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ABSTRACT
We determine the maximum squashed entanglement achievable between sender and receiver of the noiseless quantum Gaussian attenuators
and amplifiers and we prove that it is achieved sending half of an infinitely squeezed two-mode vacuum state. The key ingredient of the
proof is a lower bound to the squashed entanglement of the quantum Gaussian states obtained applying a two-mode squeezing operation to
a quantum thermal Gaussian state tensored with the vacuum state. This is the first lower bound to the squashed entanglement of a quantum
Gaussian state and opens the way to determine the squashed entanglement of all quantum Gaussian channels. Moreover, we determine the
classical squashed entanglement of the quantum Gaussian states above and show that it is strictly larger than their squashed entanglement.
This is the first time that the classical squashed entanglement of a mixed quantum Gaussian state is determined.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111489

I. INTRODUCTION
The squashed entanglement of a bipartite quantum state ρAB is the infimum over all its possible extensions ρABR of half of the quantum

mutual information between the quantum systems A and B conditioned on the quantum system R,1–9

Esq(ρAB) =
1
2

inf{I(A; B ∣ R)ρABR : TrRρABR = ρAB}. (1)

Here, the quantum conditional mutual information is defined as10

I(A; B ∣ R) = S(A ∣ R) + S(B ∣ R) − S(AB ∣ R), (2)

where S(X ∣ Y) is the quantum conditional entropy.10–12

The squashed entanglement is one of the two main entanglement measures in quantum communication theory: together with the relative
entropy of entanglement,13,14 it provides the best known upper bound to the length of a shared secret key that can be generated by two
parties holding many copies of the quantum state.7,15–17 Moreover, it has applications in recoverability theory18,19 and multiparty information
theory.20–22

Any entanglement measure for quantum states can be extended to quantum channels defining it as the maximum entanglement achiev-
able between the sender and receiver. The relative entropy of entanglement of several quantum channels has been determined in Ref. 23. The
squashed entanglement of a quantum channel Φ24 is the maximum squashed entanglement achievable between the sender and receiver,

Esq(Φ) = sup
ρAB

Esq((IA ⊗Φ)(ρAB)), (3)

where the sender generates the bipartite quantum state ρAB, keeps the quantum system A, and sends the quantum system B to the receiver
throughΦ. In the same way as the squashed entanglement of a quantum state is an upper bound to the distillable key of the state, the squashed
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entanglement of a quantum channel is an upper bound to the capacity of the channel to generate a secret key shared between the sender and
receiver.24,25

We prove a lower bound on the squashed entanglement of the quantum Gaussian states obtained applying a two-mode squeezing oper-
ation to a thermal quantum Gaussian state tensored with the vacuum state [Theorem 1; see (21) for the definition of the states]. This is the
first lower bound to the squashed entanglement of a quantum Gaussian state. Previous results restrict the optimization in (1) to Gaussian
extensions and consider the 2-Rényi entropy instead of the von Neumann entropy.26 Our bound is optimal in the limit of infinite energy and
extremely tight already from one average photon (Fig. 1). Lower bounds to the squashed entanglement are notoriously difficult to prove since
the optimization in (1) over all the possible extensions of the quantum state is almost never analytically treatable. We overcome this difficulty
with the quantum conditional entropy power inequality,27–30 which holds for any conditioning quantum system.

We apply Theorem 1 to prove our main result: a new lower bound to the squashed entanglement of the noiseless quantum Gaussian
attenuators and amplifiers (Theorem 2). This lower bound matches the upper bound proven in Refs. 24 and 31–33. Therefore, Theorem 2
determines the maximum squashed entanglement achievable between the sender and receiver for the noiseless quantum Gaussian attenuators
and amplifiers and proves that it is achieved sending half of an infinitely squeezed two-mode vacuum state. The maximum achievable squashed
entanglement is proved to be ln 1+η

1−η for the attenuator with attenuation parameter 0 ≤ η ≤ 1 and ln κ+1
κ−1 for the amplifier with amplification

parameter κ ≥ 1. The noiseless quantum Gaussian attenuator and amplifier play a key role in quantum communication theory. The amplifier
provides the mathematical model for the amplification of electromagnetic signals, and the attenuator provides the mathematical model for
the propagation of electromagnetic signals through optical fibers,34–38 which are the main platform for quantum key distribution and for the
transmission of quantum states in the forthcoming quantum internet.37,39–55 A proof based on the relative entropy of entanglement and on
the teleportation stretching technique has determined the capacity of the noiseless quantum Gaussian attenuator and amplifier to generate
a shared secret to be ln 1

1−η and ln κ
κ−1 nats per channel use, respectively23,56 (later a generalization to repeaters47,54 was proved, and strong

converse bounds57–59 were also considered). Theorem 2 proves that these channels can generate a squashed entanglement between the sender
and receiver strictly larger than their secret key capacity.

