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Abstract

We study the 2D Ginzburg-Landau theory for a type-II superconductor in an applied
magnetic field varying between the second and third critical value. In this regime the order
parameter minimizing the GL energy is concentrated along the boundary of the sample and
is well approximated to leading order (in L2 norm) by a simplified 1D profile in the direction
perpendicular to the boundary. Motivated by a conjecture of Xing-Bin Pan, we address the
question of whether this approximation can hold uniformly in the boundary region. We prove
that this is indeed the case as a corollary of a refined, second order energy expansion including
contributions due to the curvature of the sample. Local variations of the GL order parameter
are controlled by the second order term of this energy expansion, which allows us to prove the
desired uniformity of the surface superconductivity layer.
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1 Introduction

The Ginzburg-Landau (GL) theory of superconductivity, originating in [GL], provides a phe-
nomenological, macroscopic, description of the response of a superconductor to an applied magnetic
field. Several years after it was introduced, it turned out that it could be derived from the micro-
scopic BCS theory [BCS, Gor] and should thus be seen as a mean-field/semiclassical approximation
of many-body quantum mechanics. A mathematically rigorous derivation starting from BCS theory
has been provided recently [FHSS].

Within GL theory, the state of a superconductor is described by an order parameter Ψ : R2 → C
and an induced magnetic vector potential κσA : R2 → R2 generating an induced magnetic field

h = κσ curl A.

The ground state of the theory is found by minimizing the energy functional1

GGL
κ,σ[Ψ,A] =

∫
Ω

dr
{
|(∇+ iκσA) Ψ|2 − κ2|Ψ|2 + 1

2κ
2|Ψ|4 + (κσ)

2 |curlA− 1|2
}
, (1.1)

where κ > 0 is a physical parameter (penetration depth) characteristic of the material, and κσ
measures the intensity of the external magnetic field, that we assume to be constant throughout
the sample. We consider a model for an infinitely long cylinder of cross-section Ω ⊂ R2, a compact
simply connected set with regular boundary.

Note the invariance of the functional under the gauge transformation

Ψ→ Ψe−iκσϕ, A→ A +∇ϕ, (1.2)

which implies that the only physically relevant quantities are the gauge invariant ones such as the
induced magnetic field h and the density |Ψ|2. The latter gives the local relative density of electrons
bound in Cooper pairs. It is well-known that a minimizing Ψ must satisfy |Ψ|2 ≤ 1. A value |Ψ| = 1
(respectively, |Ψ| = 0) corresponds to the superconducting (respectively, normal) phase where all
(respectively, none) of the electrons form Cooper pairs. The perfectly superconducting state with
|Ψ| = 1 everywhere is an approximate ground state of the functional for small applied field and the
normal state where Ψ vanishes identically is the ground state for large magnetic field. In between
these two extremes, different mixed phases can occur, with normal and superconducting regions
varying in proportion and organization.

A vast mathematical literature has been devoted to the study of these mixed phases in type-II
superconductors (characterized by κ > 1/

√
2), in particular in the limit κ→∞ (extreme type-II).

Reviews and extensive lists of references may be found in [FH3, SS2, Sig]. Two main phenomena
attracted much attention:

• The formation of hexagonal vortex lattices when the applied magnetic field varies between
the first and second critical field, first predicted by Abrikosov [Abr], and later experimentally
observed (see, e.g., [H et al]). In this phase, vortices (zeros of the order parameter with
quantized phase circulation) sit in small normal regions included in the superconducting
phase and form regular patterns.

1Here we use the units of [FH3], other choices are possible, see, e.g., [SS2].
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• The occurrence of a surface superconductivity regime when the applied magnetic fields varies
between the second and third critical fields. In this case, superconductivity is completely
destroyed in the bulk of the sample and survives only at the boundary, as predicted in [SJdG].
We refer to [N et al] for experimental observations.

We refer to [CR] for a more thorough discussion of the context. We shall be concerned with the
surface superconductivity regime, which in the above units translates into the assumption

σ = bκ (1.3)

for some fixed parameter b satisfying the conditions

1 < b < Θ−1
0 (1.4)

where Θ0 is a spectral parameter (minimal ground state energy of the shifted harmonic oscillator
on the half-line, see [FH3, Chapter 3]):

Θ0 := inf
α∈R

inf

{∫
R+

dt
(
|∂tu|2 + (t+ α)2|u|2

)
, ‖u‖L2(R+) = 1

}
. (1.5)

From now on we introduce more convenient units to deal with the surface superconductivity phe-
nomenon: we define the small parameter

ε =
1√
σκ

=
1

b1/2κ
� 1 (1.6)

and study the asymptotics ε → 0 of the minimization of the functional (1.1), which in the new
units reads

GGL
ε [Ψ,A] =

∫
Ω

dr

{∣∣∣∣(∇+ i
A

ε2

)
Ψ

∣∣∣∣2 − 1

2bε2

(
2|Ψ|2 − |Ψ|4

)
+

b

ε4
|curlA− 1|2

}
. (1.7)

We shall denote
EGL
ε := min

(Ψ,A)∈DGL
GGL
ε [Ψ,A], (1.8)

with
DGL :=

{
(Ψ,A) ∈ H1(Ω;C)×H1(Ω;R2)

}
, (1.9)

and denote by (ΨGL,AGL) a minimizing pair (known to exist by standard methods [FH3, SS2]).

The salient features of the surface superconductivity phase are as follows:

• The GL order parameter is concentrated in a thin boundary layer of thickness∼ ε = (κσ)−1/2.
It decays exponentially to zero as a function of the distance from the boundary.

• The applied magnetic field is very close to the induced magnetic field, curl A ≈ 1.

• Up to an appropriate choice of gauge and a mapping to boundary coordinates, the ground
state of the theory is essentially governed by the minimization of a 1D energy functional in
the direction perpendicular to the boundary.

A review of rigorous statements corresponding to these physical facts may be found in [FH3]. One
of their consequences is the energy asymptotics

EGL
ε =

|∂Ω|E1D
0

ε
+O(1), (1.10)
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where |∂Ω| is the length of the boundary of Ω, and E1D
0 is obtained by minimizing the functional

E1D
0,α[f ] :=

∫ +∞

0

dt

{
|∂tf |2 + (t+ α)2f2 − 1

2b

(
2f2 − f4

)}
, (1.11)

both with respect to the function f and the real number α. We proved recently [CR] that (1.10)
holds in the full surface superconductivity regime, i.e. for 1 < b < Θ−1

0 . This followed a series of
partial results due to several authors [Alm1, AH, FH1, FH2, FHP, LP, Pan], summarized in [FH3,
Theorem 14.1.1]. Some of these also concern the limiting regime b ↗ Θ−1

0 . The other limiting
case b ↘ 1 where the transition from boundary to bulk behavior occurs is studied in [FK, Kac],
whereas results in the regime b↗ 1 may be found in [AS, Alm2, SS1].

The rationale behind (1.10) is that, up to a suitable choice of gauge, any minimizing order
parameter ΨGL for (1.1) has the structure

ΨGL(r) ≈ f0

(
τ
ε

)
exp

(
−iα0

s
ε

)
exp {iφε(s, t)} (1.12)

where (f0, α0) is a minimizing pair for (1.11), (s, τ) = (tangent coordinate, normal coordinate) are
boundary coordinates defined in a tubular neighborhood of ∂Ω with τ = dist(r, ∂Ω) for any point
r there and φε is a gauge phase factor (see (5.4)), which plays a role in the change to boundary
coordinates. Results in the direction of (1.12) may be found in the following references:

• [Pan] contains a result of uniform distribution of the energy density at the domain’s boundary
for any 1 ≤ b < Θ−1

0 ;

• [FH1] gives fine energy estimates compatible with (1.12) when b↗ Θ−1
0 ;

• [AH] and then [FHP] prove that (1.12) holds at the level of the density, in the L2 sense, for
1.25 ≤ b < Θ−1

0 ;

• [FK] and then [Kac] investigate the concentration of the energy density when b is close to 1;

• [FKP] contains results about the energy concentration phenomenon in the 3D case.

In [CR, Theorem 2.1] we proved that∥∥|ΨGL|2 − f2
0

(
τ
ε

)∥∥
L2(Ω)

≤ Cε�
∥∥f2

0

(
τ
ε

)∥∥
L2(Ω)

(1.13)

for any 1 < b < Θ−1
0 in the limit ε→ 0. A very natural question is whether the above estimate may

be improved to a uniform control (in L∞ norm) of the local discrepancy between the modulus of the
true GL minimizer and the simplified normal profile f0

(
τ
ε

)
. Indeed, (1.13) is still compatible with

the vanishing of ΨGL in small regions, e.g., vortices, inside of the boundary layer. Proving that
such local deviations from the normal profile do not occur would explain the observed uniformity
of the surface superconducting layer (see again [N et al] for experimental pictures). Interest in
this problem (stated as Open Problem number 4 in the list in [FH3, Page 267]) originates from a
conjecture of X.B. Pan [Pan, Conjecture 1] and an affirmative solution has been provided in [CR]
for the particular case of a disc sample. The purpose of this paper is to extend the result to general
samples with regular boundary (the case with corners is known to require a different analysis [FH3,
Chapter 15]).

Local variations (on a scale O(ε)) in the tangential variable are compatible with the energy
estimate (1.10), and thus the uniform estimate obtained for disc samples in [CR] is based on an
expansion of the energy to the next order:

EGL
ε =

2πE1D
? (k)

ε
+O(ε| log ε|), (1.14)
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where E1D
? (k) is the minimum (with respect to both the real number α and the function f) of the

ε-dependent functional

E1D
k,α[f ] :=

∫ c0| log ε|

0

dt (1− εkt)
{
|∂tf |2 +

(t+ α− 1
2εkt

2)2

(1− εkt)2
f2 − 1

2b

(
2f2 − f4

)}
, (1.15)

where the constant c0 has to be chosen large enough and k = R−1 is the curvature of the disc
under consideration, whose radius we denote by R. Of course, (1.11) is simply the above functional
where one sets k = 0, ε = 0, which amounts to neglect the curvature of the boundary. When the
curvature is constant, (1.14) in fact follows from a next order expansion of the GL order parameter
beyond (1.12):

ΨGL(r) ≈ fk
(
τ
ε

)
exp

(
−iα(k) sε

)
exp {iφε(s, t)} (1.16)

where (α(k), fk) is a minimizing pair for (1.15). Note that for any fixed k

fk = f0(1 +O(ε)), α(k) = α0(1 +O(ε)), (1.17)

so that (1.16) is a slight refinement of (1.12) but the O(ε) correction corresponds to a contribution
of order 1 beyond (1.10) in (1.14), which turns out to be the order that controls local density
variations.

As suggested by the previous results in the disc case, the corrections to the energy asymp-
totics (1.10) must be curvature-dependent. The case of a general sample where the curvature of
the boundary is not constant is then obviously harder to treat than the case of a disc, where one
obtains (1.14) by a simple variant of the proof of (1.10), as explained in our previous paper [CR].

In fact, we shall obtain below the desired uniformity result for the order parameter in general
domains as a corollary of the energy expansion (γ is a fixed constant)

EGL
ε =

1

ε

∫ |∂Ω|

0

ds E1D
? (k(s)) +O(ε| log ε|γ) (1.18)

where the integral runs over the boundary of the sample, k(s) being the curvature of the boundary
as a function of the tangential coordinate s. Just as the particular case (1.14), (1.18) contains the
leading order (1.10), but O(1) corrections are also evaluated precisely. As suggested by the energy
formula, the GL order parameter has in fact small but fast variations in the tangential variable
which contribute to the subleading order of the energy. More precisely, one should think of the
order parameter as having the approximate form

ΨGL(r) = ΨGL(s, τ) ≈ fk(s)

(
τ
ε

)
exp

(
−iα(k(s)) sε

)
exp {iφε(s, t)} (1.19)

with fk(s), α(k(s)) a minimizing pair for the energy functional (1.15) at curvature k = k(s). The
main difficulty we encounter in the present paper is to precisely capture the subtle curvature depen-
dent variations encoded in (1.19). What our new result (we give a rigorous statement below) (1.19)
shows is that curvature-dependent deviations to (1.12) do exist but are of limited amplitude and
can be completely understood via the minimization of the family of 1D functionals (1.15). A cru-
cial input of our analysis is therefore a detailed inspection of the k-dependence of the ground state
of (1.15).

We can deduce from (1.18) a uniform density estimate settling the general case of [Pan, Con-
jecture 1] and [FH3, Open Problem 4, page 267]. We believe that the energy estimate (1.18) is of
independent interest since it helps in clarifying the role of domain curvature in surface supercon-
ductivity physics. It was previously known (see [FH3, Chapters 8 and 13] and references therein)
that corrections to the value of the third critical field depend on the domain’s curvature, but appli-
cations of these results are limited to the regime where b→ Θ−1

0 when ε→ 0. The present paper
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seems to contain the first results indicating the role of the curvature in the regime 1 < b < Θ−1
0 .

This role may seem rather limited since it only concerns the second order in the energy asymptotics
but it is in fact crucial in controlling local variations of the order parameter and allowing to prove
a strong form of uniformity for the surface superconductivity layer.

Our main results are rigorously stated and further discussed in Section 2, their proofs occupy
the rest of the paper. Some material from [CR] is recalled in Appendix A for convenience.

Notation. In the whole paper, C denotes a generic fixed positive constant independent of ε
whose value changes from formula to formula. A O(δ) is always meant to be a quantity whose
absolute value is bounded by δ = δ(ε) in the limit ε→ 0. We use O(ε∞) to denote a quantity (like
exp(−ε−1)) going to 0 faster than any power of ε and | log ε|∞ to denote | log ε|a where a > 0 is
some unspecified, fixed but possibly large constant. Such quantities will always appear multiplied
by a power of ε, e.g., ε| log ε|∞ which is a O(ε1−c) for any 0 < c < 1, and hence we usually do not
specify the precise power a.

Acknowledgments. M.C. acknowledges the support of MIUR through the FIR grant 2013 “Con-
densed Matter in Mathematical Physics (Cond-Math)” (code RBFR13WAET). N.R. acknowledges
the support of the ANR project Mathostaq (ANR-13-JS01-0005-01). We also acknowledge the hos-
pitality of the Institut Henri Poincaré, Paris. We are indebted to one of the anonymous referees
for the content of Remarks 2.2 and 2.3.

