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Abstract. We consider some singular Liouville equations and systems motivated by uniformization

problems in a non-smooth setting, as well as from models in Mathematical Physics. We will study exis-

tence of solutions from a variational point of view, using suitable improvements of the Moser-Trudinger
inequality. These reduce the problem to a topological one by studying the concentration property of

conformal volume, which will be constrained by the functional inequalities of geometric flavour. We will

mainly describe some common strategies from the papers [12], [13], [21] in simple situations, to give an
idea to the non-expert reader about the general methods we use.

1. Introduction

One among the most classical problems in Riemannian geometry is to find canonical metrics on a given
manifold. In two dimensions a natural choice is to uniformize a surface looking for metrics of constant
Gaussian curvature. One way to achieve this is to choose a conformal representative, namely a metric
pointwise scaled by a suitable positive function. Given a compact, boundary-less surface (Σ, g) with
Gaussian curvature Kg, consider the conformal change g 7→ g̃ = e2wg, where w is a smooth function on
Σ. It is known that under conformal changes the Gaussian curvature transforms according to the formula

(1) −∆gw +Kg = Kg̃e
2w.

Hence looking for constant Kg̃ amounts to solving the following PDE on Σ

(U) −∆gw +Kg = Ke2w,

where K ∈ R. By the Gauss-Bonnet formula, the sign of K has to be the same as that of the Euler
characteristic of Σ.

We introduce next a singular version of (U). Singular objects attracted a lot of attention over the
past decades, since they arise in many different situations such as limits of Einstein metrics ([2], [14],
[66]), Kähler-Einstein metrics ([28]), as well as in physical applications such as the study of interfaces or
in general relativity.

One of the simplest singular objects consist of two-dimensional surfaces with finitely-many conical
points. The model object is a standard cone, that can be realized with an isometry from a planar circular
sector. Isometries preserve the Gaussian curvature and hence a cone is geometrically flat on its side
surface, but in a weak sense the curvature behaves like a measure at the conical tip. Precisely, if the
opening angle θ of the cone is written as θ = 2π(1 + α), α > −1, the curvature at the vertex is a Dirac
mass with amplitude −2πα.

With this model in mind, for p1, . . . , pm points in Σ and α1, . . . , αm > −1, we will consider the following
problem on a compact, closed surface (Σ, g) of total volume 1

(2) −∆gu+Kg = ρ e2u − 2π

m∑
j=1

αjδpj ; ρ ∈ R.
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Equation (2) is a singular version of (U), and a solution will endow Σ with a constant-curvature metric
on Σ\∪mi=1{pi}, and conical angles θi = 2π(1+αi) at each point pi. All the singular structure is encoded
in the divisor, written as a formal sum

α :=

m∑
i=1

αi pi.

Still by the Gauss-Bonnet formula (assuming without loss of generality that V olg(Σ) = 1), that can be
obtained rounding-off the conical points and applying the usual Gauss-Bonnet theorem, the constant ρ
should satisfy the geometric constraint

(3) ρ = 2πχ(Σ) + 2π

m∑
i=1

αi.

As we will see, equations (or systems) like (2) also have applications in physics and for those integer
values of the parameters αi are particularly interesting. Geometrically, these would correspond to orbifold
points with angle greater than 2π, but for most of this paper we will limit ourselves to describe the case of
negative alpha’s, which is simpler to analyse. Liouville equations arise in Mathematical Physics as well,
to describe mean field vorticity in steady flows (see [18], [24]), Chern-Simons vortices in superconductivity
or Electroweak theory (see [64], [70]). For these problems ρ represents a positive physical parameter, and
is not assumed to satisfy (3). The points pj are called vortices, and describe either points where vorticity
is imposed by external forces ([69]), or vortex points, namely zeroes of the Higgs field with vanishing
order αi.

To study existence for (2), it is useful to desingularize the problem, as one could exploit its variational
structure. Consider the Green’s function of −∆g on Σ with pole p, namely the solution to

(4) −∆gGp(x) = δp − 1 on Σ, with

ˆ
Σ

Gp(x) dVg = 0.

It is a standard fact that Gp has the asymptotic behaviour Gp ' − 1
2π log dg(x, p) near the singularity,

where dg(·, ·) stands for the distance induced by the background metric g. Consider the change of variables

(5) u 7→ u+ 2π

m∑
j=1

αjGpj (x) :

after this, (2) becomes

(6) −∆gu = ρ
(
h̃(x)e2u − ã(x)

)
on Σ,

where h̃(x) = e−2π
∑m
j=1 αjGpj (x). Here ã(x) is a smooth function on Σ such that

´
Σ
ã(x)dVg = 1, while

by the asymptotics of Gpj h̃ satisfies

(7) h̃ > 0 on Σ \ ∪j{pj}; h̃(x) ' γjdg(x, pj)2αj near pj

for some constant γj > 0.
Solutions to (6) can be found as critical points of the Euler-Lagrange energy

(8) Iρ,α(u) =

ˆ
Σ

|∇gu|2dVg + 2ρ

ˆ
Σ

ã(x)u dVg − ρ log

ˆ
Σ

h̃(x)e2udVg; u ∈ H1(Σ).

Let us recall that in two dimensions H1(Σ) embeds into Lp(Σ) for any p ∈ (1,∞): the embedding can
be indeed extended up to exponential class. The well-known Moser-Trudinger inequality holds, giving a
quantitative estimate on exponentials of Sobolev functions

(9) log

ˆ
Σ

e2(u−u)dVg ≤
1

4π

ˆ
Σ

|∇gu|2dVg + CΣ,g,

where u =
ffl

Σ
u dVg stands for the average of u on Σ.

In the singular case the Moser-Trudinger inequality on Σ has a different best constant, as was proven
by Chen and Troyanov in [25] and [68] (see also [23]).
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Proposition 1.1. ([25], [68]) Let αj > −1 for all j, and let h̃ : Σ → R be as in (7). Then one has the
inequality

(10) log

ˆ
Σ

h̃(x)e2(u−u)dVg ≤
1

4πmin{1, 1 + minj αj}

ˆ
Σ

|∇u|2dVg + Ch̃,g

for all u ∈ H1(Σ).

Notice that the multiplicative constant appearing in the last formula is determined by the most singular
behaviour of the function h̃, see (7), that becomes unbounded at the points pi with negative αi’s.

Depending then on the value of ρ, we distinguish three geometric cases: the subcritical, critical and
the supercritical ones. In the first one ρ < 4πmin{1, 1 + minj αj}, and the latter term in Iρ,α can be
absorbed into the first one, giving coercivity of the energy. As a consequence, one always finds solutions
using the direct methods of the Calculus of Variations, i.e. taking weak limits of minimizing sequences.
See for example [51], [65], [67]. In the regular case (U), this situation corresponds to the negative or
zero curvature case. In the second case (ρ = 4πmin{1, 1 + minj αj}) the energy Iρ,α is bounded below
but coercivity is lost, so it is unclear whether minimizing sequences would converge. If compactness
fails, a typical behaviour of solutions (described in more detail later) leads to indefinite concentration of
conformal volume at a finite number of points. For example, in the positive curvature case of (U) (i.e.
on the sphere), the loss of compactness is caused by the action of the Möbius group, which might cause
all conformal volume to concentrate to a single point, but leaving the Euler-Lagrange energy for (U)
invariant. A careful blow-up analysis of the minimizing sequences might still lead to existence results:
we will not discuss the details here, referring the reader to [34], [59] (and to [33] specifically for the
uniformization problem). T he third case (ρ > 4πmin{1, 1 + minj αj}) is the most delicate one, and has
no regular counterpart in (U). The fact that ρ exceeds the Chen-Troyanov constant causes unboundedness
from below of the energy, so it is hopeless to try to find global minima as before. Worse than that, there
are situations in which solutions do not exist: one well-known example is the tear-drop, namely a spherical
surface with only one singularity. It is known that there is indeed no constant curvature metric on such
an object (see also [20], [39], [40], [56] for more general results of this type).

The supercitical case will be the one we will mostly be interested in, and we will show that a variational
approach might still give conclusions in the search of critical points for Iρ,α of saddle type. In order to find
them, as for the Direct minimization methods, one fundamental condition is compactness. Concerning
problem (2), an alternative was proved in [9] (after previous results in [16], [48], [47] for the regular case):
either a sequence (un)n of solutions to (Eρn) (with ρn → ρ ∈ R) stays uniformly bounded, or it develops
a finite number of spheres at regular points and/or American footballs at singular points, see Theorem
3.5 for a precise statement. An American football is obtained from a sphere (possibly covered multiple
times) by cutting two meridians and by gluing the remaining edges. This results in a constant-curvature
singular surface having two equal conical angles θ = 2π(1 + α): by the modified Gauss-Bonnet formula
(1) the total curvature of this object must be 4π(1 + α).

In the blow-up alternative all the curvature is exhausted in this way and therefore ρn, the total
curvatures of the conformal metric h̃e2un , must converge to a number in this discrete set

(11) S =

{
ρ | ρ = 4πn+ 4π

∑
i∈I

(1 + αi), n ∈ N, I ⊆ {1, . . . ,m}

}
⊆ R+.

On the other hand, if ρ does not belong to this set, solutions have to stay compact and variational
methods can be applied. Recall that in the super-critical regime the Euler-Lagrange energy is unbounded
from below. However there is a way to describe how the lower bounds fail, in terms of concentration of
conformal volume.

It turns out that the multiplicative constant in (10) improves if the conformal volume spreads over Σ, see
Lemma 2.1. Having a better constant implies more chances to bound the energy from below, and therefore
a low energy forbids too much spreading of the volume. Suppose that all the weights αi are negative:
localizing (10) via cut-off functions near a regular or a singular points, in the denominator one finds
respectively the value 4π or 4π(1 +αi). This suggests to introduce a weighted cardinality χ on points of
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Σ as follows: set

(12)

{
χ(q) = 4π if q ∈ Σ \ {p1, . . . , pm};
χ(pi) = 4π(1 + αi) for all i = 1, . . . ,m.

Define also

P(Σ) = {µ : µ is a probability measure on Σ} .
As the total curvature we have at hand is ρ, this counting suggest that the limit measures for small energy
should be the following

(13) Σρ,α = {µ ∈ P(Σ) : 4πχ(supp(σ)) < ρ} .

