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Quantum flags, and new bounds on the quantum capacity of the depolarizing channel
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A new bound for the quantum capacity of the d-dimensional depolarizing channels is presented.
Our derivation makes use of a flagged extension of the map where the receiver obtains a copy of
a state σ0 whenever the messages are transmitted without errors, and a copy of a state σ1 when
instead the original state gets fully depolarized. By varying the overlap between the flags states,
the resulting transformation nicely interpolates between the depolarizing map (when σ0 = σ1),
and the d-dimensional erasure channel (when σ0 and σ1 have orthogonal support). In our analysis
we compute the product-state classical capacity, the entanglement assisted capacity and, under
degradability conditions, the quantum capacity of the flagged channel. From this last result we get
the upper bound for the depolarizing channel, which by a direct comparison appears to be tighter
than previous available results for d > 2, and for d = 2 it is tighter in an intermediate regime of
noise. In particular, in the limit of large d values, our findings presents a previously unnoticed O(1)
correction.

PACS numbers: 03.67.-a, 03.67.Ac, 03.65.Ta.

Quantum Shannon theory [1, 2] provides a character-
ization of the maximum transmission rates (capacities)
achievable in sending classical or quantum data through
a quantum channel. The depolarizing channel (DC) [3]
is the simplest and most symmetric non-unitary quan-
tum channel but still, despite the considerable efforts
that have been spent on such issue [4–16] its so-called
quantum capacity [17–19] is not known. DCs have a pe-
culiar position in the theory which make them an im-
portant error model for finite dimensional systems, like
qubits in a quantum computer. Indeed by pre- and post-
processing and classical communication via twirling [20],
any other channel can be mapped into a DC whose quan-
tum capacity is lower than or equal to the quantum ca-
pacity of the original channel [21]. Accordingly the value
of the quantum capacity of DCs can be used to bound
the minimum number of physical qubits needed to pre-
serve quantum information in quantum processors and
memories. In the view of these facts it is clear that the
DC quantum capacity problem is of primary importance
in quantum information theory: solving it would likely
help in understanding the peculiar difficulties of quan-
tum communication and error correction.
The evaluation of most capacities cannot be performed

algorithmically, since it requires in principle an infinite
sequence of optimizations, at variance with the classical
case [22]. For a particular kind of channels, the degrad-
able channels, the quantum capacity is given by the one-
shot quantum capacity, which is a single-letter formula
[23]. However, the DC is not degradable and the one-shot
quantum capacity is known to be just a lower bound.
The main result of this paper is a new analytic upper
bound to the quantum capacity of the DC valid for any
finite dimension, which outperforms previous results in
many different regimes. To achieve this goal we rely on
flagged extension of quantum channels, a construction
which, in other contexts, proved to be a powerful tool,

see e.g. the result on the superadditivity of coherent in-
formation reported in Ref. [24]. In our case we define
the flagged depolaring channel (FDC) assuming that if
Alice sends the density matrix ρ, with probability p Bob
receives such state together with an ancillary system pre-
pared into the state σ0, and with probability 1 − p the
completely mixed state together with the ancillary sys-
tem in σ1. The density matrices σ0 and σ1 behave as flags
that encode information about what happened to the in-
put and, at variance with previous approaches [4, 6, 9],
are not assumed to be necessarily orthogonal – when this
happens Bob can know exactly if he received the original
message or an error, and our FDC is equivalent to the
erasure channel [25]. By tracing out the flags, Bob effec-
tively receives the output of a DC. This means that FDC
is a better communication line than its associated DC,
therefore every capacity of the former is larger than or
equal to the corresponding value of the latter. Most im-
portantly it is possible to find p, σ0, σ1 in such a way that
the FDC is degradable obtaining a bound for the quan-
tum capacity of the associated DC. When compared with
previous results our findings provide a better estimate of
the quantum capacity of the DC for all choices of d and p,
except for d = 2. In this case the bounds in [7, 8] perform
better at low noise, while for higher noise the new bound
is better, surpassing also the one in [9] in an intermediate
region. Most notably the improvement increases in the
large d limit: the gap between the best upper bound and
lower bound of the quantum capacity is given by a O(1)
function of p which is differentiable in p = 0, in contrast
with previous bounds for which the O(1) term of the gap
is the binary entropy h(p).
Preliminaries.– Given a finite dimensional Hilbert

space H, we write the space of linear operators on H as
L(H) and the set of density operators as S(H). The ac-
tion of a quantum channel Λ : L(HA) → L(HB) connect-
ing two systems described by the Hilbert spaces HA and
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HB, is a Completely Positive Trace Preserving (CPTP)
map [1] on L(HA) which can always cast in the Stine-
spring representation form,

