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We study the estimation of the overlap between two unknown pure quantum states of a finite
dimensional system, given M and N copies of each type. This is a fundamental primitive in quantum
information processing that is commonly accomplished from the outcomes of N swap-tests, a joint
measurement on one copy of each type whose outcome probability is a linear function of the squared
overlap. We show that a more precise estimate can be obtained by allowing for general collective
measurements on all copies. We derive the statistics of the optimal measurement and compute
the optimal mean square error in the asymptotic pointwise and finite Bayesian estimation settings.
Besides, we consider two strategies relying on the estimation of one or both the states, and show
that, although they are suboptimal, they outperform the swap test. In particular, the swap test is
extremely inefficient for small values of the overlap, which become exponentially more likely as the
dimension increases. Finally, we show that the optimal measurement is less invasive than the swap
test and study the robustness to depolarizing noise for qubit states.

Introduction.— The overlap between two unknown
quantum states is an archetypical instance of quan-
tum relative information [1–8] and the estimation of
the overlap is a basic primitive in quantum infor-
mation processing, with applications ranging from
quantum fingerprinting [9–11], entanglement estima-
tion [12–15], communication without a shared ref-
erence frame [1, 16–18] to quantum machine learn-
ing [19–28]. Recently, with the advent of quantum
machine learning protocols [21–27], overlap estima-
tion (OvE) has attracted renewed interest as a fun-
damental primitive and its efficient implementation
and generalization on near-term quantum computers
are subjects of current research [19, 20]. In most ap-
plications, OvE is carried out through the swap test
(SWT) [9, 19, 20]: given two systems in the state
|ψ〉 |φ〉, the probability of projecting it on its symmet-
ric or antisymmetric part is determined by the overlap
between |ψ〉 and |φ〉. By repeating this measurement
on several pairs of copies one can obtain a good es-
timate of this probability, and hence of the overlap.
It is then natural to ask whether, for the same num-
ber of copies, one could reach a larger accuracy via a
collective strategy that extracts the relevant informa-
tion using a joint and less-destructive measurement.
In this article we answer in the positive, evaluating the
ultimate precision attainable in the OvE of two pure
quantum states, given a number of copies of each and
assuming no prior knowledge about them.

The task we consider is as follows: given N and
M ≥ N copies of two unknown pure states |ψ〉 , |φ〉 of
a d-dimensional quantum system we are requested to
provide an estimate of their (squared) overlap |〈ψ|φ〉|2
which is fixed, but unknown to us. The task is car-
ried out by a machine that performs a measurement
on the state |Ψ〉 = |ψ〉⊗N ⊗ |φ〉⊗M of M + N qudits
and produces an estimate with maximum precision, as
quantified by the mean square error (MSE). Further-
more we consider the case of unlabeled states, i.e.,
when the machine receives Uσ |Ψ〉, with Uσ an un-
known permutation of the qudits. Note that in this
case OvE constitutes in itself an instance of unsuper-
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FIG. 1. Sketch of the OvE strategies studied in the article.
a) Optimal measurement, e.g. by Schur transform (see
Ref. [47] for the circuit implementation). b) Circuit for
the SWT, to be repeated N times. c) Estimate |φ〉 and
project |ψ〉 on the estimated direction. d) Estimate both
|φ〉 and |ψ〉 and calculate the overlap.

vised quantum-classical learning problem, in a setting
similar to [29].

The measurements optimizing the average infor-
mation gain [16] and the average error [1, 17] have
been derived for the case of qubits, with only nu-
merical solutions [18] for higher dimensions. Here
we tackle OvE in full generality, characterizing the
optimal estimation within both local (pointwise) and
global (Bayesian) approaches. For local estimation,
we provide an asymptotically achievable lower bound
using the quantum Fisher information (QFI) [30, 32],
whereas for Bayesian estimation [30, 33] we provide
an exact solution, generalizing the results of [18]. We
find that the optimal local strategy is also Bayesian-
optimal asymptotically and that it performs identi-
cally in the labeled and unlabeled scenarios. We com-
pare our results with the SWT and with two LOCC
strategies based on estimating either one or both |ψ〉
and |φ〉, see Fig. 1. Such strategies are useful in dis-
tributed scenarios where copies of |ψ〉 and |φ〉 are pro-
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duced in different and distant laboratories. We show
that in the limit of large M + N and |M − N | con-
stant the optimal strategy displays a finite asymptotic
gap with respect to all the others. Moreover, we show
that the optimal measurement is less invasive than
the SWT and robust against single-qubit noise.

Assessing the machine’s performance.— The states
|ψ〉 = U |0〉 and |φ〉 = V |0〉 are drawn uniformly at
random, i.e., with Haar-distributed U, V ∈ SU(d).
Upon performing a measurement {Ek} on |Ψ〉 with
outcome k, the machine outputs an estimate c(k) of
the overlap c = |〈ψ|φ〉|2, with squared error (c(k)−c)2.

In the global approach, the machine’s performance
is quantified by averaging the squared error over all
possible states and outcomes:

v =
∑

k

∫
dU dV (c(k)− c)2Tr [Ek |Ψ〉〈Ψ|] . (1)

We refer to v as global MSE. Writing V = UW and
using the Haar-measure invariance dV = dW and
c = | 〈0|W |0〉 |2 the average mean square error can
be written as: v =

∑
k

∫
dW (c(k)− c)2Tr [Ekρ(c)],

where we have defined the effective state

ρ(c) =

∫
dU U⊗(N+M) |Ψ0〉〈Ψ0| U†⊗(N+M). (2)

where |Ψ0〉 = 1l ⊗W⊗M |0〉⊗(N+M)
. In addition, we

can write the above integral over W as an integral
over the overlap such that

v =
∑

k

∫
dc p(c) (c(k)− c)2Tr [Ekρ(c)] (3)

where the distribution over overlaps is given by [29,
35]

p(c) =

∫
dUδ(c− | 〈0|U |0〉 |2) = (d− 1)(1− c)d−2.

(4)
From the above discussion we see that the average
over both types of states, i.e. over U and V , is equiv-
alent to an average over overlaps with weight p(c) and
over different orientations, U⊗(N+M). This is a direct
consequence of the fact that if the states are com-
pletely unknown, then all pairs of states with equal
overlap are equally probable and are related by a rigid
unitary: |〈ψ|φ〉|2 = |〈ψ′|φ〉′|2 if and only if it exists U
such that |ψ′〉 = U |ψ〉 and |φ′〉 = U |φ〉.

At variance with the global approach, where the
overlap is a random variable, in the local approach the
overlap is considered to be fixed. We then assess the
performance of the machine by computing the average
of the square error over all states with fixed overlap c
and over all outcomes:

v(c) =
∑

k

(c(k)− c)2Tr [Ekρ(c)] , (5)

also in terms of the average state for a fixed overlap
ρ(c). We refer to v(c) as local MSE. As shown in the
supplemental material (SM), the integral in Eq. (2)

can be performed using SU(d) representation theory
and SU(2) Clebsch-Gordan coefficients, obtaining the
block-diagonal form

ρ(c) =

Jmax∑

J=Jmin

p(J |c) 1lJ
χJ
⊗ |σ〉 〈σ|J , (6)

with Jmin = |M−N |
2 , Jmax = M+N

2 and

p(J |c) =
(2J + 1)N !M !(1− c)MP (0,−2Jmin)

J+Jmin

(
1+c
1−c

)
(Jmax − J)!(Jmax + 1 + J)!

, (7)

where P
(α,β)
n (x) is the nth-degree Jacobi polyno-

mial. In the previous equations, for d = 2, J is
the familiar total-angular-momentum label and 1lJ =∑J
M=−J |J,M〉〈J,M | is the projector on the subspace

of total angular momentum J , of dimension χJ =
2J+1. In general, for d > 2, 1lJ are projectors over the
subspaces of dimension χJ(d) hosting irreducible rep-
resentations (irreps) of SU(d) arising from the tensor
product of two completely symmetric representations
of M and N qudits; these irreps are still indexed by an
(half)-integer J ∈ [Jmin, Jmax]. Finally, |σ〉J is a state
representing the known labeling of the states and it
belongs to the irrep-space of the permutation group,
also labeled by J . Note that, in the unlabeled sce-
nario, the average over qudit permutations acts only
on |σ〉J for each J , depolarizing it to a projector on
the whole irrep space. Importantly, note that all the
information about the overlap is contained in the J-
statistics p(J |c), which is independent of dimension
and labeling. In particular, the optimal measurement
is given by the projectors ΠJ on the subspaces labeled
by J , and it can be implemented via weak Schur sam-
pling [47]. Indeed, for any POVM {Ek}k, we can get
the same outcome probability distribution if we use
the POVM {ΠJEkΠJ}k,J and then ignore the J la-
bel. When this POVM is applied to ρ(c) the outcome
probabilities are pk,J := p(k|J)p(J |c). The same out-
come probabilities pk,J can be generated by applying
directly the POVM {ΠJ}J followed by classical post-
processing. The latter can only increase the variance
of the estimator, by convexity of the figure of merit:∑
k p(k|J)(ck,J − c)2 ≥ (

∑
k p(k|J)ck,J − c)2, which

follows from the Cauchy-Schwartz inequality. There-
fore {ΠJ}J is optimal both for local and global esti-
mation and one can replace Tr [EJρ(c)] with p(J |c) in
Eqs. (1,5), effectively reducing our problem to one of
classical estimation, i.e., optimizing the function c(J).

Local estimation.— The classical Cramer-Rao
bound [31] places a lower bound on the MSE of all
local unbiased estimators c(J) as v(c) ≥ H(c)−1,
where H(c) =

∑
J(∂cp(J |c))2/p(J |c) is the Fisher in-

formation of the measurement statistics. In the limit
M +N →∞ and M −N � (M +N)

√
c, we can use

an approximation of the Jacobi polynomial given in
[34] to obtain the following asymptotically-unbiased
estimator and its associated MSE:

clocop (J) =

(
2J

M +N

)2

, vop(c) =
4c(1− c)
M +N

, (8)
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Local est. vop(c) vep(c) vee(c)

M = N →∞ 4c(1−c)
M+N

3
2
vop(c) 2vop(c)

M →∞ c(1−c)
N

vop(c) 2vop(c)

Bayesian est. vop vep vee

M = N →∞ 4(d−1)
d(d+1)(M+N)

3
2
vop 2vop

M →∞ (d−1)
d(d+1)(d+N)

vop
d+2N
2+N

vop

TABLE I. Local MSE and global MSE attainable via the
optimal, EP and EE strategies in two asymptotic limits.
In all the cases the global MSEs coincide with the corre-
sponding average local MSE values, apart from asymptot-
ically vanishing corrections.

In the SM we show that vop(c) coincides with H(c)−1

to leading order in 1
M+N and hence the Cramer-Rao

bound is achievable in this limit. If instead M → ∞
and N is finite, it is clear that |φ〉 can be estimated
perfectly and hence the optimal strategy is to project
the copies of |ψ〉 in this known direction, with result-

ing vop(c) = c(1−c)
N .