Without singularities, such spaces coincide with the measures supported on a given number of points
(depending on ρ), and were useful in studying problems in higher dimensions or of higher order, see e.g.
[4], [36], [37], [52].

For simplicity, we will assume here the following upper bound on ρ

(14) ρ < 4πmin{1,min
i 6=j

(2 + αi + αj)}.

In this case, setting

(15) A = {pi : 4π(1 + αi) < ρ} ,

one can check that Σρ,α takes the simple form

Σρ,α = {δp : p ∈ A} .

In this case one has the following result, whose statement becomes rather simple

Theorem 1.2. ([21], particular case) Suppose that αi < 0 for all i and that ρ satisfies (14). Then (6)
admits a solution provided card(A) > 1.

While the main result in [21] is more general and deals with sets Σρ,α of arbitrary structure (see also [6],
[54]), the proof of existence is rather simple to explain under the assumptions of Theorem 1.2, and we
will treat only this case in the present notes. See also [27] for an existence result relying on degree theory.

We next discuss the singular Toda system arising in Chern-Simons theory, which represents a non-abelian
counterpart of (2). Specifically, we consider the following system

(16)

 −∆u1 = 2ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− 4π

∑m
j=1 α1,j(δpj − 1),

−∆u2 = 2ρ2

(
h2e

u2´
Σ
h2eu2dVg

− 1
)
− ρ1

(
h1e

u1´
Σ
h1eu1dVg

− 1
)
− 4π

∑m
j=1 α2,j(δpj − 1),

where h1, h2 are smooth positive functions on Σ, and the coefficients αi,j are again larger than −1. In
geometry, (16) describes Frenet frames of holomorphic curves in CPn, see [15, 19, 29], with the pi’s stand
for ramification points of the curves. From the physical point of view, abelian Chern-Simons vortices have
been quite well studied for some time, see e.g. [17], [22], [58], [63], while the treatment of the non-abelian
case is more recent, see e.g. [38], [45], [46], [59].

With a change of variable similar to (5) the latter problem transforms into

(17)


−∆u1 = 2ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
− ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
,

−∆u2 = 2ρ2

(
h̃2e

u2´
Σ
h̃2eu2dVg

− 1

)
− ρ1

(
h̃1e

u1´
Σ
h̃1eu1dVg

− 1

)
,

where the functions h̃i satisfy

(18) h̃i > 0 on Σ \ {p1, . . . , pm}; h̃i(x) ' d(x, pj)
2αi,j near pj , i = 1, 2.

As for the scalar case one gains the variational structure, with Euler-Lagrange functional

(19) Jρ,α(u1, u2) =

ˆ
Σ

Q(u1, u2) dVg +

2∑
i=1

ρi

(ˆ
Σ

uidVg − log

ˆ
Σ

h̃ie
uidVg

)
,
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where Q(u1, u2) is defined as:

(20) Q(u1, u2) =
1

3

(
|∇u1|2 + |∇u2|2 +∇u1 · ∇u2

)
.

For the regular Toda system a sharp Moser-Trudinger inequality was found in [44] (see also [30] and [71]
for other Liouville systems), where it was shown that

(21) 4π

2∑
i=1

log

ˆ
Σ

eui−ui dVg ≤
ˆ

Σ

Q(u1, u2) dVg + C; u ∈ H1(Σ).

Notice that one always has the inequality Q(u1, u2) ≥ 1
4 |∇u1|2, and hence (21) can be thought of as an

extension of (9). Our next goal is to introduce the following theorem, which extends both (10) and (21).

Theorem 1.3. ([12]) Suppose p1, . . . , pm ∈ Σ and αi,j, i = 1, 2, j = 1, . . . ,m, satisfy αi,j > −1 for all

i, j. Then, if h̃i satisfy (18), the following inequality holds

(22) 4π

2∑
i=1

min

{
1, 1 + min

j
αi,j

}
log

ˆ
Σ

h̃ie
ui−ui dVg ≤

ˆ
Σ

Q(u1, u2) dVg + C u1, u2 ∈ H1(Σ).

The constants in the above inequality are sharp.

The above result is a first step for a variational attack for the study of (2). In the recent paper [11] the
case of non-negative coefficients and positive genus has been treated using simply inequality (21), as the

corresponding functions h̃i are uniformly bounded (see also [53], [60] and [55] for the regular case and [5]
for the scalar singular case). Inequality (22) is indeed needed in a general situation.

Using blow-up analysis it is possible to show that inequality (22) holds for any smaller couple of coefficients
on the left-hand side, and moreover that there exist extremal functions for the corresponding Euler
functionals (19). This is what we will present in these notes. One can then pass to the limit for these
extremals when the parameters approach the critical ones. The presence of singularities causes a variety
of blow-up behaviours (different blow-up rates for the two components, and blow-up at regular or singular
points): using a Pohozaev identity from the recent paper [49] these can be reduced to two cases only.

The above reasoning in terms of volume concentration for the scalar singular equation (see the com-
ments before Theorem 1.2) allows to prove a related alternative for the two components of the system.
As a counterpart of (14), we define

(23) ρ1 := 4πmin

{
1, min
m 6=m′

(2 + α1m + α1m′)

}
ρ2 := 4πmin

{
1, min
m 6=m′

(2 + α2m + α2m′)

}
,

and suppose that ρi < ρi. Define also

(24) Ai = {pj : 4π(1 + αi,j) < ρi} , i = 1, 2.

Under the above condition on the ρi’s it turns out that for Jρ,α(u) low either h̃1e
u1 concentrates near a

singular point in A1 or h̃2e
u2 concentrates near a singular point in A2. To express this (non-exclusive)

alternative, it is natural introduce the join of two topological spaces X and Y (see for instance [41]):

(25) X ? Y :=
X × Y × [0, 1]

∼
,

where ∼ is the equivalence relation among triples (x, y, t) given by

(x, y, 0) ∼ (x, y′, 0) ∀x ∈ X, ∀ y, y′ ∈ Y (x, y, 1) ∼ (x′, y, 1) ∀x, x′ ∈ X, ∀ y ∈ Y.
The join of the sets A1 and A2 could then be used to characterize low-energy levels of Jρ,α, with the join

parameter s ∈ [0, 1] expressing whether h̃1e
u1 is distributionally closer to a Dirac mass or whether h̃2e

u2 is
closer to a Dirac mass (for example s = 1

2 would describe couples with the same scale of concentration).
This description is however not optimal in general, as it does not take into account the interaction
between two components u1 and u2 via the mixed term in the quadratic form Q, which penalizes aligned
gradients. For the regular case of (16), in [55] it was shown that the relative rate of concentration of the
two components plays a role in this matter.
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It turns out that if u1, u2 concentrate near the same point and with the same scale (a more precise
definition is given below), then the Moser-Trudinger constants for the system double. As a consequence
of this fact it follows that, when ρ1, ρ2 ∈ (4π, 8π) and no singularities occur, then join elements of the form(
x, x, 1

2

)
, x ∈ Σ have to be excluded (see [42] for higher values of ρ1). We will present a new improved

inequality from [13] for the singular system (16), in order to understand at the same time the effect of
the interaction of the two components between themselves and with the singularities. As a consequence
of this improved inequality we deduce the next result, which to be stated needs the definition of the
counterpart to (11). Let Γ′i,M ⊂ R+ be defined, for i = 1, 2 and M⊂ {1, . . . ,m}, by

Γ′i,M := 4π

n+
∑
j′∈M′

(1 + αij′) +
∑
j∈M

(2 + α1j + α2j) : n ∈ N,M′ ⊂ {1, . . . ,m} \M

 .

and define also

(26) Γα1,α2
= ∪M⊂{1,...,M}

Γ′1,M ×

∑
j∈M

4π(1 + α2j),+∞

 ∪
∑
j∈M

4π(1 + α1j),+∞

× Γ′2,M

 .

We then set

(27) Γ = Γα1,α2
.

Theorem 1.4. ([13]) Let Γ as in (26), (ρ1, ρ2) be as in (23), and let ρ ∈ R2
+ \ Γ satisfy ρi < ρi for both

i = 1, 2. Define integer numbers M1,M2,M3 by:

M1 := #{j : 4π(1 + α1j) < ρ1} M2 := #{j : 4π(1 + α2j) < ρ2}
M3 := #{j : 4π(1 + αij) < ρi and ρi < 4π(2 + α1j + α2j) for both i = 1, 2}.(28)

Then system (16) admits solutions provided the following condition holds

(M1,M2,M3) 6∈ {(1, j, 0), (j, 1, 0), (2, 2, 1), (2, 3, 2), (3, 2, 2), j ∈ N}.

By the previous description low sub-levels of Jρ,α can be identified with the topological join of A1

and of A2, with some points removed. Under the assumptions on the ρi’s, this join consists of a graph
X made of segments whose end-points belong to {p1, . . . , pm}. The conditions on (M1,M2,M3) in the
previous theorem ensure that this graph is non contractible. It turns out that the above assumptions on
the Mi’s are necessary: in fact in [13] a non-existence result for every case not covered by the theorem is
proved.

Acknowledgements The author has been supported by the PRIN project Variational methods, with
applications to problems in mathematical physics and geometry and by the project Geometric Variational
Problems by Scuola Normale Superiore. The author is a member of the group G.N.A.M.P.A., as a part
of INdAM.

2. Variational aspects of singular Liouville equations

In this section we treat problem (2) via variational methods. We first show that, in a regime where
coercivity fails, low energy implies volume concentration at suitable points. We will then this character-
ization to build min-max schemes leading to existence of solutions.

2.1. Improved Moser-Trudinger inequalities. In this subsection we describe how improved Moser-
Trudinger inequalities can be employed to deduce information on functions whose Euler-Lagrange energy
is small enough. We would like to give some conditions on a function u in order to obtain lower bounds
on the energy even when we are beyond the coercivity threshold. Indeed, the spreading of the function
e2uover the surface gives sufficient conditions to obtain this lower bound, deduced via some improvement
of the Moser-Trudinger inequality. Two well-known examples were due to J.Moser and T.Aubin, see
[3], [57]. Moser proved that one can replace 1

4π by 1
8π on the standard sphere (S2, gS2) provided u is
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antipodally symmetric. Aubin showed instead that on (S2, gS2) one can take any constant larger than
1

8π provided u is balanced, which means thatˆ
S2

xi e
2udVS2 = 0; i = 1, 2, 3.

