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A generalized multi-parameter Hong-Ou-Mandel interferometer is presented which extends the
conventional “Mandel dip” configuration to the case where a symmetric biphoton source is used
to monitor the contemporary presence of k independent time-delays. Our construction results in
a two-input/two-output setup, obtained by concatenating 50:50 beam splitters with a collection of
adjustable achromatic wave-plates. For k = 1, 2 and k = 4 explicit examples can be exhibited that
prove the possibility of uniquely linking the zero value of the coincidence counts registered at the
output of the interferometer, with the contemporary absence of all the time-delays. Interestingly
enough the same result cannot be extended to k = 3. Besides, the sensitivity of the interferometer
is analyzed when the time-delays are affected by the fluctuations over time-scales that are larger
than the inverse of the frequency of the pump used to generate the biphoton state.

PACS numbers: 42.50.-p, 03.67.-a

I. INTRODUCTION

The Michelson interferometer [1, 2], the Hong-Ou-
Mandel (HOM) interferometer [3–7], and the Mach-
Zehnder interferometer (MZI) [8–14] are examples of two-
input/two-output set-ups which have been extensively
used to study two-photon quantum interference effects,
with applications in parameter estimation problems, such
as phase estimation in the quantum radar [15], or coor-
dinates estimation in quantum positioning system [16].
In these schemes a minimum (or a maximum) in the co-
incidence counts recorded at the output of the device
is typically associated with the case where no relative
delays affect the propagation of the photons along the
two optical paths of the set-up. In the HOM interfer-
ometer this correspondence yields the celebrated “Man-
del dip” where, given a symmetric input biphoton (BP)
source [17–21], a zero-coincidence signal can be uniquely
linked to the absence of asymmetries in the signal prop-
agation. Generalization of this effect to more than one
parameter are naturally provided by MZIs [8–14] where,
exploiting the presence of two 50:50 BS, one can in prin-
ciple monitor two independent time-delays with a sin-
gle coincidence measurement. It turns out however that
for these settings the zero-coincidence event does not ex-
clusively correspond to the contemporary absence of the
two delays unless [22] one includes the presence of an
achromatic quarter wave-plate [23–25]. Unlike the stan-
dard wave-plates, this optical element provides a con-
stant phase shift independent with the wavelength of the
incoming light, typically achieved by using two different
birefringent crystalline materials balancing the relative
shift in retardation over the wavelength range. As shown
in Ref. [22] by inserting it inside the MZI, one can ef-
fectively force an exact swap between the symmetric and
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anti-symmetric components of the spectral wave function
of the propagating biphoton signal, restoring the one-to-
one correspondence between the HOM zero-coincidence
point event and the contemporary absence of the delays
in the configuration.

Aim of the presented paper is to study the possibility
of extending this result to the case of k > 2 time-delay
parameters. More specifically, we consider a generalized
two-input/two-output interferometer formed by k con-
catenated 50:50 BSs and k independent time-delay pa-
rameters τ1, τ2, · · · , τk, where with the help of a collec-
tion of properly setting achromatic phase-shifts, we try to
identify what we dub an exclusive HOM zero-coincidence
point event, i.e. a one-to-one correspondence between the
zero value in the coincidence counts registered at the out-
put of the interferometer and the contemporary absence
of all the time-delays in the scheme. After stating this
problem in the rigorous mathematical terms, we observe
that while it is explicitly solvable for k = 1, 2 and 4 (the
solutions for k = 1 and k = 2 being associated with the
results of Refs. [3] and [22] respectively), it admits no
solution for k = 3, a peculiar behavior which is proba-
bly associated with some accidental symmetries. In the
second part of the manuscript we study the sensitivity of
the scheme in the presence of random fluctuations with
respect to the time-delay parameters τ1, · · · , τk, show-
ing that the effectiveness of the achromatic phase-shifts
is strongly affected by such noisy events.

The manuscript is organized as follows: in Sec. II we
introduce the setup, setting the notations and introduce
a necessary and sufficient condition for the existence of
an exclusive HOM zero-coincidence point for the case of
k time-delay parameters. In Sec. III we hence specify
our attentions to k = 3 and k = 4 showing that in the
first case no solution can be find and presenting instead
explicit solution for the second. Moreover some com-
ments for the k > 4 case is proposed to complete our
discussions. In Sec. IV we finally study the sensitivity
of the scheme under fluctuating the time-delay parame-
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ters. This manuscript finally ends with Sec. V where we
present our conclusions and comments on the possible
applications to sensing procedures.

II. EXCLUSIVE HOM ZERO-COINCIDENCE
POINT

Here we propose the scheme and introduce the related
notations. More importantly a formal definition of the
exclusive HOM zero-coincidence point is presented.

A. Scheme structure

Consider the two-input/two-output ports device shown
in Fig. 1 which registers the coincidence events at the de-
tectors T1 and T2 associated with a frequency correlated,
symmetric biphoton (BP) source [17–21]. As schemat-
ically depicted in Fig. 1, the setup is obtained by con-
catenating k modules (red dashed rectangles), labelled
by the progressive index ` = 1, 2, · · · , k, each containing
the optical elements that introduce the opposite phase-
shifts e−iϕ`(ω) and eiϕ`(ω) in the lower A` and upper B`

paths in this generalized interferometer respectively, and
a 50:50 beam splitter (BS) that coherently mixes them.
Reviewing the original HOM configuration, the phase-
shifts ϕ1(ω), ϕ2(ω), · · · , ϕk(ω) are assumed to be linked
to the time-delays τ1, τ2, · · · , τk, which in the following
will be treated as the independent variables. Further-
more along the lines detailed in Ref. [22] we also allow
for the presence of achromatic wave-plates [23–25] that
add the frequency independent contributions θ1, θ2, · · · ,
θk ∈ [0, 2π) that we shall use as tunable knobs of the
device, writing

ϕ1(ω) = ωτ1 , ϕ`(ω) = ωτ` + θ`/2 , ∀` ≥ 2 , (1)

the value of θ1 being set equal to zero without the loss
of generality as it introduces an irrelevant global phase
to the final state of the emerging photons, see below.
Under the above premises, the aim of our analysis is to
verify whether it is possible to identify what we dub an
exclusive HOM zero-point configuration, i.e. a special as-
signment θ̄2, · · · , θ̄k of the parameters θ2, · · · , θk capable
to ensuring that a null value for the coincidence counts at
T1 and T2 uniquely corresponds to the case where all the
temporal delays of the setup are exactly equal to zeros,
i.e.