2 Main Results

2.1 Statements

We first state the refined energy and density estimates that reveal the contributions of the domain’s
boundary. As suggested by (1.19), we now introduce a reference profile that includes these varia-
tions. A piecewise constant function in the tangential direction is sufficient for our purpose and we
thus first introduce a decomposition of the superconducting boundary layer that will be used in
all the paper. The thickness of this layer in the normal direction should roughly be of order ε, but
to fully capture the phenomenon at hand we need to consider a layer of size c0ε| log ε| where c0 is
a fixed, large enough constant. By a passage to boundary coordinates and dilation of the normal
variable on scale ε (see [FH3, Appendix F] or Section 4 below), the surface superconducting layer

Ãε := {r ∈ Ω | τ ≤ c0ε| log ε|} , (2.1)

where
τ := dist(r, ∂Ω), (2.2)

can be mapped to
Aε := {(s, t) ∈ [0, |∂Ω|]× [0, c0| log ε|]} . (2.3)

We split this domain into Nε = O(ε−1) rectangular cells {Cn}n=1,...,Nε
of constant side length

`ε ∝ ε in the s direction. We denote sn, sn+1 = sn + `ε the s coordinates of the boundaries of the
cell Cn:

Cn = [sn, sn+1]× [0, c0| log ε|]

and we may clearly choose
`ε = ε|∂Ω| (1 +O(ε))

for definiteness. We will approximate the curvature k(s) by its mean value kn in each cell:

kn := `−1
ε

∫ sn+1

sn

ds k(s).
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We also denote
fn := fkn , αn := α(kn)

respectively the optimal profile and phase associated to kn, obtained by minimizing (1.15) first
with respect to2 f and then to α.

The reference profile is then the piecewise continuous function

gref(s, t) := fn(t), for s ∈ [sn, sn+1] and (s, t) ∈ Aε, (2.4)

that can be extended to the whole domain Ω by setting it equal to 0 for dist(r, ∂Ω) ≥ c0ε| log ε|.
We compare the density of the full GL order parameter to gref in the next theorem. Note that
because of the gauge invariance of the energy functional, the phase of the order parameter is not
an observable quantity, so the next statement is only about the density |ΨGL|2.

Theorem 2.1 (Refined energy and density asymptotics).
Let Ω ⊂ R2 be any smooth, bounded and simply connected domain. For any fixed 1 < b < Θ−1

0 , in
the limit ε→ 0, it holds

EGL
ε =

1

ε

∫ |∂Ω|

0

ds E1D
? (k(s)) +O(ε| log ε|∞). (2.5)

and ∥∥|ΨGL|2 − g2
ref

(
s, ε−1τ

)∥∥
L2(Ω)

= O(ε3/2| log ε|∞)�
∥∥g2

ref

(
s, ε−1t

)∥∥
L2(Ω)

. (2.6)

Remark 2.1 [The energy to subleading order]
The most precise result prior to the above is [CR, Theorem 2.1] where the leading order is computed
and the remainder is shown to be at most of order 1. Such a result had been obtained before
in [FHP] for a smaller range of parameters, namely for 1.25 ≤ b < Θ−1

0 , see also [FH3, Chapter 14]
and references therein. The above theorem evaluates precisely the O(1) term, which is better
appreciated in light of the following comments:

1. In the effective 1D functional (1.15), the parameter k that corresponds to the local curvature
of the sample appears with an ε prefactor. As a consequence, one may show (see Section 3.1
below) that for all s ∈ [0, |∂Ω|]

E1D
? (k(s)) = E1D

? (0) +O(ε) (2.7)

so that (2.5) contains the previously known results. More generally we prove below that∣∣E1D
? (k(s))− E1D

? (k(s′))
∣∣ ≤ Cε|s− s′|

so that E1D
? (k(s)) has variations of order ε on the scale of the boundary layer. These

contribute to a term of order 1 that is included in (2.5). Actually one could investigate the
asymptotics (2.7) further, aiming at evaluating explicitly the error O(ε) and therefore the
curvature contribution to the energy. This would in particular be crucial in the analysis
described in Remark 2.3 below, but we do not pursue it here for the sake of brevity.

2. Undoing the mapping to boundary coordinates, one should note that gref(s, ε
−1t) has fast

variations (at scale ε) in both the t direction and s directions. The latter are of limited
amplitude however, which explains that they enter the energy only at subleading order, and
why a piecewise constant profile is sufficient to capture the physics.

3. We had previously proved the density estimate (1.13), which is less precise than (2.6). Note
in particular that (2.6) does not hold at this level of precision if one replaces g2

ref

(
s, ε−1t

)
by

the simpler profile f2
0 (ε−1t).

2We are free to impose fn ≥ 0, which we always do in the sequel.
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4. Strictly speaking the function gref is defined only in the boundary layer Ãε, so that (2.6)
should be interpreted as if gref would vanish outside Ãε. However the estimate there is
obviously true thanks to the exponential decay of ΨGL.

Remark 2.2 [Regime b→ 1]
A simple inspection of the proof reveals that some of the crucial estimates still hold true even if
b→ 1, where surface superconductivity is also present (see [Alm1, Pan, FK]). The main reason for
assuming b > 1 is that we rely on some well-known decay estimates for the order parameter (Agmon
estimates), which hold only in this case. When b → 1 one can indeed find suitable adaptations
of those estimates (see, e.g., [FH3, Chapter 12]), which however make the analysis much more
delicate. In particular the positivity of the cost function (Lemma A.4 in Section A.2) heavily relies
on the assumption b > 1 and, although it is expected to be true even if b → 1, its proof requires
some non-trivial modifications. Moreover while for b ≥ 1 only surface superconductivity is present
and our strategy has good chances to work, on the opposite, when b↗ 1, a bulk term appears in
the energy asymptotics [FK] and the problem becomes much more subtle.

We now turn to the uniform density estimates that follow from the above theorem. Here we can
be less precise than before. Indeed, as suggested by the previous discussion, a density deviation of
order ε on a length scale of order ε only produces a O(ε2) error in the energy. Thus, using (2.5)
we may only rule out local variations of a smaller order than the tangential variations included
in (2.4), and for this reason we will compare |ΨGL| in L∞ norm only to the simplified profile
f0(ε−1τ), since by (1.17) f0(t) − fk(t) = O(ε). Also, the result may be proved only in a region
where the density is relatively large3, namely in

Abl :=
{
r ∈ Ω : f0

(
ε−1τ

)
≥ γε

}
⊂
{

dist(r, ∂Ω) ≤ 1
2ε
√
| log γε|

}
, (2.8)

where bl stands for “boundary layer” and 0 < γε � 1 is any quantity such that

γε � ε1/6| log ε|a, (2.9)

where a > 0 is a suitably large constant related4 to the power of | log ε| appearing in (2.5). The
inclusion in (2.8) follows from (A.6) below and ensures we are really considering a significant
boundary layer: recall that the physically relevant region has a thickness roughly of order ε| log ε|.

Theorem 2.2 (Uniform density estimates and Pan’s conjecture).
Under the assumptions of the previous theorem, it holds∥∥∣∣ΨGL(r)

∣∣− f0

(
ε−1τ

)∥∥
L∞(Abl)

≤ Cγ−3/2
ε ε1/4| log ε|∞ � 1. (2.10)

In particular for any r ∈ ∂Ω we have∣∣∣∣ΨGL(r)
∣∣− f0(0)

∣∣ ≤ Cε1/4|| log ε|∞| � 1, (2.11)

where C does not depend on r.

Estimate (2.11) solves the original form of Pan’s conjecture [Pan, Conjecture 1]. In addition,
since f0 is strictly positive, the stronger estimate (2.10) ensures that ΨGL does not vanish in the
boundary layer (2.8). A physical consequence of the theorem is thus that normal inclusions such
as vortices in the surface superconductivity phase may not occur. This is very natural in view of
the existing knowledge on type-II superconductors but had not been proved previously.

3Recall that it decays exponentially far from the boundary.
4Assuming that (2.5) holds true with an error of order ε| log ε|γ , for some given γ > 0, the constant a can be any

number satisfying a > 1
6
(γ + 3).
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We now return to the question of the phase of the order parameter. Of course, the full phase
cannot be estimated because of gauge invariance but gauge invariant quantities linked to the phase
can. One such quantity is the winding number (a.k.a. phase circulation or topological degree) of
ΨGL around the boundary ∂Ω defined as

2π deg (Ψ, ∂Ω) := −i
∫
∂Ω

ds
|Ψ|
Ψ
∂s

(
Ψ

|Ψ|

)
, (2.12)

∂s standing for the tangential derivative. Theorem 2.2 ensures that deg (Ψ, ∂BR) ∈ Z is well-
defined. Roughly, this quantity measures the number of quantized phase singularities (vortices)
that ΨGL has inside Ω. Our estimate is as follows:

Theorem 2.3 (Winding number of ΨGL on the boundary).
Under the previous assumptions, any GL minimizer ΨGL satisfies

deg
(
ΨGL, ∂Ω

)
=
|Ω|
ε2

+
|α0|
ε

+O(ε−3/4| log ε|∞) (2.13)

in the limit ε→ 0.

Note that the remainder term in (2.13) is much larger than ε−1|α(k)− α0| = O(1) so that the
above result does not allow to estimate corrections due to curvature. We believe that, just as we
had to expand the energy to second order to obtain the refined first order results Theorems 2.2
and 2.3, obtaining uniform density estimates and degree estimates at the second order would
require to expand the energy to the third order, which goes beyond the scope of the present paper.

We had proved Theorems 2.2 and 2.3 before in the particular, significantly easier, case where Ω is
a disc. The next subsection contains a sketch of the proof of the general case, where new ingredients
enter, due to the necessity to take into account the non-trivial curvature of the boundary. Before
proceeding, we make a last remark in this direction:

Remark 2.3 [Curvature dependence of the order parameter]
In view of previous results [FH1] in the regime b ↗ Θ−1

0 , a larger curvature should imply a
larger local value of the order parameter. In the regime of interest to this paper, this will only
be a subleading order effect, but it would be interesting to capture it by a rigorous asymptotic
estimate.

It has been proved before [Pan, FK] that in the surface superconductivity regime (1.4)

1

b1/2ε
|ΨGL|4dr −→

ε→0
C(b)ds(r) (2.14)

as measures, with dr the Lebesgue measure and ds(r) the 1D Hausdorff measure along the bound-
ary. Here C(b) > 0 is a constant which depends only on b. A natural conjecture is that one can
derive a result revealing the next-order behavior, of the form

1

ε

(
1

b1/2ε
|ΨGL|4dr− C(b)ds(r)

)
−→
ε→0

C2(b)k(s)ds(r) (2.15)

with C2(b) > 0 depending only on b. The form of the right-hand side is motivated by two consid-
erations:

• In view of [FH1] we should expect that increasing k increases the local value of |ΨGL|, whence
the sign of the correction;

• Since the curvature appears only at subleading order in this regime, perturbation theory
suggests that the correction should be linear in the curvature.

We plan to substantiate this picture further in a later work.
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2.2 Sketch of proof

In the regime of interest to this paper, the GL order parameter is concentrated along the boundary
of the sample and the induced magnetic field is extremely close to the applied one. The tools
allowing to prove these facts are well-known and described at length in the monograph [FH3]. We
shall thus not elaborate on this and the formal considerations presented in this subsection take as
starting point the following effective functional

GAε
[ψ] :=

∫ |∂Ω|

0

ds

∫ c0| log ε|

0

dt (1− εk(s)t)

{
|∂tψ|2 +

1

(1− εk(s)t)2
|(ε∂s + iaε(s, t))ψ|2

− 1

2b

[
2|ψ|2 − |ψ|4

]}
, (2.16)

where (s, t) represent boundary coordinates in the original domain Ω, the normal coordinate t
having been dilated on scale ε, and ψ can be thought of as ΨGL(r(s, εt)), i.e., the order parameter
restricted to the boundary layer. We denote k(s) the curvature of the original domain and have
set

aε(s, t) := −t+ 1
2εk(s)t2 + εδε, (2.17)

with

δε :=
γ0

ε2
−
⌊γ0

ε2

⌋
, γ0 :=

1

|∂Ω|

∫
Ω

dr curl AGL, (2.18)

b · c standing for the integer part. Note that a specific choice of gauge has been made to ob-
tain (2.16).

Thanks to the methods exposed in [FH3], one can show that the minimization of the above
functional gives the full GL energy in units of ε−1, up to extremely small remainder terms, provided
c0 is chosen lare enough. To keep track of the fact that the domain Aε = [0, |∂Ω|] × [0, c0| log ε|]
corresponds to the unfolded boundary layer of the original domain and ψ to the GL order parameter
in boundary coordinates, one should impose periodicity of ψ in the s direction.

Here we shall informally explain the main steps of the proof that

GAε =

∫ |∂Ω|

0

ds E1D
? (k(s)) +O(ε2| log ε|∞). (2.19)

where GAε is the ground state energy associated to (2.16). When k(s) ≡ k is constant (the disc
case), one may use the ansatz

ψ(s, t) = f(t)e−i(ε
−1αs−εδεs). (2.20)

and recover the functional (1.15). It is then shown in [CR] that the above ansatz is essentially
optimal if one chooses α = α(k) and f = fk. An informal sketch of the proof in the case k = 0
is given in Section 3.2 therein. The main insight in the general case is to realize that the above
ansatz stays valid locally in s. Indeed, since the terms involving k(s) in (2.16) come multiplied by
an ε factor, it is natural to expect variations in s to be weak and the state of the system to be
roughly of the form (1.19), directly inspired by (2.20).

As usual the upper and lower bound inequalities in (2.19) are proved separately.

