rio = ]I({Cz) Rro and ]{?RLZ = ]I({g) Rr2)
since no biases are applied. As far as charge is concerned, current conserva-
tion in the lower circuit (IS + 7 (c) — 0) implies that the individual charge
currents in the lower circuit vanish identically, and therefore Ic(li; . is zero
even in the case of asymmetric barriers (R1, # Rgrp). On the other hand, no
conservation holds for the heat currents® in the lower circuit so that the two
heat currents, ]Szl) and ]I(g), are in general non-vanishing. In particular, for

symmetry reasons they are equal when Ry, = Rrp, and therefore ]gr‘i . is
finite only in the case of asymmetric barriers. The presence of heat currents
in the lower circuit is a result of the energy transferred from the upper circuit,
thanks to the capacitive coupling. Indeed, as detailed in the following, this
energy transfer occurs through the dependence of 6E;j», which controls the
transition rates for the lower island, on the charge state of the upper island
ny, see Eq. (4.10).

For the sake of definiteness, let us assume that the relevant charge states are
(0,0), (0,1), (1,0) and (1,1). Thus the jumps in electrostatic energy related
to the currents in the lower island are

0E12(0,0) = Ec(1 —2nyp) — Ernyg, (4.13)

The energy current, defined as ][f;) = ]S‘) +eVii] ﬂ(:-), is not conserved even globally (apart from
specific values of the temperatures of the islands). Indeed, fixing the temperature of the islands
is equivalent to connect the islands to electrodes, thus allowing them to exchange energy with

the “environment".
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for the case where the upper island is empty, and

0Ey2(1,0) = Ec(1 — 2ny2) + Ef(1 — ny1), (4.14)

for the case where the upper island is occupied. Equations (4.13) and (4.14)
express the fact that the position of the two chemical potentials E;,(0,0)
and JEy2(1,0) of the lower island, with respect to common equilibrium
electrochemical potential of the lower leads (set to zero), is expressed in terms
of ny1 and nyy. When 1,1 = ny, = 1/2 we obtain §E;»(0,0) = —E;/2 and
0E2(1,0) = +E;/2. The energy scheme for the lower island is represented
in Fig. 4.3a) for the former case and in panel Fig. 4.3b) for the latter case. If we
assume a small temperature T, an electron can jump on the island from one of
the electrodes only when the upper island is empty, since the corresponding
chemical potential JEj,(0,0) is below the electrochemical potential of the
leads, see panel a). Such an electron can jump out of the island only when the
upper island gets occupied, since the chemical potential 6E;(1,0) is now
greater than zero. This sequence of processes allows the heat currents | SZI) and
] 1({};) to be finite as long as the interaction energy E; # 0. Such heat currents
can be modulated by varying n,; and n,,, which produces a rigid shift of
the position of the two chemical potentials 6E;;»(0,0) and dEy»(1,0), see
Egs. (4.13) and (4.14). Note that the difference dE>(1,0) — 0E2(0,0) = Ej,
independently of 71,1 and n1,9.

Figure 4.3: Energies scheme for the lower, drag, circuit. Green rectangles represent
the tunnel barriers. Grey areas represent the Fermi distribution functions
of the leads, whose common equilibrium electrochemical potential, set to
zero, is indicated by a dashed line. Thick horizontal black lines indicate
the position of the chemical potential of the island for 1,y = nyy = 1/2.
a) The upper island is empty and the chemical potential is 6Ey2(0,0):
electrons can jump on the island. b) The upper island is occupied and the
chemical potential is 6Ej>(1,0): electrons can jump out of the island.

Analytic, even though cumbersome, expressions for the heat currents could
be derived in the limit of small biases V and AT. Interestingly, heat currents
turn out to be second order in V and AT (note that the heat currents in the
upper circuit are first order in V and AT). In particular, when 1,1 = ny =
1/2, the dragged heat current takes the simple form

o R 1
drag — 16R | Ri2  Rro

when AT = 0 and expanding in V/E¢, while

m _ SRy [ 11
Ri»  Rro

] csch & [Eesché — sech &] V2, (4.15)

J,

drag = o2 R

] csch é [26 (7;2 + (;‘2) csché

— (7;2 + 3§2> sech 6] (kgAT/2)?, (4.16)
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when V = 0 and expanding in AT/T (only the leading terms in kgAT/E¢
are retained)’ In Egs. (4.15) and (4.16) we have defined ¢ = E;/(4kgT) and

2 1 1\ !
Ry = (R T Rm) , (4.17)

and assumed Rp; = Rr1 = R. Egs. (4.15) and (4.16) show that the dragged
heat current is finite only when the interaction energy Ej # 0 and depends on

E;p only through the ratio E;/ (kgT) (this is true only when 1,1 = 1,0 = 1/2).

Moreover, we mention that in the presence of both voltage and thermal
biases the contribution to the dragged heat current is proportional to the
product VAT and exhibits the same qualitative behavior as for the voltage

or thermal bias only case. For 11,1 = nyy = 1/2 such contribution vanishes.

More manageable expressions can be obtained by further expanding in

x10~7

6] @ RV AR t s
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Figure 4.4: Dragged heat currents plotted as functions of #n,, for different values of
ny1. The results accounting for sequential tunneling only are plotted in

black, while results including co-tunneling contributions are plotted in red.

RLl = RRI = RLZ = 5RQ, RRZ = 10RQ, kBT = 0.05Ec, and EI = 0.4Ec.
(@) AT =0and V = 0.08Ec/¢; (b) V =0 and AT = 0.08E/kg. The solid
curves have been multiplied by a factor 1/20 in panel (a) and by a factor

1/4 in panel (b). The heat current is given in units of ]éh> =e?/(4C*R).

powers of the interaction energy Ej, namely we get

2
w _[ 1 1R,
Jarag = [RLZ RR2:| 48RV ’ (4.18)

3 Note that the cross-term VAT vanishes when 1,7 = ny, =1/2.
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when AT =0, and

() 1 1] (=6 R
]drag = |: :|

Ri2  Rro 36e2R (ksAT/2)" (4-19)

when V = 0. Note that both expressions are second order in Ej.

Let us now concentrate on the dependence of the dragged heat current
]g;; g ON the external charges, i. e. on the gate voltages, and show numerical
results for the asymmetric barriers case specified by Rro = 10Rq, Rio =
5Rg (Rq = e?/h is the resistance quantum), while setting k3T = 0.05E,
R = Ri1 = Rr1 = 10Rq, and E; = 0.4Ec. In Fig. 4.4 we plot the dragged
heat current as a function of 1y, (determined by the gate voltage acting on
island 2) for three different fixed values of 7,1. The black curves accounts for
sequential tunneling processes only (solid n,; = 0.5, dashed n,; = 0.4 and
dotted 1,7 = 0.6), while the red solid curve accounts also for co-tunneling
contributions (see below). In Fig. 4.4a) and 4.4b) the currents are, respectively,
a result of a voltage bias V (with AT = 0) or a thermal bias AT (with V = 0).

Fig. 4.4a) shows that when n,; = 1/2, solid curve, ]grlig exhibits a peak
at nyy = 1/2, while the peak is shifted to a larger (smaller) value of 1y,
when 1,1 = 0.4 (ny; = 0.6). This effect can be understood by noticing that
the dragged heat current is expected to be maximal when the two chemical
potentials of the lower island 6Ej»(1,0) and 0E (0, 0) are equidistant with
respect to the equilibrium electrochemical potential set by the electrodes
[see Fig. 4.3]. In this case, in fact, the heat transition rate for an electron to
enter the island from the left lead (non-vanishing only if 71 = 0) is equal
to the heat transition rate for an electron to leave the island to go to the
left lead (non-vanishing only if n; = 1). By departing from the equidistant
configuration, one of the two rates gets suppressed resulting in a suppression
of the heat current. For 1,7 = 1/2 the equidistant configuration occurs when
nyp = 1/2, while when 1,y = 0.4 (1,1 = 0.6) the equidistant configuration
occurs when nyy = 054+ 0.05E;/Ec > 1/2 (ny» = 05 —0.05E1/Ec < 1/2).
Notice that the value of ]g;;g is over one order of magnitude bigger in the
case 1,1 = 1/2, with respect to the cases n,; = 0.4 and 1,7 = 0.6. The reason
for this behavior is related to the fact that in the former case the heat current
in the drive circuit (and therefore the energy transferred in the lower circuit)
is maximum.

We checked that the position and the shape of the peaks does not change
by varying the value of V, while the maximum value increases with it. On the
contrary, an increase in the temperature T produces a proportional increase
in the width of the peaks (An,, ~ 2kgT/E(c), on the one hand, and a decrease
in the separation between the peaks at 11,y = 0.4 and at n1,p = 0.6, on the
other. Thus, temperature seems to have a less intuitive effect on the dragged
heat current. Remarkably, the width of the peaks is virtually independent of
Ey. In Fig. 4.4b) we show plots of the dragged heat current in the presence of a

thermal bias in the drive circuit. The behavior of ]g:i

the one in the presence of a voltage bias, with the following little differences:
i) the value of the heat current for the cases n,; = 0.4 and n,; = 0.6 is not
dramatically suppressed with respect to the n,; = 1/2 case (a factor 4 with
respect to a factor 20); ii) the shift in the positions of the peaks for the cases
ny1 = 0.4 and n,; = 0.6 is smaller with respect to the voltage-bias case.

in this case is similar to

For 1y, > 1/2 the two chemical potentials shift downwards, thus reducing the rate for exiting
the island. For 1, < 1/2 the two chemical potentials shift upwards, thus reducing the rate for
entering the island.
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Let us now concentrate on the role of E; on the dragged heat current.
Notice that the interaction energy can be expressed as

2
Er=Ec

Q 7 (4 20)
G

where C = C; = G, and that it is bounded by the inequality E; < 2Ec. In
Fig. 4.5, ]gr‘a)lg is plotted as a function of Ej for the voltage bias case (dashed
red line) and for the thermal bias case (solid black line) for n,; = n,, = 1/2.
As a general feature, we note that the dragged heat current is maximal for
intermediate values of E;. This agrees with the fact that, on the one hand,

]c(frle)l o must decrease for large values of E; as a consequence of the fact that the

probability p(1,1), thus the occurrence of the process depicted in Fig. 4.3(b),
gets suppressed (indeed, E| represents the inter-island Coulomb repulsion
which hinders the occupation of the lower island when the upper island is
occupied). On the other hand, ]c(I]:; . vanishes for E; = 0 due to the absence of
electrostatic coupling. In Fig. 4.5, while the thick lines are numerical results,
the thin lines are the analytical solutions for small voltage and temperature
biases, Eqs. (4.15) and (4.16). It worthwhile stressing that while the red
curves coincide, the black curves closely match only for E; < 0.2E¢ and
thereafter depart significantly. This is due to the fact that, despite kpAT is
small with respect to Ec, kAT is larger than kpT and Eq. (4.16) does not
hold. Nevertheless, the position of the maxima E{"® are well predicted by
the analytical expressions, Egs. (4.15) and (4.16), even for larger values of
AT and V. The solution of a transcendent equation yield E{"® ~ 5.5kpT,
for the voltage bias case, and E{"™ ~ 8.5kpT, for thermal bias case. Finally,

unlike Egs. (4.15) and (4.16), we notice that ]c(l}rl;g at 11,1 = nyp = 1/2 for large
enough V and AT depends on Ej not only through the ratio E;/ (kgT).

x10~°
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Figure 4.5: Dragged heat current (sequential tunneling only) plotted as a function of
E; for the case V = 0.08Ec and AT = 0 (red lines) the case AT = 0.08E¢
and V = 0 (black lines) for n,; = n,, = 1/2. Thin black and red curves
are plots of the analytic expressions Egs. (4.15) and (4.16), respectively.
The other parameters are chosen as follows: Ry; = Rr1 = Ri2 = 5Rq,
RR2 = 10RQ, and kBT = 005EC

We conclude this section by comparing the heat current in the drive circuit,

for example ]1({};), with the one in the drag circuit, for example ]1(12)' In the
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case of a thermal bias, it turns out that ]I%) < ]I({}i), as expected from the
fact that ]Ig}) is linear in AT, while ]Ig};) is quadratic in AT (at least for small
values of AT). In the voltage-bias case, surprisingly, we find that ]I({};) is larger

than ]1%) for large enough interaction energy, as shown in Fig. 4.6, where the
crossing occurs at Ef™ ~ 0.4Ec. More precisely, the value of E{™** decreases
linearly by decreasing T, thereafter saturating, for small T, to a finite value
of Ef*®* ~ eV, i. e. very close to the applied voltage.

x10~4

(h)
— i
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R A
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Figure 4.6: Heat currents ]l(z}}) (solid black curve) and ]1%) (dashed red curve) plotted
as a function of Ej for the case AT = 0 and accounting for sequential
tunneling only. The other parameters are chosen as follows: R = Ry =
RRl = RRZ = 1ORQ, Nyl = Nyp = 1/2, V= 0.0SEc/E, and kBT = 0.0SEc.

4.1.2  Co-tunnelling contributions

When the barriers’ resistances do not largely exceed the resistance quantum
R and temperatures are low, it is important to account for second-order
tunneling events (co-tunneling contributions). Given the large number of elec-
trons in the islands, we will only consider inelastic co-tunneling. Co-tunneling
contributions affect the expressions of the currents (4.5), see App. D.3, and
the master equations, see App. D.1, by introducing additional terms. These
are related to the co-tunneling particle and heat transition rates involving an
electron entering or leaving island 1 through the upper leads and a second
electron entering or leaving island 2 through the lower leads (see App. D.2).
In the present situation, where there are no voltage and temperature biases
applied to the drag (lower) circuit, the number of processes that contributes
to the current in L2 (R2) is limited to the ones that involve a tunneling
event between island 2 and its lead L2 (R2) and all possible tunneling events
between island 1 and its leads L1 and R1 (see App. D.3 for the expression

of the current ]1%)). We were able to obtain analytical expressions for charge
and heat currents only in the voltage-biased case.
Due to the energy-independence of lead-island couplings, also in the

presence of co-tunneling contributions the currents ],J(f/ M remain proportional
to 1/R4 in such a way that the charge currents in the drag circuit vanish
also in the case of asymmetric barriers (R1» # Rgp). On the contrary, the
dragged heat currents, which are non-zero even for sequential tunneling, can
give rise to quantitatively important changes (when resistances are small and
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temperatures are low). As shown in Fig. 4.4 (red curves), co-tunneling gives
rise to a broadening and lowering of the peaks with respect to the sequential
tunneling only case (solid black curves), both in the voltage and thermal bias
cases.

In Fig. 4.7, ]g;ig is plotted as a function of V, for AT = 0, in a wide range of
voltages up to 0.4E¢. The solid black curve accounts for sequential tunneling
only, while the red dashed curve includes co-tunneling events. Fig. 4.7 shows
that co-tunneling events produce an increase of the dragged heat current
for values of V in the lower range and a decrease in the upper range. This
reflects the fact that, for low voltages, co-tunneling contributions becomes
dominant since the Coulomb gap does not allow for first order transport
processes (sequential tunneling) [60, 57]. Finally, we numerically check that,

for small voltage and temperature biases, | dl:zzg remains quadratic in V and
AT even when co-tunneling contributions are important. For the specific
choice of parameters used in Fig. 4.7, we get that ]é};; . remains proportional

to V2 up to V ~ 0.05Ec /e, when sequential tunneling only is accounted for,
while up to V' ~ 0.1Ec /e, when co-tunneling is also included.
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Figure 4.7: Dragged heat current ]C(ikrl; . plotted as a function of V accounting for
sequential tunneling only (solid black line) and including co-tunneling
contributions (dashed red line) for AT = 0 and n,; = ny; = 0.478. The
other parameters are chosen as follows: Ry; = Rgr1 = Rip = 2Rq,
RR2 = 4RQ, EI = 0.1EC and kBT = 001EC

4.1.3 Superconducting electrode

In this section we assume that one of the electrodes in the drag circuit
(the right-hand one, R2, for definiteness) is superconducting. This case is
interesting since the transition rates cannot be written as in Egs. (4.6) and

(4.7). Indeed, the particle transition rates I 5;2),2(111, ny) can be written as [79]

Mot ) = 5 [ de [ de i(e)P pra(e)pale’) frale)
X [1—fa(€')] 6 [¢' — e+ dUy(n1,n2)], (4.21)

where pro(€) [p2(€)] is the density of states (DOS) of the superconducting
lead R2 (island 2) and t(€) is the tunneling matrix element of the junction
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(the heat transition rates are defined analogously). The DOS of the electrode
Rz is given by

le]
(e — A2>1 /2’

where pﬁgr is the DOS of the electrode in the normal state, ® is the Heaviside
step function, and A is the superconducting gap. We assume that A < E¢, so
that Andreev reflection is largely suppressed [79], and Rp5" > R, so that
sequential tunneling of quasi-particles becomes the dominant process. R
is defined as the normal state tunnel resistance of the junction R2, namely

Pr2(€) = PR3O [[e] — A] (4-22)

1 47762 5
R?{%r = 7 p2prﬁc2>r|t‘ ’ (4-23)

since the tunneling matrix element is energy-independent. Notice that
Eq. (4.21) reduces to Eq. (4.6) when the energy-dependence of the tunneling

matrix elements and of the DOS of lead and island can be disregarded.
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Figure 4.8: Heat (a) and charge (b) drag currents versus ny for fixed n,y = 1/2 in
the case where R2 is a superconducting electrode. The other parameters
are chosen as follows: RLl = RRl = RR2 =R = 5RQ, RLQ = ZOORQ,
E; =0.3Ec, kgT = 0.05Ec, A = 0.4E¢. The charge current is given in units
of ]éc) = ¢/(2CR). Charge drag current (b) is obtained by applying a
thermal bias kAT = 0.08E¢, whereas the heat drag current (a) is obtained
by applying a voltage bias AV = 0.08E¢/e.

As shown in Fig. 4.8(a), the heat currents in the drag circuit (due to a
voltage bias in the drive circuit) plotted as a function of 1y, with 1,y =1/2,
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exhibit a qualitatively different behavior when compared with the energy-

independent case. Namely, ]1(?2) [dashed red curve in Fig. 4.8(a)] is not a
bell-shape function, but rather presents two maxima, symmetric with respect
to nyy = 1/2, separated by a shallow dip. This behaviour is a result of
the peculiar energy-dependence of the DOS of the superconductor, which
presents a gap around the equilibrium electrochemical potential and narrow
peaks at € = £A [see Eq. (4.22)]. The former, on the one hand, suppresses the
transfer of quasi-particles in and out of the right electrode R2 when 1, =~
1/2, see Fig. 4.9(a), thus producing a dip in 11(1};)' The narrow peaks, on the
other hand, promote such transfer when n,, =1/2 — A/(2Ec) + E;/(4Ec),
i. e. when 1,7 is such that 6Eyp(g,) [6U2(1,0)] is close to FA [see the sketch
in Fig. 4.9(c)], inducing an enhancement of the heat flow into the electrode
Ra.

Let us now consider the behavior of ]S), represented by the solid black

curve in Fig. 4.8(a). Remarkably, ]1(2) takes negative values for 1,2 ~ 0.6 and
Ny =~ 0.4, which means that heat is extracted from electrode L2. We observe
that such heat extraction is related (occurring roughly at the same values
of ny7) to the peaks in the heat current entering R2. One could intuitively
imagine that the heat extracted from L2 results from a “compensation” of
the enhanced heat flow entering R2. We point out that heat extraction occurs
only when three conditions are met, namely when kgT < Ej, E; = A and
R12 is larger than the other tunnel resistances.

Furthermore, we find that the superconducting electrode R2 allows a finite
thermoelectric drag of charge current. Fig. 4.8(b) shows the dragged charge
thermocurrent (i. e. due to a thermal bias in the drive circuit) plotted as a
functions of ny,, for a fixed n,; = 1/2. The dragged charge thermocurrent,
on the one hand, vanishes at 11, = 1/2 because of the symmetric energy
configuration [see Fig. 4.9(a)]. For n,, < 1/2, however, the two chemical
potentials shift up [see Fig. 4.9(c))] so that the up most one matches the peak
of the DOS of the superconductor, thus favouring a charge current flowing

towards the right, i. e. ]1({C2) becomes positive. For n1,» > 1/2, an analogous
argument holds for which the transfer of holes towards the right is favoured
when the down most chemical potential matches the peak of the DOS of the

superconductor [see Fig. 4.9(b)], so that ]1(;2) takes negative values.

We remark that the necessity for energy-dependent lead-island couplings
in the drag circuit, in order to obtain a drag of charge, was discussed for
single-level QD-based Coulomb-coupled systems in Refs. [57], [58], [60], [61]
and [62], in the presence of a voltage bias. Energy-dependent couplings were
introduced through the dependence on the charge state of the QDs of the
transition rates between leads and QD, in Refs. [57] and [60], and through
the linear energy dependence of the DOS of graphene in Refs. [61] and [62].
These mechanisms, however, are not realistic for metallic islands.

Finally, we wish to mention that, in the limit of small biases, both ]C(lcr)ag

and ]c(frg g are second order in V or AT, independently of the values of 7,4
and 7, (analogously to what found in Ref. [57] and [58] for the drag of
charge in the biased-voltage case of QD-based systems). We checked that first
order contributions in V or AT appear when an additional superconducting
electrode is included in the drive circuit, i. e. when energy-dependent lead-
island couplings are present in the drive circuit as well as in the drag circuit
(analogously to what found in Ref. [57] for the drag of charge in the biased-
voltage case of QD-based systems). Furthermore, the heat currents in the
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drag circuit are proportional to V or AT when energy-dependent couplings
are present at least in the drive circuit.

a) n,=05 b) n,>0.5

Figure 4.9: Sketch of the energies in the presence of a superconducting electrode on
Rz, for 111 = 1/2. The red line represent the superconducting DOS, with
a gap equal to A centered at the equilibrium electrochemical potential of
the electrodes (dashed thin line). Blue lines represent the two chemical
potentials of the lower island, §E;3(1,0) and §E(2(0,0). Such chemical
potentials, according to Eqs. (4.13) and (4.14), are symmetric with respect
to the electrochemical potential of the electrodes when 71, = 0.5 [(panel
a)], shift downwards [(panel b)] when #,, > 0.5, and shift upwards [(panel
¢)] when n,, < 0.5.

4.2 THERMAL DRAG IN COULOMB COUPLED QUANTUM DOTS

L2 R2

Figure 4.10: Sketch of second system under consideration composed of two Coulomb
coupled quantum dots (QDs) labeled by QD 1 (in the drive circuit) and
QD 2 (in the drag circuit).

The second system considered, depicted in Fig. 4.10, consists of two quan-
tum dots (labeled QD 1 and QD 2), each one tunnel-coupled to two electrodes.
Quantum dots (QDs) present an ideal setup for studying quantum effects
at nano-scale. The recent experimental as well as theoretical progress on
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thermo-electric properties of Coulomb coupled systems have been primarily
motivated by their possible application as non-local thermoelectric devices.
We discussed the case of metallic islands in the previous section where we
observed that for energy independent tunneling, the unbiased system fa-
vorably gets heated whereas cooling can be obtained by introducing energy
dependent parameters, for instance, by taking superconducting electrode or
engineering energy dependence in the transition amplitudes. The energy de-
pendence filters the allowed energy for transition and hence can be suitably
engineered only to allow specific processes. Since the quantum dot has only
one energy state, the filtering process can be made more strict. We expect the
quantum dot setup to provide higher magnitude of heat extraction from one
of the electrode in the drag compared to the metallic island case.

4.2.1  Formulation

The Hamiltonian for the double quantum dot system is given by Eq. (2.2)
with i = 1,2 and w; = 0 and U, = U. The baths are fermionic as defined
in Eq. (2.7). The contact Hamiltonian for dot-electrode coupling is given by
Eq. (2.8).

We study the thermoelectric dynamics using Pauli master equation ap-
proach. The coupled QDs are considered to be in Coulomb blockade regime
and hence the dynamics of the system can be described by four charge states.
For brevity, we represent the empty state by (0,0), singly occupied states by
(1,0) and (0,1) and doubly occupied state by (1,1). The energy associated
with the eigenstates mentioned above are given by E(0,0) =0, E(1,0) = €y,
E(0,1) = ey and E(1,1) = €1 + €3 + U respectively. The transition rates are
obtained by solving the Fermi’s golden rule where the tunneling Hamil-
tonian is treated as a perturbation and different order contribution can be
calculated using the perturbative T-matrix approach. The first order contri-
bution includes the tunneling of only one particle and will be discussed in
the following.

The change in energy of the QD system, when an electron tunnels into or
out of the system can be expressed as

0Ei(ny,np) = E(ny+1,n2) —E(ny,n2),
0Ep(ny,mp) = E(ny,ny+1)— E(ny,n2). (4.24)

The transition rates between the QD system and the electrode a can be
expressed as,

F(C/h)(nl,nz) = hilzgf/h) (6E;i(n1,np) — eVy) fu (6Ei(nq,n2) — Vi) (4.25)

o,

for tunneling from electrode & into the QD system and,
Tg,;/h)(nl,nz) = hilz,gf/h) (0E;(nq,np) — eVy) fo (—OE;(n1,n3) +eVy) (4.26)

for the reverse process, i.e. when an electron tunnels from the QD i into the
electrode a. We have introduced,

2 = Tule)
2 (e) = eTule), (4.27)

where I'y(€) is the spectral density of the bath a as defined in Eq. (2.16). The
occupation probabilities and the currents can be obtained using the master
equation formulation (see previous section on metallic islands for details).
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4.2.2  Energy dependent tunneling — Charge-state-dependent transition amplitudes
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Figure 4.11: Heat currents in the case of QDs flowing in the two leads of drag system
as a function of €, considering charge state dependent transition rate.
Parameters: e = 0; AT =0.8T; eV =0; U =0.1kgT; ;1 =Tg1 =Tp =

1 0 _ 1

In Ref. [60] the energy-dependence of the lead-island couplings was imple-
mented assuming that the transition rate between the QD and one electrode
in the lower branch circuit depends on the charge state of the upper QD (see
Fig. 4.10). In this section we consider the case where for all the electrodes,
except for the lower right R2, we assume energy-independent coupling.
On the contrary, for the lower right electrode R2 we implement an energy-
dependence by setting an “effective resistance" which depends on the charge
state of the upper island. This can be done by assuming the spectral density
to have the form

271|VY Poga(0) = T

27| Vig! Pora(0) = T} = 5T (4.28)

where VIgg) and Vrg) represent the tunneling matrix element between the
QD2 and right electrode R2, which depend on the charge state of the QD1,
either empty (0) or occupied (1). Charge state dependent transition rates
provides selective transport of energetic particles across the tunnel barriers.
The high energy particles can get picked up from one of the electrode (R1 or
R2) in the right side and get dropped to the other electrode in the same side.
As a consequence, one of the electrode gets cooled whereas the other one gets
heated as shown in Fig. 4.11. The electrode that is cooled (R1 or R2) depends
on the sign of e when everything else is kept constant (see Fig. (4.11)).
Note that negative heat current implies extraction of heat (cooling) from the
corresponding electrode.

The mechanism which allows a drag heat current to flow can be described
through the energy scheme in Fig. 4.12, where panel (i) refers to the case
€2 > 0 and panel (ii) refers to e, < 0. For simplicity, we consider the case
when I'[, = FI({()Z). 1) For small temperatures and E; < kgT, an electron jumps
to QD2 when the QD1 is empty (panel (i)) (this step is facilitated by keeping
the bare energy level of the QD2 close to the Fermi-level (dashed line) of
the electrodes). When n; = 0, an electron from the electrodes (L2 or R2) has
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dhatt

Figure 4.12: Sketch for the cooling process with charge state dependent transition
rates

(0)

equal chance of tunneling into QD2 as I'l; = I, . 2) An electron tunnels
into QD1 from one of the electrodes in the drive circuit raising the energy
of the electron in QD2 by Ej as shown by the upward arrow in Fig. (4.12).
Eventually, the electron in QD2 tunnels out to one of the electrodes, but more
preferentially to the electrode R2, as when the QD1 is occupied it is more
easier to exit to R2 than L2 (ng) = %I’l(;)z)). This asymmetry in tunneling into
the left and the right electrode when QD1 has an electron leads to finite
cooling of one of the electrode in the drag system. When €, > 0 (panel (i)),
hot electrons tunnel into the electrode R2 whereas when €; < 0 (panel (ii)),
hot electrons tunnel out of the electrode R2 (see Fig. 4.12). This leads to
heating of the electrode R2 when €; > 0 and cooling of the electrode R2
when e; < 0 (see Fig. 4.11).

4.2.3  Energy Dependent Tunneling - Superconducting Electrode

In this subsection, we will consider the electrode R2 to be superconducting.
The density of state for the superconducting electrode is energy dependent
and is given by the superconducting density of states:

€+in
Re < i Az) ’ (4.29)

where, 7 (Dyne’s parameter) represents the inverse life time for the quasipar-
ticles and A is the superconducting gap. Egs. (4.25) and (4.26) for transition
rates hold with the spectral density given by:

Pr2(€) =

Ta(e) = 2t]t0u(e): (4:30)

As shown in Fig. 4.13, the presence of superconducting electrode leads to
the extraction of heat from one electrode and heating of the other electrode
in the drag system for suitable values of €;. The cooling mechanism can be
described similarly as in the case of charge-state dependent transition rates.
However, in the case of superconducting electrode, selective tunneling of
electrons in the drag system is led by the superconducting gap.
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Figure 4.13: Heat currents in the coupled QDs case flowing in the two leads of drag
system as a function of e; taking the lead R2 to be superconducting.
Parameters: e = 0; AT = 0.8T; ¢V = 0; U = 0.07kgT; I'y; = I'g; =
T'io = 45ksT; TR = kBT

Different Set Ups Energy Dependence | Order dependence of heat
in tunneling rates drag on the bias
Potential bias None / in the drag 2" orderin V
Thermal bias (symmetric) None / in the drag 2" order in AT
Thermal bias (asymmetric) None / in the drag 15t order in AT
Potential bias Each in the drive and 1storder in V
drag
Thermal bias (symmetric) Each in the drive and 1storder in AT
drag
Thermal bias (symmetric) + potential | None / In the drag 1storder in V AT
bias

Table 4.1: Order dependence on thermal and potential bias under different scenarios.

4.2.4 Order dependence on bias

In Table 4.1, we list the order dependence of thermal drag on potential
and thermal bias under different conditions. Firstly, we observe that the
heat currents flowing in leads of the drag system are second order in the
potential or thermal bias when they are applied symmetrically. Indeed we
find that, for the charge state dependent transition rates with e; = e; = %u’
Vii1=-WVr1 = % for potential bias and T11,r; = T & AT for thermal bias,

2 2
0T o U1 (ot rann [ U]} AT
Ji) = 532 U~ sech kT (4kBT U tanh Ty T )k%T‘V
2 2
w _ 7T u u (e
Ji) = 532 U sech Tk T tanh 5T | T ) (4.31)

Interestingly, a linear in AT or AV term can be obtained in the drag
heat current, by introducing asymmetry (energy dependent tunneling or
asymmetric bias) in the driven system.
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Taking asymmetric thermal bias Ty; = T + AT and Tr; = T, we find:

2 (0)
m_mo u > AT 7T
o = 416 UF sech 4kgT | kgT? + 1664
u 1’ U ]y AT?
2 _
U2 sech [ 4kBT} (4kBT U tanh [ 4kBT} )k%T4 (4.32)

4.3 SUMMARY

In summary;, in this chapter we have studied the phenomenon of electronic
thermal drag in two different setups, namely for capacitively-coupled metal-
lic islands and for Coulomb-coupled quantum dots. In the metallic island
case, using the master equation approach we have studied both the sequential
and the co-tunneling contributions to thermal drag in the presence of either
a voltage bias or a temperature bias. In the sequential tunneling regime we
have obtained analytical results for small biases, finding, in particular, that
Ic(l}rlg . is quadratic in AT or V and non-monotonous as a function the coupling
between the islands (inter-island repulsion). We have found that such behav-
ior holds even when co-tunneling processes are included. Finally, we have
explored the consequences of energy-dependent island-electrode coupling
by replacing one of the electrodes in the drag circuit with a superconductor.
Apart from allowing a finite dragged charge current, we have found that the
presence of the superconducting electrode can cause the extraction of heat
from the remaining normal electrode in the drag circuit.

In the case of Coulomb coupled quantum dots, we have derived an an-
alytic expression for the heat current flowing in the drag circuit using the
master equation formulation. Similar to metallic island case, we find that for
symmetric bias condition, the first order contribution in the bias vanishes and
the second order contribution becomes the leading contribution. However,
if either the thermal bias is asymmetric or if the tunneling rate in the drive
circuit is energy dependent, a finite contribution to thermal drag is obtained
even from the first order terms. On a separate note, the non-local cooling
effects are significantly enhanced in the quantum dot case compared to the
metallic island case.

As argued in the following, both setups are experimentally feasible with
current technology. In both cases, the Coulomb coupling between two such
islands has been realised by placing close together two single electron transis-
tors, while making sure that no electron transfer occurs between them, see for
example Refs. [76] and [43]. In both cases, heat currents can be determined
by making use of heat budget models which account for all possible heat
exchanges between the systems and their environment. See, for example,
Ref. [39].

We believe that the results obtained in this chapter can be also relevant for
the implementation of non-local thermal machines. Indeed, the four-terminal
system depicted in Fig. 4.1 can be operated as a non-local heat engine where
the temperature difference between the two upper electrodes can be used to
extract work from the lower circuit. Likewise, a non-local refrigerator uses
the work performed on the upper circuit to cool one of the lower electrodes.
Autonomous refrigerators, where heat is provided instead of work in the
upper circuit, can also be envisaged (see Refs. [35, 80]). Moreover, the four-
terminal setup can be operated as a thermal gating system, similarly to the
three-terminal setups of Refs. [69, 81], where the heat or charge flow in the
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upper circuit is controlled by changing the temperature of the electrodes in
the lower circuit.



ABSORPTION REFRIGERATORS BASED ON COULOMB
COUPLED SINGLE-ELECTRON DEVICES

Absorption refrigerators, also known in literature as self-contained or au-
tonomous refrigerators, are systems that extract heat from a cold thermal
bath only by exploiting the incoherent interaction with other two thermal
baths held at higher temperatures. No work is provided to the system, i. e.
cooling is achieved by heating. The exploration for solid state implementations
of absorption refrigerators has been recently attracting a considerable atten-
tion [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]. The
question of identifying the smallest absorption quantum refrigerators was
addressed by Linden et al. in Ref. [83], where systems such as two qubits, a
qubit and a quitrit, or a single qutrit were considered. It has been later shown
that these “minimal” systems can operate at Carnot efficiency[84, 85], and
the role of quantum coherence and entanglement has been addressed [88,
89, 92, 93, 94, 96]. Besides being of fundamental interest in quantum thermo-
dynamics, absorption refrigeration is also appealing for practical reasons:
waste heat can be used to achieve cooling at the nanoscale without providing
work nor requiring any external control of the system. There are already few
experimental proposals[100, 86, 101, 74, 102, 103, 104, 35, 81], but the only
experimental realization so far has been performed with trapped ions [52].
In Ref. [35], in particular, it was pointed out that the very simple setup con-
sisting of two capacitively-coupled quantum dots could act as an absorption
refrigerator, and the conditions under which its coefficient of performance
(COP) can reach Carnot’s limit were discussed (no entanglement or quantum
coherence is required).

In this chapter, we analyze in detail a setup consisting of two capacitively-
coupled quantum dots. we propose two experimental realizations, based
either on quantum dots (QDs) or metallic islands, which can implement
the non-trivial requirements for the system to behave as an absorption
refrigerator. We demonstrate that these systems, which closely resemble
existing experimental setups [105, 63, 106, 61, 68, 76, 53, 62, 60, 43], can
attain an observable cooling power using realistic parameters.

5.1 MODEL

The system under investigation, depicted in Fig. 5.1(a), consists of two
electronic reservoirs [upper left (L) and upper right (R)] tunnel coupled to
a QD, denoted by 1. A second QD, 2, capacitively coupled to 1, is tunnel
coupled to a third electronic reservoir (C). The number of electrons occupying
each Coulomb-blockaded QD can be controlled through a gate of capacitance
Cgi and applied voltage Vg;, with i = 1,2. Reservoir L is kept at a higher
temperature, T, = T + AT, with respect to the other reservoirs which are kept
at temperature Tx = T and Tc = T — ATc. The heat current leaving reservoir
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AEy1(ny; = 1)
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Figure 5.1: Panel (a): schematic representation of the system. Panel (b): the Fermi
distribution of the leads (red upper left, gray upper right and blue lower
left) is shown vertically. The black thick lines represent the transition
energies AEy, (n2) and AEy, (n1) [Eq. (5.2)] that are measured with respect
to common chemical potential of the leads (black dashed line). Panel (c):
sequence of system states and electron transitions that provide cooling
when conditions (5.7) and (5.8), represented by the red crosses, are satisfied.
The black horizontal lines represent the actual transition energies as
determined by the occupation of the other QD, while the grey horizontal
lines represent the transition energies when the other QD has opposite
occupation. 6Qy, for #=L,R,C, represents the heat extracted from reservoir
« during the corresponding electron transition.

« = LR,.C is denoted by ],,(éh), and the charge current flowing between
reservoirs L and R is denoted by J(©). We describe the transport in the
entire system using a master equation approach in the sequential tunneling
limit. Although we expect higher order tunneling processes, such as co-
tunneling, to decrease the cooling power, these corrections are suppressed
if the conductances of the junctions are much smaller than the conductance
quantum and temperature is not too small. The electrostatic energy of the
system is given by

Ey(m,n2) = Ec1(n1 — n31)* 4+ Eca(ny — nx2)? + Ei(n1 — 1) (2 — n3),
(5-1)

where n; (for i = 1,2) is the number of electrons in QD i, ny; = Vg;iCyi/e,
and Ec; = €2/(2C;) is its charging energy. C; is the capacitance of QD i to its
surroundings, and Ej is the inter-system charging energy which is controlled
by the capacitive coupling between the QDs. By assuming that Ec; > kgT
and constraining the values of 7,; to an appropriate range, we can restrict our
analysis to 4 charge states, described by 71,1, = 0, 1. The “transition energy”,
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i.e. the energy necessary to add an electron to QD 1 (2), which also depends
on the occupation of QD 2 (1), is given by AEy;(n2) = Ey(1,n2) — Eyy(0,n3)
[AEua(n1) = Eu(ni,1) — Ey(ny,0)]. Since AEy;(1) — AEy;(0) = Ej, we can
write

AEyi(n) = 6;E1 + (n — 1)Ey, (5-2)
where
-~ Eci
0y =1—1np+ E—I(1 — 21141), (5-3)
E
0 =1— g + Eilz(l — 2ny2), (5-4)

can be varied using the gate voltages. The transition energies are schemati-
cally represented in Fig. 5.1(b) and 5.1(c) as black thick lines. Let I'y /g ; (12)
[T1L/r(12)] be the rate of electrons tunneling from (to) reservoir L/R to
(from) QD 1, and let Tc(n1) [[2c(n1)] be the rate of electrons tunneling
from (to) reservoir C to (from) QD 2. Note that the tunneling rates satisfy
the detailed balance conditions

Tia(n) = exp{ [‘,SCB(’;)} }ra,z-(n» (55)

where 0p (1) = 6r(n) = AEy1(n) and éc(n) = AEyz(n). The currents can be
calculated by specifying the tunneling rates for each process and by deter-
mining the probability Py, ,, for the two QDs to have occupation numbers
ny and ny (see App. E.1). We also use Eq. (5.5) to express I'y ;(0) in terms
of T;,(0) and T; 4 (1) in terms of I’ ;(1). We emphasize, however, that the
results we present in the next section do not depend on the specific form of
the rates, as long as Eq. (5.5) is satisfied. Only a quantitative description of
the cooling power will explicitly depend on the rates.

5.1.0.1 The coefficient of performance

The COP for refrigeration is defined as

1
n= DK (5-6)
L

where ]éh) > 0 is the input heat and ]éh) > 0, the cooling power, is the
heat extracted from reservoir C (their expressions are reported in App. E.1).
Considering generic rates that are only constrained by satisfying the detailed
balance condition [Eq. (5.5)], we find that the cooling power is maximized, at
fixed values of Ej, 61 and 6,, when

I . (1) =0, (5.7)
Iﬂ1,R(0) =0, (5‘8)

and T'; 1.(0), I'r (1), [,c(0), Tc,(1), are as large as possible (see App. E.2
for details). In this situation [i. e. when Egs. (5.7) and (5.8) hold and when
0; > 1/2, see App. E.1 for details] the condition for the positivity of I
reduces to the simple inequality

1

91>9T51+’7hnr,
ciC

(5-9)
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where 7 =1 —T/Ty and 5% = Tc/(T — Tc). Remarkably, in this situation
the COP is also maximized (at least for ATc = 0), and takes a particularly
simple (i. e. independent of temperatures) form

1
n= 0 —1’ (5.10)

that only depends on 61 (which is determined by both gate voltages V; and
Vg2). Note that Eq. (5.9) implies that AEy(1) > 0 and AEy1(0) > 0, i. e.
both transition energies are above the common chemical potential of the
reservoirs’, as shown in Fig. 5.1(b). This observation holds also for generic
rates that do not satisfy Egs. (5.7) and (5.8), see App. E.2 for details.

Although the ideal condition of completely blocking the transitions as
shown in Fig. (5.1) is not possible, one can include energy filters in the
transition rates, for example including a quantum dot in the contact region,
taking a superconducting reservoir or by considering charge state dependent
transition rates. We will use these mechanisms to study cooling in two
different set ups.

5.2 QUANTUM DOTS

The experimental realization of the proposed absorption refrigerator relies
on the ability of implementing the crucial conditions (5.7) and (5.8). Such
conditions could be, in principle, implemented by properly engineering the
tunneling barrier which couple QD 1 to its reservoirs, in order to obtain
tunneling rates for QD 1 that depend on the occupation of QD 2. In this
section, we make use of an additional QD [107] to implement the crucial
condition (5.7) that is found to be sufficient for obtaining heat extraction.
In the setup, schematically pictured in Fig. 5.2, we introduce an additional
QD (3), tunnel-coupled to 1, and we require that its transition energy AEy3 is
aligned with AE;;(0) [see Fig. 5.2(b)]. This way, the “energy filtering” effect
of QD 3 is used to suppress I't ;(1) with respect to I'; .(0). To perform a

AEy,(1)

Driving =~ "w= 0 e
System ’ #
-------------------
[ 1% ,
Cooled e
System T — AT,
= C

Figure 5.2: Left: schematic representation of the system, where 1, 2 and 3 represents
either QDs or MlIs. Right: representation of the transition energies in the
case of the system with QDs. See Fig. 5.1 for details.

quantitative analysis, we study the dynamics of the system of the three QDs
altogether under the assumption that the coupling between QDs 1 and 3
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is much weaker than the coupling between such QDs are their reservoirs.
The Hamiltonian for the QD system under study is given by Eq. (2.2) with
w; = wy = 0 and Uz = 0 (note that ws = ¢, d311 = 41). The baths and
coupling are defined by Eq. (2.7) and Eq. (2.8) respectively. The electrostatic
energy of the system [see Eq. (5.1) for two QDs] now takes the form

Eu(ny,na,n3) = Ec1(n1 — ny1)? + Eca (12 — nyp)?

+ Ecy(n3 — 1nx3)? + Ex(m1 — ny1) (n2 — ny2),  (5.11)

where we have added the third term, relative to the additional QD (3).
Analogously to the two-QD case, we define AEj;(ny) = Ey(1,np,n3) —
Eu(o, njp, n3), AEuz(i’l1) = Eu(?’ll, 1, 113) — Eu(nl,O, TZ3) and AEU3 = Eu(n1,n2, 1) —
Ey;(n1,12,0), which can be written as

AEy(ng) = Ey(6h +np —1)
AEyp(n) = Er(62 +n1 — 1) (5.12)
AEys = Er(65 — 1),

where we have defined the following 3 independent dimensionless parame-
ters
01 = (1 —2na)Ec1/Er+ (1 —nx)
02 = (1 —2nx2)Eca/Er + (1 - 11) (5.13)
03 = (1 —2ny3)Ecs/Er+ 1.