Λ(θ) = trE′(UAE θA ⊗ |e〉 〈e|E U †
AE) , (1)

where |e〉E is the state of environment interacting with
the system A, and UAE is an unitary interaction acting on
HA⊗HE

∼= HB⊗HE′ . In this setting the complementary
channel Λ̃ : L(HA) → L(HE′) is defined as the CPTP
mapping

Λ̃(θ) := trB(UAE θA ⊗ |e〉 〈e|E U †
AE) . (2)

The channel Λ is said to be degradable if there exists
a third CPTP channel W : L(HB) → L(HE′) (dubbed

degrading channel) such that W ◦Λ = Λ̃ . Similarly, it is
said to be anti-degradable if instead there exists a CPTP
channel V : L(HE′) → L(HB) such that V ◦ Λ̃ = Λ .
Finally we call N a degradable extension of Λ if N is
degradable and there is a second channel R such that
R ◦N = Λ.
The classical capacity C(Λ) of Λ is the highest achiev-

able rate at which classical data can be faithfully
transmitted through such channel. Following [27, 28]
it can be computed as C(Λ) = limn→∞ Cn(Λ) =
limn→∞

1
n
χ(Λ⊗n), with χ(Λ) = max{pi;ρi} χ({pi; Λ(ρi)})

where the Holevo quantity of an ensemble is defined as
χ({pi; ρi}) := S(

∑

i piρi) −
∑

i piS(ρi), S(ρ) being the
Von Neumann entropy. Similarly the entanglement as-
sisted classical capacity CE(Λ) measures the highest rate
at which the classical information can be transmitted
through Λ when Alice and Bob share unlimited resource
of entanglement. From [29] it follows that CE(Λ) =
maxρ I(ρ,Λ), where the mutual information is defined as

I(ρ,Λ) := S(ρ)+S(Λ(ρ))−S(Λ̃(ρ)). Finally the quantum
capacity Q(Λ) gives the highest rate at which quantum
information can be transmitted over many uses of Λ. In
this case from [19, 30] we get Q(Λ) = limn→∞Qn(Λ) =
limn→∞ maxρ∈S(H⊗n

A
)

1
n
J(ρ,Λ⊗n), with J(ρ,Λ⊗n) :=

S(Λ⊗n(ρ)) − S(Λ̃⊗n(ρ)). For a degradable channel the
regularization limit on n is not needed and the expres-
sion for Q(Λ) reduces to single-letter formula

Q(Λ) = Q1(Λ) := max
ρ∈S(H

A
)
J(ρ,Λ) . (3)

The FDC model.– In a standard approach to quan-
tum communication the interaction between the quan-
tum carriers of the information and their environment,
the associated interaction time, as well as the state of
environment are assumed to be known. However, it is
possible to think about scenarios where the state of en-
vironment is changing in time and it can be monitored
with quantum measurements. In this setting, suppose
that with probability pi the state of environment is the
state σi, and that when this happens information car-
rier gets transformed by a a given CPT transformation

Λi. If there was no other information except the proba-
bility distribution of environment, the complete channel
would be just the weighted sum of each individual map,
i.e. Λ :=

∑

i piΛi. Instead, we assume that in our case
Bob collects a copy of the environment: in this case the
complete channel can be written as

Λ[· · · ] :=
∑

i

piΛi[· · · ]⊗ σi , (4)

where now the σis live on an ancillary space H1 on which
Bob has complete access. More abstractly, this model can
be also seen as a quantum channel with quantum flags,
where with probability pi the channel acts as Λi and Bob
receives a quantum flag σi which encodes in a quantum
state the information about which channel is acting. As
Λ can be obtained from Λ by simply tracing away the
flags, it turns out that the capacities of the latter provide
natural upper bounds for the corresponding ones of the
former, i.e.