Upper bound. To recover the integral in the energy estimate (2.19), we use a Riemann sum

over the cell decomposition Aε =
⋃Nε

n=1 Cn introduced at the beginning of Section 2.1. Indeed, as
already suggested in (2.4), a piecewise constant approximation in the s-direction will be sufficient.
Our trial state roughly has the form

ψ(s, t) = fn(t)e−i(ε
−1αns−εδεs), for sn ≤ s ≤ sn+1. (2.21)
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Of course, we need to make this function continuous to obtain an admissible trial state, and we do
so by small local corrections, described in more details in Section 4.1. We may then approximate
the curvature by its mean value in each cell, making a relative error of order ε2 per cell. Evaluating
the energy of the trial state in this way we obtain an upper bound of the form

GAε
≤

Nε∑
n=1

|sn+1 − sn|E1D
? (kn)(1 + o(1)) +O(ε2) (2.22)

where the o(1) error is due to the necessary modifications to (2.21) to make it continuous. The
crucial point is to be able to control this error by showing that the modification needs not be a
large one. This requires a detailed analysis of the k dependence of the relevant quantities E1D

? (k),
α(k) and fk obtained by minimizing (1.15). Indeed, we prove in Section 3.1 below that∣∣E1D

? (k)− E1D
? (k′)

∣∣ ≤ Cε| log ε|∞|k − k′|, |α(k)− α(k′)| ≤ Cε1/2| log ε|∞|k − k′|1/2

and, in a suitable norm,

fk′ = fk +O
(
ε1/2| log ε|∞|k − k′|1/2

)
,

which will allow to obtain the desired control of the o(1) in (2.22) and conclude the proof by a
Riemann sum argument.

Lower bound. In view of the argument we use for the upper bound, the natural idea to obtain
the corresponding lower bound is to use the strategy for the disc case we developed in [CR] locally
in each cell. In the disc case, a classical method of energy decoupling and Stokes’ formula lead to
the lower bound5

GAε
[ψ] ' E1D

? (k) +

∫
Aε

dsdt (1− εkt)Kk(t)
(
|∂tv|2 + ε2

(1−εkt)2 |∂sv|
2
)

(2.23)

where we have used the strict positivity of fk to write

ψ(s, t) = fk(t)e−i(ε
−1α(k)s−εδεs)v(s, t) (2.24)

and the “cost function” is

Kk(t) = f2
k (t) + Fk(t),

Fk(t) = 2

∫ t

0

dη
η + α(k)− 1

2εkη
2

1− εkη
f2
k (η).

This method is inspired from our previous works on the related Gross-Pitaevskii theory of rotating
Bose-Einstein condensates [CRY, CPRY1, CPRY2] (informal summaries may be found in [CPRY3,
CPRY4]). Some of the steps leading to (2.23) have also been used before in this context [AH].
The desired lower bound in the disc case follows from (2.23) and the fact that Kk is essentially
positive6 for any k. This is proved by carefully exploiting special properties of fk and α(k).

To deal with the general case where the curvature is not constant, we again split the domain Aε
into small cells, approximate the curvature by a constant in each cell and use the above strategy
locally. A serious new difficulty however comes from the use of Stokes’ formula in the derivation
of (2.23). We need to reduce the terms produced by Stokes’ formula to expressions involving
only first order derivatives of the order parameter, using further integration by parts. In the disc
case, boundary terms associated with this operation vanish due to the periodicity of ψ in the s

5We simplify the argument for pedagogical purposes.
6More precisely it is positive except possibly for large t, a region that can be handled using the exponential decay

of GL minimizers (Agmon estimates).
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variable. When doing the integrations by parts in each cell, using different fk and α(k) in (2.24),
the boundary terms do not vanish since we artificially introduce some (small) discontinuity by
choosing a cell-dependent profile fkn as reference.

To estimate these boundary terms we proceed as follows: the term at s = sn+1, made of one
part coming from the cell Cn and one from the cell Cn+1 is integrated by parts back to become a
bulk term in the cell Cn. In this sketch we ignore a rather large amount of technical complications
and state what is essentially the conclusion of this procedure:

GAε [ψ] '
Nε∑
n=1

[
|sn+1 − sn|E1D

? (kn) +

∫
Cn

dsdt (1− εknt) K̃n

(
|∂tun|2 + ε2

(1−εknt)2
|∂sun|2

)]
(2.25)

where
un(s, t) = f−1

kn
(t)ei(ε

−1α(k)s+εδεs)ψ(s, t) (2.26)

and the “modified cost function” is

K̃n(s, t) = Kkn(t)− |∂sχn(s)||In,n+1(t)| − |χn(s)| |∂tIn,n+1(t)| ,

In,n+1(t) = Fkn(t)− Fkn+1(t)
f2
kn

(t)

f2
kn+1

(t)
,

and χn is a suitable localization function supported in Cn with χn(sn+1) = 1 that we use to perform
the integration by parts in Cn. Note that the dependence of the new cost function on both kn and
kn+1 is due to the fact that the original boundary terms at sn+1 that we transform into bulk terms
in Cn involved both un and un+1.

The last step is to prove a bound of the form

|In,n+1(t)|+ |∂tIn,n+1(t)| ≤ Cε| log ε|∞f2
kn(t) (2.27)

on the “correction function” In,n+1, so that

K̃n(t) ≥ (1− Cε| log ε|∞) f2
kn(t) + Fkn(t).

This allows us to conclude that (essentially) K̃n ≥ 0 by a perturbation of the argument applied to
Kkn in [CR] and thus concludes the lower bound proof modulo the same Riemann sum argument as
in the upper bound part. Note the important fact that the quantity in the l.h.s. of (2.27) is proved
to be small relatively to f2

kn
(t), including in a region where the latter function is exponentially

decaying. This bound requires a thorough analysis of auxiliary functions linked to (1.15) and is
in fact a rather strong manifestation of the continuity of this minimization problem as a function
of k.

The rest of the paper is organized as follows: Section 3 contains the detailed analysis of the
effective, curvature-dependent, 1D problem. The necessary continuity properties as function of
the curvature are given in Subsection 3.1 and the analysis of the associated auxiliary functions in
Subsection 3.2. The details of the energy upper bound are then presented in Section 4 and the
energy lower bound is proved in Section 5. We deduce our other main results in Section 6. Ap-
pendix A recalls for the convenience of the reader some material from [CR] that we use throughout
the paper.

3 Effective Problems and Auxiliary Functions

This section is devoted to the analysis of the 1D curvature-dependent reduced functionals whose
minimization allows us to reconstruct the leading and sub-leading order of the full GL energy. We
shall prove results in two directions:
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• We carefully analyse the dependence of the 1D variational problems as a function of curvature
in Subsection 3.1. Our analysis, in particular the estimate of the subleading order of the GL
energy, requires some quantitative control on the variations of the optimal 1D energy, phase
and density when the curvature parameter is varied, that is when we move along the boundary
layer of the original sample along the transverse direction.

• In our previous paper [CR] we have proved the positivity property of the cost function which
is the main ingredient in the proof of the energy lower bound in the case of a disc (constant
curvature). As mentioned above, the study of general domains with smooth curvature that
we perform here will require to estimate more auxiliary functions, which is the subject of
Subsection 3.2.

We shall use as input some key properties of the 1D problem at fixed k that we proved in [CR].
These are recalled in Appendix A below for the convenience of the reader.

3.1 Effective 1D functionals

We take for granted the three crucial but standard steps of reduction to the boundary layer,
replacement of the vector potential and mapping to boundary coordinates. Our considerations
thus start from the following reduced GL functional giving the original energy in units of ε−1, up
to negligible remainders:

GAε
[ψ] :=

∫ |∂Ω|

0

ds

∫ c0| log ε|

0

dt (1− εk(s)t)

{
|∂tψ|2 +

1

(1− εk(s)t)2
|(ε∂s + iaε(s, t))ψ|2

− 1

2b

[
2|ψ|2 − |ψ|4

]}
, (3.1)

where k(s) is the curvature of the original domain. We have set

aε(s, t) := −t+ 1
2εk(s)t2 + εδε, (3.2)

and

δε :=
γ0

ε2
−
⌊γ0

ε2

⌋
, γ0 :=

1

|∂Ω|

∫
Ω

dr curl AGL, (3.3)

b · c standing for the integer part. The boundary layer in rescaled coordinates is denoted by

Aε := {r ∈ Ω | dist(r, ∂Ω) ≤ c0ε| log ε|} . (3.4)

The effective functionals that we shall be concerned with in this section are obtained by com-
puting the energy (3.1) of certain special states. In particular we have to go beyond the simple
ansätze considered so far in the literature, e.g., in [FH3, CR], and obtain the following effective
energies:

• 2D functional with definite phase. Inserting the ansatz

ψ(s, t) = g(s, t)e−i(ε
−1S(s)−εδεs) (3.5)

in (3.1), with g and S respectively real valued density and phase, we obtain

E2D
S [g] :=

∫ c0| log ε|

0

dt

∫ |∂Ω|

0

ds (1− εk(s)t)

{
|∂tg|2 +

ε2

(1− εk(s)t)2
|∂sg|2

+

(
t+ ∂sS − 1

2εt
2k(s)

)2
(1− εtk(s))2

g2 − 1

2b

(
2g2 − g4

)}
. (3.6)
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In the particular case where ∂sS = α ∈ 2πZ we may obtain a simpler functional of the
density alone

E2D
α [g] :=

∫ c0| log ε|

0

dt

∫ |∂Ω|

0

ds (1− εk(s)t)

{
|∂tg|2 +

ε2

(1− εk(s)t)2
|∂sg|2

+Wα(s, t)g2 − 1

2b

(
2g2 − g4

)}
, (3.7)

where

Wα(s, t) =

(
t+ α− 1

2k(s)εt2
)2

(1− k(s)εt)2
. (3.8)

However to capture the next to leading order of (3.1) we do consider a non-constant ∂sS to
accommodate curvature variations, which is in some sense the main novelty of the present
paper. In particular, (3.7) does not provide the O(ε) correction to the full GL energy. On
the opposite (3.6) does, once minimized over the phase factor S as well as the density g. We
will not prove this directly although it follows rather easily from our analysis.

• 1D functional with given curvature and phase. If the curvature k(s) ≡ k is constant (the disc
case), the minimization of (3.7) reduces to the 1D problem

E1D
k,α[f ] :=

∫ c0| log ε|

0

dt(1− εkt)
{
|∂tf |2 + Vk,α(t)f2 − 1

2b

(
2f2 − f4

)}
, (3.9)

with

Vk,α(t) :=
(t+ α− 1

2εkt
2)2

(1− εkt)2
. (3.10)

In the sequel we shall denote

Iε = [0, c0| log ε|] =: [0, tε]. (3.11)

Note that (3.9) includes O(ε) corrections due to curvature. As explained above our approach
is to approximate the curvature of the domain as a piecewise constant function and hence an
important ingredient is to study the above 1D problem for different values of k, and prove
some continuity properties when k is varied. For k = 0 (the half-plane case, sometimes
referred to as the half-cylinder case) we recover the familiar

E1D
0,α[f ] :=

∫ c0| log ε|

0

dt
{
|∂tf |2 + (t+ α)2f2 − 1

2b

(
2f2 − f4

)}
, (3.12)

which has been known to play a crucial role in surface superconductivity physics for a long
time (see [FH3, Chapter 14] and references therein).

In this section we provide details about the minimization of (3.9) that go beyond our previous
study [CR, Section 3.1]. We will use the following notation:

• Minimizing (3.9) with respect to f at fixed α we get a minimizer fk,α and an energy E1D(k, α).

• Minimizing the latter with respect to α we get some α(k) and some energy E1D
? (k). It follows

from (3.14) below that α(k) is uniquely defined.

• Corresponding to E1D
? (k) := E1D(k, α(k)) we have an optimal density fk, which minimizes

E1D(k, α(k)), and a potential
Vk(t) := Vk,α(k)(t).
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The following Proposition contains the crucial continuity properties (as a function of k) of these
objects:

Proposition 3.1 (Dependence on curvature of the 1D minimization problem).
Let k, k′ ∈ R be bounded independently of ε and 1 < b < Θ−1

0 , then the following holds:∣∣E1D
? (k)− E1D

? (k′)
∣∣ ≤ Cε|k − k′|| log ε|∞ (3.13)

and
|α(k)− α(k′)| ≤ C (ε|k − k′|)1/2 | log ε|∞. (3.14)

Finally, for all n ∈ N, ∥∥∥f (n)
k − f (n)

k′

∥∥∥
L∞(Iε)

≤ C (ε|k − k′|)1/2 | log ε|∞. (3.15)

We first prove (3.13) and (3.14) and explain that these estimates imply the following lemma:

Lemma 3.1 (Preliminary estimate on density variations).
Under the assumptions of Proposition 3.1 it holds∥∥f2

k − f2
k′

∥∥
L2(Iε)

≤ C (ε|k − k′|)1/2 | log ε|∞. (3.16)

Proof of Lemma 3.1. We proceed in three steps:

Step 1. Energy decoupling. We use the strict positivity of fk recalled in the appendix to
write any function f on Iε as

f = fkv.

We can then use the variational equation (A.1) satisfied by fk to decouple the α′, k′ functional in
the usual way, originating in [LM]. Namely, we integrate by parts and use the fact that fk satisfies
Neumann boundary conditions to write

∫ c0| log ε|

0

dt (1− εk′t)(∂tf)2 =

∫ c0| log ε|

0

dt (1− εk′t)
[
v2(∂tfk)2 + f2

k (∂tv)2 + 2fk∂tfkv∂tv
]

=

∫ c0| log ε|

0

dt (1− εk′t)
[
f2
k (∂tv)2 +

(
εk′

1−εk′t −
εk

1−εkt

)
v2fk∂tfk − f2

kv
2
(
Vk + 1

b (f2
k − 1)

)]
.

Inserting this into the definition of E1D
k′,α′ and using (A.3), we obtain for any f

E1D
k′,α′ [f ] = E1D

? (k) + Fred[v]

+

∫ c0| log ε|

0

dt (1− εk′t) (Vk′,α′(t)− Vk(t)) f2
kv

2

+
1

b
ε(k′ − k)

∫ c0| log ε|

0

dt tf4
k + ε

∫ c0| log ε|

0

dt
(
k′ − k 1−εk′t

1−εkt

)
|v|2fk∂tfk (3.17)

with

Fred[v] =

∫ c0| log ε|

0

dt (1− εk′t)
{
f2
k (∂tv)2 + 1

2bf
4
k

(
1− v2

)2}
. (3.18)

In the case α′ = α(k) we can insert the trial state v ≡ 1 in the above, which gives

E1D
? (k′) ≤ E1D

k′,α(k) ≤ E
1D
? (k) + Cε|k − k′|| log ε|∞ (3.19)
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in view of the bounds on fk recalled in Appendix A and the easy estimate∣∣Vk′,α(k)(t)− Vk(t)
∣∣ ≤ Cε|k − k′|| log ε|∞

for any t ∈ Iε. Changing the role of k and k′ in (3.19) we obtain the reverse inequality

E1D
? (k) ≤ E1D

? (k′) + Cε|k − k′|| log ε|∞,

and hence (3.13) is proved.