If we assume that each QD can be only singly-occupied, we can restrict our
analysis to the following 8 states: |0,0,0), |0,0,1), 0,1,0), |1,0,0), |1,0,1),
[0,1,1), |1,1,0) and |1,1,1), where |n, np, n3) is the state associated to the
set of occupation numbers (11, 112, 13). The probability p,, for the system to
be in the state |m) = |nq,ny,n3) is calculated by solving the master equation
in the stationary case (see App. E.3 for details)

Pm = Z (=Laymt Pm+ Tatm p1), (5.14)

a,l

where T, ,,; is the rate for the transition from state |m) to state |/) accompa-
nied by the bath «. The rates I, ,,; which account for the transfer of electrons
between a QD and a reservoir can be expressed as [58]

th,ml = h_lrzxftx (AELLml)r (515)

where I is the coupling energy between the reservoir a« = a(m,l) and a
QD, where « = L, R, C depends on the initial state |m) and final state |/). In
addition, I'y;; = I'amn since only one reservoir is attached to each quantum
dot and hence removing the bath index does not introduce any ambiguity.
In Eq. (5.15), fu(e) = [1+e¢/k8T)]~1 is the reservoir Fermi distribution
function, while AEy;,,; = Ey(I) — Ey(m) is the transition energy, where
Ey(m) = Ey(nq,na,n3) [see Eq. (5.11)] with the set of occupation numbers
corresponding to the state |m). The inter-dot transition rates, which account
for the transfer of electrons between QD 1 and 3 [namely, I 1)(1,0,0) and
I'(0,1,1)(1,1,0)], are obtained using the procedure outlined in App. E.3 under
the assumption that the hopping element ¢ is much smaller than the coupling
energy between QDs and reservoirs [108, 109, 110, 111, 112].
The relevant heat currents can now be written as

T = N AE Gt (Tt P — i 1), (5.16)

ml
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Figure 5.3: Cooling power ]éh), relative to the system containing three QDs and

represented in Fig. 5.2, under resonant condition [AEy;3 = AE;1(0)]. ]((:h>
is plotted as a function of 6; for the case ATc = 0 (solid black curve)
and the case ATc = AT/10 (dashed red curve), setting 6 = 1/2 and
imposing 3 = 61. The parameters are of the order of the experimental
ones reported in Ref. [60] and read: E} = 0.72 meV, I'y, =I'r = I'c = 0.036
meV, t = 0.016 meV, and T = AT = 4.17 K.

where the sum runs over the states specified in App. E.3. In Fig. 5.3 we plot

the cooling power ]((:h), as a function of 0y, for realistic parameters and setting
63 = 61 in order to obtain the resonant condition [i. e. AEys = AE(;1(0)]
which approximately implements condition (5.7). The solid black curve is
relative to the case ATc = 0, while the dashed red curve refers to ATc =
AT/10. Fig. 5.3 shows that in both cases heat extraction is obtained and

that ]éh) takes a maximum value of the order of 102 pW. We notice that,
as in the ideal case, the cooling power is weakly dependent on 6, in the

range between o and 1, and that in this case ]éh) is maximized for 6, ~ 1/2.
Moreover, we check that when the difference between AE ;3 and AE;1(0) is
not much larger than the coupling energies I'; /r/c, the condition 63 = 6
is essentially fulfilled and the curves in Fig. 5.3 do not change appreciably.
We have demonstrated that the implementation of the crucial condition
(5.7) alone is sufficient to obtain heat extraction. Cooling power, as seen
above, is expected to be maximal when the additional condition (5.8) is also
satisfied. This could be implemented by adding another filtering QD in series
with 1, between R and 1, and aligning its transition energy to AE;;(1). For
experimental purposes, however, a simpler system is desirable, especially
because the transition energies of the different QDs need to be tuned by
individual gates (not shown in Fig. 5.2), operation that is further complicated
by possible cross-couplings arising between them.

5.3 METALLIC ISLANDS

We will now explore the possibility of replacing the QDs in the setup de-
picted in Fig. 5.2 with MIs. These are systems still characterized by a large
charging energy but, as opposed to QDs, they present a continuous dis-
tribution of energy levels (the level spacing is much smaller than kgT) so
that electrons within the island are thermalized and distributed according
to the Fermi distribution. Due to the absence of discrete levels, the sharp
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“filtering effect” discussed above in the QD system and exploited to satisfy
the crucial conditions (5.7) and (5.8) is not possible. As we will show below,
however, heat extraction can nonetheless be obtained in the setup depicted
in Fig. 5.2, where 1, 2 and 3 are now usual metals and reservoir R (grey
element) is superconducting. Our aim is to approximately satisfy Eq. (5.7)
by properly tuning the chemical potential of MI 3. Conversely, by exploiting
the superconducting gap of reservoir R, we aim at approximately satisfying
Eq. (5.8) in order to suppress the electron transfer with energy near Al (0).
Unlike the case with QDs, here the detailed balance condition [Eq. (5.5)] is
not satisfied by the rates between islands at different temperatures. As we
shall see, however, this has only minor consequences.

The electrostatic energy of the system is equal to the one relative to the
system of three QDs, Eq. (5.11). Also in this case we assume that each MI can
only be singly-occupied so that our analysis can be restricted to the 8 states
defined in the QD case. In the sequential tunneling regime, the stationary
probability p,, that the system is in the state m is computed by solving
the master equation (5.14), where, unlike in the QDs case, the rate for the
transition from state m to state [ is given by

Lo = 62712“’3 /deNa(e)Nﬁ(e — My m) fu(€) [1— fp(e = AEym)] - (5.17)

Here, R,z is the resistance of the tunneling barrier associated with the
tunneling process, while & and B identify the indices of the reservoirs or the
metallic island involved in the tunneling process respectively. In Eq. (6.6), Ny
denote the normalized density of states, which takes the value N, = 1 for

« =1,2,3,L,C, and
Re [ ——t1 ,
(e =22

for the superconducting reservoir [113, 114]. Here 7 is a phenomenological
inverse quasi-particle lifetime, and A is the superconducting gap. As before,

Nr(e) = (5.18)

the heat currents ]Eh) and ]éh> are defined as the heat currents extracted from
reservoirs L and C, and are computed in App. E.4.

In Fig. 5.4 the cooling power is plotted, using realistic parameters, as
a function of 6y, for ATc = 0 (solid black curve) and for AT = 5 mK
(dashed red curve) and setting 6, = 1/2. We assume that Mls 1 and 3
are at temperature T, while MI 2 is at temperature T — ATc. Aiming at
implementing the condition (5.7), we place the electrochemical potential
AEqy3 half way between AE(;1(0) and AEy;;(1), i. e. we set 63 = 61 +1/2. In
fact, this guarantees that (if kg T < Ep) the electron energy distribution in MI
3 is such that electron transfer to MI 1 is suppressed in the case where MI 2
is occupied.

Note, however, that the opposite process (electron transfer from 1 to 3) is
not suppressed. Indeed, to obtain heat extraction we need to further assume
that electrode R is superconducting. Figure 5.4 shows that cooling is achieved
in both cases, ATc = 0 and AT¢ = 5 mK. In the former case, the maximum
cooling power is of the order 10~2 fW, while in the latter heat extraction
is still possible, but the maximum cooling power decreases roughly by a
factor 4. Interestingly, heat extraction occurs even for ; < 1, contrary to the
prediction of Eq. (5.9). This can be attributed to the fact that the detailed
balance condition (5.5) is not satisfied for the tunneling rates coupling MIs
or reservoirs having different temperatures. An amount of heat equal to
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Figure 5.4: Cooling power, relative to the setup depicted in Fig. 5.2 for MIs, as a
function of 0; for two different values of AT¢, and setting 6, = 1/2 and
03 = 61 +1/2. The parameters used are experimentally relevant, see for
example Refs. [76, 39], and read: Ey = 25 peV, A = 35 peV, 7 = 1073 peV,
T =100 mK, AT = 200 mK and R,g = 10 kQ) for all barriers.

Ié is also extracted from MI 2 (see App. E.4 for details). Naturally no heat

is extracted when reservoir R is in the normal state. We find that ]éh) is
maximized when 6, ~ 1/2 and 63 ~ 0; + 1/2, and that its increase with
AT is at most linear. Nevertheless, we wish to point out that there is no
simple condition to identify the optimal values of Ey and A. Yet by scaling
all energies and temperatures of a given factor, the cooling power scales as
the square of such factor.

5.4 SUMMARY

We have studied several aspects of a minimal implementation of an absorp-
tion refrigerator based on two Coulomb coupled single-electron systems [35].
We have derived the general condition to guarantee cooling by heating
and we have found the optimal rates that simultaneously maximize cooling
power and coefficient of performance (COP). A simple relation between
cooling power and charge current is also found. Analyzing the system as an
autonomous Maxwell demon, we have shown that the efficiencies for infor-
mation production and consumption can reach their upper bounds, and we
have related the COP to these efficiencies. Finally, we have put forward two
experimental proposals, based on quantum dots (QDs) and metallic islands
(MlIs). In both proposals we have introduce an additional QD or MI that
implements the non-trivial condition required to achieve cooling-by-heating.
By plugging in realistic parameters we have shown that these proposals,
which resemble existing experiments, yield observable heat currents [46].
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Improving thermal mangagement at nanoscale is necessary to prevent over-
heating of the electronic circuitry. Research in this field is growing thanks to
recent advances in the experimental realization of nanoscale thermal devices
[115, 116, 117, 46, 28, 118]. An intriguing phenomenon which may arise in
nanoscale devices is thermal rectication, i. e. the asymmetric conduction of
heat, whereby the heat flow in one direction is different with respect to the
heat flow in the opposite direction, see Fig. 6.1. Thermal rectification, first
observed experimentally by Starr in 1935[119], has been studied in a variety
of setups since then, both theoretically[120, 121, 73, 122, 123, 124, 125, 126,
127, 128, 129, 130, 124, 127, 131, 132, 133, 134, 135, 136, 137, 138, 139] and
experimentally[140, 141, 45, 142, 143].

J#) ar)

JAB) (~AT)

Figure 6.1: Schematic representation of a central quantum system S (gray circle)
coupled to the two heat baths. The left and right baths are characterized
respectively by the temperatures Ty, and Tg. Panel (a) represents the
positive bias case, i.e. T, = T4+ AT/2 and T = T — AT/2 with AT >0,
while panel (b) represents the negative bias configuration where the sign
of AT is reversed. In the presence of some asymmetry in the coupling to
the baths (represented by the different thickness of the dashed lines), the
magnitude of the heat currents flowing through the device may depend
on the sign of AT, leading to thermal rectification.
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Figure 6.2: Scematic representation of the transmission function, as a function of the
energy ¢, for the positive and negative bias case. Each panel corresponds
to a different variations of the transmission function which can realize
heat rectification.

Thermal rectification is interesting both from a practical and from a funda-
mental point of view. On the one hand, it can be used in a nanoscale device
to evacuate heat from sensitive areas, while preventing it from flowing back
in. On the other hand, from a conceptual point of view, it is interesting to
understand what are the fundamental physical requirements for a system
to exhibit thermal rectification, and what are the strategies to maximize
this phenomenon. In this chapter we study thermal rectification through
a low-dimensional quantum system (S) coupled to two thermal baths at
different temperatures as schematically sketched in Fig. 6.1. In panel (a) and
panel (b), we depict the positive and negative bias cases. One bias condition
is obtained from the other by inverting the temperature of the baths.

As we shall see in the following, in order to observe thermal rectification,
the presence of inelastic scattering is necessary, and the baths must be
asymmetrically coupled to the system. In the absence of inelastic scattering,
the current can be described by the Landauer-Biittiker scattering approach
[30, 31], expressed as an energy integral of a transmission function (which
does not depend on temperature) multiplied by the difference of energy
distribution of the baths. In this situation, no rectification is possible, since
the temperatures of the baths enter only through their distributions. Inelastic
processes occur naturally in the presence of non-linearities, for example
induced by interactions, or by time dependent driving in the Hamiltonian
describing the system [144]. In the presence of interactions, at least when
the spectral density of the baths have identical energy dependence, one can
formally express the heat current analogous to the scattering theory with
a “transmission function" which now depends also on the temperatures
of the baths [10, 125]. If, in addition, the quantum system S is coupled
asymmetrically to the two baths, thermal rectification can take place.
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Within this framework we can identify three possible ways the transmission
probability can change upon inverting the temperature bias (from positive
to negative). As schematically shown in Fig. 6.2, the transmission functions
can change in height (a), position (b) and width (c). The height shift is the
main mechanism that allows rectification even in the weak coupling regime,
and it is present whenever one accounts for inelastic processes. The position
shift is caused by the real part of the self energy, known as Lamb shift, which
accounts for the renormalization of the system energy scales due to the
system-bath coupling. Finally, the width of the transmission probability may
change when the system is strongly coupled to the baths. In most cases we
consider, the width and height shift occur together.

In the literature, thermal rectification has been studied in different nanoscale
systems, such as quantum dots [73, 120, 121], spin-boson models [125, 123],
non-linear harmonic resonators [126], and hybrid quantum devices [124, 127,
136], to name a few. In most cases, the weak coupling wide band approxima-
tion is used to study thermal rectification. It has been shown in Ref. [124]
that asymmetric system-bath coupling and the presence of non-linearities are
sufficient conditions to observe thermal rectification. Studying the spin-boson
model [123, 125] and the non-linear harmonic resonator [126], it has been
observed that thermal rectification increases as a function of the temperature
difference and as a function of the asymmetry between the system-bath
coupling strenghts. The spin-boson model has been studied also beyond the
weak coupling regime in Ref. [125] using non equilibrium Green’s function,
and an enhancement in thermal rectification was observed.

Although thermal rectification has been studied in various specific systems,
strategies to maximize rectification remain unclear. Moreover, it is not known
if there are any fundamental bounds to the maximum rectification that can
be obtained, and what is the impact of higher order coherent processes on
rectification.

In this chapter, we address these issues studying different quantum sys-
tems, namely a qubit (two-level systems), a non-linear harmonic resonator
and a Coulomb coupled quantum dot system employing three different
formalisms: (1) the master equation (ME) taking cotunneling into account, (2)
non-equilibrium Green’s functions (NEGF) and (3) exact calculations based
on Feynman-Vernon path integral approach in the qubit case. Our results
are summarized in the following for the three different systems.

In the qubit case, without assuming any specific model for the bath and
system-bath Hamiltonian, we study how to maximize rectification and we
derive general upper bounds valid within the weak coupling regime. Fur-
thermore, we find that the rectification can be enhanced by exploiting the
temperature dependence of the Lamb-shift, together with gapped density
of states in the baths. We then perturbatively go beyond the weak coupling
regime generalizing the calculation of Ref. [125] by addressing general spin
couplings between the system and the baths, as well as the effect of the Lamb
shift. Furthermore, employing the Feynman-Vernon path integral approach,
we are able to exactly study the strong coupling regime. Thanks to these
methods, we find that many bounds and limitations emerging in the weak
coupling regime can be overcome, and that rectification can be enhanced by
higher order quantum coherent processes. These violations provide clear and
simple “strong coupling signatures” which are experimentally observable.

The second system we consider is a non-linear harmonic resonator. Ruokola
et al[126] studied thermal rectification in a non-linear harmonic resonator
using the mean-field Hartree approximation. Such approximation gives accu-
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rate results when the strength of non-linearity is significantly small compared
to other energy scales of the system. In this chapter, we go beyond mean-field
approximation employing the equation of motion (EOM) method to study
thermal rectification in the strong coupling and large-interaction regime. We
find better thermal rectification going beyond the mean field Hartree ap-
proximation. Finally, we also study the non-local thermal rectification effect
in Coulomb coupled quantum dots. We will study the system proposed in
Chapter 4, and employ non-local cooling effect to obtain thermal rectification
in the drag system when the bias in the drive in switched.

The chapter is organized as follows. In Sec. 6.1 we present the model and
in Sec. 6.2 we define the rectification coefficient. In Sec. 6.3 we study the
qubit case in the weak coupling regime, while in Sec. 6.4 we study the qubit
beyond the weak coupling regime. In Sec. 6.5, we study thermal rectification
in a non-linear harmonic resonator. In Sec. 6.6, we study thermal rectification
based on Coulomb coupled quantum dot device. At last, in Sec. 6.7 we draw
the conclusions.

6.1 MODEL

We consider a system S arbitrarily coupled to two thermal baths denoted by
L (left) and R (right) [see Fig. 6.1 for a sketch]. The total Hamiltonian is given
by

H = H + Hg + Hs + Hys + HRgs, (6.1)
where Hy, for « = L, R, is the Hamiltonian of bath «, Hg is the Hamiltonian
of the system S and H, g describes the coupling between bath « and S. Each
of these components - the baths, the system, and the couplings - contribute
in different ways to the thermal properties of the device.

6.2 HEAT CURRENT AND RECTIFICATION

We are interested in studying the steady-state heat current flowing across the
device when a temperature bias is imposed between the baths. Specifically,
as depicted in Fig. 6.1, we fix T}, = T+ AT/2 and Tr = T — AT /2, where
T is the average temperature. Since no work is performed on the system
(in the fermionic case, we will either consider no chemical potential bias,
or configurations where the charge current is zero), the first principle of
thermodynamics tell us that heat will flow from left to right if AT > 0
(positive bias case, see Fig. 6.1a), otherwise it will flow from right to left
(negative bias case, see Fig. 6.1b). Furthermore, since we consider steady
state currents, the heat flowing out of one bath is equal to the one flowing
into the other bath. Therefore, for simplicity we define the heat flowing out
of the left lead as

JAT) = (A1) = A1) = — im0, 62
where (...) (t) = Tr[p(t)...], p(t) being the density matrix representing the
state of the total system at time f. Notice that the time variation of the energy
associated with the coupling Hamiltonian vanishes in steady state [8].

As discussed in the introduction, it is possible to construct devices where
the magnitude of the heat current depends on the sign of the temperature
bias. Specifically, if the left-right symmetry is broken, the magnitude of the
heat current |J(" (AT)| induced by a positive bias may be different respect
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to |[J®) (—AT)|, which is the heat current induced by a negative bias. We
therefore define the rectification coefficient R as

™ (aT)| = |y (=aT)|
~ W @D)[+ ™ (-a1)

, (6.3)

for AT > 0. The definition is such that |R| < 1. Furthermore, R = 0 means
that no rectification takes place, while |R| = 1 means that we have perfect
rectification (i.e. the heat current is finite in one direction, and null in the
other). Positive (negative) values of R indicate that the heat flow is greater
for positive (negative) temperature biases.

63 QUBIT: WEAK COUPLING REGIME

In this section, we derive general properties and upper bounds to the rec-
tification coefficient R only assuming that the baths are weakly coupled to
the qubit. The weak coupling regime is obtained by performing a leading
order expansion in H, g and assuming that the baths are Markovian [2].
This scheme leads to the so-called master equation for the reduced density
matrix of the system. The approximation performed in this section allows
us to consider height and position shift in the transmission function (see
Fig. 6.2), but it neglects any width shift. Indeed, in this regime the width of
the transmission function is the smallest energy scale, so it is infinitesimal.
In the following sections, we will be able to observe also the impact of width
shifts performing calculations beyond the weak-coupling regime.

Neglecting for the moment the Lamb-shift (which we discuss in Sec. 6.3.3)
we find that (see App. F for details)

R=——+ (6.4)

where

70 (8, T) v (A, Te) 1 (B, Tc) + 7% (A, T)
’)’+(A/ TC)’)’E(A/ TH) ’)’IT(A/ TH) + VE(A/ TC) '

YE(A, Ty) = va(B, Ty) + Ya(A, Ty) is the total dissipation rate induced by
bath « and Tyy,c = T+ AT/2 for AT > 0. va(A, Ta) [ (A, Tx)] represents
the rate with which the qubit, being in the ground (excited) state, transits to
the excited (ground) state by exchanging energy with bath «. Since bath «
is prepared in a thermal state, these two rates are in general related by the
detailed balance condition v, (A, Ty) = e b/ (kBTU%(A, Ty) [see App. F for
details]. The dissipation rate can then be calculated by evaluating

C= (6.5)

too
Fu(B, Ta) = % /700 dt et/ <B,x(t)Bl(0)>a, (6.6)
where the expectation value is taken with respect to the equilibrium thermal
state p, of the bath, A is the energy spacing of the qubit [see Eq. (2.5)], and
the operators B,(t) and BJ(t) are interaction picture operators (they evolve
through H,), thus the coupling to the qubit is neglected [see App. F for a
derivation of Eq. (6.6)].

We can now study R for any weakly coupled system using Egs. (6.4) and
(6.6), which are generally easy to compute (we will consider various models
explicitly in the following subsections). Interestingly, as a consequence of the
weak coupling assumption, the coupling term o, ® B, [see Eq. (2.12)] does
not contribute to J(AT), therefore neither to R. Intuitively, this is due to the
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fact that the heat current is mediated by transitions in the weak coupling
regime. Therefore, the heat current only depends on the population of the
qubit, which in turn is solely determined by the coupling terms proportional
to o™ and o~ (see App. F for more details).

The rest of the section is organized as follows: in Sec. 6.3.1, we derive
general bounds assuming that the baths are “similar” (this is a weak hypoth-
esis; a proper definition will be given). In Sec. 6.3.2, we study a generic spin
coupling to the bath. At last, in Sec. 6.3.3 we show how the Lamb-shift can
be exploited to further enhance rectification.

6.3.1 Rectifying with “similar” system-bath coupling

In this section we assume that the left and right baths are “similar”, i.e. we
assume that the dissipation rate can be decomposed as

’V+(A, Ta) = Ta(D)g(A, Ta), (6.7)

where T'y(A) is the spectral density of bath «, given by Eq. (2.15), and
¢(A, Ty) > 0 is an arbitrary non-negative function. Equation (6.7) implies
that the dissipation rates of the two baths, as a function of temperature,
are equal up to a prefactor. However, the rates may have any dependence on
the gap of the qubit through the spectral densities. Two baths are similar
whenever the coupling Hamiltonians relative to the two baths are distinct
linear combinations of the same operators. For example, two bosonic baths,
with distinct density of states, both coupled to the system through a linear
or non-linear coupling, are similar baths.
Let us define the “asymmetry coefficient” A as

_ I(A) —Tr(A)
T'L(A) +Tr(A)
such that |[A| < 1. Using Eq. (6.7), we can cast Eq. (6.4) into the simple form
8(A, Tc) — 8(A, Th)
8(A,Tc) + (A, Tw)

Without specifying the precise model, we can derive the following general
properties of R:

A (6.8)

R=A

(6.9)

e If A > 0, R is a decreasing function of g(A, Tyy), and an increasing
function of g(A, Tc) (the monotonicity is inverted if A < 0). Therefore,
if g(A, T) is monotonous with respect to T, then R is monotonous with
respect to AT.

* R is linear, therefore monotonous, with respect to A.

¢ Given the first property, we can maximize the possible rectification by
taking the limits where g(A, Tyy) and g(A, Tc) respectively tend to zero
and infinity. This yields the following bound

IR| < JAL (6.10)

As a consequence, the maximum rectification is severely limited by the
asymmetry ratio A. As expected, for A = 0 we find that there is no
rectification, and the only way to obtain perfect rectification is to have
a vanishingly small coupling to one bath.

* Given the second property, |R| is bounded by |(g(A, Tc) — g(A, Ty))/
(g(A, Tc) + (A, Tr))|. We therefore have stronger rectification when
g(A, T) has a strong temperature dependence.
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6.3.1.1 Linear system-bath tunnel couplings

In this subsection we study heat rectification through a qubit where the
coupling to the baths is linear, i.e. defined by Eq. (2.12). For fermionic baths
weakly coupled to the qubit, we have that (see App. F, for details)

g(AT) =1 (6.11)

Plugging this value into Eq. (6.9) shows us that no rectification is possible.
This is indeed expected, since a qubit coupled to fermionic reservoirs can be
described by a non-interacting fermionic Hamiltonian, where the Landauer-
Biittiker formula can be used to compute the heat current. Next, we consider
bosonic baths. In this case, as shown in App. F, we have that

(A, T) = coth [A/(2kgT)], (6.12)
so rectification is possible. In particular, we find the following properties:

e Since g(A, T) is a monotonous increasing function of T, A and R have
opposite signs. This means that more heat flows out of the weakly
coupled lead.

e Since (A, T) is a monotonous function of T, the rectification increases
with AT.

e Since g(A, T) is never zero, but it diverges for T — oo, the bound
in Eq. (6.10) is saturated only in the limit of infinitely hot reservoir
(TH — OO)

* It can be explicitly seen that R is a decreasing function of the gap A,
so it is maximum in the limit A — 0. In this limit, we can expand the
cotangent, finding the following bound

Ty — Ic

Tyt Ic (6.13)

IR <A

6.3.2  Arbitrary baths with different spin couplings to the system

In this section, we investigate what happens when the qubit is coupled to
the baths through the same arbitrary bath operators, but through different
Pauli spin matrices. As an example, we consider the coupling Hamiltonian
given in Eq. (2.13) with Vi = Vg, although also non-linear couplings can be
treated on the same footing. As shown in App. F, this system can be mapped
into the “similar baths” case with an effective I',(A) sin? 0. Therefore, all
the properties derived in Sec. 6.3.1 hold in this case, where the asymmetry
coefficient is given by

A= s%ni O — s%ni GR’ (6.14)

sin“ 0y, + sin” g

while the function ¢(A, T) depends on the bath and system-bath Hamiltonian
[in the specific case of Eq. (2.13), we have g(A,T) = coth[A/(2kgT)], see
Eq. (6.12)]. Interestingly, the rectification does not depend on the angle ¢,; as
we will show, this property does not hold beyond the weak coupling regime
thanks to coherent transport effects. The only relevant angle is 6,, which
is the angle between the coupling term and the qubit Hamiltonian (which
is proportional to o). Since the rectification is linear in A, we find that the
rectification is maximum when 6 is 0 and 0y is 77/2, or viceversa.
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6.3.3 Rectification enhanced by the Lamb-Shift

Until now we have ignored the Lamb shift, i.e. the renormalization of the
energy gap of the qubit induced by the presence of the baths. The renormal-
ization of the qubit gap depends on both bath temperatures, thus it may
influence the rectification properties of the device. As we now show, this
allows us to achieve rectification beyond the bounds derived in the previous
sections.

As shown in App. F, if the system-bath Hamiltonian does not contain
terms proportional to o (i.e. By; = 0), the Lamb shift Hamiltonian (which
has to be summed to the “bare” Hamiltonian Hq) takes the following form
[2]:

Hys = [0AL(A, T1) + 0AR(A, TR)] 02, (6.15)
where
ooyt (e, Ty)
e—¢€

A (e, Ty) = —73/ RN A (6.16)

In Eq. (6.16), P indicates a Cauchy principal value integration. We recall that
the A appearing in Eq. (6.15) is the bare gap, neglecting the Lamb shift.
The renormalized gap is therefore given by

A(AT) = A+ 6AL(A, T+ AT/2) + 6Ar(A, T — AT/2),  (6.17)

and it may change upon inverting the temperature bias (AT — —AT). In the
presence of a Lamb shift, R is still given by Eq. (6.4) provided that we replace
A — A(AT).

In general, we notice that the renormalization terms dA, (A, Ty ) is of the
same order in the coupling strength as the rates 7, (€, Ty) (which are evalu-
ated at leading order in the coupling). Therefore, if the rates 7, (¢, T,) are
smooth functions of €, their variation due to the Lamb shift will be beyond
leading order in the coupling strength. Therefore, the effect of the Lamb shift
on rectification is negligible in the weak coupling regime when the spectral
density of the baths is a smooth function of the energy (on the hiy, scale).

However, the Lamb shift may become relevant for rectification whenever
there is a strong energy dependence in 7y, (¢, Ty ), for example, if the density
of states of the baths has a gap. As we will show in detail in the following,
even a small renormalization of the gap can have a large impact on the
current.

We consider two bosonic Ohmic baths with a cutoff frequency ec, but we
add a gap in the density of states between zero and a certain value ¢y. We
thus have that

v (e, Ty) = % Ky 0(e —€g) e/ coth [/ (2kp Ty )], (6.18)

where 0(€) is the Heaviside function which describes the gap in the density
of states. In the upper panel of Fig. 6.3 we show the bare gap A (black curve),
the renormalized gap A(AT) for the positive bias case (blue curve), and
the renormalized gap A(—AT) for the negative bias case (green curve), as a
function of the bare gap A. As we can see, the renormalized gaps are different
in the positive and negative bias cases. In particular, in the highlighted region
A(—AT) is inside the gap, i.e. it is smaller than €j (dashed gray line), while
A(AT) is outside the gap; we therefore expect a finite heat current in the latter
case, and a zero heat current in the former. This is confirmed in the lower
panel of Fig. 6.3 where J()(AT) and J")(—~AT) are plotted as a function of
the bare gap. The heat currents are computed using Eq. (F.7) with A — A(AT)
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Figure 6.3: Upper panel: the bare gap A, the renormalized gap A(AT) in the positive
bias case and the renormalized gap A(—AT) in the negative bias case, as
a function of the bare gap A. The dashed gray line corresponds to the
gap €p in the density of states of the baths, while the region highlighted
in gray shows where the renormalized gaps are respectively larger and
smaller than ey. Lower panel: the heat currents J') (AT) and J/) (—AT).
In the highlighted region we have perfect rectification (up to higher order
corrections in the coupling strength). The parameters are: Kr = 5K,
ec = (20/3)kgT, €9 = (4/3) kgT and AT/T =2/3.

to account for the Lamb shift. As we can see, within the highlighted region
we have perfect rectification. However, we expect that the inclusion of higher
order effects in the coupling strength (for example co-tunneling effects) will
reduce the rectification. Indeed, the perfect rectification visible in the gray
region in the lower panel of Fig. 6.3 is a consequence of the current JM(=AT)
being directly proportional to the density of states, therefore exactly zero
for A(—AT) < €p; on the other hand, higher order effects create small yet
finite currents even in this parameter range. Nonetheless, we have identified
a mechanism to enhance rectification exploiting the Lamb shift.

64 QUBIT: BEYOND WEAK COUPLING REGIME

As we have seen, the weak coupling regime puts strong constraints on
the rectification coefficient R. In this section, we show that some of these
bounds can be overcome by going beyond the weak coupling regime. This
implies that coherent quantum effects - beyond “sequential tunneling” - can
be beneficial for rectification. From the point of view of the transmission
function, see Fig. 6.2, going beyond the weak coupling regime allows us to
consider also width shifts, which were neglected in the previous section.
We perform calculations beyond the weak coupling regime using three
different techniques. First, we include co-tunneling effects in the master
equation (ME), which allows us to intuitively interpret our results; next, we
employ a perturbative approach based on non equilibrium Green’s function
(NEGF) theory which yields results beyond sequential and co-tunneling
effects. Finally, we perform an exact calculation employing the Feynman-
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Vernon path integral approach which gives the heat current for general
spectral densities and coupling conditions.

For concreteness, we consider bosonic baths, and a general spin coupling to
the baths as defined in Eq. (2.13). We will then mainly consider two different
couplings: the “XX coupling”, where both left and right baths are coupled
to the system through oy, i.e. ) = Or = /2, ¢ = 0, ¢r = 0, and the
“YX coupling”, i.e. 0y = Or = /2, ¢p = /2, ¢r = 0. Since the XX and
YX couplings only differ by the angle ¢, [see Eq. (2.13)], both cases display
identical rectification within the weak coupling regime (see Sec. 6.3.2). As we
will see, this property is violated beyond the weak coupling regime, signaling
the effect of higher order coherent quantum effects. We will also consider
arbitrary spin coupling in the A — 0 limit. This particular choice exhibits no
current in the sequential tunneling limit. Hence, thermal current and thermal
rectification becomes solely due to higher order processes.

In the following, we describe the ME technique including co-tunneling
in Sec. 6.4.1, the NEGF method in Sec. 6.4.2, exact calculations based on
Feynman-Vernon path integral approach in Sec. 6.4.3 and we discuss the
impact on rectification in Sec. 6.4.4. The results for arbitrary spin coupling in
the A — 0 limit will be presented in Sec. 6.4.5.

6.4.1  Master equation with co-tunneling

In this subsection we describe how to perform calculations beyond the weak
coupling regime by adding rates to the ME that arise from second order
processes in the coupling Hamiltonian. It can be shown that, both for the
XX and YX couplings, only elastic cotunneling processes contribute, i.e. only
those processes that coherently transfer an excitation from one bath to the
other - via a virtual state - without changing the state of the qubit.

We find that the heat current, including co-tunneling effects, can be ex-
pressed as (see App. F for details)

JIUAT) = PO (AT) + ] (AT), (6.19)
where J5¢4M (AT) is the heat current expected in the weak coupling regime,
given by Eq. (F.7), and

JoM(AT) = 7 lL(e)Ir(e)
0

1 2
— % ! .
A+e+in  A—e+iy

X ’ [nr(e) —np(e)] (6.20)
is the contribution due to co-tunneling, where 7 is an infinitesimal positive
quantity, and 7,(€) is the Bose-Einstein distribution relative to bath a. The
plus sign in Eq. (6.20) refers to the XX coupling, while the minus sign to the
YX coupling.

Crucially, since the temperatures only enter through the Bose-Einstein
distributions, J°'™(AT) is an anti-symmetric function, i.e. [ (—AT) =
—JoUM(AT). Therefore the contribution of cotunneling to the heat current
is the same both for the positive and negative bias case. Mathematically,
Eq. (6.20) diverges logarithmically in the limit 7 — 0*. The co-tunneling
rates can be “regularised" in a proper manner[145, 146, 32]. Assuming that
the qubit is in the ground state, the first term inside the square modulus of
Eq. (6.20) arises by virtually transferring an excitation from one bath to the
qubit, and then from the qubit to the other bath. The second term instead
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arises by virtually creating an excitation both in one bath and in the qubit,
and then by destroying an excitation in the qubit and in the other bath. The
different XX and YX couplings produce opposite interference effects between
these two processes. If we had neglected the “counter rotating” terms in

7-[[(:8 [Eq. (2.13)], the second term inside the square modulus would have
vanished and the co-tunneling rates would have become the same in the XX
and YX cases.

Exploiting the anti-symmetry of [0 (AT), the impact of co-tunneling on
rectification can be easily appreciated by plugging Eq. (6.19) into Eq. (6.3):

h h
Re QT —eean)
7540 (AT) | + [J5240) (—AT)| 4 2]®) (AT)

where we fix AT > 0. Notably, co-tunneling only appears at the denomi-
nator of Eq. (6.21). In addition, the cotunneling contribution of Eq. (6.20)
represents an elastic process which would induce no rectification on its own.
However, defining R%¢d = (|J¢d®(AT)| — |75¢a0(—AT)|)/(|J1M(AT)| +
75240 (—AT)|), we see that if J°'™(AT) < 0, then

R > [R*1], (6.:22)

whereas |[R| < |R%9| if J°(AT) > 0. Therefore, co-tunneling can enhance
rectification. Interestingly, the co-tunneling contribution J°*(AT) is usually
negative when sequential tunneling dominates. Indeed, the transmission
function due to sequential tunneling is a delta function peaked around
resonant condition. The cotunneling contribution increases the width of the
transmission function giving it an effective bell shape (as shown in Fig. 6.2).
As we increase the width of the transmission function, we move the weight
from the peak of the transmission function to its tails. Therefore, where
sequential dominates, co-tunneling contribution decreases the heat flow. On
the other hand, if sequential tunneling is suppressed, i.e. in the tails of
the transmission function, co-tunneling increases the heat flow. Therefore,
we expect the following behavior: when sequential tunneling is dominant,
we expect co-tunneling to enhance rectification. Instead, when the currents
are dominated by co-tunneling, we expect the rectification to decrease in
comparison to the weak-coupling predictions. This qualitative argument is
confirmed by the calculations performed in Sec. 6.4.4.

6.4.2 Non-equilibrium Green’s function method

In this subsection we describe how to employ the NEGF method to compute
heat currents beyond the weak coupling limit. Since Green functions for spin
operators cannot be expanded in a perturbative series using Wick’s theorem,
we first perform the following transformation[147]

i
_5 2 €abe oM c/ (6~23)

be=x,y,z

0, =

where €, is the Levi-Civita symbol, and 7, denotes three Majorana fermion
operators (they satisfy the anticommutation relation {1,,7,} = 0 for a # b,
72 = 1 and 5, = 5}). The qubit and coupling Hamiltonians [see Egs. (2.5)
and (2.13)] therefore become (up to an irrelevant additive constant)

A
Ha = —i5 iy,

b o,
HSQ) = _E Znﬂé,ﬂeabc Mple & Z szk(bak + blk)r
abc k

(6.24)
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where the indices 4, b and c run over x, y and z in the sum. Notice that in
this representation the qubit Hamiltonian is still quadratic (therefore “free”),
while 7—[1(58 is the product of three operators. Therefore, in the Majorana
representation the system-bath coupling gives us the non-linear term which,
as we discussed, is necessary to observe rectification.

Assuming that the spectral densities of the two baths are proportional, the
heat current is given by Eq. (2.23) where T (¢, T, AT), in general, must be
computed numerically. However, we are able to find an analytic expression
for the transmission function by solving the Dyson equation for the Green’s
functions with an expression for the self energy expanded to leading order in
the coupling Hamiltonian H‘(XSbQ) (see App. F for details). In the XX coupling
case, this method leads to

4 A’Ty (e)TR(e)
(€2 —2¢ (OAL(e, TL) + AR (€, Tr)) — A2)* + &2(e)
where &(e) = €Y, Ta(e)(1 + 2n,(€)), and A, (€, Ty), which describes the

Lamb shift induced by bath g, is defined in Eq. (6.16) with 7 (€, Ty) =
T'w(€') coth [¢//(2kpT,)] *. Instead, in the YX coupling case we find

Txx(e, T,AT) =

(6.25)

4€?Tp(e)TR(€)
(€2 — X(e) — A2)* + V2(e)

Tyx(e, T,AT) = (6.26)

where

X(e) =2e (0AL(€) + 0AR(€)) + (1 +2n(€))
X (14 2ngr(e)) TL(e)Tr(e) —46AL(€)0AR(€), (6.27)

and

V()= ) (26Au(e)—¢€) (1+2ng(e)) Tg(e). (6.28)

a,f=LR
aFp

As shown in App. F, this approach provides results which are more accurate
with respect to the ME approach (including co-tunneling contributions), since
it contains higher order processes beyond sequential and cotunneling thanks
to the implicit re-summation performed by solving the Dyson equation.

6.4.3 Spin-boson model: Exact calculation

In this subsection we consider the XX coupling case, which allows the
derivation of an exact formal expression for the heat current Eq. (2.22) for
general spectral densities of the two baths within the Feynmann-Vernon path-
integral approach to the spin-boson problem [7]. Calculations are reported
in App. (F). When the spectral densities have the same energy dependence,
ie. I';(e) x T'r(€), the heat current takes the form of Eq. (2.23) with

I'L(e)Tr(e€)

(&) (e T AT) = 2L\ ZRIE)
T (@ TAT) = 25 ) T(e)

Im [x(e)], (6.29)
where x(e€) is the Fourier transform of the qubit dynamical susceptibility
in the presence of the two baths, x(t) = (i/h)O(t)([ox(t),0x(0)]), given in
Eq. (F115).

In order to account for the counter-rotating terms in the coupling Hamiltonian, in the calculation

of the Lamb-shift the spectral density I, (€¢/) must be extended to negative values according to
Iy(—€') = —Tu(€).
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We now focus on Ohmic spectral densities, defined as in Eq. (2.15). The
dimensionless Ohmic coupling strength K, enters the exact expression of
the dynamical susceptibility in a form which allows the path summation in
analytic form when Kr + K, = 1/2, analogously to the Toulouse point of the
Ohmic spin boson problem [7, 148], see Eq. (2.15). We obtain

_2A?

x(t) = h%/@(t)e_”tm/(; dtP(t) [e‘ﬂt—ﬂ/2 - e—v\tﬂl/ﬂ , (6.30)

where ¢ = A%/ (2 ec) and

keTo )\ 2
P(t)=]] (nlfBCT“ sinh (nth)) . (6.31)

o

We note that x(t) takes the same form of the spin-boson model at the
Toulouse point with the only differnce that the bath-induced (dipole or
intra-blip, see App. F) interactions involving the two baths enter P(7) in
factorized form. Indeed, in the limit K = Kg = 1/4 and AT = 0 we
recover the susceptibility of the Kondo problem at the Toulouse point. Under
these conditions the heat current trivially vanishes. In the following we
will evaluate heat rectification considering asymmetric couplings with the
two baths under the”overal” strong coupling condition Ky, + Kg = 1/2. All
possible heat transfer processes are exactly included. To this end the heat
current Eq. (2.23) with (6.30) is more conveniently written as

_ 1 KKg e _
J= g m [ atxmr-n, (6.32)
where
F(—t) = (kgTg)*p® (1 4 feTr (1 — Z€ci’)>
€C h

— (ks 1)’y (1 + k‘% (1 - f;f)) (6.33)

and 1/1(2> (z) denotes the second derivative of the digamma function.

6.4.4 Rectification beyond the weak-coupling regime

In this subsection we show that various general properties and bounds
derived in Sec. 6.3 can be overcome, allowing the system to exibit stronger
rectification than in the weak-coupling regime. We will also be able to identify
the effect of higher order coherent transport on rectification. We will consider
Ohmic spectral density, as in Eq. (2.15), for both baths.

In Fig. 6.4 we plot R as a function of Ky, in the XX and YX case comparing
the NEGF calculation, the ME calculation including cotunneling effects

[ME(cot)] and the ME calculation in the weak coupling regime [ME(seq)].

The coupling constant Kg = 0.005 and the temperatures are fixed. First
we notice that, for small values of Kj, i.e. in the weak coupling limit, all
three curves coincide, as expected. As K}, increases, we notice that the NEGF
and ME(cot) curves nicely agree up to Ky, ~ 0.025, and then we see some
deviations. Next, we notice that the rectification using NEGF and ME(cot)
method is different in the XX and YX cases, whereas it is the same using the
ME(seq) method. Indeed, in Sec. 6.3.2 we showed that, in the weak coupling
regime, rectification only depends on the angle between the qubit (¢;) and
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Figure 6.4: R, computed with the three methods described in the legend, as a function
of Ki, both for the XX and YX couplings; the ME(seq) case is the same for
both couplings. The parameters are Kg = 0.001, A = 0.8kgT, ec = 10kgT
and AT/T = 8/5. We denote with “NEGEF” the calculations performed
with the non-equilibrium Green'’s function method described in Sec. 6.4.2,
with “ME(cot)” those performed with the master equation which includes
co-tunneling described in Sec. 6.4.1, and with “ME(seq)” the calculations
performed in the weak coupling limit as described in Sec. 6.3. The inset
shows the same points plotted as a function of A for A € [0.25,1]. We
neglect the Lamb shift in this plot.

the coupling term. Higher order coherent processes, instead, are able to
distinguish these different couplings, as they produce different interference
effects [see the + in Eq. (6.20)]. Next, we notice that the rectification is
enhanced in the XX coupling case thanks to higher order processes, while it is
suppressed in the YX case (we will explain this behavior describing Fig. 6.5).
In the inset of Fig. 6.4 we plot the same points as a function of the asymmetry
coefficient A = (K — Kg)/(Ky + Kg) [see Eq. (6.8)]. We recall that, in the
weak coupling regime, we proved that R is linear in A (see Sec. 6.3.1). Indeed,
for small values of A, the behavior is linear. Interestingly, the behaviour
becomes non-linear for larger values of A, which correspond to larger values
of the coupling constant Ky,. This non-linearity is yet another signature of
higher order coherent processes.

In Fig. 6.5 we plot R, computed with the three methods described above,
as a function of A for fixed values of the temperatures and of the coupling
constants. There are many interesting facts to notice. First, the coupling
constants are not very small, so the NEGF and ME(cot) methods, which
qualitatively agree with each other, provide visible corrections to the ME(seq)
calculations. As we noticed also in Fig. 6.4, rectification is stronger in the
XX case (blue curves), while it is weaker in the YX case (green curves) as
compared to the ME(seq) calculations for A < 2kgT. For A > 2kgT, all the
methods predict similar values of R. Interestingly, the value of R computed
using the NEGF and ME(cot) methods in the XX case shows a violation of the
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Figure 6.5: Rectification R, computed with the three methods described in the legend,
as a function of the qubit gap A. The parameters are K, = 0.006, Kr =
0.03, ec = 10kgT and AT/T = 1.9. The horizontal magenta line shows
Al = |(Kr, — Kr) /(K + KR)| = 0.67. We neglect the Lamb shift in this
plot.

general weak-coupling bound of Eq. (6.10), i.e. we find that |R| > |A| = 0.67
(denoted with a horizontal magneta line in Fig. 6.5) for small values of A. On
the other hand, in the YX coupling case we notice that coherent processes
decrease rectification. This different behavior is due to the following fact: the
heat currents computed in the ME(seq) case tend to zero as A/ (kgT) — 0 (see
App. F for details). In the XX case, the two terms inside the square modulus
of Eq. (6.20) cancel each other, hence also the co-tunneling contribution
vanishes; however, in the YX case, it remains finite. Therefore, in the A — 0
limit, sequential tunneling dominates over co-tunneling in the XX case, thus
enhancing rectification (as discussed in Sec. 6.4.1). On the contrary, in the
YX case co-tunneling dominates over sequential tunneling, thus suppressing
rectification. This observation justifies also the large deviation between the
ME(seq) curve and the other ones observed in the YX case for small A. At
last, we notice that in the YX case, thanks to higher order processes, the
NEGF and ME(cot) are non-monotonous with respect to A (as discussed in
Sec. 6.3.1.1, R is monotonous in A in the weak coupling regime).

In Fig. 6.6 we plot the heat current (upper panel) and the rectification
coefficient (lower panel) as a function of the qubit gap A fixing all other
parameters as described in the caption. We compare the analytic results
obtained in the XX case using the NEGF method including the Lamb-shift
(see Sec. 6.4.2) with the exact calculation obtained using the Feynman-Vernon
path integral approach (see Sec. 6.4.3). In doing so, we are constrained to
fixing the coupling strength as K, + Kr = 1/2. We observe that the exact and
NEGF calculations for the heat current give quantitatively different results, i.e.
the NEGF method tends to overestimate the magnitude of the heat current for
values of A/ (kgT) < 10, while it underestimates the heat current for larger
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Figure 6.6: Comparison of thermal current (in units of (kg T)z/ f) and thermal rectifi-
cation in the strong coupling regime computed using the two methods
described in the legend, as a function of qubit gap A. The NEGF calcula-
tion includes the Lamb shift. The parameters are K = 0.49, Kr = 0.01,
ec = 100kgT and AT/T = 1.9.

values of A/ (kgT). However, qualitatively there is a reasonable agreement
between the two calculations. This is in fact surprising: the NEGF approach is
perturbative in the coupling strength. Therefore, strictly speaking, it is valid
only for Ky + Kr < 1, while K, + Kr = 1/2 (strong coupling regime). On
the other hand, the rectification coefficient is very different for small values
of A/(kgT): the NEGF approach strongly overestimates the rectification.
However, this behavior is inverted upon increasing the qubit gap. Then, for
large enough values of A, the two methods predict a more similar rectification
coefficient, with the exact calculation predicting higher thermal rectification
compared to the NEGF calculations. At last, for even larger values of A,
the rectification coefficient predicted by both methods tends to 1, i.e. no
rectification.