Q(Λ) ≤ Q(Λ) , (5)

where we specified this property in the case of the quan-
tum capacity. A special example of a channel of the
form (4) was considered in [4, 6] where the σi were as-
sumed to be orthogonal pure states. Here, on the con-
trary we allow the σi’s to be mixed and not necessar-
ily orthogonal and focus on the case where the resulting
mapping has the form

Λ
d
p[· · · ] = (1− p)[· · · ]⊗ σ0 + pTr[· · ·] Id

d
⊗ σ1 . (6)

This channel acts on a d dimensional Hilbert space and
it can be expressed as in (4) with two components, the
first associated with the identity channel and the second
associated with a completely depolarizing transformation
that replaces every input with the completely mixed state
Id/d. Notice however that Eq. (6) describes a proper
CPTP mapping also for values of p larger than 1 – indeed
its Choi state [1, 2] can be easily shown to be positive
for any p > 0 such that p

d2σ0 + (1 − p)σ1 ≥ 0. Most
importantly, irrespectively from the value of σ0 and σ1,
by removing the flag states from (6) via partial trace
reduces to a standard DC,

Λd
p[· · · ] := (1 − p)[· · · ] + pTr[· · ·] Id

d
. (7)

Therefore, invoking the monotonicity (5) we can upper
bound the rather elusive quantum capacity of Λd

p, with

the quantum capacity of Λ
d
p which, as we shall see in the

following section, that it is relatively easy to characterize.
FDC capacities.–A fundamental ingredient in study-

ing the capacities of Λ
d
p is that such channel is covariant

under the action of arbitrary unitary transformations U
of SU(d), i.e.Λd

p[U · · ·U †] = (U ⊗ I)Λd
p[· · · ](U † ⊗ I), the

operators I being the identity on the flags. This im-
plies that the output von Neumann entropy associated
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with a generic pure input state is a constant quantity
t(p, d, σ0, σ1) which does not explicitly depend upon the
specific value of |ψ〉, but only upon the parameters that
characterize the map i.e. S(Λd

p[|ψ〉 〈ψ|]) = t(p, d, σ0, σ1).
In the Supplemental Material (SM), using the concavity
properties of χ({pi, ρi} and I(ρ,Λ) [1], the product state
classical capacity of the channel and the entanglement
assisted capacity are shown to correspond to

C1(Λ
d
p) = log d+ S((1− p)σ0 + pσ1)− t(p, d, σ0, σ1),

CE(Λ
d
p) = 2 log d+ S

(

(1− p)σ0 + pσ1
)

− t(p, d2, σ0, σ1). (8)

For finding the quantum capacity we restrict the prob-
lem to the case where σ1 = |e1〉 〈e1| is a pure state, and
σ0 is diagonalizable in that basis, i.e. σ0 = c2 |e1〉 〈e1| +
(1− c2)

∣

∣e⊥1
〉 〈

e⊥1
∣

∣. For this case both Λ
d
p and its comple-

mentary counterpart can be parametrised by the fidelity
between σ0 and σ1, i.e. via the parameter c (in particu-
lar we can write Λ

d
p,c(ρ) := (1− p)ρ⊗

(

c2 |e1〉 〈e1|+ (1−
c2)
∣

∣e⊥1
〉 〈

e⊥1
∣

∣

)

+ p Id

d
⊗ |e1〉 〈e1|). In the SM, using a sim-

ple measurement and action channel as a candidate for
the degrading channel, we showed that Λ

d
p,c is degradable

for c fulfilling the inequality

c ≤ c(p) :=
√

(1− 2p)/(2− 2p) . (9)

In this regime, the quantum capacity of Λ
d
p,c is

equal to the product state quantum capacity Q1 i.e.
Q(Λd

p,c)=Q1(Λ
d
p,c), and we should maximize the coherent

information J to compute Q1(Λ
d
p,c). In general, maxi-

mizing the coherent information J is not an easy task:
in our case however the problem however gets simpli-
fied again thanks to the degradability condition of the
channel. When this property holds, in fact J(ρ,Λd

p,c) is
concave in the input state ρ [31], which by covariance of
Λ
d
p,c implies that the coherent information is maximized

on the maximally mixed state

Q(Λd
p,c) = Q1(Λ

d
p,c) = maxρ J(ρ,Λ

d
p,c) = J

(

Id

d
,Λd

p,c

)

= log d+ S
(

(1− p)σ0 + pσ1
)

− t(p, d2, σ0, σ1) . (10)

Upper bounds for the DC quantum capacity.– Accord-
ing to Eq. (5), the quantum capacity of the DC Λd

p can

be upper bounded by the capacity of Λ
d
p,c, irrespectively

from the choice we make on the parameter c, as long
as the degradability constraint (9) holds true. Intu-
itively however, as c gets larger, the bound gets bet-
ter, because channel (6) gets closer to Λd

p. To get the

best upper bound for the quantum capacity of Λd
p we

hence set c = c(p). Accordingly, using the expression
for t(p, d2, σ0, σ1) computed in the SM, our best way to
upper bound Q(Λd

p) is provided by

Q(Λd
p) ≤ Q(Λd

p,c(p)) = log d+ η
(

1
2

)

− η
(

1
2 − (d2−1)p

d2

)

− (d2 − 1)η
(

p
d2

)

, (11)

where η(z) := −z log(z) (as discussed in the SM, an alter-
native bound can be obtained by choosing the flag states
to be pure. The resulting expression is however much
more involved than (11) and a numerical check reveals
that it is less performing than the latter).