R
(θ̄2,··· ,θ̄k)
BP (τ1, ..., τk) = 0

⇐⇒ τ1 = τ2 = · · · = τk = 0 . (2)

For k = 1 a solution of the above problem is provided by
the “Mandel dip” [3]. For k = 2 instead the existence of
an exclusive HOM zero-coincidence point follows by the

results of Ref. [22] which achieves (2) by employing θ̄2 =
π/2. In what follows, we shall extend this construction
to the larger values of k: interestingly enough we observe
that for k = 3 no solution can be found, while for k = 4
special choices of θ2, · · · , θ4 exist so that (2) holds true.

B. A necessary and sufficient condition for the
symmetric BP state

To set the problem in the rigorous mathematical terms,

let us introduce the annihilation operators â
(`)
j (ω) de-

scribing a photon of frequency ω that enters the `-th
module of the device along the input path j (j = 1(2) de-
notes the path A` (B`) respectively) and fulfilling Canon-

ical Commutation Rules (CCR): [â
(`)
j (ω), â

(`)
j′ (ω′)] = 0,

[â
(`)
j (ω), â

(`)†
j′ (ω′)] = δj,j′δ(ω − ω′) where δj,j′ and δ(ω −

ω′) being the Kronecker and Dirac deltas respectively.

The associated output counterpart â
(`+1)
j (ω) that is also

the input bosonic annihilation operator in the (`+ 1)-th

module, is connected with â
(`)
j (ω) by the `-th module via

the following linear transformation

~a(`)(ω) :=

(
â

(`)
1 (ω)

â
(`)
2 (ω)

)
= M`(ω)~a(`+1)(ω) , (3)

with

M`(ω) =
1√
2

(
eiϕ`(ω) eiϕ`(ω)

e−iϕ`(ω) −e−iϕ`(ω)

)
, (4)

where 2 × 2 matrix M`(ω) being defined by the phase-
shifts introduced in Eq. (1). Therefore, the input-output
mapping from the first module to the k-th module can
now be expressed in the compact form

~a(1)(ω) = Nk(ω)~a(k+1)(ω) , (5)

with the matrix Nk(ω) defined as

Nk(ω) :=

(
Ak(ω) Bk(ω)
Ck(ω) Dk(ω)

)
= M1(ω)M2(ω)...Mk(ω) . (6)

Consider hence the following frequency-correlated
biphoton pure state [17–21] as the input state of the setup

|Ψ(1)〉 :=

∫
dω

∫
dω′Ψ(ω, ω′) â

(1)†
1 (ω)â

(1)†
2 (ω′)|Ø〉 ,(7)

where |Ø〉 is the multi-mode vacuum state, and where
Ψ(ω, ω′) represents a complex amplitude probability
distribution on which for the moment we make no
assumptions apart from the normalization condition∫
dω
∫
dω′|Ψ(ω, ω′)|2 = 1. Following the principle of co-

incidence measurement [26], we express the coincidence
counts as
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FIG. 1. (Color online) The sketch of a generalized interferometer. The yellow circles in the figure represent the phase-shifter

elements indicating that light beams propagating on the upper A` (lower B`) optical paths, experience the phase-shift e−iϕ`(ω)

(resp. eiϕ`(ω)) composed by a time-delay component ωτ` (−ωτ`) and an achromatic wave-plate θ`/2 (−θ`/2), as indicated by
Eq. (1).

R
(θ2,··· ,θk)
BP (τ1, ..., τk) :=

∫
dt1

∫
dt2〈Ψ(k+1)|Ê(−)

1 (t1)Ê
(−)
2 (t2)Ê

(+)
2 (t2)Ê

(+)
1 (t1)|Ψ(k+1)〉

=

∫
dω

∫
dω′〈Ψ(k+1)|â(k+1)†

1 (ω)â
(k+1)
1 (ω)â

(k+1)†
2 (ω′)â

(k+1)
2 (ω′)|Ψ(k+1)〉 , (8)

where Ê
(−)
j (t) = (Ê

(+)
j )† := 1√

2π

∫
dωâ

(k+1)†
j (ω)eiωt is

the amplitude of electromagnetic field at detector Tj , and

where |Ψ(k+1)〉 represents the output state emerging from
the interferometer associated with the input state |Ψ(1)〉.
The former one can be obtained by using (5) to express

â
(1)†
j (ω) in terms of the corresponding output-mode op-

erator â
(k+1)†
j (ω) obtaining

â
(1)†
1 (ω) = A∗k(ω)â

(k+1)†
1 (ω) +B∗k(ω)â

(k+1)†
2 (ω) ,

â
(1)†
2 (ω) = C∗k(ω)â

(k+1)†
1 (ω) +D∗k(ω)â

(k+1)†
2 (ω) , (9)

which is inserted into (7) gives us

|Ψ(k+1)〉=
∫
dω

∫
dω′Ψ(ω, ω′)

×[A∗k(ω)â
(k+1)†
1 (ω) +B∗k(ω)â

(k+1)†
2 (ω)]

×[C∗k(ω′)â
(k+1)†
1 (ω′) +D∗k(ω′)â

(k+1)†
2 (ω′)]|Ø〉 .

(10)

Expanding Eq.(10) we observe that it contains two kinds
of contributions: the first contains the terms where both
photons belong to a same output port of the interferome-
ter (either Ak+1 or Bk+1) and gives explicitly no contri-
bution to (8); the second instead contains all the terms
where one photon in Ak+1 and another one in Bk+1 and

which can actively contribute to R
(θ2,··· ,θk)
BP (τ1, ..., τk). Its

analytic expression is given by

|Φ(k+1)〉 =

∫
dω

∫
dω′Φ(k+1)(ω, ω′)

×â(k+1)†
1 (ω)â

(k+1)†
2 (ω′)|Ø〉 , (11)

where Φ(k+1)(ω, ω′) is the new biphoton amplitude that
we can write as

Φ(k+1)(ω, ω′)

:= Ψ(ω, ω′)A∗k(ω)D∗k(ω′) + Ψ(ω′, ω)B∗k(ω′)C∗k(ω) ,

:= ΨS(ω, ω′)Perm∗k(ω, ω′) + ΨA(ω, ω′)Det∗k(ω, ω′) ,

(12)

where in the last line we use the symmetric and antisym-
metric components of the input distribution

ΨS(ω, ω′) := (Ψ(ω, ω′) + Ψ(ω′, ω))/2 ,

ΨA(ω, ω′) := (Ψ(ω, ω′)−Ψ(ω′, ω))/2 , (13)

and introduce the functions

Permk(ω, ω′) := Ak(ω)Dk(ω′) +Bk(ω′)Ck(ω) ,

Detk(ω, ω′) := Ak(ω)Dk(ω′)−Bk(ω′)Ck(ω) , (14)

that correspond respectively to the permanent [27]
and determinant of the 2 × 2 matrix Nk(ω, ω′) :=(
Ak(ω) Bk(ω′)
Ck(ω) Dk(ω′)