A fundamental question about the squashed entanglement of a quantum state is whether the minimization in (1) can be restricted to
classical extensions.6 The answer is known to be negative in general,60 and this has led to the definition to the classical squashed entangle-
ment,16,22,61–64 which has later found an operational interpretation as the minimum cost of classical communication required for assisted
entanglement dilution.65 We determine the classical squashed entanglement of the quantum Gaussian states (21) and prove that it is
achieved by a Gaussian extension and strictly larger than their squashed entanglement, with equality only when the state is pure or sepa-
rable (Theorem 3, Fig. 1). This is the first time that the classical squashed entanglement of a mixed quantum Gaussian state is determined.
The proof is based on the one-mode version of the constrained minimum output entropy conjecture for the noiseless quantum Gaussian
amplifier and for its complementary channel.66–83 Theorem 3 also proves that the multimode version of the conjecture implies that the clas-
sical squashed entanglement of the quantum Gaussian states (21) does not decrease regularizing over many copies of the state. Therefore,
assuming the multimode conjecture, the asymptotic classical squashed entanglement of the states (21) coincides with their classical squashed
entanglement and is strictly larger than their squashed entanglement.

The paper is structured as follows. In Sec. II, we introduce quantum Gaussian systems, states, and channels. In Sec. III, we prove the
lower bound to the squashed entanglement of the quantum Gaussian states (21) (Theorem 1) and we determine the squashed entanglement
of the noiseless quantum Gaussian attenuator and amplifier (Theorem 2). In Sec. IV, we determine the classical squashed entanglement of the
quantum Gaussian state (21). Conclusions and open problems are presented in Sec. V. In Appendix A, we present the entropic inequalities
employed in the proofs.

FIG. 1. Solid and dashed lines: the upper and lower bounds of Theorem 1 to the squashed entanglement of the quantum Gaussian state ρκ,E
AB of (21) for κ = 1.5, 2, 3 and

0 ≤ E ≤ 1. The bounds coincide in the limit of infinite average energy, but they are extremely close already from E ≃ 1. Dotted lines: the classical squashed entanglement of
ρκ,E

AB determined in Theorem 3 for the same values of κ and E.
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II. QUANTUM GAUSSIAN SYSTEMS
A one-mode quantum Gaussian system is the mathematical model for a harmonic oscillator or for a mode of the electromagnetic radia-

tion. The Hilbert space of a one-mode quantum Gaussian system is the irreducible representation of the canonical commutation relation37,38

(Ref. 11, Chap. 12),
[Q, P] = I, (4)

where Q and P are the quadrature operators, which for the harmonic oscillator represent position and momentum. The Hamiltonian that
counts the number of excitations or photons is

H = a†a, (5)

where
a =

Q + i P
√

2
(6)

is the ladder operator. The vector annihilated by a is the vacuum and is denoted by ∣ 0⟩. A quantum Gaussian state is a quantum state
proportional to the exponential of a quadratic polynomial in Q and P. The most important quantum Gaussian states are the thermal Gaussian
states, where the polynomial is proportional to the Hamiltonian (5),

ω(E) =
1

(E + 1)
(

E
E + 1

)
a†a

, (7)

and E ≥ 0 is the average energy,
Tr[ω(E) a†a] = E. (8)

We notice that ω(0) = ∣0⟩⟨0∣ is the vacuum state. The von Neumann entropy of ω(E) is

S(ω(E)) = (E + 1) ln(E + 1) − E ln E =: g(E). (9)

An n-mode Gaussian quantum system is the union of n one-mode Gaussian quantum systems, and its Hilbert space is the nth tensor power
of the Hilbert space of a one-mode Gaussian quantum system. Let R1 = Q1, R2 = P1, . . . , R2n−1 = Qn, R2n = Pn be the quadrature operators of
the n modes, satisfying the canonical commutation relations

[Ri, Rj] = iΔij I, i, j = 1, . . . , 2n, (10)

where

Δ =
n
⊕

k=1
(

0 1
−1 0) (11)

is the symplectic form. The covariance matrix of a quantum state ρ is the 2n × 2n positive real matrix given by

σ(ρ)ij =
1
2

Tr[ρ{Ri − Tr[ρRi], Rj − Tr[ρRj]}], i, j = 1, . . . , 2n, (12)

where
{X, Y} = X Y + Y X (13)

is the anticommutator. The eigenvalues of the matrix Δ−1σ are pure imaginary and pairwise opposite. Their absolute values are the symplectic
eigenvalues of σ.11 An n-mode quantum Gaussian state is a state proportional to the exponential of a quadratic polynomial in the quadratures.
Its von Neumann entropy is84

S =
n

∑
k=1

g(νk −
1
2
), (14)

where ν1, . . . , νn are the symplectic eigenvalues of its covariance matrix and g is defined in (9).
Quantum Gaussian channels are the quantum channels that preserve the set of quantum Gaussian states. The most important families of

quantum Gaussian channels are the beam splitter, the squeezing, and the quantum Gaussian attenuators and amplifiers. The beam splitter and
the squeezing are the quantum counterparts of the classical linear mixing of random variables and are the main transformations in quantum
optics. Let A and B be one-mode quantum Gaussian systems with ladder operators a and b, respectively. The beam splitter of transmissivity
0 ≤ η ≤ 1 is implemented by the unitary operator

Uη = exp((a†b − b†a) arccos
√
η) (15)
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and performs a linear rotation of the ladder operators (Ref. 85, Section 1.4.2),