6.4.5 Rectification with arbitrary o coupling

In this subsection we study the impact on rectification of more general cou-
plings respect to the XX and YX cases using the NEGF formalism previously
described (see App. F for details about the calculation). We focus on the
A/(kgT) — 0 limit where heat transport is entirely due to higher order
coherent processes. This is due to the fact that the heat current, computed
in the weak coupling regime, tends to zero as A/(kgT) — 0 (see App. F).
We therefore consider the coupling Hamiltonian, given in Eq. (2.13), with an
arbitrary coupling to the left bath, i.e. arbitrary 6;, = 0 and ¢ = ¢, but with
fixed oy coupling to the right lead, i.e. 0 = 77/2 and ¢r = 0. The XX and YX
cases, considered in the previous subsections, can be recovered respectively
by setting § = 7t/2 and ¢ = 0, or 6 = 7t/2 and ¢ = /2. Notice that, by
considering a coupling with 6 # /2, we are including also a ¢, coupling
to the left lead. We recall that, in the weak coupling regime, the ¢, coupling
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Figure 6.7: Contour plot of ™ (AT) in units of (kgT)2/% as a function of 6 and ¢.
The parameters are: ec = 80kgT, K = Kr = 0.06 and AT/T = 1.9.

does not contribute to the heat current. In order to isolate the impact on
rectification of different spin couplings, we consider the case of identical
spectral densities for the two baths, i.e. I' (¢) = I'r(€). Therefore, the only
asymmetry in the coupling, which can give rise to rectification, is given by
the different directions described by iy, and 7iR.

In Fig. 6.7 we show a contour plot of the heat current J(AT), at fixed
temperatures and for equal Ohmic spectral densities [i.e. K| = KR, see
Eq. (2.15)], as a function of the two angles 6 and ¢ in the small gap limit,
i.e. for A/ (kgT) — 0. For simplicity, we neglected the Lamb shift. Strikingly,
the heat current is maximum when the left lead is coupled through o, i.e.
for 6 = 0 (lower part of Fig. 6.7). This is surprising for two reasons: first, in
the weak coupling limit the heat current at § = 0 would be null even for
finite values of A, since ¢, does not contribute to the heat currents; second,
regardless of the coupling strength, a single bath coupled to S through o
cannot transfer heat to the system, since the Hamiltonian of S would commute
with the total Hamiltonian (and thus it would be a conserved quantity). In
this case, the 0, coupling would only produce dephasing in the qubit state.
We can therefore qualitatively describe transport in this regime as a direct
transfer of heat from one bath to the other. As 6 increases, and therefore as
the 0, component decreases, the heat current decreases monotonously, to the
point that it is null in the XX case (¢ = n7), while it remain constant in the
YX case (along ¢ = 71/2 + nm).

Interestingly, also the rectification coefficients roughly follows a similar
trend, i.e. it is maximum where also the heat currents are maximum. This
can be seen in Fig. 6.8, where R is contour-plotted as a function of § and ¢

for the same parameters as in Fig. 6.7. Indeed, R is maximum for § =0, i.e.

when the left lead is coupled only through o,. As 6 increases, R decreases
monotonically along ¢ = nr, just as the heat current itself. However, it
remain constant along ¢ = 71/2 + nr, while for intermediate values of ¢ it
displays a non-monotonic behavior.
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Figure 6.8: Contour plot of R as a function of § and ¢. The parameters are the same
as in Fig. 6.7.

We can therefore conclude that the optimal operational points in the
A/ (kgT) — 0 limit are the YX and the ZX coupling cases. These couplings
simultaneously maximize the magnitude of the heat current and of the
rectification coefficient. We emphasize that the heat current, which is solely
due to coherent quantum processes, behaves in the opposite way respect to
what would be expected from weak coupling calculations (the heat currents
should be zero both because A = 0 and because ¢, does not contribute to the
heat current).

65 NON-LINEAR QUANTUM CIRCUIT

The Josephson junction in an electric circuit behaves as an inductance with
a degree of non-linearity. Thanks to the superconductivity, the inductance
is non-dissipative as well. Due to the aforementioned two characteristics,
namely non-linearity and no dissipation, Josephson junctions are used as
building blocks in superconducting quantum circuits. On the same note,
Josephson junction is often inserted into a resonator circuit to obtain a non-
linear resonator circuit. Consequently, the Hamiltonian for a split Cooper
pair box which consists of an LC resonator circuit with a Josephson junction,
under certain conditions, can be reduced to the Hamiltonian for a non-linear
resonator defined in Eq. (2.4) (for details see Refs. [149, 150, 151]). In terms of
the parameters of the split-pair cooper box, A = |/2EcpE; and U = Ecp/4,
where Ecp is the charging energy of the Cooper pair box and Ej is the
Josephson energy. When the non-linearity factor U is very large compared
to the photon decay rate, the Hamiltonian behaves as an effective two level
system,

A,
Hy ~ 50z (6.34)

A similar model was recently realized by Senior et al. in Ref. [45] to study
thermal rectification.
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In this section, we will study heat rectification in a non-linear resonator
defined in Eq. (2.4) coupled to bosonic leads. We will employ the Keldysh
non-equilibrium Green'’s function technique to obtain analytic expressions
beyond mean field for heat current. Note that, as opposed to the qubit case,
we shall keep only the non-rotating terms in the Hamiltonian. We can define
the system Green’s function as:

Ghy (1) = —io(t ') ([b(8), 67 (#)] ). (6:35)

For the sake of simplicity, we consider Ohmic spectral density with a sharp
cut-off given by

T'y(e) = m(e)f(ec — €)Ky €, (6.36)

ec being the cut-off frequency. In the presence of interaction, one cannot
obtain exact expression for Green’s function. Following Ref. [152], we use
the equation of motion (EOM) method to obtain the Green’s function for the
system (see App. F for details):

14 2I(e) (n)

Gb;b(e) = €—ep— 5.(0) (6) + 21(6) (2(2) (G) + 2(3)(6»

, (6.37)

where
I(e)/U = (e —eg—U(n) — (22(0> (e) + 2<1>(e)) ) - (6.38)

In deriving Eq. (6.37), we neglected terms involving correlation in the baths.
Specifically, we set ([0 (£)buk (t)buk (), bT(#')]) = 0 and (bTby, ) = (bb} ) = 0.
The contribution from these terms become significant in the strong coupling
regime [152]. In addition we truncated the Green’s function at second order,
i. e. we assume Gy, ,, 5 (€) = (1) G, (€). In Eq. (6.37), the usual embedded
self-energy is defined through the expression

Z,&O) (e) = / dw [efaw(ci)m} . (6.39)

Our calculation goes beyond mean field (MF) and keeps also the processes
involving virtual states in the system. The inclusion of self energies defined
through the expressions

B dw [y(w)
xW(e) = ;/E _e+w—260—2U<n)—U+i’7}’
2O - [ g |,

_ dw Fa(w)n%(w)
2@ = ;/E _e+w—2€0—2u<n>—u+i17l

ensure that the onsite correlation effects are correctly captured. The distribu-
tion function can be obtained from

) =% [ 5= Grale)n(e)Ta(e)Giy (e). (640)

In order to obtain the Green’s function (Gy;), one would have to solve
Eq. (6.37) and Eq. (6.40) self-consistently. Since the spectral densities for the
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Figure 6.9: Heat current as a function of average temperature kgT for different values
of system-bath coupling strength (top panel K;, = Kgr = 0.05 and bottom
panel K = Kr = 0.005). The other parameters are ec = 100U, kAT =
0.1A and U = 0.05A.

left and right lead are proportional to each other, the transmission function
can be expressed as

T(e) = I'(e)Tr(€)Gpp(€)Gpp€)- (6.41)
For U = 0, the transmission function is given by:

el'L(e)T'r(€)
(€2 —€f)? + LaTi(e)/4
Eq. (6.42) is temperature independent and hence, in the absence of interaction,
a harmonic resonator does not induce thermal rectification.

(6.42)

T(e) =

6.5.0.1 Mean-field approximation

The MF results are obtained by truncating the EOM for the retarded Green’s
function at first order. In the MF approximation the retarded Green’s function

takes the form .

e—ep— 4 —Un) -0 (e)
The MF approximation renormalizes the energy of the resonator but the
self-energy is unchanged compared to the non-interacting case. Consequently,

Ghy = (6.43)



65 NON-LINEAR QUANTUM CIRCUIT

higher order effects resulting from correlation between system-bath coupling
and the interaction are not taken into account. The self energy in Eq. (6.37)
for Green's function calculated using the EOM takes into account onsite cor-
relation effects but neglects correlations in the bath. Considering an average
thermal energy kT of the order of A, the onsite correlation effects become
significant when the interaction is of the order of the coupling strength,
i.e. U~ tKyA. For U < KyA, MF approximation and EOM give similar
results. To illustrate this point, in Fig. 6.9 we plot heat current obtained using
the above mentioned two approximations for different values of coupling
strength. For a fixed value of interaction (U = 0.05A), we observe that the
MEF (red curve) and the EOM (purple curve) method agree more in the strong
system-bath coupling case (top panel) than the weak system-bath coupling
case (bottom panel). The deviation between the two methods increases at
increasing temperature. In the absence of interaction, both Eq. (6.37) and
Eq. (6.43) reduce to the same expression for exact Green’s function of a
non-interacting harmonic resonator.

6.5.1 Results
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Figure 6.10: Heat current as a function of resonator energy A for AT/T = 8/5,
ec = 100U, U = 40k T, K; = 0.06 and Kg = 0.003.

In Fig. 6.10, we plot the heat current as a function of the resonator energy
A. We fix the the coupling parameters to be within the weak coupling regime,
Ky = 0.06 and Kg = 0.003. The interaction is taken large enough (U = 40kgT)
such that within the weak coupling regime only the first two eigenstates
of the non-linear resonator become available for transport, and the non-
linear resonator behaves as a qubit with Hamiltonian given by Eq. (6.34).
We use two different expressions for Green’s function to calculate the heat
current: 1) Green’s function described by Eq. (6.43) obtained by applying
MF Hartree approximation, and 2) Green’s function described by Eq. (6.37)
obtained using the EOM. In addition, we compare the above mentioned heat
currents with the heat current for a qubit [defined by Eq. (6.34)] calculated
using NEGF method in the XX as well as the YX coupling case. As shown
in Fig. 6.10, the heat currents obtained for the qubit case (blue curve for
XX coupling and green curve for YX coupling) converge to the non-linear
resonator case [both MF (red curve) and EOM (blue curve)] for A > 6kgT.
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In addition, the NEGF and the EOM calculations both predict a peak in
the heat current for A ~ 4kgT. The NEGF(XX) heat current goes to zero for
A = 0 whereas NEGF(YX) and EOM calculations predict a finite heat current
even for A = 0. On the other hand, heat current obtained using mean field
approximation increases monotonously for A — 0, exhibiting completely
different behavior than that of NEGF as well as EOM calculations. Above
results can be explained on the basis of following arguments: 1) The system-
bath coupling is different in the two cases (in the non-linear resonator case,
the system bath coupling can be written in terms of ¢ and ¢~ operators
which is a linear combination of ¢y and ¢y type couplings considered for
the qubit). Indeed, for A — 0, the EOM calculations agrees more with the
YX coupling case as the contribution due to XX coupling vanishes. 2) A one
to one correspondence between the approximations applied in the qubit
case and the non-linear resonator case can not be made. The MF as well as
EOM correctly describe both the weak and strong coupling limit however
the NEGF formulation in the qubit case (where the self energy is calculated
undergoing perturbation upto first order in system bath coupling strength)
is accurate only in the weak coupling limit. 3) The contribution from higher
eigen states of the interacting resonator although relatively small could be
significant. The advantage of EOM is that it gives correct results in both weak and
strong coupling regime.
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Figure 6.11: Rectification as a function of resonator energy or qubit gap A for similar
parameters as in Fig. 6.10

In Fig. 6.11 we plot the rectification coefficient R as a function of resonator
energy A for fixed thermal bias and coupling strength. The interaction U
is chosen large enough to attain the qubit limit. EOM predicts maximum
rectification of ~ 32% for A ~ 2kgT. For A < 2kgT, the rectification obtained
using EOM for non linear resonator and NEGF(XX) for qubit exhibit dif-
ferent behavior: NEGF(XX) predicts a montonous increase in rectification
with decreasing A whereas the rectification obtained using EOM decreases
with decreasing A (agreeing qualitatively with the NEGF(YX) case) before
changing direction around A ~ 0.4kgT. This is precisely because the heat
current due to XX coupling vanishes for A — 0 and the contribution from
YX coupling becomes dominant.
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6.6 COULOMB COUPLED QUANTUM DOTS

In this section, we will study heat rectification in the drag circuit when the
drive circuit is thermally biased (see Fig. 4.10). We take symmetric thermal
bias in the drive, and calculate the heat current flowing in the drag for two
different cases: 1) Tr1,g1 = T & AT (the heat current flowing in bath « is
given by ],,(Ch) (Tr1 = Tw)), 2) Trayr1 = T F AT (the heat current flowing in
bath « is given by ],,((h) (Tp1 = Tc)). We define the rectification factor as:
’]&‘)/Rz(Tu = TH)‘ - \Ig)/Rz(Tu =Tc

Riz/ro =
’]i}zl)/Rz(TLl = TH)‘ + ‘fg)/Rz(Tu =Tc

)
, (6-44)
)

When the tunneling in the drag circuit is energy independent, energy in-
evitably gets dissipated to both baths irrespective of the way the drive is
biased. We obtain R = 0, and there is no rectification. To obtain finite rectifi-
cation, we consider two different possible ways of implementing energy de-
pendence in the tunneling. We find that under suitable choice of parameters,
a perfect non-local heat rectification, i.e R = £1 can be obtained. The heat

x10~7
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Figure 6.12: Heat currents flowing in the two leads of drag system as a function of
€1 for ey = 0.4kgT (charge state dependent transition rate). Parameters:
U = 0.03kgT; AT = 0.068T; I'1; = 0.08kgT; I'ry = 0.07kgT; I'1p =
0.06kgT; T\) = 1rl) — 0.05kgT.

currents flowing to the two leads in the drag circuit are shown in Fig. (6.12)
when the tunneling in or out of the lead R2 is dependent on the charge state
of QD1. The upper panel is for Ty ; = Ty, Tr1 = Ic (positive bias) whereas
the lower panel is for the case when the bias is inverted, Tj1 = Tc, Tr1 = T
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(negative bias). For a detailed analysis on the mechanism of heat flow in the
drag circuit, we refer the readers to Chapter 4. The difference of the heat
current flowing to the lead R2 in the above mentioned two cases gives us the
rectification factor (see Eq. (6.44)). The heat currents are plotted as a function
of energy of QD 1. The parameters were chosen such that heat is extracted
from one of the reservoir in the drag circuit and deposited to the other one.
We observe that both heat currents in the drag go to zero for a particular
value of €1(~ 0.15kgT) in the positive bias case whereas for the same value
of €; we obtain a finite heat current in the negative bias case. This gives
us a perfect non-local heat rectification for €1 (= 0.15kgT) (see Fig. 6.14, top
panel).
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— = JN(T, =Te)
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x 1077
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- = I (Tp =Ty
—0.5 0.0 0.5
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Figure 6.13: Heat currents flowing in the two leads of the drag as a function of e, for
€1 = 0.1kgT (superconducting reservoir). Parameters: U = 0.1kgT; AT =
0.068T; Fm = 0.08kBT,' FR1 = 0.07kBT; FLZ = 0.06kBT; rRz =
0.05kpT, A = 0.4kgT

We plot heat currents flowing to the two leads in the drag when the lead
R2 is superconducting in Fig. (6.13). We observe that for particular values of
parameters, we obtain very small current in the positive bias case compared
to the negative bias case giving a high magnitude of heat rectification. Note
that, for the case of superconducting lead the amount of heat extracted from
one of the reservoir is almost equal to the amount of heat deposited to the
other one for a range of values of €;. In the bottom panel of Fig. 6.14, we
plot thermal rectification as a function of thermal bias when the lead R2
is superconducting. We observe that for AT ~ 0.07T, a perfect non-local
thermal rectification (R = —1) is obtained. The parameters were carefully
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Figure 6.14: Non local thermal rectification as a function of € for charge state depen-
dent transition rates (top panel, blue curve) and as a function of thermal
bias AT for the case with superconducting lead R2. Parameters are cho-
sen such that the heat current flows from one reservoir to the other in
the drag circuit. For the top panel, U = 0.03kgT; AT = 0.068T; I'1; =
0.08kgT; Ty = 0.07kpT; Tpp = 0.06kgT; T'y) = 1T = 0.05kgT and
for the bottom panel, U = 0.1kgT; e; = 0.1kgT; e = 0.3kgT; I'11 =
0.0SkBT; l"Rl = 0.07kBT; FLZ = 0.06kBT; rRz = OOSkBT and A = 04kBT

chosen such that the heat current always flows from one lead to another in
the drag circuit. The “perfect thermal rectification" is obtained even in the
presence of higher order terms like cotunneling as well as when the lamb
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shift effect is taken into account. Hence, the effect is robust to system-bath
coupling strength, provided perturbative treatment is allowed.

6.7 SUMMARY

In this chapter, we presented a comprehensive and systematic study of
thermal rectification in low-dimensional quantum systems. Focusing on
various prototypical systems - a qubit, a non-linear harmonic oscillator and a
Coulomb coupled quantum dot system - we identified necessary conditions
to observe thermal rectification and we discussed strategies to maximize
it. In particular, in the qubit case we derived general upper bounds on
rectification which hold in the weak system-bath coupling regime, and we
showed how the Lamb shift can be exploited to enhance rectification. We
then went beyond the weak coupling regime using the non-equilibrium
Green’s function formalism and the Feynman-Vernon path integral approach.
We found that the strong coupling regime allows us to violate the bounds
derived in the weak coupling regime, providing us with clear signatures
of high order coherent processes visible in the thermal rectification. In the
non-linear harmonic oscillator, we studied the heat rectification using two
different approximate schemes 1) mean field Hartree approximation and
2) equation of motion method that goes beyond mean field. We observed
that the mean field calculations converges to the equation of motion method
when the interaction is small compared to other energy scales of the system.
Thermal rectification is enhanced in the large interaction limit, making
equation of motion better suited to study thermal rectification in non-linear
resonators. Finally, we studied non-local thermal rectification in Coulomb
coupled quantum. For a suitable choice of parameters, we showed that a
perfect non-local thermal rectification can be obtained.



THERMAL TRANSPORT IN SINGLE ELECTRON DEVICES:
EXPERIMENT AND THEORY

7.1 NONLINEAR THERMOVOLTAGE IN A SINGLE-ELECTRON TRANSIS-
TOR

The use of nano-devices has emerged as one of the key technologies in
the quest to establish a sustainable energy system, allowing at the same
time the control of heat flow in small circuits [35]. So far, most of the in-
vestigations of thermal properties in nanostructures have focused on the
thermal conductance [153, 37, 154, 38, 155, 156, 157, 39, 158, 159]. Conversely
the thermovoltage, which describes the electrical response to a tempera-
ture difference and is directly related to both the power and efficiency
of thermal machines [35], is much less studied. This is due to the diffi-
culty in coupling local sensitive electron thermometers and heaters/coolers
to the sample under study in order to have a well-defined, known tem-
perature difference across the device. The thermovoltage has been mea-
sured in devices based on nanowires [160, 161] and on quantum dots
[162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174]. In these ex-
periments, however, the temperature of the electrodes were typically not
measured directly, but rather determined as fitting parameters, and there
are no experiments where the temperature of the electrodes and the ther-
movoltage are measured simultaneously. Furthermore, there are no exper-
iments probing the thermovoltage in devices based on metallic islands,
while theoretical works for these systems have focused only on the linear
response regime [175, 176, 177, 178, 179, 180, 181]. The non-linear thermo-
voltage though has been theoretically studied in discrete-level systems in
Refs. [182, 183, 120, 184, 185, 186, 187, 188, 189, 190].

In this section, we report on the theoretical prediction of experimental
measurement of the thermovoltage in a metallic single-electron transistor
(SET) based on on-chip, local tunnel-junction-based thermometers and elec-
tron temperature control. This system allows one to perform thermoelectric
measurements with an unprecedented control, both within the linear and
non-linear response regimes, imposing temperature differences exceeding
the average temperature. Using a theoretical model which accounts for non-
linear effects and co-tunneling processes, we find an excellent agreement
with the experimental data with no free parameters. On one hand, this al-
lows us to nail down quantitatively the role of co-tunneling processes on
the thermovoltage. On the other hand, we find that in the non-linear regime
the temperature of the island emerges as a crucial parameter. Surprisingly,
although the thermovoltage is measured at zero net charge current, within
the non-linear response the island tends to overheat to a temperature greater
than the average lead temperature, which results in a suppression of the
thermovoltage. We show, however, that the non-linear thermovoltage can be
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Figure 7.1: Representation and characterization of the single-electron transistor. a)
False-colored SEM image of the full device and a zoomed in view around
the metallic island (yellow) tunnel coupled to two normal leads (red and
green). b) Schematic representation of the system with the same coloring
as in the SEM image. The heat balance in the metallic island is represented
by red arrows. c) Absolute value of the current through the SET as a
function of the applied source drain voltage 1}, and of the gate-induced
charge n,.

optimized up to a factor two with respect to the experimentally observed
value by lowering the temperature of the island to the temperature of the
cold lead. This could be achieved by exploiting the phonons in the island
which act as a third thermal bath coupled to our system.

7.2 SETUP

Fig. 7.1a) is a colored scanning electron micrograph of the device and
Fig. 7.1b) is a schematic representation of the experiment with the same
colors highlighting the main elements of the fully normal-conducting SET.
The left lead L (red) and right lead R (green) are tunnel and capacitively
coupled to a central metallic island I (yellow), which is under the influence of
a tunable gate electric field (orange). A voltage bias 1}, = V. — VR can be ap-
plied to the SET electrodes and the corresponding current I can be measured
for an initial characterization of the device. The temperature Tr of the elec-
trons in R is fixed to the bath temperature, given the strong electron-phonon
coupling in the large and “bulky” lead. On the other hand, the electronic
temperature 11, in the left lead (red) can both be varied and measured using
the superconducting tunnel probes (blue). Electrons within the island are in
local equilibrium at temperature Tj since the electron-electron interaction is
much faster than the tunneling rates [115].

Figure 7.1c) shows the absolute value of the current I across the device at
65 mK as a function of the potential bias 14, and of the gate-induced charge
ng = (CLVL + CrWR + CgVy) /e, where Cy, Cr and Cg are, respectively, the
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capacitances of the island to L, R and to the gate electrode, and Vj is the
gate voltage. In the dark blue regions, Coulomb diamonds, single electron
tunneling between the leads and the island is not allowed, and the current
is very small. At half integer values of n¢, “degeneracy points”, there are
conductance peaks at zero bias since single electron tunneling is allowed for
any finite voltage bias.

We consider both sequential and cotunneling contribution to the current.

In the presence of a fixed temperature bias (Tr # Ti), the thermovoltage Vi
is the solution to

1) (Vi) =0, (7.1)

where J(¢) is the total charge current due to both sequential and cotunneling
contribution. Notice that the charge current also depends on the temperature
of the island Tj. By imposing that the charge current and the net energy
entering the island through electron tunneling are zero, we find that

_ TLRr + TrRL

T = , 2
I R + Re (7.2)

where Ry, and Rg are respectively the resistance of the left and right tunnel
junctions. Eq. (7.2), which is found performing a simple sequential tunneling
calculation within linear response and in the two charge state approximation

(valid for Ec > kgT, Ec is the charging energy), reduces to T = T =
(T + Tr)/2 in the present symmetric case where Ry, = Rg.

7.3 RESULTS

We focus on two data sets which represent two different regimes: linear
response (Fig. 7.2), i.e. when the modulus of the temperature difference
AT = Ty, — Tg is smaller than the average lead temperature T = (T + Tr)/2,
and non-linear response (Fig. 7.3). In both cases, using the model detailed
above, we could accurately reproduce the experimental data without any free
parameter. The system parameters Ec = 100ueV ~ kg x 1.16 K and Ry, =
RRr = 26 k() are independently extracted from charge current measurements.
Figures 7.2 and 7.3a) present the same qualitative behavior, namely a periodic
oscillation of the thermovoltage with the gate-induced charge 1 and a linear
dependence around degeneracy points, but they exhibit different amplitudes
(note that the sign of Vy, is opposite in the two cases since the temperature
biases are opposite).

We first analyze the linear response regime by choosing the set of data
obtained when the temperature of the leads is 7|, = 134 mK and Tr =
190 mK, such that |AT| < T. In Fig. 7.2 we compare the measured Vy, (blue
dots) as a function of ng with different theoretical models. The red thin curve
represents the typical sawtooth behavior which is predicted within linear
response accounting only for sequential tunneling and two charge states. This
is characterized by a linear function of ng, crossing zero at the degeneracy
points with slope EcAT/T [175]. The other two curves (red dashed and
green solid) are instead determined by computing Vy;, using Eq. (7.1) and
assuming that T = T [see Eq. (7.2)]. The red dashed curve, which only
accounts for sequential tunneling, shows a smoothened sawtooth behavior as
a consequence of including multiple charge states in the master equation and
of a finite temperature. However, both models based on sequential tunneling
(thin and dashed red curves) approximately fit the experimental data only
near the degeneracy points (near half integer values of ng). In this case,
indeed, sequential tunneling is allowed and thus dominates over co-tunneling
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Figure 7.2: Experimental and theoretical thermovoltage as a function of ng. The red
thin curve represents the sawtooth behavior predicted with a sequential-
tunneling calculation in linear response and accounting for two charge
states. The dashed red curve is found by solving Eq. (7.1) including
only sequential contributions, while the green curve includes also co-
tunneling contributions. The temperatures of the leads are Ty, = 134 mK

and Tg = 190 mK and, according to Eq. (7.2), we assume that Ty = T.
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Figure 7.3: a) Experimental and theoretical thermovoltage as a function of ng. All
theoretical curves include co-tunneling. The red dashed-dotted curve
corresponds to a linear response calculation around T. The green dashed
curve corresponds to a non-linear calculation where we fix Ty = T, while
the black curve corresponds to a non-linear calculation where Tj, shown
in b) as a function of ng, is calculated solving the heat balance condition
in Eq. (7.3) together with Eq. (7.1). The temperatures of the leads are
T1, = 342 mK and Tg = 63 mK.

[177]. On the other hand the green solid curve, computed including co-
tunneling contributions, shows a strong suppression of the thermovoltage as
we move away from degeneracy points. The excellent agreement between this
model and the experimental measurements pinpoints the critical dependence
of the thermovoltage on inelastic co-tunneling processes.



7.3 RESULTS

We now move to the non-linear regime. In Fig. 7.3a) we show the mea-
sured thermovoltage as a function of 1y (blue dots) compared to theoretical
calculations, all of which include co-tunneling contributions. The lead tem-
peratures are T, = 342 mK and Tr = 63 mK, such that |AT| > T. The red
dashed-dotted curve is computed within the linear response regime choos-
ing the average lead temperature T as the characteristic temperature. More
precisely, we solve Eq. (7.1) setting T; = T and choosing a small temperature
difference of the leads 6T around T to find the thermopower S = V;, /6T for
0T — 0. We then calculate the thermovoltage as V4, = S(Tp — Tr), where
now Ty = 342 mK and Tz = 63 mK are the actual lead temperatures. As
we can see from Fig. 7.3a), this linear response model overestimates the
thermovoltage almost by a factor two. A non-linear calculation (green dashed
curve) improves the agreement with the experimental data. This calculation
is performed by solving Eq. (7.1) using the actual lead temperatures and, as
before, we fix the island temperature at Ty = T. The difference between the
red dashed-dotted and green dashed curves proves that we are indeed in the
non-linear response regime, and it shows that the main effect of the nonlinear
response is to decrease the amplitude of the thermovoltage. However, we
still do not obtain a good agreement with the experimental data.

We find that we can get a perfect agreement with the experimental data if
we further improve the model by determining also the island temperature Tj
through a heat balance equation, rather than fixing it at T. More precisely
[see Fig. 7.1b)], we denote by Qtun the heat current entering the island from
sequential and co-tunneling events and by Qejpn = LV(T? — T3) the heat
current flowing from electrons in the island to the phonons (we assume
that the electronic temperature TR in the bulky right electrode is equal
to the temperature of the phonons). V is the island volume and X is the
electron-phonon coupling constant which only depends on the material. The
temperature of the island can thus be determined by the following heat
balance equation

Qtun = Qel—ph' (73)
The values of the parameters entering Qepn that we use are determined
independently: V = 225 x 100 x 29 nm? is estimated from SEM images
and X is obtained from Ref. [39] for this device (sample B). The value,
¥ =28 WKm~3, is close to the standard literature value for copper [115]
and in agreement with measurements of other samples fabricated using the
same Cu target.

The black curve in Fig. 7.3a) is thus determined by computing both V};, and
Ti simultaneously by solving Egs. (7.1) and (7.3) without any free parameters
for each value of ng. As we can see, the non-linear model, complemented
with the heat balance equation, is in excellent agreement with the experimen-
tal measurements, demonstrating that T7 is indeed an important parameter in
the non-linear regime. Conversely we have verified that, using the parameters
of Fig. 7.2 which are within the linear response regime, Vi, only weakly de-
pends on the particular choice of T1 between T, and Tg. In Fig. 7.3b) we plot
the island temperature Tj, as a function of n¢ over a single period, determined
in the same calculation that leads to the black curve in Fig. 7.3a). Remarkably,
despite the very low phonon temperature (63 mK), the calculated Ty ~ 250
mK is much larger than the average lead temperature T = 202.5mK. This
means that while the net charge current across the SET is zero, the heat
current due to electrons tunneling back and forth is overheating the island to
a temperature that is significantly larger than the average temperature, result-
ing in a further decrease of the thermovoltage. This is another signature of
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Figure 7.4: The maximum amplitude of the thermovoltage Vi?* is plotted as a func-
tion of the island temperature, for Tx < Ty < Tp.. The green dashed lines
point to the values of Vi®* and Tj found in the non-linear calculation at
fixed Ty = T (see the green dashed curve of Fig. 7.3a) while the black solid
lines and the gray area refer to the non-linear calculation including the
heat balance equation (see the black solid curve of Fig. 7.3).

the non-linear response of the system, as it violates Eq. (7.2). We further find
that the island temperature displays a weak 1, modulation of approximately
10 mK, but this prediction cannot be confirmed in the present experiment.

Finally we discuss how the thermovoltage depends on 1. In Fig. 7.4 we
plot Vi, the maximum amplitude of Vy,, computed by solving Eq. (7.1)
at fixed lead temperatures T, = 342 mK and Tgr = 63 mK and varying Tj
between the lead temperatures. The black solid lines and the gray area point
to the actual experimental value of Vi;'®* and to the corresponding computed
T1 which differs from T [see black curves in Figs. 7.3a) and 7.3b)], while the
dashed green lines point to Vi"®* calculated setting T; = T [see the green
dashed curve in Fig. 7.3a)]. We find that Vii'®* strongly depends on the choice
of Ty and that it increases as Tj is lowered. Indeed, at T} = Tg = 63 mK,
the amplitude of the thermovoltage reaches 27 "¢V, twice the experimental
value [see blue dots in Fig. 7.3a)]. Thus, by increasing the energy exchange
between the electrons and phonons in the island, for example by increasing
the island’s volume, we can lower the temperature of the island which in
turn results in an increase of Vy,.

7.4 OPTIMAL PROBILISTIC WORK EXTRACTION BEYOND FREE ENERGY
DIFFERENCE

The ongoing miniaturization of physical systems, together with advances in
techniques for the conception and manipulation of small biological objects,
has made the investigation of devices with few degrees of freedom possible.
In such systems fluctuations of physical quantities become comparable with
or larger than their mean values. This property, in particular, has led to
the theoretical [191, 192] and experimental [193, 194, 195] development of
stochastic thermodynamics [196], which considers single realizations of work
and heat relative to a given transformation rather than averaged quantities
over an ensemble of realizations, as for the case of macroscopic systems.
While the first law of thermodynamics (energy conservation) remains un-
touched, the second law (entropy increase over time) does not apply at the
level of a single realization because of the stochastic nature of heat and
work. Experimental platforms for stochastic thermodynamics include col-
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loids [194, 197], single electron boxes [198], electronic double dots which
allow entropy production measurements [199, 43] and recently experiments
attained the quantum regime with e.g. NMR setups [200] and superconduct-
ing circuits [201, 202]. In this context, work and heat must be addressed in
terms of probability distributions [196]. In particular, work fluctuations obey
the equality [191]

<67W/kBT> — p—AF/kpT (7.4)

Here W is the work performed on a system during a single realization of the
process, AF is the free energy difference between the system’s initial and
final states, kp is Boltzmann's constant and T the temperature of the heat
bath to which the system is connected, and angular brackets denote an
ensemble average over realizations. From this equality the second law of
thermodynamics is recovered, (W) > AF. Additionally, Eq. (7.4) implies that
for some realizations W < AF, i.e. the extracted work (—W) exceeds the
decrease in free energy (—AF). Eq. (7.4) places no limits on the magnitude of
such “violations” of the second law, nor on the net likelihood of observing
these violations. Therefore it is interesting to consider how to design a process
to maximize the amount of work that might be extracted during a single
realization, or alternatively to maximize the net probability to extract work
beyond the free energy difference.

With the exception of recent applications of one-shot methods in this
context [203, 204], until now optimal control for a system coupled to a
single heat bath has been mostly concerned with the trade-off between
minimizing either fluctuations or average work [205, 206]. Recently, it has
been shown with a quantum jump approach [207] that with a suitable
far-from-equilibrium driving sequence, one can instead take advantage of
fluctuations to force work extraction from a system by arbitrarily large value
with a non-zero probability while still obeying Eq. (7.4). In particular, Ref.
[207] discusses how to perform this task in the most efficient way, finding an
optimal sequence that relies on two quasi-static tuning steps of the control
parameter, separated by the sudden change of its energy level spacing, also
referred to as a “quench”. Such a protocol maximizes the probability of
extracting work beyond a given quantity (i.e. W < W~ where W~ < AF
is fixed), while ensuring that we never perform work exceeding a selected
threshold W.

In this section, in a single electron transistor (SET) setup [208], using master
equations we theoretically reproduce the experimental results demonstrating
a significant probability of extracting work arbitrarily bigger than the free
energy difference in a single protocol realization. We also establish quantita-
tive agreement between the nonequilibrium fluctuation relation [Eq. (7.4)]
and the experimental results. These results are obtained without using the
information on the system’s state, unlike in a “Maxwell’s demon” [209, 210]
experiment.

The experimental set up is depicted in Fig. 7.5a) and 7.5b). We know the net
heat transfer AE = AEy_,; = H(1,ng) — H(0, ng) for an electron tunneling
onto the island,

AEOal(”g) =Ec(1—- Z”g)/ (7.5)

where Ec is the charging energy of the island and ng = Cgsys Vg sys € is the
reduced gate voltage. While the opposite heat transfer for an electron leaving
the island is AE;_,o(ng) = —AEg_1(ng). By monitoring tunneling events
during a driving cycle, and recording the corresponding jump times {#;}
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Figure 7.5: a) Scanning electron micrograph of the single-electron transistor (SET)
capacitively coupled to a voltage biased detector SET. Leads (blue) made
of superconducting aluminum are coupled through oxide (tunnel) barriers
to the copper (red) island. b) Electrical circuit representation. c) Protocol
used to maximize work extraction, with a zoom on the detector SET
output current under system driving, around the quench event.

and gate voltage values {ng(t)}, it is possible to experimentally determine
the total heat absorbed by the system over the thermodynamic cycle: Q =
Yk AE[ng(ty)]Any, where An = 41 depending on whether the electron
jumps in/out of the island. The initial and final values of ng are both set
to 1/2 so that we operate on a closed thermodynamic cycle. This way the
net energy change and the free energy difference AF over the entire cycle
are both zero, and energy conservation ensures that W = —Q. Thus the
experimental value of the work at the end of the cycle can be directly inferred
based on the record of the transitions over the full cycle, see Fig. 7.5¢).

The driving sequence n¢(t) depicted in Fig. 7.5 c), referred to as protocol
was first realized over a time ¢ . For a given choice of W~ and W™ satisfying
W~ < AF < W™, the protocol [207] is designed to maximize the probability
to observe a work value W < W~ (successful event), while ensuring that
we never observe Wt > AF (failure events). For the sake of simplicity we
consider the symmetric case, i.e. W~ = —W™. First we prepare the system
at charge degeneracy, i.e. ng(0) = 1/2, at thermal equilibrium. Then we
drive the system with a quasi-static ramp over a time t; > F;l up to a
value n;‘, = ng(t1) = 1/2 + Ang, with 0 < Ang < 1/2. Next, a rapid swap
of the energy splitting is operated by suddenly driving the system to a
value 1 — n,. This “quench” must be realized over a time Af; < Fd_l so that
no tunneling occurs in this time interval. Finally, we return the system to
charge degeneracy through a quasi-static ramp, over a time t;, such that
2t + Aty =ty and ng(tr) = 1/2. The total work output at the end of one
cycle, obtained theoretically in the ideal quasi-static limit, writes

W(m) = (1 21)AE(n}), (7.6)

where 71 = n(t;) is the charge state at the quench onset, and AE(n3) < 0.
Therefore W is a stochastic variable taking two values W = £AE(ng). Its
distribution P(W) = p*6(W — W)+ (1 —p*)6(W—-W™) with1/2 < p* < 1
[207] is solely dictated by the equilibrium occupation probabilities of the
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two charge states before the quench, which obey the Gibbs ensemble: the
ground state (one extra electron on the island) has a probability p* = (1 +

AEE)/ kBT)*l, while the excited state (zero extra electron) has a probability

1-p =01+ e AR/ kBT)’l. The outcome is simple to interpret physically:
as the two ramps are quasi-static, the amount of work performed during those
segments can be considered merely in terms of the equilibrium occupation
probabilities at each instant, and is here equal to zero because of the protocol’s
symmetry. On the other hand, the work performed during the quench does
depend on the charge state at the quench onset: if the system is in the ground
state 7 = 1, the quench turns it into an energetically unfavorable state (since
AE(1 —ng) > 0), and thus positive work has to be provided by the gate
voltage source during the quench. If instead the system is in the excited state
before the quench, the latter turns it into the ground state: thus energy is
released by the system as work, since there is no heat exchange during the
quench. Thus, counter-intuitively, the quench allows to realize W < AF =0
by a possibly large amount by deliberately introducing irreversibility.

Work histograms obtained for two different values of Ang (quench am-
plitudes) with the same ramp time are shown in Fig. 7.6a) and 7.6b). We
indeed observe two peaks with maxima located at =AE (n;‘,) Their imbalance
increases with the quench amplitude following Gibbs statistics as seen in Fig.
7.6¢). This is expected since the probability 1 — p* to be in the excited state
decreases as n}; gets further away from charge degeneracy. Namely, the ratio
between the weights of the two peaks follows the detailed balance condition
for the two energy states £AE(ny): P {W = AE(njé)} /P [W = —AE(nE)} =

AE(g) /KT Irreversibility, introduced by the quench, can be quantified by

computing the work (W) = [ P(W)WdW performed on the system, aver-
aged over all realizations:

AE(n3)

ks T 1 . (7.7)

Indeed, (W) > 0, as expected from the second law of thermodynamics. In
Fig. 7.6d) we see that the averaged work is positive and increasing with the
quench amplitude, in good agreement with Eq. (7.7). The inset of Fig. 7.6d)
shows that our work histograms obey the nonequilibrium work relation (7.4).

Note that, in contrast to the theoretical situation depicted in Ref. [207], the
peaks have a finite width in our results, which owes to the fact that a realistic
ramp cannot be truly quasi-static, since one would need enough tunneling
events between two infinitesimally close instants so that thermal equilibrium
is properly defined at each instant t. Thus, the degree of reversibility is
determined by the slope of the ramp with respect to the typical tunneling
time, i.e. by l";l |dng /dt|. For higher quench amplitudes but with the same
ramping time, the residual irreversibility produces broader peaks [198], as Fig.
7.6a) and 7.6b) clearly show. We also run the protocol with constant quench
amplitude but different ramp times. In Fig. 7.6e),f) work histograms for two
different ramp times unambiguously demonstrate that a shorter ramp time
results in a broadened distribution, as captured through a master equation
approach [198]. Indeed, we see in Fig. 7.6 that the obtained histograms are
very well reproduced by the theoretical expectation, which validates this
approach.

(W) = AE(ng) tanh
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Figure 7.6: a) and b): work histograms obtained for a) n;; = 0.608 and b) n} = 0.698,
with the same ramp time t; = 1.25 s. ¢) Probability for W = —AE(ng)
(orange dots, mind the sign) and W = AE (ng) (blue dots) events as a
function of the quench amplitude. Solid lines are fits of Fermi functions
(see text) with Ec = 110 peV and T = 670 mK. Error bars are calculated
from the number of protocol realizations. d) Work performed on the
system averaged over all outcomes as a function of the quench peak
amplitude Ang = ng —1/2. The solid line is obtained from Eq. (7.7). Inset:
verification of Eq. (7.4) for all values of ng. €),f): work histograms obtained
for the same quench amplitude Ang = 0.048, but with ramp times t; = 0.1
s for e) and t; = 0.025 s for f), much shorter than in a). In a),b),e),f), solid
lines are obtained by numerically solving the master equation. All work
values are normalized to Ec.



7.5 SUMMARY

7.5 SUMMARY

In this chapter, we theoretically studied two different experiments based
on single electron transport in metallic islands. In the first section, we the-
oretically describe the measurements of thermovoltage in a metallic island
tunnel coupled to normal leads. Within the linear regime we nail down the
role of co-tunneling in determining the thermovoltage. Within the non-linear
response regime we explore temperature biases even larger than the average
lead temperature. Using a theoretical model which accounts for co-tunneling
and non-linear effects, we find an accurate agreement with the experimental
data without any free parameters. In particular, we find that the temperature
of the metallic island becomes an important parameter which must be deter-
mined by solving a heat balance equation for the island. Surprisingly, even if
the net charge current through the system is vanishing and the coupling to
the leads is symmetric, the metallic island overheats to a temperature larger
than the average lead temperature. As a consequence, the amplitude of the
thermovoltage oscillations decreases.

In the second case, we have demonstrated that a substantial amount of
work can be extracted with a non negligible probability from a two-level
system coupled to a single heat bath, using a SET driven far from equilibrium
with a rapid quench. The driving cycle is designed to maximize either the
work or the probability of extracting work from the system on one trajectory,
by strongly amplifying work fluctuations rather than minimizing them,
which represents a new paradigm for work extraction in mesoscopic engines.
The theoretical results based on a master equation approach which takes into
account the irreversibility associated to finite time driving agrees with the
experimental results satisfying the nonequilibrium work relation. We stress
that even though work extraction can be favored, an external intervention
(e.g. a Maxwell’s Demon [209]) would still be required to select only the
extraction events: it is thanks to this absence that the second law remains
valid.
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GEOMETRIC PROPERTIES OF ADIABATICALLY DRIVEN
QUANTUM SYSTEMS

Thermodynamics in quantum nanoscale systems [211, 212, 213, 214, 215, 216,
217, 218] has been a rapidly growing research topic for some years now,
emerging at the intersection of statistical mechanics, nanoscience, quantum
information, as well as atomic and molecular physics. A paradigmatic goal
in this field is to conceive of and realize thermal machines in the quantum
realm, which, like the classical thermodynamic cycles, transform heat to
useful work or use work to refrigerate [219, 220, 83, 221, 222, 223, 224, 225,
226, 227, 228, 229, 230]. The development of efficient thermal machines
operating in the quantum realm is, in fact, of paramount importance also
for quantum technologies. Numerous theoretical proposals [82, 231, 232, 233,
234, 235, 87, 103, 35, 236, 237] stimulated experimental efforts on several
platforms [238, 239, 240], including solid-state electronics [241, 242, 243, 46]
and nanomechanical systems [244, 245, 246, 247, 248], as well as cold atoms
and trapped ions [249, 250, 251, 51, 252].

Tyo(t) = 0Ty (t) + T Tr(t) = 0TR(t) + T
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Figure 8.1: Geometrical thermal machine setup. A central, parametrically driven quan-
tum system described by the Hamiltonian H s is coupled to macroscopic
reservoirs. A cycle of the machine is completely characterized by a closed
path in the parameter space X. After a complete cycle the averaged power
P is dissipated as heat in the reservoirs. The net transported energy ]t?
flows from one reservoir to the other.

In its most simplified version a quantum thermal machine is composed
of a working substance (typically a few-level quantum system) coupled to
two or more thermal baths kept at different temperatures (and possibly at
different chemical potentials). Engines and refrigerators can operate under
steady-state conditions, as thermoelectric engines, or be controlled by time-
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periodic perturbations which define a cycle, as in conventional macroscopic
thermal machines. An example of the latter is the quantum Otto engine,
which has been investigated theoretically [253, 220, 254, 255, 256, 257, 258,
259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 224, 271] and real-
ized experimentally [250, 252, 238]. Understanding how to discriminate and
characterize useful work, heat, and dissipated energy in these systems is
a fundamental step towards the realization of nanomachines. In fact, un-
like the ideal classical thermodynamic cycles, quantum thermal machines
typically operate out of equilibrium [272, 273], which necessarily implies
entropy production and dissipation. In addition to its impact on emerging
technologies, the study of quantum heat engines and refrigerators is also of
fundamental importance to deepen our understanding of how energy flows
and transforms at the nanoscale [274, 275, 276, 35, 277, 278, 279].