Bayesian estimation.— The optimal classical
Bayesian (global) estimator is given [30] by cbay

op (J) =∫
dc c p(c)p(J|c)∫
dc p(c)p(J|c) . Using graphical calculus techniques for

the recoupling theory of Clebsch-Gordan coefficients
[39], as explained in the SM, we obtain the following
optimal global estimator and corresponding MSE:

cbayop (J) =
d+ J + J2 + M+N

2
−
(
M+N

2

)2
+MN

(d+M)(d+N)
, (9)

vop =
(d− 1)(d+M +N)

d(d+ 1)(d+M)(d+N)
. (10)

We pause to highlight the following facts: i) when d
is fixed and the number of copies is large, the prior
distribution of the states is little informative with re-
spect to the information that can be obtained by the
actual measurement; indeed we can see that when
M +N →∞, M −N constant, cbay

op (J) ≈ cloc
op (J) im-

plying that the local optimal estimator is also a good
Bayesian estimator and viceversa; ii) contrarily to the
local estimation results, the global MSE of Eq. (10) is
exact for all M , N and depends on d due to the prior,
Eq. (4); iii) in particular, vop decays as d−2 if one of
either M or N is kept finite, whereas it decays only
as d−1 when M,N � 1.

1-LOCC strategies.— We now consider a family
of intermediate strategies that employ 1-LOCC on
|ψ〉⊗N and |φ〉⊗M . The estimate-and-project (EP)
strategy consists in estimating |φ〉 from its M copies,
then projecting each copy of |ψ〉 on this estimate and
counting the fraction of successful projections. When
|φ〉 is known, projecting |ψ〉 on |φ〉 is optimal [31].
However, EP is not necessarily the optimal 1-LOCC
strategy. The corresponding POVM elements can be

written as E
(ep)
V,k = dV E

(M)
V ⊗ V ⊗NΠ

(N)
k V †⊗N , where

E
(M)
V = χM

2
(d)(V |0〉 〈0|V †)⊗M is the optimal covari-

ant measurement to estimate |φ〉 [36, 37] and Π
(N)
k

represents k successful projections of the copies of |ψ〉

FIG. 2. Plot of the optimal local MSE scaling coefficient
N ·v(c) vs. the true value of the overlap c, at leading order
in M = N , for the strategies analyzed in the article.

on the estimate of |φ〉. The estimator is cloc
ep (k) = k

N .
The estimate-and-estimate (EE) strategy instead con-
sists in estimating both |ψ〉 and |φ〉 separately, then
computing the overlap between the estimated states.
The corresponding POVM elements can be written

as E
(ee)
V,W = dV dWE

(M)
V ⊗E(N)

W , i.e., a product of two
covariant measurements to estimate |φ〉 and |ψ〉. We

take as local estimator cloc
ee (V,W ) =

∣∣〈0|V †W |0〉
∣∣2.

In the SM we provide exact results for local and
Bayesian estimation using EP and EE. Table (I) com-
pares the performance of these strategies with the op-
timal one in two asymptotic limits. We find that, for
both local and Bayesian estimation, the EE strategy
is always worse than the optimal by a factor of 2,
whereas the EP strategy attains a MSE equal to the
optimal in the limit M →∞, N finite.

Performances comparison.— We now compare
the strategies discussed so far with the traditional
SWT [9]. Note that all these strategies except the
optimal one require labeling of the states. The lat-
ter consists in projecting the state |ψ〉 ⊗ |φ〉 on its
triplet/singlet components, hence it coincides with
the optimal measurement for M = N = 1. As the
SWT acts on couples of states, we restrict to the
case M = N . The probability of a triplet projec-
tion p(c) = 1

2 (1 + c) and the ensuing statistics of k
successful projections out of N trials is given by the
binomial distribution. The optimal local MSE attain-

able by this test is well-known, vsw(c) = 1−c2
N , while

for the optimal global MSE vsw one can derive an
exact expression for each value of k, then compute
the sum numerically, as detailed in the SM. In the
asymptotic limit of M = N � d a good approxima-
tion is provided by averaging the optimal local MSE:
vsw '

∫
dc p(c)vsw(c) = (d + 2)(d − 1)/(d(d + 1)N),

which is ∼ d times larger than vop.
In the same limit, we can compare the local MSE of

all the strategies, see Fig. 2. First, we observe a gap
between the optimal strategy, that attains the QFI,
and all the other strategies. This means that, even
with a large number of copies, the collective measure-
ment on |ψ〉⊗N ⊗ |φ〉⊗M has a clear advantage over a
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non-collective one. Second, we observe that the rel-

ative error

√
v(c)

c for small c scales as 1
c
√
N

for the

SWT and as 1√
cN

for the other strategies, implying

a quadratic improvement in 1√
c

in the number copies

needed to reach a fixed relative error, while the opti-
mal measurement is still computationally efficient (see
next section). This is particularly relevant since for
large d small overlaps are exponentially more likely,
see Eq. 4. This phenomenon is also at the source
of the so-called “barren plateau” problem [40, 41]
for quantum variational circuits, and other types of
strategies have been proposed to address this issue
[42–44].

We notice similar features for the global MSE, plot-
ted in Fig. 3 as a function of N for M fixed and in-
creasing d (inset). We observe that the SWT is com-
parable with EE for M ∼ N and d = 2, but with a
small increase in dimension this feature disappears.
Moreover, there is in general a gap between the EP
and EE strategies, the former being closer to the op-
timal one.

Gate complexity.— The advantage in the precision
of the optimal estimation comes with the tradeoff
that the optimal measurement requires entangling op-
erations over the whole system of N + M qudits.
The Schur transform [45–47] is a way to perform
the optimal measurement, and requires O(poly(N +
M, log d, log 1

ε )) qudit gates for precision ε. The re-
sulting algorithm is efficient, but still unfeasible with-
out error correction. The SWT instead requires N
independent circuits of fixed depth, and may still be
convenient for large overlaps or very noisy gates.

A mid-term solution is to divide input data in R
groups of S copies of |φ〉 and |ψ〉, such that S is the
largest integer for which the given architecture can
perform the optimal measurement with high fidelity,
repeat the measurementR times and do classical post-
processing. The performances of these intermediate
protocols are between SWTs and optimal measure-
ment. See the SM for a more detailed discussion of
these issues.

Measurement invasiveness.— Another relevant fig-
ure of merit for applications is the fidelity between the
post-measurement state and the initial one, averaged
over the measurement outcomes. Both the optimal
measurement and the SWT are projective measure-
ments. We assume that the post-measurement states
are given by the result of such projections and hence
the average post-measurement fidelity can be written
as

F (c) =

∫

U∈SU(d)

dU
∑

k

|〈ΨU |Ek |ΨU 〉|2 , (11)

with {Ek ≡ 1lJ} for the optimal measurement and
{Ek = GSN (1lS⊗k2 ⊗ 1lA⊗N−k2 )} for the SWT, where

1l
S/A
2 are the projectors on the singlet/triplet compo-

nents of H⊗2
2 . Then Eq. (11) is simply given by

Fop(c) =

Jmax∑
J=Jmin

p(J |c)2, Fsw(c) =

(
1 + c2

2

)N

, (12)

as shown in the SM. In Fig. 3 we plot these two quan-
tities as a function of c, showing that the optimal mea-
surement is less invasive than the SWT, especially for
small overlap values.

Noise-robustness.— Finally, we consider how the
optimal strategy changes when the states, which are
expected to be pure, are affected by depolarizing noise
acting independently on each qudit before reaching
the measurement stage. Note that if the noisy chan-
nel is of a different kind, one can at least reach the
optimal MSE for the depolarizing channel by per-
forming a twirling operation, realizable by pre- and
post-processing with random unitaries on each qu-
dit plus classical forward communication. This op-
eration is

∫
dUU†N (UρU†)U = ∆r(ρ) for some r,

where we have defined the depolarizing channel as

∆r = rI + (1 − r)1l
dTr and I is the identity channel.

After this operation the overall state of the system
can now be written as ∆r0(ψ)⊗N ⊗∆r1(φ)⊗M .

In the SM we compute the optimal MSE in this
case, restricting to d = 2 for simplicity. In the limit
M,N →∞ with M

N finite, the global MSE at leading
order is vop,mix = 1

6Mr20
+ 1

6Nr21
, which agrees with

the previously found limit of Eq. (10) for zero-noise,
ri = 1. Hence the net effect of white noise is to rescale
the MSE by a factor r−2

i for each state.

Conclusions.— In this article we have computed the
ultimate precision attainable in estimating the overlap
of two arbitrary pure quantum states, as a function of
the dimension of their Hilbert space and their num-
ber of copies. We showed that the commonly-used
SWT is highly inefficient for small values of the over-
lap and also on average over Haar-distributed random
states. The optimal strategy is a collective measure-
ment on all the copies and can be implemented effi-
ciently using the Schur transform, although it remains
experimentally challenging. A practical alternative is
to do Schur sampling on subsets of the dataset, fol-
lowed by classical post-processing. In addition, we
proposed two intuitive strategies that estimate sepa-
rately one or both states and showed that they also
outperform the SWT. Finally, we showed that the op-
timal measurement is less invasive than the SWT and
robust to white noise. The strategies we introduced
provide several clear advantages over the SWT, and
they could become a standard tool for various quan-
tum technologies, as well as providing improvements
in the runtime of quantum algorithms.

Note added after publication.— We thank one of
the referees of TQC 2020 for pointing out [48] to us,
where the authors find a minimum variance unbiased
estimator of the Hilbert-Schmidt distance of two un-
known mixed states, and compute its variance. Our
results, valid for more general estimators, complement
their analysis in the case of pure states.
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FIG. 3. (a) Plot of the optimal global MSE vopt vs. the number of copies of one state N , for a fixed number of copies
of the other M = 1000, in dimension d = 2, for the optimal, EP and EE strategies. (b) Plot of the optimal global MSE
vopt vs. the dimension d, for a fixed number of copies M = N = 1000 for all the strategies studied. (c) Plot of the
average post-measurement fidelity with the initial state F (c) vs. the true value of the overlap c with a fixed and equal
number of copies M = N = 100, for the optimal strategy and SWT.
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[19] L. Cincio, Y. Subaşı, A. T. Sornborger, and P. J.
Coles, New J. Phys. 20, 113022 (2018).

[20] U. Chabaud, E. Diamanti, D. Markham, E. Kashefi,
and A. Joux, Physical Review A 98 (6), 062318
(2018).

[21] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv
preprint quant-ph/1307.0411 .

[22] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev.
Lett. 113, 130503 (2014).

[23] A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev.
Lett., 103, 150502 (2009).

[24] Z. Zhao, J.K. Fitzsimons, and J.F. Fitzsimons, Phys.
Rev. A 99, 052331 (2019).