)
and which exhibit an implicit depen-

dence upon the delays τ1, · · · , τk and upon the constant
phase shifts θ2, · · · , θk. Replacing all this into Eq. (8)
we finally get
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R
(θ2,··· ,θk)
BP (τ1, ..., τk) = 〈Φ(k+1)|Φ(k+1)〉 =

∫
dω

∫
dω′

∣∣∣Φ(k+1)(ω, ω′)
∣∣∣2

=
1

4

∫
dω

∫
dω′

∣∣∣ΨS(ω, ω′)[Perm∗k(ω, ω′) + Perm∗k(ω′, ω)] + ΨA(ω, ω′)[Det∗k(ω, ω′)−Det∗k(ω′, ω)]
∣∣∣2

+
1

4

∫
dω

∫
dω′

∣∣∣ΨS(ω, ω′)[Perm∗k(ω, ω′)− Perm∗k(ω′, ω)] + ΨA(ω, ω′)[Det∗k(ω, ω′) + Det∗k(ω′, ω)]
∣∣∣2 , (15)

where in the second line we separate the symmetric and
antisymmetric contributions of Φ(k+1)(ω, ω′). The above

expression makes it evident that a zero value of coinci-
dence counts can be obtained if and only if the following
conditions get satisfied for all ω and ω′,

 ΨS(ω, ω′)[Perm∗k(ω, ω′) + Perm∗k(ω′, ω)] + ΨA(ω, ω′)[Det∗k(ω, ω′)−Det∗k(ω′, ω)] = 0 ,

ΨS(ω, ω′)[Perm∗k(ω, ω′)− Perm∗k(ω′, ω)] + ΨA(ω, ω′)[Det∗k(ω, ω′) + Det∗k(ω′, ω)] = 0 .
(16)

In particular under the simplifying hypothesis of an input BP state that has a symmetric amplitude analogous to
those analyzed in Ref. [22], i.e.

ΨA(ω, ω′) = 0 =⇒ Ψ(ω, ω′) = ΨS(ω, ω′) , (17)

Eq.(16) implies a simple necessary and sufficient condition for having a zero-coincidence counts, i.e.

R
(θ2,··· ,θk)
BP (τ1, ..., τk) =

∫
dω

∫
dω′|ΨS(ω, ω′)|2|Permk(ω, ω′)|2 = 0 ⇐⇒ Permk(ω, ω′) = 0 ∀ω, ω′ ∈ D , (18)

which in the following we shall adopt to study the prob-
lem (2) – D being the domain where ΨS(ω, ω′) is sup-
ported.

III. MULTI-PARAMETER HOM
ZERO-COINCIDENCE POINT

From the discussion of Sec II, the presence of a zero

value in the coincidence counts R
(θ2,··· ,θk)
BP (τ1, ..., τk) when

feeding the apparatus with a symmetric biphoton state
|Ψ(1)〉 is related with the possibility of nullifying the
function Permk(ω, ω′) for all points in the support D of
ΨS(ω, ω′) which, without the loss of generality hereafter
we shall assume to be the full frequency domain. As for
the scheme defined by a single modulus (k = 1), Eqs. (6)
and (14) reduce to

N1(ω) = M1(ω) =
1√
2

(
eiωτ1 eiωτ1

e−iωτ1 −e−iωτ1

)
, (19)

Perm1(ω, ω′) = −i sin((ω − ω′)τ1) . (20)

Therefore, Perm1(ω, ω′) = 0 for all ω, ω′ ∈ D if and only
if τ1 = 0. Under this assumption we get

RBP(τ1) =

∫
dω

∫
dω′|ΨS(ω, ω′)|2 sin2((ω − ω′)τ1) ,

(21)

which corresponds to the standard result of coincidence
counts observed in the conventional HOM interferom-
eter [3] exhibiting τ1 = 0 as an exclusive HOM zero-
coincidence point (“Mandel dip”).

A less non trivial configuration is already obtained in
the case of k = 2 modules which was studied in Ref. [22].
Here Eqs. (6) and (14) yield

N2(ω) = M1(ω)M2(ω)

=

 eiωτ1 cos(ωτ2 + θ2/2) ieiωτ1 sin(ωτ2 + θ2/2)

ie−iωτ1 sin(ωτ2 + θ2/2) e−iωτ1 cos(ωτ2 + θ2/2)

 ,

(22)

and

Perm2(ω, ω′) = cos((ω − ω′)τ1) cos((ω + ω′)τ2 + θ2)

+ i sin((ω − ω′)τ1) cos((ω − ω′)τ2) , (23)

which for τ1 = τ2 = 0 gives Perm2(ω, ω′)
∣∣∣
τ1=τ2=0

=

cos θ2. Accordingly from Eq. (18) it follows that we can

have R
(θ2)
BP (0, 0) = 0 by setting θ2 = θ̄2 = π/2. Most

importantly under this condition (23) becomes

Perm2(ω, ω′)
∣∣∣
θ2=π/2

= − cos((ω − ω′)τ1) sin((ω + ω′)τ2)

+i sin((ω − ω′)τ1) cos((ω − ω′)τ2) , (24)

for which only τ1 = τ2 = 0 can ensure the fulfillment of
Eq. (18). Hence also in this k = 2 case we can conclude
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that the scheme exhibits an exclusive zero-coincidence
point (2) under the special setting θ2 = π/2 [22].

A. Absence of the exclusive zero-coincidence point
for k = 3 modules

Now we consider the case with respect to k = 3 mod-
ules, under this condition Eqs.(6) and (14) yield

N3(ω) = M1(ω)M2(ω)M3(ω)

=
1√
2

 eiϕ1 [cos(ϕ2 − ϕ3) + i sin(ϕ2 + ϕ3)] eiϕ1 [cos(ϕ2 + ϕ3)− i sin(ϕ2 − ϕ3)]

e−iϕ1 [cos(ϕ2 + ϕ3) + i sin(ϕ2 − ϕ3)] e−iϕ1 [− cos(ϕ2 − ϕ3) + i sin(ϕ2 + ϕ3)]

 , (25)

and

Perm3(ω, ω′) = − cos(ϕ1 − ϕ′1) sin(ϕ2 + ϕ′2) sin(ϕ3 + ϕ′3) + sin(ϕ1 − ϕ′1) sin(ϕ2 − ϕ′2) cos(ϕ3 + ϕ′3)