In the present chapter we will consider adiabatically driven thermal ma-
chines. Their cycle is controlled by time-periodic changes of a set of parame-
ters which are slow compared to the typical time scales associated with the
(quantum) working substance (see for example Refs. [280, 281]). The modu-
lation can be associated with parameters of the baths (temperature, chemical
potential, ... ) or the working medium (external fields, coupling constants,
...), see Fig. 8.1. We will refer to these quantum machines as geometric
thermal machines. In this regime and for small amplitude of the thermal
bias, the operation has a purely geometric description. At the heart of this
description is the thermal geometric tensor introduced in Section 8.2. Within
the adiabatic linear response regime, the process of heat-work conversion
is related to the antisymmetric component of the thermal geometric tensor,
while the dissipation and entropy production are related to the symmetric
component of the same tensor. Importantly, the antisymmetric component
has the structure of a Berry curvature, which depends only on the geometry
of the cycle in parameter space, and can be straightforwardly expressed in
terms of a line integral in this space. This representation is very useful for
identifying optimal protocols of heat-work conversion. Furthermore, the sym-
metric component has a geometric interpretation in terms of thermodynamic
length and can also be represented as a line integral for cyclic protocols,
which is useful in the design of efficient protocols. Our approach does not
only allow one to describe a whole class of quantum machines in a unifying
picture. It also has practical implications such as improved ways to optimize
their performance, as we illustrate by two paradigmatic systems: a qubit and
a quantum dot.

Starting from the seminal works of Aharonov and Bohm [282] as well
as Berry [283], geometric effects have pervaded many areas of physics. In
quantum transport, distinct contributions of geometric origin affect charge
and energy currents. In the absence of an additional dc bias, the pumped
charge in a periodically driven system was shown to be of geometric origin,
and can thus be expressed in terms of a closed-path integral in parameter
space [284, 285, 286, 287, 288, 289], akin to the Berry phase [283]. A similar
approach was adopted to analyze heat transport in a driven two-level sys-
tem weakly coupled to bosonic baths [290]. Closely related to these ideas
is the geometric description of driving-induced forces [291, 292, 293, 294,
295, 296, 297, 298, 299], including geometric magnetism [300, 301], with the
extension of geometric response functions to open systems also being dis-
cussed in relation to Cooper pair pumping [302]. Geometric concepts like
a thermodynamic metric and a thermodynamic length were recently intro-
duced as promising tools to characterize the dissipated energy and to design




8.1 MODEL OF A GEOMETRIC THERMAL MACHINE

optimal driving protocols [303, 304, 305, 306, 307, 308]. Similar ideas are
behind the description of the adiabatic time-evolution of many-body ground
states of closed systems in terms of a geometric tensor [309, 310, 311]. The
topological characterization of mixed thermal states is also close to these
concepts[312, 313].

This large body of work linking geometry to transport naturally hints at
similar connections for thermal machines. First, thermal machines involve
periodic variations of parameters and one may naturally expect geometric
effects in the sense of Berry to play an important role. Second, the efficiency
with which thermal machines operate is reduced by dissipation, and thus
geometry enters the physics of thermal machines also in a second rather
distinct way through the concept of thermodynamic length. In the present
chapter, under quite general assumptions, we will show that the operation
of quantum thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate a unified descrip-
tion in terms of a geometric tensor for all the relevant energy fluxes, which
we refer to as thermal geometric tensor. Within this description, pumping
and dissipation are, respectively, associated with the antisymmetric and sym-
metric components of this tensor. We also show that not only heat pumping
but also the dissipated heat can be characterized in terms of an integral over
a closed path in parameter space. These results apply universally to any
periodically and adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the particles, the strength
of the coupling between the system and the reservoir, or the presence of
many-body interactions.

The chapter is organized as follows. In Section 8.1, we introduce the model
of an adiabatic thermal machine. We also introduce the linear-response for-
malism to treat ac adiabatic and thermal driving. Section 8.2 is devoted to
the analysis of the thermodynamic behavior of the heat engine. This sec-
tion contains the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output power, etc.) are
of geometric origin. The central results of this approach are captured by
Egs. (8.5), (8.6), (8.14) and (8.16) which show that the pumped heat, the con-
comitant heat-work conversion and the dissipated power have a geometric
interpretation. In the same section we will also analyze several classes of adi-
abatic machines depending on the various adiabatic drivings. Following this
general formulation, Section. 8.3 focuses on two specific examples of thermal
machines, which are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and weakly coupled
to two bosonic thermal baths. We then discuss a driven quantum dot coupled
to two electron reservoirs. Conclusions and some additional perspectives
related to our work are presented in Section 8.4. The Appendices C and E
contain further details on the derivation of the main results of the chapter
and explicit calculations for the examples presented in the main text.

8.1 MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze throughout this
chapter is shown in Fig. 8.1. It consists of a central region containing the
working substance, constituted by a few-level quantum system, coupled to
two thermal baths. The quantum system is periodically driven by a set of
N slowly-varying parameters X(t). The baths are macroscopic reservoirs
of bosonic excitations or fermionic particles. The macroscopic variables
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N Number of slowly varying coupling parameters

N+1 Number of slowly varying coupling parameters

including thermal bias

7 Arrows denote N-dimensional vectors

v Bold fonts denote (N + 1)-dimensional vectors

0,0 Labels of elements of N-dimensional vectors
or matrices

W,V Labels of elements of (N + 1)-dimensional

vectors or matrices
ﬁ N x N matrix
M

(N+1) x (N+1) matrix

Table 8.1: Notation used in the text

characterizing the thermal environment such as the bath temperatures can
also slowly vary in time. We parametrize the bath temperatures as T, (t) =
T + 6Tx(t) (with & = L, R referring to the left and right reservoirs) and
define AT(t) = 6Ty (t) — dTr(t). A (possible) time dependence in the bath
temperatures is only included in 6T, (t). We assume that the right reservoir
R is the colder one.

Let us start with the simple observation that the thermal bias, without
the action of the ac driving, induces a net heat flow from the hot to the
cold reservoir. On the other hand, it is useful to consider an analogy with
the operation of classical machines and notice that the modulation of the
parameters X (t) is introduced by some mechanism, which is akin to a weight
moving a wheel in the classical case. By the combined effects of thermal bias
and ac driving forces, it is possible to realize heat-work conversion, which
constitutes the key for the operation of the device as a thermal machine.
Two main operational modes are possible. (i) In the heat engine mode, part
of the heat flowing in the direction of the thermal bias is transformed into
work performed against the mechanisms ruling the dynamics of X(¢t). (ii)
In the refrigerator mode, part of the work induced by the action of the ac
parameters can be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias plays the role
of the weight. In the operation of the thermal machines, these processes
come along with dissipation of energy leading to entropy production. The
efficiency of the thermal machine relies on the appropriate balance between
the heat-work conversion mechanism and dissipation.

8.1.1  Heat, work, and operational modes

As we are interested in the dynamics for slow driving and small temperature
biases, it is convenient to define the N + 1-dimensional vector of "velocities",

X(t) = {;?(t),AT(t)/T} (8.1)

These two types of vector notation (arrow and bold character) appear in
several places throughout the chapter. For later reference, the Table I sum-
marizes the different symbols used in the text.

A temperature bias as well as time-dependent system and bath parameters
generally induce net heat transport between the reservoirs. At the same time,



8.1 MODEL OF A GEOMETRIC THERMAL MACHINE

any driving mechanism generates heat that is dissipated into the reservoirs.
Hence, the total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs and a component
originated in the dissipation because of the action of the driving forces. The

net heat current ]gltz)t, averaged over one cycle of period 277/(), satisfies [314],

]I(j,lt)ot + ]I({;,lt)ot =P, (8.2)

where P is the total dissipative power generated by the driving forces, also
averaged over one period. Identifying the component due to transport and

)

that due to dissipation in ] D(Lljtot is a non trivial task in general. The transport
component satisfies

h h
R =R =", (8:3)
and we notice that only the total dissipative heat contributes to Eq. (8.2). In

the next section, we exactly calculate ],,(Ch) to linear order in X(¢) and we show
that it satisfies Eq. (8.3). Hence, we identify it with the leading term of the
transport current.

The net heat transported per cycle between the two reservoirs is

Qu = —zﬁn](h)- (8.4)

This component is defined such that Qi > 0 when heat flows in the direction
of the thermal bias (hot to cold). We also define the net work W performed
on the system by the ac forces during one cycle. We take W > 0 when the
ac forces exert work on the system. The balance between Qi and W is the
key to the performance of the thermal machine, which may operate as a
heat engine by transforming heat into work against the time-dependent
driving or as a refrigerator, by using the work performed by the ac driving
to pump heat from the cold to the hot reservoir. In the absence of heat-work
conversion, one finds that both Qi > 0 and W > 0. In the heat-engine mode,
the heat-work conversion mechanism operates against the ac forces and
consequently W < 0. In the refrigerator mode, the heat-work conversion
mechanism operates by using part of the work done by the ac forces to pump
heat against the thermal bias, so that Qy < 0.

It is straightforward to generalize our considerations to multi-terminal
devices or to include additional macroscopic variables beyond temperature
such as an electrochemical potential difference between reservoirs.

8.1.2  Adiabatic forces, currents, and entropy production over a cycle

In the geometric description of the adiabatic thermal machines, the central
role is played by integrals of the forces in Eq. (C.14) over a period, rather than
by the instantaneous quantities. First consider the energy current (JF)(t)
which leads to a description of the heat fluxes introduced in Eq. (8.3) within
the adiabatic linear response formalism. The average of the instantaneous
heat current over one period, (Jf)(t), defines the transported heat flux
within the adiabatic linear response formalism. In fact, evaluating this cur-
rent with the adiabatic expansion of Eq. (C.10) and using the identities of
Egs. (C.23) and (C.24) we can see that the average over one period is identical
in magnitude and opposite in signs at the two reservoirs. Hence, we eliminate
the label & and write

N+1

Q 27/Q) L.
m — _2Z
J el AL A (X0, (55)
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The term corresponding to the sum v = 1,..., N is the pumping contribution
to the heat current. The literature on pumping of charge and heat, starting
with the seminal paper by Thouless [315], is so vast that it would be impos-
sible to give a proper account of it. A brief overview can be found in the
reviews [316, 317]. One of the key results of the present chapter is to show
how pumping affects the operation of a quantum thermal machine, thus
paving the way to observe geometric effects in the operating mode of these
systems. The last term of Eq. (8.5), corresponding to v = N + 1, is the heat
current flowing in response to a finite temperature bias across the device.

For a single driving parameter and AT = 0, it is straightforward to show
that the pumped heat current vanishes. At least two parameters are necessary
for pumping. This was originally noticed in the framework of scattering
matrix theory for driven electron systems [286, 284]. Moreover, a spatially
symmetric system has x39 [JF, F| = —x34 [J£, F¢], so that these quantities
should be zero in view of Eq. (C.24). Hence, breaking of spatial symmetry is
another necessary condition for a non-vanishing pumping contribution to
the heat current [318, 314].

The net generated power has components associated to the time-dependent
driving forces as well as to the thermal bias,

- N
p— %/02 " at <Z<.7:Z>Xg(t)+ Y <Jf>(t)§a(t>>
- (=1 ap=L,R
0

27/Q) . . .
= — dt X -A(X) X .
o | AX) X, (86)

The response matrix on the right-hand side of Eq. (8.6) was introduced
through the definition of forces and the energy current in Eq. (C.14). While
Egs. (8.5) for the fluxes are linear in X, Eq. (8.6) is bilinear in these parameters.
This reflects the fact that the dissipated heat, defined in Eq. (8.3) is at least
second order in these quantities — equivalent to being O(O?) [318, 314]. The
cross terms proportional to the thermal bias and ac driving usually have
opposite signs and cancel one another when evaluating the total power. This
happens, in particular, in the absence of a magnetic field with driving forces
symmetric under time reversal, as a consequence of the Onsager relations
(C.16).

From Egq. (8.2) for the total dissipated heat flux we have the following
expression for the entropy production rate

TS = ]I(jlt)ot + ]I({lft)ot =P. (8.7)

Substituting Eq. (8.6) we get
. Q /0 . o <
S= - /O dt X(t) - A(X) - X(1). (8.8)

We present an alternative derivation for the above expression in Appendix C.

The forces (F;)(t) enter the work performed by the thermal machine, as
will be discussed in more detail in Sec. 8.2.2 below. We also find it useful to
introduce average of the force over one period,

Fy a

27/Q)
) = E/o dt(Fe)(t) = Fygo + Frarr €,=1,...,N. (8.9)

The first term of Eq. (8.9) corresponds to the instantaneous equilibrium (Born-
Oppenheimer) description given by the first term of Eq. (C.14), while the
second term is the first order adiabatic reaction force defined in Ref. [291].
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8.2.1 Thermal geometric tensor

It is instructive to decompose the tensor AW()?) into its symmetric and
antisymmetric parts,

1
Aot = 5 (M £ Ay) (8.10)

Equation (8.8) for the entropy production implies that the symmetric com-
ponent Afm, controls dissipation. Since the rate of entropy production S is
non-negative, the symmetric part Afz,v can be viewed as a metric tensor on the
space of thermodynamic states [304, 303, 306]. Then, geodesics with respect
to this metric correspond to adiabatic trajectories which minimize dissipation
[304, 303, 306]. This contribution to Aw,(}_f) has also been referred to as
geometric friction [300, 304, 301].

We can obtain an explicit expression for A, from the Lehmann repre-
sentation (see details in App. C). The result for the symmetric component
is

A5, (X)= hmlim ) Pmi(sn —en)*
sV w—0 wm w

X [6(w — (em —€n)) —6(w — (en —em))] - (8.11)

Re[(9;,m|n)(n|0,m)]

Here, |m) and €, denote the instantaneous eigenstates and eigenenergies of
‘H; and pyy, is the corresponding thermal weight, with the same definitions
as in Eq. (C.10). Similarly, the antisymmetric component can be expressed as

Aﬁv()_f) =21 pw Im [(9,m|d,m)] . (8.12)

In the limit of zero temperature, the sum over m is dominated by the ground
state and A;‘:‘,V()_f ) reduces to its Berry curvature. For AT = 0, this component
can be viewed as a velocity-dependent force, akin to a Lorentz force, which
does not contribute to the net entropy production. This contribution has been
referred to as geometric magnetism [300, 290, 293, 294, 295].

It is interesting to compare A, , to the quantum geometric tensor for the
instantaneous ground state |¢) of a closed system as a function of parameters
Xy [310, 311],

8o = (0 [0p ) — (| ) (Y [0 yp) . (8.13)

Analogous to Ay, the symmetric part of gy, defines a metric on the mani-
fold of ground states and the antisymmetric part equals the Berry curvature.
The crucial difference between the two tensors is that the quantum geometric
tensor is defined for a discrete spectrum, while A, , assumes a continuous
spectrum. This does not lead to essential differences for the antisymmet-
ric components of the tensors which are non-dissipative. In contrast, the
symmetric part of A, controls dissipation and therefore vanishes for a
discrete (or gapped) spectrum. We can therefore view Ay, as the analog of
the quantum geometric tensor for systems with continuous spectra. In view
of this analogy, we refer to A, as the thermal geometric tensor.

In time reversal symmetric systems subject to driving parameters X which
also respect time reversal symmetry, different parts of the thermal geometric
tensor are either purely symmetric or antisymmetric. The Onsager relations
(C.16) imply that Ay = Apy (¢ =1,...,N) is purely symmetric (corre-
sponding to geometric friction without geometric magnetism). In contrast,
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ANt1¢ = —AyN41 (corresponding to geometric magnetism without geo-
metric friction). In systems which break time reversal symmetry, both the
symmetric and the antisymmetric components of the thermal geometric
tensor are generally nonzero.

8.2.2  Thermal machines and geometry

The above analysis implies that there are several purely geometric quantities
which enter into the operation of adiabatic quantum thermal machines. We
will show in the following that in a very concrete sense, it is the geometric
aspects (in the sense of Berry) which are responsible for the heat-work
conversion underlying thermal machines. The Carnot limit of the efficiency
is reached in a purely geometric thermal machine, and deviations from the
Carnot limit are due to nongeometric contributions.

An essential quantity is the total heat transported between the leads per
cycle, Qi defined in Eq. (8.4). In a heat engine, this heat is in part converted
into useful work while in a refrigerator, this heat is extracted from the colder
reservoir. The transported heat takes the form

N AT
Qu = % ANy1,0d X + f dEAN+L N1 (8.14)
=1

The first term on the right hand side is geometric, depending only on the path,
and has a simple physical interpretation. It is just the heat which is pumped
between the reservoirs due to the periodic variation of the parameters X,

N
Qtr,ac - 74 Z AN+1,ZdX£- (8'15)
vol=1

The second term describes the heat current driven by the applied temperature
bias as a result of the heat conductance Ay 41 of the system. Notice that
the two terms typically have a different dependence on the period 27t /Q).
Due to its geometric nature, the first term is independent of the period. In
contrast, the second term is in general proportional to the period.

The pumped heat per cycle is essential for the operation of adiabatic
quantum thermal machines. To see this, we compute the work W = ¢ dX - F
per period performed on the system during one cycle of the ac sources. The
forces, as described by Eq. (C.14), have an instantaneous and a linear-response
component. The instantaneous contribution depends only on the parameters
X and is evaluated in the absence of the temperature bias. This equilibrium
contribution to the force is necessarily conservative (in the mechanical sense)
and thus gives a vanishing contribution to the work performed over a cycle.
Thus, only the linear-response component contributes to the work per cycle,

N . N AT
W= f dt Y XoALpXp + 74 Y dX A1 (8.16)
0,0'=1 vop=1

First consider the second term on the right hand side. For constant AT /T,
this term is again a purely geometric line integral over a closed contour.
Unlike the contribution of the instantaneous component, this term is in
general nonconservative and gives a finite contribution when integrated over
a closed cycle. The reason is that this term originates from the nonequilibrium
contribution to the force which is generated by the temperature bias. Along
with Eq. (8.15) for the pumped heat, this geometric term is the essence of
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heat-work conversion and hence crucial for the operation of the thermal
machine. In contrast, the first term in Eq. (8.16) describes frictional losses.
Unlike the second term, which can take either sign, this term is always
positive. It then becomes evident that heat-work conversion is rooted in the
geometric terms in Egs. (8.14) and (8.16), and it is the nongeometric terms
(in the sense of Berry) that are responsible for losses. We will see this again
below when we discuss the efficiencies of quantum thermal machines.

As a result of the Onsager relations (C.16), the geometric contributions to
the transported heat and the work are very closely related. If the system is
time reversal invariant (which also requires that the parameters X couple
to time-reversal-even operators), the Onsager relations imply that Ax1, =
—A¢N+1 and the prefactor of AT/T in Eq. (8.16) just equals minus the
pumped heat between the reservoirs. We can then understand the operation
of a heat engine as follows. During one cycle of the machine, the cyclic
variation of the parameters pumps heat from the high-temperature to the low-
temperature reservoir. The corresponding change in free energy is converted
into work W performed on a load (i.e., W < 0). Here, the load corresponds
to an external agent which couples to the dynamics of the parameters X.
This is analogous to the operation principle of inverted quantum pumps as
adiabatic quantum motors [319, 320, 321, 322, 323]. Similarly, in a refrigerator
work W = —QacAT/T > 0 must be supplied by the ac sources to overcome
the thermal bias and to pump heat Qirac from the low-temperature to the
high-temperature reservoir.

It is also interesting to discuss this heat-work conversion in the context of
the entropy production rate defined in Eq. (8.7). With the definitions of this
section, we can write

. O AT

The first term corresponds to the total power generated by the ac sources,
while the second term corresponds to the power invested to transport the heat
Q per cycle in the presence of the thermal bias AT. Due to the heat-work
conversion, the geometric component of W exactly cancels the component
Qtrac of Qt in the dissipated power (still assuming time-reversal invariance).
Entropy production is then associated with the nongeometric contributions
to heat and work. In a heat engine, a negative balance of the two terms
contributing to Eq. (8.16), W < 0, can be used to work against the load. In a
refrigerator, both terms are positive since one has to overcome the frictional
losses in addition to pumping heat from the cold to the hot reservoir. It is
important to notice that the two terms in Eq. (8.16) are typically of different
orders in the period 271/(Q). While the first, nongeometric contribution is
inversely proportional to the period, the second, geometric contribution is
independent of it. Thus, one can often neglect the nongeometric term when
considering the limit of small frequency ). As we will show below, we
note that under certain circumstances the first term in Eq. (8.16) can also
be viewed as a geometric quantity even though it cannot be immediately
rewritten as a line integral.

We close this section by a few additional remarks. The operation of a heat
engine or refrigerator requires that a net amount of heat Qi ac is pumped
between the reservoirs during a cycle, requiring that the force is nonconser-
vative. Above, we have focused on the case that AT /T is constant over the
cycle. In principle, the conditions for the operation of adiabatic quantum
thermal machines can be less stringent if one allows AT /T to vary along the
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cycle, for instance by coupling the system to different reservoirs at different
stages.

In the absence of time reversal symmetry, the Onsager relations connect
the response functions A, at different magnetic fields. In this case, there
is no general relation between A1, and Ay 1 for a fixed magnetic field,

and in addition to the antisymmetric contribution A%} 1= ng}N 41/ there
could also be a symmetric contribution, Af\] 1 = A?/N +1- Unlike A]f,w

the symmetric Afw is associated with entropy production and dissipation
according to Eq. (8.6). Even if both the dissipative and the nondissipative
contributions to the pumped heat flow from the hot to the cold reservoir,
the work performed on a load would involve the difference between the
antisymmetric and the symmetric contribution.

The time average of the forces F as defined in Eq. (8.9) also has contribu-
tions which are purely geometric. From Eq. (C.14), the first-order adiabatic
reaction component can be readily rewritten as

Q - N - AT
Frae = 5 {f Y AppdXy + ]4 th,g,NH} (8.18)
o T

Here, the first term on the right hand side is a line integral which is purely
geometric in that it depends only on the path.

Finally, we remark that under certain conditions, the dissipated component
of W, corresponding to the first term of Eq. (8.16), can also be formally
represented in terms of a line integral over a closed path in parameter space.
This is not as straightforward as for Egs. (8.18), (8.14), and (8.16) since the
power is bilinear in X. It is, however, possible when there exists a well-defined
mapping between X and X as the latter varies along the closed path 7. In
particular, such a mapping exists for the case of periodic driving. For a
smooth path 7, one can write the relations X, = ng()?) |, for all u, where
the functions gy(}? )|y are defined by eliminating the parametrization in f
between X,,(t) and X,,(t). Then, we can write the dissipated power as a line
integral by using this relation to eliminate one of the factors of X, in Eq. (8.6)
via these relations. Note that the resulting line integral has a prefactor of (),
making it explicit that the dissipated power is inversely proportional to the
period of the driving, as already mentioned above.

The line integrals controlling the operation of adiabatic thermal quantum
machines are reminiscent of line integrals over Berry connections. This
motivates us to introduce the vector fields

AA7S = (A%s(i),...,/\;gﬁ(i)) (8.19)

with y =1,...,N 41 for the rows of the thermal geometric tensor. Similarly,
we introduce

A = T(A5LR) . AN (R), (8.20)

where [\glv(i) = gy(X;,)Aﬁ/V(X). These vector fields control the pumped
heat and the work performed on the system as well as the dissipated power.
Thus, they are useful to illustrate the operation of the specific thermal
machines which we discuss in Sec. 8.3. In terms of these vector potentials
Egs. (8.15) and (8.16) read, respectively,

Qtrac = ]f Anii(X)-dX, (8.21)
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with A,(X) = A(X) + A3(X) and

W= {M) A& %) - A*g,Hoz))] A% (822)

In the latter equation, the last term does not contribute for many systems.
In particular, this is the case in the presence of time-reversal symmetry
(including driving parameters X coupling to time-reversal-even operators).

In such cases, we can write W = ¢ A(X) — (AT/T)Quac.
8.2.3 Efficiencies

8.2.3.1 Heat engine

In a heat engine, heat transported from the high to the low temperature
reservoir is partially converted into useful work. We can then define an
efficiency for the heat engine as

(he) _— =W
;7 Qtr

This expression can be readily analyzed for a time-reversal-invariant system
with constant AT/T. In the limit of adiabatic operation of the heat engine,
) — 0, we can neglect the frictional losses to leading order and only the
second term on the right hand side of Eq. (8.16) contributes to the work
performed against the load, W o~ —QyacAT/T. If the heat transfer across the
system is dominated by the geometric contribution, one finds Q¢ =~ Qtrac,
and hence that the efficiency approaches ;") ~ AT/T. Remarkably, this
is just the Carnot efficiency. We thus find that a purely geometric quantum
thermal machine reaches the optimal efficiency, and it is the nongeometric
contributions to W and Q4 (in the sense of Berry) which are responsible
for deviations from the Carnot efficiency. Indeed, a finite heat conductance
diminishes the efficiency of the heat engine, as do frictional losses described
by the first term on the right hand side of Eq. (8.16). Note that the contribution
of the heat conductance to the transferred heat is proportional to the period
of the cycle. This implies that this term is less detrimental to the efficiency
as the frequency at which the machine operates increases. Conversely, by
increasing the frequency, the effect of the frictional losses becomes larger.

While the overall efficiency is fundamentally limited to the Carnot limit,
there is no fundamental limit to reducing the detrimental effects of the
nongeometric contributions. While the frictional forces become arbitrarily
small as one approaches the truly adiabatic limit, the limit of a negligible
heat conductance Ayn41n+1 2 0 can be realized in a topological quantum
pump. In such pumps, the ground state is separated from the excited states
by a gap. Consequently, the symmetric contributions to Ay, — including the
heat conductance — are strongly suppressed.

(8.23)

8.2.3.2 Refrigerator

A refrigerator uses work W performed on the system to remove heat from
a cold to a hot reservoir. Thus, we can define a corresponding efficiency or
coefficient of performance (COP) as

g = 2k (8.24)
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Again focusing on a time reversal invariant system with constant AT /T, this
efficiency approaches the Carnot limit 7 = T /AT for zero heat conductance.
The efficiency is reduced by a finite heat conductance since, for a refrigerator,
its contribution to the numerator has the opposite sign compared to the
pumped heat.

8.2.3.3 Heat pump

Of course, the device can also be used as an adiabatic heat pump in the
absence of a thermal bias AT/T. Heat is transported from left to right or
vice versa due to the variation of X. According to Eq. (8.16), we need to exert
work W associated with dissipation, even if there is no temperature bias. We
can then define a corresponding efficiency of heat pumping through

U(Pump) = % (8.25)

The denominator in this expression is proportional to (), so that the efficiency
of the heat pump grows as it becomes more adiabatic.

8.3 EXAMPLES

We now illustrate the general formalism introduced in the previous sections
by two driven systems coupled to thermals baths. One example is referred
to as a driven qubit and consists of a generic two-level system with time-
dependent energies and inter-level transition matrix elements, coupled to
baths of bosonic excitations. This problem will be solved in the limit of weak
coupling to the reservoirs. The second example is a driven quantum dot,
which consists of a confined structure with two single-electron levels — one
per spin orientation — driven by a rotating magnetic field. This problem is
solved for weak as well as for strong coupling to spin-polarized electron
reservoirs.

8.3.1 Driven qubit

We consider a generalization of the celebrated spin-boson model, which was
introduced in Refs. [324, 325]. As in those works, we express the Hamiltonian
in terms of the Pauli matrices ¢ = (0x,0y,0) and a magnetic field B(t) =
(Bx(t), By(t), Bz(t)). In our case, the latter varies periodically in time. The
ensuing Hamiltonian reads

A

Hg(t) = B(t) - G. (8.26)

The qubit is attached to bosonic reservoirs L, R with Hamiltonians given by
Eq. (2.6).

The coupling is described by the Hamiltonian H. = H, 1 + H,r given in
Eq. (2.13). Our generalization with respect to previous works is to consider
different types of couplings to the L and R reservoirs. This is motivated by
the fact that spatial inversion symmetry has to be broken in order to obtain
pumping, as mentioned in Section 8.1.2. Concretely, for the left lead we take
0, = /2, ¢ = 0 and for the right lead g = 0, such that the coupling
Hamiltonians read

H. = ; {VkaL (bkL + bZL) + Vkrtr (ka + bZR)} , (8.27)
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Figure 8.2: Illustration of the g-bit coupled to two bosonic reservoirs by the Hamilto-
nian of Eq. (8.27) with ¥, = 6y and Tg = 03, operating as a heat engine.
Panel (a): the g-bit is in one of the states |x, £) and couples to the reservoir
L. Panel (b): the g-bit is in one of the states |z, +) and couples only to the
reservoir R. The driving changes the energy difference between the two
levels.

Hence, the g-bit couples to the L or R reservoir if it is in a state with a non-
vanishing projection on the eigenstates |x, £) of &y or |z, ) of ¢, respectively.
Any other combination of two Pauli matrices with %; # Tg would also be
appropriate, as we will discuss in Section IV.A.3. Previous works related to
heat engines based on g-bits considered the same type of coupling to the two
reservoirs and non-adiabatic driving [326, 327, 328, 123, 329, 290, 330, 331,
266, 332, 333, 334, 3351 -

The Hamiltonian for the system of Eq. (8.26) can be transformed to the
basis of instantaneous eigenstates |j), such that Hs(t)[j) = E;(t)|j),j = 1,2,

with E; »(t) = F|B|. The resulting transformed Hamiltonian reads Hs(t) =
U~1(t)Hs(t)U(t) with U(t) being a unitary transformation and

Hs(t) = Er()[1)(1] + E2(1)[2) (2, (8.28)

Accordingly, the contact Hamiltonian can be also expressed in this basis as

Hea(t) =YY Via0s,ij (£)pij (t) (bkuc + blta)’ (8.29)
P

N

with v,i(t) = [U1(t)EU(1)] " U(t) being the unitary transformation
which diagonalizes the Hamiltonian (8.26), and p;; = i) (jl.

Before proceeding to explicit calculations, we can gather some intuition
on how the driven g-bit may work as a thermal machine by using the sketch
of Fig. 8.2. As a consequence of the driving, the energy of the two levels as
well as the coupling to the L and R reservoirs change in time according to
Egs. (8.28) and (8.29), respectively. Panel (a) represents a situation where the
g-bit at a given time ¢; is in one of the eigenstates of 0y, hence, it couples to
the L reservoir and it is completely decoupled from R. Panel (b) illustrates
the situation where the g-bit is in an eigenstate of 0, at a different time ¢,
therefore it is coupled to R and decoupled from L. In an evolution from #;
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to tp the energy difference dE(t) = E;(t) — E1(t) changes. A cycle can be
realized when the protocol returns the g-bit to the state of the step (a). The
paradigmatic Otto cycle corresponds to the extreme situation, where the g-bit
is allowed to thermalize with L at the step (a) and with R at the step (b), while
it evolves decoupled from the two reservoirs at intermediate times [266, 270].
For the case of adiabatic driving, the changes take place smoothly and the
g-bit is coupled to the two reservoirs at all times. For suitable protocols, the
setup may anyway operate as a heat engine or refrigerator, as well as a heat
pump.

We will analyze in detail protocols with two time-dependent parameters
of the form B(t) = (By(t),0, B,(t)), with

By(t) = Byo+ Byicos(Qt+¢),
B () B, + B, cos(Qt). (8.30)

These two components of B(t) are identified with the time-dependent pa-
rameters of Eq. (C.1) as follows

X(t) = (Xa(t), Xa(t)) = (B:(t), B+(1)). (8.31)

In addition, we will consider a constant difference of temperature AT, which
defines X3 = AT/T. We will solve the problem in the limit of very weak
coupling between the qubit and the reservoirs (small V4,).

8.3.1.1 Master equation approach

We follow the procedure of Refs. [287, 233, 336], which consists in solving
the time-dependent master equation by performing an adiabatic expansion
along the lines of the general formalism of Section C.1.2. The basic idea is to
describe the evolution of the population probabilities of the eigenstates of
Hs(t), represented by the vector p(t) = (p1(t), p2(t)), in terms of a master
equation where the effect of the coupling to the reservoirs is treated at
the lowest order of perturbation theory (first order in |Vj,|?). The master
equation reads,

L p(t) = " Mu(B) - p(0), 832

where M, (B) is a 2 x 2 matrix representing the instantaneous transition rates
corresponding to the reservoir &, which is given by

M, (B) = [‘Fw ) Toan(®) ] . (833)

—sz,z1 (B)

Here we stress that the instantaneous rates depend on time through the
parameters B, as indicated in Eq. (8.31). We have introduced the following
definitions

Ta12(B) = Aa(B) 70 (6 (B) ) + 7 (— oE (B) )],
Tua1(B) = 2a(B) |7 (6E(B)) +7a( — 9E(B) )], (8:34)
with

Yau(e) = mna(e)Tu(e)/R,
Yale) = [1+na(e)|Ta(e) /R, (8.35)
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while 0E(B) = Ey(B) — E1(B) and Ay (B) = vy 12(B)va21(B). For ¥ = 6 and
Tr = 0, we have
o B2(t) = B2(t)
AL(B) = -5~ AR(B) = =525 8.36
O mwene YT me R
14(€) is the Bose-Einstein distribution for bath « and T'y(€) is the correspond-
ing spectral density, which we assume to be Ohmic

T.(e) = mKyee €/¢c, withe >0, (8.37)

ec being the cut-off frequency. Since, according to Eq. (8.37), there are no
negative-energy states in the bath, we set y,[—0E(B)] = 44[—6E(B)] = 0
(notice that 6E(B) is positive by definition).

Following Refs. [233, 336], the population can be expanded in different
orders of the driving frequency (). Here we keep only the zeroth-order
(instantaneous) term p(i), and first-order (adiabatic) term p(a) such that

p(t) = pW (1) +p@(1). (8.38)
The solution of the master equation (8.32) order by order in €, leads to
;Mo‘(E) pV(H) =0, (8.39)
and
PO = DML(B)-p 1), .40

The adiabatic correction can be written in terms of instantaneous contribu-

tions as 1

PO = ¥ [M(B)] - Lp0), 8.41)

o
-1
where the matrix [M,X(B)] includes the normalization condition for the
adiabatic probabilities [287]. We obtain two additional equations from the
conservation of the probability, namely } ; p}l) (t) =1land ¥ p](a) (t) = 0.
The instantaneous (i), adiabatic (a) and thermal (th) contributions to the
heat current flowing in reservoir a as functions of time are given by

() = OE(B) [Ma(B) - pl/)(1)]

A = GE(B) [Ma(B) - pi1(1)]

7
11

" (8.42)

where p(Ai)T is the instantaneous probability vector in the presence of the ther-
mal bias AT. We can now calculate the different linear-response components
of the heat current defined in Eq. (8.5) as follows

Q [2r/Q

(Wa/f — / dt J (¢ 8.

J 27 Jo i (t), (8.43)

while the instantaneous component vanishes when averaged over the period.
On the other hand, the net work developed by the ac forces, corresponding

to Eq. (8.16) can also be calculated in the master equation approach. To this

end we write the total energy of the qubit at a particular time f as

Erot(t) = E1(t)p1(t) + E2(t)pa(t), (8.44)
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where the probabilities are given by the sum of the instantaneous p](-i), the

(a) (th)
] . . ] .

energy contains two contributions,

tot 2 (dE; dp:
dit - Z( Eét(t)pj(t)+5j(t) péf”) (8.45)

=1

adiabatic p;” and thermal p;’ components. The time derivative of the total

These are the power delivered by the ac sources

Py = B0, () B2 ), .46

and the heat temporarily stored in the g-bit. Thus, the total work over a cycle
reads

20 gE dE,
W_/o dt(ﬁpl(t)+?p2(t)), (8.47)

where both instantaneous, adiabatic, and thermal components of the probabil-
ities p(t) contribute. The contribution due to the instantaneous components
represents the work done by the conservative forces, while the other terms
will contribute to the non-conservative work defined in Eq. (8.16). The explicit
expressions for the different components of p(t) for the driving protocol of
Eq. (8.31) are presented in Appendix G. We notice that the terms originating
from the coupling Hamiltonian in Eq. (8.29), could in principle contribute
to W and can be calculated from the time average of (7:15,“>. However, this
term is neglected in the limit of very small V},. In fact, its contribution to the
work per cycle is smaller (by at least a factor of |Vj,|) than the contribution
to the work due to Hs(t).

8.3.1.2  Geometrical properties

We now derive the expressions corresponding to Egs. (8.15) and (8.16) within
the formalism of the master equation. These can be derived from Egs. (8.43)
and (8.47). We get

2t/Q) .
Qtr,ac = /O dt Mgl) (B) : P(a)(t), (8.48)
27t/Q) dE .
— it PR CY (i)
w /0 dt it {P (t) +pAT(t)} , (8.49)
where
T
(h) (3 = | —Tr12(B)
M, "’ (B) = 0E(B e . 8.50
r (B) <)lFR,21(B) (8.50)

and E((B)) = (Eq(t), Ea(t)). Using Eq. (8.41) and

dp(l) _ 2 Bp(l) .

the pumped heat given by Eq. (8.48) can be written as in Eq. (8.15), by
identifying

As(B) =MW (B) - M (B) - 0=1,2. (8.52)
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In the present configuration, the explicit calculation of these coefficients show
that A3y = —A3, up to a function that vanishes upon integrating over the
period. This means that these terms are components of the antisymmetric
thermal tensor Aﬁ,v. The other components of the tensor can be derived from
the first terms (& p(a) (1)) of Eq. (8.49). More precisely, using Eq. (8.41) with
Eq. (8.51), and expressing

dE & OE .
ar Zgl aiBg - By, (8.53)
we find "
v _ 9E o 4 & dp! )
Ag,g/(B) = aBg M (B) aBg/ ’ E,g = 1,2. (854)

We can see that these terms satisfty A, = Ay 4, as explicitly shown in Eq.
(G.10). Hence they are components of the symmetric tensor Afm,.

On the other hand, by using the fact that we can define a relation of the
form B, = gg(ﬁ)ﬂ for the protocol of Eq. (8.31), we can express the total
work in terms of purely geometric quantities, by rewritting Eqgs. (8.48) and
(8.49) in terms of the vector potentials of Egs. (8.19) and (8.20). In the present
case, they read

AB) = (nfi(B), A% (B)),

A(B) = (AL(B)A%B), £=12,

~ 2

AB) = QY gi(B) (Afi(B),A%(B)), (8.55)
=1

We have highlighted the antisymmetric and symmetric character in each
case. Notice that, according to the analysis of Sections 8.1.2 and 8.2, the sym-
metric component contributes purely to dissipation of energy and entropy
production, while the antisymmetric one is related to useful work.

In order to characterize the performance of the heat engine and refrigerator
as in Egs. (8.23) and (8.24) we also need the heat transported in one period
as a response to the thermal bias. It reads

271/ Q)
Quat = — /0 dt 1™ (1) (8.56)

with ]](fh) (t) defined in Eq. (8.42). This component is not geometric and we
recall that the total transported heat is Qi = Qtrac + QeaT-

According to our conventions, the contribution to the contour integral of
the first component of Eq. (8.22) is always positive and is the portion related
to the net dissipated power and entropy production due to the ac driving.
Instead, the second one, also defining Qyrac in Eq. (8.21), can have any sign.
In the case of a heat engine, Qirac and Qg aT have the same sign, i.e. the
pumped heat flows in the same direction as the component induced by the
temperature bias. As a consequence, it generates useful work that can be
absorbed by the ac sources. Notice that in such a case, the second term of Eq.
(8.22) has an opposite sign to the first. In the refrigerator, it is the opposite.
Irrespectively of the sign of Qirac, which determines that the system operates
as a heat engine or a refrigerator, the crucial quantity to optimize is the
integral of A4 (B) over a suitable chosen closed path in the parameter space.
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8.3.1.3 Results

We present some results for specific parameters of the driving protocol
defined in Eq. (8.31).

We start by analyzing the case with AT = 0 and showing that a necessary
condition for the heat currents to be finite is that the coupling to the left
and right reservoirs are different, i. e. 7, # 7. In fact, let us notice that
these couplings determine the functions Ay (B) and Ag(B). If we assume
symmetric couplings, we have A;(B) = Ag(B) and K; = Kg. Therefore,
we get M (B) = Mg(B) in Eq. (8.33). After replacing the latter matrices in
Eq. (8.42), we get | éh)’a(t) =] I({h)'a(t) at every time. This implies that the
currents obtained by averaging over one period, i. e. ]ﬁh) and ]I({h) = jha
must be equal to zero in order to agree with Eq. (8.3). Interestingly, one can
check by means of the explicit calculations that the adiabatically pumped
current in one period | (h)a js zero even if one allows K; and Kg to be
different. Moreover, we verified that the magnitude of the pumped heat
current depends on the chosen combinations of Pauli matrices (see Appendix
G). The maximum pumping for the protocol of Eq. (8.31) corresponds to H «
containing 1; = 0y and Tgr = 0, as in Eq. (8.27). As a matter of fact, in the
other two combinations (f; = 0, Tr = 0y, and 1 = 0y, Tr = 0;) one obtains
half the magnitude.

We now turn to analyze the geometric properties, which can be fully

characterized by the vector potentials A4 (B) and AS(B), entering Egs. (8.22)
and (8.21). These vectors are represented with arrows in the parameters space
in Fig. 8.3. In the Fig. 8.3 we show several paths, which are plotted in blue,
corresponding to the protocol of Eq. (8.31) with different relative phases ¢.
This provides a visual representation of the magnitude of Qi ac and the two
types of geometric components of W. In all the cases we represent with red
arrows the vector A4 (B) along the path while the green arrows represent the

vector potential A%(B) along the same protocol (note that AS(B) is inherently
associated with the protocol and cannot be defined outside it). The latter
vectors follow the circulation of the path. Thus, they lead to a positive non-
vanishing contribution to W for all the values of ¢. Instead, the vectors A4(B)
are in general opposite to the circulation of the path along some pieces. In
particular, for trajectories like the ones corresponding to ¢ = nr, they are
parallel to the circulation along half of the path and antiparallel in the other
half, leading to a vanishing result of the integral.

In Fig. 8.4 we plot the adiabatically pumped heat current Qi ac, black
curve, as a function of the phase lag ¢ in the weak pumping limit. The
latter corresponds to considering values of By 1 and B, ; small enough so that
$ A? -dB in Egs. (8.22) and (8.21) is proportional to the area, in the parameter
space, enclosed by the closed contour defining the protocol. Indeed, using
the Green’s theorem, these integrals can be written as a surface integral of
the derivatives of Aé“ with respect to B. When B, ; and B, are small, such
derivatives do not depend on B and can be factorized outside the integral.
Accordingly, as shown in Fig. 8.4, the pumped heat current (black curve)
behaves as a sine function of ¢, which vanishes at ¢ = 0. In particular, we
note that a heat current is extracted from the reservoir R when ¢ is between
o and 7 and injected for 7t < ¢ < 271. The dependence of the total work W
developed by the ac sources with respect to the phase lag ¢ is is also plotted
in Fig. 8.4 (red curve) using the same parameters as for the heat current.
We notice that W is finite in the whole range of values of ¢, behaving like a
cosine function with a vertical offset, hence, it is non-vanishing in any case.
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Figure 8.3: Vectors A4 and“A°. Black and red arrows represent the vector A'g‘(g ) =
(Ag‘l (E),Aéz(ﬁ )) in the parameter space, while the green arrows repre-
sent the vector AS defined in Eq. (8.20). The blue line is the closed path cor-
responding to the driving protocol in Eq. (8.31) with B, g = B, g = 0.2kgT,
By1 = B;1 = 0.1kgT. The other parameters are 7K;, = 7mKg = 0.2 and

ec = 100kgT and define the spectral properties of the bosonic bath as
indicated in Eq. (8.37).

x 102 x10~%

0 /2 T 3r/2 21

Figure 8.4: Adiabatically pumped heat Q.. and total work W versus the phase lag ¢
in the weak pumping limit for AT = 0. Same parameters as in Fig. 8.3.

In what follows, we show some results for the strong pumping regime
corresponding to larger amplitudes of By; and B, ;. In the top panel of
Fig. 8.5, we plot the heat pumped and the work performed in a period by the
ac source as functions of the phase lag ¢. As in the case of weak pumping
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Qtr,aC[EC]

0.00 0.01 0.02 0.03
kBT[Gc]

Figure 8.5: Top panel: Pumped heat and work versus the phase difference between
adiabatically-driven system parameters for kgT = 0.01lec. Bottom panel:
normalized pumped heat currents flowing in the left and right lead for
¢ = 7/2. We have used the following parameters: 7K} = nKg = 1/5,
B, = 0.06ec (B;o = 0.04ec for the dashed lines in the bottom panel),
Byo = 0.03¢c, By1 = B;1 = 0.07¢c, and AT = 0.

previously analyzed, the pumped heat as well as the work performed by
the ac sources are equal to zero at ¢ = 0 and 7, since the contour has no
area (see Fig. 8.3). For other parameters, it is difficult to make a simple
argument to explain in which direction is the heat pumped. In fact, we see
that Qirac changes sign many times between ¢ = 0 and ¢ = 271, whereas W
shows multiple positive peaks. In the bottom panel of Fig. 8.5 we plot the
pumped heat in the absence of thermal bias as a function of temperature. For
a suitable choice of parameters (relative to the solid curves), the direction of
the flow of adiabatic heat can be reversed just by increasing the temperature
of the reservoirs. In the top panel of Fig. 8.6 we plot the variation of the heat
pumped and the work performed by the ac source, namely Qiac and W, as a
function of the temperature T. We note that W is always positive, as expected,
and is non monotonous (displaying a maximum). Qac are the same data as
in Fig. 8.5 bottom, but plotted in a larger range of temperatures. Qyrac is non
monotonous too and changes sign, going from negative values for small T to
positive values at around kgT = 0.02ec. The inset of the top panel of Fig. 8.6
shows the efficiency 5PumP)  defined in Eq. (8.25), of the system operated as
a heat pump as a function of T. The non-monotonic behavior simply reflects
the fact that, in the strong pumping regime, the heat currents change sign at
around kpT = 0.02¢c, as shown in Fig. 8.5.
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Figure 8.6: In the top panel: pumped heat and work versus reference temperature
T. Inset: efficiency of a heat pump for AT = 0 as a function of kgT. Same
parameters as in Fig. 8.5 for the solid curves. In the bottom panel: Coef-
ficient of performance for refrigeration (black dashed curve for absolute
value and red curve for normalized to the Carnot value) versus AT, for
hQ) = kgT /100 and versus Q) (in the inset), for AT = T /500. We use the
following parameters: Ky, = mKgr = 0.2, B,; = 10kgT, Byo = 20kgT,
Bx,l = 30kBT, BZ,O = 7kBT, €c = 120kBT, qb = 71'/2.