Step 2. Use of the cost function. We now consider the case α′ = α(k′), f = fk′ and bound
from below the term on the second line of (3.17). A simple computation gives∫ c0| log ε|

0

dt (1− εk′t)
(
Vk′,α(k′) − Vk,α(k)

)
f2
kv

2

=

∫ c0| log ε|

0

dt (1− εkt)−1 (α(k′)− α(k))
(
2t+ α(k) + α(k′)− εkt2

)
f2
kv

2 +O(ε|k − k′|)

= (α(k′)− α(k))
2
∫ c0| log ε|

0

dt (1− εk′t)−1f2
kv

2

+ 2(α(k′)− α(k))

∫ c0| log ε|

0

dt
t+ α(k)− 1

2εkt
2

1− εkt
f2
kv

2 +O(ε|k − k′|). (3.20)

We may now follow closely the procedure of [CR, Section 5.2]: with the potential function Fk
defined in (A.8) below we have

2
t+ α(k)− 1

2εkt
2

1− εkt
f2
k = ∂tFk(t)

and hence an integration by parts yields (boundary terms vanish thanks to Lemma A.3)

2

∫ c0| log ε|

0

dt
t+ α(k)− 1

2εkt
2

1− εkt
f2
kv

2 = −2

∫ c0| log ε|

0

dt Fkv∂tv. (3.21)

We now split the integral into one part running from 0 to t̄k,ε and a boundary part running from
t̄k,ε to c0| log ε|, where t̄k,ε is defined in (A.12) and (A.13) below. For the second part, it follows
from the decay estimates of Lemma A.2 that∫ c0| log ε|

t̄k,ε

dt Fkv∂tv = O(ε∞). (3.22)

To see this, one can simply adapt the procedure in [CR, Eqs. (5.21) – (5.28)]. The bound (3.22)
is in fact easier to derive than the corresponding estimate in [CR] because the decay estimates in
Lemma A.2 are stronger than the Agmon estimates we had to use in that case. Details are thus
omitted.

We turn to the main part of the integral (3.21), which lives in [0, t̄k,ε]. Since Fk is negative we
have, using Lemma A.4 and Cauchy-Schwarz,∣∣∣∣2(α(k′)− α(k))

∫ t̄k,ε

0

dt Fkv∂tv

∣∣∣∣
≤ (α(k′)− α(k))2

∫ t̄k,ε

0

dt (1− εk′t)−1 |Fk| v2 +

∫ t̄k,ε

0

dt (1− εk′t) |Fk| (∂tv)2

≤ (1− dε)(α(k′)− α(k))2

∫ t̄k,ε

0

dt (1− εk′t)−1f2
kv

2 + (1− dε)
∫ t̄k,ε

0

dt(1− εk′t)f2
k (∂tv)2
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for any 0 < dε ≤ C| log ε|−4. Inserting this bound and (3.22) in (3.17), using (3.20) and (3.21),
yields the lower bound

E1D
? (k′) ≥ E1D

? (k) +

∫ c0| log ε|

0

dt (1− εtk′)
{
dεf

2
k (∂tv)2 + dε

(α′ − α(k))2

(1− εtk′)2
f2
kv

2 +
f4
k

2b

(
1− v2

)2}
+ ε

∫ c0| log ε|

0

dt v2fk∂tfk

(
k′ − k 1− εtk′

1− εtk

)
− Cε|k − k′|| log ε|∞ (3.23)

where v = fk′/fk and we also used the uniform bound (A.2) to estimate the fourth term of the
r.h.s. of (3.17).

Step 3. Conclusion. We still have to bound the first term in the second line of (3.23):

ε

∫ c0| log ε|

0

dt v2fk∂tfk

(
k′ − k 1− εk′t

1− εkt

)
=

1

2

[
v2f2

k

(
εk′ − εk 1− εk′t

1− εkt

)]c0| log ε|

0

+

∫ c0| log ε|

0

dt v2f2
k

εk(k′ − k)

(1− εkt)2
−
∫ c0| log ε|

0

dt v∂tvf
2
k

(
εk′ − εk 1− εk′t

1− εkt

)
.

The first two terms are both O(ε|k − k′|| log ε|∞) thanks to (A.2) applied to f2
k′ = f2

kv
2. For the

third one we write∣∣∣∣ ∫ c0| log ε|

0

dt v∂tvf
2
k

(
εk′ − εk 1− εk′t

1− εkt

) ∣∣∣∣ ≤ Cε|k − k′|| log ε|∞
∫ c0| log ε|

0

dt v|∂tv|f2
k

≤ Cε|k − k′|| log ε|∞
[ ∫ c0| log ε|

0

dt f2
kv

2 +

∫ c0| log ε|

0

dt f2
k (∂tv)2

]
.

Inserting this in (3.23), using again (A.2) and dropping a positive term, we finally get

E1D
? (k′) ≥ E1D

? (k) + | log ε|−5(α(k′)− α(k))2

∫ c0| log ε|

0

dt (1− εk′t)f2
k′

+
1

2b

∫ c0| log ε|

0

dt (1− εk′t)
(
f2
k − f2

k′
)2 − Cε|k − k′|| log ε|∞ (3.24)

where we have chosen dε = | log ε|−5, which is compatible with the requirement 0 < dε ≤
C| log ε|−4. Combining with the estimate (3.13) that we proved in Step 1 concludes the proof
of (3.14). To get (3.16) one has to use in addition (A.6), which guarantees that under the assump-
tions 1 < b < Θ−1

0

‖fk′‖L2(Iε) ≥ C > 0

for some constant C independent of ε.

To conclude the proof of Proposition 3.1 there only remains to discuss (3.15). We shall upgrade
the estimate (3.16) to better norms, taking advantage of the 1D nature of the problem and using
a standard bootstrap argument.

Proof of Proposition 3.1. We write fk = fk′ + (fk−fk′) and expand the energy E1D
? (k) = E1D

k [fk],
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using the variational equation (A.1) for fk′ :

E1D
? (k) ≥ E1D

? (k′) +

∫
Iε

dt(1− εkt)|∂t(fk − fk′)|2 +

∫
Iε

dt(1− εkt)Vk(fk − fk′)2

+

∫
Iε

dt(1− εkt)(Vk − Vk′)f2
k′ + 2

∫
Iε

dt(1− εkt)fk′(fk − fk′)(Vk − Vk′)

+
1

2b

∫
Iε

dt(1− εkt)
[
6f2
k′(fk − fk′)2 + 4fk′(fk − fk′)3 + (fk − fk′)4 − 2(fk − fk′)2

]
− Cε|k − k′|| log ε|∞

where the O(ε|k − k′|| log ε|∞) is as before due to the replacement of the curvature k ↔ k′. Using
the same procedure to expand E1D

? (k′) = E1D
k′ [fk′ ] and combining the result with the above we

obtain

E1D
? (k) ≥ E1D

? (k) + 2

∫
Iε

dt(1− εkt)|∂t(fk − fk′)|2 +

∫
Iε

dt(1− εkt)(Vk + Vk′)(fk − fk′)2

+

∫
Iε

dt(1− εkt)(Vk − Vk′)(f2
k′ − f2

k )

+ 2

∫
Iε

dt(1− εkt)(fk′(fk − fk′)− fk(fk′ − fk))(Vk − Vk′)

+
1

2b

∫
Iε

dt(1− εkt)(fk − fk′)2
[
4f2
k′ + 4f2

k + 4fk′fk − 4
]

− Cε|k − k′|| log ε|∞.

Hence it holds

Cε|k − k′|| log ε|∞ ≥ 2

∫
Iε

dt(1− εkt)|∂t(fk − fk′)|2

+

∫
Iε

dt(1− εkt)(Vk − Vk′)(f2
k − f2

k′)

+

∫
Iε

dt(1− εkt)(fk − fk′)2

[
Vk + Vk′ +

2

b

(
f2
k′ + f2

k + fk′fk − 2
)]
. (3.25)

Next we note that thanks to (3.14)

sup
Iε

|Vk − Vk′ | ≤ C (|α(k)− α(k′)|+ ε|k − k′|) | log ε|∞ ≤ C (ε|k − k′|)1/2 | log ε|∞

as revealed by an easy computation starting from the expression (3.10). Thus, using (3.16) and
the Cauchy-Schwartz inequality,∣∣∣∣∫

Iε

dt(1− εkt)(Vk − Vk′)(f2
k − f2

k′)

∣∣∣∣ ≤
C| log ε|1/2 sup

Iε

|Vk − Vk′ |
∥∥f2
k − f2

k′

∥∥
L2(Iε)

≤ Cε|k − k′|| log ε|∞. (3.26)

For the term on the third line of (3.25) we notice that, using the growth of the potentials Vk
and Vk′ for large t, the integrand is positive in

Ĩε :=
[
c1(log | log ε|)1/2, c0| log ε|

]
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for any constant c1 and ε small enough. On the other hand, combining (3.16) and the pointwise
lower bound in (A.6) we have

‖fk − fk′‖L2(Ĩε) ≤ C (ε|k − k′|)1/2 | log ε|∞.

Splitting the integral into two pieces we thus have∫
Iε

dt(1− εkt)(fk − fk′)2
[
Vk + Vk′ + 2

b

(
f2
k′ + f2

k + fk′fk − 2
)]
≥ −Cε|k − k′|| log ε|∞.

Using this and (3.26) we deduce from (3.25) that∫
Iε

dt(1− εkt)|∂t(fk − fk′)|2 ≤ Cε|k − k′|| log ε|∞ (3.27)

and combining with the previous L2 bound this gives

‖fk − fk′‖H1(Ĩε) ≤ C (ε|k − k′|)1/2 | log ε|∞.

Since we work on a 1D interval, the Sobolev inequality implies

‖fk − fk′‖L∞(Ĩε) ≤ C (ε|k − k′|)1/2 | log ε|∞. (3.28)

In particular∣∣∣fk(c1(log | log ε|)1/2)− fk′(c1(log | log ε|)1/2)
∣∣∣ ≤ C (ε|k − k′|)1/2 | log ε|∞.

Then, integrating the bound (3.27) from c1(log | log ε|)1/2 to c0| log ε| we can extend (3.28) to the
whole interval Iε:

‖fk − fk′‖L∞(Iε) ≤ C (ε|k − k′|)1/2 | log ε|∞,

which is (3.15) for n = 0. The bounds on the derivatives follow by a standard bootstrap argument,
inserting the L∞ bound in the variational equations.

3.2 Estimates on auxiliary functions

In this Section we collect some useful estimates of other quantities involving the 1D densities as
well as the optimal phases. It turns out that we need an estimate of the k-dependence of ∂t log(fk),
provided in the following

Proposition 3.2 (Estimate of logarithmic derivatives).
Let k, k′ ∈ R be bounded independently of ε and 1 < b < Θ−1

0 , then the following holds:∥∥∥∥f ′kfk − f ′k′

fk′

∥∥∥∥
L∞(Iε)

≤ C (ε|k − k′|)1/2 | log ε|∞. (3.29)

Proof. Let us denote for short

g(t) :=
f ′k(t)

fk(t)
− f ′k′(t)

fk′(t)
. (3.30)

We first notice that the estimate is obviously true in the region where fk ≥ | log ε|−M for any
M > 0 finite, thanks to (3.15) and (A.7):

|g(t)| ≤ |f
′
k − f ′k′ |
fk

+
|f ′k′ | |fk − fk′ |

fkfk′
≤ | log ε|M |f ′k − f ′k′ |+ | log ε|M+3 |fk − fk′ |

≤ C (ε|k − k′|)1/2 | log ε|∞.
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Let t∗ be the unique solution to fk(t∗) = | log ε|−M (uniqueness follows from the properties of fk
discussed in Proposition A.1). To complete the proof it thus suffices to prove the estimate in the
region [t∗, c0| log ε|]. Notice also that thanks to (A.6), it must be that t∗ →∞ when ε→ 0.

At the boundary of the interval [t∗, tε] (recall (3.11)), one has

g(t∗) = O
(

(ε|k − k′|)1/2 | log ε|M
)
, g(tε) = 0, (3.31)

because of Neumann boundary conditions. Hence if the supremum of |g| is reached at the boundary
there is nothing to prove. Let us then assume that supt∈[t∗,tε] |g| = |g(t0)|, for some t∗ < t0 < tε,
such that g′(t0) = 0, i.e.,

f ′′k (t0)

fk(t0)
− f ′′k′(t0)

fk′(t0)
+

(f ′k(t0))
2

f2
k (t0)

− (f ′k′(t0))
2

f2
k′(t0)

= 0. (3.32)

Since fk and fk′ are both decreasing in [t∗, tε] (see again Proposition A.1) we also have

(f ′k(t0))
2

f2
k (t0)

− (f ′k′(t0))
2

f2
k′(t0)

=

[
|f ′k(t0)|
fk(t0)

+
|f ′k′(t0)|
fk′(t0)

]
g(t0). (3.33)

The variational equations satisfied by fk and fk′ on the other hand imply∣∣∣∣f ′′k (t0)

fk(t0)
− f ′′k′(t0)

fk′(t0)

∣∣∣∣ =

∣∣∣∣ εkf ′k(t0)

(1− εkt)fk(t0)
− εk′f ′k′(t0)

(1− εk′t)fk′(t0)
+ Vk(t0)− Vk′(t0)

− 1

b

(
f2
k (t0)− f2

k′(t0)
) ∣∣∣∣ ≤ C [(ε|k − k′|)1/2 | log ε|∞ + ε|g(t0)|

]
, (3.34)

thanks to (3.14) and (3.15). For the first two terms the estimate (A.7) has also been used for the
derivatives f ′k and f ′k′ :

εkf ′k(t0)

(1− εkt)fk(t0)
− εk′f ′k′(t0)

(1− εk′t)fk′(t0)
= O(ε)g(t0) +

f ′k′(t0)

fk′(t0)

(
εk

1− εkt
− εk′

1− εk′t

)
= O(ε)g(t0) +O(ε|k − k′|).