−i
(

cos(ϕ1 − ϕ′1) cos(ϕ2 + ϕ′2) sin(ϕ3 − ϕ′3) + sin(ϕ1 − ϕ′1) cos(ϕ2 − ϕ′2) cos(ϕ3 − ϕ′3)
)
, (26)

where ϕ` := ϕ`(ω), ϕ′` = ϕ`(ω
′) for ` = 1, 2, 3. Recall-

ing (1) one can easily verify that for τ1 = τ2 = τ3 = 0
Eq. (26) reduces to

Perm3(ω, ω′)
∣∣∣
τ1=τ2=τ3=0

= − sin(θ2) sin(θ3) , (27)

which can be forced to zero by taking one (or both) of the
two phase shifts θ2 and θ3 equal to an integer multiple
of π. Interestingly enough none of these settings provide
an exhaustive zero-coincidence point (2) for the scheme.
For instance assuming θ2 = π we get

Perm3(ω, ω′)
∣∣∣
θ2=π

= cos((ω − ω′)τ1) sin((ω + ω′)τ2) sin((ω + ω′)τ3 + θ3)

+ sin((ω − ω′)τ1) sin((ω − ω′)τ2) cos((ω + ω′)τ3 + θ3)

+ i
(

cos((ω − ω′)τ1) cos((ω + ω′)τ2) sin((ω − ω′)τ3)

− sin((ω − ω′)τ1) cos((ω − ω′)τ2) cos((ω − ω′)τ3)
)
,

which besides τ1 = τ2 = τ3 = 0 admits zero value as all
the points (τ1, τ2, τ3) proportional to (1, 0, 1) – in the case
where θ2 = 0 the same hold for (τ1, τ2, τ3) proportional
to (1, 0,−1). On the contrary for θ3 = π we have

Perm3(ω, ω′)
∣∣∣
θ3=π

= cos((ω − ω′)τ1) sin((ω + ω′)τ2 + θ2) sin((ω + ω′)τ3)

− sin((ω − ω′)τ1) sin((ω − ω′)τ2) cos((ω + ω′)τ3)

− i
(

cos((ω − ω′)τ1) cos((ω + ω′)τ2 + θ2) sin((ω − ω′)τ3)

+ sin((ω − ω′)τ1) cos((ω − ω′)τ2) cos((ω − ω′)τ3)
)
,

which instead admits zero value for all points (τ1, τ2, τ3)
proportional to (0, 1, 0) – the same result also when θ3 =
0.

B. Exclusive zero-coincidence point for k = 4
modules

The presence of exclusive zero-coincidence solutions is
restored for k = 4. Analytically Eqs.(6) and (14) get
replaced by

N4(ω) = M1(ω)M2(ω)M3(ω)M4(ω)

=

 eiϕ1 [cos(ϕ3) cos(ϕ2 + ϕ4) + i sin(ϕ3) cos(ϕ2 − ϕ4)] eiϕ1 [sin(ϕ3) sin(ϕ2 − ϕ4) + i cos(ϕ3) sin(ϕ2 + ϕ4)]

−e−iϕ1 [sin(ϕ3) sin(ϕ2 − ϕ4)− i cos(ϕ3) sin(ϕ2 + ϕ4)] e−iϕ1 [cos(ϕ3) cos(ϕ2 + ϕ4)− i sin(ϕ3) cos(ϕ2 − ϕ4)]

 ,

(28)
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and

Perm4(ω, ω′) = cos(ϕ1 − ϕ′1)[cos(ϕ2 + ϕ′2) cos(ϕ3 − ϕ′3) cos(ϕ4 + ϕ′4)− sin(ϕ2 + ϕ′2) cos(ϕ3 + ϕ′3) sin(ϕ4 + ϕ′4)]

− sin(ϕ1 − ϕ′1)[cos(ϕ2 − ϕ′2) sin(ϕ3 − ϕ′3) cos(ϕ4 + ϕ′4) + sin(ϕ2 − ϕ′2) sin(ϕ3 + ϕ′3) sin(ϕ4 + ϕ′4)]

+ i cos(ϕ1 − ϕ′1)[cos(ϕ2 + ϕ′2) sin(ϕ3 − ϕ′3) cos(ϕ4 − ϕ′4) + sin(ϕ2 + ϕ′2) sin(ϕ3 + ϕ′3) sin(ϕ4 − ϕ′4)]

+ i sin(ϕ1 − ϕ′1)[cos(ϕ2 − ϕ′2) cos(ϕ3 − ϕ′3) cos(ϕ4 − ϕ′4)− sin(ϕ2 − ϕ′2) cos(ϕ3 + ϕ′3) sin(ϕ4 − ϕ′4)] ,

(29)

where adopting the same simplifying notation introduced
in Eq. (26). For τ1 = τ2 = τ3 = τ4 = 0, the above
expression reduces to

Perm4(ω, ω′)
∣∣∣
τ1=τ2=τ3=τ4=0

= cos(θ2) cos(θ4)− sin(θ2) sin(θ4) cos(θ3) . (30)

We notice that taking for instance (θ2, θ4) = (0, π/2) the
above expression can be forced to zero. Yet, one can eas-
ily verify that under this condition we do not get an ex-
clusive HOM zero-coincidence point as Perm4(ω, ω′) also
nullifies for (τ1, τ2, τ3, τ4) e.g. proportional to the vector
(1, 0,−1, 0). Similar discussion holds also for the cases
where either θ2 = 0, π and θ4 = π/2, 3π/2, or where in-
stead θ2 = π/2, 3π/2, θ4 = 0, π. Excluding these cases,
e.g. requiring sin θ2 sin θ4 6= 0, we can still force Eq. (30)
to zero by fixing the achromatic phases to fulfill the iden-
tity

θ3 = arccos(cot θ2 cot θ4) . (31)

We claim that under these conditions the model exhibits
indeed an exclusive zero-coincidence point. For this pur-
pose we observe that from Eq. (18) it follows that a nec-
essary condition to have zero value for coincidence counts
is to nullify the real part of Perm4(ω, ω′) for all possible
choices of ω and ω′ in the domain, i.e.

R
(θ2,··· ,θ4)
BP (τ1, ..., τ4) = 0

=⇒ Re[Perm4(ω, ω′)] = 0 ∀ω, ω′ ∈ D . (32)

Restricting the analysis to the case ω = ω′ the above
equation yields hence the following condition

Re[Perm4(ω, ω)] = cos(2ωτ2 + θ2) cos(2ωτ4 + θ4)

− sin(2ωτ2 + θ2) sin(2ωτ4 + θ4) cos(2ωτ3 + θ3) = 0 ,

(33)

which must hold for all ω ∈ D if we want to get

R
(θ2,··· ,θ4)
BP (τ1, ..., τ4) = 0: as shown in Sec. III B 1 be-

low however this condition can only be achieved when
τ2 = τ3 = τ4 = 0, which when inserted into (29) finally
leads to identify τ1 = τ2 = τ3 = τ4 = 0 as the unique
zero-coincidence point of the model.