Finally, in the bottom panel of Fig. 8.6 we assess the performance of the
driven g-bit as a refrigerator which removes heat from the cold reservoir (R)
even in the presence of a positive thermal bias AT, i. e. for Tg < T1. Given
this temperature bias, we focus on a protocol with ¢ = 71/2 and the same
driving parameters as in Fig. 8.4, in which case, we already know from the
analysis of this figure, that heat is pumped from the coldest reservoir and
the heat current at zero bias is maximum.

We plot the COP #(f) as a black dashed curve, defined in Eq. (8.24),

and the normalized COP # )/ ﬂgr) (red curve) as functions of AT, where
r]((:fr) = T/AT is the Carnot COP. Starting from AT = 0, where ;) is roughly
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equal to 1.1, the plot shows that n(fo) monotonously decreases with AT. This
behavior can be understood by recalling that the refrigeration mode results
from a competition between the heat induced by the temperature difference
and the pumped heat against the thermal bias. In fact, Qi is made up of two
components: i) the component Qar = 277] (h).f /), which is the heat current
flowing from the hot to the cold reservoir during one period, therefore
entering the reservoir R (Qar > 0). This component increases linearly with
AT; ii) Qirac, Which is the pumped heat current extracted from the cold
reservoir R (Qirac < 0), which is independent of AT. Therefore Qi remains
negative as long as Qar is not large enough to compensate Qi ac. This occurs
at AT ~ 0.19 T, where the total transported heat Qi vanishes, i. e. the
thermal machine is no longer a refrigerator (a further increase of AT leads to
a sign reversal of the heat current).

On the other hand, the ratio ;(f)/ ngr) (red curve) is bell-shaped, since
this ratio becomes o AT. In the inset of the bottom panel of Fig. 8.6, we plot
the normalized COP as a function of the inverse of the driving frequency Q.
Since Qat & O™}, increasing the frequency — within the adiabatic regime —
favors the pumping component Q, relative to Qar. Notice, however, that

by increasing the frequency the dissipative component represented by A
in Eq. (8.22) becomes more detrimental to the efficiency. There is, thus, a
compromise between the two effects and an optimal frequency of operation.

8.3.2  Driven quantum dot

In this case, the configuration consists of a central quantum dot driven by
a time-dependent magnetic field and coupled to electron reservoirs with
different polarizations. For the quantum dot the Hamiltonian Hg reads

Hg(t) = ¥ {Vg o — B(t) ~3} ¥, (8.57)

where V! = (d*, dI) is a spinor related to the spin degrees of freedom of the

electron in the quantum dot, while d} and d, are respectively the creation
and annihilation fermionic operators for these particles. The quantum dot
contains two levels as a consequence of the Zeeman splitting introduced by
the magnetic field. 0= (@'x, 0y, @'Z) is composed of the 2 x 2 Pauli matrices
and 6y is the identity, while B(t) = (Bx(t), By(t), Bz(t)) is the external time-
periodic magnetic field and V; is a gate voltage, which rigidly shifts the
energies of the two levels.

The reservoirs are represented by systems of non-interacting fermions. The
electrons in the « reservoir are spin-polarized along the magnetization 1i,.
The Hamiltonian H, which describes the reservoir reads

Hy = Y ¥}, [eku - 3] ¥, «=LR, (8.58)
ko
where ‘I’LX = (C;M’ cza, i) are spinors composed by the fermionic cre-

ation/annihilation operators c;; o and Cry o We assume that both reservoirs
have chemical potential y; = ur = 0.

The coupling between the quantum dot and the reservoirs is represented
by

HC,IX = 2 Vkuc,a (C]t,x,gdtf + dz;ck:x,a) . (8'59)
ka,o=7,]
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Figure 8.7: Illustration of the quantum dot driven by a magnetic field and connected
to electron reservoirs with different polarizations, represented by different
orientations of the paraboloids. The hybridization strength is modified
according to the magnetic field’s pointing direction. In (a) the electron
hopping between the quantum dot and the right (z-polarized) reservoir is
favored, as is denoted by the thick arrow. In (b) the pointing direction of
the magnetic field has changed to x and now the quantum dot is stronger
coupled to the left reservoir.

In order to solve the problem, it is convenient to change the basis of Hy
to the one where the quantization axis for the spin coincides with the di-

rection of 7,. This is accomplished by the transformation (CZa,T’ Clta, i) =

e (c,ta " c,t N _). In the new basis the Hamiltonians for the reservoirs and
the couplings read

Ha = Z Clta,sska,sckoc,sr a=LR, (8.60)
ko, s==+
and
Hea = 2 Ukys,o (CZa,sdff + H-C-) , (8.61)
ka,s=+,0=1,1

with Vkys,o = U;"Igvka,a.

As discussed in Section 8.1.2, in order to have a non-vanishing pumping
component we need to break spatial symmetry. We achieve this by consider-
ing different polarizations in the reservoirs. For concreteness, we consider
the L reservoir polarized along the positive x, and the R one polarized along
the positive z direction. An illustration of the whole setup is sketched in Fig.
8.7.

This device bears resemblance to the driven g-bit discussed in Section
8.3.1. In fact, only the electrons with spins z, 1 (x, 1) can tunnel between the
quantum dot and the R (L) reservoir. Therefore, when the magnetic field
polarizes the quantum dot along the positive x direction, the tunneling of
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the electrons between the quantum dot and the L reservoir is optimal, while
the tunnel between the dot and the R reservoir is optimal when the electron
in the dot is polarized along the positive z direction. The main difference
between the present setup and the g-bit studied in Section 8.3.1 is the nature
of the reservoirs, which is fermionic in the present case, while it is bosonic
in the previous one. This difference is crucial from the technical point of
view, because in the case of the quantum dot we will be able to solve the
problem for arbitrary coupling between the driven system and the reservoirs.
In addition, the quantum dot has a gate voltage, which moves its energy
levels upwards or downwards in energy, thus tuning different parts of the
spectrum of the quantum dot into the relevant transport window — ~ kpT—
around the chemical potential of the reservoirs. This ingredient can be used
to improve the performance, as we will discuss in Section 8.3.2.2. Besides
these differences, we expect the operation to be similar in both cases, at least
within the regime where the coupling between the driven system and the
reservoirs is very weak.

The heat-engine operational mode in the present case could be practically
realized by implementing the time-dependent magnetic field by means of
a rotating classical magnetic moment. The dynamics of the latter realizes
the load of the heat engine. In such a case, a pumped heat Qi . flowing in
the direction of the heat current induced by the thermal bias, will generate
a torque and exert work on the magnetic moment, akin to the spin torque
induced by an electrical bias [337, 338, 339, 320].

We will consider the same driving protocol as in the previous example,
which is defined in Eq. (8.31), without focusing on the detailed mechanism
generating the magnetic field. As in the previous example, we will show
results for the heat pump and refrigerator modes.

8.3.2.1  Green’s function approach

We can solve the problem exactly for arbitrary strength of the coupling
between the quantum dot and the reservoirs by recourse to Green’s functions.
We will use the equilibrium finite-temperature formalism to evaluate the
frozen susceptibilities and compute the response functions from Eq. (C.15).
This problem could be also exactly solved by recourse to the non-equilibrium
Schwinger - Keldysh formalism in the Floquet representation and afterwards
consider the expansion in small () and AT as in Refs. [340, 314] arriving
at the same results as the ones we present here. We briefly summarize the
results below and show some details on the calculations in Appendix G,

Ag(B) = [Trp(©)2p(e)], £=1,2
- d ,
A?,Z’(B) = h /d f [ /p(e)a'g/ﬁ(E)], g,f =1,2
A35(B) = / de df v [FrCi(e)lL Gl (o), (8.62)

where f(e) =1/ ( e/ (kgT) 1 1) is the Fermi-Dirac distribution function. We

have also introduced the hybridization matrix [',, with elements

(fﬂé>a,(r’ =2r Z Ug,sug’,s|vka‘2§(€ - Skoz,s)- (8'63)
ko, s==+
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Figure 8.8: Pumped heat Qiac = Qi (upper panel) and work done by the ac sources
W (lower panel) for AT = 0 as functions of the phase difference in
the protocol defined by By (f) = By + By cos(Qt +¢), B(t) = Byg +
B;1 COS(Qt) with Byp = B,y = 0.4kgT and Bx,l =B;; = BikgT. T =
I'r = 0.4kpT and hQ) = kT /800. The plot with By = 0.1 is multiplied by
a factor 20 in order to be shown in the same scale.

We consider L (R) reservoirs fully polarized with spins along the positive x (z)
directions and a constant density of states. Thus, Ty ~ Y i, | Via |6 (e — €xa,1)
and [y ~ I',%,, with

A PN A A

(6 +60) (8.64)

The local density of states is described by the matrix

A =

A = aTaA = 1t
ple) = —2m|[Gi(B, )] = Gi(B, ) [Gi(Be)| (8.65)
which depends on the frozen Green’s function
- R |
Gi(Be) = (e —B(t)- &+ ir/z) , (8.66)

with [' = fL + fR.

In Egs. (8.62) we have highlighted the symmetric or antisymmetric nature
of the components in each case. The fact that the components A3,g(§) are
purely antisymmetric while Ay (B) are purely symmetric is a consequence
of Onsager relations in combination with symmetry properties of the setup.
These properties can be directly verified from the explicit calculations of
Appendix G. The last component A§,3(§) is proportional to the thermal

conductance. The symmetry properties of AH,V(E) are the same as in the
g-bit example of Section 8.3.1. Thus, the definitions of the vector potentials
in the present case are the same as in Eq. (8.55).

8.3.2.2 Results

We carry out a similar analysis to the one for the g-bit example given in
Section 8.3.1. We consider the same two-parameter driving protocol as before,
with B(t) = (By(t),0, B;(t)) given by Eq. (8.31).

As mentioned before, for the case of Vg = 0 and weak coupling to the
reservoirs, we expect a similar behavior to the case of the qubit. In Figure
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Figure 8.9: Pumped heat Qiac = Qi for the quantum dot with the same parameters
as the g-bit operating with the protocol of Eq. (8.31) shown in Fig. 8.4
with ¢ = 71/2 (upper panel). In the lower panel: vector fields A?(E ) for a
driving protocol with B(t) = (Bx(t),0, Bz(t)), corresponding to a quantum
dot coupled to reservoirs with different polarizations. R (L) reservoirs is
polarized along positive z (x) direction. Left panel corresponds to I';, = I'g
and Ve =0, middle correspond to I' = 0.1T'g and Ve =0, while right
panel corresponds to I', = 0.1'g and Vg = 2I'g. The temperature of the
reservoirs is kgT = 0.5T'y.

8.8 we present the pumped heat Qac(¢) and the work developed by the ac
sources W for AT = 0, as function of the driving phase difference ¢ between
the two ac components of the magnetic field. As in the qubit case analyzed
in Section 8.3.1, for small amplitudes of the driving, Qi ac is proportional to
the area enclosed by the contour defined by the protocol. For this reason, the
pumped heat behaves as « sin(¢) and the generated work as & cos(¢) plus
a constant. These functions are the same as in the case of the driven qubit
shown in Fig. 8.4. For larger values of the driving amplitude the pumped
heat departs from this behavior. However, Qtrac(¢) vanishes for ¢ = 0, 7t for
any value of B, ; = B, ;.

In the top panel of Fig. 8.9 we further explore the comparison between the
driven quantum dot and the driven g-bit. In particular, we show the behavior
of the pumped heat as a function of the coupling to the reservoirs, assuming
I' =T'gr =T and the same parameters and driving protocol of Fig. 8.4. We
can verify that as the latter parameter approaches the limit I' — 0, the value
of the pumped heat of the quantum dot approaches the one of the qubit case
shown in Fig. 8.4. There is some quantitative difference, which can be traced
back to the fact that the type of couplings are not exactly the same (notice the
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matrix elements entering the couplings of the quantum dot are those of Eq.
(8.64), while in the qubit we have considered 0y ;). We see that the strength
of the coupling has a significant impact on the behavior of the pumped heat.
For the present parameters, we observe an inversion in the direction of the
pumped heat as the coupling increases and overcomes I' ~ |B|, at which the
width of the levels of the quantum dot becomes comparable to the energy
difference between them.

We now focus on the properties in the operation of the quantum-dot
machine that are different from the weakly coupled driven g-bit. To this
end, we further analyze the structure of the vector potentials AS/ A(B) and
“AS/A(B) in Eq. (8.55) with the tensor Ay (B B) of Eq. (8.62). The vector map
for AA(B ) in the parameter space for a given temperature T is shown in
the bottom panel of Fig. 8.9. This representation is useful to visualize the
symmetries of the setup and to select the driving protocol that maximizes
the contour integral § AA (B) - dB. In the left panel the quantum dot is
contacted with the same strength to both reservoirs (I', = I'g), L being
polarized along positive x and R along positive z direction, as indicated in
the sketch of Fig. 8.7. In the middle panel, the contact is stronger to L than
to R (I'g = 0.1I'z). Consequently, we can visualize a higher intensity of the
field Ag“ along the By than along the B, direction. Both left and middle plots
have Vg = 0, in which case the Hamiltonian of Eq. (8.57) is symmetric under
the simultaneous transformations ‘I’; — ¥, and B — —B. The first one is
a particle-hole transformation, under which the heat current changes the
sign. Consequently, the field maps of the bottom panel of Fig. 8.9 present the
symmetry A4 (B) = —AA( B). In the right panel, we can visualize that the
breaking of the particle-hole symmetry by a gate voltage introduces a strong
asymmetry in the vector field.

With the picture of the bottom panel of Fig. 8.9 in mind, we can readily
design a closed trajectory that optimizes pumping. The latter corresponds
to a path that goes parallel to the vector field within the region where its
intensity is high, and closes antiparallel to the vector field in a very low-
intensity region. An example of such a trajectory is shown in the top panel
of Fig. 8.10. The corresponding vectors A°(B) along the trajectory are also
shown in cyan. Trajectories leading to high efficiencies of the machine would
have as small dissipation as possible, in addition to high values of heat
pumping. While the optimization of the pumping can be easily achieved by
recourse to the vector field representation Aé“ (B), it is not easy to optimize a
trajectory to decrease the integral over A5 (B). However, we know that this
quantity can be reduced by decreasing the pumping frequency Q.

In the bottom panel of Fig. 8.10 we illustrate the behavior of the COP of
the driven quantum dot operating as a refrigerator. Overall, this quantity
follows a similar behavior as a function of AT/T and () as the one of the
qubit (see Fig. 8.6). Therefore, most of the comments and remarks presented
in the analysis of Fig. 8.6 apply also here. However, it is several orders of
magnitude higher in the present case, achieving values as large as 14 % ﬂfcr.
The key for this improvement is the selection of an appropriate pumping
protocol, taking advantage of the extra features introduced by the existence
of the gate voltage V, in the present problem.

We close this section by analyzing the geometric component of the first-
order adiabatic reaction force defined in Eq. (8.18). In the present problem,

113



114 GEOMETRIC PROPERTIES OF ADIABATICALLY DRIVEN QUANTUM SYSTEMS

3.0 \
2.5 \
i

M 1.5

1.0

0.5

0.0

0.14

0.12

)

00 05 10 .
0.00 (hQkpT])™t xa0? 0

0 1 2 3 4
AT/T x1072

Figure 8.10: Top panel : Vector fields A4 (B) (cyan) and AS(B) (red) over a closed
path (solid blue curve) for the configuration shown in the lower panel
of Fig. 8.9 (I'r = 0.II'p). The driving protocol defining the path
is Bx(t) = Byg + Byycos(Qt+¢), B;(t) = B,g + B cos(Qt) with
Byo = 1.5I'g, B,g =I'r, By1 = B;1 = I'g, ¢ = /2. The black arrows
represent A3(B) outside the defined protocol. Bottom panel : Coeffi-
cient of performance for refrigeration (absolute in dashed black and
normalized to the Carnot value in red) versus AT for the protocol of Fig.
8.10 for 1) = I'g /200 Inset: Normalized coefficient of performance for
refrigeration as a function of Q) for AT = T /150.
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Figure 8.11: Vector fields Af(]?) (top panel) and E%(B) (middle panel) following
Egs. (8.55) and (8.62), for the parameters of the rightmost panel of the
bottom panel of Fig. 8.9. Right panel : Components of the geometric
magnetization m%zo, defined in Eq. (8.67) as functions of the phase-lag
¢ corresponding to paths of the form By(t) = By + By cos(Qt + ¢),
Bz(t) = BZ,O + Bz,l COS(Qt) with Bx,() = 15Ty, BZ,O =TIg, Bx,l = Bz,l =
I'r, on the vector fields of the top panel.

the latter coincides with the magnetic moment of the quantum dot. For
AT = 0, the magnetic moment of the quantum dot is given by

O 2t/ Q) o BO
my = ﬁ/o at(¥ 0% ) (t) = my —|—m§e°,
Q . -
= 74 AS(B) - dB, (8.67)

with 6y for £ = 1,2, respectively. Here, m?o is the average over one period
of the the instantaneous magnetization corresponding to the equilibrium
frozen Hamiltonian, while m%eo is the geometric component, corresponding
to the first-order adiabatic reaction force of Eq. (8.18). The vectors AE(E)
are calculated from Eq. (8.62) as defined in Eq. (8.55). Interestingly, the
symmetric component of the thermal geometric tensor, which defines the
dissipation, is directly related in the present problem to a local physical
quantity, which is the quantum dot geometric magnetization [299]. The latter
is experimentally accessible. In fact, notice that the component mE© does
not explicitly depend on the driving frequency, while the second term has
an explicit linear dependence on Q. Therefore, in a concrete experimental
measurement of the quantum dot magnetization, both components should
be distinguishable from one another.
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The associated vector fields A? (B) are shown in the top panel of Fig. 8.11
for configurations with stronger coupling to the L (x-polarized) reservoir
than to the R (z-polarized) one and a finite gate voltage V,, with the same
values of the parameters as in the rightmost panel of the bottom panel of
Fig. 8.9. In this representation, we can visualize higher intensity of the fields
along By, B, > 0 relative to By, B, < 0, as a consequence of the polarization
of the reservoirs along the positive x and z-axis. The amplitudes of A? (B),
shown in the left panel, are larger than those of Ag (B), shown in the right
panel, due to the larger coupling to the reservoir polarized along x. The
result of calculating the integrals over closed trajectories with different phase
lags ¢ between the components By and B, is shown in the bottom panel
of Fig. 8.11. As in the case of the pumped heat, both components of the
magnetization vanish at ¢ = 0, 7.

8.4 SUMMARY

We have presented a general description of the geometrical properties of
quantum thermal machines under the effect of adiabatic periodic driving and
a small thermal bias due to the contact to reservoirs at different temperatures.
The cyclic time-dependence is introduced via classical variables, varying
slowly in time, that enter the quantum Hamiltonian of the system. We
show that the operation of the thermal machine, consisting of a few-level
quantum system, is fully characterized by the thermal tensor A, defined in
Section 8.2.1.

The formal derivation of this tensor is obtained by means of the adiabatic
linear response theory complemented by Luttinger’s representation of the
thermal bias. The symmetric component of A, characterizes the total rate
of entropy production, thus controlling the dissipation of all the sources
involved in the operation of the machine. When the system is driven by two
or more periodically-varying parameters, it is possible to obtain pumping of
heat between reservoirs, even in the absence of a temperature bias. The heat
pumped, the work performed on the system, and the dissipated power can
be described by means of vector fields defined through the thermal tensor. In
particular, the pumped heat by the driving and the work performed can be
expressed in a purely geometric form as line integrals of those vector fields
over the closed paths which represent the driving cycles in the parameter
space. In the presence of a thermal bias, these two quantities allow the
characterization of a thermal machine which realizes heat-work conversion.

We have illustrated these ideas using two paradigmatic quantum systems
coupled to two thermal reservoirs. The first example consists of a qubit,
whose energy levels and inter-level tunneling depend harmonically on time,
attached to two bosonic reservoirs kept at different temperatures. The second
example is a quantum dot coupled to electronic reservoirs and driven by a
harmonically time-dependent and rotating magnetic field. The two examples
are solved with different techniques, while two driving parameters are
assumed. In the case of the qubit we rely on the master equation approach,
valid for weak coupling to the reservoirs, while in the case of the quantum
dot we solve the problem exactly for arbitrary coupling by recourse to
linear response and Green'’s function formalisms. The two problems are very
similar qualitatively and quantitatively when the driven system is weakly
coupled to the reservoirs. In the two cases, we have calculated the vector
fields responsible for the geometric characterization of the systems as thermal
machines. We have computed the heat pumped and the work as functions of:
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i) phase lag between the two driving parameters, ii) the reference temperature,
and iii) the coupling between system and reservoir (for the second example).
The efficiency of the thermal machines has been analyzed in terms of the
temperature difference between reservoirs, the average temperature, and the
frequency of the driving parameters in both cases. Finally, in the second
example, we have shown how the representation of the pumped heat by
means of vector fields can be used to identify the cycles that maximize it,
thus improving the performance of a thermal machine.






QUANTUM COHERENT DYNAMICS OF ADIBATICALLY
DRIVEN SYSTEMS

The study of heat transport and heat-work conversion in open quantum
systems under the action of slow time-dependent protocols is a subject
of active investigation for some time now. Examples are qubits [341, 342,
280, 306, 307, 343], harmonic oscillators [344, 236, 237, 343], and quantum
dots [345, 346, 287, 233, 336, 340] under slow cyclic driving, as well as
nanomechanical and nanomagnetic degrees of freedom in contact to bosonic
or fermionic baths, eventually with a temperature bias.

In the context of open systems the concept "adiabatic dynamics" applies
to the evolution where the typical time scale of the dynamics of the frozen
Hamiltonian for the full setup, including the driven system along with the
contact to the reservoirs and the reservoirs themselves is much faster than the
characteristic time for the changes of this Hamiltonian. The type of formal
approach used to calculate the relevant observables to describe this dynamics
crucially depends on the strength of the coupling between the system and
the reservoirs.

A typical framework to analyze the non-equilibrium dynamics in the weak-
coupling limit is by means of master equations. A standard approach is the
Lindblad formulation [347] which has been used to study the dynamics of
different systems in the field of cold atoms, optics, quantum information
and condensed matter [348, 349, 350, 351, 352, 353, 280, 306, 342, 290, 354].
The main strategy of this formulation is to employ the equation of motion
for the reduced density matrix of the quantum system, with the degrees of
freedom of the reservoirs traced away. An alternative route to the derivation
of the master equation is to calculate the dynamics of the mean values of the

Figure 9.1: A N-level adiabatically driven system in contact with two reservoirs at
different temperatures, Ty, = T+ AT and Tg = T — AT.
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matrix elements of the density matrix by treating the coupling between the
system and the reservoirs in perturbation theory within Schwinger-Keldysh
contour, which implies considering a contour that starts at a initial time ty,
evolves forwards and then backwards to ty. This procedure was introduced
in Ref. [355] for a metallic island and in Refs. [345, 346] for a single-level
quantum dot in the stationary regime. A different derivation was more
recently presented [356] and extended to time-dependent systems [357].

In the opposite limit, when the coupling between the reservoirs and the
driven system is strong, a very general and powerful scheme is the non-
equilibrium Green’s function formalism, which is also based on Schwinger-
Keldysh treatment of the time-evolution[358, 9, 359, 360], which enables the
treatment of systems with many-body interactions as well as non-interacting
systems. A very useful resource in this context is the the analytical continua-
tion properties known as Langreth theorem [15, 361, 4]. For non-interacting
systems scattering matrix is the other powerful formalism[318] and there is a
one-to-one correspondence to the Green’s function formalism[362]. Here, we
show how to derive master equations in the adiabatic regime from the non-
equilibrium Green’s function formalism combined with suitable analytical
continuations. As in Refs. [355, 345, 346] we start from the Schwinger-Keldysh
treatment of the time evolution, treating the coupling between the system
and the reservoir as a perturbation. We extend that derivation to the case of
a time-dependent Hamiltonian for the driven system in which the adiabatic
expansion is implemented in the evolution along the Keldysh contour.

Concretely, starting from non-equilibrium Green’s function formalism,
we derive a quantum master equation (which includes both diagonal and
off-diagonal components of the density matrix) for an adiabatically-driven
N-level system weakly coupled to thermal reservoirs with fixed temperature
and chemical potential, see Fig. 9.1. The derived quantum master equation
(OME) would be equivalent to the global Redfield master equation in the
Lindblad formulation. As illustrations, we will study the steady state and
adiabatic dynamics of charge and energy taking eigenstate coherence into
account for two specific examples: (1) a driven qutrit system connected
to two bosonic reservoirs, and (2) a driven double quantum dot system
connected to fermionic reservoirs. We will carefully analyze in these examples
the conditions of validity of the description based on the rate equation
(RE), where only the diagonal elements of the density matrix are taken into
account. In addition, we will study the effect of eigenstate coherence on
thermal transport and refrigeration based on adiabatic driving. To further
comprehend the significance of eigenstate coherence and adiabatic driving
in thermal transport properties of quantum systems, we will study thermal
rectification in the two examples mentioned above using QME and RE.

The chapter is organized as follows. In the next section we will present
the model for a periodically-driven quantum heat engine. There we shall
study the dynamics of density matrix and the currents. In section 9.2, we
will perform an adiabatic expansion to obtain full adiabatic master equations
as well as charge and energy currents. In order to illustrate the general
formulation, in section 9.3 we put forward two different examples: in the
first one we shall study a driven qutrit in contact with bosonic reservoirs,
and in the second example we shall considfer a driven coupled quantum
dot system attached to fermionic reservoirs. In section (9.3.3), we study the
individual effect of quantum coherence and adiabatic driving on thermal
rectification. Finally, conclusions and perspectives are drawn in Sec. 9.4.
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9.1 GENERAL FORMALISM

We present here the derivation of the master equation from non-equilibrium
Green’s function formalism combined with Langreth theorem.

9.1.1  Model

We consider a driven quantum system which depends on time through a set
of time dependent parameters X(t) = (Xj(t),..., Xn(t)), described by the
Hamiltonian

Hs(t) = Hs(X(t))- (91)

In general, the system Hamiltonian contains one or more subsystems with
multiple degrees of freedom, expressed in a convenient basis, which expands
the Hilbert state. For example, in Section IV we consider a qutrit, charac-
terized by three levels [s), s = 0,1,2 with time-dependent energies and
time dependent transitions between the different levels. We also consider
two coupled quantum dots of spinless fermions with time-dependent gate
voltages and tunneling elements and an inter-dot Coulomb interaction. In
this case, each quantum dot defines a subsystem, and the degrees of freedom
of each quantum dot, are determined by the charge. The corresponding states
of the basis are four and read |s) = |0,0), |1,0), |0,1), |1,1).

The system is coupled to a set of N, reservoirs described the Hamiltonian

N, A
HB = Z Zeerblt,xbktxl (92)
a=1 ka

where the operators E,‘;X, by, may satisfy bosonic or fermionic statistics. For
the case of bosons, we focus on bosonic excitations, like phonons or photons.
For the case of fermions we focus on electron systems with a finite chemical
potential. The contact between the driven system and the baths is given by
the Hamiltonian

H]éos = szka ﬁg,s/ (E]ta + Bkac) ’

s,s' ku
HE = YN (Vk“?;,’gaﬁgs, + H.c.) , (9.3)
s,8' k,u

for the case of a bosonic and a fermionic baths, respectively, Vj, being the
coupling strength between system and reservoir a. The operators 7, =
Nos |s)(s'| are defined on the basis |s) associated to the degrees of freedom
of the central system and may be restricted by selection rules and the Pauli
principle in the case of fermionic systems. For instance, in the case of the two
coupled quantum dots of spinless fermions that we will analyze in Section

IV, where each quantum dot is connected to one fermionic reservoir in the
+
form of a tunneling process, these are 7‘[(()11) = {ﬁill) ] = 17611) |0, £)(1, ¢] for the

+
quantum dot (1) and 7%(()21) = [ﬁﬁ) } = 17(5’21)

(2), with ¢ =0, 1.
The Hamiltonian for the system can be diagonalized at any time t by a
unitary matrix U(t),

£,0)(¢,1]| for the quantum dot

Hs(t) = U Hs(HUT (1) = Y e (t)pu, (9.4)
1
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where p; = [I)(j|. We define 75, = Yo %, and we express the contact
Hamiltonian in the diagonal basis as follows

He(t) =) ) Vi [Aa,lj(t)z’ltaplj + Xa,lj(t)pljl;kuc}/ (9.5)
k1]

where, for the case of a bosonic bath,
Aagj(t) = A () = [ABARTTB)] (9:6)

while for the case of a fermionic bath we have
A = [aaRI )]

Ajlt) = [amaiate)] 97)

9.1.2 Dynamics of the density matrix

In order to motivate our treatment, let us start by noticing that any observable
O, which depends on the degrees of freedom of the central system, can be
expressed as follows

O(t) =) Oi(t)pyj, (9.8)
Lj

where Oj;(t) = (I|O(t)]j) are the matrix elements of the operator O(t) in the
eigenstates basis. The expectation value of this observable at a given time ¢ is

(0)(t) =Tr [pY(HO(1)] = }_Oy(t)py;(t), 9.9)
lj
where we define the density matrix as

oij(t) = Tr |64 (1)py (9.10)

In Egs. (9.9) and (9.10) p'°(#) is the state of the full system coupled to the

bath, which is described by the Hamiltonian () = Hs(t) + Hp + Hc(t).

We see that the dynamics of Eq. (9.9) is determined by the evolution of the

matrix elements of the operator in the basis of the instantaneous eigenstates

of Hs(t) and the dynamics of the density matrix pj;(#). The latter depends

on the full Hamiltonian H(f). Our aim is to derive the equation ruling

the dynamics of this density matrix in the limit of weak coupling strength
between the N-level system and the baths.

Changing to the Heisenberg representation, the matrix elements of Eq.

(9.10) are
. _ A AH

oij(t) = Te [po pTE ()], (9.11)

with p®t(t) = U(t,tg) po UT(tty), Po being the state at the initial time.

et (e

Utt) =T {expl Lo I ig the evolution operator, being T the time-

order operator and we have introduced the Heisenberg representation with
respect to H, p?f(t) = U™ (t,t0)pijU (t, to). We now introduce the definitions
of the lesser Green’s function

Gia(t#) = i (b ()BIL(D)) (9.12)
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where the upper (lower) sign applies to a fermionic (bosonic) reservoir «,
and

Gii ot V) = i <ﬁl€(t’)ﬁ?f(t)>, (9.13)

where the upper sign applies to many-body fermionic states such that |I), |j),
as well as |u), |v), differ in odd number of particles and the lower sign is for
bosonic systems. We also introduce mixed lesser Green'’s functions

Gt (1) = ii<bw(t')ﬁ?f(f)>,
Gyt t) = i (plHObIE(E)). (9-14)

Calculating the evolution of ﬁ;f(t), taking the mean value with respect
to pp as in Eq. (9.11) and introducing the definitions of the lesser Green’s
functions given in Egs. (9.12), (9.13) and (9.14), we get

dpl‘ i
= 5 (AL olf >hZW42MW Gnjaat (1)

= L in(0G g () + et (G (11) = (G (1 .
n
(9-15)

where £ corresponds to fermionic and bosonic reservoirs, respectively. We
now proceed with the line of argument presented in Refs. [355, 345, 346]
for static Hamiltonians. We will obtain the master equations from Eq. (9.15)
based on the expansion of the coupling term, and extend the derivation
presented in those references by introducing the adiabatic expansion in the
time-devolution. In our case we find it convenient to define non-equilibrium
Green’s functions for the operators g, ;, in addition to the ones for the
reservoirs and we proceed with the derivation of the Dyson equation at the
lowest order in the couplings Vi, in combination with Langreth theorem.
These steps are very close to those followed in the study of quantum transport
for strong coupling between system and reservoirs [360, 15].

We now introduce the interaction representation with respect to the un-
coupled Hamiltonian & = Hg(t) + Hp. Therefore

o3t = Ticexp { i [ vy b, (9:16)

where the superscript i denotes the interaction representation with respect
to h and Ty denotes time-ordering along the Schwinger-Keldysh contour
K, which starts at t(, evolves to 4+oo (contour +) and returns to ¢y (contour
—)[15, 363]. Furthermore, we consider ty) = —oc and pg = ps ® pp, where
ps, pp are the density operators of the uncoupled system and reservoirs,
respectively.

The next step is to evaluate the Green’s functions in Eq. (9.15), up to the
first order of perturbation theory in Vj,. Following the analytic continuation
procedure known as “Langreth rule”, [15, 363] we obtain the following
expressions, at the first order of perturbation theory, for Green’s functions
entering Eq. (9.15)

Gl]kofr / dty Via Z/\"‘”v {gl]uv(t tl)gka(tl' )

u,o

+ 8t )8 (B )], (917)
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Gka Aj t t / dt1 Via 2/\04 uv {gk,x(t tl)guvl](tlrt>

+ Gt )G ()] 918)

The above derivation is found to be consistent with the systematic procedure
based on real-time Green'’s functions, [15, 363] as detailed in Appendix H. In
the expressions above we have introduced the notation g, ,(t,t') and gk, (t,t")
to denote the Green’s functions evaluated with respect to the uncoupled
Hamiltonian / instead of H. In addition to the lesser Greens functions
previously defined, we have also introduced the definitions of the retarded
Green'’s functions

& (68) =0t~ 1) [g7,(08) — g5 (18] (619)
withg> (4 t) = F {gjrv(t’ , t)} " and the advanced Green's function gy (Lt) =

82, (#.1)]
Using Egs. (9.18), Eq. (9.15) can be written as

d{p; i
<dptl]> = ﬁ[sz(ﬂ—g' < > ;;{EM‘W ()
B ZA win “(0 ; Z)L ajn Aln 2@3}

This equation (9.20) is exact up to order V2. We have introduced the defini-

tions
j:%)\,x wo /_Oo dh (g,’njlw(t, t1)2§(")(t1/t)
+ (b ZY (0,1), (0.21)
and
i;)\a o / dt1 t tl)guvm](tl,t)

+ 2 ) gl (D), (9:22)

which depend on the Green’s functions of the isolated N-level system and
on the following self-energies, which describe the coupling to the baths,

B0 = [ G ), (9:23)
In terms of the spectral function it can be written as follows,
I (@) = —2mm |5 ()] = 27 Y |Viu* "8 (w0 — ea),
ko

25 (W) = ting(w)IP (w),
(9-24)

1 (w) denotes the Fermi-Dirac or Bose-Einstein distribution function for the
case of fermionic or bosonic bath, respectively. Importantly, the information
on the temperature and chemical potential of a given reservoir « is only
encoded in these functions. In the previous expressions, we have introduced
the index x to denote the different moments of the spectral function.
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9.1.3 Dynamics of the particle and energy current between system and baths

The time-resolved density matrix p;;(t) fully characterizes the dynamics of
the local properties of the system. Now we are interested in evaluating the

charge current ],,(f) (t) (in the case of the fermionic reservoirs) or in general

the energy current ]l,((E) (t) flowing from the system to the reservoirs. These
quantities can also be calculated by recourse to Green'’s functions as follows

K90 = & (]

- Z Y Vi [Aa (1) Gy et (£:8) = A (1) Gamn(t,t)], (9.25)

k mn

1w =5 ([r])
;Z kaeka[ wmn (D) G (68) = A (1) G,jx,mn(t,t)], (9.26)

where the upper sign is for fermionic and lower sign for bosonic reservoirs.
Using Egs. (9.18), we can evaluate these currents at the lowest order in the
coupling strength. The result is

= 71 [2 Ao (AR (£) = a,mnu)Af;f,?)(t)}
{Damn YA (8) — Aa,mnu)Ai;S}’(t)} 9:27)

We see that the coefficients Aa(o)( t) and an(r? ) (t) entering the equation of

motion (9.20) for the density matrix also enter the expression for the charge

currents. On the other hand, the heat currents are determined by the co-
. . —u(1 .

efficients A%} ) (t) and Afn(n)(t) related to the first moment of the spectral

function (x = 1). Notice that the above expressions for the currents are exact

up to order V2

9.1.4 Power developed by the ac forces

We express the Hamiltonian Hs in Eq. (9.4) as follows
Hs(t) = —F-X(1), (9-28)

where F = *a/]:[s/ax = (pllr- . .,pNN) and X(t) = (81(t), s '€N(t)). The
power transferred to the system by the ac forces is

. N
P(t) = (Hs(t)) = Y (pu)(t) Xi(t). (9-29)

=1

In the absence of temperature and chemical potential differences at the
reservoirs, this accounts for the total rate of heat and entropy production in
the system.

9.2 ADIABATIC DYNAMICS

So far we have not introduced any assumptions regarding the nature of
the time dependence. Here, we focus on slow (adiabatic) driving, where
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the rate of change of the time-dependent parameters is small, which jus-
tifies treating the dynamics at different orders in these parameters. More
precisely, adiabatic driving is the regime where the typical time-scale asso-
ciated to the driving is much larger than any other time-scale associated
to the dynamics of the system coupled to the baths. Here, we follow a
treatment along the line of Ref. [340, 343]. We recall that the lesser Green’s

function gﬁ w1, t2) = Fi < ﬁlw(tz)ﬁlj(tl)> are evaluated with the operators

expressed in the interaction picture with respect to h = Fg(t) + Hg, which
for this particular function is equivalent to the Heisenberg picture with
respect to Hs(t).

We consider the expansion of Hs(t') with respect to an “observational
time” t,

Hs(t) = HL+6Hs(t), (9-30)
() = S u% . d"X _ = A
5Hs(t ) - n;l 7’[! aX dtn - k:Zl gk(t )Pkk/

where 7:[£ is the Hamiltonian with the time frozen at t and & (') = Y0 (' —
B/ nld" X/ dt".

We then change to the interaction representation with respect to 7:[); and
consider the Green'’s function

. PP i 1537 (41 R _
gﬁruv(tl,tz) = —iTr {POTK [e i [idt' STt )p{j(tf)pﬂv(tz )} }, (9.31)

where t” and t, indicates that the time #; is on the piece of the contour that
starts in —oo, while #; is on the piece of the contour that ends in —co. All the
operators with the label f are calculated in the Heisenberg representation of

the frozen Hamiltonian ’HJS[ In particular,

R ipgf o _ipgf [
sz(t’) = en'' s pij e it Hs = enef 015 (9-32)
with e{ being the eigenenergies of 7—~ljsr and €); = e{ - e{ . Evaluating Eq. (H.9)

up to linear order in the perturbation ﬁg leads to

<, <,
(1 12) = glj,f,;(fl, t2) + 581j,£v(f1, t2),

(9:33)
where the first term is the frozen component and reads
8;,'50('51’ ) = =idp <ﬁ{¢j(f1)> efewelfa=h)
= it (p12)) 70, 34

while the second term is the correction up to linear order in (57-25 (t') (see
calculation in Appendix (H)) and reads
i f tr ty
581?,'51;01%2) = —ﬁgz?,'i(v(tlrtz) {/_oo ar'g;(t') +/t1 dt'Go(t') —/_oo df'@u(t')}-
(9:35)
The adiabatic approximation consists in keeping the terms & X in & g;L{ o(t1, 1)
under the assumption that the changes in X(t) take place within a time scale

that is much larger than the typical time scale of the dynamics of the frozen
system.



9.2 ADIABATIC DYNAMICS

9.2.1  Full adiabatic master equation

Our aim is to calculate the matrix elements of the density matrix up to linear
order in X. Hence, we split them as follows,

(Pho) (1) = puj(t) = pl(5) + P (1), (9.36)

with p£ i being the solution of the frozen master equation and p}, j(t) being
the correction o X.

By substituting Eq. (H.9) into Egs. (9.21) and (9.22), with Eq. (H.19) and
the adiabatic approximation of Eq. (9.35), the master equation that includes
both frozen and adiabatic contributions can be written as

dpj i
dit]:ﬁ[() ]pl]+ Z{ml;u Pmu

T (0P = T (P + Ty (Dpun] - 937)

where we introduced the transition rates

The frozen rates are expressed as Fi(nl ]u( Y=Y, FEZ {u o (f) with
Totiea(®) = At (D Rau (D7 (€1) + Rt (DAju (D7 (1), (939)
Tiia® = Aujun(O R (T4 () + Rajn (DA et (D7 (1), (9:40)
F](Z)Z{M(t) = F](m)iw( ) and l"Enl)L{]a(t) = F;?{ma( t). The frozen contri-

butions originating from Eq. (H.19) are expressed in terms of 'yi(e) =
hilna(e)réo) (€) and '7£(e) =ntlaT n“(e))l",g(o) (e). On the other hand, the
(@)

adiabatic corrections to the transition rates (I, iu

(t)) which has its origin in

Eq. (9.35) can be evaluated in a similar manner. The latter are o F,SCO))'( within
the adiabatic approximation. In deriving Eq. (9.37), we have neglected the
level renormalisation effects.
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The diagonal and off-diagonal terms of p,,; are named, respectively, populations

and coherences and are generally coupled. Splitting in this equation the den-
sity matrix elements and rates into their frozen and adiabatic components
as in Egs. (9.36) and (9.21), we can make use of the fact that the frozen
component satisfies

i

1
0= [a(t) —&(t)] Pl + 5L [r;(q:z),}{l(f)l?{nu
m,u

4 1 4
— O =T Opf, + T (Opln], 041

which leads to the following equation to be fulfilled by the adiabatic compo-
nents (keeping only linear-order terms in X),

dp; 1
i _ W.f (4).f rf (4).f
) mz,u {rml,ju(t)p%bl o rml,um(t)pflj ]m mu( )plu + 1—‘]m ul( )pﬁm]

1
+ Em |: ml]u Pmu 5r£nl)um( )p{l] 5r](m)mu( )p{u+5r](m)ul( >P£m}

u

(9-42)
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These equations must be supplemented by the normalization of the popula-
tions ) ; p; = 1. Furthermore, considering only the contribution of the frozen
rates in the previous equation leads to p?j ~ O(X/TY), while including also
the terms in the second line of the equation will introduce a correction of
O(X), which can be neglected in comparison to the previous one. Notice that
this reasoning is the same followed in Ref. [364, 233, 336].

Similarly, substituting Eqgs. (9.21) in the definition of the energy currents,
we get

1
10 = 5 T [eun Thona(Opun(t) = em Thhua (Dpwa(8)]. - (0.43)

mmn,u

Similarly, for the charge currents we obtain
10 =2 ¥ [Mihma®pin(t) - Todha®Opma] - (040

Notice that the charge current has been defined only for the fermionic case.
Moreover, currents are made up of a frozen and an adiabatic contributions

[ ]DEE)’f (t) and ],,(CE)’u(t), respectively, for energy currents] coming from the
respective terms of the density matrix.

9.3 EXAMPLES

9.3.1  Qutrit

We now use the formalism presented in the previous sections to analyze
the energy dynamics of a driven qutrit — a three-level system such as
an atom with a ground state and two excited states — asymmetrically
attached to two bosonic reservoirs. The latter could, for instance, represent
two electromagnetic environments to which the atom is coupled. We consider
the following Hamiltonian for the driven three-level system

2 ej(t)tj; +w () (ﬁu + ﬁ21>r (9-45)

where ¢;(t), with j = 0,1,2, are the energy levels relative to the ground state
(0) and the two excited states (1 and 2). The inter-level coupling parameter
w(t) denotes the amplitude for, possibly, time-dependent transitions between
the two excited states. The bath Hamiltonian is given by Eq. (9.2) with N, = 2,
by, being bosonic operators for reservoir a = L, R. As shown in Fig. 9.1, we
fix the temperature of the two baths as T, = T+ AT and Tr = T — AT.
Moreover, we will consider Ohmic baths with linear dissipation relation
spectral density

T,(€) =Tyee /%, withe >0, (9-46)

where €, = fiw,, w, being the high frequency cut-off. We assume that the
left bath is connected to the qutrit through energy level 1 and right bath is
connected through energy level 2, so that the contact Hamiltonian is given by

He =Y Vir (710 + 7o) (sz + bkL)
k

+ 3 Vik (702 + 7220) (b + i) - (9.47)
k
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As detailed in Sec. 9.1, we first diagonalize the system Hamiltonian with a
suitable unitary transformation U(t) so that

Z €4(t)Pgq + €0(t)Poo, (9.48)

where

Gi(t):( ()+82 ) 1\/81 ) — e2(1))* + dw(t)2. (9-49)

Moreover, the contact Hamiltonian becomes

=) Z Vka( w0 (t) Pog + Aw,qo(t )ﬁqo) (bkvc + b?;x), (9.50)
kux =

where Ap o4 (f) = —Ago—(t) = cosO(t)/2and A o_(t) = Aro+(t) =sinb(t)/2,

0(t) = tan~! (%) and Ay 04(t) = Aggqo(t). The full adiabatic master

equation for diagonal and off-diagonal terms of the density matrix can be

obtained following Sec. 9.2.1 (detailed calculations are presented in App. H.4).

x 1071 x107!

Po

0 2 4 6 8
AT/T  x107!
x1071 x1071
- 8.25
- 8.00

0.00 025 050 0.75
(61 — €2)[]€BT]

Figure 9.2: Population probabilities in the absence of driving as functions of AT for
fixed level splitting ey — ey = 0 (top panel), and as functions of level
splitting for AT = 0.8T (bottom panel). Green lines refers to p_ (with
axis on the left) and blue lines refers to py (with axis on the right). Solid
(dashed) lines result from the solution of the RE (QME). Parameters values
are: I't =T'g = 0.5, . = 100 kgT, w = 0.05 kgT, e1 + e, = 5 kT, and
&y = 0.