U†
η a Uη =

√
η a +

√
1 − η b,

U†
η b Uη = −

√
1 − η a +

√
η b. (16)

The squeezing86 of parameter κ ≥ 1 is implemented by the unitary operator

Uκ = exp((a†b†
− ab)arccosh

√
κ) (17)

and acts on the ladder operators as

U†
κ a Uκ =

√
κ a +

√
κ − 1 b†,

U†
κ b Uκ =

√
κ − 1 a† +

√
κ b. (18)

The noiseless quantum Gaussian attenuators model the attenuation affecting electromagnetic signals traveling through optical fibers or
free space. The one-mode noiseless quantum Gaussian attenuator E η [Ref. 36, case (C) with k =√η and N = 0] can be implemented mixing
the input state ρ with the one-mode vacuum state through a beam splitter of transmissivity 0 ≤ η ≤ 1,

E η(ρ) = TrB[Uη(ρ⊗ ∣0⟩⟨0∣)U†
η]. (19)

The noiseless quantum Gaussian amplifiers model the amplification of electromagnetic signals. The one-mode noiseless quantum Gaussian
amplifier A κ [Ref. 36, case (C) with k =

√
κ and N = 0] can be implemented performing a squeezing of parameter κ ≥ 1 on the input state ρ

and the one-mode vacuum state,
A κ(ρ) = TrB[Uκ(ρ⊗ ∣0⟩⟨0∣)U†

κ ]. (20)

III. SQUASHED ENTANGLEMENT
Let A and B be one-mode quantum Gaussian systems. For any κ ≥ 1 and any E ≥ 0, we consider the quantum Gaussian state

ρκ,E
AB = Uκ(ωA(E)⊗ ∣0⟩B⟨0∣)U†

κ , (21)

where ωA(E) is the thermal quantum Gaussian state on A with average energy E defined in (7), ∣ 0⟩B is the vacuum state of B, and Uκ is the
two-mode squeezing operator on AB with squeezing parameter κ defined in (17).

Theorem 1. For any κ ≥ 1 and any E ≥ 0, the squashed entanglement of the quantum Gaussian state ρκ,E
AB defined in (21) satisfies

ln(2κ − 1) ≤ Esq(ρκ,E
AB) ≤ g((κ −

1
2
)E + κ − 1) − g(

E
2
). (22)

Moreover, the gap between the upper and lower bounds of (22) is at most ln e
2 ≃ 0.31 and tends to zero in the limit E →∞. We conjecture that

the upper bound of (22) is the actual value of the squashed entanglement of ρκ,E
AB .

Proof. Let ρABR be an extension of ρκ,E
AB . The quantum state U†

κ ρABR Uκ is an extension of ωA(E)⊗ ∣0⟩B⟨0∣; therefore, it has the form
ωAR ⊗ ∣0⟩B⟨0∣ for some quantum state ωAR that is an extension of ωA(E). The quantum state ρABR has then the form

ρABR = Uκ(ωAR ⊗ ∣0⟩B⟨0∣)U†
κ , TrRωAR = ωA(E). (23)

Conversely, any state of the form (23) is an extension of ρκ,E
AB .

A. Lower bound
The quantum conditional entropy power inequality (Theorem 6) implies

I(A; B∣R)ρABR = S(A∣R)ρABR + S(B∣R)ρABR − S(AB∣R)ρABR

= S(A∣R)ρABR + S(B∣R)ρABR − S(A∣R)ωAR

≥ ln(2κ(κ − 1) cosh S(A∣R)ωAR + κ2 + (κ − 1)2
)

≥ 2 ln(2κ − 1), (24)
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where the last inequality is saturated when S(A∣R)ωAR = 0. The lower bound in (22) follows taking the infimum of the left-hand side of (24)
over the extensions ρABR.

B. Upper bound
We consider the one-parameter family of extensions {ρABR(η)}0≤η≤1 of ρκ,E

AB of the form (23) where R is a one-mode quantum Gaussian
system and

ωAR(η) = (IA ⊗ E η)(∣ϕE⟩AR⟨ϕE∣) (25)

is the quantum Gaussian state obtained applying the noiseless quantum Gaussian attenuator with attenuation parameter η to half of the two-
mode squeezed vacuum state ∣ϕE⟩AR with average energy per mode E. We leave η as a free parameter over which we will optimize in the end.
The covariance matrix of ωAR(η) is

σ(ωAR(η)) =
⎛
⎜
⎜
⎝

(E +
1
2
)I2

√
ηE(E + 1) σZ

√
ηE(E + 1) σZ (ηE +

1
2
)I2

⎞
⎟
⎟
⎠

, (26)

where

σZ = (
1 0
0 −1). (27)

The symplectic eigenvalues of σ(ωAR(η)) are

ν+(σ(ωAR(η))) = (1 − η)E +
1
2

, ν−(σ(ωAR(η))) =
1
2

; (28)

hence,

S(ABR)ρABR(η) = S(AR)ωAR(η) = g(ν+(σ(ωAR(η))) −
1
2
) + g(ν−(σ(ωAR(η))) −

1
2
)

= g((1 − η)E),
S(R)ρABR(η) = S(R)ωAR(η) = g(ηE). (29)