1. Existence of the exclusive zero-coincidence point

Here we explicitly show that for proper choices of
θ2, θ3, θ4 as in Eq. (31), Eq. (33) admits τ1 = τ2 = τ3 =

τ4 = 0 as unique solution, hence proving that for k = 4
we can have the exclusive zero-coincidence point condi-
tion (2). Firstly, let us observe that we can exclude the
cases with τ2 = τ4 = 0. Indeed under the condition of
τ2 = τ4 = 0 Eq. (33) yields

Re[Perm4(ω, ω)] = cos(θ2) cos(θ4)

− sin(θ2) sin(θ4) cos(2ωτ3 + θ3) = 0 , (34)

which, considering that we are discussing the case where
sin θ2 sin θ4 6= 0 and Eq. (31) holds true, can be satisfied
for all ω only taking τ3 = 0. However now we shall have
τ2 = τ3 = τ4 = 0 so that Eq. (29) becomes

Perm4(ω, ω′) = i sin((ω − ω′)τ1) , (35)

which is null for all ω and ω′ only when we have also
τ1 = 0. Secondly, considering the case where at least
one among τ2 and τ4 is different from zero. Under this
condition it is convenient to rewrite Eq.(33) as

g1(ω) = g2(ω) , (36)

with

g1(ω):= cos(2ωτ2 + θ2) cos(2ωτ4 + θ4)

=
1

2
cos(2ω(τ2 + τ4) + θ2 + θ4)

+
1

2
cos(2ω(τ2 − τ4) + θ2 − θ4) , (37)

and

g2(ω):= sin(2ωτ2 + θ2) sin(2ωτ4 + θ4) cos(2ωτ3 + θ3)

=
1

4
cos(2ω(τ2 − τ4 + τ3) + θ2 − θ4 + θ3)

+
1

4
cos(2ω(τ2 − τ4 − τ3) + θ2 − θ4 − θ3)

−1

4
cos(2ω(τ2 + τ4 + τ3) + θ2 + θ4 + θ3)

−1

4
cos(2ω(τ2 + τ4 − τ3) + θ2 + θ4 − θ3) . (38)

We now observe that if at least one among τ2 and τ4
is different from zero, then g1(ω) is an oscillating func-
tion of ω characterized by two independent frequencies
2ω(τ2 + τ4) and 2ω(τ2 − τ4). On the contrary in general
g2(ω) admits four different frequencies (explicitly given
by 2ω(τ2 ± τ4 ± τ3)) apart from the special degenerate
cases where we have either τ2 + τ4 − τ3 = τ2 − τ4 + τ3,
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or τ2 + τ4 + τ3 = τ2 − τ4 − τ3, which both admits 3 inde-
pendent frequency values. The only possibility to fulfill
(36) (and hence (33)) is that in the above configurations,
the multiplicative coefficients of such frequency terms
help us to reduce the effective number of frequencies of
g2(ω) to two. By looking at Eq. (38) however, this can
only happen in the degenerate cases. For instance, for
τ2+τ4−τ3 = τ2−τ4+τ3 by taking θ2+θ4−θ3 = θ2−θ4+θ3

we can reduce Eq.(38) to

g2(ω) :=
1

4
cos(2ω(τ2 − τ4 − τ3) + θ2 − θ4 − θ3)

− 1

4
cos(2ω(τ2 + τ4 + τ3) + θ2 + θ4 + θ3) .(39)

Still we notice that in this case it is impossible to obtain
the identity (36) due to the mismatching between the 1/2
prefactor of g1(ω) and the 1/4 prefactor of g2(ω).

C. Exclusive zero-coincidence point for k > 4

From the previous subsections it is clear that as k in-
creases determining the condition under which Eq. (2)
can be fulfilled becomes harder and harder. In particu-
lar the absence of a solution for k = 3 suggests that the
problem cannot be solved by induction. Still we suspect
that for large enough k, the possible combinations of θ2,
· · · , θk ensuring the condition

Permk(ω, ω′)
∣∣∣
τ1=···=τk=0

= 0 , (40)

will increase. For instance in passing from k = 3 to
k = 4 we go from a very constrained set solutions where
one among θ2 and θ3 is forced to be an integer multiple
of π (see Eq. (27)) to (31) which allows θ2, θ3 and θ4

to span over a dense set of possibilities. Exploiting this
increased freedom in the selection of θ2, · · · , θk it is rea-
sonable to assume that among them it would be possible
to find a special assignment to force Eq. (2). Accord-
ingly it is expected that this problem is always solvable
for k ≥ 4 (possibly excluding some isolated and patho-
logical cases).

IV. SENSITIVITY TO FLUCTUATIONS

To get a concrete example we now specialize the anal-
ysis under the assumption of a BP input state (7) with

Gaussian two-mode spectral function of the form

|ΨS(ω, ω′)|2 = P+(ω + ω′)P−(ω − ω′) , (41)

with the following normal distributions

P+(ω + ω′) =
1√

2π∆Ω+

e
− (ω+ω′−2ω0)2

8∆2Ω+ ,

P−(ω − ω′) =
1√

2π∆Ω−
e
− (ω−ω′)2

2∆2Ω− , (42)

which locally assigns to each photon an average fre-

quency ω0 with spread ∆ω :=
√

∆Ω2
− + 4∆Ω2

+/2. In the

limit ∆Ω+ � ∆Ω−, Eq. (41) approaches the frequency-
entangled biphoton state emerging from an ideal Spon-
taneous Parametric Down Conversion (SPDC) source
pumped with a laser of mean frequency ωp = 2ω0,
e.g. [17, 19–21] and references therein; for ∆Ω+ = ∆Ω−
instead it corresponds to two uncorrelated (unentangled)
single-photon packets; while finally for ∆Ω+ ' ∆Ω−
it mimics the properties of an entangled state emit-
ted by a difference-beam (DB) source [18]. Under the
condition (41) it follows that the associated coincidence
counts (15) can be expressed as the sum of two contribu-
tions,

R
(θ2,··· ,θk)
BP (τ1, · · · , τk)

=

∫
dω

∫
dω′|ΨS(ω, ω′)|2|Permk(ω, ω′)|2

= R̄BP(τ1, · · · , τk) + ∆R
(θ2,··· ,θk)
BP (τ1, · · · , τk) , (43)

where the whole dependence upon θ2, · · · , θk is only car-

ried by ∆R
(θ2,··· ,θk)
BP (τ1, · · · , τk) which, as a function of τ1,

· · · , τk, exhibits a series of fast oscillations with frequency
ω0, and where R̄BP(τ1, · · · , τk) depends instead only upon
the spectral width ∆Ω− which determines the spread of
the frequency mismatch of the two input photons (see
Sec. IV A for details). The special decoupling enlight-
ened in Eq.(43) implies that in the presence of fluctua-
tions of the delays τ1, · · · , τk, the functional dependence

of R
(θ2,··· ,θk)
BP (τ1, · · · , τk) upon θ2, · · · , θk is washed away.