We first consider the situation where the driving is absent (¢; and w
are time-independent) and study the effect of coherence by comparing the
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outcomes of the QME and the RE. In particular, in Fig. 9.2 we plot the
populations py (blue lines) and p_ (green lines) of the states |0) and |—),
respectively, as functions of AT (top panel) and energy level splitting (g1 — €3,
bottom panel). Solid lines result from the solution of the RE, while dashed
lines from the solution of the QME. The top plot in Fig. 9.2 shows that the
effect of coherence on the populations is absent for AT = 0 (where the overall
system is at equilibrium) and gets important with large values of AT. The
bottom plot in Fig. 9.2, instead, shows that coherence is significant as long
as the level splitting is small (up to values of 1 — e ~ 0.5 kgT). For this
choice of parameters, indeed, the gap between bonding and anti-bonding

energy level A = e, —e_ = /(g1 — £2)? 4 4w? is smaller than the energy

scale kpAT and coherent dynamics between the states |0) and |1) can take
place. [352]

x 1072 x10~4

4_

SEt

= 9
01 , , — 10
0.00 025 050  0.75

AT/T

Figure 9.3: Frozen (f) and adiabatic (a) contributions to the coherence p_ as func-
tions of the inter-level coupling w for fixed AT = 0.5T (top panel), and
as functions of AT for fixed w = 0.05 kT (bottom panel). Red solid lines
refer to the absolute value of the frozen contribution (with axis on the left)
and black dashed lines refers to the absolute value of the adiabatic con-
tribution (with axis on the right). Parameters values are: I';, = I'g = 0.5,
€c = 100 kgT, eep = 0, eay = 20 kgT, de = 30 kgT, ¢ = 0.5 kgT and
¢ =rm/2.

Let us now assume that the system is driven by modulating the parameters
according to the following scheme: €1 (t) + €2 (t) = €ay + decos(Qt + ¢) and
e1(t) — ea(t) = €pe + 08 cos(Qt), while w is time-independent. In Fig. (9.3)
we plot the absolute value of the frozen and adiabatic contributions to the

coherences (pgﬁ and psl_z)_, respectively) as functions of w (top panel) and AT
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(bottom panel). Red solid lines refer to the frozen contribution (with values on
the left axis) and black dashed lines refer to the adiabatic contribution (with
value on the right axis). The top panel of Fig. (9.3) shows that frozen and
adiabatic components of the coherence display similar behavior as functions
of inter-level coupling, although the absolute values differ by two order of
magnitude. In particular, they are zero at w = 0, since no coupling is present,
and are strongly suppressed at large w, since the gap A gets larger than
the energy scale kgAT, thus presenting a maximum at about w = 0.08 kpT.
The bottom panel of Fig. (9.3) shows that the coherence p_ vanishes for
AT = 0, while both components increase with AT. Notably, while the frozen
one increases monotonically, the adiabatic component shows a maximum at
intermediate values of AT. To summarize, a necessary condition for obtaining
a finite coherence is non-equilibrium dynamics: adiabatic driving alone does
not produce any coherence effect in the absence of a thermal bias since the
system is described by the Gibbs state at each instant of time.

9.3.2  Coupled quantum dots

In this section we analyze the effect of coherence in a fermionic driven
system consisting of a pair of coupled quantum dots.[233] For simplicity, we
focus on the case with infinite intra-dot Coulomb repulsion, which limits
the occupation to at the most one electron per quantum dot, and we assume
spinless fermions.

Concretely, we consider the following Hamiltonian for a pair of coupled
single-level quantum dot

Hs(t) = e1(t) alay + ea(t) aday + w(t) (alay + aday) + Unyiy, (9.51)

where a; and Lz;-r are, respectively, the annihilation and creation operators for
the quantum dot j = 1, 2. The, possibly, time-dependent parameters are the
QDs’ energy levels €1 (t) and ¢;(t), and the hopping element w(t) between
the two QDs, while U is the inter-dot Coulomb interaction with nj = =qt §4aj-
The bath Hamiltonian is given by Eq. (9.2) with N, = 2, by, being fermlomc
operators for reservoir &« = L, R. Moreover, we assume a characterless spectral

density, namely I'y(€) = I'y. The contact Hamiltonian is given by

Hc = Z VkLb]tLal + Z VkaZRﬂz + h.c., (9.52)
k k

so that each QD is connected only to one reservoir.

The Hilbert space of the double-dot system is composed of the follow-
ing four occupation states: |0) (empty), |1) = al|0) (single occupancy, left
QD), [2) = a}|0) (single occupancy, right QD) and |d) = afa}|0) (double
occupancy). In the diagonalized basis the system Hamiltonian reads

Hs(t) = Z eq(t)ﬁqq/ (953)

g==,d

where €4 (t) are given by Eq. (9.49) and €;(t) = U + €1 (t) + €2(t). The contact
Hamiltonian becomes

= Z Z thx (Aa,()q bltap()q + /\tx,dq b;:apqd =+ h-C'>/ (9-54)
ko g==E
where Ap oy (t) = —Aro—(t) = Ap g = A, g = cosB(t)/2 and Apo_(t) =
1

Aroi(t) = Ap g = —Ap g = sinf(t)/2, 6(t) = tan™ ( 1(5)””}61“)) Notice
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that Agoq = Ay g0 and Aggy = Ay gd- The full adiabatic master equation
for diagonal and off-diagonal terms of the density matrix can be obtained
following Sec. 9.2.1. We now examine the system when driven by modulating

x10~*

0.0

— RE
— - QME s

0.0 0.2 0.4
AT/T

Figure 9.4: Adiabatically-pumped energy current in the right reservoir averaged over
one period relative to the qutrit system (top panel) and to the coupled
QD system (bottom panel) as a function of a AT. Solid red (dashed black)
lines results from the solution of the RE (QME). Parameters values are:
TL = FR = 0.2, w = 0.05kBT, €rel = O.SkBT, €av = 2kBT, Je = ZkBT,
0€ = 0.5kgT, ¢ = 7t/2; for qutrit 'y = I'r = 0.2 and for coupled quantum
dotsI'; =Tgr =02kgT, U =0.

in time the parameters ¢ (t) and €;(t) according to the scheme presented
in Sec. 9.3.1, while taking w time-independent. Our aim is to calculate
numerically, for both examples (bosonic qutrit and fermionic double QD)
the energy currents flowing between the system and the reservoirs and the
power developed by the ac forces. We notice that, in the adiabatic regime,
asymmetric coupling (with respect to the reservoirs) is a necessary condition
to obtain a net pumping of energy over a period. In both examples, this
means coupling a given level to only one of the reservoirs. In Fig. 9.4 we plot
the adiabatically-pumped energy current (averaged over a period) flowing

into the right reservoir ]IgE)’” =Q/(2m) Ozn/ Qar g IgE)’a (t) as a function of the
AT for both systems (qutrit in the top panel and double QD in the bottom
panel). The solid red lines result from the solution of the RE, in the absence
of coherence effects, while the dashed black lines result from the solution of
the QME. The fact that the value of | IgE)’” is negative means that the energy
current is exiting the right, cold reservoir for all AT, so that the systems

work as refrigerators. Interestingly, in both cases we find that the presence
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of coherence always decrease the absolute value of the energy current, thus
suppressing the refrigeration effect. The effect is more pronounced for the
qutrit than for the double QD.

In Fig. 9.5 we plot the power transferred to the system by the ac source

averaged over a period P¢ = % 0271/ o Pa¢(t)dt in the presence of thermal
bias as a function of the hopping element w. The solid red lines represent the
power calculated without taking into account the effect of coherence (using
RE) whereas the dashed black lines are obtained in the presence of coherence
(using QME). We observe that coherence produces a small correction (a slight
increase) to the power transferred by the ac source (such correction is almost
negligible in the case of coupled QDs). As a result, coherence decreases the
amount of heat extracted from the cold reservoir while increasing the amount
of power transferred by the ac source, thus deteriorating the performance of
a refrigerator working in the adiabatic regime.

x1073
—— RE

— 1.0 1

Pk TQ

w [kBT]

Figure 9.5: Power transferred by the ac source averaged over one period correspond-
ing to the qutrit system (top panel) and to the coupled QD system (bottom
panel) as a function of inter-level (dot) tunneling. Solid red (dashed black)
lines results from the solution of the RE (QME). Parameters values are:
AT = 08T, €¢) = 0.5kpT, €ay = 1kgT, b€ = 0.5kgT, 6 = 0.5kgT, p = 71/2;
for qutrit I'y = I'g = 0.5 and for coupled quantum dots I'j, = T'r = 0.5kgT,
u=0.

9.3.3 Thermal Rectification

In this section we will examine the effect of adiabatic driving in determining
thermal rectification of an adiabatically driven quantum coherent system. A
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thermal rectifier is a device connected to two reservoirs that blocks the flow
of heat current in one direction, and allows an optimal flow in the opposite
direction. There are two necessary and sufficient conditions to obtain finite
thermal rectification for quantum devices[124, 127, 45]: (i) presence of non-
linearities, and (ii) asymmetric coupling to the baths. Multi-level systems
possess intrinsic non-linearity and the asymmetric coupling to the baths can
be established either by taking asymmetric coupling constants or by coupling
different subsystems to different baths. Hence, thermal rectification is an
expected phenomenon in these devices. In the following, we will study the
effect of adiabatic driving (using the QME) on thermal rectification.

0.00010}
0.00005} /
0.00000f //‘\ ~——

-0.00005}

F— S5 AT) + T AT
-0.00010}
F— JU [ AT) 4+ TP~ AT
0 I an T an 5n 2
3 3 3 3

¢
000010}
0.00005 /\
0.00000] N /

:/ \_/
-0.00005}

b

F— JEOIAT] + TP AT

—0.00010:-_ JI(?E‘),f[_AT]_’_JI(?E),a[_AT]
0 z an T in 5n 2
3 3 3 3
¢

Figure 9.6: Total heat current averaged over the driving the period for forward (red
line) and backward (blue line) bias condition as a function of phase lag ¢ in
the driving for qutrit (upper panel) and for coupled quantum dot (lower
panel) using QME. The heat current due to thermal bias is measured
in units of [kgT]* /7 and the adiabatically pumped heat in one cycle is
measured in units of kgT. Parameters: €., = 0.5kgT, €ayv = 1kgT, de =
2kgT, 6é = 0.5kgT for both systems. . = 10kgT, I' = 1/20, I'r = 1/5,
AT = T /1000 for qutrit and for coupled quantum dots I';, = kgT/20,['gr =
kgT/5, U = 0and AT = 2T/1000.



9.4 SUMMARY

In the presence of adiabatic driving, the heat current has two components:
the heat current due to thermal bias ],,((E)’f (t) and the adiabatically pumped
heat current ],,((E)’a(t). The heat currents averaged over a period are given

by JE = /2 2% at 1 (1) and P = 0/ (2 [2Var 1),

We define thermal rectification through the expression

_ [ iem HR aT)| = |1 (-a1) + 1P [-aT)| -
’] [AT] +] ‘ ‘] AT]—F]I({E)’LI [~ AT] ’ 9-55

where we consider AT > 0. R = 0 implies no rectification, whereas R = +1
mean perfect rectification. In Fig. 9.6, we study the linear response regime
(AT < T), where the adiabatically pumped heat current is independent of

AT, namely | I({E)'a [AT] = ]I(QE)’” [AT = 0]. We can therefore fix the driving
such that the adibatically pumped heat current always flows from the left
reservoir to the right reservoir irrespective of the thermal bias. However,
the heat current due to thermal bias changes sign when the thermal bias is

inverted. In the setting mentioned above, we have that ]<E) ! [AT], ] I(QE)’a >0

whereas ] R [—AT] < 0. Hence, as shown in Fig. 9.6, for a particular values
of ¢ (for instance for ¢ ~ ¢/3 in the backward direction (blue line) and
for ¢ ~ 4¢/3 in the forward direction (red line)), the adiabatically pumped
heat current exactly cancels the heat current due to —AT leading to perfect
rectification, i.e. R — £1. Note that, the value of AT where we get perfect
thermal rectification as well as the direction of thermal rectification depend
on the details of the driving and system bath coupling.

9.4 SUMMARY

We have presented a formulation, based on Keldysh non-equilibrium Green'’s
functions, to derive the quantum master equations for an adiabatically-driven
quantum system for both the bosonic and fermionic cases. Our explicit cal-
culations are performed up to first order in the coupling strength between
system and baths and account for both the dissipative as well as level renor-
malization effects. We expect the extension at higher orders in the coupling
strength to be straightforward. Expressions for charge and energy currents
have also been derived. The general formulation has been complemented
with two examples: a qutrit in contact with bosonic reservoirs and a sys-
tem of two coupled quantum dots in contact with fermionic reservoirs. In
particular, we have studied the effect of eigenstate coherence in the instan-
taneous as well as the adiabatic regime. We have observed that eigenstate
coherence is enhanced in systems close to degeneracy and largely out of
equilibrium. We have also noticed a significant effect of eigenstate coherence
in thermodynamic quantities such as heat currents and power. Moreover,
the effects of eigenstate coherence turns out to be more pronounced in the
qutrit system compared to the coupled quantum dots one. In the refrigerator
mode, eigenstate coherence tends to decrease the absolute value of the heat
current extracted from the cold bath, while increases the power absorbed,
thus decreasing the overall efficiency.
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In conclusion, we studied different aspects of thermal transport and thermo-
dynamics in static and driven nanoscale devices. We presented models and
formulations to study thermal transport properties in nanoscale devices.

In the first three chapters, we presented a brief summary about the field
of thermal transport and thermodynamics, mainly focusing on nanoscale
devices. We discussed on thermal machines, transport theories, nanoscale
devices, thermodynamics at nanoscale and experimental progress in realizing
nanoscale devices based on thermal transport.

In Chapter IV, we studied the phenomena of thermal drag in metallic
island and quantum dot based devices. A flow of heat current was observed
in an unbiased system when it was coupled to a thermally or potentially
biased system through Coulomb interactions. We observed that the direction
of heat flow in the drag (unbiased) circuit depends on the energy dependence
of transition rates. In addition, the presence or absence of energy dependent
transition rates in the drive and the drag circuit also played a crucial role in
determining the order dependence of the drag heat current on potential or
thermal bias. In Chapter V, utilizing the filtering effect of energy dependent
transition rates, we presented models based on quantum dots and metallic
islands describing absorption refrigerators. In Chapter VI, we studied thermal
rectification in a range of devices, including qubits, resonators and quantum
dots. We studied the properties of thermal rectification in aforementioned
devices in both the weak and strong coupling regime. We observed that the
bounds established by thermal rectification in the weak coupling regime
gets broken in the strong coupling regime. In addition, we observed that
the monotonous behavior of thermal rectification as a function of coupling
strength in the weak coupling regime does not hold in the strong coupling
regime. In the case of Coulomb coupled quantum dots, we achieved perfect
non-local thermal rectification by using energy dependent transition rates. In
Chapter VII, we studied thermal transport in two different single electron
devices using master equations. In the first setup, we theoretically matched
the experimental results for non-linear thermovoltage in a single electron
transistor. We observed that the co-tunneling rates play an important role
in the low temperature regime. In the second setup, in a single electron
transistor setup using master equations we theoretically reproduced the
experimental results demonstrating a significant probability of extracting
work arbitrarily bigger than the free energy difference in a single protocol
realization.

In Chapter VIII, we studied the geometric properties of different thermo-
dynamic quantities for an adiabatically driven system attached to thermal
leads kept at slightly different temperatures. We observed that not only
the heat currents but also other thermodynamics quantities such as power
and efficiency have geometric nature. We observed that the symmetric com-
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ponent of the thermal geometric tensor associated with power generation
gives dissipation whereas the asymmetric component is non-dissipative in
nature and has a Berry-type geometric origin. In addition, we noticed that
the heat-work conversion exclusively relies on the geometric contributions
to heat and work. In fact, we recovered the Carnot efficiency only in the
limit in which transported heat and work were entirely geometric. Lastly
in Chapter IX, we presented an alternative derivation of adiabatic quantum
master equations using the Keldysh formulation for non-equilibrium Green’s
functions. We studied the effect of quantum coherence on the adiabatic dy-
namics of two different devices: 1) qutrit attached to bosonic reservoirs and
2) tunnel coupled quantum dots attached to fermionic reservoirs. In addition,
we studied the effect of adiabatic driving and quantum coherence on heat
currents, power and thermal rectification.



APPENDIX 1

A.1 QUANTUM MASTER EQUATIONS USING FERMI GOLDEN RULE

In this appendix, we will derive the master equation using the Fermi Golden
rule. This is the most sought after approach when one needs to study the
dynamics of mesoscopic systems where semi-classical Pauli master equation
is sufficient and when higher order co-tunneling rates are required. The
derivation of master equation in Chapter 9 works well for systems with
discrete degrees of freedom, but fails to address the continuous degrees of
freedom in the system Hamiltonian, for example metallic islands.

A.1.1  Sequential tunneling rates

In this subsection, we will derive sequential tunneling rates for metallic island
in contact with fermionic baths as an example for the derivation of master
equation using the Fermi golden rule. Similar techniques can be applied to
obtain the semi-classical master equation for other discrete quantum systems.
Using Fermi golden rule, the first order transition rate from initial state i to
final state f is given by

27 .
Yief = 77 |(f [Has] Z>|2f5(€f —€i), (A.1)

where H, s is the coupling Hamiltonian between the bath « and the system
S, €5/i gives the energy of the final/initial state of the device.
The electrostatic energy of the metallic island

Ey(n) = Ecn® +x, (A.2)

where x does not depend on 7. The electrostatic energy required to change
the number of electrons from # to n + 1 is given by:

AEy(n) = Ey(n+1) — Ey(n) = Ec(2n +1) (A.3)

Next, we will study electron tunneling through a junction between metallic
island and a fermionic bath. The transition rate of an electron from the
reservoir («) into the system (1) changing the number of electron in the
island from n to n + 1 is given by

27 2
Yo (1) = == |(F[Hamplk)|” 0(€pn — €xa + AEu(n) — eVi)
21
= ?ka' 26(€x1 — €xa + AEn), (A.4)

where k represents the state of the electron in the bath which tunnels into
state k’ in the island, AE, = AEy(n) — eV is the total amount of energy an
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electron has to overcome in order to tunneling across the junction and V is
the potential of the bath a. The delta function represents the conservation of
energy given by

€ +eVu+Ey(n) =€+ Ey(n+1). (A.5)

The opposite process when an electron tunnels from the system to the bath,
i.e. when the island charge state goes from n +1 — 7, has the same transition
rate. The total transition rate can be obtained by summing over all possible
states, taking into account the occupation of these states given by Fermi
distribution. The total transition rate I' for electron tunneling into and out of
the metallic island

rnn+1,tx = Z’)/kk’(n)fvé<€k0é>(1_f1(€k’1))

Kk

Tpgina = Y vek(n+1)fi(ern) (1 — falew)), (A.6)
Kk

where the fermi distribution

fa(e) = [1 + ee/kBT"‘} o . (A7)

We can change the sum over k, k' to an integral over the energy states of
the bath and the island. Taking the density of states as well as transition
probability to be energy independent (in the low temperature regime, all the
processes happen in a narrow band of energy around fermi energy energy),
we obtain

Tontte = o [ defule) (1= fie— AE)

Totne = o [ defule) (1= file+ AE), (A8)

where
1 _ 47T€2|i'kk/|2DaD1 A
R, (A9)
gives the resistance provided by the tunnel junction, D, and D; are the
density of states of the bath and system respectively. Once the transition
rates are known, probabilities can be easily calculated using semi-classical
master equations. The energy tunneling rates are defined as

I o = e () fuler) (1 - filern))
kk!

r® = e+ Dfien) (1— falew)) . (A1o)
kk'

Following similar line of argument as for charge tunneling rates, the energy
tunneling rates can be reduced to a simpler form

1
F§1En)+1,uc = E/deefa(e) (1— fi(e — AEy))
Oine = —ﬁ/deef,x(e) (1— fi(e+AEn)). (A.11)

A.1.2  Cotunneling rates

The co-tunneling process become dominant when the sequential tunneling
process is suppressed. At low temperature, when the electrons do not have
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enough energy to jump the energy barrier maintained by Coulomb blockade,
co-tunneling becomes the dominant process. In other words, when the single
electron processes are not energetically allowed, higher-order processes
involving virtual state in the system can still be energetically possible. The
cotunneling transition rate when an electron tunnels from the bath « to the
bath  through the system

ot 2m Z (f [Hys|v) (v |H5,5| i>, (A.12)

Tiof = € — ey +in

where v represents the intermediate state. In the cotunneling process, a charge
can be transferred from one bath to another without changing the state of the
system. The cotunneling process defined for the same bath do not transfer
energy or particle, so we will not consider these processes. Summing over all
possible states in the baths and system taking the respective distribution into
account, the total cotunneling rate can be expressed as

h
IjCOt = m /deka d€q1 dequ dek/ﬁ f(€k,1) (1 — f(€q1)> (1 7f(€k’ﬁ))

2
1 1

+
€41 4+ 0Ey — €xa €k/5+565 — €41

flegn) 5(eV +er — € +€g1 —€p),

(A.13)

where 6E, = Ey(n+1) — Ey(n) — eV, is the energy required to tunnel an
electron from the bath a to the system, 6Eg = Ey(n) — Ey(n —1) +eVp is
the energy required to tunnel an electron from the system to the bath S,
considering the system to be initially in the state n. We define, eV = eV, —eVj.
The energy rate when an electron goes from the bath « to the bath § is given

by:
h

cot

2
1 1

+
€ +0Ex —€ry  €ppt+ o€ — €41

f(é’q/l) ‘5(3V+€ku¢_€q1 +én —€k//5).

(A.14)

Egs. (A.1) and (A.12) can be used to obtain sequential and cotunneling rates
for different systems. We will use them to obtain sequential and cotunneling
rates for Coulomb coupled metallic islands and quantum dots (see App.
for details). The probabilities and currents can be obtained as described in
Chapter o.

— m /deka d€q1 deqq dek/ﬁ €k f(eka) (1 — f(eql)) (1 _f(ek’ﬁ))
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APPENDIX 2

B.1 KELDYSH-SCHWINGER FORMULATION BASED ON NON-EQUILIBRIUM
GREEN’S FUNCTION

Master equations are better suited when the system-bath coupling is weak.
When system-bath coupling becomes stronger, higher order terms such as co-
tunneling become important. In this regime, Keldysh-Schwinger formulation
based on non-equilibrium Green’s function describes the dynamics better
than the master equation formulation. This formalism has been the normal
framework to investigate transport properties when the system is strongly
coupled to the reservoirs. It is also very general and flexible and has been
used to study electron[g, 359, 360], phonon[365], and spin[366] systems.
Although, Keldysh-Schwinger formulation gives an exact result for linear
systems, some approximations are required to obtain analytic results for
non-linear systems, for example an interacting quantum dot in contact with
fermionic baths. There are numerous methods, mostly numeric, to obtain
exact results for non-linear systems. We shall start with the definition of heat
current. The heat current from the system to the bath « is defined as

18 (8) = —i ([Ha(1), H(D))), (B.1)

where H,(t) is the Hamiltonian for bath « and H is the total Hamiltonian
of the device. The bath Hamiltonian as well as the system Hamiltonian
commutes with H,. Hence, only the contact Hamiltonian survives. For linear
coupling between the system (S) and the bath (as defined in subsection 2.1.3),
the heat current can be written as:

18 () = 52 Y eraViaRe [G, (1 1)], (B.2)
k

where GS (t,t') = +i (a¥(#')S(t)), a' is the bath creation operator (c}, for
fermions and b} for bosons) and S is the system operator of the contact
Hamiltonian (spin operator in the case of qubit, a fermionic annihilation
operator for quantum dot (metallic islands) and the sum of creation and
annihilation operator for the resonator). The upper sign is for fermionic sys-
tem and the lower sign for bosonic system and qubit. The general approach
is to define time ordered Green’s function in the Keldysh contour and use
analytic continuation rules to obtain the lesser Green’s function. First of all,
we define the time ordered system-bath mixed Green’s function as:

GL(tt) = —i <T5(t)¢x+(t’)>. (B.3)

Using equation of motion, one can express the dynamics of the time ordered
mixed Green’s function as

—i6p G (1 1) = €3 G (1) + Vi GEs (1, 1). (B.g)
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Figure B.1: Sketch of the Keldysh contour. Initially, in the vertical branch from
—oco — i to —oo, the system and bath are allowed to attain a thermal
equilibrium at the inverse temperature . The Matsubara (M) formalism
is applied to calculate the initial ensemble average when the baths are at
thermal equilibrium. HévI = Hys + Hp + Hc, where Hyg is the quadratic
part of the system Hamiltonian which can be studied exactly. Then, the
interaction (if any present in the system) is switched on adiabatically,
Hy(t) = Hos(t) + Hp(t) + nHyg(t) where Hy g is the non-quadratic part
of the system Hamiltonian and # is a small number which guarantees the
adiabatic switching. The interaction is completely switched on at time ¢.
In this thesis, we will study the steady state dynamics, i. e. the long time
dynamics such that ty << t, where t is the observation time. In this limit,
the initial statistics are usually washed out.

In a similar manner, the time ordered Green’s function for the bath in the
absence of system is given by

s(t—1t)
t no_
Shalt ) = Sg—2 (B.5)
Using Eq. (B.5) in Eq. (B.4) we obtain
GL (1) = Vig / At Gl (t, 1) gk, (b1, ). (B.6)

Note that, in Eq. (B.6) we have effectively separated the bath and system de-
grees of freedom. However, the system Green’s function has to be calculated
with respect to the full Hamiltonian. Using analytic continuation, we obtain
the expression for lesser Green’s function

G5, (1) = Veo [ dty [Ghs(t )8 (1, #) + Gt t)gl (01, 8)] . (B)

In writing Eq. (B.7), we assumed that interactions are coupled adiabatically as
shown in Fig. B.1 and the contribution due to the [to, o — if] piece vanishes.
Note that the sign of lesser Green’s function depends on the corresponding
statistics. Substituting Eq. (B.7) in Eq. (B.2), the expression for the heat current
reduces to

IO() = F2 L eta [Vial® [ dtiRe [Gs b, t1)gia (11, 1) + Gt 1)l t1,8)]
k

(B.8)
The retarded /advanced Green’s function can be evaluated using equation
of motion technique. The expression for the retarded/advanced Green’s
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function depends on the specific system considered. However, a general
relation for lesser Green’s function can be obtained in terms of retarded and
advanced Green's function using the Dyson equation. Perturbation expansion
in term of system-bath coupling leads to following Dyson equation:

Gl(t,t') = G¥(t,t) +/df1/dt2G (t,0)E! (11, 8)G¥ (b, 1), (B.9)

where G is the free Green’s function of the system and Xf(ty,t) =
Yk [Vial?8h, (t1,t2) gives the self energy due to system bath coupling. Note
that, the Green’s functions are now matrices instead of numbers and it ac-
counts for all the degrees of freedom of the system. The system Green's
function in the expression for heat current which accounts for the degrees of
freedom of the system in contact with the bath is a subset of G!(t,t'). We can
use the analytic continuation rules to obtain following expression for lesser
green’s function

= /dt1/dtgé’(t,tl)ﬁ<(t1,tg)C“(tz,t’). (B.10)

Note that above relation for lesser Green’s function holds only for long time
response[367]. Since, we would be basically interested in the steady state
dynamics, Eq. (B.10) would be enough.

B.1.1 Static systems

For static systems, the steady state dynamics can be straightforwardly ob-
tained by applying Fourier transformation. For the time-independent case,
we can use the relative time Fourier transformation given by:

Gi(e) = / X' G (¢, ) eiet=1) (B.11)

Applying the Fourier transform to Eq. (B.8) and Eq. (B.10), we obtain

de
I = :Fz/ T eRe [Gls(e)T () + Gis(e)Tale)],  (Bx2)
for the heat current and
G=<(e) = G"(e)2=(e)G (), (B.13)

for the lesser Green’s function. Using Eq. (B.13), the only unknown factor
becomes the retarded Green'’s function which can be calculated using the
equation of motion and is model specific.

B.1.2 Driven systems

In this subsection, we will discuss the dynamics of driven quantum system
using Floquet formulation along with non-equilibrium Green’s functions. We
define the green’s function for the baths as:

. [ de il
gk<0£1(f,t’) = ¢l/ﬂna(e)0klx(€)e (t=t)
/ di Pka(€) p—ie(t=t)

B.
2me—¢€ —in ’ (B.14)

gklx tt

where upper sign is always for fermionic baths whereas the lower sign is
for bosonic baths, 1, (€) represents the distribution of bath a. Considering
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periodic driving with period (), we apply the Floquet fourier transform given
by:

Gr(t,e) _ /dt/ér(t, tl)eie(t—tl)

A 1 /7 4 :
G'(n,e) = ;/ G (t,e)e™M, (B.15)
0

The heat current flowing in the lead « can be defined as (see Eq. (B.8)):

1P =10+ 8, (B.16)

o

where

JEy =2Re[ [ an / NG (1) (Denm(Tule)],  (Bap)

and

. / / /
1 = ¢2Re[/dt1/§7€re‘le(“‘”G§s(t, h) EL@] (B.18)

2me—€' —iy

We used the definition for advanced and lesser Green’s function for the
uncoupled baths (Egs. (B.14)). Using the Floquet Fourier transformation, we
obtain:

ucl = Z/ —Ghs(— 1/6)} e 1Y ZE(e). (B.19)

where ZE(e) = —ieny(€)Ty(€). We use the relations (see Appendix B.1.2.2
for details),

|5 zute)[Ghslie) ~ Ghs(-Le)] = [ 22 [2E(e ~10) - 2E(e)]

* d *
Gis(~Le)+ [ 5-ZE(e) [Gislle) ~ GEs(~Le+10)], (B:20)
and

Gis(l€) = Gig(—Le+10) = [Z G"(I+n,e —nQ)

n

[ >(e) — (e)}éf" (n,e—nQ)L/S. (B.21)

Using Egs. (B.20) and (B.20), Eq. (B.19) reduces to
wo=x/ ffre—“f’f{zf(e) 671+ e~ nQ) [£7 (e~ nO)
In -

—$<(e - nQ)] G (n,e — no)] + (zE(e —10) — 2E(e )) G (— l,e)}
S,S
(B.22)

In a similar manner using Floquet Fourier transform in Eq. (B.18), one
obtains:

15t :FZRe{Z/ e 1NE (n+1,6)2%(e)

- de’ €'Ty(€)
r -~ o
G (ne€) 2me— (e —nQ) —in g

(B.23)
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After some calculations,

Z/ de mt{Gr (I4+n,e)E~(e)

G (n,¢€) [yf(e +nQ) — VE (e + nQ + 10)} }S ; (B.24)

where

vEe) = [ eraer | P

P represents the principal value. Summing Eq. (B.22) and Eq. (B.24), one
obtains the final expression for energy current flowing in individual lead at
time t. For driven systems, a finite amount of energy is stored in the contact
region, however, on average this current goes to zero. The energy current
stored in the contact between bath « and the system at time t

_16,} +i7‘c(5(e—e’)] , (B.25)

I,ffc)(t) ;t (Hea) = £2)  VigIm [;tGSa(t t)] (B.26)
k

From Eq. (B.26), we have:

d
]u(fC) = :l:22|vkﬂé|2/dt1 Im|:dt (Gg,S(t/ tl)
k

(1) + Gis(t ) )| B2

The second term in the right hand side goes to zero (the lesser Green's
function is imaginary by definition and we neglect the Lamb shift component
of the self energy for time being) giving:

. de d
]v(cEC) = Fi) Vil S drf (Gss(t €) + Gss(t €)>8§(€)' (B.28)
%

After Fourier transformation, we obtain:

. de . i
I =320 Vi [ 5o Liim (Ghs(le)e ™) gi(e).  (B20)
k 1

B.1.2.1 Adiabatic driving

The adiabatic contribution can be obtained by expanding Eq. (2.34), upto
first order in driving frequency.

h
Zle+nQ) = Zle) + Qazae( )
h
V(e +nQ) = V(e) + Qaygf). (B.30)

In order to calculate the adiabatic contribution, it is sufficient to take only the
zeroth order contribution for the Green’s functions[8], G’ (n,€) = G"f(n, €),
where G/ (1, €) is the Green’s function which evolves with the instantaneous
Hamiltonian.
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B.1.2.2 Derivation of Eq. (B.20)

The retarded Green’s function can be written in terms of lesser and greater
Green’s function:

G'(tt)=0(t—1t)[C™(tt)— G=(t,1)]
= —if(t—t) /dTldeG t,m)l(n,w) [6G(H, )], (B31)

2

where (1, ) = i [i>(1’1,1’2) - i<('r1,1'2)]. Taking Floquet Fourier trans-

form, we obtain:

G —if(t — —G’k,
(t,t') = —if(t thk:/ 1Le)l(e)

(67 (ks )] eilelt=11+00kt—Kst) (B 32)

" Fw)6” ()
dw G (1, w) G (Lw
. B.
(ke) 2/ e—w—10+in (B:33)
Similarly, the Floquet Fourier transformed advanced Green’s function can be
written as:
dw G (1 +k,w)l(w)G" (1, w)
. B.
G (—k € + k) Z/ eI (B:34)

Using Egs. (B.33) and (B.34), we obtain:

Gra(l,€) = Ghp(—le+109) = YY" GL, (1 + 1, — nQy)
Yy

[£25(e) — £55(e) | Glsln, e = n ). (B35)
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C.1 KUBO FORMULATION : LINEAR RESPONSE

In this appendix, we will study the linear response regime and define dif-
ferent thermoelectric as well as thermdodynamic parameters in terms of
linear response coefficients. To analyze the performance of the adiabatic
thermal machines, we need to compute the currents. This can be done by
conventional many-body techniques, such as the non-equilibrium Green’s
function formalism, scattering matrix theory (for systems without many-body
interactions), or master equations (for weak coupling between system and
reservoirs). In this section, we shall employ a Hamiltonian representation
for the temperature difference and a Kubo linear response framework for
small AT to derive general results. This enables us to analyze the energy
dynamics induced by the thermal driving on the same footing with that
induced by the time-dependent driving. Here we follow Luttinger’s ap-
proach [368] to thermal transport which introduces a "gravitational" potential
whose gradients induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this approach are
given in Appendix C.1.1.
We then reintroduce the total Hamiltonian H of Eq. (2.1) which can be
expressed as
H(t) = Hs(t) + Hp + Hc + Hy, (). (C.1)

The system Hamiltonian, Hg(t) depends on time through the N slowly
and periodically varying parameters (driving potentials) X (t) = {X,(t)}
with £ = 1,...,N, so that Hg(t) = Hg[X(t)]. The second term describes
the two reservoirs Hg = Hpg + Hp at thermal equilibrium with a fixed
temperature T, which are macroscopic systems of bosonic excitations or
fermionic particles. In the latter case, they are held at the same chemical
potential y; = pr = p and should be described by the grand-canonical
Hamiltonian, Hy — Hy — uN,, where N, denotes the number of particles
in reservoir a. The last term in Eq. (C.1) accounts for the fact that the two
reservoirs are held at different temperatures and derives from the Luttinger
formulation of thermal transport.

c.1.1  Luttinger theory of thermal transport

The idea of expressing the thermal difference in a Hamiltonian language
was originally introduced by Luttinger [368]. Here, we follow the revised
version of Luttinger’s theory presented by Tatara in Ref. [369], which we
briefly review and adapt in order to deal with a Hamiltonian containing a
tunneling contact between the central system and the reservoirs at which
the thermal difference is applied. Luttinger’s theory is formulated in the
continuum starting from a Hamiltonian Hg(t) = [drh(r)y(r,t), where
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Y(r, t) is a "gravitational” potential. Gradients of the latter induce energy
flows jF akin to the electrical currents induced by gradients of the electric
potential. Such energy flows obey a continuity equation /i(r) = —d, - j£(r) as
a consequence of energy conservation, which motivates the definition

t
Hua(t) = [ dt' [arif () -ae(x,), C2)

with 0;(r,t) = 9,T/T. Such formulation is consistent with the rate of
change of the entropy production,

. 1 ) . orT
$ =~ [drrae (E) = - [arE(e) - %y, 3
through the relation (Hp(t)) = TS.
Ref. [369] considers the alternative Hamiltonian
Hap(t) = = [arjf(t) - A p). (C4)

The Hamiltonians of Egs. (C.2) and (C.4) coincide in the long-time average.
In fact, [75 dt Howw(t) = [T dt Ha, (t) with

Ot Ar(r,t) = drp(r,t) = 0, T/T. (C.5)

In this way, A7 (r,t) and ¢(r, t) behave, respectively, in a similar way as the
vector and scalar potentials of electromagnetism. Adapting the definition of
Eq. (C.4) to the present case, we define

Hu(t) =— Y JEME(t), (C.6)

«=L,R

where &, (t) plays the same role as the thermal vector potential and the
operator representing the energy flux entering reservoir « is given by

Ji = Ho = —i[Ho H] /1. (C7)

Here, H, is the Hamiltonian of reservoir «. When the chemical potential is
the same for all reservoirs, time averaging the mean value of this operator
over one period T = 271/} directly gives the heat current,

27 /Q)
o_ O / E
Jo =5 0 dtde ). (C38)
The relation between the Luttinger field and the temperature bias, the coun-
terpart of Eq. (C.5), reads

Ea(t) = 6To(t)/T. (C.9)
c.1.2 Adiabatic Response

Our quantum machine operates in a regime in which both the driving
parameters X(t) and the temperature bias 6T, (with the associated parameter
¢a(t)) vary in time. Adiabatic driving implies that the driving frequency
is small compared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associated with the
coupling to the reservoirs. We can then regard the velocities at which the
parameters are changed and the temperature bias as sufficiently small so that
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the currents can be computed in linear response in X. This procedure was
previously introduced in Ref. [340] and it is similar to the one of Ref. [309]
for closed driven systems. The adiabatic time evolution of any observable O
is described by the Kubo-like formula

N
(O) (1) = (O)+ L [0, F) X))+ L 1 |0, TE] &lt). (Cao)
(=1 a=L,R
Here, the left-hand side denotes an average with respect to the nonequi-
librium density matrix, while (O); is an average with respect to the equi-
librium density matrix of the frozen Hamiltonian H; = Hg(t) + Hp + Hc,
ot = Yo Pm|m) (m|, where p,, = e Pem /Z;, B = 1/kpT, and H;|m) = ey |m).
Notice that the instantaneous eigenvectors |m) and eigenenergies ¢, depend
on the time ¢t. Here we have introduced the operator

oH .
]-‘Z,—a—xé, with /=1,...,N (C.11)

which has the interpretation of a force induced by the driving. The adiabatic
response functions appearing in Eq. (C.10) take the form

t
101, 0,] = —ﬁ dtl(f— ){[O1(t), Oa (') ])1. (C12)
We have also assumed that the perturbations are switched on at g = —oo.
Within this framework, we can evaluate the adiabatic evolution of any
observable. We are particularly interested in the energy current flowing into
the coldest reservoir and the induced forces. Similar to the definition in
Eq. (8.1), we find it convenient to define the N + 1-dimensional force vector

F=(F,T). (C.13)

Using this notation, the adiabatic dynamics for the forces and the energy
current into the coldest reservoir can be written as

(F)(t) = (F)r +AX) - X. (C.14)

As expected, the physical response depends on the two Luttinger parameters
Zr(t) and ¢g(t) only through the temperature bias Xy 1(t) = AT(t)/T, as
can be seen using Egs. (C.23) and (C.24). In Eq. (C.14), we introduce the
response matrix A(X) with elements defined as

. [ Fu ] p<N
AW,(X) = (C.15)

Yeer kX4 [TEF)] p=N+1

Note that in deriving the linear response expression for the current, one
should neglect the term H", which would lead to a "diamagnetic" component
of the heat current [369]. The notation in Eq. (C.15) highlights the fact that
the Ay (X X) depend on time only through the parameters X.

As the coefficients of Eq. (C.15) are evaluated with respect to the frozen
equilibrium density matrix, they obey the Onsager relations [340, 370]

AV,V(XIE) = S}ISVAV,}l(X/_E)/ (C.16)

where s, = £ for operators F, which are even/odd under time reversal.
In view of its relevance for time-reversal symmetry, we made a possible
dependence on an applied magnetic field B explicit here, but will suppress it
in the following unless necessary.
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c.1.2.1 Identities satisfied by the adiabatic susceptibilities

In order to prove the identities of Eq. (C.23), satisfied by the adiabatic sus-
ceptibilities for the thermal driving corresponding to the frozen Hamiltonian
Hy, we proceed by writing the following equation satisfied by the current
operators,

Ji () + T () = Hs(t), (C17)
where Hs encloses all the terms of H; corresponding to the central system
and contacts between system and reservoirs. All the operators are expressed
in Heisenberg representation with respect to H;

Y x[7E TF] = [Hs, H] =o. (C.18)
a,p=L,R
In order to prove that the right-hand side (rhs) of this equation is zero we
start from the definition of the adiabatic susceptibility,
. Im[xg ¢(w)]

ad T o _ 1 S,S
Xt [HS,HS] = lilgb ans,s(w) i}lgb w ’ (C.19)
being x¢¢(w) the Fourier transform of the susceptibility xg¢(t —t') =
—if(t — ') ([Hs(t), Hs(#')])+. Since all the mean values correspond to the
equilibrium frozen Hamiltonian H;, we have x¢ ¢(t — ') = 919y xs,s(t —t'),

being xss(t —t') = —if(t — t')([Hs(t), Hs(t')])+. Hence,

Xg¢(w) = —wxss(w). (C.20)

For a system with a bounded spectrum, x3¢ [Hs, Hs| = 0 when the limit w —
0 is evaluated in Eq. (C.19). In fact, introducing the Lehmann representation
in xss(w) and using (C.20) and (C.19) we get

xi [Hs, Hs) = 7 limy o ) pi| (| Hs )|
n,m

X [6(w — (em —e€n)) —6(w — (en — €m))] (C.21)
with H¢|m) = e, |m). In the latter equation |{m|Hs|n)|? is finite for a system
with a bounded spectrum, while Y, ,,, [6(w — (e — €n)) — 0(w — (en — &m))]
is the density of states for the excitations of the full system. Typically, the
latter function is gapped or has a power-law behavior ~ |w|7 with v > 0,
which proves the rhs of Eq. (C.18).

Using Eq. (C.18), we get the identities of Eq. (C.23). A similar argument can
be elaborated for the identities related to the response functions combining
energy currents and ac-driving forces. In that case, we can prove

2 X?d |:\71XEI~F[:| = X?d [HS/E] = 0/
a=L,R
Z X?d {El jth} = X?d []:l/ HS] =0, (C~22)
a=L,R
following similar reasoning as with Eq. (C.18).
Summarizing, the adiabatic response functions in which the energy current
enters are

X?d [ jaE’ jaE: _ X?d [ j&E’ j&E]

a|IETE) = -t |aE T (C:23)
1 |FTE) = -t | R TE]

X3 [Jf,fz: = —x {Jf,ﬂ}, (C.24)
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up to some function that vanishes when averaging over one period. In the
above equations & denotes the reservoir opposite to a.