Let ρAR(η) and ρBR(η) be the marginals of ρABR(η) on AR and BR, respectively. They are the quantum Gaussian states with
covariance matrices

σ(ρAR(η)) =
⎛
⎜
⎜
⎝

(κ(E + 1) −
1
2
)I2

√
κ ηE(E + 1) σZ

√
κ ηE(E + 1) σZ (ηE +

1
2
)I2

⎞
⎟
⎟
⎠

,

σ(ρBR(η)) =
⎛
⎜
⎜
⎝

((κ − 1)(E +
1
2
) +

κ
2
)I2

√
(κ − 1)ηE(E + 1) I2

√
(κ − 1)ηE(E + 1) I2 (ηE +

1
2
)I2

⎞
⎟
⎟
⎠

. (30)

Their symplectic eigenvalues are

ν+(σ(ρAR(η))) = κ(E + 1) − ηE −
1
2

,

ν+(σ(ρBR(η))) = κ(E + 1) − (1 − η)E −
1
2

,

ν−(σ(ρAR(η))) = ν−(σ(ρBR(η))) =
1
2

; (31)

hence,

S(AR)ρABR(η) = g(κ(E + 1) − ηE − 1),
S(BR)ρABR(η) = g(κ(E + 1) − (1 − η)E − 1). (32)
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Therefore, for any 0 ≤ η ≤ 1, we have

Esq(ρAB) ≤
1
2

I(A; B∣R)ρABR(η)

=
1
2
(S(AR)ρABR(η) + S(BR)ρABR(η) − S(R)ρABR(η) − S(ABR)ρABR(η))

=
1
2
(ψE,κ(η) + ψE,κ(1 − η)), (33)

where
ψE,κ(η) = g(κ E + κ − ηE − 1) − g((1 − η)E). (34)

From Lemma 1 of Appendix B, ψE,κ is convex; hence, from Jensen’s inequality, the minimum over 0 ≤ η ≤ 1 of the right-hand side of (33) is
achieved by η = 1

2 . Therefore,

Esq(ρAB) ≤ ψE,κ(
1
2
), (35)

and the claim follows. We notice that S(A∣R)ωAR( 1
2 ) = 0, which is the same condition that saturates the last inequality of (24).

C. Gap
Let

f (κ, E) = g((κ −
1
2
)E + κ − 1) − g(

E
2
) − ln(2κ − 1) (36)

be the difference between the upper bound and lower bound of (22). Since E ↦ f (κ, E) is decreasing,

f (κ, E) ≤ f (κ, 0) = g(κ − 1) − ln(2κ − 1). (37)

We have
∂ f
∂κ

(κ, 0) = ln
κ

κ − 1
−

2
2κ − 1

≥ 0; (38)

hence, κ↦ f (κ, 0) is increasing and
f (κ, 0) ≤ lim

κ→∞ f (κ, 0) = ln
e
2

. (39)

Figure 1 shows the difference between the upper and lower bounds of (22), which is extremely small already from E ≃ 1.
Corollary 1 provides the link between Theorem 1 and the noiseless quantum Gaussian attenuators and amplifiers. For any E ≥ 0, let

∣ϕE⟩AB be the two-mode squeezed vacuum state on AB with average energy per mode E, which coincides with the quantum Gaussian state
ρκ
′ ,E′

AB of (21) with κ′ = E + 1 and E′ = 0.
Let γη,E

AB be the quantum Gaussian state obtained sending the B system of ∣ϕE⟩AB through a noiseless quantum Gaussian attenuator with
attenuation parameter 0 ≤ η ≤ 1, and let γκ,E

AB be the quantum Gaussian state obtained sending the A system of ∣ϕE⟩AB through a noiseless
quantum Gaussian amplifier with amplification parameter κ ≥ 1,

γη,E
AB = (IA ⊗ Eη)(∣ϕE⟩AB⟨ϕE∣), γκ,E

AB = (A κ ⊗ IB)(∣ϕE⟩AB⟨ϕE∣). (40)

Corollary 1. The squashed entanglement of the quantum Gaussian states γη,E
AB and γκ,E

AB defined in (40) satisfies

ln
(1 + η)E + 1
(1 − η)E + 1

≤ Esq(γη,E
AB) ≤ g(

1 + η
2

E) − g(
1 − η

2
E),

ln
(κ + 1)E + κ
(κ − 1)E + κ

≤ Esq(γκ,E
AB) ≤ g(

(κ + 1)E + κ − 1
2

) − g(
κ − 1

2
(E + 1)). (41)

Moreover, the gap between the upper bounds and the respective lower bounds in (41) is at most ln e
2 ≃ 0.31. We conjecture that the actual value

of the squashed entanglement of γη,E
AB and γκ,E

AB coincides with the upper bounds in (41).