To see this assume that each of these parameters fluctu-
ates randomly and independently on intervals T which
are much larger than the inverse of the mean biphoton
frequency ω0 but smaller than the inverse of the associ-
ated local spread ∆ω (i.e. 1/ω0 � T � 1/∆ω). In this
case the result of coincidence counts registered at the
output of the set-up is effectively provided by the coarse

graining counterpart of R
(θ2,··· ,θk)
BP (τ1, · · · , τk) [22], i.e.

〈
R

(θ2,··· ,θk)
BP (τ1, · · · , τk)

〉
:=

∫ τ1+ T
2

τ1−T
2

dτ ′1
T
· · ·
∫ τk+ T

2

τk−T
2

dτ ′k
T

R
(θ2,··· ,θk)
BP (τ ′1, · · · , , τ ′k) . (44)

Now from Eq. (43) it follows that〈
R

(θ2,··· ,θk)
BP (τ1, · · · , τk)

〉
' R̄BP(τ1, · · · , τk) ,

〈
∆R

(θ2,··· ,θk)
BP (τ ′1, · · · , τ ′k)

〉
' 0 , (45)



8

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ1

Δ
Ω

-
τ
3

0.6

0.7

0.8

0.9

1.0

1.1

ΔΩ-τ2=1

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ1

Δ
Ω

-
τ
3

0.6

0.7

0.8

0.9

1.0

1.1

ΔΩ-τ2=5

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ1

Δ
Ω

-
τ
3

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

ΔΩ-τ2=10

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ1

Δ
Ω

-
τ
3

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

ΔΩ-τ2=15

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ1
Δ
Ω

-
τ
3

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

ΔΩ-τ2=20

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ1

Δ
Ω

-
τ
3

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

ΔΩ-τ2=25

FIG. 2. (Color online) Contour plots of the coarse-grained coincidence counts R̄BP(τ1, τ2, τ3) of Eq. (48) for assigned values
of τ2 in the generalized k = 3 HOM configuration. All of the time-delays are rescaled by the inverse of the width ∆Ω− of
the biphoton frequency-spectrum function (see Eq. (41)), and the coincidence counts is rescaled by the plateau value, i.e.
R̄BP (0, τ2,∞) = 1/2.
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FIG. 3. (Color online) Functional dependence of R̄BP (τ1, 15/∆Ω−, τ3) of Eq. (48) upon τ3 for the assigned values of τ1. Here
the time-delay τj(j = 1, 2, 3) are rescaled by the inverse of the width ∆Ω− of the biphoton frequency-spectrum function. All
of the coincidence counts are rescaled by the plateau value, i.e. R̄BP (0, 15/∆Ω−,∞) = 1/2.

(see again Sec. IV A for a formal derivation of these iden-
tities that holds for arbitrary values of k). Eq.(45) makes
it explicit the fact that the achromatic shifts θ2, · · · , θk,
while enforcing the exclusive zero-coincidence point con-
dition (2), become inconsequential in the presence of fluc-
tuations of the time-delays. For k = 1 this is a direct
consequence of the fact that in the original HOM scheme
one has

R̄BP(τ1) = RBP(τ1) =
1

2

(
1− e−2τ2

1 ∆Ω2
−

)
, (46)

the contribution ∆RBP(τ1) being explicitly zero after the
coarse graining – of course this is also the only case
which exhibits a zero-coincidence point without achro-
matic phase shifters. For the case k = 2 instead we
get [22]

R̄BP(τ1, τ2) =
1

2
+

1

8

(
2e−2τ2

2 ∆Ω2
−

−e−2(τ1+τ2)2∆Ω2
− − e−2(τ1−τ2)2∆Ω2

−

)
, (47)

while, as explicitly discussed in Appendix A, for k = 3
we get



9

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ2

Δ
Ω

-
τ
3

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

ΔΩ-τ1=1

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ2

Δ
Ω

-
τ
3

0.7

0.8

0.9

1.0

1.1

1.2

ΔΩ-τ1=5

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ2

Δ
Ω

-
τ
3

1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225

ΔΩ-τ1=10

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ2

Δ
Ω

-
τ
3

1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225

ΔΩ-τ1=15

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ2
Δ
Ω

-
τ
3

1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225

ΔΩ-τ1=20

-4 -2 0 2 4

-4

-2

0

2

4

ΔΩ- τ2

Δ
Ω

-
τ
3

1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225

ΔΩ-τ1=25

FIG. 4. (Color online) Contour plots of the coarse-grained coincidence counts R̄BP(τ1, τ2, τ3) of Eq. (48) for assigned values
of τ1 in the generalized k = 3 HOM configuration. All of the time-delays are rescaled by the inverse of the width ∆Ω− of
the biphoton frequency-spectrum function (see Eq. (41)), and the coincidence counts is rescaled by the plateau value, i.e.
R̄BP (τ1, 0,∞) = 1/2.
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FIG. 5. (Color online) Functional dependence of R̄BP (15/∆Ω−, τ2, τ3) of Eq. (48) upon τ3 for the assigned values of τ2. Here
the time-delay τj(j = 1, 2, 3) is rescaled by the inverse of the width ∆Ω− of the biphoton frequency-spectrum function. All of
the coincidence counts are rescaled by the plateau value R̄BP (15/∆Ω−, 0,∞) = 1/2.

R̄BP(τ1, τ2, τ3) =
1

2
+

1

32

(
2e−2(τ2−τ3)2∆Ω2

− + 2e−2(τ2+τ3)2∆Ω2
− − 4e−2(τ1−τ3)2∆Ω2

− − 4e−2(τ1+τ3)2∆Ω2
−

−e−2(τ1+τ2−τ3)2∆Ω2
− − e−2(τ1−τ2+τ3)2∆Ω2

− − e−2(τ1−τ2−τ3)2∆Ω2
− − e−2(τ1+τ2+τ3)2∆Ω2

−

)
, (48)

which we plot in Figs.2–5.