In order to test the quality of our finding we now pro-
ceed with a comparison with the limits previously pro-
posed in the literature. We start considering first the low
noise regime (p≪ 1) where (11) gives

Q(Λd
p,c(p)) = log d+ d2−1

d2

(

log
(

p
d2

)

− log e+ 1
)

p+O
(

p2
)

.
(12)

For d = 2, the above expression is less tight if compared
with the bound of Ref. [8] which for this special regime
implies

Q(Λ2
p) ≤ Q(Λd

p,c(p))− 3
4p+O

(

p2 log p
)

. (13)

Things however change when we move out from the d =
2, low noise regime. To our knowledge, there are two
bounds obtained from the degradable extension of the d
dimensional depolarizing channel. The first one is given
in Ref. [6] and consists in the following expression

Q(Λd
p) ≤ f1,d(p) := η

(

1+(d−1)γ
d

)

+ (d− 1)η
(

1−γ
d

)

− η
(

1− (d−1)γ
d

)

− (d− 1)η
(

γ
d

)

, (14)

with γ = 2d
d2−1

(

√

1− pd2−1
d2 −

(

1− pd2−1
2

)

)

. The sec-

ond one was instead obtained by using the fact that
Λd
p is degradable and anti-degradable when p = d

2(d+1) ,

see [6, 32]. Using this fact, [4, 6] showed we have

Q(Λd
p) ≤ f2,d(p) :=

(

1− 2p(d+1)
d

)

log d . (15)

Given that all of these bounds, including our bound,
are obtained from degradable extensions of DCs and the
convexity of upper bounds obtained from degradable ex-
tensions [4], we can obtain the following upper bound
(see the SM for the detailed proof)

Q(Λd
p) ≤ conv

{

Q(Λd
p,c(p)), f1,d(p), f2,d(p)

}

, (16)

where the convex hull conv{g1(p), g2(p), ...} is defined as
the maximal convex function that is less than or equal
to all the gi(p)s. Figure 2 compares the new bound
with previous benchmarks for d = 2, [7, 8] for low noise
and [9] for high noise, showing that the new bound is
better in an intermediate regime. Figure 1 represents
Q(Λd

p,c(p)), f1,d(p), f2,d(p), and the convex hull for d = 4
and d = 10.

To be more quantitative, we can study the asymptotic
expansion of the capacities of the various extensions for
large d. Defining δ(p) := η

(

1
2

)

− η
(

1
2 − p

)

+ η(1− p) one
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FIG. 1: d = 4 (left) and d = 10 (right): Qlower is the lower bound from Eq. (18), f1,d and f2,d are previous bounds from
degradable extensions (see Eq. (14) and (15)), FDC is our bound presented in Eq. (11), while finally Conv is the convex hull of
all the bounds defined in Eq. 16. Inset: comparison for the O(1) gaps for large d between upper bounds and the hashing lower
bound, as a function of p. For previous bounds the gap is h(p), for ours it is given by the function (18).

Q1
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FIG. 2: d = 2 case: Q1 is the lower bound from Eq. (18),
Conv is the convex hull of all the bounds defined in Eq. 16.
In the main plot, we compare our bound with [9], in the inset
with [7] at low noise.

can show that

Q(Λd
p,c(p)) = (1 − 2p) log d− h(p) + δ(p) +O

(

1
log d

)

,

f1,d(p) = (1 − 2p) log d+O
(

log d
d

)

,

f2,d(p) = (1 − 2p) log d+O
(

log d
d

)

,

which should be compared with the lower bound ofQ(Λd
p)

one get by taking the value of the single shot coherent
information evaluated on the completely mixed state, i.e.