C.1.2.2  Lehmann representation for the thermoadiabatic tensor

Performing a Fourier transform in the adiabatic susceptibilities entering the
of Eq. (C.15), we see that the elements of this tensor can be expressed as

S . . Im[)(y,v(“’)]
Apy(X) = =0 Xy (w)|w=0 = (})13}) — (C.25)

being x,.(w) the Fourier transform of the susceptibility x,.(t —t') =
—if(t — ') ([Fu(t), Fo(')])+. Using the notation F,, = —9;,H; and expressing
the susceptibility in the Lehmann representation we have

(9ym|n) (n|d,m)
w — (&m —€n) +1i7

Xin(@) = DY pu (em — a)? [

<avm|”><”|aym>
Cw— (snem)Jri;J ! (C.26)

with 7 = 0. We have used the following identities calculated from H;|n) =
eq|n) and (n|dy, (H¢|m))

(n|o Hilm) = (em —&n) (n|0ym) + 61, m0uem,
(m|oyHeln) = (em — en) (Oum|n) + SnmOuem, (C.27)

Calculating the derivative as indicated in Eq. (C.25), we have AW,(X) =

=

A;"V (X)+ Afw (X), with the antisymmetric and symmetric components given
by
AR = im X ) Rl 2
(X)) = lim L Pm ” e[(9,m|n)(n|o,m

X [0(w — (em — €n)) — 0(w — (&n — &m))]
Aﬁ,v(}?) =21 " pw Im [(9,m|d,m)], (C.28)
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APPENDIX 4

D.1 MASTER EQUATIONS FOR TWO CAPACITIVELY-COUPLED ISLANDS

The expressions for the master equations which involve all possible sequential
and co-tunneling particle transition rates are

Pnyny

M. [ Prin (D.1)

~

Pnqnp+1

= O O O

Pni+1m+1

where the columns of the transition matrix M are given by

— Y {Fﬂ (n1,n2) + Fff%(nl, na) + %(fu) (n1, le)}
M[l] — Yy F%Z%(nlz ”2)
Za rzlgc(nlan)
Yoy ')’a(g/) (n1+1,n+1)
L, Ty (m,m2)
— X [Fgfﬂ(m,nz) + F,Sf%(nl +1,m) + 7 (m 4+ 1, nz)}
Yav %géf/) (n1,n2+1)
T T8 (1 +1,m2)
Yo T (m, m2)
Zav ’Ytgcf/) (1’11 +1, 1’12)
I’éfi(nl,nz) + rfﬁ(”lznz +1) + 98 (11,2 + 1)}
Xy Fﬁfﬂ(m, ny +1)

M[B] N - thv [

and

M[4] = (D.2)

1
1
1
1
p(n;, n;) gives the occupation probability for the states (n;,1;), « = {L2,R2}
and v = {L1,R1}. The sequential tunneling rates T’ ,551)/(711, 1y) are given by
Egs. (4.6) and (4.7) whereas the co-tunneling rates ry,EfJ (n1,ny) are given in
Appendix D.2. From the conservation of probability, i.e.
p(ny,ny) +p(ny+1,m) +pny,ny+1)+p(m+1Lnp+1) =1,

the master equations can be solved to obtain the probabilities in terms of
transition rates.
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D.2 CHARGE AND HEAT TRANSITION RATES FOR CO-TUNNELING

Assuming small biases and low temperature, only four states for the occu-
pation of the islands need to be taken into account. When the initial state is
(n1,n3), such transition rates are associated to an electron reaching island
2 from lead « =L2, R2 and another electron reaching island 1 from lead
v = L1, R1 and can be written as (see Appedix A)

11

T () = o 7 Hy/w) (U, 6U; — eVy, 8U; + 60Uy + Ey — Vi),
®

(D:3)

where,
H (Ey, By, Ey) = 2= / dzES™ (—&)F (¢ + Ey)

1 2
‘§+E1—i17§+E3—E2—i77

(D.4)

is a function whose first and second arguments represent the intermediate
energy states due to tunneling in island 2 and island 1, respectively, while
the third argument represents the total change in energy of the cotunnelling
process. Similarly, when the initial state is (17 + 1,1, + 1), the transition
rates are associated to an electron reaching island 2 from lead & =L2, R2 and
another electron reaching island 1 from lead v =L1, R1 and can be written as

cot(c/h) o 1 1
FM (n1+1,712+1) - %m
HN 1 (=0Uy — Ej, —6Uy — Ep + eV, —8Uy — 8Uy — Eg +eVy) . (D.5)
h b
Higjfrl),nzﬂ (E1, Bz, E3) = / dCG e/ (f,) (—¢—Es)

2
‘ ! ! (D.6)

E+Ei—in E+E3—Ey—ip
Analogously, the expressions relative the remaining initial states (17 + 1, 1)

and (11,15 + 1) can be written as

cot(c/h) _ 1 1
Tay (m+1,np) = 2R, R,

H;gjihl),nz (0Uz + Ef, —0Uy + eVy, —=6Uy 46Uy +eVy) - (D7)

and

cot(c/h) . 1 1
Loy (nm,my+1) = 2R, 2R,

HY Wy (=0Us, 0Uy + Ef — eV, 6Ly — 0Uy —eV,), (D)

ny,mnp+1

respectively, where

H S BB Bs) = o [ e (061 (o)

‘ 1 B 1 2
(§+E1—i77 §+E3—E2—i17 '

(D.9)
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h h o h
Hylo 1 (E1, Ea Es) = o /_ _dgGy V(@R (6 + Es)
Nl
{+E1—in {+E3—Ey—in

(D.10)

We could compute the integrals in Eqs. (D.4) and (D.9) exactly at first order
in AT and for arbitrary V using the standard approaches[177, 73, 58] (see
App. D.3). Note, in particular, that the master equations are affected by the
co-tunneling processes that involve electrodes on different circuites, since
they change the occupations of the islands (see App. D.1).

D.2.1 Derivation

The co-tunneling rate in its most general form when one electron enters
island 1 and another electron leaves island 2 can be written as:

FZ?/t(C) L /dEadEvdEsldEssz(EV> (1 - fa(Ea))fZ(Esz) (1 _fl (Esl))

~ 27e*R,R,
’ 1 1

+
E*+E, —E,  E +E,—Es,

1 n 1
Et+8&, E +C«

5 (Ey — Ey + Es, — E, + AE) =

e*R, R,
2
6 (Cx+Cv+AE) (D.11)

[ deadz P (<265 @)

where, Ej, j = {a,v,s;} refers to the energy states of the corresponding leads
and islands; AE is the total energy change in the co-tunneling process which
can be written in terms of change in electrostatic energy and potential bias.
Since the temperature of both of the islands is same, the above expression
for co-tunneling rate is equally applicable for co-tunneling involving only

one island. Also, Géi) is the sequential tunneling rate corresponding to the
ath reservoir given by Eq. (4.9).

Case 1: AT =0
When AT = 0, we can use the following simplification;
Gy (—E) = £} (E) = F(E)

On using above identity and applying delta function in one of the integral,
Eq. (D.11) reduces to;

1 1 2

e+E —iy e+E—ip
(D.12)

o) — % / deF(—€)F(e + AE)
e

where, Ey = ET; E; = —E~ + AE and 5 — 0 is applied to regularize the
divergent integral in Eq. (D.11). All the co-tunneling rates involving either
two islands or one island can be written in this form with corresponding
Eq, E; and resistances involved. The regularization method, described in
ref. [58, 177], involves the removal of divergent terms using the sequential
transition rates.

Using n(E) =1/ (eE/kBT — 1), we get

F(—e)F(e+ AE) = —e (e + AE) [n(e + AE) — n(e)| n(AE),

2 h(2m) !
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1 1 . iE
n(E) = ERT 1= 3 {1 —iCot (ZkBT)] .

Using the identity,
¥ (1—2) = ¢ (2) = nCot(nz),
we obtain:
n(e+AE) —n(e) = 2;[1/; (1_ (1/3(62—;AE))> —y (1_;,%;5)
-9 (gB(e;;TAE)) + ¢ (12[3;) } (D.13)
Representing,

p() =y (1 - lf;)

) =y (ﬁ) ,

27T

we may write the co-tunneling rate in complex form as:

M =x [~ d2g() [y 2+ AE) 97 (2) + 97 (2) — ¢ (2 + BE)]

S (D14)
z+E—in z+Ey—iy 4
where ¢(z) = z(z+ AE) and k = %&??,. With,
_ Y _ (E— E1)?
I (Ey, E2) = /700 dz g(2) 0y~ (2) EEETIETRT
(D.15)
and,
(B E) =x [ dzglz)ag? (B2 — By
( 1 2) K e Zg(Z) Y (Z) [(Z+E1)2+772] [(Z+E2)2+172}
(D.16)
where,
AY*(=Ei) = ¢ (AE — Ei) =y (<E))
the co-tunneling rate can be written in compact form as;
" =1 (Ev,E2) — I (Ey, E). (D.17)

1. Calculation of the Residues

To solve the integral in Eq. (D.14), we break it into %+ and ¥~ terms in Eq.
(D.15) and Eq. (D.16) to have poles due to the digamma functions only either
on upper half or lower half of complex plane. Now, to evaluate I, we close
our contour in upper complex plane using an infinite radius semi-circle so
that we have no poles from 1~ inside the contour. Hence, the only pole
enclosed by the contour is given by;

z=—Ei+iy
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The residue for above poles can be calculated to obtain;

ag(in — E;)Ay~ (—E;i +in) (E; — Ei)
2in (Ej — E; + 2ir)

a(l)l( )= (D.18)

Similarly, to evaluate I, we close our contour in the lower complex plane
so that we have no poles from ™ inside the contour. Hence, the only pole
enclosed by the contour is given by;

z = _Ei — ll’]
The residue for above pole can be calculated to obtain;

ag(in — E) Ay (—E; —in) (Ej — E;)

@ (1
D.
a4(I7) = —2i (E; — E; — 2i) (D-19)
2. Calculation of I(Eq, Ep)
The integral in Eq. (D.15) can be written as sum of residues as;
—E;+in) Ay~ (—E; +in) (E; — E;
[ (E, E2) = EZ e — ) (£~ E) (D.20)
(Ej — E; + 2ir)

We Taylor expand in #, the term inside the square bracket of Eq. (D.20). We
keep only the first order term in # (which eventually is independent of 5
as observed from Eq. (D.20)) and we remove the zeroth order term which
diverges when n — 0. We get:

I (Ey, Ey) = 2m;<2 {EE')Alp(—E,-) + %g’(—Ei)AlP*(—Ei)
- Le-E)ay; (-E)| D)

where;

APy (—Ei) = ¢7 (AE— Ei) — 97 (—E)
and ¢ represents the first derivative of . Next, we will solve integral (D.16)
using similar approach. We obtain

I (B Ba) = —2mix | L apt(-B) + 58 (E)AY*(-E)
P e(-E)ap! (-E)| (D22)
a8\ E)A ' '

3. Contribution from the semi-circle arcs

To calculate the contribution form the semi-circle arcs, we consider the case
for z — oo. We use following asymptotic expansion for the digamma function

P(z) ~In(z) — 1 +0(z72). (D.23)

Z—300 2z

Using Eq. (D.23), we obtain

Byt €)=yt e+ 0E) 9 () = v (st an) )~y oe)

AE
~—+0(e %) (D2g)
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AYp~(e) = ¢ (e +AE) — ¢~ (e) —¢(1—21i(e+ms)) _lp(l_zz/ie)
%%JFO((Z) (D.25)
and,
1 1 2 L
Z+E1*iﬂ_Z+E2—i;72_>ooN|Z| .

By simple power counting, we find
" TT
%) (arc) ~ / d6R - R~ R~*. ¢(R)f(i6) ~ KR~*g(R)
J—=TT

where, in this case g(R) ~ R? which implies the semi-circle arc does not
contribute. In general, there is no contribution from the semi-circle arcs if
¢2(R) ~ R" with n < 4.

Final solution for the co-tunneling rate (AT = 0 case)

Including all the contributions the co-tunneling rate in the Eq. (D.11) can be
written as;

re = omic Y [ﬁg(—&) [Ap; (—Ei) = Ap{ (—E;)]
i,j=1,2

g(—Ei)

* E; — E

1
58'(—]51') +

1[A¢+(—Ei)+A¢(—Ei)] . (D.26)

2. CO-TUNNELING ENERGY RATES (AT = 0 CASE)

The co-tunneling energy rate for a process when an electron tunnels from «
into island 2 and at the same time an electron leaves island 1 is given below.
In this process, energy flows out of the reservoir a.

B
<) (out) = . / JEdE,dEs,dEs, Eq fu(Ea) (1— fu(Ey)) F(Es,)
2

1 1
(1_f(E52) E++E52—Ea +E_+EV—E51 5(EU_E0¢+E52_E51+AE>
L () (©) 1 1P
=———— [dé,dé¢,F —C,)G
27e*RyRy / CadGy a2 ( ‘:a) v (§V) E+ 4 Cu + E-+¢,

6 (§v +Cu+ AE) (D.27)
But, when AT = 0, FY (AE) = 1AE F (AE). Doing some algebra, we obtain

for the co-tunneling energy rates the same expression as for the co-tunneling
charge rates ( see Eq. (D.26)) with the function ‘g” defined differently as,

T () = T [ o) = _%e(e + AE)e (D.28)
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Similarly, lets define the co-tunneling energy rate for the electrons entering
into the reservoir «;

. h
reoth (in) = 27R.R, /dE’XdEVdEsldESZ Eq fu(Ev) (1 = fa(Ea)) f(Es,)
(1- f(Es,) ! + ! 25(5 ~Ey+Es, — Es, + AE)
VIEt+Ey, —E, E-+E,—Es, fomr s e

(D.29)

We obtain similar co-tunneling rates as in Eq.(D.28) but with different ex-
pression for g(e) given by

l"z?f(h)(in) = r;‘;*(c) {g(e) = —%(e + AE)(e + AE)€:| (D.30)

All other co-tunneling energy rates can be written in the form of Eq. (D.28)
and Eq. (D.30) with suitable modification for energy parameters and resis-
tances involved.

Co-tunneling rates AT # 0

In the presence of both thermal and potential bias, we cannot solve the
integrals involved in the co-tunneling rates analytically. Although, we can
still write the co-tunneling rates in the compact form using Eq. (D.4) and
Eq. (D.9). In this section, we will suggest a proper regularization method for
integrals in Eq. (D.4) and Eq. (D.9) and simplify it to a form which can be
easily integrated numerically. We have;

B (B Ba ) = o [ aghlS™ (-0)FY) (¢4 Bs)
1 1 2
— D.
‘C+E1—i77 {+E—E—ipy (D31
Simplifying the term in square modulus, we obtain:
c/h) (c)
(c/h) [ ,xz ( C)Py] (€+E3)
H Eq,Ep, E3)
ny,ny ( 1 2 3 / C §+E1) +;7
5" (OF, <€+E
+ 2 o [ag ESM (o) EY @+ E
/C TN [ dz S @+ Es)
_ 2
[(§+E1> (§+Es—Ea) + 17 ] (D32)

[(5 +E1)* + 772} [(C +E3—E)* + 772}

Now, lets transform the first two terms in Eq. (D.32) such that { — z — E4
for the first term and ¢ — z — E3 + E; for the second term.

[/d FS™ (2 4 ENEY (24 Es — )

h
Hyh) (Ex, B, Es) = Eo:

( _ (c)
+/d§ E, ' (—z+E3 EZ)Fvl (z+ Ep) —Z/dC Fﬁgg/h)(_é)ljv(i) (& +E3)

22 + 11
[(E+E1) (G+Es— Ea) + 7]
(D.33)
[+ B+ ] [<c+E3-E2>2+nzﬂ ”
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We use the approach in reference [177] to regularize the integral, i.e.

lim [ dz g(Z_EZ) —)/dZ g(Z_El)_g(_El)
=0 22 + 12 z2

So, when y — 0,

h h
HT(ZE,/HZ) (El/EZI E3) = E

[ I B/ (—z+ ENEY (24 Bs — B) — FS™ (B)FY (B — B1)
22

+ [ E§™ (—2+ B3 — Ea)EY) (2 + Ba) — F5™™ (B3 — E)FY{) (Eo)
72

o [ gE M _myp© x4 pay (6T ED) (E+Es — Ep)] D.
/ (;I a2 ( (;‘) vl (§+ 3) [(6—1—]51)2} [(§+E3—E2)2}:| ( 34)

The integrals in Eq. (D.34) are properly regularized and can be numerically
evaluated for the case of both thermal and potential bias.

D.3 CHARGE AND HEAT CURRENT IN THE CO-TUNNELING REGIME

The expression for charge and heat currents flowing towards the right reser-
voir in contact with island 2 is given by

]l(qcz/h) = Qle/h) “rﬁgh)(”l/ﬂz +1) + Fiiﬁé/h)(nl,nz +1) + F§C/h)(n1,nz)}

,R2
p(ny,ny+1) + {I’i‘;tlg/h)(nl +1,np+1)+ FCRC;tlgcz/h)(nl +1,np+1)
h h h
+ T (m 4+ 1,m2) | plm +1,my +1) = [T56™ (m1, m2) + TR ™ (1, m2)

h h h
+ Ty (”1,712)} p(m, na) — [ri‘iﬁﬁé/ o+ 1,m2) + T ™ (m +1,m2)

+Tas) (1 +1, nz)} p(m +1, nz)l, (D.35)

where Q(©) = ¢ and Q) =1. ]](;/h) can be written anagously. Eq. (D.35) can
be broken down into the one containing only sequential tunneling rates and
another one containing only the co-tunneling rates.
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E.1 MASTER EQUATION

The probability py, ., that the system is in a state with n; and 7, electrons in
QDs 1 and 2 is calculated by solving the following system of equations

Po,0

M. | Por| —
P1,0
P11

, (E.1)

— O O O

where the rows of the transition matrix M is given by

(LA (0) + T (0) + Tea ()]
M[l] _ rz,C(O) ,
Iwl,L (O> + FI,R(O)
0
T
0
M[Z] — I_‘L,l (1) + 1—‘R,I (1) ,
rC,z(l)
- {rl,L(l) + FI,R(l) + rz,C(l)]
rC,z(O) 1 !
M[s} — | [FL,I (1) + 1—'131(1) + rz,C(O)] ; M[4] — 1
Ie(1) +Tir(1) 1

The first three equations correspond to the master equations where the
time-derivatives pgo, P11, and pg are set to zero, while the last equation
corresponds to the normalization requirement. The charge current is given

by

1 = epooTLa(0) + poaTLa(1) = prola(0) — pralin (D], (E2)

where e is the electron charge, and the heat current leaving reservoir « is
given by

i = P0,00a,1(0)AEy1(0) — p1,1T1,2 (1) AEu (1)
+ 01721 (1)AEy1 (1) — p1,oT1,4(0)AEy1(0), (E.3)
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for « = L,R, and

]éh) = Pool'c2(0)AU2(0) — Py1T5,c(1)AU(1)
+ P1oTc2(1)AU (1) — Po1T,,c(0)AU(0).  (E.4)

Note that one can exploit the symmetry of the transitions energies with
respect to the common chemical potential when 6; = 0, = 1/2 [see Egs. (5.2)
and Fig. 5.1(b)] to restrict the analysis to the range 6; > 1/2, without loss
of generality. In fact, the heat currents relative to the case 6; = 6; < 1/2 are
equal to the ones obtained with §; = 1 — 6;(> 1/2), while the charge currents
relative to the case 6; = 6; < 1/2 are equal in amplitude but with opposite
sign with respect to the ones obtained with §; = 1 — 6;(> 1/2). This can be
explicitly verified by substituting 6; — 1 —60; and I'y 5 /4 1(1) —= T14/01(1 — 1)
in Egs. (5.2), (E.1), (E.2), (E.3) and (E.4).

E.2 OPTIMAL RATES FOR COOLING POWER AND COP

By substituting the probability Py, »,, solution of Eq. (E.1), into the expression
(E.4) for Ig and imposing the detailed balance condition (5.5), we find that
Ig > 0 if and only if

T L(0)TR4(1) (emg(el—l) N 1)

—Tp.(1) [FLL(O) (1 - e*fﬁ?t) +T,r(0) (1 - e*f'fé"l)] (E.5)

= [[1L(0) + Tyr(0)] [TLa(1) + TR (1)] (/7€ —1) > 0.
Interestingly, the condition (E.5) does not depend on the rates an/ 1) relative
to the cooled system, nor on 6,. In Eq. (E.5), 172 =1-T/Ty is the Carnot
efficiency of a heat engine operating between L and R, & = Tc/(T — Tc) is
the Carnot COP of a refrigerator operating between R and C, and j = E;/kpT.
Restricting to the range 61 > 1/2 (see App. E.1 for details), the first line of
Eq. (E.5) is the only term that can be positive, so that a necessary non-trivial
condition to satisfy Eq. (E.5) is that 6; > 1.

When Eq. (E.5) is satisfied, at fixed Ej, 8; and 6, we find that Ié is a

decreasing function of I't ; (1) and I'; g (0), so that the optimal choice for such
parameters is

Tpy(1) = Ty R(0) = 0. (E6)
Now, assuming (E.6), ]éh) is an increasing function of the remaining rates
I';1(0), Tr+(1), I'2c(0), T'c (1), so that the optimal choice is to take them as

large as possible, compatibly with the validity of the sequential tunneling
picture.

E.3 DERIVATION OF THE MASTER EQUATION FOR THE SYSTEM WITH
THREE QDS

The Hamiltonian of the system with three QDs can be represented as
Hsys = Y em|m) (m| + Er(]1,1,0)(1,1,0] + |1,1,1)(1,1,1])
m

+£(]1,0,0)(0,0,1| + [1,1,0)(0,1,1| + h.c.), (E-7)
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where €, is the energy of state |m) in the absence of coupling, ¢ is the hopping
element between the two tunnel coupled QDs (3 and 1), and E| represents
the inter-dot charging energy between the capacitively-coupled QDs, 1 and 2.
Under the assumption that the hopping element ¢ is much smaller than the
coupling energy between QDs and reservoirs, in Refs. [108, 109, 110, 111, 112]
it was shown that the density matrix p (whose components are defined as
pmn = (m|p|n)) satisfies a modified Liouville equation. In particular, the
diagonal components 0y, satisfy[371]

Omm = _i[Hsys/P]mm - Zra,mlpmm + Zra,kmpkk/ (E.8)
w,l o,k

while the off-diagonal components, resulting from coherent tunneling of
electrons between QDS 3 and 1, satisfy

. . 1
Omn = —Z[Hsys,P]mn ) Z (rml + rnl) Pmn- (E.9)
1

In Egs. (E.8) and (E.9), the first (Liouville) term contains the system Hamil-
tonian (E.7), while the other terms describe the coupling of the QDs with
the reservoirs. In Eq. (E.9), [m) = (0,0,1) and |n) = |1,0,0) (and viceversa),
or |m) =0,1,1) and |n) = |1,1,0) (and viceversa), since the only non-zero
off-diagonal terms are the ones related to electron tunneling between QDs
1 and 3 (with 2 either occupied or unoccupied). Note that Egs. (E.8) and
(E.9) depend explicitly only on the transition rate I';;, from state |m) to
state |I), which accounts for the transfer of electrons between a QD and the
corresponding reservoir « = a(m,l). In particular, the transition rates for
tunnelling events between 1 and 3, such as I'; (9,1)(1,0,0) and I'y (0,1,1)(1,1,0)/
do not appear in Egs. (E.8) and (E.9). The rates appearing in Eqgs. (E.8) and
(E.9) can be expressed as [58]

Tt =0 Yafu(DEy m), (E.10)

where 1, is the coupling energy between reservoir « and QD, f,(e) =
[1+ ¢/ (k8T2)] =1 is the reservoir Fermi distribution function, while AEy; ,,; =
Ey(l) — Ey(m) is the transition energy, where Eyj(m) = Eyj(ny,np,n3) [see
Eq. (5.11)] with the set of occupation numbers corresponding to the state

In order to keep the notation compact, we assign an index to each set
of occupation numbers as follows: (0,0,0) — 0, (1,0,0) — 1, (0,1,0) — 2,
(0,0,1) -3, (1,1,0) =+ 4, (0,1,1) —+ 5,(1,0,1) - 6 and (1,1,1) — 7. We
will show now that the inter-dot tunneling rates, i. e. Ty 31 == Iy (0,0,1)(1,0,0)
and I'y54 =Ty (0,1,1)(1,1,0), can be obtained by using Eqs. (E.8) and (E.9). [372]
Let us consider the component (33) of Eq. (E.8), i. e.

p33 = — it(p13 — p31) — (T30 + T35 + I'36) P33
+ T3 poo + I's3 p55 + T'63 pse6, (E.11)

where Iy = Iy, mn since only one reservoir is attached to each quantum dot
and hence removing the bath index does not introduce any ambiguity. In
the steady state (9 = 0), the components (31) and (54) of Eq. (E.9) can be
written, respectively, as

t .
031 = (P33 p.lf% (E.12)
€3 — €1 — 175
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and

t (55 — 044) (E.13)
ROK 13
€5 — €4 — EI — 195

054

where T'©) = I'sg 4 T35 + 30 + 16 + T'14 + T'1g accounts for all the processes
which lead to the decay of the states |3) and |1), and T = T's3 + T'5p + I'sy +
I's1 + I'yp 4 I'y7 accounts for all the processes which lead to the decay of the
states |0,1,1) and |1,1,0). By substituting Eq. (E.12) into Eq. (E.11), with
P13 = P31, the latter equation will contain only diagonal elements of the
density matrix, thus representing an ordinary master equation of the form

p3= Y. (Taps+Tip) —Taips+Tiapr, (E.14)
1=0,5,6

where p,, = pm represents the probability for the state |m). In Eq. (E.14),
the two terms (in I'3; and I'y3) accounting for the transitions between states
|0,0,1) and |1,0,0), when QD 2 is unoccupied, now appear. The associated
inter-dot tunneling rate takes the form

270)
FO) )2
(€3 —€1)?+ (%)

Similarly, using Eq. (E.13) in the expression for gs5 or g4, one obtains the
inter-dot tunneling rate

I3 = (E.15)

27(1)
F54 = =l (E.16)
2 r@\2
(e3—€e1—Ep)"+ (T)

in the case where QD 2 is occupied. Note that both inter-dot tunneling rates
have a Lorentzian profile.
The relevant heat currents can be written as

T = Y Ayt (Tt pos = T p1) s (E.17)
m,l

where the sum runs over the indices (ml) = (02), (14), (35), (67) for the
cooling power ]éh), and over the values (ml) = (03), (16), (25), (47) for the
input heat )

put heat J; .

E.4 HEAT CURRENTS IN THE SYSTEM WITH METALLIC ISLANDS

Since MIs presents a continuum of states, the heat exchanged in a single
electron transition is not fixed by the electrostatic energy difference as in
Eq. (5.16), but it depends on the energy of the electron that is tunneling. We
thus need to define the following heat rates [146]

Fil';;)ut o 1 /deeN,x(e)Nﬁ(e — AEu,lm)f,x(e) [1 — fﬁ(e — AEU,lm)] ,

N EZR,XIg
(E.18)
and

phin _ L /de (e = AE ) Na(€)Ng(e — AEy 1) fu(e)

ml %
[1— fg(e = AEym)] . (E-19)
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F%M is to the heat rate extracted from «(m,1) (the reservoir or island from

which the electron is tunneling) and FZfln corresponds to the heat injected
into B(m,1) (the reservoir or island to which the electron is tunneling to)
when the system undergoes a transition from m to I. We thus have that

1E = Y (T pw =Tl ). (E.20)
ml

where, as in Eq. (E.17), the sum runs over the values (ml) = (02), (14),

(35), (67), for |, and over (ml) = (03), (16), (25), (47), for J'™). The heat
extracted from MI 2 can also be computed as in Eq. (E.20) by summing over
the values (ml) = (20), (41), (53), (76).
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APPENDIX 6

F1 MOST GENERIC SYSTEM-BATH COUPLING

In this appendix we prove that the system bath interaction described by
Eq. (2.12) is indeed the most generic system-bath interaction.

The most generic Hermitian operator acting on the tensor product space
between 5=Q (a two-dimensional Hilbert space) and the baths (an arbitrary
dimensional Hilbert space) can be expanded on the product basis of the two
Hilbert spaces. We therefore consider a basis {3;}; of Hermitian operators
acting on the space of the bath, and the specific basis 7; = {1, 0x, 0y, 0z} of
Hermitian operators acting on the qubit space. This yields

Ha,Q = Zﬂij BZ®0'] = ZB]®(T], (Fl)
i i
where B; = }; 4;;3; is an Hermitian operator acting on the bath space. Using
the relations
ox=0"+0"

. (E2)

oy = i o,

we obtain Eq. (2.12), where By = By +iBy.

F.2 RECTIFICATION IN THE WEAK COUPLING REGIME

We now compute the heat current flowing out of the leads in the weak
coupling regime, valid when H, g is “small enough”. As shown in Ref. [2],
the evolution of the reduced density matrix pq of the qubit obeys a Lind-
blad master equation. Furthermore, when the qubit is not degenerate (i.e.
when A # 0), the Lindblad master equation can be cast in the form of
a rate equation for the occupation probabilities of the qubit, defined by
p1 = Tr{pqoTo™} and py = 1 — p;. Interestingly, only the terms in H,q
proportional to ¢ and ¢~ contribute to the rate equation. Indeed, rewriting
H, g as in Eq. (F.1), the rate equation only depends on the following matrix
elements of the ; operators [2]:

(0lej[1), (E3)

where {|0),|1)} are the eigenstates of the qubit. In other words, only terms
which can induce transitions in the qubit spectrum contribute to the master
equation. Since (0|¢j|1) = 0 for 0; = 1, 0%, the only terms that determine the
populations are the ones proportional to 0, and 0y, and therefore to ¢+ and
o,

Neglecting for the moment the Lamb shift, the probabilities satisfy [2]

9 (po) _ [—7(d) F(8) Po E
ot (Pl) (’Y(A) —T(A)> <P1>, 9
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where ’Y(A> = ')/L(A/ TL) + ')/R(Ar TR)/ and IYDC(AI Ttx>/ ’?tx(Ar T/X)/ fora = L,R,
are defined as in Sec. 6.3 (see App. F.3 for a derivation of the expression
for the rates). Using Eq. (F4) and pg + p1 = 1, we can find the steady state
populations

7(8) 7(8)
==, = . (Es)
P @ T A @) ’
The heat current flowing out of bath « at inverse temperature f, can then be

computed as

]o(ch)<ﬁtx) =A (PO'Y/X(A/ sz) - Pl'?a(A/ sz)) : (F6)

Notice that also the steady-state heat current only depends on the rates,
which in turn only depend on the terms in H, o proportional to ¢ and o~ .
Therefore, also the rectification coefficient, withing the weak-coupling regime,
only depends on the terms proportional to ¢t and ¢~ Since 7, (A, T,) and
Fa(A, Ty) are related by the detailed balance equation (see Sec. 6.3), we
can express them as 7, (A, Ty) = v (A, To) f(A/ (kgTy)) and F4(A, Ty) =
YH(A, Ty) f(—=A/ (kpTy)), where f(x) = (1+¢*)~! and where 7 (A, T,) is
defined as in Sec. 6.3. Using Eqs. (F.5) and (F.6), and choosing as bath
temperatures Ty, = T+ AT/2 and T = T — AT /2, we find that

’)’]Jj(A/ TL)’)’K(A/ TR)
(A TL) + 7 (A, TR)

We now have a general expression for the heat current which only depends
on the tunneling rates v, (A, T,). In turn, given any bath and qubit-bath
Hamiltonian, we are able to compute the rates as discussed in Sec. 6.3.

At last, we can find a general expression for R by plugging Eq. (F.7) into
Eq. (6.3). This yields Eq. (6.4).

JM(AT) = A

[f(A/(ksTL)) — f(A(ksTR))].  (E7)

F.3 TUNNELING RATES

In this section we prove Eq. (6.6). In order to use the results of Ref. [2],
we consider the system-bath Hamiltonian as written in Eq. (F.1), such that
all operators are Hermitian. Furthermore, as argued in App. F.2, the term
proportional to o, does not contribute to the heat current. Therefore we have
that

Hyo = Bx®0x + By ® o0y, (E8)
where
_B"+B
=
Using results of Ref. [2] with H, g given by to Eq. (E.8), we find

Ya(D, Ta) = Y, ij (1]]0) (0]oy|1) =
ij={xy}

By (F9)

—+00
) . 1 ;
= Yax T Yyy + vy — 1Yy = 5 / dte™/" (B(s)BY(0)), (E10)

where
+o0 .
i = / dt ™ (Bf ()B;(0)), (E11)

and B;(t) is the time evolution of B; in the interaction picture, i.e. B;(f) is the
Heisenberg picture operator evolved solely according to Hamiltonian of the
bath H,. In the last step of Eq. (F.10) we used Eq. (F.9) to express By and By,
in terms of B and B'. This concludes the proof.
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F.4 TUNNELING RATES IN SPECIFIC MODELS

In this section we derive the expression for -y, (A, T) in various models.

F.4.1 Fermionic baths with linear (tunnel) couplings

In this subsection we consider a fermionic bath H&F), as defined in Eq. (2.7).

Furthermore, we consider the case of equal chemical potentials, which can
be treated by considering the energies €, in Eq. (2.7) as measured respect to
the common chemical potential y. Therefore, the energies €, are defined in
the interval [—oo, +0c0]. Plugging the linear coupling Hamiltonian, given in
Eq. (2.12), into Eq. (6.6) yields

+o0
VoA, Ta) = ) Vi Vi / dt st <clxk(t)c;k/> . (F12)
Kk S

In the interaction picture, time-evolved bath operators O satisfy (with /1 = 1)

dO(t)

— = [Ha, O(t)] . (F13)
Using the fact that [Hy, cux| = —€axCak, we find
Cak(t) = eiieaktcak- (F14)

Plugging Eq. (F.14) into Eq. (F.12) yields
Fa(A, To) = 270 ) [Vik|? (earcipe) 5(A — en) =
k

27t Y |Vikl*[1 — f(Bueak)]6(A — €r), (E15)
k

where f(x) = (exp(x) + 1) L. Recognizing the spectral function, defined in
Eq. (2.14), we have that

’h(A, sz) = rlX(A)[l _f<A/<kBTa))]r (F-16)

where V = Vj such that €, = A. Using the detailed balance condition, we
find that
7a (8, T) =Ta(d), (F17)

which implies ¢(A, T) = 1. This proves Eq. (6.11).
F.4.2 Bosonic baths with linear (tunnel-like) coupling

In this section we consider a bosonic bath H&B), as defined in Eq. (2.6), and
a linear coupling as in Eq. (2.12). As in the fermionic case, we have that

[H,SCB), bak] = —€axbak, s0 also in this case we have that the interaction picture
destruction operator is given by

b (1) = e~ Caktp . (F.18)

Performing the same steps as in the fermionic case, we end up with Eq. (F.15)
with (byb!,) instead of (cuc!,), which leads to having 1+ n(ey/ (kpTx))
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instead of 1 — f(e/ (kpTy)), where n(x) = (exp(x) — 1)~!. We therefore
find
Yo (B, To) = Ta(D)[1+n(A/ (kpTw))], (F.19)

which, using the detailed balance condition, leads to
Y5 (A, Ty) = To(A) coth (A/ (2kgTy))- (F.20)

This proves Eq. (6.12).

F.4.3 Arbitrary baths with different o couplings

In this subsection we consider arbitrary baths coupled to the qubit via
Eq. (2.13). In fact, in this appendix we consider a more general case given by

Hyq = Z (4,i07) @ (Ba + B;), (F.21)

i=x,y,z

where 1, = (sin 8, cos ¢y, sin b, sin ¢y, cos 6,) is a unit vector, and B, is an
arbitrary bath operator. As discussed in Sec. 6.3, the term proportional to o
does not contribute to the heat current, so we can neglect it. The term that
matters is

Al x 0 + Al y0y = sin by (ei¢“0+ + e‘i‘/’“a‘) . (E.22)

Assuming that Bt produces excitations in the bath with positive energy, also
the terms proportional to Bfo* and Bo~ vanish. The relevant terms of the
interacting Hamiltonian thus become

Hyo=0"®By+0 @B}, (F.23)

where we define ‘
B, = sin0,¢'%B,. (F.24)

This interacting Hamiltonian is now of the form of Eq. (2.12). Therefore, the
tunneling rates can be computed from Eq. (6.6), yielding

Fu (A, Ty) = sin® 0,1(A, Ty), (F.25)

where (A, Ty) = [ dte’® (B (t)B}(0)), only depends on the bath through
the temperature, and it does not depend on 6, nor ¢,. Using the detailed
balance condition we find

Vo (B, Ta) = sin® 01 (Ba) (1 + e Fet). (F.26)
This case is therefore described by the “similar bath” assumption [see
Eq. (6.7)], where Ty (A) = sin?,, and ¢(B) = h(B)(1 + e P4).

F5 THERMAL AVERAGES

In this section we show how to compute the expectation value <n§k> for
the bosonic bath. Let us define the inverse temperature B, = 1/ (kgT,) The
partition function Z, is given by

—+o00
z= 3, p({n}) (F.27)
{n;}=0
where the sum is over each n; from 0 to +o0, and where

p({n;}) = e PeXimici (F.28)
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is the canonical probability of finding the bath in a Fock state with oc-
cupation numbers {n;}. Using these two definitions, and recalling that
(n™) = ¥ p({n;}) n}l!, itis easy to prove that

10lnZ
_B de ‘ = <ntxk>/ (F29)
9
19%InZ
a2 = () () (F:30)
ak

Plugging Eq. (F.28) into (F.27), and recognizing that we can perform all
the sums as geometric series, we can express the logarithm of the bosonic
partition function as

InZ=-Y In(1—e Fw). (F.31)
j

Plugging Eq. (F.31) into (F.29), we find the well know result that (1n,;) =
n(Ba€ak)- Plugging Eq. (F.31) into (F.30), we find

<n§k> = 21 (Ba€ak) + 1(Beak)- (F32)
F6 LAMB SHIFT
In this section we compute the Lamb shift of the qubit gap induced by

the bath. In order to use the results of Ref. [2], we consider a coupling
Hamiltonian as written in Eq. (F.8). As shown in Ref. [2], we have that

His = Z 5Axy(€)f7;r(e)‘7j(€)f (F33)
e={0,£A}
ij={xy}
where (@)
_ 1 +00 vij(w s
0A;i(e) = EP /700 mdw = 0A[e, vij(w)], (E34)
with oo
7yw) = [ dte (B (5)B;(0)) (F35)
defined exactly as in Eq. (F.11), where A is replaced with w, and where
oie)= Y [ ("|oi|e") (€] (F.36)
e'—"=e

Notice that the functional 6A][...], defined in Eq. (F.34), is linear, and that
€’ and €’ run over the two eigenvalues of the qubit, —A/2, A/2. For ease of
notation, we identify the excited state of the qubit with |1) = |A/2), and the
ground state with |0) = |-A/2). Expanding the sum in Eq. (F.36), we have

0i(A) = (0lei|1) |0) (1],
0i(=A) = (1]ei[0) [1) (O],
0i(0) = }_ (kloilk) |k) (k| =0,

k=0,1

(E37)

where we used the fact that both oy and 0}, have only zeros on the diagonal
in the last equality. Therefore, the non-null elements are given by

ox(A) =07, ox(=A)=0"

oy(A) = —io™, oy(—A) =ict. (E38)
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Plugging these results into Eq. (F.33), using the anti-commutation relation
{o7,0"} =1, and neglecting the terms proportional to the identity, we find

His = 0 [6Ayx(A) + 6y (A) — iAyy (A) + i6Ayx (A)]
— 03 [6Bx(—A) + 8By (= D) + i6B gy (—A) — i6Ay (—A)] . (F39)

Expressing 6A;j(+A) in terms of the functional 6A[Delta, v;j(omega)] yields

His = 0z0A (A, Yxx(w) + Yyy (W) — i7xy(w) + iyx(w)]
— 0208 [=B, vxx (W) + Yy (W) +i7xy (W) — iyyx ()] . (E40)

Using the definition of 7;j(w) in Eq. (F.35), and expressing By and B, in
terms of B and B* through Eq. (F.9), it can be shown that

Yax (W) + Yy (W) = ivay (W) +ivyx(w) = F(w),

Yar(@) + Yy (@) + iy (@) — ipye(@) = Y(~w), (F41)

where 7(w) and y(w) are the rates introduced in Eq. (F.4). Plugging Eq. (F41)
into Eq. (F.40) yields

His = 0= (6 [8, ()] — 6 [, 7(~)]) (F42)

Using Eq. (F.34), it can be shown that the operator SA[A, . ..] satisfies the
general property SA[—A, f(—w)] = —A[A, f(w)]. Therefore, we find

His = a:A (A, ¥(w) + y(w)]. (F.43)

Finally, recalling that y(w) = v (w, T1.) + Yr(w, Tr), we have that

(W) + 7(w) = 7 (w, TL) + 75 (w, Tr). (F.44)

Therefore, we find
His = 0z (6A [A, v (w, T)] + 6A [A, v (w0, TR)]), (F.45)

which proves Eq. (6.15).

F7 CO-TUNNELING CALCULATION

In this appendix we derive Eq. (6.20), i.e. the expression for the heat current
adding co-tunneling rates to the ME calculation performed in the weak
coupling regime (see Sec. 6.3). We will focus on the XX and YX coupling
cases, defined in Sec. 6.4. For simplicity, in this appendix we express the

system bath Hamiltonian H{E(S,g) as

b x _—
HEY = (90" +7°07) ® Y Vige(bore + b1,
k

(F.46)

b _

HRQ = (0 +07) @ Y Vi (b + by,
k

where g is a complex coefficient given by 4 = 1 in the XX case (since
oy =0 +07) and by g = i in the YX case (since oy = ic™ —io ™).
Co-tunneling is a second-order process where a state of the uncoupled
system evolves into another state of the uncoupled system passing through
a “virtual state” by interacting twice with ’Hffg Since 7—[538 contains the

operators ¢ and ¢, and since co-tunneling rates are obtained by acting
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twice with H® bQ the state of the qubit remain unaltered during a co-tunneling
process. This property, which is denoted as “elastic co-tunneling”, implies
that co-tunneling rates do not enter the master equation for the probabilities.
We now consider all processes which transfer an excitation from the left
to the right bath while the qubit is in the ground state. Let us denote with
|0) and |1) the ground and excited state of the qubit, and with |n,), a Fock
state with n, excitations in mode k of bath «. The initial |i), final |f), and
intermediate states |v;) involved in the co-tunneling process are respectively
given by
i) = 10) @ |nL)ye @ |nr)er s
£ =10) ® e~ 1), ® g + 1y,
lvi) = 1) ® [nL = 1), ® [nr)p,
[va) = 1) ® [ne)y ® |ng + 1)y,

for all choices of k and k’. Using the Fermi golden rule, the rate of transition
from the initial state |7) to the final state |f) is given by

(F47)

27 2
Yi—)f = ? ‘A'

Ca (F.48)

where €;/ ¢ is the energy of the initial/final state in the absence of the system-
bath interaction, and

Za Sb) 'sz Sb)
SRS T L
] vj

11 being an infinitesimal positive quantity and €, the energy of |v]->. Using
Egs. (F.46) and (F.47), we have that the non-null matrix elements are

(FIHSRIv) = (va| HEQ[)) = Vikg ViR + 1,

F.50
(nIHERI) = (IR e) —qukLr "
The total co-tunneling rate of energy FCOt(C) (0) that accounts for the transfer
of an excitation from left to right, Whlle the qubit is in state |0), is obtained
by performing a weighed sum, according to the equilibrium probabilities,
over all the initial and final states of the quantity Y; s multiplied by the
transferred energy. Combining Egs. (F.50), (F.49) and (F.48), and using for
simplicity € = erx and ey = egy, we have that

21
ITR ¥ (0) = T X e V2 Vi Prn () [L + (e
kk!

« ¢ 1
Adec+in  A—ec+in

d(ex —€ew). (Fs51)

As usual, we assume that the energies in the leads form a continuum, so
we can replace the sum with an integral. Performing some calculations, and
recalling that |g|? = 1 both in the XX and XY case, we have that

P90 = [ erera(epm (@ + m(e)

1 q
8 A+€+iq+q7A—e+in '

(F.52)

Note that the term q/g* is respectively 1 and —1 in the XX and YX cases.

175



176

APPENDIX 6

The total cotunneling rate of energy l";olf(c) (0) transferring an excitation

from right to left when the qubit is in the ground state is given by Eq. (F.52)

exchanging L <> R. We thus find that the net energy rate T°°%¢)(0) = Fi(f{t(c) -
FIC{?(C) (0) is given by
T de
rtO(0) = [ 5 eTL(eTR(e)ln (€) — n(e)
1 1
+ . (E53)

“|Atetin g A—e+iy

Repeating the same derivation assuming that the qubit is in the excited
state, it can be shown that the net rate T°!()(1) is the same, i.e. T<°t(¢)(0) =
[<°t()(1). Therefore, the heat current will be given by adding Eq. (F.53) to
the ME expression, proving Eq. (6.20).

F.8 NON EQUILIBRIUM GREEN’'S FUNCTION CALCULATION

In this appendix, we will consider a qubit in contact with bosonic baths. In
all our calculations, we fix the coupling on the right hand side to have only
the 0 component, i. e. n, g = n, g = 0 and ny g = 1. The total Hamiltonian
in terms of spin operators

A o L
H=Z0:+ Y ewhlibu + Y nj10BL + 6 Br. (F.54)
ko j

Spin operators do not satisfy the usual Wick’s theorem. The usual Feynman
diagram techniques applied to obtain Dyson equations can’t be used. In order
to overcome this difficulty, one can undergo Majorana fermion transformation
of spin operators using the following relations [373, 147]:

Ox = —iflylz; Oy = —ifjz0]x; 02 = —if]x]y. (F.55)
The total Hamiltonian in terms of Majorana fermions
iA

~

H=— Eﬂxﬁy + Zeakblkbak - i[ﬂx,LﬁyﬁzEL
ko

B+ iy B — iy Br. (E:56)
We write the Green’s function for spin operators as:
Gt t) = —ilov(t)a (1)),
Gly(tt) —i0(t — t'){[o1(t), 0v (¢')]). (E57)

The relations between the Green’s function in the Majorana representation
and the Green’s function in spin representation are given by[373, 147],

G/~ () = FT05/ 7 (1)
G'(tt")=0(t—t) [IT7(t,t') + TI=(t,t)], (F.58)

where ﬁl<l'/ 7 (t, ') = Li{fp(+)7;(t)) are the lesser/greater Green’s functions
for Majorana operators. The heat current flowing from the lead R to the
system is given by

W) = i ([HL(), HE) = —2F enVisRe [Gip(t D], (Fs9)
k
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where G3, (t,t') = —i <I§{k(t’ )&x(t)>. Following standard Keldysh NEGF
treatment using Langreth theorem, the steady state heat current as defined
in Eq. (6.2) can be written as:

T (AT) = 2 / de € Re [GL,(€)D5 (€) + G (€)Di(e)], (F.60)
where Dy (€) = Yk | Vri|?gri(€) is the self energy of the bath R and gy (€)

is the Green’s function for the uncoupled bath R. Applying the relations of
Eq. (F.58), the heat current can be computed as

® d
o= o—e [l (e)D (e) + 115 ()D ()], (E61)
where the self energies due to system bath coupling, Dy (e) = —ing(e)T'r(€)
and Dy (€) = —i(1+ng(e))I'r(€). In order to evaluate the heat currents, one

needs to calculate the lesser and greater components of Majorana Green’s
function.