A. Effect of the coarse graining

Here we present a derivation of Eq. (45) for arbitrary
k. We start observing that from Eq. (6) it follows that
the various matrix elements of Nk(ω) can be expressed

as

Ak(ω) :=
∑
~s

α
(~s)
k ei~s·~ϕ(ω) , Bk(ω) :=

∑
~s

β
(~s)
k ei~s·~ϕ(ω) ,

Ck(ω) :=
∑
~s

γ
(~s)
k ei~s·~ϕ(ω) , Dk(ω) :=

∑
~s

δ
(~s)
k ei~s·~ϕ(ω) ,

(49)
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where the summation runs over the set of k-long vec-
tor ~s formed by the sequences of ±1, where ~ϕ(ω) :=

(ϕ1(ω), · · · , ϕk(ω)), and where finally α
(~s)
k , β

(~s)
k , γ

(~s)
k , and

δ
(~s)
k are the complex parameters of modulus 2k/2 which

are independent from the phase ϕ`(ω). Accordingly we
can write

Permk(ω, ω′)

=
∑
~s,~s′

[α
(~s)
k δ

(~s′)
k + β

(~s′)
k γ

(~s)
k ] ei[~s·~ϕ(ω)+~s′·~ϕ(ω′)]

=
∑
~s,~s′

Q
(~s,~s′)
k ei[(ω+ω′) ~τ+~θ]·~∆+(~s,~s′) ei(ω−ω

′) ~τ ·~∆−(~s,~s′) ,

(50)

where in the second identity we introduced the quantities

Q
(~s,~s′)
k := [α

(~s)
k δ

(~s′)
k + β

(~s′)
k γ

(~s)
k ] , (51)

~∆±(~s,~s′) := (~s± ~s′)/2 , (52)

and used Eq. (1) to write

~s · ~ϕ(ω) + ~s′ · ~ϕ(ω′)

= [(ω + ω′) ~τ + ~θ] · ~∆+(~s,~s′) + (ω − ω′) ~τ · ~∆−(~s,~s′) ,

(53)

with ~τ := (τ1, · · · , τk) and ~θ := (θ1, · · · , θk). We now
split the summation of Eq. (50) into ~s = −~s′ term and
~s 6= −~s′ term respectively, i.e.

Permk(ω, ω′) = Fk(ω − ω′)

+
∑
~s 6=−~s′

Q
(~s,~s′)
k ei[(ω+ω′) ~τ+~θ]·~∆+(~s,~s′) ei(ω−ω

′) ~τ ·~∆−(~s,~s′) ,

(54)

with

Fk(ω − ω′) :=
∑
~s

Q
(~s,−~s)
k ei(ω−ω

′) ~τ ·~s , (55)

where we use the fact that ~∆−(~s,−~s) = ~s and
~∆+(~s,−~s) = 0. Taking the modulus we have

|Permk(ω, ω′)|2 = |Fk(ω − ω′)|2 +
∣∣∣ ∑
~s 6=−~s′

Q
(~s,~s′)
k ei[(ω+ω′) ~τ+~θ]·~∆+(~s,~s′) ei(ω−ω

′) ~τ ·~∆−(~s,~s′)
∣∣∣2

+2Re
[
F ∗k (ω − ω′)

∑
~s 6=−~s′

Q
(~s,~s′)
k ei[(ω+ω′) ~τ+~θ]·~∆+(~s,~s′) ei(ω−ω

′) ~τ ·~∆−(~s,~s′)
]
, (56)

which is further expressed as

|Permk(ω, ω′)|2 = P̄k(ω − ω′) + ∆Pk(ω, ω′) , (57)

with P̄k(ω−ω′) being a function that only depends upon

ω − ω′ but bares no functional dependence neither upon

ω+ω′ nor upon ~θ, while ∆Pk(ω, ω′) being a sum of con-
tributions which exhibit the phase-shift terms that have
a non-trivial dependence upon ω + ω′. Specifically,

P̄k(ω − ω′) := |Fk(ω − ω′)|2 +
∑
~s 6=−~s′

|Q(~s,~s′)
k |2 + 2Re

[ ∑
{~s 6=~s′,~s1 6=~s′1}∈S+

Q
(~s,~s′)
k Q

(~s1,~s′1)∗
k ei(ω−ω

′) ~τ ·[~∆−(~s,~s′)−~∆−(~s1,~s
′
1)]
]
,

∆Pk(ω, ω′) := 2Re
[ ∑
{~s 6=~s′,~s1 6=~s′1}∈S−

Q
(~s,~s′)
k Q

(~s1,~s′1)∗
k ei[(ω+ω′) ~τ+~θ]·[~∆+(~s,~s′)−~∆+(~s1,~s

′
1)]
]

+2Re
[
F ∗k (ω − ω′)

∑
~s 6=−~s′

Q
(~s,~s′)
k ei[(ω+ω′) ~τ+~θ]·~∆+(~s,~s′) ei(ω−ω

′) ~τ ·~∆−(~s,~s′)
]
, (58)

with S+ and S− being the subsets formed by the couples

{~s 6= ~s′} 6= {~s1 6= ~s′1} such that ~∆+(~s,~s′) = ~∆+(~s1, ~s
′
1)

and ~∆−(~s,~s′) = ~∆−(~s1, ~s
′
1) respectively (notice that they

have zero overlap). Using Eq. (57) to compute the coin-
cidence counts we hence arrive to Eq. (43) via the iden-

tification

R̄BP(τ1, · · · , τk)

=

∫
dω

∫
dω′|ΨS(ω, ω′)|2P̄k(ω − ω′)

=

∫
dω

∫
dω′ P+(ω + ω′)P−(ω − ω′)P̄k(ω − ω′) ,(59)
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and

∆R
(θ2,··· ,θk)
BP (τ1, · · · , τk)

=

∫
dω

∫
dω′|ΨS(ω, ω′)|2∆Pk(ω, ω′)

=

∫
dω

∫
dω′P+(ω + ω′)P−(ω − ω′)∆Pk(ω, ω′) .(60)

We used (41) to split the integral in terms of the variable
ξ := ω + ω′ and ν := ω − ω′, hence Eq. (60) is given by(

1

2

∫
dξP+(ξ)ei[ξ~τ+~θ]· ~K+

)(∫
dνP−(ν)eiν ~τ ·

~K−

)
= ei(2ω0~τ+~θ)· ~K+e−2(~τ · ~K+)2∆Ω2

+e−(~τ · ~K−)2∆Ω2
−/2 , (61)

with the vector ~K+ being explicitly non-zero. As antic-

ipated in the main text before, ∆R
(θ2,··· ,θk)
BP (τ1, · · · , τk)

depends explicitly upon ω0 and ~θ. Furthermore we no-
tice that under coarse graining we have〈

ei(2ω0~τ+~θ)· ~K+e−2(~τ · ~K+)2∆Ω2
+e−(~τ · ~K−)2∆Ω2

−/2
〉

'
〈
ei(2ω0~τ+~θ)· ~K+

〉
' 0 , (62)

where in the first identity we used the fact that since we
assume 1/ω0 � T � 1/∆ω, the integral is performed
over intervals of length T which is much shorter than
1/∆Ω− and 1/∆Ω+. Inserting this into (60) we can thus
conclude that〈

∆R
(θ2,··· ,θk)
BP (τ ′1, · · · , τ ′k)

〉
' 0 , (63)

which proves the second identity of Eq. (45). The first
one follows along the same line by observing that accord-
ing to Eq. (58) the right-hand-side term of (59) is given
by a finite summation of terms which are either constant
or have the following dependence on ~τ ,(

1

2

∫
dξP+(ξ)

)(∫
dνP−(ν) eiν ~τ ·

~K−

)
= e−(~τ · ~K−)2∆Ω2

−/2 , (64)

with ~K− being some non-zero vectors, we notice that
the values of R̄BP(τ1), R̄BP(τ1, τ2), and R̄BP(τ1, τ2, τ3)
reported in Eqs. (46)–(48) have indeed this structure.
Therefore, repeating the same argument used in Eq.(62)
in this case we get〈

e−(~τ · ~K−)2∆Ω2
−/2
〉
' e−(~τ · ~K−)2∆Ω2

−/2 , (65)

which ultimately leads to〈
R̄BP(τ1, · · · , τk)

〉
' R̄BP(τ1, · · · , τk) , (66)

and hence get the first identity of Eq. (45).