Plugging (3.33) and (3.34) into (3.32), we get the estimate[
|f ′k(t0)|
fk(t0)

+
|f ′k′(t0)|
fk′(t0)

+O(ε)

]
g(t0) = O

(
(ε|k − k′|)1/2 | log ε|∞

)
. (3.35)

Now if
|f ′k(t0)|
fk(t0)

+
|f ′k′(t0)|
fk′(t0)

≥ | log ε|−2,

the result follows immediately. Therefore we can assume that

|f ′k(t0)|
fk(t0)

+
|f ′k′(t0)|
fk′(t0)

≤ | log ε|−2, (3.36)

but we claim that this also implies

|f ′k(t)|
fk(t)

+
|f ′k′(t)|
fk′(t)

≤ | log ε|−2 for any t ∈ [t0, tε]. (3.37)

Indeed, setting
hk(t) := −f ′k(t)/fk(t),
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a simple computation involving the variational equation (A.1) yields

h′k(t) = − εkf ′k(t)

(1− εkt)fk(t)
− Vk(t) +

1

b

(
1− f2

k (t)
)

+ h2
k(t) = −Vk(t) + h2

k(t) +O(1),

using (A.7) again. Hence h′k(t0) < 0, since Vk(t0) � 1, which follows from t0 > t∗ � 1, and
therefore (3.37) holds. An identical argument applies to hk′ and thus to the sum

hk + hk′ =: h.

Finally, the explicit expression of g′(t) in combination with (3.37) gives for t ≥ t0

|g(t)| =
∣∣∣∣ ∫ tε

t

dη g′(η)

∣∣∣∣ ≤ ∫ tε

t

dη
[
(h(η) +O(ε)) |g(η)|+O

(
(ε|k − k′|)1/2 | log ε|∞

)]
≤ C| log ε|−1 sup

t∈[t0,tε]

|g(t)|+O
(

(ε|k − k′|)1/2 | log ε|∞
)
, (3.38)

which implies the result.

The above estimate is mainly useful in providing bounds on quantities of the form

Ik,k′(t) := Fk(t)− Fk′(t)
f2
k (t)

f2
k′(t)

, (3.39)

alluded to in Subsection 2.2. As announced there, the main difficulty is that we need to show that
Ik,k′ is small relatively to f2

k , which is the content of the following corollary. We need the following
notation

[0, t̄k,ε] :=
{
t : fk(t) ≥ | log ε|3fk(tε)

}
. (3.40)

Note that the monotonicity for large t of fk guarantees that the above set is indeed an interval
and that

t̄k,ε = tε +O(log | log ε|). (3.41)

Corollary 3.1 (Estimates on the correction function).
Under the assumptions of Proposition 3.2, it holds

sup
t∈[0,tε]

∣∣∣∣Ik,k′f2
k

∣∣∣∣ ≤ C (ε|k − k′|)1/2 | log ε|∞ (3.42)

and, setting t̄ε := min {t̄k,ε, t̄k′,ε},

sup
t∈[0,t̄ε]

∣∣∣∣∂tIk,k′f2
k

∣∣∣∣ ≤ C (ε|k − k′|)1/2 | log ε|∞. (3.43)

Proof. We write
Ik,k′(t)

f2
k (t)

=
Fk(t)

f2
k (t)

− Fk′(t)

f2
k′(t)

Using the definition of the potential function (A.8) and its properties (A.9), we can rewrite

Fk(t)

f2
k (t)

− Fk′(t)

f2
k′(t)

= −
∫ tε

t

dη

[
bk(η)

f2
k (η)

f2
k (t)

− bk′(η)
f2
k′(η)

f2
k′(t)

]
=

∫ tε

t

dη

[
bk(η)

(
f2
k′(η)

f2
k′(t)

− f2
k (η)

f2
k (t)

)
+ (bk′(η)− bk(η))

f2
k′(η)

f2
k′(t)

]
. (3.44)
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We first observe that for any η ≥ t
fk′(η)

fk′(t)
≤ C, (3.45)

as it easily follows by combining the monotonicity of fk for t large with its strict positivity close
to the origin (see Proposition A.1 and Lemma A.2 for the details). Hence we can bound the last
term on the r.h.s. of (3.44) as∣∣∣∣ ∫ tε

t

dη (bk′(η)− bk(η))
f2
k′(η)

f2
k′(t)

∣∣∣∣ ≤ C| log ε| ‖bk′ − bk‖L∞(Iε) = O
(

(ε|k − k′|)1/2 | log ε|∞
)
, (3.46)

since by (3.14)

bk′(t)− bk(t) = (1 +O(ε))
(
O(ε|k − k′|t2) + α(k)− α(k′)

)
= O

(
(ε|k − k′|)1/2 | log ε|∞

)
.

For the first term on the r.h.s. of (3.44) we exploit the estimate

fk′(η)

fk′(t)
− fk(η)

fk(t)
= O

(
(ε|k − k′|)1/2 | log ε|∞

)
,

which can be proven by writing

fk(η)

fk(t)
= exp

{∫ η

t

dτ
f ′k(τ)

fk(τ)

}
,

which implies∣∣∣∣fk′(η)

fk′(t)
− fk(η)

fk(t)

∣∣∣∣ =
fk′(η)

fk′(t)

∣∣∣∣1− exp

{∫ η

t

dτ

[
f ′k(τ)

fk(τ)
− f ′k′(τ)

fk′(τ)

]}∣∣∣∣
≤ C

∫ η

t

dτ

∣∣∣∣f ′k(τ)

fk(τ)
− f ′k′(τ)

fk′(τ)

∣∣∣∣ exp

{∫ η

t

dτ

∣∣∣∣f ′k(τ)

fk(τ)
− f ′k′(τ)

fk′(τ)

∣∣∣∣} ≤ C (ε|k − k′|)1/2 | log ε|∞, (3.47)

where we have used (3.45), the estimate |1 − eδ| ≤ |δ|e|δ|, δ ∈ R, and (3.29). Putting together
(3.44) with (3.46) and (3.47), we conclude the proof of (3.42).

To obtain (3.29) we first note that since F ′k(t) ≤ 0, the positivity of Kk in [0, t̄k,ε] recalled in
Lemma A.4 ensures that ∣∣∣∣Fk(t)

f2
k (t)

∣∣∣∣ ≤ 1

in [0, t̄k,ε]. Then we may use (3.29) again to estimate

sup
t∈[0,t̄ε]

∣∣∣∣∂tIk,k′f2
k

∣∣∣∣ = sup
t∈[0,t̄ε]

[
|(1− εkt) bk − (1− εk′t)) bk′ |+ 2

∣∣∣∣Fk′f2
k′

∣∣∣∣∣∣∣∣f ′kfk − f ′k′

fk′

∣∣∣∣]
≤ C (ε|k − k′|)1/2 | log ε|∞,

and the proof is complete.

4 Energy Upper Bound

We now turn to the proof of the energy upper bound corresponding to (2.5), namely we prove the
following:
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Proposition 4.1 (Upper bound to the full GL energy).
Let 1 < b < Θ−1

0 and ε be small enough. Then it holds

EGL
ε ≤ 1

ε

∫ |∂Ω|

0

ds E1D
? (k(s)) + Cε| log ε|∞ (4.1)

where s 7→ k(s) is the curvature function of the boundary ∂Ω as a function of the tangential
coordinate.

This result is proven as usual by evaluating the GL energy of a trial state having the expected
physical features. As is well-known [FH3], such a trial state should be concentrated along the
boundary of the sample, and the induced magnetic field should be chosen close to the applied
one. Before entering the heart of the proof, we briefly explain how these considerations allow us
to reduce to the proof of an upper bound to the reduced functional (3.1). We define

GAε
:= inf {GAε

[ψ], ψ(0, t) = ψ(|∂Ω|, t)} , (4.2)

the infimum of the reduced functional under periodic boundary conditions in the tangential direc-
tion and prove

Lemma 4.1 (Reduction to the boundary functional).
Under the assumptions of Proposition 4.1, it holds

EGL
ε ≤ 1

ε
GAε

+ Cε∞. (4.3)

Proof. This is a standard reduction for which more details may be found in [FH3, Section 14.4.2]
and references therein. See also [CR, Sections 4.1 and 5.1]. We provide a sketch of the proof for
completeness.

We first pick the trial vector potential as

Atrial = F

where F is the induced vector potential written in a gauge where div F = 0, namely the unique
solution of 

div F = 0, in Ω,

curl F = 1, in Ω,

F · ν = 0, on ∂Ω.

Next we introduce boundary coordinates as described in [FH3, Appendix F]: let

γ(ξ) : R \ (|∂Ω|Z)→ ∂Ω

be a counterclockwise parametrization of the boundary ∂Ω such that |γ′(ξ)| = 1. The unit vector
directed along the inward normal to the boundary at a point γ(ξ) will be denoted by ν(ξ). The
curvature k(ξ) is then defined through the identity

γ′′(ξ) = k(ξ)ν(ξ).

Our trial state will essentially live in the region

Ãε := {r ∈ Ω | dist(r, ∂Ω) ≤ c0ε| log ε|} , (4.4)

and in such a region we can introduce tubular coordinates (s, εt) (note the rescaling of the normal
variable) such that, for any given r ∈ Ãε, εt = dist(r, ∂Ω), i.e.,

r(s, εt) = γ′(s) + εtν(s), (4.5)
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which can obviously be realized as a diffeomorphism for ε small enough. Hence the boundary layer
becomes in the new coordinates (s, t)

Aε := {(s, t) ∈ [0, |∂Ω|]× [0, c0| log ε|]} . (4.6)

We now pick a function ψ(s, t) defined on Aε, satisfying periodic boundary conditions in the
s variable. Using a smooth cut-off function χ(t) with χ(t) ≡ 1 for t ∈ [0, c0| log ε|] and χ(t)
exponentially decreasing for t > c0| log ε|, we associate to ψ the GL trial state

Ψtrial(r) := ψ(s, t)χ(t) exp {iφtrial(s, t)} ,

where φtrial is a gauge phase (analogue of (5.4)) depending on Atrial, i.e.,

φtrial(s, t) := −1

ε

∫ t

0

dη ν(s) ·Atrial(r(s, εη)) +
1

ε2

∫ s

0

dξ γ′(ξ) ·Atrial(r(ξ, 0))

−
(
|Ω|
|∂Ω|ε2

−
⌊
|Ω|
|∂Ω|ε2

⌋)
s. (4.7)

Then, with the definition of GAε
as in (3.1), a relatively straightforward computation gives

EGL [Ψtrial,Atrial] ≤
1

ε
GAε

[ψ] + Cε∞,

and the desired result follows immediately. Note that this computation uses the gauge invariance
of the GL functional, e.g., through [FH3, Lemma F.1.1].

The problem is now reduced to the construction of a proper trial state for GAε
. To capture the

O(ε) correction (which depends on curvature) to the leading order of the GL energy (which does
not depend explicitly on curvature), we need a more elaborate function than has been considered
so far. The construction is detailed in Subsection 4.1 and the computation completing the proof
of Proposition 4.1 is given in Subsection 4.2.

4.1 The trial state in boundary coordinates

We start by recalling the splitting of the domain Aε defined in (3.4) into Nε ∝ ε−1 rectangular
cells {Cn}n=1...Nε

with boundaries sn, sn+1 in the s-coordinate such that

sn+1 − sn = `ε ∝ ε,

so that

Nε =
|∂Ω|
`ε

.

We denote
Cn = [sn, sn+1]× [0, c0| log ε|], (4.8)

with the convention that s1 = 0, for simplicity. We will approximate the curvature k(s) inside each
cell by its mean value and set

kn := `−1
ε

∫ sn+1

sn

ds k(s). (4.9)

We also denote by
αn = α(kn) (4.10)

the optimal phase associated to kn, obtained by minimizing E1D(α, kn) with respect to α as in
Section 3.1.
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The assumption about the smoothness of the boundary guarantees that

kn − kn+1 = O(ε). (4.11)

Indeed if we assume that sups∈[0,2π] |∂sk(s)| ≤ C <∞ (independent of ε), one gets

`−1
ε

∣∣∣∣ ∫ kn+1

kn

dsk(s)−
∫ kn+2

kn+1

dsk(s)

∣∣∣∣ = `−1
ε

∣∣∣∣ ∫ kn+1

kn

ds

∫ kn+1

s

dη∂ηk(η)+

∫ kn+2

kn+1

ds

∫ s

kn+1

dη∂ηk(η)

∣∣∣∣
≤ C`ε = O(ε).

We can then apply Proposition 3.1 to obtain

αn − αn+1 = O(ε| log ε|∞), (4.12)∥∥∥f (m)
n − f (m)

n+1

∥∥∥
L∞(Iε)

= O(ε| log ε|∞), (4.13)

for any finite m ∈ N.
Our trial state has the form

ψtrial(s, t) = g(s, t) exp
{
−i
(
ε−1S(s)− εδεs

)}
(4.14)

where δε is the number (3.3). The density g and phase factor S are defined as follows:

• The density. The modulus of our wave function is constructed to be essentially piecewise
constant in the s-direction, with the form fkn(t) in the cell Cn. The admissibility of the trial
state requires that g be continuous and we thus set:

g(s, t) := fkn + χn, (4.15)

where the function χn satisfies

χn(s, t) =

{
0, at s = sn,

fkn+1
(t)− fkn(t), at s = sn+1,

(4.16)

the continuity at the sn boundary being ensured by χn−1. A simple choice is given by

χn(s, t) =
(
fkn+1(t)− fkn(t)

)(
1− s− sn+1

sn − sn+1

)
. (4.17)

Note that |kn − kn+1| ≤ C|sn − sn+1| ≤ Cε since the curvature is assumed to be a smooth
function of s. Clearly, in view of Proposition 3.1 we can impose the following bounds on χn:

|χn| ≤ Cε| log ε|∞, |∂tχn| ≤ Cε| log ε|∞, |∂sχn| ≤ C| log ε|∞, (4.18)

so that χn is indeed only a small correction to the desired density fkn in Cn.