Here xi stand for the Euclidean i-th coordinate function, so the balancing condition means having zero
center of mass in R3 for the conformal volume.

W.Chen and C.Li, [26], extended this argument to arbitrary surfaces, showing that if e2u has integral
bounded from below into two separate subsets of Σ, then the constant 1

4π in (9) can be basically divided
by two. The result was then extended in [37], [36] for an arbitrary number of spreading regions.

Lemma 2.1. ([26]) Let Ω1,Ω2 be subsets of Σ satisfying dg(Ω1,Ω2) ≥ δ0, where δ0 is a positive real
number, and let γ0 ∈

(
0, 1

2

)
. Then, for any ε̃ > 0 there exists a constant C = C(ε̃, δ0, γ0) such that

log

ˆ
Σ

e2(u−u)dVg ≤ C +
1

8π − ε̃

ˆ
Σ

|∇gu|2dVg

for all the functions u ∈ H1(Σ) satisfying

(29)

´
Ωi
e2udVg´

Σ
e2udVg

≥ γ0, ∀ i = 1, 2.

Proof. Assume without loss of generality that u = 0: one can find two functions g1, g2 such that

(30)


gi(x) ∈ [0, 1] for every x ∈ Σ;
gi(x) = 1, for every x ∈ Ωi, i = 1, 2;

gi(x) = 0, if dg(x,Ωi) ≥ δ0
4 ;

‖gi‖C4(Σ) ≤ Cδ0 ,

where Cδ0 is a positive constant depending only on δ0. By interpolation, for any ε > 0 there exists Cε,δ0
(depending only on ε and δ0) such that, for any v ∈ H1(Σ) and for any i = 1, 2 we have

(31)

ˆ
Σ

|∇g(giv)|2dVg ≤
ˆ

Σ

g2
i |∇gv|2dVg + ε

ˆ
Σ

|∇gv|2dVg + Cε,δ0

ˆ
Σ

v2dVg.

We next notice that ˆ
Σ

e2udVg ≤
1

γ0

ˆ
Ωi

e2udVg ≤
ˆ

Σ

e2giudV.

Using the standard Moser-Trudinger inequality one finds

log

ˆ
Σ

e2udVg ≤ log
1

γ0
+

1

4π

2∑
i=1

ˆ
Σ

|∇g(giv)|2dVg +

2∑
i=1

giu+ Cl,Σ,g.

By (31) we then deduce

log

ˆ
Σ

e2udVg ≤ log
1

γ0
+

1 + ε

4π

2∑
i=1

ˆ
Σ

|∇gu|2dVg +

2∑
i=1

giu+ Cl,Σ,gCε,δ0

ˆ
Σ

v2dVg.

Since we are assuming the average of u to be zero, the average terms in the last formula are bounded
by a constant times the Dirichlet norm of u by Poincaré’s inequality. Therefore, using the elementary
inequality t ≤ εt2 + 1

4ε we find that

log

ˆ
Σ

e2udVg ≤ log
1

γ0
+

1 + ε

4π

2∑
i=1

ˆ
Σ

|∇gu|2dVg + Cl,Σ,g,ε + Cε,δ0

ˆ
Σ

v2dVg.

It can be shown, for example using truncations (in height or in Fourier modes) that the last term is
lower order and it can be absorbed into the Dirichlet energy multiplied by an arbitrarily small constant,
concluding the proof.
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We discuss next the counterpart of the previous result in presence of singularities, for which we recall
the inequality in Proposition 1.1. Again, we wish to derive some improved inequalities in terms of the
spreading of the function

f̃u :=
h̃(x)e2u´

Σ
h̃(x)e2udV

,

appearing in the singular Euler-Lagrange energy.
Similarly to Lemma 2.1, (10) can also be localized. If some portion of f̃u is localized near a regular

point, the corresponding gain in the constant will still be 4π. If instead f̃u is localized near a singular
point pi with negative weight αi, we will gain locally a quantity of size 4π(1 + αi). One gets therefore
the following result.

Lemma 2.2. ([21]) Let n ∈ N, let I ⊆ {1, . . . ,m} with n + card (I) > 0, and let αi < 0 for all i ∈ I.
Assume there exist r > 0, δ0 > 0 and pairwise distinct points {q1, . . . , qn} ⊆ Σ \ {p1, . . . , pm} such that:

• for any couple {a, b} ⊆ {q1, . . . , qn ∪ (∪i∈Ipi)} with a 6= b one has distg(Br (a) , Br (b)) ≥ 4δ0;
• for any a ∈ {q1, . . . , qm} one has dg(pi, Br(a)) ≥ 4δ0 for any i ∈ {1, . . . ,m} \ I;

and consider any γ0 ∈
(

0, 1
n+card(I)

)
.

Then, for any ε̃ > 0 there exists a constant C := C(Σ, g, n, I, r, δ0, γ0, ε̃) such that

(32) log

ˆ
Σ

h̃e2(u−u) dVg ≤
1

4π
(
n+

∑
i∈I(1 + αi)− ε̃

)ˆ
Σ

|∇gu|2 dVg + C

for all functions u ∈ H1(Σ) satisfying´
Br(a)

h̃e2u dVg´
Σ
h̃e2u dVg

≥ γ0, ∀ a ∈ {q1, . . . , qn ∪ (∪i∈Ipi)} .

The above lemma states that the more the conformal volume is spread over the surface, the more one
gains in the Moser-Trudinger inequality, especially when some volume accumulates near regular points.
In this situation, one then get lower bounds on the energy even in supercritical regimes. Therefore, if the
energy gets low enough, one should expect concentration of volume. We state next two lemmas making
this reasoning rigorous via a covering procedure.

Lemma 2.3. Let ` ∈ N, and fix two positive number ε and r. Suppose for a non-negative function
f ∈ L1(Σ) with ‖f‖L1(Σ) = 1 the following condition holdsˆ

∪`i=1Br(qi)

fdVg < 1− ε for every `-tuple q1, . . . , q` ∈ Σ.

Then there exist ε > 0 and r > 0, depending only on ε, r, ` and Σ (but not on f), and ` + 1 points
q1, . . . , q`+1 ∈ Σ (which depend on f) satisfyingˆ

Br(q1)

fdVg ≥ ε, . . . ,
ˆ
Br(q`+1)

fdVg ≥ ε; B2r(qi) ∩B2r(qj) = ∅ for i 6= j.

Proof. Arguing by contradiction, assume that for every ε, r > 0 there exists f as in the statement and
such that for every (`+ 1)-tuple of points q1, . . . , q`+1 in Σ we have

(33)

ˆ
Br(qj)

fdVg ≥ ε ∀j = 1, . . . , `+ 1 ⇒ B2r(qi) ∩B2r(qj) 6= ∅ for some i 6= j.

Let r = r
8 , where r is given in the statement. We can find h ∈ N and h points x1, . . . , xh ∈ Σ such that

∪hi=1Br(xi) covers Σ. For ε as in the statement of the Lemma, we also define ε = ε
2h . We remark that

the choice of r and ε depends on r, ε, ` and Σ only, as required.
Let {x̃1, . . . , x̃j} ⊆ {x1, . . . , xh} denote the points for which

´
Br(x̃i)

fdVg ≥ ε. Define x̃j1 = x̃1, and let

A1 denote the set

A1 = {∪iBr(x̃i) : B2r(x̃i) ∩B2r(x̃j1) 6= ∅} ⊆ B4r(x̃j1).

If there exists x̃j2 with B2r(x̃j2) ∩B2r(x̃j1) = ∅, we set

A2 = {∪iBr(x̃i) : B2r(x̃i) ∩B2r(x̃j2) 6= ∅} ⊆ B4r(x̃j2).
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Proceeding in this way, we choose recursively points x̃j3 , x̃j4 , . . . , x̃js such that

B2r(x̃js) ∩B2r(x̃ja) = ∅ ∀ 1 ≤ a < s,

and introduce sets A3, . . . , As by

As = {∪iBr(x̃i) : B2r(x̃i) ∩B2r(x̃js) 6= ∅} ⊆ B4r(x̃js).

Because of (33), the process cannot go further than x̃j` , and hence s ≤ `. Using the definition of r we
obtain

(34) ∪ji=1Br(x̃i) ⊆ ∪
s
i=1Ai ⊆ ∪si=1B4r(x̃ji) ⊆ ∪si=1Br(x̃ji).

Then by our choice of h, ε, {x̃1, . . . , x̃j} and by (34) one hasˆ
Σ\∪si=1Br(x̃ji )

fdVg ≤
ˆ

Σ\∪ji=1Br(x̃i)

fdVg ≤
ˆ

(∪hi=1Br(xi))\(∪ji=1Br(x̃i))
fdVg

< (h− j)ε ≤ ε

2
.

Finally, if we chose qi = x̃ji for i = 1, . . . , s and qi = x̃js for i = s + 1, . . . , `, we get a contradiction to
the assumptions of the lemma.

Using Lemmas 2.1 and 2.3 it is possible to analyse the volume concentration for function with large
negative energy, showing that it has to concentrate near at most one singular point in A, see (15).

Lemma 2.4. Suppose the assumptions of Theorem 1.2 hold true. Then for any ε > 0 and any r > 0
there exists a large L = L(ε, r) such that for every u ∈ H1(Σ) with Iρ,α(u) ≤ −L there exist pi ∈ A such
that

(35)
1´

Σ
h̃(x)e2udVg

ˆ
Σ\Br(pi)

h̃(x)e2udVg < ε.