[25] N. Wiebe, A. Kapoor, and K. Svore, Quantum Inf.
Comput. 15, 0318-0358 (2015).
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Schur-Weyl duality and the irreducible representations of SU(d) and SN+M

We begin by first reviewing some key concepts and techniques in group representation theory that we will
frequently make use of throughout this Supplemental material. The most important ingredient is Schur-Weyl

duality [49]. Consider the state space of N + M , d-dimensional systems, H⊗(N+M)
d . This space carries the

action of two different groups; the special unitary group of d×d complex matrices, SU(d), and the permutation
group of N + M objects, SN+M . Specifically, the groups SU(d) and SN+M act on a basis {|i1〉 ⊗ |i2〉 ⊗ ... ⊗
|iN+M 〉}i1,i2....,iN+M

of H⊗(N+M)
d via unitary representations uN+M : SU(d) → U(H⊗(N+M)

d ), and sN+M :

SN+M → U(H⊗(N+M)
d ) as follows

uN+M (U) |i1〉 ⊗ |i2〉 ⊗ ...⊗ |iN+M 〉 = U⊗(N+M) |i1〉 ⊗ |i2〉 ⊗ ...⊗ |iN+M 〉
= U |i1〉 ⊗ U |i2〉 ⊗ ...⊗ U |iM+N 〉 , ∀U ∈ SU(d) (13)

sN+M (σ) |i1〉 ⊗ |i3〉 ⊗ ...⊗ |iN+M 〉 =
∣∣σ−1(i1)

〉
⊗
∣∣σ−1(i2)

〉
⊗ ...⊗

∣∣σ−1(iN+M )
〉
, ∀σ ∈ SN+M . (14)
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Observe that [U⊗(N+M), s(σ)] = 0, ∀U ∈ SU(d), and∀σ ∈ SN+M . Schur-Weyl duality states that the total

state space H⊗(N+M)
d can be decomposed as

H⊗(N+M)
d

∼=
⊕

Y

U (Y )(SU(d))⊗ U (Y )(SN+M ), (15)

where U (Y )(SU(d)) is the space of dimension χY upon which the unitary irreducible representation (irrep) u(Y )

of SU(d) acts and U (Y )(SN+M ) is the space of dimension ωY on which the irrep s(Y ) of SN+M acts. The
use of the congruence sign in Eq. (15) indicates that this block decomposition is accomplished by a unitary
transformation; in the case considered here this unitary is the Schur transform [45, 46].

The label Y indexes the integer partitions of N+M in at most d parts written in descending order, pictorially
represented by Young diagrams, where N + M boxes are arranged into at most d rows. For d = 2 the block
decomposition of Eq. (15) is the familiar decomposition of N + M spin-1/2 systems into the total angular
momentum label J . The latter is related to Young diagrams of at most two rows where the number of boxes
in any of the two rows is given by (N+M

2 + J, N+M
2 − J).

With the help of Eq. (15) we can express the action of uN+M and sM+N as

uN+M (U) =
⊕

Y

u(Y )(U)⊗ 1l, ∀U ∈ SU(d),

s(σ) =
⊕

Y

1l⊗ s(Y )(σ), ∀σ ∈ SN+M . (16)

where we have made implicit the fact that u(Y )(U) acts on U (Y )(SU(d)) and s(Y )(σ) acts on U (Y )(SN+M )

respectively. Given a state ρ ∈ B(H⊗(N+M)
d ), and applying uN+M (U) with U extracted from the Haar measure

dU of SU(d) gives rise to the following completely positive, trace-preserving (CPTP) map

GSU(d)[ρ] =

∫
dU U⊗(N+M) ρU†⊗(N+M), (17)

Similarly, applying s(σ) chosen uniformly at random gives rise to the following CPTP map

GSN+M
[ρ] =

1

(N +M)!

∑

σ

sN+M (σ) ρ s†N+M (σ). (18)

By decomposing the representations uN+M , and sN+M into their irreps as in Eq. (16), and making use of
Schur’s lemmas [50] Eqs (17, 18) can be conveniently written as [3]

GSU(d)[ρ] =
⊕

Y

(
DU(Y )(SU(d)) ⊗ IU(Y )(SN+M )

)
[ΠY ρ]

GSN+M
[ρ] =

⊕

Y

(
IU(Y )(SU(d)) ⊗DU(Y )(SN+M )

)
[ΠY ρ], (19)

where I is the identity map, i.e., IH[A] = A, D is the completely depolarizing map, i.e., DH[A] = Tr[A]
dim(H)1lH,

and ΠY is the projector onto the block U (Y )(SU(d))⊗ U (Y )(SN+M ).

In the following we will need some more observations. Define Sym
(d)
N as the completely symmetric subspace

of H⊗Nd ; in particular, if taken Ymax to be the label for a Young diagram of just one row, one has Sym
(d)
N =

U (Ymax)(SU(d))⊗ U (Ymax)(SN ). Moreover, the tensor product space

Sym
(d)
N,M := Sym

(d)
N ⊗ Sym

(d)
M ⊂ H⊗N+M

d . (20)

admits a decomposition

Sym
(d)
N,M = ⊕J

(
U (J)(SU(d))⊗KJ

)
, (21)

where J are the labels of Young diagram with two rows and KJ := span{|J〉}, |J〉 ∈ U (J)(SM+N ), KJ being
a one dimensional space because the multiplicity of each irrep U (J)(SU(d)) is one. Notice that the label J can
be indexed by an half-integer M−N

2 ≤ J ≤ M+N
2 .

The states of the form (|ψ〉〈ψ|)⊗N⊗(|φ〉〈φ|)⊗M are supported on Sym
(d)
N,M . Define also E := span{|ψ〉 , |ψ⊥〉} ⊆

Hd. Since E has dimension 2, it is isomorphic to H2. Using this isomorphism we can define SymEN ∼= Sym
(2)
N .
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Notice that (|ψ〉〈ψ|)⊗N⊗(|φ〉〈φ|)⊗M is also supported on the product of the two completely symmetric subspaces
of E⊗N and E⊗M , SymEN,M := SymEN ⊗ SymEM , which is isomorphic to

Sym
(2)
N,M := ⊕J

(
U (J)(SU(2))⊗K(2)

J

)
⊆ Sym

(d)
N,M . (22)

where now K
(2)
J = span{|J〉(2)}, |J〉(2) ∈ U (J)(SM+N ). Using this isomorphism, we can write the decomposition

SymEN,M := ⊕J
(
U (J)
E (SU(2))⊗KJE

)
⊆ Sym

(d)
N,M . (23)

and now KJ
E = span{|J〉E}, |J〉E ∈ U (J)(SM+N ). What is more, E⊗N ⊗ E⊗M is an invariant subspace of

H⊗M+N
d under the action of the symmetric group, therefore the irreps of the symmetric group supported on

E⊗N ⊗ E⊗M can also be taken as irreps in the decomposition of the representation of SM+N on H⊗M+N
d , and

it follows that U (J)
E (SU(2))⊗KJE ⊆ U (J)(SU(d))⊗U (J)(SN+M ). Finally, since Sym

(2)
N,M ⊆ Sym

(d)
N,M and each of

the U (J)
E (SU(2))⊗KJE and U (J)(SU(d))⊗KJ are included in the same subspace U (J)(SU(d))⊗U (J)(SN+M ), it

follows that

U (J)
E (SU(2))⊗KJE ⊆ U (J)(SU(d))⊗KJ (24)

and |J〉 = |J〉E for each J .

Average state at fixed overlap

In this section we derive the form of the average state of N copies of a pure state |ψ〉 ∈ Hd and M ≥ N copies
of a pure state |φ〉 ∈ Hd with |ψ〉 and |φ〉 having fixed overlap. Using group representation theory techniques
we find a basis in which the average state is diagonal and compute the eigenvalues. We generalize the result to
the average state in the unlabeled scenario.

Without loss of generality we may write the latter of the two states as

|φ〉 = V (θ) |ψ〉 ≡ √c |ψ〉+
√

1− c |ψ⊥〉 (25)

where c = cos2 θ
2 ∈ (0, 1), θ ∈ (0, π), 〈ψ⊥|ψ〉 = 0.

As both |ψ〉 , |φ〉 ∈ Hd are randomly chosen the global state describing the N +M qudits is given by

GSU(d)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
≡
∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
(
U |φ〉〈φ|U†

)⊗M
(26)

where dU is the Haar measure of SU(d). We can decompose the integral over SU(d) in Eq. (26) as follows.
First we consider the two-dimensional subspace E ≡ span{|ψ〉 , |ψ⊥〉} ⊆ Hd. Using the invariance of the Haar
measure, we first perform the group average over the SU(2) subgroup of SU(d) which acts non-trivially only on
E , which we denote as SU(E). Afterwards, we can average over all SU(d). This implies that Eq. (26) can be
written as

GSU(d)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
=

∫

SU(d)

dU U⊗(N+M)
[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
U†
⊗(N+M)

=

∫

SU(d)

dU U⊗(N+M)

(∫

SU(E)

dV V ⊗(N+M)
[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
V †
⊗(N+M)

)
U†
⊗(N+M)

= GSU(d)

[
GSU(E)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]]
(27)

First of all we compute the action of GSU(2) on (|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M , when d = 2. We use the addition

rules for angular momentum on H⊗N+M
2 to write

|ψ〉⊗N ⊗ |φ〉⊗M =

∣∣∣∣
N

2
,
N

2

〉
⊗

M
2∑

k=−M
2

d
(M

2 )
kM

2

∣∣∣∣
M

2
, k

〉

=

Jmax∑

J=Jmin

M
2∑

k=−M
2

C
J,N2 +k
N
2 ,

N
2 ; M2 ,k

d
(M

2 )
k,M2

(θ)

∣∣∣∣J,
N

2
+ k

〉
, (28)
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where C
J,N2 +k
N
2 ,

N
2 ; M2 ,k

=
〈
J, N2 + k|N2 , N2 ; M2 , k

〉
are the Clebsch-Gordan coefficients. Using Eq. (17) and the decom-

position in Eq. (23) ((|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M is supported on SymEN,M ) the first Haar-measure group average
of Eq. (27) reads

GSU(2)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]
=

Jmax∑

J=Jmin

p(J |c)
1lU(J)(SU(2))

2J + 1
⊗ |J〉〈J |U(J)(SN+M ) , (29)

where we have used the total angular momentum J , instead of the Young frame label Y , χJ = 2J + 1, and
|J〉〈J |U(J)(SN+M ) is a pure state. The coefficients of Eq. (29) are:

p(J |c) =

M
2∑

k=−M
2

(
C
J,N2 +k
N
2 ,

N
2 ; M2 ,k

D
(M

2 )
kM

2

(2 arccos
√
c)

)2

=
(2J + 1)(J + Jmin)!N !

(J − Jmin)!(Jmax − J)!(Jmax + 1 + J)!

J−N
2∑

k=−M
2

(M2 − k)!(J + N
2 + k)!

(J − N
2 − k)!(M2 + k)!