Q(Λd
p) ≥ Qlower(Λ

d
p) := J( I

d

d
,Λd

p)

= log d− η
(

1− p+ p
d2

)

− (d2 − 1)η
(

p
d2

)

= (1− 2p) log d− h(p) +O
(

1
log d

)

. (17)

As we can see, our bound is the only one that shows an
O(1) term which is not zero (and negative). Furthermore,

the gap between our bound and the lower bound scales
as

Q(Λd
p,c(p))−Qlower(Λ

d
p) = δ(p) +O

(

1
log d

)

. (18)

On the contrary the differences between the other upper
bounds and the lower bound exhibit a O(1) gap equal
to h(p) which, as shown in Fig. 1 is larger than (18) for
p < 1

2 (where the quantum capacity is not zero). In
particular, it appears that our inequality gives a much
better bound for low p, since h(p) has derivative that
diverges as − log p when p→ 0, while δ(p) scales linearly
in p.

Discussion.–We introduced a specific flagged version
of DC which for a certain values of the parameter is
degradable allowing us to compute analytic bound for
the quantum capacity of the original map. Our result
works in any dimension, and it is the tightest available
analytical upper bound. Unlike other degradable exten-
sions of depolarizing channel [4, 6], the introduced flags
are not orthogonal. The idea we used is of general appli-
cability and could give new good bounds for many other
channels.
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Explicit value of t(p, d, σ0, σ1)

The fact that Λ
d
p is covariant under SU(d) implies that the output von Neumann entropy associated with a generic

input state is a constant t(p, d, σ0, σ1) that explicitly does not depend upon the specific value of |ψ〉 but only upon
the parameters that characterize the map, i.e. p, σ0, σ1 and d. A simple algebra permits us to explicit determine the
value of t(p, d, σ0, σ1) obtaining

t(p, d, σ0, σ1) := S(Λd
p[|ψ〉 〈ψ|]) = S

(

(1 − p) |ψ〉 〈ψ| ⊗ σ0 + p Id

d
⊗ σ1

)

(19)

= h
(

d(1−p)+p

d

)

+ p(d−1)
d

log(d− 1) + d(1−p)+p

d
S

(

(1−p)σ0+
p
d
σ1

d(1−p)+p

d

)

+ p(d−1)
d

S (σ1) ,

where h(x) := −x log x− (1− x) log(1− x) is the binary entropy.

Classical capacities of the FDC

By convexity of the von Neumann entropy, it follows that

min
ρ
S(Λd

p[ρ]) = t(p, d, σ0, σ1) . (20)

Using above observation we compute the Holevo capacity of the map C1(Λ
d
p). Notice that for any ensemble {pi; ρi},

one can create a larger ensemble {pi, dU ;UρiU
†}, where the state UρiU

† is extracted with probability density pidU ,
where dU is the Haar measure of SU(d). By the concavity of the Holevo quantity it follows

χ({pi;Λd
p[ρi]}) ≤ χ({pi, dU ;Λd

p[UρiU
†]}) = log d+ S((1− p)σ0 + pσ1)−

∑

i

piS(Λ
d
p[ρi]) , (21)

where we used the depolarizing identity
∫

dU UρU † = Id

d
.

We can now invoke (20) to put an upper bound on χ({pi, dU ;Λd
p[UρiU

†]}) by replacing all the S(Λd
p[ρi]) terms with

the constant t(p, d, σ0, σ1). The resulting quantity no longer depends on the input of the channel and provide an
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achievable maximum for the Holevo information of the channel yielding the identity

C1(Λ
d
p) = log d+ S((1 − p)σ0 + pσ1)− t(p, d, σ0, σ1), (22)

(the achievability being granted e.g. by ensembles of the form {dU ;U |ψ〉〈ψ|U †}, with |ψ〉 arbitrarily chosen).
To compute the entanglement assisted capacity of Λ

d
p, we use the fact that the quantum mutual information of a

channel is concave in ρ [1]. Exploiting this and the covariance of Λ
d
p under SU(d) we can then write

I
(

Id

d
,Λd

p

)

= I

(
∫

UρU † dU,Λd
p

)

≥
∫

I
(

UρU †,Λd
p

)

dU = I(ρ,Λd
p) . (23)

Therefore, we can conclude that the state that maximizes the quantum mutual information is I
d
and after some algebra

we get

CE(Λ
d
p) = I

(

Id

d
,Λd

p

)

= 2 log d+ S
(

(1− p)σ0 + pσ1
)

− t(p, d2, σ0, σ1), (24)

Detailed analysis of degradability

To find complementary channel Λ̃
d
p,c we should first write the Stinespring [1, 2] form of Λ

d
p,c as it is discussed

in Eq. (1). For this purpose we add extra degree of freedom extending the environment Hilbert space to HE =
H1 ⊗ H2 ⊗ H3 ⊗ H4 ⊗ H5 where H1, H2 and H5 are two dimensional, and H3 and H4 are d dimensional Hilbert
spaces. Simple algebra can hence be used to verify that the Stinespring representation of the channel can be obtained
through the following unitary interaction