Proof. We first claim that the conformal volume of functions with low energy must concentrate near
a single point. Indeed, suppose by contradiction that there exist ε, r > 0 and (un)n ⊆ H1(Σ) with
Iρ,α(un) → −∞ and such that for every point q ∈ Σ one has

´
∪ki=1Br(qi)

eundVg < 1 − ε. Noting that

Iρ,α is invariant under adding constants, we can assume that for every n we have the normalization´
Σ
h̃(x)e2undVg = 1. Then we can apply Lemma 2.3 with ` = 1, f = h̃(x)e2un , and afterwards Lemma

2.2 with n+ card(I) = 2 and δ0, γ0 sufficiently small (depending on r and ε) to obtain

Iρ,α(un) ≥
ˆ

Σ

|∇gun|2dVg + 2ρ

ˆ
Σ

ã undVg − Cρ

− ρ

4πmini 6=j(2 + αi + αj)− ε̃

ˆ
Σ

|∇gun|2dVg − ρ un,

with C and ε̃ independent of n (ε̃ arbitrarily small). Since we are assuming ρ < 4πmini 6=j(2 + αi + αj),
we can choose ε̃ > 0 so small that 1 − ρ

4πmini6=j(2+αi+αj)−ε̃ := δ > 0. Hence using also the Poincaré

inequality we find

Iρ,α(un) ≥ δ

ˆ
Σ

|∇gun|2dVg + 2ρ

ˆ
Σ

ã(un − un)dVg − Cρ

≥ δ

ˆ
Σ

|∇gun|2dVg − C
(ˆ

Σ

|∇gun|2dVg
) 1

2

− Cρ ≥ −C.(36)

This lower bound contradicts the fact that Iρ,α(un)→ −∞, and proves our claim.
To conclude the proof, we must show that the volume concentrates near a singular point in A. In

order to show this, it is sufficient to argue as before and still apply Lemma 2.2 with I = ∅ and n = 1,
using the fact that ρ < 4π and that the local Moser-Trudinger constant is bigger than ρ if the singular
concentration point does not belong to A.

By the previous lemma it follows that if the Euler-Lagrange energy is low enough then the function
h̃(x)e2u, normalized in L1, is localized near at most one singular point of Σ. Choosing ε and r sufficiently
small, one can easily see that the point pi in the statement of Lemma 2.4 must be unique, and therefore
we obtain a canonical map from low energy levels into the set of singular points.
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Proposition 2.5. Under the assumptions of Theorem 1.2 there exist a large constant L and a continuous
map Ψ :

{
Iρ,α ≤ −L

}
→ A such that, if Iρ,α(un)→ −∞, then 1´

Σ
h̃(x)e2undVg

h̃(x)e2u ⇀ δΨ(un) as n→∞.

Remark 2.6. If card(A) > 1, since A is discrete, from the continuity of Ψ it follows that
{
Iρ,α ≤ −L

}
is disconnected for L sufficiently large.

We will see in the next section how to construct a sort of inverse map to Ψ, which will allow to prove
existence of solutions via suitable min-max schemes.

3. Proof of Theorem 1.2

In this section we prove our first existence result, concerning singular Liouville equations.

3.1. Test function estimates. For each singular point pi and λ > 0, define the function

(37) ϕi,λ(x) = log
λ(

1 + λ2d(x, xi)2(1+αi)
) .

This function satisfies the following properties.

Proposition 3.1. Let pi be a singular point in A. Then, as λ→ +∞ the following properties hold true

(i) 1´
Σ
h̃(x)e2ϕi,λdVg

h̃(x)e2ϕi,λ ⇀ δpi weakly in the sense of distributions;

(ii) Iρ,α(ϕi,λ)→ −∞.

Proof. To prove (i) we first notice that, since h̃(x) ' d(x, pi)
2αi one has

h̃(x)e2ϕi,λ(x) ≥ λ−2αiλ2(
1 + λ2d(x, xi)2(1+αi)

)2 ≥ C−1 λ−2αiλ2(
λ2λ−2(1+αi)

)2 ≥ C−1λ2 in B2λ−1(pi) \Bλ−1(pi).

Integrating it follows that

(38)

ˆ
Σ

h̃(x)e2ϕi,λdVg ≥
ˆ
B2λ−1(pi)\Bλ−1(pi)

h̃(x)e2ϕi,λdVg ≥ C−1.

On the other hand, one has thatˆ
Σ\B2λ−1(pi)

h̃(x)e2ϕi,λdVg ≤ C
ˆ ∞

2λ−1

r2αiλ2(
1 + λ2r2(1+αi)

)2 rdr.
By the change of variables λr1+αi = s1+αi we then obtainˆ

Σ\B2λ−1(pi)

h̃(x)e2ϕi,λdVg ≤ C
ˆ ∞

2λ
− αi

1+αi

s2αi+1(
1 + s2(1+αi)

)2 ds→ 0

as λ→ +∞. From the latter formula and (38) then (i) follows.

To show (ii), we prove the following estimates

(39) ρ

ˆ
Σ

ϕi,λdVg = −(ρ+ oλ(1)) log λ (oλ(1)→ 0 as λ→ +∞) ;

(40)

ˆ
Σ

|∇gϕi,λ|2dVg ≤ 8(1 + αi)π(1 + oλ(1)) log λ as λ→ +∞.

Once we have these, (ii) follows immediately.

Proof of (39). Fixing any δ > 0 small we have that

log
λ

1 + λ2diam(Σ)2(1+αi)
≤ ϕi,λ(y) ≤ log

λ

1 + λ2δ2(1+αi)
, y ∈ Σ \Bδ(pi),

and

(41) log
λ

1 + λ2δ2(1+αi)
≤ ϕi,λ(y) ≤ log λ, for y ∈ B2δ(pi).
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From these two estimates and some elementary computations we deduce that

ρ

ˆ
Σ

ϕi,λdVg = ρ
[
(− log λ)(1 +O(δ2)) +O(1) +O(δ2)(| log λ|+ | log δ|)

]
,

as λ→ +∞. By the arbitrarity of δ, (39) follows.

Proof of (40). We will show the following two pointwise estimates on the gradient of ϕi,λ

(42) |∇ϕi,λ(y)| ≤ Cλ; for every y ∈ Σ,

where C is a constant independent of σ and λ, and

(43) |∇ϕi,λ(y)| ≤ 2(1 + αi)

d(y, pi)
.

To check (42) we notice that

(44)
λ2d(y, pi)

1 + λ2d(y, pi)2(1+αi)
≤ Cλ

1
1+αi ,

where C is a fixed constant (independent of λ). Moreover

(45) ∇ϕi,λ(y) = −2(1 + αi)λ
2 d(y, pi)

1+2αi∇y(di(y))

(1 + λ2d(y, pi)2(1+αi))
.

Using |∇ydi(y))| ≤ 1 and inserting (44) into (45) we obtain immediately (42). Similarly, erasing the term
1 from the denominator we deduce (43).

The estimate (42) then implies

(46)

ˆ
B 1

λ

1
1+αi

(pi)

|∇gϕi,λ|2dVg ≤ C

for some fixed C depending only on Σ and αi. On the other hand, using polar coordinates centred at pi
and using (43) one finds thatˆ

Σ\B 1

λ

1
1+αi

(pi)

|∇gϕi,λ|2dVg ≤ 4

ˆ
Σ\B 1

λ

1
1+αi

(pi)

(1 + αi)
2

dg(y, xi)2
dVg ≤ 8π(1 + oλ(1))(1 + αi) log λ

as λ→ +∞. From (46) and the last formula we finally deduce (40).

3.2. Min-max scheme and existence. We next introduce a variational scheme for obtaining existence
of solutions for (6). Let first L be so large that Proposition 2.5 applies with L

4 , and then choose two
distinct points pi1 , pi2 such that 4π(1 + αi) < ρ.

Choose next λ be so large that Iρ,α(ϕi1,λ) ≤ −L and Iρ,α(ϕi2,λ) ≤ −L (see Proposition 3.1 (ii)).

Fixing this value of λ, we define the family of maps

(47) Πλ =
{
$ : [0, 1]→ H1(Σ) : $ is continuous and $(0) = ϕi1,λ, $(1) = ϕi2,λ

}
.

Lemma 3.2. Πλ is non-empty and moreover, letting

Πλ = inf
$∈Πλ

sup
t∈[0,1]

Iρ,α($(t)), one has Πλ > −
L

2
.

Proof. To show that Πλ 6= ∅, it suffices to consider the map

(48) $(t) = (1− t)ϕi1,λ + tϕi2,λ.

Arguing by contradiction, suppose that Πλ ≤ −
L
2 . Then there would exist a map $ ∈ Πλ with

supt∈[0,1] Iρ,α($(t)) ≤ − 3
8L. Since by our choice of L Proposition 2.5 applies with L

4 , the composition

t 7→ Ψ ◦$(t)

is well defined and continuous. However, by Proposition 3.1 (i) and Proposition 2.5 one has that

Ψ ◦$(0) = p1; Ψ ◦$(1) = p2,

which contradicts the continuity of this map.
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By the statement of Lemma 3.2 and standard variational arguments, one can find a Palais-Smale sequence
(un)n for Iρ,α at level Πλ, namely a sequence for which

Iρ,α(un)→ Πλ; I ′ρ(un)→ 0.

Unfortunately it is not known whether Palais-Smale sequences admit converging subsequences. To show
this property, recall first that u 7→ e2u is compact from H1(Σ) to Lp(Σ), which by Hölder’s inequality

implies the compactness of u 7→ h̃(x)e2u from H1(Σ) into L1(Σ). Therefore it would be sufficient to show
that a Palais-Smale sequence is bounded.

This indeed can be proved indirectly, following an argument in [61], by slightly modifying the value
of the parameter ρ. We choose a small ρ0 > 0, and allow ρ to vary in the interval [1 − ρ0, 1 + ρ0]. We
consider then the functional Iρ,α for these values of ρ. If ρ0 is sufficiently small, the interval [1−ρ0, 1+ρ0]
will be compactly contained in the complement of the set S, see (11). Following the previous estimates
with minor changes, one easily checks that the min-max scheme applies uniformly for ρ ∈ [1− ρ0, 1 + ρ0]
and for λ sufficiently large. Precisely, given any large L > 0, there exist ρ0 sufficiently small and λ so
large that for ρ ∈ [1− ρ0, 1 + ρ0]

(49) sup
t∈{0,1}

Iρ,α($(m)) < −2L; Πρ := inf
$∈Πλ

sup
t∈[0,1]

Iρ,α($(t)) > −L
2
,

where Πλ is defined in (47). Moreover, using for example the test map (48), one shows that for ρ0

sufficiently small there exists a large constant L such that

(50) Πρ ≤ L for every ρ ∈ [1− ρ0, 1 + ρ0].

We have the following result, regarding the dependence in ρ of the min-max value Πρ, see [35].