(
D

(M
2 )

kM
2

(2 arccos
√
c)

)2

=
(2J + 1)(J + Jmin)!N !M !

(J − Jmin)!(Jmax − J)!(Jmax + 1 + J)!

J−N
2∑

k=−M
2

(J + N
2 + k)!

(J − N
2 − k)!(M2 + k)!2

(1− c)M
2 −kc

M
2 +k

=
(2J + 1)N !M !(1− c)M

(Jmax − J)!(Jmax + 1 + J)!
P

(0,−2Jmin)
J+Jmin

(
1 + c

1− c

)
, (30)

and we have made use of the following expression for the Wigner D matrix in going from the second to the
third line in Eq. (30)

D
(J)
z′,z(θ) =

√
(J + z)!(J − z)!

(J + z′)!(J − z′)! sin(z−z′)
(
θ

2

)
cos(z+z′)

(
θ

2

)
P

(z−z′,z+z′)
(J−z) (cos θ), (31)

with P
(α,β)
n (x) the Jacobi polynomials, defined in general as

P (α,β)
n (x) =

Γ(α+ n+ 1)

n!Γ(α+ β + n+ 1)

n∑

m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
x− 1

2

)m
. (32)

Let’s consider now d > 2. Notice that E⊗M+N ∼= ⊕JU (J)
E (SU(2)) ⊗ U (J)

E (SN+M ). Performing the average
over SU(d) on the state given by Eq. (29) results in

GSU(d)

[
GSU(E)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]]
=
⊕

Y

(
DU(Y )(SU(d)) ⊗ IU(Y )(SN+M )

)
[

ΠY

(
Jmax∑

J=Jmin

p(J |c)
1lU(J)
E (SU(2))

2J + 1

⊗ |J〉〈J |U(J)
E (SN+M )

)]

=

Jmax∑

J=Jmin

p(J |c)
1lU(J)(SU(d))

χJ
⊗ |J〉〈J |U(J)(SN+M ) , (33)

where in the last equality we used the fact that the support of 1lU(J)
E (SU(2))

⊗ |J〉〈J |U(J)
E (SN+M )

is a subspace of

the support of 1lU(J)(SU(d)) ⊗ |J〉〈J |U(J)(SN+M ), as stated in Eq. 24.
Hitherto in the computation we tacitly assumed that the copies of states are labelled, i.e., that the first N

states are all |ψ〉 ∈ Hd and the remaining M states are all |φ〉 ∈ Hd. We now lift this assumption and derive
the form of the average state in the case where the copies of the states are unlabelled. This is equivalent to
averaging over all possible permutations of the N+M copies, i.e., by applying the map GSN+M

[ρ(c)] of Eq. (19).
The final state can be easily shown to be

ρ(c)ul := GSN+M
[ρ(c)] = GSN+M

◦ GSU(d)

[
(|ψ〉〈ψ|)⊗N ⊗ (|φ〉〈φ|)⊗M

]

=

Jmax∑

J=Jmin

p(J |c)
1lU(J)(SU(d))

χJ
⊗

1lU(J)(SM+N )

ωJ
, (34)

by observing that the maps GSU(d), GSN+M
both project on the same irrep label J , but depolarize the states

on different irrep subspaces U (J)(SU(d)) and U (J)(SN+M ) respectively. As all the information concerning the
overlap between the two states is extracted by the projective measurement {ΠJ}J , and the action of any
permutation–or global unitary rotation–does not alter the statistics p(J |c). Consequently, all our results apply
equally well to both labelled and unlabelled scenarios.
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Fisher Information of p(J |c)

In this section we derive the Fisher information of the probability distribution given by Eq. (30), and analyze
its asymptotics. We can obtain the first non trivial order by using an asymptotic approximation for the Jacobi
polynomials and large deviation evaluations. Using the same techniques, we identify an asymptotically unbiased
estimator that saturates the Cramer-Rao bound.

The result we obtain is summarized by the following theorem:

Theorem. Given N and M copies of two Haar-random states, respectively |ψ〉 and |φ〉, define |Ψ〉 = |ψ〉⊗N ⊗
|φ〉⊗M . The mean square error on the estimation of the overlap c = | 〈ψ|φ〉 |2 attained by the weak Schur

sampling projectors {EJ}J with the estimator cJ =
(

J
M+N

)2

is

v(c) =
∑

J

Tr [EJ |Ψ〉〈Ψ|] (cJ − c)2 =
4c(1− c)
N +M

+O
(

(N +M)−
3
2

)
(35)

This measurement is optimal in the sense that saturates the quantum Cramer-Rao bound for the problem of
estimating of c from the family of average states at fixed overlap

ρ(c) =

∫
dU U⊗(N+M) |Ψ〉〈Ψ| U†⊗(N+M). (36)

This implies that c can be estimated at a relative error

√
v(c)

c = ε with N = M = O( 1
ε2c ) samples.

We begin by recalling the definition of the Fisher information

H(c) =

Jmax∑

J=Jmin

p(J |c)
(

dp(J|c)
dc

p(J |c)

)2

=

Jmax∑

J=Jmin

(
dp(J|c)

dc

)2

p(J |c) . (37)

Using the identity

dmP
(α,β)
n (x)

dxm
=

(α+ β + n+m)!

2m(α+ β + n)!
P

(α+m,β+m)
n−m (x), (38)

it follows that

dp(J |c)
dc

=
(2J + 1)M !N !(1− c)M−2

(Jmax − J)! (J + Jmax + 1)!

×
(

(J − Jmin + 1)P
(1,1−2Jmin)
J+Jmin−1

(
1 + c

1− c

)
− (1− c)MP

(0,−2Jmin)
J+Jmin

(
1 + c

1− c

))
. (39)

For x ≥ 1 the following asymptotic expansion for the Jacobi polynomials holds [34, 51]. Defining the function

Q(α,β)
n (x) =

(√
x+ 1 +

√
x− 1

)α+β (
x+
√
x2 − 1

)n+ 1
2

√
2πn (

√
x− 1)α (

√
x+ 1)β 4

√
x2 − 1

(40)

one has

P (α,β)
n (x) = Q(α,β)

n (x)

(
1 +O

(
1

n

))
, (41)

where the convergence is uniform on any half-line x ∈ [1 + δ,+∞), δ > 0. We want to use the leading order as
an approximation to the Jacobi polynomial. Notice that the remainder in the expansion does not depend on
Jmax. Take J0 such that for each J > J0 and a certain C > 0

∣∣∣∣∣
P

(0,−2Jmin)
J+Jmin

(x)

Q
(0,−2Jmin)
J+Jmin

(x)
− 1

∣∣∣∣∣+

∣∣∣∣∣
P

(1,1−2Jmin)
J+Jmin−1 (x)

Q
(1,1−2Jmin)
J+Jmin−1 (x)

− 1

∣∣∣∣∣ ≤
C

J + Jmin
. (42)

We can then split the sum in Eq. 37 in two parts. The first is

H(c)1 :=

J0∑

J=Jmin

p(J |c)
(

dp(J|c)
dc

p(J |c)

)2

. (43)
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Writting p(J |c) as

p(J |c) =
2J + 1

2Jmax + 1

(
2Jmax+1
Jmax−J

)
(

2Jmax

Jmax−Jmin

) (1− c)Jmax−J
J−Jmin∑

s=0

(
J + Jmin

s

)(
J − Jmin

s

)
cs. (44)

and noting that

(
dp(J|c)

dc

p(J |c)

)
= − (Jmax − J)

1− c +
(1− c)Jmax−J∑J−Jmin

s=0 s
(
J+Jmin

s

)(
J−Jmin

s

)
cs

cp(J |c) ≤ − (Jmax − J)

1− c +
J − Jmin

c
, (45)

it follows that for J ≤ J0

∣∣∣∣∣

(
dp(J|c)

dc

p(J |c)

)∣∣∣∣∣ ≤
cJmax + J0 + (1− c)Jmin

c(1− c) . (46)

On the other hand, isolating in p(J |c) the terms depending on Jmax, and defining w(J, Jmin, c) = (2J +

1)
∑J−Jmin

s=0

(
J+Jmin

s

)(
J−Jmin

s

)
cs which is bounded for Jmin ≤ J ≤ J0, we have

p(J |c) =
1

2Jmax + 1

(
2Jmax+1
Jmax−J

)
(

2Jmax

Jmax−Jmin

) (1− c)Jmax−Jw(J, Jmin, c) (47)

By introducing the following binomial distribution

q(J) := Bin(2Jmax + 1, Jmax − J, p) =

(
2Jmax + 1

Jmax − J

)
pJmax−J(1− p)Jmax+J+1, (48)

with p = 1−√c
2 , whose mean and variance are given by

µ = (2Jmax + 1)

(
1−√c

2

)

σ2 =
(2Jmax + 1)

4
(1− c). (49)

Eq. (47) can be written as

p(J |c) =
1

2Jmax + 1

22Jmax

(
2Jmax

Jmax−Jmin

)q(J)w′(J, Jmin, c), (50)

with w′(J, Jmin, c) still bounded.
Now by Sanov’s theorem [52], the binomial distribution q(J) is exponentially suppressed as Jmax → ∞ and

J < J0. In particular, if Jmax >
1√
c
J0

q(J) ≤ exp
−(2Jmax)D(

Jmax−J0
2Jmax+1

|| 1−
√

c
2 )

, (51)

where D(Jmax−J0
2Jmax+1 ||

1−√c
2 ) is the relative entropy between the two Bernoulli distributions with probabilities

p1 = Jmax−J0
2Jmax+1

and p2 = 1−√c
2 . For Jmax → ∞, p1 → 1

2 , D(Jmax−J0
2Jmax+1 ||

1−√c
2 ) → D( 1

2 ||
1−√c

2 ) > 0 unless c = 0.

As the rest of the terms in both p(J |c) and

∣∣∣∣
(

dp(J|c)
dc

p(J|c)

)∣∣∣∣ tend to a power law in Jmax, H(c)1 is exponentially

suppressed.
As an indication for which ratio Jmax

Jmin
is expected to give exponential suppression when c is small, we can

look at the first order of the Taylor expansion of D(p1||p2) in 1
Jmax

and
√
c around zero: D(p1||p2) = − 1

2 log(1−
c) − 1

4
2J0+1
Jmax

log 1+
√
c

1−√c , which for small c requires Jmaxc >> 1 from the zeroth order and Jmax >>
1√
c
J0 from

the first order, implying also Jmax >>
1√
c
Jmin.

It remains to evaluate

H(c)2 :=

Jmax∑

J=J0+1

p(J |c)
(

dp(J|c)
dc

p(J |c)

)2

. (52)
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Using Eq. (41) one obtains, after some algebra

(
dp(J|c)

dc

)2

p(J |c) =
(2J + 1)M !N ! (1 +

√
c)

2J−1
(1− c)Jmax−J

2
√
π (1−√c)2

c5/4(J + Jmin − 1)
√
J + Jmin (Jmax − J)! (J + Jmax + 1)!