Proof. We will prove that both the lower and the upper bounds of (41) follow from Theorem 1. While the lower bounds appear in this
paper for the first time, the upper bounds have also been proved in Refs. 24 and 31–33.
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Let ρκ
′ ,E′

AB be as in (21) with κ′ ≥ 1 and E′ ≥ 0. The covariance matrices of ρκ
′ ,E′

AB , γη,E
AB , and γκ,E

AB are

σ(ρκ
′ ,E′

AB ) =

⎛
⎜
⎜
⎝

(κ′(E′ + 1) −
1
2
)I2 (E′ + 1)

√
κ′(κ′ − 1) σZ

(E′ + 1)
√
κ′(κ′ − 1) σZ ((κ′ − 1)(E′ + 1) +

1
2
)I2

⎞
⎟
⎟
⎠

,

σ(γη,E
AB) =

⎛
⎜
⎜
⎝

(E +
1
2
)I2

√
ηE(E + 1) σZ

√
ηE(E + 1) σZ (ηE +

1
2
)I2

⎞
⎟
⎟
⎠

,

σ(γκ,E
AB) =

⎛
⎜
⎜
⎝

(κ E + κ −
1
2
)I2

√
κ E(E + 1) σZ

√
κ E(E + 1) σZ (E +

1
2
)I2

⎞
⎟
⎟
⎠

. (42)

For
κ′ =

E + 1
(1 − η)E + 1

, E′ = (1 − η)E, (43)

we have σ(ρκ
′ ,E′

AB ) = σ(γ
η,E
AB), and therefore, ρκ

′ ,E′
AB = γ

η,E
AB . Analogously, for

κ′ =
κ(E + 1)

(κ − 1)E + κ
, E′ = (κ − 1)(E + 1), (44)

we have σ(ρκ
′ ,E′

AB ) = σ(γ
κ,E
AB), and therefore, ρκ

′ ,E′
AB = γ

κ,E
AB . The claim then follows from Theorem 1. �

Remark 1. Since the squashed entanglement of any bipartite quantum state is lower than the squashed entanglement of the quantum
Gaussian state with the same covariance matrix,87 the upper bounds of (22) and (41) apply to any bipartite quantum state with covariance
matrix as in (42).

We can now prove the main result of the paper.

Theorem 2. The squashed entanglement of the noiseless quantum Gaussian attenuator with attenuation parameter 0 ≤ η ≤ 1 and of the
noiseless quantum Gaussian amplifier with amplification parameter κ ≥ 1 is

Esq(E η) = ln
1 + η
1 − η

, Esq(A κ) = ln
κ + 1
κ − 1

, (45)

and is asymptotically achieved sending half of a two-mode squeezed vacuum state ∣ϕE⟩AB in the limit E →∞ of infinite average energy or infinite
squeezing.

Proof. The upper bounds

Esq(Eη) ≤ ln
1 + η
1 − η

, Esq(A κ) ≤ ln
κ + 1
κ − 1

(46)

have been proved in Refs. 24 and 31–33.
Given E ≥ 0, let γη,E

AB and γκ,E
AB be as in (40). We have from Corollary 1

Esq(Eη) ≥ Esq(γη,E
AB) ≥ ln

(1 + η)E + 1
(1 − η)E + 1

,

Esq(A κ) ≥ Esq(γκ,E
AB) ≥ ln

(κ + 1)E + κ
(κ − 1)E + κ

. (47)

Taking the limit E →∞, we get

Esq(Eη) ≥ ln
1 + η
1 − η

, Esq(A κ) ≥ ln
κ + 1
κ − 1

, (48)

and the claim follows. �
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IV. CLASSICAL SQUASHED ENTANGLEMENT
The classical squashed entanglement16,22,61,63,64 has the same definition as the squashed entanglement with the minimization in (1)

restricted to the classical extensions of the quantum state. A classical extension ρABR of the quantum state ρAB is given by a probability
measure ρR on a measure space R and a set {ρAB∣R=r}r∈R of the states of the quantum system AB conditioned on R = r such that the function
r ↦ ρAB∣R=r is measurable and

∫
R
ρAB∣R=r dρR(r) = ρAB. (49)

The classical squashed entanglement of the bipartite quantum state ρAB is half of the infimum over all the classical extension ρABR of the
mutual information between the quantum systems A and B conditioned on the classical system R,

Esq, c(ρAB) =
1
2

inf{I(A; B∣R)ρABR : ∫
R
ρAB∣R=r dρR(r) = ρAB}, (50)

where the conditional mutual information is defined as

I(A; B∣R)ρABR = ∫
R

I(A; B)ρAB∣R=r dρR(r). (51)

The classical squashed entanglement is always not lower than the squashed entanglement and can be strictly larger.60 A fundamental property
of the squashed entanglement is its additivity with respect to the tensor product:7 for any two bipartite quantum states ρA1B1 and ρA2B2 ,

Esq(ρA1B1 ⊗ ρA2B2 ) = Esq(ρA1B1 ) + Esq(ρA2B2 ). (52)

The classical squashed entanglement is subadditive with respect to the tensor product,

Esq, c(ρA1B1 ⊗ ρA2B2 ) ≤ Esq, c(ρA1B1 ) + Esq, c(ρA2B2 ), (53)

but it is not known whether it is additive. This has led to the definition of the asymptotic classical squashed entanglement as the regularization
of the classical squashed entanglement over many copies of the quantum state,16,22,61

E∞sq, c(ρAB) = lim
n→∞

Esq, c(ρ⊗n
AB)

n
. (54)

Thanks to the additivity of the squashed entanglement, the asymptotic classical squashed entanglement is still an upper bound to the squashed
entanglement.