Lemma 3.3. Let λ be so large and ρ0 be so small that (49) holds. Then the function

ρ 7→ Πρ

ρ
is non-increasing in [1− ρ0, 1 + ρ0].

Proof. For ρ′ ≥ ρ, we have

Iρ,α(u)

ρ
− Iρ′(u)

ρ′
=

1

2

(
1

ρ
− 1

ρ′

)ˆ
Σ

|∇gu|2dVg ≥ 0,

which clearly implies
Πρ
ρ ≥

Πρ′

ρ′ . This concludes the proof.

From Lemma 3.3 we deduce that the function ρ 7→ Πρ
ρ is differentiable almost everywhere, and we obtain

the following corollary.

Corollary 3.4. Let λ and ρ0 be as in Lemma 3.3, and let Λ ⊂ [1 − ρ0, 1 + ρ0] be the (dense) set of

ρ for which the function
Πρ
ρ is differentiable. Then for ρ ∈ Λ the functional Iρ,α possesses a bounded

Palais-Smale sequence (ul)l at level Πρ, weakly converging to a solution of (6).

Proof. The existence of a Palais-Smale sequence (ul)l follows from Lemma 3.2, and the boundedness
is proved exactly as in [35], Lemma 3.2.

From the above result we obtained a sequence ρk → ρ such that Iρk,α has a critical point. We have next
the following result.

Theorem 3.5. ([9], [7], [8]) Let Σ be a compact surface, and let ui solve (6) with h̃ as in (7), ρ = ρi,
ρi → ρ. Suppose that

´
Σ
fuidVg ≤ C for some fixed C > 0. Then along a subsequence uik one of the

following alternatives holds:

(i): uik is uniformly bounded from above on Σ;
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(ii): maxΣ

(
2uik − log

´
Σ
fuik dVg

)
→ +∞ and there exists a finite blow-up set S = {q1, . . . , ql} ∈ Σ

such that
(a) for any s ∈ {1, . . . , l} there exist xsk → qs such that uik(xsk) → +∞ and uik → −∞

uniformly on the compact sets of Σ \ S,

(b) ρik f̃uik ⇀
∑l
s=1 βsδqs in the sense of measures, with βs = 4π for qs 6= {p1, . . . , pm}, or

βs = 4π(1 + αj) if qs = pj for some j = {1, . . . ,m}. In particular one has that

ρ = 4πn+ 4π
∑
j∈J

(1 + αj),

for some n ∈ N ∪ 0 and J ⊆ {1, . . . ,m} (possibly empty) satisfying n+ card(J) > 0.

Proof of Theorem 1.2 By Corollary 3.4 there exists a sequence ρk → ρ such that Iρk,α has a critical
point uk. By Theorem 3.5, since ρ 6∈ S, uk must then converge to a solution of (2).

We also refer to [35], [62] for previous results on surfaces with positive genus concerning the regular case
of (2). The above method can actually be used to find multiplicity results as well for generic data, see
[31], [32].

4. A Moser-Trudinger inequality for singular systems

In this section we are going to prove the following Moser-Trudinger type inequality. It is a weaker version
of Theorem 1.3, but anyway sufficient to prove the existence result Theorem 1.4. We denote as x− the

negative part of a real number x, that is x− :=

{
0 if x ≥ 0
−x if x ≤ 0

, and we set for i ∈ {1, 2}

(51) α̃i = − max
j∈{1,...,m}

αi,j
−.

Proposition 4.1. Let Σ be a closed surface with area |Σ| = 1, h̃i be as in (18), and α̃i be as in (51).
Then, for any ρ = (ρ1, ρ2) ∈ R2

+ satisfying ρi < 4π(1 + α̃i) for both i ∈ {1, 2} there exists C(ρ) > 0 such
that the Euler-Lagrange functional (19) verifies

Jρ,α(u) > −C(ρ) ∀ u ∈ H1(Σ)2.

Definition 4.2. As in [44], we define the set of admissible parameters Λ as

Λ :=
{
ρ ∈ R2

+ : Jρ,α is bounded from below
}
.

Clearly, Λ preserves the partial order of R2
+, that is if ρ ∈ Λ then ρ̃ ∈ Λ until ρ̃i ≤ ρi for both i ∈ {1, 2};

in these terms, Proposition 4.1 is equivalent to saying

(0, 4π(1 + α̃1))× (0, 4π(1 + α̃2)) ⊂ Λ.

Remark 4.3. One can easily see that Λ is not empty: since it holds

|∇u1|2 + |∇u2|2

6
≤ Q(u1, u2)

one can apply the scalar Moser-Trudinger inequality (10) to both components to get(
0,

8

3
π(1 + α̃1)

)
×
(

0,
8

3
π(1 + α̃2)

)
⊂ Λ.

To prove Proposition 4.1, some lemmas will be needed. First of all, we notice that when the parameter
ρ is in the interior of the set Λ, then the energy functional is not only bounded from below, but even
coercive and it has a minimizer; on the other hand, if ρ is on the boundary of Λ, then Jρ,α cannot be
coercive.

Lemma 4.4. For any ρ ∈
◦
Λ there exists a constant C such that

Jρ,α(u) ≥
´

Σ

(
|∇u1|2 + |∇u2|2

)
dVg

C
− C

Moreover, Jρ,α admits a minimizer u = (u1, u2) that solves (17).
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Proof. Taking δ ∈
(

0,
d(ρ, ∂Λ)√

2

)
, we have (1 + δ)ρ ∈ Λ so J(1+δ)ρ,α(u) ≥ −C; therefore, we can write

Jρ,α(u) =
δ

1 + δ

ˆ
Σ

Q(u1, u2)dVg +
J(1+δ)ρ,α(u)

1 + δ
≥

≥ δ

6(1 + δ)

ˆ
Σ

(
|∇u1|2 + |∇u2|2

)
dVg − C

and the first claim follows.
To prove the rest we notice that, if we restrict ourselves to the subset of H1(Σ)2 consisting of all functions

satisfying

ˆ
Σ

h̃ie
uidVg = 1, the energy is coercive since, from Poincaré’s inequality and (10)

ˆ
Σ

u2
i dVg =

ˆ
Σ

(ui − ui)2
dVg + (ui)

2 ≤

≤ C

ˆ
Σ

|∇ui|2dVg +

(
C +

1

16π(1 + α̃i)

ˆ
Σ

|∇ui|2dVg
)2

≤

≤ C

(
1 +

ˆ
Σ

|∇ui|2dVg
)2

.

Being Jρ,α weakly lower-semicontinuous as well, the existence of a minimizer follows from the direct
methods of calculus of variations.

Lemma 4.5. For any ρ ∈ ∂Λ there exists a sequence {ũk}k∈N ⊂ H1(Σ)2 verifyingˆ
Σ

(
|∇ũ1,k|2 + |∇ũ2,k|2

)
dVg →

k→+∞
+∞ lim

k→+∞

Jρ,α(ũk)´
Σ

(|∇ũ1,k|2 + |∇ũ2,k|2) dVg
≤ 0.

Proof. Suppose by contradiction thatˆ
Σ

(
|∇u1,k|2 + |∇u2,k|2

)
dVg →

k→+∞
+∞ ⇒

Jρ,α(uk)´
Σ

(|∇u1,k|2 + |∇u2,k|2) dVg
≥ θ > 0

for any choice of {uk}. This would mean that Jρ,α(u) ≥ θ

2

ˆ
Σ

(
|∇u1|2 + |∇u2|2

)
dVg − C, hence for any

small δ we would get

J(1+δ)ρ,α(u) = (1 + δ)Jρ,α(u)− δ
ˆ

Σ

Q(u1, u2)dVg ≥

≥
(

(1 + δ)
θ

2
− δ

2

)ˆ
Σ

(
|∇u1|2 + |∇u2|2

)
dVg − C

≥ −C
hence (1 + δ)ρ ∈ Λ, whereas one clearly has (1− δ)ρ ∈ Λ; this is in contradiction to ρ ∈ ∂Λ.

We then need a basic calculus lemma. Its proof will be omitted, as it can be found in [44] (following an
idea of W. Ding).

Lemma 4.6 ([44], Lemma 4.4). Let {ak}k∈N and {bk}k∈N be two sequences of real numbers satisfying

ak →
k→+∞

+∞ and lim
k→+∞

bk
ak
≤ 0.

Then there exists a smooth function F : [0,+∞)→ R satisfying, up to subsequences,

0 < F ′(t) < 1 for any t ≥ 0 F ′(t) →
t→+∞

0 F (ak)− bk →
k→+∞

+∞.

The latter lemma will be applied to the sequences

ak =

ˆ
Σ

Q(ũ1,k, ũ2,k)dVg, bk = Jρ,α(ũk)

where ũk is as in Lemma 4.5, and we will consider the auxiliary functional

J̃ρ,α(u) := Jρ,α(u)− F
(ˆ

Σ

Q(u1, u2)dVg

)
,
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whose behaviour is described by the following lemma.

Lemma 4.7. For any ρ ∈
◦
Λ the functional J̃ρ,α is bounded from below on H1(Σ)2 and its infimum is

achieved by a function satisfying{
−
(
1− 2

3g(u)
)

∆ui + g(u)
3 ∆u3−i = 2ρi

(
h̃ie

ui − 1
)
− ρ3−i

(
h̃3−ie

u3−i − 1
)

;´
Σ
h̃ie

uidVg = 1,

where g(u) = F ′
(ˆ

Σ

Q(u1, u2)dVg

)
. On the other hand, if ρ ∈ ∂Λ then inf

H1(Σ)2
J̃ρ,α = −∞.

Proof. For ρ ∈
◦
Λ one can argue as in Lemma 4.4, yielding lower semi-continuity from the regularity of

F and coercivity from the behaviour of F ′ at infinity.
For ρ ∈ ∂Λ, taking ũk as in Lemma 4.5 and applying Lemma 4.6 one gets

J̃ρ,α(ũk) = bk − F (ak) →
k→+∞

−∞.

This concludes the proof.

We will need next the following two results. The first one is from [12], and its proof is rather similar to
from Theorem 3.1 in [44].