×
(

(J − Jmin + 1)
√
J + Jmin −M

√
c(J + Jmin − 1)

)2
(

1 +O
(

1

J + Jmin

))
,

(53)

where the same binomial distribution, q(J) of Eq. (48), appears again. Writing

(
dp(J|c)

dc

)2

p(J |c) = f(M,N, c)g(J, Jmax, Jmin, c)q(J)

(
1 +O

(
1

J + Jmin

))
(54)

where

f(M,N, c) =
M !N !22Jmax

√
π(1− c)2c5/4(2Jmax + 1)!

g(J, Jmax, Jmin, c) =
(2J + 1)

(
(J − Jmin + 1)

√
J + Jmin −M

√
c(J + Jmin − 1)

)2

(2Jmax + 1)(J + Jmin − 1)
√
J + Jmin

=
(2J + 1)(J − Jmin + 1)

(2Jmax + 1)(J + Jmin + 1)

√
J + Jmin + c

(2J + 1)(Jmax + Jmin)2

(2Jmax + 1)
√
J + Jmin

−√c (2J + 1)(J − Jmin + 1)

(2Jmax + 1)
√
J + Jmin − 1

(55)

we have

H(c)2 = f(M,N, c)

Jmax∑

J=J0+1

g(J,M,N, c)Bin(2Jmax + 1, Jmax − J, p)
(

1 +O
(

1

J + Jmin

))
. (56)

In the limit Jmax →∞

f(M,N, c) =
1

2(1− c)2c
5
4

1√
Jmax

+O
(
J
− 3

2
max

)
. (57)

whilst g(J, Jmax, Jmin, c) = O(J
3
2
max) by inspection.

Now consider the first
√
dJmax − (J0 + 1) terms in Eq. (52), where d < c,

H(c)2a :=

√
dJmax−1∑

J=J0+1

p(J |c)
(

dp(J|c)
dc

p(J |c)

)2

. (58)

Sanov’s theorem tells us that these are exponentially suppressed,

H(c)2a ≤ exp−(2Jmax)D( 1−
√

d
2 || 1−

√
c

2 )O(J2
max), (59)

and as a result we are only left with having to evaluate

H(c)2b :=

Jmax∑

J=
√
dJmax

q(J)g(J, Jmax, Jmin, c)

(
1 +O

(
1

J + Jmin

))
. (60)

As we are interested in computing the QFI in the limit Jmax → ∞ we will perform a Taylor series expansion
of H(c)2b, around the mean value 〈J〉 = Jmax − µ =

√
c
(
Jmax + 1

2

)
− 1

2 of q(J). For any analytical function
h(J), using the Lagrange remainder, an expansion about 〈J〉 is given by

Jmax∑

J=
√
dJmax

q(J)h(J) =

Jmax∑

J=
√
dJmax

q(J)

(
2∑

s=0

(J − 〈J〉)s
s!

dsh(J)

dJs

∣∣∣∣
J=〈J〉

+
(J − 〈J〉)3

3!

d3h(J ′)
dJ ′3

∣∣∣∣
J′=ξ(J)

)
, (61)
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with J ≤ ξ(J) ≤ 〈J〉 (so that in any case
√
dJmax ≤ ξ(J) ≤ Jmax). Using Eq. (61) and the fact that

g(J, Jmax, Jmin, c) is analytic for J > Jmin by inspection, we have

Jmax∑

J=
√
dJmax

q(J)g(J, Jmax, Jmin, c) =

2∑

s=0

1

s!

dsg(J, Jmax, Jmin, c)

dJs

∣∣∣∣
J=〈J〉




Jmax∑

J=
√
dJmax

q(J) (J − 〈J〉)s



+
1

3!

d3g(J ′, Jmax, Jmin, c)

dJ ′3

∣∣∣∣
J′=ξ(J)




Jmax∑

J=
√
dJmax

q(J) (J − 〈J〉)s

 , (62)

where the change in the order of the summation is allowed since one of the sums is finite. Applying Sanov’s
theorem, Eq. (51), gives

√
dJmax∑

J=−Jmax−1

q(J)(J − 〈J〉)s ≤ (2Jmax + 1)(Jmax + 〈J〉+ 1)s exp
−(2Jmax)D( Jmax−

√
dJmax

2Jmax+1
|| 1−

√
c

2 )

= (2Jmax + 1) (Jmax − 〈J〉)s
(
Jmax + 〈J〉+ 1

Jmax − 〈J〉

)s
exp
−(2Jmax)D( Jmax−

√
dJmax

2Jmax+1
|| 1−

√
c

2 )

= (2Jmax + 1) (Jmax − 〈J〉)s
(

1 +
√
c

1−√c

)s
exp
−(2Jmax)D( Jmax−

√
dJmax

2Jmax+1
|| 1−

√
c

2 )
. (63)

It follows that we can change the summation in J of Eq. (62) to start from −Jmax − 1 just by adding a term
exponentially suppressed in Jmax. For the Lagrange remainder, before extending the summation, we notice

that for
√
dJmax ≤ ξ(J) ≤ Jmax, dsg(J′,M,N,c)

dJ′s

∣∣∣
J′=ξ(J)

= O(J
3
2−n
max ) (by inspection).

Finally, using Eq. (49) and some algebra one obtains

∑

J

g(J, Jmax, Jmin, c)q(J) = g(〈J〉, Jmax, Jmin, c) +
1

2
σ2 d2g(J, Jmax, Jmin, c)

dJ2

∣∣∣∣
J=〈J〉

+O(J
− 1

2
max)

=
1

2
(1− c)c 1

4 J
3
2
max +O(J

1
2
max).

(64)

Multiplying Eqs. ((57), (64)) gives the final result

H(c) =
Jmax

2c(1− c) +O(1) =
M +N

4c(1− c) +O(1). (65)

The neglected term O
(

1
J+Jmin

)
in Eq. (56) contributes to H(c) with a next to leading order term, by simple

power counting, adapting the steps above.
Using similar techniques it can be shown that H(c) is achievable by the estimator of Eq. (7) of the main text.

First note that the estimator is indeed asymptotically unbiased since

〈cloc
op 〉 :=

Jmax∑

J=Jmin

(
J

Jmax

)2

p(J |c)

=
22JmaxM !N !

c
1
4
√
π(2Jmax + 1)!J2

max

Jmax∑

J=
√
dJmax

J2(2J + 1)√
J − Jmin

Bin(2Jmax + 1, Jmax − J, p), (66)

apart from an exponentially suppressed term, and we have again used the asymptotic expansion of Eq. (41) and
identified the binomial distribution of Eq. (48). In the limit Jmax → ∞ one can proceed as above, separating
the J-dependence and applying Eq. (61), to obtain

22JmaxM !N !

c
1
4
√
π(2Jmax + 1)!J2

max

=
1

2c
1
4

1

J
5
2
max

+O(J
− 7

2
max),

Jmax∑

J=Jmin

J2(2J + 1)√
J − Jmin

Bin(2Jmax + 1, Jmax − J, p) = 2c
5
4 J

5
2
max +O(J

3
2
max). (67)

It follows that

〈cloc
op 〉 = c+O(J−1

max). (68)

A similar calculation gives for the MSE of the estimator

〈(cloc
op − c)2〉 :=

2c(1− c)
Jmax

+O
(
J
− 3

2
max

)
. (69)
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Optimal global mean squared error

In this section we derive the optimal estimator and corresponding global mean squared error (glMSE) for
the case where the overlap c is a random variable with a distribution induced by the Haar-uniform measure of
SU(d).

The result we obtain is summarized by the following theorem:

Theorem. Given N and M copies of two Haar-random states, respectively |ψ〉 and the state |φ〉, define |Ψ〉 =

|φ〉⊗N ⊗ |ψ〉⊗M . The global mean square error on the estimation of the overlap c = | 〈ψ|φ〉 |2 attained by a
POVM {Ek}k and an estimator ck is

v =
∑

k

∫
dU dV (c(k)− c)2Tr [Ek |Ψ〉〈Ψ|] . (70)

The minimum of v is attainable by a projective measurement and it reads

vop =
(d− 1)(d+M +N)

d(1 + d)(d+M)(d+N)
. (71)

We follow the standard treatment in [33] to compute the estimator that minimizes glMSE, and use represen-
tation theory to perform the integrations.

The probability distribution of the overlap, induced by the Haar measure, is [35, Eq. (13)]

p(c) =

∫

SU(d)

dU δ(c− | 〈ψ|U |ψ〉 |2) = (d− 1)(1− c)d−2 (72)

Following [33] the optimal estimator, S, satisfies

SΓ + ΓS

2
= η (73)

where

Γ ≡
∫
p(c) ρ(c) dc

η ≡
∫
c p(c) ρ(c) dc. (74)

and is explicitly given by

S =

∫ ∞

0

e−αΓ η e−αΓ dα (75)

Plugging Eq. (29) into Eqs. (74,75) gives

S =

Jmax∑

J=Jmin

∫
c p(J, c)dc∫
p(J, c) dc

1lU(J)(SU(d)) ⊗ 1lU(J)(SN+M ) =

Jmax∑

J=Jmin

Tr [ΠJη]

Tr [ΠJΓ]
1lU(J)(SU(d)) ⊗ 1lU(J)(SN+M )

=

Jmax∑

J=Jmin

∫
c p(c|J) dc 1lU(J)(SU(d)) ⊗ 1lU(J)(SN+M )

=

Jmax∑

J=Jmin

〈c〉J 1lU(J)(SU(d)) ⊗ 1lU(J)(SN+M ), (76)

where p(J, c) = p(c)p(J |c),
∫
p(J, c) dc = p(J) and we have used Bayes’ theorem in going from the second to

the third line of Eq. (76). Again, the optimal measurement corresponds to measuring the total irrep label J .

Upon a given outcome the estimator that minimizes the glMSE is cbayopt (j) = 〈c〉J where the expectation value
is taken with respect to the conditional probability distribution p(c|J).
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The operators Γ and η are given by

Γ =

∫ 1

0

p(c)

(∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
(
UT (c) |ψ〉〈ψ|T †(c)U†

)⊗M
)

dc

=

∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
∫ 1

0

dc

∫

SU(d)

dV δ(c− | 〈ψ|V |ψ〉 |2)
(
UT (c) |ψ〉〈ψ|T †(c)U†

)⊗M

=

∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
∫

SU(d)

dV
(
UWV V |ψ〉〈ψ|U†(h)W †V U

†
)⊗M

=

∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
∫

SU(d)

dV
(
V |ψ〉〈ψ|U†(h)

)⊗M

= GSU(d)

[
(|ψ〉〈ψ|)⊗N

]
⊗ GSU(d)

[
(|ψ〉〈ψ|)⊗M

]

=
1lU(N

2
)(SU(d))

χN
2

⊗
1lU(M

2
)(SU(d))

χM
2

=
1

χN
2
χM

2

N+M
2∑

J=
|N−M|

2

1lU(J)(SU(d)) ⊗ 1lU(J)(SN+M ), (77)

where we have made use of the fact that WV V = T (c) for a unitary WV such that WV |ψ〉 〈ψ|W †V = |ψ〉 〈ψ| in
the third equality, the invariance of the Haar measure for the fourth equality, and used the addition rules for
SU(d) representations for the last equality.