V. CONCLUSION

A generalized multi-parameter HOM interferometer
composed by k 50:50 beam splitters, k different time-
delays and (k − 1) achromatic wave-plates has been pre-
sented. In the special case with k = 2 modules, the
described setup was employed in Ref. [22] as a scheme to
measure two independent time-delays parameters via the
results of coincidence counts at the output. Borrowing
directly from the original HOM scheme [3], the idea was
to link the uniqueness of a HOM zero-coincidence point
attainable when setting θ2 = π/2, to a way for detecting
the non-zero values of τ1 and τ2, thereby compensating
for them by adding the controllable delays along the in-
terferometric paths. From the results presented at here,
it is clear that the same construction can be extended to
the case of k = 4 modules, while this would not be possi-
ble for the case of just three modules due to the impossi-
bility of fulfilling the condition (2) for k = 3. In Ref.[22]
it was also shown how to use the residual functional de-
pendence of the coarse-grained coincidence counts (47)
upon the delays to determine their values. Clearly the
same construction can be applied also for larger values
of k. In particular this can be done for the unlucky case
k = 3 which, in the presence of fluctuations, does not
even admits an exclusive HOM zero-coincidence point.
As a matter of fact, from Figs.2–3 we notice that fix-
ing ∆Ω−τ2 ≥ 10, R̄BP(τ1, τ2, τ3) exhibits two symmetric
dips as a function of τ3 for assigned values of τ1, with
a visibility Vmin ≈ 25% (the ratio between the depth
of the minima and the height of the plateau). On the
contrary, from Figs.4–5 it follows that for ∆Ω−τ1 ≥ 10,
R̄BP(τ1, τ2, τ3) exhibits instead two symmetric peaks as a
function of τ3 for assigned values of τ2, with the visibility
Vmax ≈ 10% (the ratio between the maximum value and
the height of the plateau). Consider then the case where
each of the length-difference of paths A1B1, A2B2 and

A3B3 as ∆`j = ∆`
(0)
j + xj , ∀j = 1, 2, 3, where ∆`

(0)
j

is fixed and unknown, the second term xj is control-
lable by the experimentalist. One way to recover these
parameters could be the following procedure: i) we se-
lect x2 to be sufficiently large to ensure that the value
∆τ2 = ∆`2/2c to be larger than 10/∆Ω−. Then keeping

x1 = 0, we record the values of R̄BP(
∆`

(0)
1

2c , ∆`2
2c ,

∆`
(0)
3 +x3

2c )

as a function of x3, locating the two minima x
(r)
min, x

(l)
min

of Fig.3. This allows us to determine the values of ∆`
(0)
1

and ∆`
(0)
3 by observing that ∆`

(0)
1 = x

(r)
min − x

(l)
min and

∆`
(0)
3 = x

(r)
min + x

(l)
min respectively; ii) With this infor-

mation we now set x1 to get ∆τ1 = ∆`1/2c larger than
10/∆Ω−, keeping x2 = 0 and start scanning once more

R̄BP(∆`1
2c ,

∆`
(0)
2

2c ,
∆`

(0)
3 +x3

2c ) with respect to x3 to locate the

maxima x
(r)
max, x

(l)
max of Fig.5, hence the value of ∆`

(0)
2

can be obtained as ∆`
(0)
2 = x

(r)
max − x(l)

max.
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Appendix A: Appendix

As for the k = 3 modules, ∆R
(θ2,θ3)
BP (τ1, τ2, τ3) of

Eq.(43) with respect to θ2 = π/2 and θ3 = 0 is given
by

∆R
(θ2,θ3)
BP (τ1, τ2, τ3) =

1

32

{
f1(τ1, τ2, τ3) cos(4ω0τ2) + f2(τ1, τ2, τ3) sin(2ω0τ2) + f3(τ1, τ2, τ3) cos(4ω0τ3)

+f4(τ1, τ2, τ3)[e−16τ2τ3∆Ω2
+ cos(4ω0(τ2 + τ3)) + e16τ2τ3∆Ω2

+ cos(4ω0(τ2 − τ3))]

+f5(τ1, τ2, τ3)[e8τ2τ3∆Ω2
+ sin(2ω0(τ2 − 2τ3))− e−8τ2τ3∆Ω2

+ sin(2ω0(τ2 + 2τ3))]
}
, (A1)

with

f1(τ1, τ2, τ3) = 2exp
[
−8τ2

2 ∆Ω2
+ − 2(τ1 + τ3)2∆Ω2

−

]
(1 + e8τ1τ3∆Ω2

− + 2e(2τ2
1 +4τ1τ3)∆Ω2

−) ,

f2(τ1, τ2, τ3) = −4exp
[
−2τ2(τ1 + τ3)∆Ω2

− − 2(τ1 + τ3)2∆Ω2
− −

1

2
τ2
2 (4∆Ω2

+ + ∆Ω2
−)
]

×(e4τ3(2τ1+τ2)∆Ω2
− − e4τ2(τ1+τ3)∆Ω2

− + e4τ1(τ2+2τ3)∆Ω2
− − 1) ,

f3(τ1, τ2, τ3) = 2exp
[
−8τ2

3 ∆Ω2
+ − 2(τ1 + τ2)2∆Ω2

−

]
×(e8τ1τ2∆Ω2

− − 4e2τ2(2τ1+τ2)∆Ω2
− − 2e2τ1(τ1+2τ2)∆Ω2

− + 1) ,

f4(τ1, τ2, τ3) = −2exp
[
−2(4τ2

2 ∆Ω2
+ + 4τ2

3 Ω2
+ + τ2

1 ∆Ω2
−)
]
(1 + e2τ2

1 ∆Ω2
−) ,

f5(τ1, τ2, τ3) = 4exp
[
−2(τ2

2 + 4τ2
3 )∆Ω2

+ −
1

2
(2τ1 + τ2)2∆Ω2

−

]
(e4τ1τ2∆Ω2

− − 1) . (A2)
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