• The phase. The phase of the trial function is dictated by the refined ansatz (1.19): within
the cell Cn it must be approximately equal to αn and globally it must define an admissible
phase factor, i.e., vary of a multiple of 2π after one loop. We then let

S = S(s) = Sloc(s) + Sglo(s)

where Sloc varies locally (on the scale of a cell) and Sglo varies globally (on the scale of the
full interval [0, |∂Ω|]) and is chosen to enforce the periodicity on the boundary of the trial
state. The term Sloc is the main one, and its s derivative should be equal to αn in each cell
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Cn in order that the evaluation of the energy be naturally connected to the 1D functional we
studied before, as explained in Section 3.1. We define Sloc recursively by setting:

Sloc(s) =

{
α1s, in C1,
αn(s− sn) + Sloc(sn), in Cn, n ≥ 2,

(4.19)

which in particular guarantees the continuity of Sloc on [s1, sNε+1[. Moreover we easily
compute (recall that s1 = 0)

Sloc(sn) =

n−1∑
m=2

αm (sm+1 − sm) + α1s2 =

∫ sn

0

ds α(s) +O(ε| log ε|∞). (4.20)

The factor Sglo ensures that

S(sNε+1)− S(s1) = S(sNε+1) ∈ 2πεZ,

which is required for (4.14) to be periodic in the s-direction and hence to correspond to a
single-valued wave function in the original variables. The conditions we impose on Sglo are
thus

Sglo(s1) = 0 (4.21)

Sglo(sNε+1) = 2πε (αNε
(sNε+1 − sNε

) + Sloc(sNε
)− bαNε

(sNε+1 − sNε
) + Sloc(sNε

)c)

with b . c standing for the integer value. Thanks to (4.20), we have

αNε (sNε+1 − sNε) + Sloc(sNε) = O(1)

and we can thus clearly impose that Sglo be regular and

|Sglo| ≤ Cε, |∂sSglo| ≤ Cε. (4.22)

Remark 4.1 (s-dependence of the trial state)
The main novelty here is the fact that the density and phase of the trial state have (small)
variations on the scale of the cells which are of size O(ε) in the s-variable. A noteworthy
point is that the phase needs not have a t-dependence to evaluate the energy at the level of
precision we require. Basically this is associated with the fact that the t2 term in (3.2) comes
multiplied with an ε factor. The main point that renders the computation of the energy
doable is (4.18) and this is where the analysis of Subsection 3.1 enters heavily.

4.2 The energy of the trial state

We may now complete the proof of Proposition 4.1 by proving

Lemma 4.2 (Upper bound for the boundary functional).
With ψtrial given by the preceding construction, it holds

GAε
[ψtrial] ≤

∫ |∂Ω|

0

dsE1D
? (k(s)) +O(ε2| log ε|∞). (4.23)

The upper bound (4.1) follows from Lemmas 4.1 and 4.2 since ψtrial is periodic in the s-variable
and hence an admissible trial state for GAε

.

Proof. As explained in Subsection 3.1, inserting (4.14) into (3.1) yields

GAε
[ψtrial] = E2D

S [g] (4.24)

where E2D
S [g] is defined in (3.6). For clarity we split the estimate of the r.h.s. of the above equation

into several steps. We use the shorter notation fn for fkn when this generates no confusion.
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Step 1. Approximating the curvature. In view of the continuity of the trial function, the
energy is the sum of the energies restricted to each cell. We approximate k(s) by kn in Cn as
announced, and note that since k is regular we have |k(s) − k(sn)| ≤ Cε in each cell, with a
constant C independent of j. We thus have

E2D
S [g] ≤

Nε∑
n=1

∫
Cn

dtds (1− εknt)
{
|∂tg|2 +

ε2

(1− εknt)2
|∂sg|2

+

(
t+ ∂sS − 1

2εt
2kn
)2

(1− εknt)2
g2 − 1

2b

(
2g2 − g4

)} (
1 +O(ε2)

)
(4.25)

since each k-dependent term comes multiplied with an ε factor.

Step 2. Approximating the phase. In Cn we have

∂sS = αn + ∂sSglo = αn +O(ε).

We can thus expand the potential term:

∫
Cn

dtds

(
t+ ∂sS − 1

2εt
2kn
)2

1− εknt
g2 =

∫
Cn

dtds

(
t+ αn − 1

2εt
2kn
)2

1− εknt
g2

+ 2

∫
Cn

dtds ∂sSglo

t+ αn − 1
2εt

2kn

1− εknt
g2 +

∫
Cn

dtds
(∂sSglo)

2

1− εknt
g2 (4.26)

and obviously ∫
Cn

dtds
(∂sSglo)

2

1− εknt
g2 ≤ Cε3| log ε|∞,

because of (4.22) and the size of Cn in the s direction. Next we note that in Cn

g2 = f2
n + 2fnχn + χ2

n

so that, using (A.5) and the fact that ∂sSglo only depends on s we have∫
Cn

dtds ∂sSglo

t+ αn − 1
2εt

2kn

1− εknt
g2 =

∫
Cn

dtds ∂sSglo

t+ αn − 1
2εt

2kn

1− εknt
(
2fnχn + χ2

n

)
,

which is easily bounded by Cε3| log ε|∞ using (4.18), (4.22) and the fact that |sn+1 − sn| ≤ Cε.
All in all:∫

Cn
dtds

(
t+ ∂sS − 1

2εt
2kn
)2

1− εknt
g2 =

∫
Cn

dtds

(
t+ αn − 1

2εt
2kn
)2

1− εknt
g2 +O(ε3| log ε|∞). (4.27)

Step 3. The 1D functional inside each cell. We now have to estimate an essentially 1D
functional in each cell, closely related to (3.9):∫
Cn

dtds (1− εknt)
{
|∂tg|2+

ε2

(1− εknt)2
|∂sg|2+

(
t+ αn − 1

2εt
2kn
)2

(1− εknt)2
g2− 1

2b

(
2g2 − g4

)}
. (4.28)
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We may now expand g according to (4.15) in the above expression and use the variational equa-
tion (A.1) to cancel the first order terms in χn. This yields∫

Cn
dsdt (1− εknt)

{
|∂tg|2 + ε2

(1−εknt)2 |∂sg|
2

+ Vkn(t)g2 − 1
2b

(
2g2 − g4

)}
= `εE

1D
? (kn)

+

∫
Cn

dsdt (1− εknt)
{
|∂tχn|2 + ε2

(1−εtkn)2 |∂sχn|
2 + Vknχ

2
n + 1

2b

(
6χ2

nf
2
n + 4χ3

nfn + χ4
n − 2χ2

n

)}
= `εE

1D
? (kn) +O(ε3| log ε|∞), (4.29)

where we only have to use (4.18) to obtain the final estimate.

Step 4, Riemann sum approximation. Gathering all the above estimates we obtain

E2D
S [g] ≤ `ε

Nε∑
n=1

E1D
? (kn)

(
1 +O(ε2)

)
+O(ε2| log ε|∞) =

∫ |∂Ω|

0

ds E1D
? (k(s)) +O(ε2| log ε|∞).

(4.30)
Indeed, (3.13) implies that inside Cn∣∣E1D

? (kn)− E1D
? (k(s))

∣∣ ≤ Cε`ε| log ε|∞ ≤ Cε2| log ε|∞. (4.31)

Recognizing a Riemann sum of Nε ∝ ε−1 terms in (4.30) and recalling that E1D
? (kn) is of order 1,

irrespective of n, thus leads to (4.30). Combining (4.24) and (4.30) we obtain (4.23) which concludes
the proof of Lemma 4.2 and hence that of Proposition 4.1, via Lemma 4.1.

5 Energy Lower Bound

The main result proven in this section is the following

Proposition 5.1 (Energy lower bound).
Let Ω ⊂ R2 be any smooth simply connected domain. For any fixed 1 < b < Θ−1

0 , in the limit
ε→ 0, it holds

EGL
ε ≥ 1

ε

∫ |∂Ω|

0

ds E1D
? (k(s))− Cε| log ε|∞. (5.1)

We first reduce the problem to the study of decoupled functionals in the boundary layer in
Subsection 5.1 and then provide lower bounds to these in Subsection 5.2, which contains the main
new ideas of our proof.

5.1 Preliminary reductions

As in Section 4, the starting point is a restriction to the boundary layer together with a replacement
of the vector potential. We refer to the proof of Lemma 4.1 and in particular (4.5) for the definition
of the boundary coordinates.

Lemma 5.1 (Reduction to the boundary functional).
Under the assumptions of Proposition 5.1, it holds

EGL
ε ≥ 1

ε
GAε

[ψ]− Cε2| log ε|2, (5.2)

with ψ(s, t) = ΨGL(r(s, εt))e−iφε(s,t) in Aε, φε(s, t) is a global phase defined in (5.4) below and
GAε

is the boundary functional defined in (3.1)
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Proof. A simplified version of the result for disc samples is proven in [CR, Proposition 4.1], where
a rougher lower bound is also derived for general domains. This latter result is obtained by
dropping the curvature dependent terms from the energy, which was sufficient for the analysis
contained there. Here we need more precision in order to obtain a remainder term of order o(ε).
We highlight here the main steps and skip most of the technical details.

A suitable partition of unity together with the standard Agmon estimates (see [FH1, Section
14.4]) allow to restrict the integration to the boundary layer:

EGL
ε ≥

∫
Ãε

dr

{∣∣∣(∇+ iA
GL

ε2

)
Ψ1

∣∣∣2 − 1
2bε2

[
2|Ψ1|2 − |Ψ1|4

]}
+O(ε∞). (5.3)

where Ψ1 is given in terms of ΨGL in the form Ψ1 = f1ΨGL for some function 0 ≤ f1 ≤ 1,
depending only on the normal coordinate t, with support containing the set Ãε defined by (4.4)
and contained in

{r ∈ Ω | dist(r, ∂Ω) ≤ Cε| log ε|}

for a possibly large constant C. The constant c0 in the definition (4.4) of the boundary layer has to
be chosen large enough, but the choice of the support of f1 remains to any other extent arbitrary
and one can clearly pick f1 in such a way that f1 = 1 in Ãε and going smoothly to 0 outside of it.

The second ingredient of the proof is the replacement of the magnetic potential AGL but this
can be done following the same strategy applied to disc samples in [CR, Eqs. (4.18) – (4.26)],
whose estimates are not affected by the dependence of the curvature on s. The crucial properties
used there are indeed provided by the Agmon estimates, see below. The phase factor involved in
the gauge transformation is explicitly given by

φε(s, t) := −1

ε

∫ t

0

dη ν(s) ·AGL(r(s, εη)) +
1

ε2

∫ s

0

dξ γ′(ξ) ·AGL(r(ξ, 0))− δεs. (5.4)

The overall prefactor ε−1 in the energy is then inherited from the rescaling of the normal
coordinate τ = εt in the tubular neighborhood of the boundary. Note here the use of a different
convention with respect to both [CR, FH1], where the tangential coordinate s was rescaled too.

We need to rephrase some well-known decay estimates in a form suited to our needs. The
Agmon estimates proven in [FH2, Eq. (12.9)] can be translated into analogous bounds applying
to ψ(s, t) = ΨGL(r(s, εt))e−iφε(s,t) in Aε: for some constant A > 0 it holds∫

Aε

dsdt (1− εk(s)t) eAt
{
|ψ(s, t)|2 +

∣∣∣((ε∂s, ∂t) + i Ã(s,t)
ε

)
ψ(s, t)

∣∣∣2} = O(1), (5.5)

with (see, e.g., [CR, Eqs. (4.19) – (4.20)])

Ã(s, t) :=
(
(1− εk(s)t)γ′(s) ·AGL(r(s, εt)) + ε2∂sφε

)
es. (5.6)

In addition we are going to use two additional bounds proven in [FH2, Eq. (10.21) and (11.50)]:

‖ψ‖L∞(Aε) ≤ 1, ‖(ε∂s, ∂t)ψ‖L∞(Aε) ≤ C. (5.7)

These bounds imply the following

Lemma 5.2 (Useful consequences of Agmon estimates).
Let t̄ = c0| log ε|(1 + o(1)) for some c0 large enough, then for any a, b, s0 ∈ [0, 2π),∫ b

a

ds |ψ(s, t̄)| = O(ε∞),

∫ c0| log ε|

t̄

dt |ψ(s0, t)| = O(ε∞). (5.8)



Correggi, Rougerie – Surface Superconductivity 30

Proof. We start by considering the first estimate: let χ(t) be a suitable smooth function with
support in [t1, t̄], with t1 = t̄− c, for some c > 0, and such that 0 ≤ χ ≤ 1, χ(t̄) = 1 and |∂tχ| ≤ C.
Then one has∫ b

a

ds |ψ(s, t̄)| =
∫ b

a

ds χ(t̄)|ψ(s, t̄)| =
∫ b

a

ds

∫ t̄

t1

dt [χ(t)∂t|ψ(s, t)|+ |ψ(s, t)|∂tχ(t)]

≤ Ce− 1
2At1

{[∫
Aε

dsdt eAt |∂t|ψ(s, t)||2
]1/2

+

[ ∫
Aε

dsdt eAt |ψ(s, t)|2
]1/2}

= O(ε∞), (5.9)

by (5.5), the diamagnetic inequality and the assumption on t1 and t̄. Indeed the factor e−
1
2At1 =

ε
1
2Ac0(1+o(1)) can be made smaller than any power of ε by taking c0 large enough.

For the second estimate we use a tangential cut-off function, i.e., a smooth monotone function
χ(s) with support7 in [s0, 2π], such that 0 ≤ χ ≤ 1, χ(s0) = 1, χ(2π) = 0, and |∂sχ| ≤ C. Then as
in the estimate above (recall that tε := c0| log ε|)∫ tε

t̄

dt |ψ(s0, t)| =
∫ tε

t̄

dt χ(s0)|ψ(s0, t)| = −
∫ 2π

s0

ds

∫ tε

t̄

dt [χ(s)∂s|ψ(s, t)|+ |ψ(s, t)|∂sχ(s)]

≤ Ce− 1
2At̄

{
ε−1

[ ∫
Aε

dsdt eAt |ε∂s|ψ(s, t)||2
]1/2

+

[ ∫
Aε

dsdt eAt |ψ(s, t)|2
]1/2}

= O(ε∞),

(5.10)

where the main ingredients are again (5.5), the diamagnetic inequality and the assumption on t̄.