E8.1 Derivation of Green’s function

In this section, we will derive the Green’s functions in Majorana representa-
tion. Normal ordering for Majorana fermions is not defined. It is useful to
write the Majorana operators in terms of Dirac operators[373, 147]

e =f+f5 ﬁy:i(ff—f)f' h.=¢+4" (F.62)

The fermionic nature of f is consistent with,

. iy +ify 4 . Ao
f=PE a0 =0 {1} =1, (F63)

and should hold for g as well. The Majorana representation does not suf-
fer from vertex problem([373]) and the constraints on spins are naturally
imposed on Majorana operators[147]. The Hamiltonian for the qubit gets

transformed to A
Hq =5 (1-2f"f), (F.64)

whereas the contact Hamiltonian
Hig = {”X,L (f+ — )iz — Z'”y,L 72(f "‘er) +n,(1— 2f+f) B, (F.65)

and X X
Hgo = (f" — f)#.Br. (F.66)

Note that we consider general spin coupling in the left lead whereas a
fixed oy coupling in the right. The contour ordered Green’s function for the
Majorana operators can be written as:

R M (4 t) TI(t)
HXX(T/ T/) = i (F67)
N5 () T (1)
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We also define the Green'’s function for Dirac f - fermions in the Bogolyubov-
Nambu representation, = (f, f1)T and ' = (f*, f), such that Gy(t,7') =
—i(T{(7)(7')). On expansion in the Keldysh contour,

fff(t t) Gt t) Grp(t ) Gl ) |

/ t / /
f+f+(t t) Gerf(t,t) f’rf’r(t t) f+f(t t)
Gy(t, ) = ) N ) e (E6B)
Gn(tt) Gt t) m(t t) Gt t)

/ / F /
f+f+(t t) f‘rf(t t) f’rf’r(t t) Gf-rf(t/t)

where for instance, G4+ (7, T') = —i <Tf (0)fH )> For more clarification,
see Egs. (A2) and (A3) in Ref.[125]. The lesser and greater Green’s function
in Majorana representation,

1

() =1 1] 657 () L

My~ (L) = [1 -] 657 (1) [ ! 1] (F.69)

E8.2  Calculation of Dyson equation

In order to obtain a Dyson equation for ¢, we need to do perturbation
expansion in terms of the contact Hamiltonian for Dirac f-fermions.

Gepr(T, ) = G?ﬂ(r ')
+ 3 L dndn (T [Huo(m)Hio(mf@f )] )+ E70)
After a long but straightforward calculation, we obtain
Gy(t,7) = Gg,('r, ')+ /dTlde Gy(T, Tl)iw(rl,rz)ég(rz, ),  (F71)

where 2y = ilp,L + 2¢,R,

N

Z¢IL(T1,T2) =% (7, &) (TliLHQ,Z(Tl,Tz))A\

A GO + (Tll TZ) 0
+ ”ﬁ,LHg,z(Tlr 7)1+ 4”§,L 1 0 ), (F72)
0 Grr(m, 1)
and
Spr(T1, 1) = iZr(1, )T (11, T2) A, (E73)

where 1 is the matrix of ones, the embedded self energy ¥,(t,T2) =
—i(T [Bia(71) Bxa(12)]), and



F.8 NON EQUILIBRIUM GREEN’S FUNCTION CALCULATION

Writing the equation of motion for G, we get:

A

Gg,(T, T/)(—l'%T/ + Aby) = 8(t— 1)1, (F.74)

where 1 is a unit matrix. The retarded and advanced self energies due to
coupling to the bath are given by:

1 1
xr/%(e v, -
Z' “kl (e—e“kiin e+e,xkii;7>

_ M;( € + % (Ta(€) — Ta(—e)), (E75)

where JA, (€) is the lamb shift defined as:

5hi(e) =P / ( : r"‘(el)> , (E76)

e—e’ €+¢€

The lesser and greater components of self energy take the form

r(e) = —ing(e) (Ta(e) —Tu(—€)),
Xo(e) = —i(1+na(e)) (Tu(e) —Tu(—e)). (E77)

The integration for the Lamb shift can be simplified to

5A,(€) = F—: (e e—¢/ecg LGJ —eef/ecg {;CE} - 26C> , (F.78)

where

el =—P [ et/ dr (F70)

J—€

is a well known exponential integral function. Note that, we used I'y(€) = 0
for € < 0. Moreover, we have

_z/z—lzL &) (12, T24(eHA

. GO (€ 0
+n2 110, (N1 +4n2 | /T . ) (F.80)
0 Q)

Syr(e) = z/—ZR e — (A, (F:81)
Following Ref. [15] for
Z(Tl,Tz) = A(Tl,Tz)B(Tl,Tz) (F.SZ)
the Langreth rules are given by

Y5(m,m) = AS(1,»)B (11, ),
Zr(Tl, T2) = A<(T1, Tz)Br(T1, Tz) + Ar(T1, Tz)B<(T1, Tz)
+A7(T1, Tz)Br(Tl, Tz) (E.83)

Since both Egs. (F.72) and (F.73) have the form of Eq. (F.82), one can obtain the
lesser (Z;), greater (le) retarded (Xj,) and advanced () self energies in
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terms of different components of embedded self energy and the free Green’s
function for the system using Eq. (F.83). For instance,

N de’ A
Yop(e) =i 2—Z<(e—e)( LI05()A
0
+ oy T2 ()1 +4n2; [ o< )} ), (F8a)
fif
/
_1/72< eIV (')A (F.85)

Egs. (F.75) and (F.77) give all the components of the embedded self energies
of the baths. The only unknowns are the free Green’s functions of the system
which we will discuss below. The free dynamics of the system Hamiltonian
can be easily computed to obtain

0,r _ 1 o
0r _ 1 o _
Gf’ff( )="P {eA} ind(e — A). (E86)
We can use the relation, G" — G? = G~ — G< to write
G?;?(e) - G?;?(e) = =2ié(e — A),
GY%(e) =G5 (e) = —2imd(e+A). (F.87)

ff ff
Using the fluctuation dissipation relation[15], G"<(€) = —f(€)
(G¥(e) = GY<(€)) and G%(e) = (1— f(e)) (G*” () — G"<(€)) where
f(e) is the Fermi distribution of the system defined at average temperature
of the two baths, we can write

GYU/> (€) = +2imf(d€)d(e — A),

fif

Gjifi/>( €) = £2inf(£e)s(e + A). (F.88)
The retarded and advanced Green’s function for the system in the Majorana

notation 5

0,r/a —
2" w) = — ot (F.89)
such that

I (w) =1 (w) =27 (@) — 195 (w) = —4imd(w). (F90)

If we take the effective temperature of the Majorana fermions to be given
by Bett(Br, Br), we have from the fluctuation-dissipation theorem for the
ordinary fermionic system in equilibrium[15]:

w
1122 () + 125 (0) = (M) - T22(c0) ) tanh (B42) (o)

Using Egs. (F.90) and (F.91), one can find the lesser and greater Green’s
function for the Majorana operators.

Similarly, the time ordered and anti-time ordered self energies are obtained
from

(F92)



F.8 NON EQUILIBRIUM GREEN’S FUNCTION CALCULATION

Substituting Eq. (F.68) in Eq. (F.71) and undergoing Fourier transform, we
obtain:

Gyl(e) = G5 ' (e) — By(e), (F93)
where the bare system Green’s function,
CU () = ~GY ' (e) = €l + Ao, (Fo4)
such that
0rGyl(e) =
et Ey@ln —E@h —Ejen —[Ejehe ] o
—[Ep@)]n e —[Eye)ln  —[EZjle)a  —[Z5(e)]2
(X5 (€)ln 5@l et +[EhEn  [Eh(e)h ,
AP (25 (e)]2 [Eh@)ln e +[Z(e)]]
(E95)

where e = e+ A and ¢, = diag(1,1,—1,—1) is introduced to keep the
appropriate sign for two different branches of the Keldysh contour[125].
Using Eq. (F.69) along with Eq. (F.95), one can obtain the lesser and greater
Green’s function in the Majorana representation. Substituting the Majorana
Green’s functions in Eq. (F.61), we obtain the final expression for current
with general spin coupling in the left lead and a fixed spin coupling ¢, in
the right lead.

£.8.3 Calculation of Currents for simple models

£.8.3.1 The XX and YX case

The current for 07 /g = 0y, system-bath coupling can be calculated from
Eq. (F.61) after calculating the Green’s functions from Eq. (F.95). Note that
one has to properly choose 7; s to obtain the XX and XY case. Considering
the zero dimensionality of the spin system and the conservation of energy
current, J; + Jr = 0, we arrive at the following expression for the heat current

Jyx(AT) = /%ﬂ{,xy(nL(e) —ng(€)), (F.96)
where AT ()Tx(e)
e 1p(€)lrl€e
= , F
M @ x(e -+ 32() "7
where

X (e) = € (6AL(€) + 6Ar(€)) + (1 + 2np (€))
(1+2ng(€))TL(e)Tr(€) — 6AL(€)0AR(€), (F.98)

and
V() = (6AL(e) —e) (1 +2ng(€)) Ir(€) + L & R. (F.99)

In Eq. (F.97), when the lamb shift term is neglected, the transmission prob-
ability has a Lorentzian form, whose width is determined by I’y (e) When
the coupling is very weak, i.e. I'y(€) < A < kpTy, the Lorentzian effectively
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becomes a delta function peaked around A. In this limit, one can write € ~ A

giving:

4N3T (A)TR(A)
¢ (a)

The above result corresponds to the one obtained using master equation in the

sequential tunneling limit. One can obtain the heat current for o, = og = 0y

following a similar calculation

U (F.100)

' de
Jx(BT) = [ 55 Tuale, By T, To) (n(e) = n(e)), (Raow)
where the transmission probability 7T vy is given by:

4eN’T(e)Tr(e)

77{,xx(€) = (€2 e <5AL(€) —|—5AR(€)) — A2)2 ‘|‘§2(€),

(F.102)

where ¢(e) = €Y, Ta(e) (1 + 2n, (e)) We will consider Ohmic spectral
density for both baths with high frequency cut off given by ec. At low tem-
perature under weak coupling, when the coupling is of the order of thermal
energy, the first order processes (sequential) are generally suppressed and
the dominant contribution comes from second order co-tunneling processes.
We have, € < A and

* de 4Ty (e)Tr(e)

Jex(AT) v [ 5SS (nu(e) — na(e)). (E03)

The above result corresponds to the co-tunneling contribution and matches
with Eq. (6.20) for € < A. Eq. (F.102) becomes Eq. (F.100) in the sequential
tunneling limit.

£.8.4 Exact calculation

In this Section we derive the formal exact expressions for the dynamical
susceptibility

x(H) = 20(1){[ox(1), o (O)) (F109)

within the path-integral approach to the spin-boson model [7]. To deal with
a correlated initial state at time + = 0 we assume that the system starts at a
preparation time t, < 0 in a factorized state (Feynman Vernon)

Wiot = pL(T1) @ pr(TR) ® p(tp) (F.105)

where each bath is in the thermal equilibrium state described by the density
matrix 0, (Ty) and p(tp) is a general state of the qubit at the preparation time.
Assuming that the system is ergodic, the response funtion will not depend
on the chosen initial state when t, — —oco. For the sake of simplicity, we
assume that the qubit starts in a diagonal state of oy, |17,), with 77, = 1. We
introduce the conditional propagating function

](gl t; é()/ 0; gp/ t}?) (F106)

to find the qubit in the state ¢ at time ¢, conditioned to having measured the
system in state { at time ¢t = 0 and having prepared it in state {; at time f.
Here { labels the four states of the density matrix, denoted in the following
with the greek letter 7 = %1 for diagonal states and ¢ = +1 for off-diagonal
states.
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The conditional propagating function can be written as real time path
integral

/DU(')DU’(-)A[(T(-)]A*[0/(-)]f[U('),U/(-)] (F.107)

where the functional A[c(+)] is the probability amplitude for the free qubit to
follow the path o (t) ( each path can only take values F1 of the "coordinate"
corresponding to the operator o), and F[o(+), 0’ (-)] is the real-time influence
functional including the effects of the two baths. It is usual to express the
paths in terms of the symmetric and anti-symmetric paths {(t) and ¢(t):

0 = o)+ O], &0 = o) ~(B].  (Faos)

When 7 = £1 the qubit is in one of the two diagonal states of the density
matrix expressed in the oy basis. It is usually said that the system is in a
sojourn. Instead when (t) = %1 the system is in an off-diagonal state of
the density matrix, or in a blip state. The double path integral in Eq. (F.107)
can be visualized as a single path over the four states of the density matrix.
During a sojourn of duration 7 it is ¢(7) = 0 and vice-versa during a blip
lasting 7 it is 7(7) = 0.

The influence functional in the presence of two baths coupled to the qubit
via oy takes the simple form

Flo,o';t] = exp { /t:dt' /t: "y {C(t’)
Re [Qu(t' — )] E(¢") 4 & (¢ )Im [Qu (' — t")] ﬁ(t”)] } (F.109)

where Q(t) = Re[Qu(f)] + iIm[Q,()] is the complex bath-a correlation
function

Qu(t) = /0 %Hi‘gizw) [ coth <2£l:n) (1 —cos(wt)) +isin(wt)] .
(F.110)
In terms of conditional propagating functions the dynamical susceptibility,
Eq. (F.104) is given by

X(t)z%@)(t) lim Z 2 1o (1,180, 0;11p, tp) - (F.111)

== 1 gp==+1

Here Eq. (F.106) is evaluated for a path staring in a sojourn 7, at t,, in a blip
¢o at time zero and again in a sojourn at time ¢. We find

- A% mine1 [t
](77/ t; éO/ 0; Mp, tp) ="y Z ( - 72)111 ! / D2m71,2n71{tj}
m,n=1 4n tp
Z Gﬁ-ﬁ-m—lGr]zz-&-m_l Z Hﬁ—l—m—lH}l{—l—m—l
{g==1} {n==1}

where the the symbol {}’ reminds that the sum is over all sequences of blips
and sojourns in accordance with the constraints indicated in the argument.
Paths consist of 2n — 1 transitions for t, < ' < 0 and 2m — 1 transitions
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for 0 < t' < t. The blip-sojourn interactions enter the H;s, whereas the G;s
include the blip-blip interactions and are given by

m+n 2m+n—1
Hi .1 = exp Z Z &ixX ]k’7k (F.112)
n+m m+nj—1
Giim_1 =expy — ) Re {Qﬂzcj,ijl} expe —i Y, ) §iGAjrp  (B113)
j=1 j=2 k=1
ik = Im {ng,2k+1 + Qo126 — Qjok — ng—l,zk-&-l] /
ik = Re {ng,qu + Q5 10k — Qjok — ngfl,Zka :

(F114)

Inserting the conditional propagating function Eq. (F.106) in the susceptibility
Eq. (F.111) it is possible to perform the sum over the sojourns leading to

2 . o A2
X(t):ﬁtplifoo Z Z( m+n 1/ Dom—1,n— 1{t} Z ‘:n n+m—1

2
m=1n=1 2h {¢j=+1}
R : L R -2 L
Gn+m71 s (4)0,n+m71 + 4>O,n+m71) H?:Jrln cos (¢k,n+m—l + (Pk,n-i-m—l)
(F115)

where

m
(Plt:,m = Z ng}'ik . (F.116)
j=k+1
Eq. (F.115) is the formal exact expression for the susceptibility for a qubit
simultaneously coupled to two harmonic baths at different temperatures for
general spectral densities and temperatures.

F.8.4.1 Ohmic baths and the case K + Kg = 1/2

We now specialize to the case of two baths with Ohmic damping defined in
Eq. (2.15) where we assume identical dependence on the energies included
in I(e). The bath correlation functions take the form

Qu(t) = 2Ky In { ( nIfBCTa) sinh (TTI(;B]EM)} + irtKysgn(t) . (F.117)

The blip-sojourn interactions and the phases ¢; , Eq (F.116) simplify, taking
the form

X]f‘sznKa,forj:k—i—l X}"rkzo,forj;ék—i-l
Penim = Ck171Ka - (F.118)

The susceptibility F.115 becomes

2 . eagiiad A? m+n 1
X(t):ﬁtpg@oon;l;l( 2h2 /DZm 12n-1{t;}

Z ClCﬂGn-&-m—lGn—i-m—l Sln(ﬂ(KL + KR)) COS(T[(KL + KR))n+m_2
{¢j==+1}

(F119)
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We observe that dependence from the damping strenghts K, coming from the
blip-sojourn interactions X; j, is in the simple form Ky, + Kg. Thus we expect
that in the case of two Ohmic baths coupled to the qubit with strengths
Kp 4+ Kr = 1/2 these interactions can be treated analogously to the standard
spin-boson model for a qubit coupled to a single bath at K = 1/2. We remark
that in Eq. (F119) the coupling strengths enter non linearly the blip-blip
interactions, G,% +m_1G,If 1 which include the temperatures of the two
baths. Therefore, the two baths at K; + Kr = 1/2 are not simply equivalent
to a single bath at K = 1/2 with an "effective" temperature.

We proceed with the evaluation of Eq. (F119) for K; + Kg = 1/2. We
observe that all the terms in the sum, except for the first one m = n =1,
have 11 4 m — 2 zeros from cos(71(Ky + Kg))" ™2, They give a non-vanishing
contribution if a proper divergency comes from the interaction terms between
the system’s transitions included in the GL +m71G5 't m—1- Ihis is the typical
case of a bath at K = 1/2. Finite contributions arise whenever a "pair"-
interaction can be cast in the following form, written in Laplace space

[ 2
Klir%}z A? cos(rtK)/O dre e RelQM] — gﬁ—c = hry. (F.120)

The divergency of the integral comes from the T — 0 behavior of the pair
interaction for K =1/2

e~ Re[Q(T)] — (niCBT sinh (NthTlt‘ ))_ZK — (ech_[)ZK- (F121)

The zero is compensated by the short distance singularity of the attractive
interaction between nearest neighbor transitions, which can be thought of as
opposite charges of a dipole. In the case of two baths with Kj, + Kr =1/2
we have

e~ LaRe[Qu(T)] H(%Sinh(cthM))ﬂg
P w

— (eChT)ZKL (eChT>2KR = eChT (F.122)

The T — 0 behavior does not depend on the temperatures and we get
diverging factors which exactly cancel the zero of the cos(71(Ky + Kg)), as
for a single bath at K =1/2
lim  A%cos(m(Ky + KR)) /oo dre Mo~ LaRelQa()] — A = hry.
Kp+Kg—1/2 0 2 ec

(F.123)
Such an integral describes a collapsed dipole which does not interact with
any other dipole, having effectively a zero dipole moment. This mechanism
allows to sum the different terms of the sum in Eq. (F.119), leading to

4 A o
)= 5—0(t e_”/z/ dt
x() = S5-eme |
e~ TaRelQu(D[p=1lt=71/2 _ o=7(+0)/2] | (F124)
Performing its Fourier transform and inserting it in the Meir Wingreen

formula we can get the heat current between two harmonic baths under the
"strong" coupling condition Ky, + Kg = 1/2.
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F.9 QUANTUM NON-LINEAR CIRCUIT
The Hamiltonian for the non-linear resonator system as presented in Sec. 9.1.1
is given by
arn Uayapaa
Hg = eobth + Eb*b*bb. (F.125)
The equation of motion for retarded Green’s function of the systm (Gj, =
—i0(t—t') < {B(t), BJr(t’)} >) can be written as:

i0:Gpy, (t,1') = 6(t — t') + €0Gpy (£, ') + UG, 1 (8, ) + Y Vi Gl (1)
ko
(F.126)

We can further apply the equation of motion to Gy, (f,t') to obtain:
(6 — €0 — Z(O) (€)> Gb;b (G) =1+ UGn,b;b(e)r (F127)

where £(0) (¢) is the usual self energy due to system-bath coupling defined
as:

20(e) = Y 20(€) = Y [Vial Sraska (€), (F.128)
o ko

where g,k is the retarded Green’s function for the free bath. In order to
evaluate Eq. (F.126), we need to evaluate G, j,.,(€) in terms of Gy, (e). Using
equation of motion, we find:

(€ —€0) Gupp(€) = 2(n) + UGy, p(€)

+ Z Via [ZGn,er;b(e) - Gb,b,kﬂ(+;b (6)} (F.129)
ko

We truncate Eq. (F.129) by approximating, G, ,p.,(€) = (1) G, p(€) such
that:

(e —eg—U(n)) G, pp(e) =2(n)

+ Z Vka [ZGn,er;h(e) - Gb,b,ktx*;b (6)} (F.130)
ko

We can again use equation of motion to evaluate Gy, x5 (€). We obtain

(6 - ektx)Gn,er;b(e) = Vi (Gn,b;b — Ny (eer)Gb;h (6)
+ <b+bko¢> Gka;b(€)> + <b+bktx> , (E131)
and
(e + et — 260 — 2U (1)) Gy et p(€) = 2 (BB, )
— ViaGrpp(€) + 2Vigna(€ra ) Gpp(€)  (F132)

We don’t take into account the terms involving correlation between the
leads and the system, such that (b'by, ) = (bb} ) = 0 (Cite meir wingreen).
Substituting Eq. (F.131) and Eq. (F.132) into Eq. (F.130),

21(e) (n) 2 (2(2) () +26) (€)> I(e)
u

Gupp = Gpp (F.133)
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where
I(e)/U = (e —ey—U(n)— (ZZ(O)(e) +xM (e)))i1 , (F134)

Z(O) (6) = Zk,a |Vkoc|2 (6 — €kg + iﬂ)71/ Z(l) (6) = Zk,zx |Vk1x|2(€ + €kn — 2€9
—2U (n)+in) ", 2 () = L [Via|*1a(€xa) (€ — €4 + i) " and 2 (e) =
Yt | Vial*11a(€xe) (€ + €xq — 260 — 2U (n) + iny) - Substituting Eq. (F.133) in
Eq. (F.126), we find the final expression for Gy,;,. Note that, one would have
to evaluate (1) self-consistently.

1+ 2I(e) (n)

G(€) = — eo— 4 — 200 (e) +2I(e) (EV(e) + 20 (¢))

(F135)

The self energies are given by:
(0) _ / dw [ Ta(w)
T (e) J 2 L—w—i—iiy ’
dw [ Ty(w)
1) — = «
27 ;/27‘( _e—i—w—Zeo—ZU(n)—i-i;y]’

@ (e) = Z/’Lw ”(w)r(w)}

2 | e—w+iy

20 = 2/‘&" Lo (w)rta(w) ]

21 e+ w — 2 —2U (n) +in

For any function g

/dwx_("JC(;U_?_I,;7 = P/dw {f(_cil} - %g(x), (E.136)

where the first term is the Cauchy-Hadamard principal value distribution.
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G.1 DRIVEN QUBIT: CALCULATION OF CURRENTS AND POWER FOR
DIFFERENT SPIN COUPLINGS

G.1.1  Coupling: T; = 0y and Tg = 03

The different components of p(t) for the driving protocol of Eq. (8.31) with
1, = 0y and Tg = 03 can be calculated by solving Egs. (8.39) and (8.40). They
read
(i) _ 1
P1 = T ook ksT’

. (SE( — B2K; + BgKR) sech? (ﬁ%) AT

4ks (B2KL + B3KR ) T2’
i GE_\ GOE/
p(a) B _dpg) OE tanh (szT> eorrec
1 - 7
dt 4n(BgI<L + B%KR)

ps) = 1=\, ponr=—pirr Py = —p1". G1)

The heat currents are

Cap SER2K,

(h)a
Jo () = dt B2K; + B2KR’
dpl)  SEB2K
() = 20 L (G-2)

dt B2K; + BZKR'
G.1.2  Coupling: Ty = 0y and g = 0y

In this case the adiabatic probabilities can be written as

(@) _dpgi) SEeE/€c tanh (SE /kgT)
PLU= 770 T anBIK, 1 moEKg

ps = —p?. (G3)

In the absence of a bias, the instantaneous contribution to the current van-
ishes, and the only contributions come from adiabatic corrections. The adia-
batic heat current flowing in the left and right lead are given by

](h),a( ) _ dpgi) 45EB§ K;,
L dt 4B2K; + 6E2KR’

gy dpl) SE3Ky

. G.
T dt 4BZK, + 0E2Kg (G4
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Using the modulation in Eq. (8.31) with ¢ = 7, we obtain
dp\’  —Qsech® (6E/kgr)

ar 2kg TOE
+ 2By By 1 cos(Qt) + (B;1 - Bil) sin(znt)} . (G.5)

{232,032,1 sin(Q)t)

Plugging Eq. (G.5) into Egs. (G.4), the time averaged adiabatic heat currents
can be written as a function of different parameters

(h) 1 /7 (a) o kBTQ 2n €0 €1 AO Al K‘x
i = ;/0 B == /0 dxf[kB—T,kB—T, e kB—T,x}, (G.6)
where f is a dimensionless function which depends on all the parameters of
the driving modulation and on the coupling strengths with the leads. Similar
expression can be obtained for the heat current flowing in the right contact.
In particular, the adiabatic heat currents are linear in the driving frequency
as observed in Eq. (G.6).

G.1.3 Symmetry properties of Ay p

For AT = 0, we can rewrite the work W as

2t/ rdE, @ , dE2 (a)
W= / dt[dt Pt } G7)

and, by using the normalization condition }; p ja) = 0 and the fact that
Ei(t) = —Ey(t), we find
Q dE
W=2F / ax, s (G8)

where X (t) and X;(t) are the two driving parameters of the g-bit. Moreover,
applying the fact that 6E = 2E;, we find

_ 0 doE dpgi). .

2/Q) d (i)
_ / (B d(SE dpy’ doE

dX doE X, G.9)

Q)
where {(B) is defined by the relation pga) = (B)d% (see Eq. (G.1)), which
is a consequence of Eq. (8.41). Comparing Eq. (G.9) with Eq. (8.16), we obtain:

(i)
déE dp,’ dSE
Ara(B) = Az (B) = {(B) o~ oo (G10)

Eq. (G.10) and Eq. (8.54) have the same form.

G.2 DRIVEN QUANTUM DOT - CALCULATION OF THE THERMAL GEO-
METRIC TENSOR

We need to calculate the following coefficients

Aup(t) = h/ (E— ) (t—t)

= —lim Im [Xuv(@)] ()]

Jim, o , wv=1273 (G.11)
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with
Xuw(t— 1) = —i0(t — ") ([ Fu(t), Fu(t)]), (G.12)
being fl,Z = "I’r; Oxz¥4, and F3 = jQ,R = 71’EkR,S,(TekR,Ska,S,UCItR,SdU+

H.c.. We can calculate (G.11) following standard procedures based on the
formalism of imaginary-time Green’s functions. We can define G(7) =
—(Tr [¥4(7)¥5(0)]) and Gy, a(t) = —(Tr [¥i, (T)¥1(0)]), where Tr de-
notes ordering along the imaginary axis. In terms of this, it is possible
to write

Xl = ST 000k + )00k,
zkn

Xa,0(iqn) = 522Tr{5kRUR [iG (iky + ign)0y
an kR

X G kg (ikn) — 1Gry a (ikn)00G (ikn — iqn)] }
= —xfs(iqn) 00 =1,2,

x33(iqn) = [3 Z Z

ikn kg, k/
Tr {ékR OR Gk, (ikn + iqn )y, 01y 4 (ikn)
+ g ik + i00)2k 9RG o (ke o} (G13)

with &g oo = €k 055, & = L,R, g = 2mn/B and k,, = (2n +1)7t/p.
It is convenient to introduce the spectral representation

Oliky) = [ 22 Pile)

27 ik, — €’
s ooy [ de Pryale)
i (ikn) = [ 5 T— (G.14)
with
pi(e) = —2Im [Gi(e)] = Gi(e)f [Gele)] T, (G.15)
Proa(e) = Py, (€)0upi(e) + B, (€)0upi(e), (G.16)

where pk o (€) = 2705 95(e — &, 5) and Gg s (&) = Osg (et i — g5 )

The retarded frozen Green’s function of the quantum dot in contact to the
reservoirs is given in Eq. (8.66), while [' = —2Im [G;(e) '] = L, T is the
hybridization matrix accounting for the contact between the quantum dot
and the reservoirs, being I = Yk, Ok, ﬁgm Ok, -

Using Eq. (G.14) into Eq. (G.13), after some algebra and performing the
analytic continuation to the real axis we get

Npp(t) = h/d af(¢) Tr [0401(e) 0o (e)], £,0 =1,2

Moty = = [ae DO Pep@pmpne)]
= —Nyg3(t) éfLZ,

N

NA33(t) = —%/ds sz%f)Tr [fRGAt(s)fLG;r(s)} , (G.17)
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H.1 EVALUATION OF THE MEAN VALUES
In this section we will evaluate the mean values entering in Eq. (9.15). The

mean values will be calculated perturbatively up to first order in the coupling
strength Vj,, starting with the time-ordered correlator

i (Ticbly (#)pm (1))
z/Kdt1<TK [ﬁg(tl)?’{a(t’)ﬁmj(f)b
= Vi Do [ b1 (Tic [Py (0P (0)]) (Tic [P (a(00)] ). L0

We can deform the contour K into a pair of contours such that K; goes from
—0o0 to 0 and K; from oo to —oo. If ¢ lies in Ky and # lies in K5, one can write:

/K] - /jm + K /K - /tm * /f’ (Ho2)

such that
(B )puyl1)) vkazw[[/ + [ an (pui0puate)
<[1A711<La( )b fl [/t, /t, ] )Puv(tl)]><[Blta(t/)gka(tl)}>]°

(H.3)

For the mixed lesser Green’s function defined in Eq. (9.14), Eq. (H.3) can be
re-written as:

ot 6#) % [ 11 Vi T o) [l )i 01, )

+ S ()8 (B )], (FLg)

where the definition for Green'’s functions are given in Egs. (9.12), (9.13) and
(9-14).
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H.2 CALCULATION OF COEFFICIENTS OF THE FROZEN MASTER EQUA-
TION

Using Egs. (H.19) and substituting in the first term of Eq. (9.21) we have
terms of the type

i [antm[gh (00250 6,0

= iwna(Aeuv) (<ﬁ{nv>t5ju + <p£]>t (va) ’ (HS)

which are referred to as dissipation-type terms[347]. Similarly, there are also
terms of the type,

/dthe SR O
= i ((Pho) ot (L)) o) P [ 2 TalTE) )

27w € — Aeyy
which lead to level renormalization. For some specific spectral functions the
above integral can be calculated explicitly[352]. Moreover, substituting Eq.
(H.19) in the first term of Eq. (9.22), the imaginary part is given by:

i/dtllm {g;’&uv(t, tl)}z,f(l)(tl,t)

M”a(AQﬂJ) <<p£10>t 5ju + <p{‘]>t 5”’7’) - (H7)

Similarly, the real part becomes:

= +Aeyp

/dthe gmf]fw(t tl)}Z Wty 1)
i { (o), 8+ (), 6o P/d“”“ Lule)  1y5)

21 € — ANeyy

H.3 ADIABATIC DYNAMICS

H.3.1 Lesser Green’s function

We now introduce the interaction representation with respect to 7:l£ and
consider the Green’s function

. U i 1597 (41 o
ot tz) = 71 {ptic |e el pln) | b o

where t] and t, indicates that the time #; is on the piece of the contour that
starts in —oo, while #; is on the piece of the contour that ends in —co. All the
operators with the label f are calculated in the Heisenberg representation of

the frozen Hamiltonian ﬁé In particular,

il _iy i f Lol o
p{;( ) = VA s pjen Hs — enclj o1 (H.10)

with e{ being the eigenenergies of 7:[£ and €j; = e{ - e{ .

Evaluating Eq. (H.9) up to linear order in the perturbation 7:[{; leads to

8t t2) = 81570 (11, 1) + 08357 (1, 12), (H.11)
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where the first term is the frozen component and reads

8;,'1{0(191, ty) = +idp, <ﬁ£j(f1)> efhem(tz=h)

= kit (Pl (1) ) ), (H.12)
and the second term
58;,'50(151, t)
=t 0 (p )y eserteo | [Mave) s [Care)+ [ ared)

. t t t
= 4= 5117 <pu];)(t2)>elA€jv(t2tl)[ tol dtlgj(t/)ﬁ“/t2dtlgv(t/)+/t2o dtlgu(tl):|-
1
(H.13)

In terms of Heaviside function
1 A iAe — h
5g§,'1{1,(t1,t2) — iﬁ le <P£{{) (t1>> EA uv(tz tl) Lw dtl |:6(i’1 — t/)éj(t/)
O = 1)E() O ~ )1 — 662~ )| ()

The adiabatic approximation consists in keeping the terms o X in 3171{ L(t, 1)
under the assumption that the changes in X(t) take place within a time scale
that is much larger than the typical time scale of the dynamics of the frozen
system. Under the adiabatic approximation:

1 N iAe - ® X
085 k(1) = £3 81 (pL) (1)) ettt ”/ dt'(¢' —t) [G(t_tl)xj(t)

+ G(t/ - t)XU(t) - G(t/ - tl)XU(t) - 9(t1 - t/)Xu(t):|/ (H.15)

and

1 Aeo (f— e .
885510, (11, 1) = £z 0 <p§§>(t)>em%<f ) / ar'(t —t) [G(tl—t/)Xj(t)

—00

+0(H — )Xo (t) —0(F — )Xo (t) — O(t — t’)Xu(t)] . (H.16)

H.3.2 Greater Green's function

We have,

Zirosj(t1r12) = =i {Puo(t1)pyj(12)) (H.17)
Evaluating the expression for greater Green’s function up to linear order in
the perturbation 7:1]5( leads to

giy,lj(tll tZ) = g;(;‘,fl'](tl/ tZ) + (58;;5101/ t2)/ (H18)
where the first term is the frozen component and reads
g;}f;]-(flr k) = —idp <ﬁ}:¢j(tl)> e elt =)
— _iélv <ﬁ£](t2)> eiAeuv(hftz), (H_19)
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and the second term
>,
5guv£j<tl/ t2)

_ 1 5(f) iAelv(tltz)[ I b, t /}
= hézv<Puj (t1)>e j /to dtcj](t)Jr/tz dtév(t)Jr/t1 ar'é,(t)

1 ~(f) iAews (— ty 't 1o
= 51, <puj (t2)>eA€ (1 tz)[/to dt/érf(t/)+./tz dtlgv(t/)f/tl dt/ffu(t/)
(H.20)

In terms of Heaviside function
58;5{;]'(151%2) = —% d10 <ﬁ£/?(f1)> eiBeiolhi—t2) /j; dt’ {G(fz —t)Ei(t')
+0(t' — 1) 8o (') — Ot — t1)&o(t') — 0(ts — f')@u(t/)} (H.21)
Under the adiabatic approximation:
03l t) = f% 51 <p§;]‘.>(t)> eibejo(t=t) 1 °; dar'(t —t) {9(151 —)X;(t)
+0(t — )Xo (t) — Ot — 1) Xp(t) — O(t — t’)Xu(t)}, (H.22)
and
Syt ) = = b (P () ) [ v =) o= )%,
O~ %ut) — O — )Xo(t) — Ot - t’)xu<t>] (Ha3)

Using Egs. (H.15), (H.16), (H.22) and (H.23) the adiabatic contribution to
Egs. (9.21) and (9.22) can be obtained in similar fashion as in Appendix (H.2).

H.4 CALCULATION OF MASTER EQUATIONS FOR A QUTRIT

We start with the case of qutrit. The rate equation for the diagonal terms of
the density matrix is given by,

dpgg (0 (0 (0) )

f ; [Aaloql\oq ) Mg + Ao Ao — A ALY, (H2g)

where g = (+, —). Similarly, the off-diagonal terms are given by:

dpg; i R 0 0

d?q == <[Hs,pqq]> -y [Aa,Oqué ) _ Aa,OqAZ[() )
o

+ )\aroq[\ggo) — A,X,Oqj_\z(go)} , (H.25)

where, when g = +, § = — and vice-versa. We have for one of the terms in
Eq. (H.25),

B / h [A""O‘f [$hoq0= ) + 85,007

<(0 a(0
+ Aa0q [quqOZ ( )+g0qq02 ( )} } (H.26)
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We can expand all other terms in Eq. (H.25) in a similar manner. Upto first
order in lead coupling strength:

A Ao -
0 ,0 ~ 07 -
AR = 5 [ 7a(Beq0)poo + Ta(Beqo)pgg] + 7 Ta(Bego)pgg-  (H27)

We find that the diagonal and off-diagonal terms of the density matrix
are coupled to each other. Substituting Eqs. (H.27) in the rate equation for
diagonal and off-diagonal terms of density matrix (Eq. (H.24) and Eq. (H.25)
respectively), we obtain:

d
qu ==, [/\a 0q [ Ya(Deqo) Poo + Tu(A€g0) pag + Ya(Aeoy) pyq

4

- 1 -
- %(AGOq)Poo} + 52,00 Aa0g [Tu(Bego) + va(Aeog)] (pag + pag) | (H.28)
and

dp i 1
qq 1 Z

ar ﬁ( —€7)Pag — |:/\1x,0q Aw0g [ — Yu(Aeq0) poo + Ya(Aez0) pag

o

+ Ya(Aeog) Pag — Ta(Aeog) poo + Ya(Aeog) Pag — Tu(Aeog) Poo — Ya(Aego) Poo
+ Ya (Aer)qu} + A%&,Oq [’Ya(Aer)qu’ + 'th(AGOq)qu} + )‘i,Oq [%ﬁ(AEOq)PW

+ %(Aeqo)pqq} } (H.29)

In simplified representation using,

= % ;)‘a,t)q/\a,oﬁ {%(Aeqo) +Ta(Aeog) + 7a(Aeqo) + Tu(Deog )]'

M —= % ;Aa,ofq/\a,()q [Ya(Aeoq) + Fa(Dego)]

o= ! 2 Asanoq [va(Beog) + Ta(Ae)],

= 2 (12 0q [T (Bego) + 7 (Beog)] + A% g [ (Do) + Tu(Bego)] |,
(H.30)

Eq. (H.29) becomes:

dp i 7
d?q =(€q = €q)pag + T"Po0 = pgg — Tpgg — Tpgg. (H31)

In the steady state, % = 0 and one can write:

b ~I0pg0 + Tpgq + Ipgg (H.32)
i i Aeg —T90

and since pg; = pqq,

2097 (100 — TPgq — Tpgq)
_ 2 :
W2 A2, + (T97)

Pag + Paq = (H.33)
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Substituting Eq. (H.33) in Eq. (H.28), one obtains the rate equations for the
population in terms of only the diagonal terms of the density matrix.

dp !
TZq =y { 07700 — TgoPag — 50,09 (£) Aaq(t)

o

[Fa(Bego) +a(Beog)] (pag+par) |, (HL39)
and

dpgg i 7 ]
at = 761~ €0Pag +T0po0 = Dpog = Dlpgg —Tpgg, (H35)

where g = + and § = —q. In Appendix (H.4) we present the explicit def-
initions of %, T, T9 and T™. We can write the master equation for both
diagonal and off-diagonal terms at different orders of driving. We first study
the frozen component of the dynamics.

H.4.1 Frozen Dynamics

e p) — ) Wi o ins:
Using pg;° = pg," along with = 01in Eq. (H.35), one obtains:
7 ( )
o0 i 22 (rpe = T7pif) — 1793} (E36)
"o h2Ae2, + (I97)?

. . . . . dp%>
Substituting Eq. (H.36) in Eq. (H.34), taking into account —- = 0 and
Yy p[%) + p(%) = 1, one can solve the set of rate equation to obtain the

probabilities in terms of the transition rates. The energy current in the frozen
basis is given by

E, 1
W=y [Aeoq [ Thopiy) + Fqu(()g)} 5A€07Au,09
7

Auop [Ta(Bego) +7a(Beop)] (Pl +18)) |- (Hap)

When one neglects the off-diagonal terms, the rate equations take a simple
form given by:

w(pY (1) =0, (H.38)
where
(T, +T5-) Ty T2
W(t) = e, - 0 |, (H.39)
Te 0o -,
and
a0
P(f) - ng ) (H.40)
K

The energy current is given by:

ZAEOq [ qof’q{;) + rqu(()J(;) (H.41)
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H.4.2 Adiabatic dynamics

Once the frozen components of diagonal and off-diagonal probabilities are
obtained, one can use those probabilities to write the rate equation up to first
order in driving (adiabatic correction). In the adiabatic limit, Eq. (H.35) takes
the form:

dp(f) i ) ,
AL — (eg — ey + 000 — Dpig = TTpjg —T9Tp). (Hag2)
Applying pg; = p‘;q, we obtain:
@, @ _ 21t (FOP(%) —pjy — Fth(;?))
Par Py = h2Ae2; + (T91)
S A W

0 (.
T by TW dt ihey rra dr - )

The adiabatic component of Eq. (H.34) is given by:

apth) .
= = L T8pid — Toor = 3\ Aoy
o

[Va(Dego) + va(Aeog)] (pf{;) + p%—)) } (H.44)

Substituting Eq. (H.43) in Eq. (H.44) and solving the master equations along
with the normalization condition ), ptg‘;) + p(()g) = 0 gives the adiabatic contri-
bution to the probabilities. The energy currents can be evaluated accordingly

(see Appendix (H.4) for details):

E,ﬂ a a 1
o) = D [Aeoq [*F%Péq) + ngp(()o)} — yA€07Aw0g
q

Auop [Ta(Bego) +va(Beog)] (P + i) |- (FLas)

In the absence of eigenstate coherence, the rate equations become,

W(t)pl(t) =0, (H.46)
where
P
p@ = | (H.47)
pl@.

The energy current is given by:

jiEa) = Y Aeg, [fff;or’%) + Ff)‘qp((f))] : (H.48)
q
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H.5 CALCULATIONS OF ENERGY CURRENT IN THE CASE OF QUTRIT

In this section, we will derive the expressions for charge and heat currents in
the presence of off-diagonal elements of the reduced density matrix. As in
the previous section, we start with the case of qutrit:

o= 2[ a0 AV () + Augy A5V (1)
a0~ RanBy ()] (Ha)
We have,
quﬂ) _ / dh [/\a,qo {G{)qrqoz;f(l) + Géafqozi(l)}
+ A0 |:G(r)q,q‘021f 4 G@,qoZZ(l) } } . (H.50)

Upto first order in lead coupling strength:

A
1 ,q0 -
Aoy = 5 8ego [~ 7a(Bego)poo + Ta(Bego)pyg]
Awq0 -
Tquqo 'ya(Aeqo)pqq. (H.51)
Using Egs. (H.51) in the expression for energy current in Eq. (H.49), we
obtain:
SR o PU A Va (A Aaog X
Jo ' = %; «,q0 "o, 0g qu[_ ')’Dé( EOq)pqq +')’oc( €0q>p00} + «,0q Yo, g0

- 1 - -
Aeqo [ - 'sz(Aer)POO + Yo (Aer)qu} + > {Aa 0gq /\a,qOAer'sz(Aer)qu
— Aago Au 07A€077a (AGOq)qu Aa,0q Aa,goD€07Ya (A€0q>

Pga
+ Aa ,q0 Ay OquqO'sz Aer } (H.52)

H.6 THE LINDBLAD FORM

In this section, we will show that the master equations obtained using non-
equilibrium Green’s function has the Lindblad form and it corresponds to
Redfield equations obtained using Lindblad formulation. For the sake of
simplicity, we will consider the case of qutrit. The Hamiltonian for the qutrit

Hs = (e+f++ +€e—p—— + €opoo) ® 1p, (H.53)
the Hamiltonian for the baths
Hp =1s® Y exubf bras (H.54)
kux

and the Hamiltonian for the contacts
HC,ff = Z )La,quOq ® Z Via (I;klx + B;Lx)
q==+ k

+ Z Aa,q0Pq0 ® Z Via (bkzx + bka) . (H.5)
q_



H.6 THE LINDBLAD FORM

If the contact Hamiltonian is written as
He = A, ® By, (H.56)

where A represents the system degree of freedom and B represents the bath
degree of freedom and

A1 = ALo+Po+ ZVkL ( kL bkL)
Az = Apo—fo- ZVkL (B kLt bZL)
Az =Ar40p0 B3 = ;VkL (BkL T EZL)
Ay=ML_op_o By= ;VM (BkL + B;L> , (H.57)

and
As = AgotPo+  Bs=1), (
k
Ag = Ago_p Bs=Y Vig (b bf
6 R,0—P0— 6 2 kR { OkrR T Oyr
k
A7 =Arqofr0  Br=) Vi (
k
Ag=Ag—of—0 Bs=) Vir (EkR + EZR) . (H.58)
k
The baths correlation function

Y (€) = / " 4T (B (7)Bu (0)) €. (HL50)

—00

Since for all m, n and a fixed bath &, B,;, = B,;, we obtain
Yiun(€) = Ya(€) = Ta(€)(1 4 na(€)) + Fa(—€)na(—¢). (H.60)

We define the reduced density matrix of the system

P++ p+— O
Ps=1| p-+ p—— 0 |- (H.61)
0 0  poo

The Redfield equation for the time evolution of the reduced density matrix
in the wide band limit is given by:

de 1 w o * N n ~
TE - EZ Z Ymn(ebfea)e i(ep—a ed_i_ec)tAZb (Af;zi> {Labpls(t)L:d

mn g,b,c,d

_LIdLust }+ Z Z . €b _ea)ei(ehfeafefrec)t (Afzb)*A%l

mn q,b,c,d
{Laaf()LY = P5(OLY L}, (FL62)

where the density matrix was expressed in the interaction (I) picture. a,b,c,d
represent different eigenstates 0, +, — of the system Hamiltonian, m,n can
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be from 1 to 8 as shown in Eqgs. (H.57) and (H.58) and L,, = |a)(b|. The time
evolution of p_ can be obtained from

dpL 1 , .
<_|%|+> = 5 Z Z [’Ymn(eb _ ea)efz(ereafedJrec)tAﬁb (A;Cnd)

mn q,b,c,d

{(LapidéH — 5_gbeap) +} + (€ — €a)el(cr—ca—eatect ( Aﬁh) A
{5C7P1db5a+ - P1_b5ac5d+} } (H.63)

After some straightforward calculation, the master equation in the Schrodinger
picture takes the form:

dp_ . R 1
pdt+ = —i(—|[Hs, ps]| +) + 5 Z [Aa,O+Aa,O—7a(€0 —€-)poo — A0+ Aa,~0
o

Ya(€+ — €0)0++ — Aao-Ag,—0Ya(€~ — €0)o—+ + A0t Aa,—0Ya(€0 — €+)p000
— M40, 0+ Va (€4 — €0)p—+ — Ag,—0An,0+YalE- — GO)P——] , (H.64)

which is exactly the same as the master equation obtained through non-
equilibrium Green’s function. So, the master equation we obtained using
non equilibrium Green'’s function corresponds to the Redfield equation in
the Lindblad formalism.
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