Theorem 4.8. ([12]) Let h̃i as in (18), let uk = (u1,k, u2,k) ∈ H1(Σ)2 be solutions of
−∆ui,k = 2Vi,kh̃ie

ui,k − V3−i,kh̃3−ie
u3−i,k + ψi,k´

Σ
h̃ie

ui,kdVg ≤ C
‖ψi,k‖Lp(Σ) ≤ C
Vi,k →

k→+∞
1 in L∞(Σ)

i ∈ {1, 2},

for some p > 1, C > 0 and define the sets Si as

Si :=

{
p ∈ Σ : ∃ xk →

k→+∞
p such that ui,k(xk) →

k→+∞
+∞

}
.

Then, after taking subsequences, one of the following alternatives happens.

(1) For each i ∈ {1, 2}, either ui,k is bounded in L∞(Σ) or it tends uniformly to −∞.
(2) Si 6= ∅ for some i ∈ {1, 2}; in this case, Si is finite and either uj,k is bounded in L∞loc(Σ\(S1 ∪ S2))

or it converges to −∞ in L∞loc(Σ\(S1 ∪ S2)) for each j ∈ {1, 2}; moreover, if Si\S3−i 6= ∅, then
the latter alternative occurs for ui,k.

Theorem 4.9. ([49], Proposition 3.1) Let uk = (u1,k, u2,k) ∈ H1(Σ)2 be solutions of (17), let α̂i(p) stand
for 0 if p is regular and for αi,j if p = pj. Define also

(52) σi(p) := lim
r→0

lim
k→+∞

ˆ
Br(p)

h̃ie
ui,kdVg.

Then, one has

(53) σ1(p)2 − σ1(p)σ2(p) + σ2(p)2 = 4π(1 + α̂1(p))σ1(p) + 4π(1 + α̂2(p))σ2(p).

We are now in position to prove the main result of this section.

Proof of Proposition 4.1 Suppose by contradiction that

(0, 4π(1 + α̃1))× (0, 4π(1 + α̃2)) 6⊂ Λ;

then there is some ρ ∈ ∂Λ with ρi < 4π(1 + α̃i) for both i ∈ {1, 2}.
Consider a sequence {ρk}k∈N ∈

◦
Λ with ρk →

k→+∞
ρ and a minimizer uk for J̃ρk,α, as in Lemma 4.7; then,

vk := uk + log ρk solves{
−∆vi,k = 2 6−5g(vk)

6−8g(vk)+2g(vk)2

(
h̃ie

vi,k − ρi,k
)
− 3−4g(vk)

3−4g(vk)+g(vk)2

(
h̃3−ie

v3−i,k − ρ3−i,k

)
;´

Σ
h̃ie

vi,kdVg = ρi,k,
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with
6− 5g(vk)

6− 8g(vk) + 2g(vk)2
and

3− 4g(vk)

3− 4g(vk) + g(vk)2
both uniformly converging to 1, so Theorem 4.8 can

be applied to this sequence. The normalization on the integral implies that ui,k cannot tend to −∞ for
any i ∈ {1, 2}; moreover, we can also exclude boundedness in L∞(Σ) because this would imply conver-

gence to a minimizer u of J̃ρ,α, contradicting Lemma 4.7.

The only case left is the blow-up around at least one point p: Pohozaev’s identity (53) implies that if
there is a singularity of mass αi,j on p then σi ≥ 4π(1 + αi,j) for some i ∈ {1, 2}, whereas if p is a regular
point then there is a component with a mass of at least 4π around it; in both cases, for such an i we
obtain:

4π(1 + α̃i) ≤ lim
r→0

lim
k→+∞

ˆ
Br(p)

h̃ie
vi,kdVg ≤ lim

k→+∞

ˆ
Σ

h̃ie
vi,kdVg = ρi < 4π(1 + α̃i),

that is a contradiction.

We conclude the section by showing a partial converse of Theorem 4.1, namely that for higher values
of the parameter ρ the functional Jρ,α is unbounded from below. Estimates of this type will be needed
in the next Section and are in the spirit of Proposition 3.1.

Proposition 4.10. If ρi > 4π(1 + α̃i) for some i ∈ {1, 2}, then inf
H1(Σ)2

Jρ,α = −∞ that is

Λ ⊂ (0, 4π(1 + α̃1)]× (0, 4π (1 + α̃2)] .

Proof. We will give the proof for i = 1, being nearly identical for i = 2.
Choosing a point p1 such that α̂1(p1) = α̃i, we define for large λ

ϕ1,λ(x) = log

(
λ1+α̃1

1 + (λd(x, p1))2(1+α̃1)

)2

; ϕ2,λ(x) = −1

2
log

(
λ1+α̃1

1 + (λd(x, p1))2(1+α̃1)

)2

.

Using the fact that
∣∣∣∇(d(x, p1)2(1+α̃1)

)∣∣∣ ≤ 2(1 + α̃1)d(x, p1)1+2α̃1 , we obtain

|∇ϕ1,λ(x)| =

∣∣∣∣∣−2λ2(1+α̃1)
∣∣∇ (d(x, p1)2(1+α̃1)

)∣∣
1 + (λd(x, p1))2(1+α̃1)

∣∣∣∣∣ ≤
≤ 4(1 + α̃1)λ2(1+α̃1)d(x, p1)1+2α̃1

1 + (λd(x, p1))2(1+α̃1)
≤

≤ min

{
Cλ,

4(1 + α̃1)

d(x, p1)

}
,

and therefore
ˆ

Σ

Q(ϕ1,λ, ϕ2,λ)dVg =
1

4

ˆ
Σ

|∇ϕ1,λ|2dVg ≤

≤ Cλ2

ˆ
B 1
λ

(p1)

dVg + 4(1 + α̃1)2

ˆ
Σ\B 1

λ
(p1)

dVg
d(·, p1)2

≤(54)

≤ C + 8π(1 + α̃1)2 log λ.

Moreover, being

(55) max{1, (λd(x, p1))2(1+α̃1)} ≤ 1 + (λd(x, p1))2(1+α̃1) ≤ C max{1, (λd(x, p1))2(1+α̃1)},

one gets the following estimate on the average of ϕ1,λ

ϕ1,λ =

ˆ
Σ

(max{2(1 + α̃1) log λ,−2(1 + α̃1)(log λ+ 2 log d(·, p1))}+O(1))dVg.
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Dividing Σ into the two regions where the above maximum is attained and using the integrability of
log d(·, p1) in two dimensions one gets

ϕ1,λ = 2(1 + α̃1) log λ

ˆ
B 1
λ

(p1)

dVg − 2(1 + α̃1) log λ

ˆ
Σ\B 1

λ
(p1)

dVg −

− 4(1 + α̃1)

ˆ
Σ\B 1

λ
(p1)

log d(·, p1)dVg +O(1)(56)

= −2(1 + α̃1) log λ+O(1),

and clearly also ϕ2,λ = (1 + α̃1) log λ+O(1).
For a small but fixed δ > 0 we have, again by (55),ˆ

Σ

h̃1e
ϕ1,λdVg ≥ C

ˆ
Bδ(p1)\B 1

λ
(p1)

d(·, p1)2α̃1eϕ1,λdVg ≥

≥ C

λ2(1+α̃1)

ˆ
Bδ(p1)\B 1

λ
(p1)

dVg
d(·, p1)4+2α̃1

≥ C;(57)

on the other hand, we can write thatˆ
Σ

h̃2e
ϕ2,λdVg ≥ Cλ1+α̃1

ˆ
Σ\B 1

λ
(p1)

h̃2d(·, p1)2(1+α̃1)dVg ≥ Cλ1+α̃1 .(58)

Therefore, from (45), (56), (57), (58) we conclude that

Jρ,α(u) ≤ 2(1 + α̃1)(4π(1 + α̃1)− ρ1) log λ+O(1) →
λ→∞

−∞,

as desired.

5. Improved vectorial inequalities

First of all, we recall the following result from [10], which extends Lemma 2.2 to the vectorial case.

Lemma 5.1. ([10], Lemma 4.3) Let δ > 0, J1,K1, J2,K2 ∈ N be given, let {m11, . . . ,m1J1
,m21, . . . ,m2J2

} ⊂
{1, . . . ,m}, {Ωij}j=1,...,Ji+Ki

i=1,2 be open subsets of Σ such that

αimij ≤ 0 ∀ i = 1, 2, j = 1, . . . , Ji

d(Ωij ,Ωij′) ≥ δ ∀ i = 1, 2, ∀ j, j′ = 1, . . . , Ji +Ki, j 6= j′

d(pj ,Ωij) ≥ δ ∀ i = 1, 2,∀ j = 1, . . . ,Ki +Mi, ∀ j = 1, . . . ,m, j 6= mij ;

and u ∈ H1(Σ)2 satisfy ˆ
Ωij

fi,udVg ≥ δ ∀ i = 1, 2, ∀ j = 1, . . . , Ji +Ki.

Then, for any ε > 0 there exists C = CΣ,δ,J1,K1,J2,K2,ε > 0 such that

4π

2∑
i=1

Ki +

Ji∑
j=1

(
1 + αimij

)(log

ˆ
Σ

h̃ie
uidVg −

ˆ
Σ

uidVg

)
≤ (1 + ε)

ˆ
Σ

Q(u)dVg + C.

We will consider next some improved functional inequalities that take into account the relative speeds
of concentration of the two components of the system. Let us first set

(59) L :=

{
f ∈ L1(Σ) : f > 0 a.e. in Σ,

ˆ
Σ

f dVg = 1

}
.

We will define, for each f ∈ L, a center of mass and a scale of concentration, inspired by [55] (Proposition
3.1) but such that the center of mass belongs to a given finite set F ⊂ Σ (which will be, in our applications,
a subset of the singular points). As in [55], we will map L onto the topological cone over F of height δ,
which is defined by

(60) CδF :=
F × [0, δ]

∼
,
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where the equivalence relation ∼ is given by (x, δ) ∼ (x′, δ) for any x ∈ Σ. The meaning of such an
identification is the following: if a function f ∈ L does not concentrate around any point x ∈ F , then
we may not be able define a center of mass. In this case, the equivalence relation in the definition of the
cone leaves it undetermined.