We now introduce some reduced energy functionals defined over the cells we have introduced
before, see Subsection 4.1 for the notation. We are going to perform an energy decoupling à la
Lassoued-Mironescu [LM] in each cell: we write

ψ(s, t) =: un(s, t)fn(t) exp
{
−i
(
αn

ε + δε
)
s
}
, (5.11)

and introduce the reduced functionals

En[u] :=

∫
Cn

dsdt (1− εknt) f2
n

{
|∂tu|2 + 1

(1−εknt)2 |ε∂su|
2 − 2εbn(t)Js[u] + 1

2bf
2
n

(
1− |u|2

)2}
,

(5.12)
with

bn(t) :=
t+ αn − 1

2εknt
2

(1− εknt)2
, (5.13)

and
Js[u] := (iu, ∂su) = i

2 (u∗∂su− u∂su∗) . (5.14)

Note that in (5.12) the curvature is approximated by its mean value in the cell Cn. These
objects play a crucial role in the sequel, as per

Lemma 5.3 (Lower bound in terms of the reduced functionals).
With the previous notation

GAε
[ψ] ≥

∫ |∂Ω|

0

ds E1D
? (k(s)) +

Nε∑
n=1

En[un]− Cε2| log ε|∞ (5.15)

7Let us assume that s0 − 2π > C > 0, otherwise one can take as a support for χ the complement set, i.e., [0, s0].
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Proof. With the above cell decomposition, we can estimate

GAε
[ψ] ≥

Nε∑
n=1

EGL
n [ψ]− Cε2| log ε|∞, (5.16)

where

EGL
n [ψ] :=

∫
Cn

dsdt (1− εknt)
{
|∂tψ|2 + 1

(1−εknt)2 |(ε∂s + ian(t))ψ|2 − 1
2b

[
2|ψ|2 − |ψ|4

]}
, (5.17)

and
an(t) := −t+ 1

2εknt
2 + εδε. (5.18)

The remainder term has been estimated as follows: the replacement of k(s) by kn produces two
different rests which can be estimated separately, i.e.,∫

Cn
dsdt (k(s)− kn) t

{
|∂tψ|2 − 1

2b

[
2|ψ|2 − |ψ|4

]}
= O(ε2| log ε|∞), (5.19)

1

ε

∫
Cn

dsdt
{

1
1−εk(s)t |(ε∂s + iaε(s, t))ψ|2 − 1

1−εknt |(ε∂s + ian(t))ψ|2
}

= O(ε2| log ε|∞). (5.20)

In estimating the first error term (5.19), we use the fact that

k(s)− kn = O(ε)

and the bounds (5.7) together with the cell size. For the second estimate the same ingredients are
sufficient as well, in addition to the simple bound

sup
(s,t)∈Cn

|aε(s, t)− an(t)| ≤ Cε sup
(s,t)∈Cn

|k(s)− kn| | log ε|2 = O(ε2| log ε|2).

Inside any given cell Cn we can then decouple the functional in the usual way (see [CR,
Lemma 5.2] for a statement in this context) to obtain

EGL
n [ψ] = E1D

? (kn)`ε + En[un]. (5.21)

The first term in (5.21) is a Riemann sum approximation of the leading order term in (5.1): using
(4.31), we immediately get

Nε∑
n=1

E1D
? (kn)`ε =

Nε∑
n=1

E1D
? (kn)(sn+1 − sn)

=

Nε∑
n=1

∫ sn+1

sn

ds
[
E1D
? (k(s)) +O(ε2| log ε|∞)

]
=

∫ |∂Ω|

0

ds E1D
? (k(s)) +O(ε2| log ε|∞), (5.22)

which concludes the proof.

5.2 Lower bounds to reduced functionals

In view of our previous reductions in Lemma 5.3, the final lower bound (5.1) is a consequence of
the following lemma
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Lemma 5.4 (Lower bound on the reduced functionals).
With the previous notation, we have

Nε∑
n=1

En[un] ≥ | log ε|−4
Nε∑
n=1

∫
Cn

dsdt (1− εknt) f2
n

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]

+
1

2bε

Nε∑
n=1

∫
Cn

dsdt (1− εknt) f4
n

(
1− |un|2

)2 − Cε2| log ε|∞ (5.23)

Proposition 5.1 now follows by a combination of Lemmas 5.1, 5.3 and 5.4 because the two sums
in the right-hand side of (5.23) are positive. These terms will prove useful to obtain our density
and degree estimates in Section 6.

We can now focus on the proof of Lemma 5.4, which is the core argument of the proof of
Proposition 5.1.

Proof of Lemma 5.4. The proof is split into two rather different steps. In the first one we essentially
follow the strategy of [CR, Section 5.2] to control the main part of the only potentially negative term
in (5.12). This is done locally inside each cell and uses mainly the positivity of the cost function,
Lemma A.4. This strategy however involves an application of Stokes’ formula and subsequent
further integrations by parts to put the so obtained terms in such a form (involving only first order
derivatives, see (5.28)) that they can be compared with the kinetic one. This produces unphysical
surface terms located on the boundaries of the (rather artificial) cells we have introduced. The
second step of the proof consists in controlling those, which requires to sum them all and reorganize
the sum in a convenient manner. It is in this step only that we cease working locally inside each
cell.

Step 1. Lower bound inside each cell. First, we split the integration over two regions, one
where a suitable lower bound to the density fn holds true and another one yielding only a very
small contribution. More precisely we set

Rn :=
{

(s, t) ∈ Cn : fn(t) ≥ | log ε|3fn(tε)
}
. (5.24)

Note that the monotonicity for large t of fn (see Proposition A.1) guarantees that

Rn := [sn, sn+1]× [t̄n,ε, tε], t̄n,ε = tε +O(log | log ε|). (5.25)

Now we use the potential function Fn(t) defined as

Fn(t) := 2

∫ t

0

dη (1− εknη)f2
n(η)bn(η) = 2

∫ t

0

dη f2
n(η)

η + αn − 1
2εknη

2

1− εknη
, (5.26)

and compute

− 2ε

∫
Cn

dsdt (1− εknt) f2
n(t)bk(t)Js[un] = ε

∫
Cn

dsdt Fn(t)∂tJs[un], (5.27)

where we have exploited the vanishing of Fn at t = 0 and t = tε. Now we split the r.h.s. of the
above expression into an integral over Dn := Cn \Rn and a rest. In order to compare the first part
with the kinetic energy and show that the sum is positive, we have to perform another integration
by parts:

ε

∫
Dn

dsdt Fn(t)∂tJs[un] = 2ε

∫ t̄n,ε

0

dt

∫ sn+1

sn

ds Fn(t) (i∂tun, ∂sun)

+ ε

∫ t̄n,ε

0

dtFn(t) [Jt[un](sn+1, t)− Jt[un](sn, t)] . (5.28)
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The first term in (5.28) can be bounded by using some kinetic energy:

2ε

∫
Dn

dtds Fn(t) (i∂tun, ∂sun) ≥ −2

∫
Dn

dsdt |Fn(t)| |∂tun| |ε∂sun|

≥ −
∫
Dn

dsdt (1− εknt)Fn(t)
[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]
, (5.29)

where we have used the inequality ab ≤ 1
2 (δa2+δ−1b2) and the negativity of Fn(t) (see Lemma A.3).

Combining the above lower bound with (5.12) and (5.16) and dropping the part of the kinetic energy
located in Rn, we get

En[un] ≥
∫
Dn

dsdt (1− εknt)Kn(t)

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2

]
+ ε

∫ t̄n,ε

0

dtFn(t) [Jt[un](sn+1, t)− Jt[un](sn, t)] + ε

∫
Rn

dsdt Fn(t)∂tJs[un]

+ dε

∫
Cn

dsdt (1− εknt) f2
n

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]

+
1

2b

∫
Cn

dsdt (1− εknt) f4
n

(
1− |un|2

)2
, (5.30)

where
Kn(t) := Kkn(t), (5.31)

is the cost function defined in (A.10), for some given dε, satisfying (A.11). The third term in
(5.30) is bounded from below by a quantity smaller than any power of ε, provided c0 is chosen
large enough. This is shown using the same strategy as in [CR, Eq. (5.21) and following discussion]
and we skip the details for the sake of brevity. For the first term we use the positivity ofKn provided
by Lemma A.4. We then conclude

En[un] ≥ ε
∫ t̄n,ε

0

dtFn(t) [Jt[un](sn+1, t)− Jt[un](sn, t)]

+ dε

∫
Cn

dsdt (1− εknt) f2
n

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]

+
1

2b

∫
Cn

dsdt (1− εknt) f4
n

(
1− |un|2

)2
+O(ε∞), (5.32)

and there only remains to bound the first term on the r.h.s. from below. We are not actually able
to bound the term coming from cell n separately, so in the next step we put back the sum over
cells.

Step 2. Summing and controlling boundary terms. We now conclude the proof of (5.23)
by proving the following inequality:

ε

Nε∑
n=1

∫ t̄n,ε

0

dtFn(t) [Jt[un](sn+1, t)− Jt[un](sn, t)] ≥

− C| log ε|−5
Nε∑
n=1

∫
Cn

dsdt (1− εknt) f2
n

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]
− Cε2| log ε|∞. (5.33)

Grouping (5.32) and (5.33), choosing dε = 2| log ε|−4 (which we are free to do) concludes the proof.
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We turn to our claim (5.33). Once we have put back the sum over all cells the idea is to
associate the two terms evaluated on the same boundary, which come from two adjacent cells and
therefore contain two different densities:

ε

Nε∑
n=1

∫ t̄n,ε

0

dtFn(t) [Jt[un](sn+1, t)− Jt[un](sn, t)]

= ε

Nε∑
n=1

[ ∫ t̄n,ε

0

dt [Fn(t)Jt[un](sn, t)− Fn+1(t)Jt[un+1](sn, t)] +Rn

]
, (5.34)

where, assuming without loss of generality that t̄n,ε < t̄n+1,ε,

Rn := −
∫ t̄n+1,ε

t̄n,ε

dt Fn+1(t)Jt[un+1](sn+1, t), (5.35)

If on the other hand t̄n,ε > t̄n+1,ε, in (5.34) t̄n,ε should be replaced with t̄n+1,ε and in place of Rn
one would find ∫ t̄n,ε

t̄n+1,ε

dt Fj(t)Jt[uj ](sn+1, t).

In other words the remainder Rn is inherited from the fact that the decomposition Cn = Dn ∪Rn
clearly depends on n and the boundary terms in (5.34) do not compensate exactly. However it is
clear from what follows that the estimate of such a boundary term is the same in both cases and
essentially relies on the second inequality in (5.8): recalling that

f2
n+1(t) + Fn+1(t) ≥ 0

for any t ≤ t̄n+1,ε, we have

|Rn| =
∫ t̄n+1,ε

t̄n,ε

dt |Fn+1(t)| |Jt[un+1](sn+1, t)| ≤
∫ t̄n+1,ε

t̄n,ε

dtf2
n+1(t) |un+1(sn+1, t)| |∂tun+1(sn+1, t)|

≤
∫ t̄n+1,ε

t̄n,ε

dt |ψ(sn+1, t)| [|∂tψ(sn+1, t)|+ |un+1(sn+1, t)| |∂tfn+1(t)|]

≤ C| log ε|3
∫ t̄n+1,ε

t̄n,ε

dt |ψ(sn+1, t)| = O(ε∞), (5.36)

where we have used the bounds (5.7) and (A.7), i.e., |f ′n+1| ≤ | log ε|3fn+1(t). The identity (5.34)
hence yields

ε

Nε∑
n=1

∫ t̄n,ε

0

dtFn(t) [Jt[un](sn+1, t)− Jt[un](sn, t)]

= ε

Nε∑
n=1

∫ t̄n,ε

0

dt [Fn(t)Jt[un](sn, t)− Fn+1(t)Jt[un+1](sn, t)] +O(ε∞). (5.37)

Using now the definitions (5.11) of un and un+1, we get

un+1(s, t) =
fn(t)

fn+1(t)
ei(αn+1−αn)sun(s, t), (5.38)

so that
Jt[un+1](sn, t) = iGn,n+1(t)G′n,n+1(t) |un(sn, t)|2 +G2

n,n+1(t)Jt[un](sn, t), (5.39)
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where we have set

Gn,n+1(t) :=
fn(t)

fn+1(t)
. (5.40)

Then we can compute

ε

∫ t̄n,ε

0

dt [FnJt[un](sn, t)− Fn+1Jt[un+1](sn, t)]

= ε

∫ t̄n,ε

0

dt
[
Fn(t)− Fn+1(t)G2

n,n+1(t)
]
Jt[un](sn, t)

− iε

2

∫ t̄n,ε

0

dt Fn+1(t)∂t
(
G2
n,n+1(t)

)
|un(sn, t)|2 ,

but we know that the l.h.s. of the above expression is real, so that we can take the real part of the
identity above obtaining

ε

∫ t̄n,ε

0

dt [FnJt[un](sn, t)− Fn+1Jt[un+1](sn, t)] = ε

∫ t̄n,ε

0

dt
[
Fn − Fn+1G

2
n,n+1

]
Jt[un](sn, t).