To compute η we make use of

∫

SU(2)

dg(d− 1)

(
1− |D

(
1
2

)
1
2 ,

1
2

(g)|2
)d−2

|D
(

1
2

)
1
2 ,

1
2

(g)|2 (|0〉 〈0|)⊗N ⊗
(
D

(
1
2

)
(g)† |0〉 〈0|D

(
1
2

)
(g)

)⊗M
=

∫

SU(2)

dgD
d−1

2

−d−3
2 ,

d−1
2

(g)D
d−1

2

−d−3
2 ,

d−1
2

(g)∗D
M
2

k,
M
2

(g)D
M
2

k′,
M
2

(g)∗
∣∣N

2 ,
N
2

〉 〈
N
2 ,

N
2

∣∣⊗
∣∣M

2 , k
〉 〈

M
2 , k

′∣∣ =

1

d+M

J−N
2∑

k=−M
2

(
C

d−1+M
2 ,− d−3

2 +h
d−1
2 ,− d−3

2 ,M2 ,k
C
J,N2 +k
N
2 ,

N
2 ,

M
2 ,k

)2
∣∣∣∣J,

N

2
+ k

〉〈
J,
N

2
+ k

∣∣∣∣ , (78)

with Dj
m,n(g) being Wigner matrices, so that

η =

∫ 1

0

p(c)c

(∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
(
UT (c) |ψ〉〈ψ|T †(c)U†

)⊗M
)

dc

=

∫

SU(d)

dU
(
U |ψ〉〈ψ|U†

)⊗N ⊗
∫ 1

0

dc p(c) c

∫

SU(E)

dV δ(c− | 〈ψ|V |ψ〉 |2)
(
UT (c) |ψ〉〈ψ|T †(c)U†

)⊗M

= GSU(d)

[∫

SU(E)

dV (d− 1)(1− | 〈ψ|V |ψ〉 |2)d−2| 〈ψ|V |ψ〉 |2 |ψ〉〈ψ|⊗N ⊗
(
V |ψ〉〈ψ|V †

)⊗M
]

=
1

d+M

Jmax∑

J=Jmin

J−N
2∑

k=−J−N
2

(
C

d−1+M
2 ,− d−3

2 +k
d−1
2 ,− d−3

2 ; M2 ,k
C
J,N2 +k
N
2 ,

N
2 ; M2 ,k

)2 1lU(J)(SU(d))

χJ
⊗ |J〉〈J |U(J)(SN+M ) .

It is now trivial to compute the optimal Bayesian estimator for a given measurement outcome J :

c(J) =
Tr [(ΠJη)]

Tr [(ΠJΓ)]
=

χJ

χN
2
χM

2

1
d+M

∑J−N
2

k=−J−N
2

(
C

d−1+M
2 ,− d−3

2 +k
d−1
2 ,− d−3

2 ; M2 ,k
C
J,N2 +k
N
2 ,

N
2 ; M2 ,k

)2 ,

(79)

χJ can be calculated with the Hook formula [37]. For Young diagrams with two rows one has

χJ = (2J + 1)

(
d+ J + N+M

2 − 1
)
!
(
d− J + N+M

2 − 2
)
!

(d− 1)!(d− 2)!
(
N+M

2 + J + 1
)
!
(
N+M

2 − J
)
!
.
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To simplify the denominator we employ the graphical calculus techniques in [39]:

1

d+M

J−N
2∑

k=−J−N
2

(
C

d−1+M
2 ,− d−3

2 +k
d−1
2 ,− d−3

2 ; M2 ,k
C
J,N2 +k
N
2 ,

N
2 ; M2 ,k

)2

= (2J + 1)

d−1+N
2∑

L= d−3+N
2

(
C
L, d−3+N

2
d−1
2 , d−3

2 ; N2 ,
N
2

)2
{
M
2

d−1
2

d+n−1
2

L J N
2

}2

= (d− 1)(2J + 1)(4d+ 4J + 4J2 + 2N −N2 + 2M + 2NM −M2)

× N !M !(d− 1 + J + N+M
2 )!(d− 2− J + N+M

2 )!

4(d+N)!(d+M)!(−J + N+M
2 )!(1 + J + N+M

2 )!
(80)

where the term in curly brackets is the Wigner 6-j symbol. Plugging everything together the optimal glMSE
estimator for a given measurement outcome J is given by

cbayopt (J) =
d+ J + J2 + M+N

2 −
(
M+N

2

)2
+MN

(d+M)(d+N)
(81)

with its corresponding glMSE

vop = 〈(cbayop − c)2〉 =

∫ 1

0

p(c)c2 −
∑

J

p(J)c(J)2 =
(d− 1)(d+M +N)

d(1 + d)(d+M)(d+N)
. (82)

1-LOCC strategies

Here we derive the pointwise MSE attainable by the estimate-and-project (EP) and estimate-and-estimate
(EE) strategies, and study the optimal Bayesian estimator for both.

Estimate-and-project: local estimation

The EP strategy consists in first estimating at best one of the states using an optimal collective measurement
on all of its copies, and then projecting each copy of the other state on the estimate of the first one. The
optimal estimation of a random state |φ〉, given N copies of it, is provided by the covariant measurement of
Ref. [36], {MdV }, that produces an estimate |φV 〉 = V |0〉, V ∈ SU(d), with probability density

dµ(V ) = χM
2
| 〈φV |φ〉 |2MdV. (83)

Finally, we perform the projective measurement {|φV 〉 〈φV | , 1l− |φV 〉 〈φV |} on each copy of |ψ〉. This succeeds
with probability

pV (c) = |〈φV |ψ〉|2 . (84)

The overall measurement operator is then E
(ep)
V,k = dV E

(M)
V ⊗ V ⊗NΠ

(N)
k V †⊗N , as defined in the main text. Its

outcome statistics for a fixed value of the overlap can be written as

p(k|c) = χM
2

∫
SU(d)

dV Tr

[(
|0〉 〈0|⊗M ⊗Π

(N)
k

)
V ⊗(M+N)

((
Uc |0〉 〈0|U†c

)⊗M

⊗ |0〉 〈0|⊗N

)
V †⊗(M+N)

]
, (85)

where we have set without loss of generality |ψ〉 = |0〉, |φ〉 = Uc |0〉 thanks to the presence of the reference-frame
average. We now consider both local and Bayesian estimation with this strategy.

For local estimation with EP, we employ as an estimator cloc
ep (k) = k

N , i.e., the fraction of successful projec-
tions. This estimator is in general biased, except in the limit of large N , and it is not necessarily optimal but
provides a natural guess for the overlap given our strategy. Its MSE is

vep(c) =

∫

SU(d)

dµ(V )

N∑

k=0

Bin (k,N, pV (c))

(
k

N
− c
)2

= χM
2

∫

SU(d)

dµ(V )

(
c2 − 2cpV (c) +

1

N
pV (c)(1− pV (c)) + pV (c)2

)

= c2 −
(

2c− 1

N

)
I1(M) +

(
1− 1

N

)
I2(M),

(86)



17

where in the first equality we have introduced the binomial distribution Bin(k,N, p) of m successes out of N
trials, with a single-trial success probability p, in the second equality we expanded the square and used the
mean and variance of Bin(k,N, p), and in the third equality we defined the integrals

Ii(M) = χM
2

∫

SU(d)

dV |〈φV |φ〉|2M |〈φV |ψ〉|2i . (87)

These can be computed by expanding the scalar products and writing the states in a collective-spin basis,
obtaining the expectation value of the operator in Eq. (26), with the substitution N 7→ i:

Ii(M) = χM
2
〈0|⊗M+i GSU(d)

[
|φ〉 〈φ|M ⊗ |ψ〉 〈ψ|i

]
|0〉⊗M+i

, (88)

where we have eliminated the integral over V by including this rotation into the group average. The result is

then given by Eqs. (30,33) with the same substitution. Plugging in the expression of χJ =

(
2J + d− 1

d− 1

)
,

Ref. [36], we have

Ii(M) =

(
M + i+ d− 1

i

)−1

(1− c)iP (0,M−i)
i

(
1 + c

1− c

)
, (89)

which can be computed explicitly for i = 1, 2. Inserting these expressions in Eq. (86) we finally obtain

vep(c) =
c2(dM + d2M +N − 2MN −N2) + c(−2M − 2dM − 3N + dN + 2MN +N2) + d− 1 + 2M +N

M(d+N)(1 + d+N)
. (90)

In the limit M →∞, N constant we have

vep(c) ∼
c(1− c)
N

, (91)

which coincides with the optimal strategy, corresponding to a projection on the known direction of |φ〉. In the
limit M +N →∞, M −N fixed we have instead

vep(c) ∼
6c(1− c)
(M +N)

, (92)

which is 3/2 times larger than the optimal strategy.

Estimate-and-project: Bayesian estimation

For Bayesian estimation with EP, as in the previous section, the optimal classical estimator is given by

c(k) =

∫
dc c p(c|k) =

c̃(k)

p(k)
, with c̃(k) :=

∫
dc c p(c)p(k|c). (93)

We start by computing the probability distribution of the outcomes, using Eq. (85):

p(k) =

∫
dc p(c)p(k|c)

= χM
2

∫ 1

0

dcp(c)

∫
SU(d)

dU Tr

[(
|0〉 〈0|⊗M ⊗Π

(N)
k

)
U⊗(M+N)

((
U(c) |0〉 〈0|U†(c)

)⊗M

⊗ |0〉 〈0|⊗N

)
U†⊗(M+N)

]
=

∫
SU(d)

dUTr

[(
|0〉 〈0|⊗M ⊗Π

(N)
k

)(
1lsymM ⊗

(
U |0〉 〈0|U†

)⊗N
)]

=
1

χN
2

Tr
[
Π

(N)
k 1lsymN

]
,

(94)

where we performed the average over c ∈ SU(d) in the third equality, defining 1lsymM = 1l
U(M

2 )(SU(d))
as the

projector on the completely symmetric subspace of M qudits, and employed its invariance under U⊗M . We are

then left to compute the overlap of Π
(N)
k with 1lsymN . In order to do so, we recall that the latter can be written
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as the average of all permutation operators V (σ), σ ∈ SN of N d-level systems. Then the symmetrization of

Π
(N)
k gives a trivial binomial factor and we can write

p(k) =
1

χN
2
N !

(
N

k

) ∑

i∈{1,··· ,d−1}N−k

∑

σ

〈0|⊗k 〈i|V (σ) |0〉⊗k |i〉

=
1

χN
2
N !