UAE |ψ〉A |0〉1 |0〉2
∣

∣Φd
〉

3,4
|0〉5 =

√

1− p |ψ〉A |σ0〉〉1,2
∣

∣Φd
〉

3,4
|0〉5 +

√
p
∣

∣Φd
〉

A,4
|e1〉1 |e1〉2 |ψ〉3 |1〉5 , (25)

where |0〉 , |1〉 are two orthogonal states,
∣

∣Φd
〉

is a maximally entangled state in dimension d, and |σ0〉〉1,2 is a purifi-
cations of σ0, and the trace in Eq. (1) is on labels 2,3,4,5 (see the next section in the SM for the details). To find the
complementary channel instead of taking trace over states 2,3,4,5 we should take trace over states A,1. Carrying out
the calculation we get

Λ̃
d
p,c(|ψ〉 〈ψ|) =(1− p)σ02 ⊗

∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5 + p|e1〉 〈e1|2 ⊗ |ψ〉 〈ψ|3 ⊗

Id

4

d
⊗ |1〉 〈1|5

+
√

p(1− p)
[

c trA(|ψ〉A
∣

∣Φd
〉

3,4
|0〉5

〈

Φd
∣

∣

A,4
〈ψ|3 〈1|5) + h.c.

]

⊗ |e1〉 〈e1|2 . (26)

We now look for the existence of a degrading CPTP channelWp,c connecting Λ
d
p,c and Λ̃

d
p,c, i.e. satisfying the condition

Wp,c ◦ Λ
d
p,c = Λ̃

d
p,c or explicitly

(1− p)Wp,c(ρ⊗ σ01) +
p
d
Wp,c(I

d ⊗ |e1〉 〈e1|1) = Λ̃
d
p,c(ρ) . (27)

As a suitable candidate for Wp,c we consider a two-step process which first performs a measurement on system 1 that
then triggers an action on A. Specifically for the measurement we assume an orthogonal projection in the basis |e1〉
and

∣

∣e⊥1
〉

. For the action on A instead we assume that if the measurement outcome is |e1〉 we will prepare whatever

state was left on A into the fixed state
∣

∣e⊥1
〉 〈

e⊥1
∣

∣

2
⊗
∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5; on the contrary, if the result is

∣

∣e⊥1
〉

we

operate on A with a channel of the form Λ̃
d
q,c′ with properly selected parameters q, c′. With this choice, the resulting

mapping Wp,c on ρA,1 is hence given by

Wp,c(ρA,1) := 〈e1| trA(ρA,1) |e1〉
∣

∣e⊥1
〉 〈

e⊥1
∣

∣

2
⊗
∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5 +

〈

e⊥1
∣

∣ trA(ρA,1)
∣

∣e⊥1
〉

Λ̃
d
q,c′(tr1(ρA,1)) . (28)

With this choice the condition (27) becomes

(1− p)
[

c2
∣

∣e⊥1
〉 〈

e⊥1
∣

∣

2
⊗
∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5 + (1− c2)Λ̃d

q,c′(ρA)
]

+ p
∣

∣e⊥1
〉 〈

e⊥1
∣

∣

2
⊗
∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5 = Λ̃

d
p,c(ρA) .

(29)

which can be satisfied if it is possible to find q, c′ ∈ [0, 1] such that

q = p
(1−p)(1−c2) , c′

2
= c2(1−p)

1−2p−c2+pc2
. (30)

Doing simple algebra reveals that this is the case for all those cases where the following inequality holds,

c ≤
√

1−2p
2−2p . (31)

Under this condition the channel Λ
d
p,c is degradable
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Stinespring representation and complementary channel

Here we show that the mapping

UAE |ψ〉A |0〉1 |0〉2
∣

∣Φd
〉

3,4
|0〉5 =

√

1− p |ψ〉A |σ0〉〉1,2
∣

∣Φd
〉

3,4
|0〉5 +

√
p
∣

∣Φd
〉

A,4
|σ1〉〉1,2 |ψ〉3 |1〉5 , (32)

provides a Stinespring representation of the channel Λd
p,σ0,σ1

. For this purpose we first notice that (32) identifies
a unitary transformation because in the domain where we have defined it does preserve the scalar product: indeed
introducing the compact notation |ψ, e〉AE := |ψ〉A |0〉1 |0〉2