Here, we determine the classical squashed entanglement of the Gaussian quantum states defined in (21) and show that it is achieved by
a Gaussian extension and strictly larger than their squashed entanglement (see Fig. 1 for the comparison). The proof exploits the constrained
minimum output entropy conjecture for the one-mode noiseless quantum Gaussian amplifier and its complementary channel. We also show
that the multimode generalization of the conjecture determines the asymptotic classical squashed entanglement of the Gaussian quantum
states (21) and implies that it is equal to the classical squashed entanglement of one copy of the state and therefore still strictly larger than the
squashed entanglement.

Theorem 3. The classical squashed entanglement of the Gaussian quantum state (21) is achieved by a Gaussian extension and is equal to

Esq, c(ρκ,E
AB) =

1
2

min
x∈[0,E]

hκ(x), (55)

where for any x ≥ 0,
hκ(x) = g(κ x + κ − 1) + g((κ − 1)(x + 1)) − g(x). (56)

For any E > 0 and any κ > 1, the classical squashed entanglement of ρκ,E
AB is strictly larger than its squashed entanglement,

Esq, c(ρκ,E
AB) > Esq(ρκ,E

AB). (57)

Moreover, assuming Conjecture 1, the asymptotic classical squashed entanglement of ρκ,E
AB coincides with its classical squashed entanglement,

E∞sq, c(ρ
κ,E
AB) = Esq, c(ρκ,E

AB). (58)
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Remark 2. Since the function s↦ hκ(g−1(s)) is strictly convex (Ref. 79, Lemma 15) and

d
ds

hκ(g−1(s))∣
s=0
= −

1
2

, lim
s→∞

d
ds

hκ(g−1(s)) =
1
2

, (59)

s↦ hκ(g−1(s)) has a unique local minimum, which is also the global minimum. If sκ is the minimizer, hκ(g−1(s)) is strictly decreasing for
0 ≤ s ≤ sκ and strictly increasing for s ≥ sκ. Since g is strictly increasing, hκ(x) attains its global minimum in x = Eκ = g−1(sκ), is strictly
decreasing for 0 ≤ x ≤ Eκ, and is strictly increasing for x ≥ Eκ. Therefore,

min
x∈[0,E]

hκ(x) =
⎧⎪⎪
⎨
⎪⎪⎩

hκ(E), 0 ≤ E ≤ Eκ,

hκ(Eκ), E ≥ Eκ.
(60)

Proof. Let ρAn
1 Bn

1 R be a classical extension of (ρκ,E
AB)

⊗n, where An
1 = A1 . . .An and analogously for Bn

1 . The quantum state U†⊗n
κ ρAn

1 Bn
1 R U⊗n

κ

is a classical extension of ωA(E)⊗n
⊗ ∣0⟩B⟨0∣⊗n; therefore, it has the form ωAn

1 R ⊗ ∣0⟩B⟨0∣⊗n for some quantum-classical state ωAn
1 R that is a

classical extension of ωA(E)⊗n. The quantum-classical state ρAn
1 Bn

1 R has then the form

ρAn
1 Bn

1 R = U⊗n
κ (ωAn

1 R ⊗ ∣0⟩B⟨0∣
⊗n
)U†⊗n

κ , ∫
R
ωAn

1 ∣R=r dρR(r) = ωA(E)⊗n. (61)

Conversely, any state of the form (61) is a classical extension of ρκ,E
AB . We have for any r ∈R

ρAn
1 Bn

1 ∣R=r = U⊗n
κ (ωAn

1 ∣R=r ⊗ ∣0⟩B⟨0∣
⊗n
)U†⊗n

κ ,

TrBn
1
ρAn

1 Bn
1 ∣R=r =A ⊗n

κ (ωAn
1 ∣R=r),

TrAn
1
ρAn

1 Bn
1 ∣R=r = Ã ⊗n

κ (ωAn
1 ∣R=r), (62)

where Ã κ is the complementary channel of A κ.11 Then,

I(An
1 ; Bn

1 ∣R)ρAn
1 Bn

1 R = ∫
R

I(An
1 ; Bn

1)ρAn
1 Bn

1 ∣R=r dρR(r)

= ∫
R
(S(A ⊗n

κ (ωAn
1 ∣R=r)) + S(Ã ⊗n

κ (ωAn
1 ∣R=r)) − S(ωAn

1 ∣R=r))dρR(r). (63)

A. Upper bound
Let n = 1 and let E′ ∈ [0, E]. Choosing R = C, we have

ω(E) = ∫C
Dr ω(E′) D†

r e−
∣r∣2

E−E′
dr
π

, (64)

where for any r ∈ C, Dr is the unitary operator that displaces by r the ladder operator,11

D†
r a Dr = a + r I. (65)

We can then choose ωA∣R=r = ω(E′) for any r ∈ C. Since

A κ(ω(E′)) = ω(κ E′ + κ − 1), Ã κ(ω(E′)) = ω((κ − 1)(E′ + 1)), (66)

we have from (63)

E∞sq, c(ρ
κ,E
AB) ≤ Esq, c(ρκ,E

AB) ≤
1
2

I(A; B∣R)ρABR =
1
2

hκ(E′), (67)

and the claim follows taking the minimum of the right-hand side of (67) over E′ ∈ [0, E].