(
N

k

) ∑

i∈{1,··· ,d−1}N−k

k!

d−1∏

j=1

βj(i)!,

(95)

where βj(i) is the number of times the integer j appears in the sequence i. The sum over i can then be broken
up into the sum over all partitions of N − k systems in d− 1 sectors, i.e., the sum over all possible vectors β of
d− 1 components that add up to N − k, times the sum of all permutations of N − k systems which are equal in
groups of size βj . The latter can be carried out immediately since the summand is invariant under permutation
of the j’s:

p(k) =
1

χN
2
N !

(
N

k

) ∑

β·1=N−k

(N − k)!
∏d−1
j=1 βj !

k!

d−1∏

j=1

βj ! =
1

χN
2

(
N − k + d− 2

d− 2

)
, (96)

where in the last equality we summed over β. For the first moment of the distribution we get, similarly,

c̃(k) = χM
2

∫ 1

0

dcp(c)

∫

SU(d)

dU Tr
[(
|0〉 〈0|⊗(M+1) ⊗Π

(N)
k

)

× 1l⊗ U⊗(M+N)
(

(U(c) |0〉 〈0|U(c))
⊗(M+1) ⊗ |0〉 〈0|⊗N

)
1l⊗ U†⊗(M+N)

]
(97)

=
χM

2

χM+1
2

∫

SU(d)

dU Tr
[(
|0〉 〈0|⊗(M+1) ⊗Π

(N)
k

)
U† ⊗ 1l⊗M ⊗ U⊗N

(
1lsymM+1 ⊗ |0〉 〈0|

⊗N
)
U ⊗ 1l⊗M ⊗ U†⊗N

]
,

where we have introduced U†U and its conjugate on the additional subsystem, then employed the invariance
of 1lsymM+1 under U⊗(M+1). In order to proceed, we first compute the value of the following operator:

A1(M) = Tr(1,M)

[
1lsymM+1 · |0〉 〈0|

⊗M
]

=
1

(M + 1)!

∑

σ

d−1∑

i,j=0

〈0|⊗M 〈i|V (σ) |0〉⊗M |j〉 |i〉〈j|

=
M !

(M + 1)!
(1l +M |0〉 〈0|) ,

(98)

where in the first equality we have taken the partial trace over M subsystems, while in the second one we have
written 1lsymM+1 as an average of permutations, like before, and written the explicit basis representation of the
last subsystem. The third equality follows by evaluating the only non-zero elements in the sums: the first term
contains all the permutations of M subsystems times the identity on the remaining subsystem; the second term
considers the additional permutations in the case i = j = 0, where the last subsystem can be exchanged with
any of the other M subsystems. By substituting this expression in Eq. (97) we obtain

c̃(k) =
χM

2

χM+1
2

(
p(k)

M + 1
+

M

M + 1
Tr

[(
|0〉 〈0| ⊗Π

(N)
k

) 1lsymN+1

χN+1
2

])
, (99)

where we have used Eq. (94). We then just need to compute the second term in the sum above, which is very

similar to Eq. (95) with the change |0〉⊗k 7→ |0〉⊗(k+1)
. We finally obtain

c̃(k) =
(d− 1)(d+N + k(M + 1))N !(N − k + d− 2)!

(d+M)(N − k)!(d+N)!
(100)

and the optimal Bayesian estimator for each k is

c(k) =
d+N + k(M + 1)

(d+M)(d+N)
. (101)

The corresponding glMSE is given by

vep =

∫
dc p(c)c2 −

N∑

k=0

p(k)c(k)2 =
(d− 1)((d+M)2 + (d+ 2M)N)

d(1 + d)(d+M)2(d+N)
. (102)
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In the limit M →∞, N constant we have

vep ∼
(d− 1)

d(d+ 1)(d+N)
, (103)

which again coincides with the optimal Bayesian strategy. In the limit M + N → ∞, M − N fixed we have
instead

vep ∼
6(d− 1)

d(d+ 1)(M +N)
, (104)

which again is 3/2 times larger than the optimal Bayesian strategy.

Estimate-and-estimate: Bayesian estimation

The EE strategy instead consists in estimating both states with a covariant measurement, hence it is described

by overall POVM operators E
(ep)
V,k = dV dWE

(M)
V ⊗E(N)

W , as mentioned in the main text. Its success probability
can be written as

p(W |c) = dW χM
2
χN

2

∫

SU(d)

dUTr
[ (
|0〉 〈0|⊗M ⊗

(
W |0〉 〈0|W †

)N)

× U⊗(M+N)
((
U(c) |0〉 〈0|U†(c)

)⊗M ⊗ |0〉 〈0|⊗N
)
U†⊗(M+N)

]
,

(105)

where again we could include one of the outcomes into the unitary average and, since by redefining W 7→ V †W
the dependence on V is a constant, we averaged over V without loss of generality.

In the Bayesian case for EE we proceed as before and compute first

p(W ) =

∫
dcp(c)p(W |c) = dWTr

[
|0〉 〈0|⊗(M+N)

(1lsymM ⊗ 1lsymN )
]

= dW, (106)

then

c̃(W ) =

∫
dcp(c)p(W |c)c = dW

χM
2
χN

2

χM+1
2

∫

SU(d)

dUTr
[ (
|0〉 〈0|⊗(M+1) ⊗

(
W |0〉 〈0|W †

)N) ·

· 1l⊗ U⊗(M+N)
(

1lsymM+1 ⊗ |0〉 〈0|
⊗N
)

1l⊗ U†⊗(M+N)
]

= dW
χM

2
χN

2

χM+1
2

∫

SU(d)

dUTr
[ (
U |0〉 〈0|U† ⊗ (W |0〉 〈0|W †)⊗N

)
·

·
(

1l

M + 1
+

M

M + 1
|0〉 〈0|

)
⊗ (U |0〉 〈0|U†)⊗N

]

= dW
χM

2
χN

2

χM+1
2

(M + 1)

(
1

χN
2

+
M

χN+1
2

Tr
[
1lsymN+1(W † |0〉 〈0|W ⊗ |0〉 〈0|⊗N )

])

= dW
χM

2
χN

2

χM+1
2

(M + 1)

(
1

χN
2

+
M

χN+1
2

(N + 1)
(1 +Nw)

)
=
d+M +N +MNw

(d+M)(d+N)
.

(107)

The second equality above comes from averaging over Uc, the third one from Eq. (98) and introducing U†U and
its conjugate on the additional subsystem, the fourth one from redefining U 7→ W †U , switching the operators
acting on the N subsystems and averaging over U , while the fifth one from applying Eq. (98) again and defining

w = |〈0|W |0〉|2.
Then the optimal EE Bayesian estimator for each W is simply c(W ) = c̃(W )/dW and the minimum glMSE

attained by it is

vee =

∫
dc p(c) c2 −

∫

SU(d)

dWc̃(W )
2

=
(d− 1)(d+M +N)(d2 + 2MN + d(M +N))

d(d+ 1)(d+M)2(d+N)2
, (108)

where we have carried out the group averages in the usual way:

∫

SU(d)

dWwi =

∫

SU(d)

dWTr

[
1lsymi

χ i
2

|0〉 〈0|⊗i
]

=
1

χ i
2

. (109)
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In the limit M →∞, N constant we have

vee ∼
(d− 1)(d+ 2N)

d(d+ 1)(d+N)2
, (110)

which is (d+ 2N)/(d+N) times larger than the optimal Bayesian strategy. In the limit M +N →∞, M −N
fixed we have instead

vee ∼
8(d− 1)

d(d+ 1)(M +N)
, (111)

which is 2 times larger than the optimal Bayesian strategy.

Estimate-and-estimate: local estimation

Finally, for the local EE estimation the estimator c̃W = w = |〈0|W |0〉|2 is a natural guess. Its variance can
be computed in terms of its first and second moments according to the distribution p(W |c):

vee(c) =

∫

SU(d)

p(W |c)(w − c)2 = c2 − 2cw + w2, (112)

where

wi =

∫
p(W |c)wi = χM

2
χN

2

∫

W,U∈SU(d)

dWdUTr
[ (
|0〉 〈0|⊗M ⊗

(
W |0〉 〈0|W †

)⊗(N+i)
)

× U⊗(M+N) ⊗ 1l⊗i
((
Uc |0〉 〈0|U†c

)⊗M ⊗ |0〉 〈0|⊗(N+i)
)
U†⊗(M+N) ⊗ 1l⊗i

]

=
χM

2
χN

2

χN+i
2

∫

SU(d)

dUTr
[ (

(Uc |0〉 〈0|U†c )⊗M ⊗ 1lsymN+i

)
·

·
((
U† |0〉 〈0|U

)⊗(M+i) ⊗ |0〉 〈0|⊗N
) ]
.

(113)

Then the first moment is straightforward to compute by inserting Eq. (98):

w =
χM

2
χN

2

χN+1
2

(N + 1)

(
1

χM
2

+
N

χM+1
2

Tr
[
1lsymM+1

(
|0〉 〈0|⊗M ⊗ U†c |0〉 〈0|Uc

)])

=
χM

2
χN

2

χN+1
2

(N + 1)

(
1

χM
2

+
N

χM+1
2

1 +Mc

1 +M

)
.

(114)

For the second moment we first need to evaluate the following operator:

A2(N) = Tr(1,N)

[
1lsymN+2 · |0〉 〈0|

⊗N
]

=
1

(N + 2)!

∑

σ

∑

i,j∈{0,··· ,d−1}2
〈0|⊗N 〈i|V (σ) |0〉⊗N

∣∣j
〉 ∣∣i〉〈j

∣∣

=
N !

(N + 2)!
[21lsym2 + 2N (|0〉 〈0| ⊗ 1l + 1l⊗ |0〉 〈0|) +N(N − 1) |00〉 〈00|] .

(115)

As before, the third equality follows by evaluating the only non-zero elements in the sums: the first term
contains all the permutations of N subsystems times the identity and the swap on the remaining subsystems,
which add up to the projector on the completely symmetric subspace of the two subsystems,

1lsym2 =
1

2

∑

(i1,i2)

(|i1, i2〉 〈i1, i2|+ |i1, i2〉〈i2, i1|) ; (116)

the second term considers the additional permutations in the case i1 = j1 = 0 and i2 = j2 = 0, where one
of the remaining subsystems can be swapped or not with the other, then permuted with any of the other N
subsystems; analogously, the third term considers the additional permutations in the case i = j = 0, where
each remaining subsystem can be permuted respectively with N and N − 1 of the others. Hence the second
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moment of w can be written as

w2 =
χM

2
χN

2

χN+2
2

∫

SU(d)

dUTr
[(
Uc |0〉 〈0|U†c

)⊗M (
U† |0〉 〈0|U

)⊗M ⊗A2(N)
(
U† |0〉 〈0|U

)2]

=
χM

2
χN

2

χN+2
2

(N + 2)(N + 1)

(
2

χM
2

+
4N

χM+1
2

Tr
[
A1(M)U†c |0〉 〈0|Uc

]

+
N(N − 1)

χM+2
2

Tr
[
A2(M)

(
U†c |0〉 〈0|Uc

)⊗2
])

=
χM

2
χN

2

χN+2
2

(N + 2)(N + 1)

(
2

χM
2

+
4N(1 +Mc)

χM+1
2

(M + 1)
+
N(N − 1)(2 + 4Mc+M(M − 1)c2)

χM+2
2

(M + 2)(M + 1)

)
.