Lemma 5.2. Let F := {x1, . . . , xK} ⊂ Σ be a given finite set and L, Cδ be defined by (59) and (60).
Then, for δ > 0 small enough there exists a map ψ = (β, ς) = (βF , ςF ) : L → CδF such that:

• If ς(f) = δ, then either
´

Σ\∪x∈FBδ(x)
fdVg ≥ δ or there exists x′, x′′ ∈ F with x′ 6= x′′ andˆ

Bδ(x′)

fdVg ≥ δ
ˆ
Bδ(x′′)

fdVg ≥ δ

• If ς(f) < δ, then ˆ
Bς(f)(β(f))

fdVg ≥ δ
ˆ

Σ\Bς(f)(β(f))

fdVg ≥ δ.

Moreover, if fn −→
n→+∞

δx for some x ∈ F , then (β(fn), ς(fn)) −→
n→+∞

(x, 0).

Proof. Fix τ ∈
(

1
2 , 1
)
, take δ ≤ minx,x′∈F, x 6=x′ d(x,x′)

2 and define, for k = 1, . . . ,K,

Ik(f) :=

ˆ
Bδ(xk)

fdVg; I0(f) :=

ˆ
Σ\∪x∈FBδ(x)

fdVg = 1−
k∑
k=1

Ik(f),

Choose now indices k̃, k̂ such that

Ik̃(f) := max
k∈{0,...,K}

Ik(f) Ik̂(f) := max
k 6=k̃

Ik(f).

We will define the map ψ depending on k̃ and Ik̃(f):

• k̃ = 0. Since f has little mass around each of the points xk, we set ς(f) = δ and do not define
β(f), as it would be irrelevant by the equivalence relation in (60). The assertion of the Lemma
is verified, up to taking a smaller δ, becauseˆ

Σ\∪x∈FBδ(x)

fdVg = I0(f) ≥ 1

K + 1
≥ δ

• k̃ ≥ 1, Ik̃(f) ≤ Kτ
1−τ Ik̂(f). Here, f has still little mass around the point xk̃ (which could not be

uniquely defined), so again we set ς(f) := δ. It is easy to see that Ik̂(f) ≥ 1−τ
K , soˆ

Bδ(xk̃)
fdVg ≥

ˆ
Bδ(xk̂)

fdVg ≥
1− τ
K

• k̃ ≥ 1, Ik̃(f) ≥ Kτ
1−τ Ik̂(f). Now, Ik̃(f) > τ , so one can define a scale of concentration s

(
xk̃, f

)
∈

(0, δ) of f around xk̃ ∈ F , uniquely determined byˆ
B
s(xk̃,f)

(xk̃)
fdVg = τ.

We can also define a center of mass β(f) = xk̃ but we have to interpolate for the scale:

– Case Ik̃(f) ≤ 2Kτ
1−τ Ik̂(f): setting

ς(f) = s
(
xk̃, f

)
+

Ik̃(f)
Kτ
1−τ Ik̂(f)

(
δ − s

(
xk̃, f

))
,

we get s
(
xk̃, f

)
< ς(f) < δ; moreover, Ik̂(f) ≥ 1−τ

K(1+τ) , henceˆ
Bς(f)(β(f))

fdVg ≥
ˆ
B
s(xk̃,f)

(xk̃)
fdVg = τ ≥ δ

ˆ
Σ\Bς(f)(β(f))

fdVg ≥
ˆ

Σ\Bδ(xk̃)
fdVg ≥

1− τ
K(1 + τ)

≥ δ
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– Case Ik̃(f) ≥ 2Kτ
1−τ Ik̂(f): we just set ς(f) : s

(
xk̃, f

)
and we getˆ

Bς(f)(β(f))

fdVg = τ ≥ δ
ˆ

Σ\Bς(f)(β(f))

fdVg = 1− τ ≥ δ.

To prove the final assertion, write (up to sub-sequences), (β∞, ς∞) = limn→+∞(β(fn), ς(fn)).
For large n we will haveˆ

Σ\∪x′∈FBδ(x′)
fndVg ≤

δ

2

ˆ
Bδ(x′′)

fndVg ≤
δ

2
for any x′′ ∈ F \ {x},

which excludes ς∞ = δ. We also exclude ς∞ ∈ (0, δ) as it would giveˆ
B 3

2
ς∞

(β∞)

fndVg ≥ δ
ˆ

Σ\B ς∞
2

(β∞)

fndVg ≥ δ.

which is a contradictions since F ∩
(
A ς∞

2 , 32 ς∞
(β∞)

)
= ∅.

Finally, we exclude β∞ 6= x because we would get the following contradiction:ˆ
Bδ(β∞)

fndVg ≥ δ.

This concludes the proof.

Define

(61) (u1, u2) 7→

(
h̃1e

u1´
Σ
h̃1eu1dVg

,
h̃2e

u2´
Σ
h̃2eu2dVg

)
=: (f1,u, f2,u) :

combining such a map ψ with Lemma 5.1 we deduce some extra information on low sub-levels of Jρ,α.
Recall first the definition of the sets Ai from (24).

Corollary 5.3. Let δ, ψ be as in Lemma 5.2 and define, for u ∈ H1(Σ)2,

β1(u) = βA1(f1,u), ς1(u) = ςA1(f2,u) β2(u) = βA2(f2,u), ς2(u) = ςA2(f2,u).

Then for any δ′ > 0 there exists Lδ′ such that if ςi(u) ≥ δ′ for both i = 1, 2, then Jρ,α(u) ≥ −Lδ′ .

Proof. Assume first ς1(u) = δ: from the statement of Lemma 5.3, we get one of the following:

•
´

Σ\∪mj=1Bδ(pj)
f1,udVg ≥ δ

2 ,

•
´
Bδ(pj)

f1,udVg ≥ δ
2M for some pj 6∈ A1,

•
´
Bδ(p′j)

f1,udVg ≥ δ,
´
Bδ(pj′′ )

f1,udVg ≥ δ for some j′ 6= j′′.

Depending on which possibility occurs, define respectively

• Ω11 := Σ \ ∪mj=1Bδ(pj),
• Ω11 := Bδ(pj),
• Ω11 := Bδ(pj′), Ω12 := Bδ(pj′′).

It is easy to verify that such sets satisfy the hypotheses of Lemma 5.1, up to eventually redefining the map

ψ with a smaller δ ≤ minj 6=j′ d(pj ,pj′ )

4 : in the first case, we have J1 = 0,K1 = 1, in the second case either
J1 = 0,K1 = 1 or J1 = 1,K1 = 0 but ρ < 4π(1 + α1j), and in the third case we have J1 = 2,K1 = 0.
If δ′ ≤ ς1(u) < δ, then

´
Σ\Bδ′ (β1(u))

f1,udVg ≥ δ, so we have one among the following:

•
´

Σ\∪mj=1Bδ(x)
f1,udVg ≥ δ

2

•
´
Bδ(β1(u))

f1,udVg ≥ δ,
´
Bδ(pj)

f1,udVg ≥ δ
2M for some pj 6= β1(u).

•
´
Aδ′,δ(β1(u))

f1,udVg.

Depending on which is the case, define:

• Ω11 := Σ \ ∪mj=1Bδ(pj).
• Ω11 := Bδ(u)(β1(u)), Ω12 := Bδ(pj).
• Ω11 := Aδ′,δ(β1(u))
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Repeat the same argument for u2 to get similarly Ω21, and possibly Ω22. Applying Lemma 5.1 one gets
Jρ,α(u) ≥ −Lδ′ .

With some extra work (see [13] for the details) it can be shown that the vectorial Moser-Trudinger
inequality improves each time the two scales (in the sense defined by Lemma 5.2) coincide, no matter
how small they are.

Proposition 5.4. ([13]) Let βi(u), ςi(u) be as in Corollary 5.3. There exists L� 0 such that if{
β1(u) = β2(u) = pm with ρ1, ρ2 < 4π(2 + α1m + α2m)
ς1(u) = ς2(u)

,

then Jρ,α(u) ≥ −L.

6. Proof of Theorem 1.2

Let us introduce the space X , which is simply a graph and will be used in our min-max scheme. It is
obtained removing some points from the join of the weighted barycenters A1 ?A2 defined by (25). The
points to exclude correspond to improved inequalities for functions centered around the same point and
at the same rate of concentration (see the previous section for more details).
Precisely, we set

(62) X := A1 ?A2 \
{(

pj , pj ,
1

2

)
: ρ1, ρ2 < 4π(2 + α1j + α2j)

}
.

We will prove that, under the assumptions of Theorem 1.4, the space X is not contractible, showing that
it has a non-trivial homology group. In order to do this, we will recall how to compute the homology
groups of the join of two known spaces. Since the join is homotopically equivalent to a smash product of
X, Y and S1 (see [41] for details), its homology groups only depend on the homology of X and Y .

Theorem 6.1. ([41], Theorem 3.21) Let X and Y be two topological spaces. Then

H̃q(X ? Y ) =

q∑
q′=0

H̃q′(X)⊕ H̃q−q′−1(Y ).

In particular, if X =
(
SD1

)∨N1
and Y =

(
SD2

)∨N2
are wedge sum of spheres, then X ? Y has the same

homology of
(
SD1+D2+1

)∨N1N2
.

Actually, in the same book [41] it is shown that the following homotopical equivalence holds:
(
SD1

)∨N1
?(

SD2
)∨N2 '

(
SD1+D2+1

)∨N1N2
. We have then the following result.

Proposition 6.2. Let X be as in (62) and suppose we are under the assumptions of Theorem 1.4. Then,
the space X has non-trivial homology groups and it is not contractible.

Proof. The spaces Ai are discrete sets of Mi points, for i = 1, 2, that is a wedge sum of Mi − 1 copies

of S0. Therefore, by Theorem 6.1, A1 ? A2 has the same homology as
(
S1
)∨(M1−1)(M2−1)

. The set we
have to remove from the join consists of M3 singular points {pm1

, . . . , pmM3
} for some {m1, . . . ,mM3

} ⊂
{1, . . . ,M}.
Defining then, for some fixed δ < 1

2 , Y := ∪M3
j=1Bδ

(
pmj , pmj ,

1
2

)
, Y retracts on

{
pm1 , . . . , pmM3

}
. On the

other hand, X ∩Y is a disjoint union of M3 punctured intervals, that is a discrete set of 2M3 points, and
X ∪ Y is the whole join. Therefore, the Mayer-Vietoris sequence yields

H1(X ∩ Y)︸ ︷︷ ︸
0

→ H1(X )⊕H1(Y)︸ ︷︷ ︸
0

→ H1(X ∪ Y)︸ ︷︷ ︸
Z(M1−1)(M2−1)

→ H̃0(X ∩ Y)︸ ︷︷ ︸
Z2M3−1

→ H̃0(X )⊕ H̃0(Y)︸ ︷︷ ︸
ZM3−1

→ H̃0(X ∪ Y)︸ ︷︷ ︸
0

.