B. Lower bound
Esq, c : Let n = 1. Theorems 4 and 5 imply for any r ∈R

S(A κ(ωA∣R=r)) + S(Ã κ(ωA∣R=r)) − S(ωA∣R=r) ≥ hκ(g−1(S(ωA∣R=r))). (68)
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From Ref. 79, Lemma 15, the function s↦ hκ(g−1(s)) is convex. We then have from (63), (68), and Jensen’s inequality

I(A; B∣R)ρABR ≥ ∫
R

hκ(g−1(S(ωA∣R=r))) dρR(r) ≥ hκ(g−1(S(A∣R)ωAR ))

≥ inf
E′∈[0,E]

hκ(E′), (69)

where we have used that 0 ≤ g−1(S(A∣R)ωAR ) ≤ E since g−1 is increasing and

0 ≤ ∫
R

S(ωA∣R=r) dρR(r) = S(A∣R)ωAR ≤ S(A)ωAR = g(E). (70)

Finally, taking the infimum of the left-hand side of (69) over all the classical extensions ρABR of ρκ,E
AB , we get

Esq, c(ρκ,E
AB) ≥

1
2

inf
E′∈[0,E]

hκ(E′). (71)

E∞sq, c : The proof with generic n is analogous to the proof for n = 1: Conjecture 1 and Theorem 5 imply for any r ∈R

S(A ⊗n
κ (ωAn

1 ∣R=r)) + S(Ã ⊗n
κ (ωAn

1 ∣R=r)) − S(ωAn
1 ∣R=r)

≥ n hκ(g−1
(

1
n

S(ωAn
1 ∣R=r))). (72)

We then have from (63), (72), and Jensen’s inequality

I(An
1 ; Bn

1 ∣R)ρAn
1 Bn

1 R ≥ n∫
R

hκ(g−1
(

1
n

S(ωAn
1 ∣R=r))) dρR(r)

≥ n hκ(g−1
(

1
n

S(An
1 ∣R)ωAn

1 R)) ≥ n inf
E′∈[0,E]

hκ(E′), (73)

where we have used that 0 ≤ g−1
( 1

n S(An
1 ∣R)ωAn

1 R) ≤ E since g−1 is increasing and

0 ≤ ∫
R

S(ωAn
1 ∣R=r) dρR(r) = S(An

1 ∣R)ωAn
1 R ≤ S(An

1)ωAn
1 R = n g(E). (74)

Taking the infimum of the left-hand side of (73) over all the classical extensions ρAn
1 Bn

1 R of ρκ,E
An

1 Bn
1
, we get

Esq, c(ρκ,E
AB
⊗n
) ≥

n
2

inf
E′∈[0,E]

hκ(E′), (75)

and finally

E∞sq, c(ρ
κ,E
AB) = lim

n→∞
1
n

Esq, c(ρκ,E
AB
⊗n
) ≥

1
2

inf
E′∈[0,E]

hκ(E′). (76)

C. Separation between squashed entanglement and classical squashed entanglement
From the upper bound of (22) and Remark 2, it is sufficient to prove that for any κ > 1,

g((κ −
1
2
)E + κ − 1) − g(

E
2
) <

1
2
{

hκ(E), 0 < E ≤ Eκ,
hκ(Eκ), E ≥ Eκ. (77)

Let us consider the case 0 < E ≤ Eκ. The claim is equivalent to

2g((κ −
1
2

)E + κ − 1) − g(κ E + κ − 1) − g((κ − 1)(E + 1)) < 2g(
E
2

) − g(E). (78)

For κ = 1, equality holds in (78). The derivative with respect to κ of the left-hand side of (78) is

2(E + 1)(g′((κ −
1
2

)E + κ − 1) −
g′(κ E + κ − 1) + g′((κ − 1)(E + 1))

2
)

and is strictly negative since g′ is strictly convex; hence, the claim follows.
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For E ≥ Eκ, the claim follows since

g((κ −
1
2
)E + κ − 1) − g(

E
2
) ≤ g((κ −

1
2
)Eκ + κ − 1) − g(

Eκ
2
)

<
1
2

hκ(Eκ). (79)

�

V. CONCLUSIONS AND OPEN PROBLEMS
We have determined the maximum squashed entanglement achievable between the sender and receiver of the noiseless quantum Gaus-

sian attenuator and amplifier (Theorem 2) and proved that it is strictly larger than the corresponding secret key capacity. This result opens
the way to determine the squashed entanglement of the noisy quantum Gaussian attenuators and amplifiers, for which only upper bounds are
known.24,31–33

Our proof is based on a new lower bound to the squashed entanglement of the quantum Gaussian state (21) obtained applying a two-
mode squeezing operation to a quantum thermal Gaussian state tensored with the vacuum state (Theorem 1). Despite being extremely tight,
the lower bound is optimal only in the limit of infinite average energy. Therefore, determining the exact value of the squashed entanglement of
the quantum Gaussian state (21) for finite average energy is still an open problem. We conjecture that this squashed entanglement coincides
with the upper bound of Theorem 1, which is achieved by a Gaussian extension of the state. Furthermore, we conjecture that the squashed
entanglement of any quantum Gaussian state is achieved by a Gaussian extension.