∣

∣Φd
〉

3,4
|0〉5 we have

AE 〈φ, e|U †
AEUAE |ψ, e〉AE = (1− p) A〈φ|ψ〉A + p 3〈φ|ψ〉3 = A〈φ|ψ〉A = AE〈φ, e|ψ, e〉AE . (33)

Next we notice that by tracing over 2, 3, 4, 5 we get

tr(A1)
[

UAE |ψ, e〉AE 〈ψ, e|U †
AE

]

= (1 − p) |ψ〉A 〈ψ| ⊗ σ0 + p Id

d
⊗ σ1 = Λd

p,σ0,σ1
(|ψ〉A 〈ψ|) , (34)

for all possible input state |ψ〉A (here tr(A1) indicates that we are taking the partial trace with respect to all degree
of freedom of the system but A, 1).
From the above definition we now show that Eq. (26) is the complementary channel (2) of Λ

d
p,c, i.e. that the

following identity holds true

Λ̃
d
p,c[ρ] = trA1

[

UAE(ρ⊗ |e〉 〈e|E)U
†
AE

]

, (35)

for all input states ρ (here trA1 indicates that the trace is taken on A and 1). Without loss of generality we can always
focus on pure input states. Under this condition the right side of the previous expression yields

UAE (|ψ〉A〈ψ| ⊗ |e〉 〈e|E)U
†
AE =(1− p) |ψ〉 〈ψ|A ⊗ |σ0〉〉〈〈σ0|1,2 ⊗

∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5 (36)

+ p
∣

∣Φd
〉 〈

Φd
∣

∣

A,4
⊗ |e1〉 〈e1|1 ⊗ |e1〉 〈e1|2 ⊗ |ψ〉 〈ψ|3 ⊗ |1〉 〈1|5 (37)

+
√

p(1− p) |ψ〉A
∣

∣Φd
〉

3,4

〈

Φd
∣

∣

A,4
〈ψ|3 ⊗ |σ0〉〉1,2 〈e1|1 〈e1|2 ⊗ |0〉 〈0|5 + h.c. (38)

Given that |σ0〉〉1,2 = c |e1〉 |e1〉1,2 +
√
1− c2

∣

∣e⊥1
〉
∣

∣e⊥1
〉

1,2
we can take trace over 2, 3, 4, 5 and get

Λ̃
d
p,c(|ψ〉A 〈ψ|) =(1− p)σ02 ⊗

∣

∣Φd
〉 〈

Φd
∣

∣

3,4
⊗ |0〉 〈0|5 + p|e1〉 〈e1|2 ⊗ |ψ〉 〈ψ|3 ⊗

Id

4

2 ⊗ |1〉 〈1|5 (39)

+
√

p(1− p)
[

c trA(|ψ〉A
∣

∣Φd
〉

3,4
|0〉5

〈

Φd
∣

∣

A,4
〈ψ|3 〈1|5) + h.c.

]

⊗ |e1〉 〈e1|2 . (40)

Pure flags expansion

The condition for degradability for the pure flags are similar to the case where the flags are mixed but diagonal. In
this scenario the channel explicitly writes as

Λ
′d
p,c[· · · ] = (1− p)[· · · ]⊗ |e0〉 〈e0|+ p Id

d
⊗ |e1〉 〈e1| , (41)

where the parameter c refers now to the overlap c := 〈e1|e0〉. Notice that the phase in c is not important in studying
the degradability of Λ′d

p,c since the phase in c can be set to zero by acting with a unitary transformation after the
action of the channel (41): accordingly in the following we shall assume c to be real without loss of generality.
To find complementary channel Λ

′d
p,c we should first write the Stinespring form of this transformation. The Hilbert

space of the environment is decomposed as HE = H1 ⊗H2⊗H3⊗H4 where H1 and H4 are two dimensional, and H2

and H3 are d dimensional Hilbert spaces. The unitary interaction between system and environment acts as following

U ′
AE |ψ〉A |0〉1

∣

∣Φd
〉

2,3
|0〉4 =

√

1− p |ψ〉A |e0〉1
∣

∣Φd
〉

2,3
|0〉4 +

√
p
∣

∣Φd
〉

A,3
|e1〉1 |ψ〉2 |1〉4 , (42)

where |0〉 , |1〉 are two orthogonal states,
∣

∣Φd
〉

is a maximally entangled states in dimension d, |e〉E = |0〉1
∣

∣Φd
〉

2,3
|0〉4,

and the trace in Eq. (1) here is on states 2,3,4. Doing simple calculation we can show that this is a Stinespring
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representation of 41. To find the complementary channel instead of taking trace over states 2,3,4 we should take trace
over states A,1, carrying out the calculation we get