(117)

By plugging the expressions of Eqs. (114,117) into Eq. (112) we finally get

vee(c) =
(d+M +N)((2 + c(cd− 2)(d+ 1))(d+M +N + 1) + 2c(1− c)MN)

(d+M)(d+M + 1)(d+N)(d+N + 1)
. (118)

In the limit M →∞, N finite we have

vee(c) ∼
2 + c(d+ 1)(cd− 2) + 2cN − 2c2N

(d+N)(d+N + 1)

N�1∼ 2c(1− c)
N

+O

(
1

N2

)
, (119)

which is twice as large as the optimal strategy in the leading order of N . In the limit M + N → ∞, M − N
fixed we have instead

vee(c) ∼
8c(1− c)
(M +N)

, (120)

which is 2 times larger than the optimal strategy.

Bayesian estimation using the swap test

Here we derive the formulas employed for the plot of the swap-test performance in Fig. 3 of the main text.
The measurement statistics is given by a binomial distribution Bin(k,N, p(c)), of k events out of N , with single-
event probability p(c) = 1+c

2 . The corresponding optimal classical Bayesian estimator is given by Eq. (93), with
p(k|c)→ Bin(k,N, p(c)). We have

p(c) =

∫
dc p(c)Bin(k,N, p(c)) =

(d− 1)
(
N
k

)
2F1(1,−k; d− 1k +N ;−1)

2N (d− k +N − 1)
, (121)

c̃(k) =

∫
dc c p(c)Bin(k,N, p(c)) = (d− 1)2−N

(
N

k

)
2F̃1(2,−k; d− 1k +N + 1;−1)Γ(d− k +N − 1), (122)

where 2F1 and 2F̃1 are hypergeometric and regularized hypergeometric functions respectively. Following the
derivations of the previous section, the minimum glMSE attainable with the swap test can be written as

vbay
sw =

2

d(d+ 1)
−

N∑

k=0

(d− 1)
(
N
k

)
(d− k +N − 1) 2F̃1(2,−k; d− k +N + 1;−1)2Γ(d− k +N − 1)2

2N 2F1(1,−k; d− k +N ;−1)
. (123)

Comparison between Schur transform and swap test with imperfect implementations

In this section we sketch an evaluation of the effect of imperfect gates on the accuracy of the estimate of
the overlap. First of all we model the error of each iteration of the swap test as white noise for each iteration:
Nsw(p(c)) = (1− εsw)p(c) + εsw

1
2 , the Fisher information becomes

H(Nsw(p(c))) =
(1− εsw)2

1− c2(1− εsw)2
, (124)

For N repetitions, one gets a resulting MSE

vsw,noisy(c) =
1− c2(1− εsw)2

(1− εsw)2N
. (125)
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We model the noise on the Schur transform measurement outcomes also as mixing with a probability distri-
bution q(c): Nsw(p(J |c)) = (1− εSch)p(J |c) + εSchq(c), with a probability of mixing that scales exponentially
in the number of gates, 1 − εSch ≈ (1 − ε)g, where ε is the error per gate, and g is the total number of gates.
We recall the joint convexity property of the Fisher Information, coming from its monotonicity:

F (λp(c) + (1− λ)q(c)) ≤ λF (p(c)) + (1− λ)F (q(c)), (126)

If we assume q(c) to be overlap independent, we obtain the bound

F (NSch(p(J |c))) ≤ (1− εSch)F (p(J |c)), (127)

so that

vSch,noisy(c) ≥ 2c(1− c)
(1− εSch)N

. (128)

This is a very conservative estimate, as we are assuming we acquiring useful information with exponentially
small probability. Hence the Swap test outperforms our optimal strategy, based on the Schur transform, when
the respective implementation errors satisfy the following relation

(1− εSw)2

(1− c2)(1− ε2Sw)
≥ 1− εSch

2c(1− c) . (129)

One can express εSch and εSw in terms of the error per gate, ε, raised to gate complexity of their respective
circuits. An intermediate strategy could be to divide the N copies of both |φ〉 and |ψ〉, into R groups of S copies,
and perform the optimal measurement on each group, followed by classical post-processing. If N = M = RS
and F (J |c, S) is the optimal Fisher information for the case with M = N = S copies, the Cramer-Rao bound
reads

v(c) ≥ 1

RF (J |c, S)
. (130)

The best option would be to choose S as the highest number of copies such that the architecture can perform the
optimal measurement in a sufficiently precise way. On the other hand, if one requires to be in the asymptotic
regime of the approximation for c > c0, one can just find the minimum S for which the approximation works,
and perform the optimal measurement with S copies R times. The classical post processing will have the
optimal asymptotic performance for c > c0. In any case the bound (130) is asymptotically achieved by a
maximum likelihood estimator when R→∞.

Average post-measurement fidelity

Here we compute the average post-measurement fidelity for the optimal strategy and the swap test. For the
former we have measurement operators {ΠJ}J , so that Eq. (8) of the main text reads

Fop =

Jmax∑

J=Jmin

|〈Ψ|ΠJ |Ψ〉|2 =
∑

J

p(J |c)2, (131)

where we have used the SU(d)-invariance of ΠJ . For the swap test we restrict to M = N as usual and we
consider that the measurement is separable and identical on each couple of copies. Moreover, the measurement
on a single pair of copies is a triplet/singlet projection, which is again SU(d)-invariant, and succeeds/fails with
probability (1± c)/2. Hence we have

Fsw =

[(
1 + c

2

)2

+

(
1− c

2

)2
]N

=

(
1 + c2

2

)N
. (132)

Estimating the overlap between two arbitrary mixed qubits

In this appendix we derive the optimal estimator and corresponding mean squared error for the case where
we are given N and M copies of mixed states. We shall restrict our attention to qubit mixed states and for
ease of notation we shall revert to the standard angular momentum notation for irrep labels.
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The mixed states whose overlap we wish to estimate are

ρ⊗Nψ (r0) =

(
r0 |ψ〉 〈ψ|+ (1− r0)

1l

2

)⊗N
,

ρ⊗Mφ (r1) =

(
r1 |φ〉 〈φ|+ (1− r1)

1l

2

)⊗M
, (133)

where r0(1) denotes the corresponding purity of the states. Following [38] the states in Eq. (133) can be written
in the total angular momentum basis, after tracing out multiplicities, as

ρ̃⊗Nψ =

M
2∑

J0=0

pJ0 τ
(0)
J0

(~n0)

ρ̃⊗Mφ =

N
2∑

J1=0

pJ1 τ
(1)
J1

(~n1), (134)

where

τ
(0)
J0

=
1

Z
(0)
J0

J0∑

k=−J0
Rk0 |J0, k〉〈J0, k|

τ
(1)
J1

=
1

Z
(1)
J1

J1∑

l=−J1
Rl1

J1∑

α,β=−J1
d

(J1)
α,l (2 cos−1

√
c)d

(J1)
l,β (2 cos−1

√
c) |J1, α〉〈J1, β| (135)

with Ri = 1+ri
1−ri , Z

(i)
Ji

=
R

Ji+1

i −R−Ji
i

Ri−1 , and just as for the case of pure states, we have chosen ~n0 = ~z without loss
of generality. Moreover,

pJ0 =

(
1− r2

4

)N
2

(
N

N
2 − J0

)
2J0 + 1

N
2 + J0 + 1

ZJ0 (136)

and similarly for pJ1 . Using Eq. (17) we obtain

ρ(c) = GSU(2)

[
ρ⊗Nψ ⊗ ρ⊗Mφ

]
=
∑

J

∑

J0,J1

pJ0pJ1
∑

k,l

Rk0R
l
1

Z
(0)
J0
Z

(1)
J1

J1∑

α=−J1

(
CJ,k+α
J0,k;J1,α

d
(J1)
α,l (2 cos−1

√
c)
)2 1lU(J)(SU(2))

2J + 1
⊗σ(J0,J1),

(137)
where σ(J0,J1) ∈ B(U (J)(SN+M )) and they are orthogonal for different couples (J0, J1). To calculate the glMSE
we need to compute the operators Γ, η of Eq. (74). A similar calculation as in Eq. (77), (78) gives

Γ = GSU(2)

[
ρ⊗Nψ

]
⊗ GSU(2)

[
ρ⊗Mφ

]

=




N
2∑

J0=0

pJ0
1lU(J0)(SU(2))

2J0 + 1
⊗

1lU(J)(SM+N )

ωJ


⊗
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2J1 + 1
⊗

1lU(J)(SM+N )

ωJ




=

N
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M
2∑

J1=0

pJ0pJ1
(2J0 + 1)(2J1 + 1)

J0+J1∑

J=|J0−J1|
1lU(J)(SU(d)) ⊗ σ(J0,J1), (138)

For η one obtains

η =

∫

SU(2)

U⊗(N+M)
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1
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1
2

(h)|2D(J1)(h) |J1, l〉〈J1, l|D(J1)(h)
†
)
U†⊗(N+M). (139)
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We finally obtain

η =
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M
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1lU(J)(SU(2))

(2J + 1)
⊗ σ(J0,J1). (140)

For a given J, J0, J1 and overlap c the estimator is given by

c(J, J0, J1) =
Tr [ΠJ (ΠJ0 ⊗ΠJ1η)]

Tr [ΠJ (ΠJ0 ⊗ΠJ1Γ)]
(141)

and the glMSE reads

vop,mix =

∫ 1

0

p(c)c2 −
∑

J,J0,J1

p(J, J0, J1)c(J, J0, J1)2. (142)

The sums in L,L′,m, k can be done exactly. The sums in J at the leading order in R0, R1 can be done by
keeping track of the non-exponentially decaying (in J) contributions. The final sum in J0 and J1 can be done

using the fact that pJ0
R

J0
(0)

ZJ0
can be written as

pJ0
RJ0(0)

ZJ0
=

(
1− r2

4

)N
2

(
N

N
2 − J0

)
2J0 + 1

N
2 + J0 + 1

RJ0(0) =

(
N

N
2 − J0

)
2J0 + 1

N
2 + J0 + 1

(
1 + r0

2

)N
2 +J0 (1− r0

2

)N
2 −J0

=
2J0 + 1

N
2 + J0 + 1

Bin(N,
N

2
− J0,

1 + r

2
), (143)

and in the limit M = αZ, N = βZ, Z → ∞ one can approximate the glMSE expanding in moments around
the mean of the binomial distribution. The final result reads

vop,mix =
1

6Mr2
0

+
1

6Nr2
1

+ o(Z−1) (144)

in agreement with the pure state case for d = 2, r0 = r1 = 1.
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