We have also determined the classical squashed entanglement of the quantum Gaussian state (21) and proved that it is achieved by
a classical Gaussian extension of the state. This is the first time that the classical squashed entanglement of a quantum Gaussian state is
determined. Therefore, our result opens the way to determine the classical squashed entanglement of all quantum Gaussian states, which we
conjecture to be always achieved by a classical Gaussian extension.
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APPENDIX A: ENTROPIC INEQUALITIES

A longstanding conjecture in quantum communication theory states that pairs of n-mode thermal quantum Gaussian states minimize
the output entropy of the beam splitter and the squeezing operation among all the pairs of n-mode input states with assigned entropies.82

This conjecture was first formulated in 2007 to determine the maximum rates for classical communication to two receivers with the noiseless
quantum Gaussian broadcast channel.66–69 A fundamental step toward the proof of the conjecture has been the proof of the quantum entropy
power inequality,70–73,78 which provides an almost optimal lower bound to the output entropy of the beam splitter and the squeezing. The
constrained minimum output entropy conjecture has then been proved for n = 1 in the special case when one of the two input states of the
beam splitter or of the squeezing operation is Gaussian, and therefore, the quantum channel that maps the input to the output is a quantum
Gaussian attenuator, amplifier, or phase-contravariant channel.74–77,80,81 In this paper, we exploit the constrained minimum output entropy
conjecture for the noiseless quantum Gaussian amplifier:

Theorem 4 (One-mode constrained minimum output entropy conjecture77). Quantum thermal Gaussian input states minimize the
output entropy of the one-mode noiseless quantum Gaussian amplifier among all the input states with a given entropy. In other words, for any
one-mode quantum state ρ, let

ωρ = ω(g−1(S(ρ))) (A1)

be the one-mode quantum thermal Gaussian state as in (7) with the same entropy as ρ. Then, for any κ ≥ 1,

S(A κ(ρ)) ≥ S(A κ(ωρ)) = g(κ g−1(S(ρ)) + κ − 1). (A2)
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For n ≥ 2, the constrained minimum output entropy conjecture is still open in general and has been proved only for the quantum
Gaussian channels that are entanglement breaking,79,83 which include the complementary channel of the noiseless quantum Gaussian
amplifier:

Conjecture 1 [Minimum output entropy conjecture (Ref. 82, Conjecture V.1)]. For any n ∈ N, quantum thermal Gaussian input states
minimize the output entropy of the n-mode Gaussian quantum-limited amplifier among all the input states with a given entropy. In other words,
for any n-mode quantum state ρ, let

ωρ = ω(g−1
(

1
n

S(ρ)))
⊗n

(A3)

be the n-mode quantum thermal Gaussian state with the same entropy as ρ. Then, for any κ ≥ 1,

S(A ⊗n
κ (ρ)) ≥ S(A ⊗n

κ (ωρ)) = n g(κ g−1
(

1
n

S(ρ)) + κ − 1). (A4)

Remark 3. Conjecture 1 has been proved in the particular case when the input state ρ is pure.88–91

Theorem 5 (Ref. 83, Corollary 5). For any n ∈ N, quantum thermal Gaussian input states minimize the output entropy of the comple-
mentary channel of the n-mode noiseless quantum Gaussian amplifier among all the input states with a given entropy. In other words, for any
n-mode quantum state ρ, let

ωρ = ω(g−1
(

1
n

S(ρ)))
⊗n

(A5)

be the n-mode quantum thermal Gaussian state with the same entropy as ρ. Then, for any κ ≥ 1,

S(Ã ⊗n
κ (ρ)) ≥ S(Ã ⊗n

κ (ωρ)) = n g((κ − 1)(g−1
(

1
n

S(ρ)) + 1)). (A6)

A conditional version of the quantum entropy power inequality has been proved, where all the entropies are conditioned on an external
quantum system.27–29 In this paper, we exploit its version for the two-mode squeezing operation:

Theorem 6 (Quantum conditional entropy power inequality28). Let A be a one-mode Gaussian quantum system, and let R be a generic
quantum system. Let γAR be a joint quantum state on AR such that its marginal γA on A has finite average energy and its marginal γR on R has
finite entropy. Let

ρABR = Uκ(γAR ⊗ ∣0⟩B⟨0∣)U†
κ , (A7)

where ∣0⟩B is the vacuum state of B and Uκ is the two-mode squeezing operator defined in (17). Then,

S(A∣R)ρABR ≥ ln(κ exp S(A∣R)γAR + κ − 1),
S(B∣R)ρABR ≥ ln((κ − 1) exp S(A∣R)γAR + κ). (A8)

APPENDIX B: PROOF OF LEMMA 1

Lemma 1. For any E ≥ 0 and κ ≥ 1, the function ψE, κ is convex.

Proof. We have

ψ′′E,κ(η) =
E(E + 1)(κ − 1)((κ + 1 − 2η)E + κ)

(1 − η)((κ − η)E + κ − 1)((κ − η)E + κ)((1 − η)E + 1)
≥ 0. (B1)

�
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