Λ̃
′d
p,c(|ψ〉 〈ψ|) =(1− p)

∣

∣Φd
〉 〈

Φd
∣

∣

2,3
⊗ |0〉 〈0|4 + p |ψ〉 〈ψ|2 ⊗

Id

3

2 ⊗ |1〉 〈1|4 (43)

+
√

p(1− p)
[

c trA(|ψ〉A
∣

∣Φd
〉

2,3
|0〉4

〈

Φd
∣

∣

A,3
〈ψ|2 〈1|4) + h.c.

]

. (44)

As the form of Λ̃
′d
p,c is exactly the same as Λ̃

d
p,c, the regime where Λ

′d
p,c is degradable is the same as before, i.e.

c2 ≤ 1−2p
2−2p . (45)

In this regime the quantum capacity of Λ
′d
p,c can be computed as in Eq. (10), i.e.

Q(Λ′d
p,c) = log d+ S

(

(1− p) |e0〉 〈e0|+ p |e1〉 〈e1|
)

− t(p, d2, |e0〉 , |e1〉) , (46)

which after some algebra can be casted into the expression

Q(Λ′d
p,c) = log d+ η[ 12

(

1−
√

−2(p− 1)p cos(θ) + 2(p− 1)p+ 1
)

] + η[ 12

(

1 +
√

−2(p− 1)p cos(θ) + 2(p− 1)p+ 1
)

]

− η[
d2(−p)+d2−

√
d4p2−2d4p+d4−2d2p2 cos(θ)+2d2p cos(θ)+p2+p

2d2 ]

− η[
d2(−p)+d2+

√
d4p2−2d4p+d4−2d2p2 cos(θ)+2d2p cos(θ)+p2+p

2d2 ] + p(d2−1)
d2 log

(

p
d2

)

, (47)

where cos(θ) = 2c2 − 1 and η(z) := −z log(z).

Combination of different bounds from degradable extensions

In this section we present one of the results in Ref. [4]. We call N a degradable extension of Λ if N is degradable
and there is a second channel R such that R◦N = Λ. In Ref. [4] it has been shown that if N0 is a degradable extension
of Λ0 and N1 is a degradable extension of Λ1 then N = λN0 ⊗ |0〉 〈0|+ (1 − λ)N1 ⊗ |1〉 〈1| is a degradable extension
of Λ = λΛ0 + (1− λ)Λ1 for every 0 ≤ λ ≤ 1, and the quantum capacities satisfy the following relation

Q(Λ) ≤ Q1(N) ≤ λQ1(N0) + (1− λ)Q1(N1) . (48)

This theorem can be used to show if we have upper bounds for the quantum capacity of two channels, all obtained
from degradable extensions, the convex combination of the bounds is also an upper bound for the respective convex
combination of the channels. We clarify this with an example: Consider the depolarizing channel i.e. Λd

p[· · · ] =
(1− p)[· · · ] + pTr[· · ·] Id

d
. The set of all values of p for which Λd

p is a CPTP is P , and Np is a degradable extension of

Λd
p for all p ∈ P . If p0, p1 ∈ P , then Np0

, Np1
are degradable extensions of Λd

p0
,Λd

p1
respectively, then

Q(Λd
p0
) ≤ g(p0) := Q1(Np0

), Q(Λd
p1
) ≤ g(p1) := Q1(Np1

) . (49)

Therefore

N = λNp0
⊗ |0〉 〈0|+ (1− λ)Np1

⊗ |1〉 〈1| , (50)

is a degradable extension of Λd
λp0+(1−λ)p1

, then using 48 we get Q(Λd
λp0+(1−λ)p1

) ≤ λg(p0) + (1 − λ)g(p1). As this

holds for all p0, p1 ∈ P , therefore conv{g(p)} is also an upper bound for the quantum capacity of Λd
p, where

conv{g(p)} := inf
p0,p1∈P,
0≤λ≤1

{λg(p0) + (1− λ)g(p1) : p = λp0 + (1− λ)p1} .

In particular, given g1(p), ..., gn(p), all upper bounds for the quantum capacity of depolarizing channel all de-
rived from degradable extensions, then gmin(p) := min{g1(p), ..., gn(p)} is also an upper bound and therefore
conv{g1(p), ..., gn(p)} := conv{gmin(p)}, is also an upper bound too.