The exactness of the sequence implies that b1(X ) − b̃0(X ) = (M1 − 1)(M2 − 1) −M3, so if the latter
number is not zero we get at least a non-trivial homology group. Algebraic computations show that,
under the assumption M1,M2 ≥M3, (M1−1)(M2−1) 6= M3 is equivalent to the assumption of Theorem
1.4, and therefore the proof is complete.
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We will now introduce some test functions from the space X to arbitrarily low sub-levels of Jρ,α. Such
test functions will have a profile which resembles the entire solutions of the Liouville equation and of the
Toda system. We will use suitable interpolation between each of the above three profiles depending on
whether the points in Ai coincide or not and depending on which of the parameters ρi. The map Φλ will
therefore be defined case by case.

Let us start by setting Φλ(ζ) =
(
φ1 − φ2

2 , φ2 − φ1

2

)
when ζ = (pj , pjm, t) for some j. The functions

φ1, φ2 will be defined in different ways, depending on the relative positions of ρ1, ρ2, α1j , α2j in R. When
dealing with the same singular point we set

(<<) ρ1, ρ2 < 4π(2 + α1j + α2j):

φ1 :=

{
−2 log max

{
1, (λd(·, pj))2(1+α1j)

}
if t < 1

2
0 if t > 1

2

φ2 :=

{
0 if t < 1

2

−2 log max
{

1, (λd(·, pj))2(1+α2j)
}

if t > 1
2 .

(<>) ρ1 < 4π(2 + α1j + α2j) < ρ2:

φ1 := −2 log max
{

1,max
{

1, (λt)2(1+α2j)
}

(λd(·, pj))2(1+α1j)
}

φ2 := −2 log max
{

1, (λtd(·, pj))2(2+α1j+α2j)
}
.

(><) ρ2 < 4π(2 + α1j + α2j) < ρ1:

φ1 := −2 log max
{

1, (λ(1− t)d(·, pj))2(2+α1j+α2j)
}

φ2 := −2 log max
{

1,max
{

1, (λ(1− t))2(1+α1j)
}

(λd(·, pj))2(1+α2j)
}
.

(>>) ρ1, ρ2 > 4π(2 + α1j + α2j):

φ1 := −2 log max

{
1,
(
λ max{1,λt}

max{1,λ(1−t)}

)2+α1j+α2j

d(·, pm)2(1+α1j), (λd(·, pj))2(2+α1j+α2j)

}
φ2 := −2 log max

{
1,
(
λmax{1,λ(1−t)}

max{1,λt}

)2+α1j+α2j

d(·, pj)2(1+α2j), (λd(·, pj))2(2+α1j+α2j)

}
.

Let us now consider the case x1 6= x2, xi ∈ Ai. Here, we define Φλ just by linearly interpolating
between the test functions defined before:

Φλ(x1, x2, t) = Φλ(1−t)(x1, x1, 0) + Φλt(x2, x2, 1).

We have then the following result.

Proposition 6.3. The above test functions
{

Φλ
}
λ

: X → H1(Σ)2 satisfy

Jρ,α
(
Φλ(ζ)

)
−→

λ→+∞
−∞ uniformly for ζ ∈ X .

We are finally in position to prove Theorem 1.4. The proof will follow by showing that low sub-levels
are dominated by the space X (see [41], page 528), which is not contractible by Proposition 6.2.

Lemma 6.4. For L� 0 large enough there exist maps Φ : X → J−Lρ,α and Ψ : J−Lρ,α → X such that Ψ ◦Φ
is homotopically equivalent to IdX .

To prove Lemma 6.4 we need the following estimate. Notice that the choice of τ (see the proof of
Lemma 5.2), which was not relevant in all the rest of this paper, will be made in the proof of this lemma
to let the following result hold true: for the proof we refer to [12].

Lemma 6.5. Let δ be as in Lemma 5.2, βi(u), σi(u) be as in Corollary 5.3 and Φλ as in Theorem 6.3.
Then, for a suitable choice of τ , there exists C0 > 0, δ′ ∈ (0, δ) such that:

• If either t ≥ 1− C0

λ or

 t > 1
2

x1 = x2 =: pj
ρ1, ρ2 < 4π(2 + α1j + α2j)

, then σ1

(
Φλ(ζ)

)
≥ δ′;

otherwise, σ1

(
Φλ(ζ)

)
< δ and β1

(
Φλ(ζ)

)
= x1.
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• If either t ≤ C0

λ or

 t < 1
2

x1 = x2 =: pj
ρ1, ρ2 < 4π(2 + α1j + α2j)

, then σ2

(
Φλ(ζ)

)
≥ δ′;

otherwise, σ2

(
Φλ(ζ)

)
< δ and β2

(
Φλ(ζ)

)
= x2.

Proof of Lemma 6.4. Let δ be as in Lemma 5.2, βi(u), ςi(u) be as in Corollary 5.3 and δ′ be as in
Lemma 6.5. Take now L so large that Corollary 5.3 and Theorem 5.4 apply.
We define Φ = Φλ0 as in Theorem 6.3, with λ0 such that Φλ(X ) ⊂ J−2L

ρ,α for any λ ≥ λ0. As for

Ψ : J−2L
ρ,α → X , we write

Ψ(u) = (β1(u), β2(u), t′(ς1(u), ς2(u))) with t′(ς1(u), ς2(u)) =


0 if ς2(u) ≥ δ′

δ′−ς2(u)
2δ′−ς1(u)−ς2(u) if ς1(u), ς2(u) ≤ δ′

1 if ς1(u) ≥ δ′
.

Let us verify the well-posedness of Ψ. The definition of t′ makes sense because, from Corollary 5.3,
Jρ,α(u) < −L implies min{ς1(u), ς2(u)} ≤ δ′. Moreover, if t′ > 0 (resp. t′ < 1), then ς1 < δ is well-defined
(respectively, ς2 < δ is well-defined), hence β1 (resp. β2) is also defined. Finally, Ψ is mapped on X be-
cause, from Theorem 5.4, when Jρ,α(u) < −L we cannot have (β1(u), β2(u), t′(ς1(u), ς2(u))) =

(
pj , pj ,

1
2

)
with ρ1, ρ2 < 4π(2 + α1j + α2j).

To get a homotopy between the two maps, we first let λ tend to +∞, in order to get x1 and x2, then
we apply a linear interpolation for the parameter t. Writing Ψ

(
Φλ(ζ)

)
=
(
βλ1 (ζ), βλ2 (ζ), t′λ(ζ)

)
, we have

F = F2 ∗ F1, with

F1 : (ζ, s) = ((x1, x2, t), s) 7→
(
β

λ0
1−s
1 (ζ), β

λ0
1−s
2 (ζ), t′λ0(ζ)

)
F2 :

(
x1, x2, t

′λ0(ζ)
)
7→
(
x1, x2, (1− s)t′λ0(ζ) + st

)
.

We have to verify that all is well-defined.

If we cannot define β
λ0

1−s
1 (ζ), then by Lemma 6.5 we either have t ≥ 1 − C0(1−s)

λ0
≥ 1 − C0

λ0
or we are on

the first half of the punctured segment. By the same Lemma, we get ς1
(
Φλ0(ζ)

)
≥ δ′,that is t′λ0(ζ) = 1.

For the same reason, if β
λ0

1−s
2 (ζ) is not defined, then t′λ0(ζ) = 0, so F1 : X × [0, 1]→ A1 ?A2 makes sense.

Its image is actually contained in X because, from Lemma 6.5, if x1 = x2 and ρ < 4π (χ1(x) + χ2(x)),
where we have set

χi({x}) :=

{
1 + αi,j if x = pj
1 if x 6∈ {p1, . . . , pm}.

Then either t′λ0(ζ) ∈ {0, 1}, hence in particular it does not equal 1
2 .

Concerning F2, the previous Lemma implies β
λ0

1−s
1 (ζ) = x1 if t ≤ 1− C0

λ (1−s), hence in particular passing
to the limit as s → 1, if t < 1. A similar condition holds for β2, which gives F2(·, 0) = F1(·, 1). If x1

is not defined then t′λ0(ζ) = 1, hence (1 − s)t′λ0(ζ) + st = 1, and similarly there are no issues when x2

cannot be defined. Finally, by the argument used before, if x1 = x2 = pj and ρ1, ρ2 < 4π(2 + α1j + α2j),
then (1− s)t′λ0(ζ) + st 6= 1

2 .

Concerning compactness, we have a useful result which can be deduced from minor modifications of
the argument in [50]. It basically states the existence of bounded Palais-Smale sequences for ρ belonging
to a dense set of R2

+ \ Γ. Putting together with the compactness result stated before, we get:

Lemma 6.6. Let ρ 6∈ Γ be given and let a < b be such that (16) has no solutions in {Jρ,α ∈ [a, b]}. Then,
{Jρ,α ≤ a} is a deformation retract of {Jρ,α ≤ b}.

We also deduce that Jρ,α is uniformly bounded from above on solutions, hence we have:

Corollary 6.7. Let ρ 6∈ Γ be given. Then, there exists L > 0 such that {Jρ,α ≤ L} is a deformation
retract of H1(Σ)2; in particular, it is contractible.
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Proof of Theorem 1.4 Suppose by contradiction that the system (16) has no solutions. By Lemma
6.6, {Jρ,α ≤ −L} is a deformation retract of {Jρ,α ≤ L}, hence by Corollary 6.7 it is contractible. Let
H(ζ, s) : X × [0, 1] → X the homotopy equivalence defined in Lemma 6.4 and let H ′ be a homotopy
equivalence between a constant map and Id{Jρ,α≤−L}.

Then H ′′(ζ, s) = Ψ(H ′(Φ(ζ), s)) : X × [0, 1]→ X is an equivalence between the maps Ψ◦Φ and a constant
and H ′′ ∗ H is an equivalence between IdX and a constant map. This means that X is contractible,
contradicting Theorem 6.2.
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