(5.41)
To estimate the r.h.s. we integrate by parts back by introducing a suitable cut-off function. Let,
for any given n = 1, . . . , Nε, χn(s) be a suitable smooth function, such that

χn(sn) = 1, χ
(

1
2 (sn + sn+1)

)
= 0

and [
sn,

1
2 (sn + sn+1)

)
⊂ supp(χn), |∂sχn| ≤ Cε−1. (5.42)

We can rewrite

ε

∫ t̄n,ε

0

dt
[
Fn − Fn+1G

2
n,n+1

]
Jt[un](sn, t) = ε

∫ t̄n,ε

0

dt χn(sn)
[
Fn − Fn+1G

2
n,n+1

]
Jt[un](sn, t)

= ε

∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds
{
χn(s)In,n+1(t)∂s (Jt[un]) + ∂s (χn(s)) In,n+1(t)Jt[un]

}
, (5.43)

where we have set for short (compare with (3.39))

In,n+1(t) := Fn(t)− Fn+1(t)G2
n,n+1(t) = Fn(t)− Fn+1(t)

f2
n(t)

f2
n+1(t)

. (5.44)

The first contribution to (5.43) can be cast in a form analogous to (5.29):

ε

∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds χn(s)In,n+1(t)∂s (Jt[un])

= ε

∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds χn(s) {2In,n+1(t) (i∂sun, ∂tun)− ∂t (In,n+1(t)) Js[un]}

+ ε

∫ 1
2 (sn+sn+1)

sn

ds χn(s)In,n+1(t̄n,ε)Js[un](s, t̄n,ε). (5.45)
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The first term on the r.h.s. can be handled as we did for (5.29):

2ε

∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds χn(s)In,n+1(t) (i∂sun, ∂tun) ≥ −2

∫
Dn

dsdt |In,n+1(t)| |ε∂sun| |∂tun|

≥ −Cε| log ε|∞
∫
Dn

dsdt (1− εknt)f2
n

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]
, (5.46)

where we have used (3.42) with k = kn, k′ = kn+1 and recalled that |kn − kn+1| ≤ Cε to bound
In,n+1. The last term in (5.45) can be easily shown to provide a small correction: using (3.42)
again yields

|In,n+1(t̄n,ε)| ≤ Cε| log ε|∞f2
n(t̄n,ε),

so that by (5.8) and (5.25)

∣∣∣∣ ∫ 1
2 (sn+sn+1)

sn

ds χn(s)In,n+1(t̄n,ε)Js[un](s, t̄n,ε)

∣∣∣∣ ≤ ∫ 1
2 (sn+sn+1)

sn

ds |In,n+1(t̄n,ε)| |Js[un]|

≤ Cε| log ε|∞
∫ 1

2 (sn+sn+1)

sn

ds f2
n(t̄n,ε) |un(s, t̄n,ε)| |∂sun(s, t̄n,ε)|

≤ C| log ε|∞ ‖ε∂sψ‖∞
∫ 1

2 (sn+sn+1)

sn

ds |ψ(s, t̄n,ε)| = O(ε∞), (5.47)

where we have estimated the s-derivative of ψ by means of (5.7). Hence, combining (5.45) with
(5.46) and (5.47), we can bound from below (5.43) as

ε

∫ t̄n,ε

0

dt
[
Fn − Fn+1G

2
n,n+1

]
Jt[un](sn, t)

≥ ε
∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds {−∂tIn,n+1Js[un] + ∂sχnIn,n+1Jt[un]}

− Cε| log ε|∞
∫
Dn

dsdt (1− εknt)f2
n

[
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
]

+O(ε∞). (5.48)

To complete the proof it only remains to estimate the first two terms on the r.h.s. of the expression
above, which again requires to borrow a bit of the kinetic energy. Using (3.29) we have

sup
t∈[0,t̄n,ε]

∣∣∣∣∂tIn,n+1

f2
n

∣∣∣∣ ≤ Cε| log ε|∞,

so that

ε

∣∣∣∣ ∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds ∂tIn,n+1Js[un]

∣∣∣∣ ≤ Cε| log ε|∞
∫
Dn

dsdt f2
n |un| |ε∂sun|

≤ Cε| log ε|∞
∫
Dn

dsdt
[

1
δ

1
1−εkntf

2
n |ε∂sun|

2
+ δ|ψ|2

]
≤ C| log ε|−5

∫
Dn

dsdt 1
1−εkntf

2
n |ε∂sun|

2
+O(ε3| log ε|∞), (5.49)

where we have chosen δ = ε| log ε|a, for some suitably large a > 0 to compensate the | log ε|
prefactor (this generates the coefficient | log ε|−5), and used (5.7) to estimate the remaining term.
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For the second term on the r.h.s. of (5.48) we proceed in the same way, using first (3.42) and the
assumption |∂sχ| ≤ Cε−1, to get

ε

∣∣∣∣ ∫ t̄n,ε

0

dt

∫ 1
2 (sn+sn+1)

sn

ds ∂sχnIn,n+1Jt[un]

∣∣∣∣ ≤ Cε| log ε|∞
∫
Dn

dsdt f2
n |un| |∂tun|

≤ Cε| log ε|∞
∫
Dn

dsdt
[

1
δ f

2
n |∂tun|

2
+ δ|ψ|2

]
≤ C| log ε|−5

∫
Dn

dsdt f2
n |∂tun|

2
+O(ε3| log ε|∞), (5.50)

where we have made the same choice of δ as in (5.49).
Collecting all the previous estimates yields our claim (5.33) (recall that there are Nε ∝ ε−1

terms to be summed, whence the final error of order ε2| log ε|∞).

6 Density and Degree Estimates

In this section we prove the main results about the behavior of |ΨGL| close to the boundary of the
sample ∂Ω and an estimate of its degree at ∂Ω.

We first notice that the L2 estimate stated in (2.6) is in fact a trivial consequence of the energy
asymptotics (2.5): putting together the lower bounds (5.2), (5.15) and (5.23) with the upper bound
(4.1), we obtain

1

2εb

Nε∑
n=1

∫
Cn

dsdt (1− εknt) f4
n

(
1− |un|2

)2 ≤ Cε| log ε|γ , (6.1)

for some power γ large enough (recall the meaning of the notation | log ε|∞). Now, using the fact
that kn = k(s) (1 +O(ε)) inside Cn, we can easily reconstruct (2.6), once everything has been
expressed in the original unscaled variables and the definitions (2.4) and (5.11) has been exploited
(recall also that ψ(s, t) = ΨGL(r(s, εt)). See also [CR, Section 4.2] for further details.

We now focus on the refined density estimate discussed in Theorem 2.2 and the proof of Pan’s
conjecture. The result is obtained via an adaptation of the arguments used in [CR, Section 5.3],
originating in [BBH1]. The general idea is now rather standard so we will mainly comment on the
changes needed to make those argument work in the present setting.

Proof of Theorem 2.2. The two main ingredients of the proof are the above estimate (6.1) and
a pointwise bound on the gradient of un. Once combined, the two estimates imply that the
function |un| cannot be too far from 1 anywhere in the boundary layer Abl (see (2.8) for its precise
definition).

Step 1, gradient estimate. A minor difference with the setting in [CR, Section 5.3] is due to
the convention we used to avoid a scaling of the tangential coordinate s. This is just a matter of
notation and by following [CR, Proof of Lemma 5.3], we can show that, for any n = 1, . . . , Nε,

|∂t|un|| ≤ Cf−1
n (t)| log ε|3, |∂s|un|| ≤ Cf−1

n (t)ε−1. (6.2)

Notice the second estimate above, which is a consequence of not scaling the coordinate s.
We now prove (6.2). From the definitions of ψ and un we immediately have

|∂t|un|(s, t)| ≤ f−2
n (t) |f ′n(t)| |ψ(s, t)|+ f−1

n (t) |∂t |ψ(s, t)||
≤ Cf−1

n (t)
[
| log ε|3 + |∂t |ψ(s, t)||

]
, (6.3)
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and
|∂s|un|(s, t)| ≤ f−1

n (t) |∂s |ψ(s, t)||

where we have used [CR, Equation (A.28)]. The result is then a consequence of [Alm1, Theorem 2.1]
or [AH, Equation (4.9)] in combination with the diamagnetic inequality (see [LL]), which yield∣∣∇ ∣∣ΨGL

∣∣∣∣ ≤ ∣∣∣(∇+ iA
GL

ε2

)
ΨGL

∣∣∣ ≤ Cε−1 =⇒ |∂t |ψ(s, t)||+ ε |∂s |ψ(s, t)|| ≤ C. (6.4)

Step 2, uniform bound on un. We first observe that the estimate ‖fn − f0‖∞ = O(ε) proven
in (3.15) guarantees that

fn(t) ≥ γε, for any (s, t) ∈ Cn ∩ Abl and ∀n = 1, . . . , Nε. (6.5)

Now we can apply a standard argument to show that |un| can not differ too much from 1 in Abl.
The proof is done by contradiction. We choose some 0 < c < 3

2a and define

σε := ε1/4γ−3/2
ε | log ε|c � | log ε|c−3a/2 � 1. (6.6)

Suppose for contradiction that there exists a point (s0, t0) in Cn ∩ Abl such that

|1− |un(s0, t0)|| ≥ σε.

Then by (6.2) we can construct a rectangle-like region Rε⊂ Cn ∩ Abl of tangential length
1
2εγεσε� ε and normal length %ε with

%ε := γεσε| log ε|−3� ε1/6| log ε|c−3−a/2 � | log ε|1/2, (6.7)

where
|1− |un(s, t)|| ≥ 1

2σε.

To complete the proof it suffices to estimate from below

1

ε

Nε∑
n=1

∫
Cn

dsdt (1− εknt) f4
n

(
1− |un|2

)2 ≥ 1

ε

∫
Rε

dsdt (1− εknt) f4
n

(
1− |un|2

)2
≥ γ5

εσ
3
ε%ε = γ6

εσ
4
ε | log ε|−3 = ε| log ε|4c−3 � ε| log ε|γ , (6.8)

where γ is the power of | log ε| appearing in the r.h.s. of (6.1) and we have chosen c so that
c ≥ 1

4 (γ + 3). Recalling the condition a > 2
3c we also have a > 1

6 (γ + 3), which coincides with
the assumption on γε (see (2.9)). Under such conditions the estimate above contradicts the upper
bound (6.1) and the result is proven.

Step 3, conclusion. Now we know that in Abl ∩ Cn

||un| − 1| ≤ σε,

and it is easy to translate this estimate in an analogous one for |ψ(s, t)| and therefore |ΨGL|.
Indeed, in the cell Cn

|ψ| = |ΨGL| = fn|un|

modulo a change of variables. The final estimate on |ΨGL| then involves the reference profile gref

but the bound ‖fn − f0‖∞ = O(ε) again allows the replacement of gref with f0.

We can now turn to the proof of the estimate of the winding number of ΨGL along ∂Ω.
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Proof of Theorem 2.3. Thanks to the positivity of gref at t = 0 (see Lemma A.2) and the result
discussed above, ΨGL never vanishes on ∂Ω and therefore its winding number is well defined. The
rest of the proof follows the lines of [CR, Proof of Theorem 2.4].

The first part is the estimate of the winding number contribution of the phase φε involved in
the change of gauge ψ(s, t) = ΨGL(r(s, εt))e−iφε(s,t) but this can be done exaclty as in [CR, Proof
of Lemma 5.4]:

2π deg
(
ΨGL, ∂Ω

)
− 2π deg (ψ, ∂Ω) =

∫ |∂Ω|

0

ds γ′(s) · ∇φε(s, t) =

∫ |∂Ω|

0

ds ∂sφε(s, 0)

= φε(2π, 0)− φε(0, 0) =
1

ε2

∫ |∂Ω|

0

ds γ′(s) ·AGL(r(s, 0))− |∂Ω|δε

=
1

ε2

∫
Ω

dr curlAGL − |∂Ω|δε. (6.9)

Now by the elliptic estimate [FH3, Eq. (11.51)]∥∥curlAGL − 1
∥∥
C1(Ω)

= O(ε),

and the Agmon estimate [FH1, Eq. (12.10)]∥∥∇(curlAGL − 1)
∥∥
L1(Ω\Aε)

= O(ε∞),

we get ∥∥curlAGL − 1
∥∥
L1(Aε)

≤ Cε| log ε|
∥∥∇ (curlAGL − 1

)∥∥
L∞(Ω)

= O(ε2| log ε|),∥∥curlAGL − 1
∥∥
L1(Ω\Aε)

≤ C
∥∥curlAGL − 1

∥∥
L2(Ω\Aε)

≤ C
∥∥∇(curlAGL − 1)

∥∥
L1(Ω\Aε)

= O(ε∞), (6.10)

via Sobolev inequality. Altogether we can thus replace curlAGL with 1 in (6.9), so obtaining

2π deg
(
ΨGL, ∂Ω

)
− 2π deg (ψ, ∂Ω) =

|Ω|
ε2

+O(| log ε|). (6.11)

A minor modification in the proof is then due to the cell decomposition and the use of a different
decoupling in each cell: the analogue of [CR, Lemma 5.4] is the following

Nε∑
n=1

∫ sn+1

sn

ds Js[un](s, 0) = O(| log ε|∞). (6.12)

To see that, we introduce a tangential cut-off function χ(t) with support contained in [0, | log ε|−1]
and such that 0 ≤ χ ≤ 1, χ(0) = 1 and |∂tχ| = O(| log ε|). Then we compute

∫ sn+1

sn

ds Js[un](s, 0) =

∫ sn+1

sn

ds

∫ 1
| log ε|

0

dt [∂tχJs[un](s, t) + χ∂tJs[un](s, t)] =∫ 1
| log ε|

0

dt

{∫ sn+1

sn

ds [∂tχJs[un](s, t) + 2χ (i∂tun, ∂sun)] + Jt[un](sn+1, t)− Jt[un](sn, t)

}
(6.13)
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and after a rearrangement of the boundary terms

Nε∑
n=1

∫ sn+1

sn

ds Js[un](s, 0) =

Nε∑
n=1

∫ | log ε|−1

0

dt

∫ sn+1

sn

ds [(∂tχ) Js[un](s, t) + 2χ (i∂tun, ∂sun)]

−
Nε∑
n=1

∫ | log ε|−1

0

dt [Jt[un+1](sn+1, t)− Jt[un](sn+1, t)] . (6.14)

The three terms on the r.h.s. of the above expression are going to be bounded independently. We
first observe that, exactly like we derived (6.1), one can also extract from the comparison between
the energy upper and lower bounds (see (5.23)) the following estimate:

Nε∑
n=1

∫
Cn

dsdt (1− εknt) f2
n

{
|∂tun|2 + 1

(1−εknt)2 |ε∂sun|
2
}
≤ Cε2| log ε|∞. (6.15)

Then we can estimate the absolute value of the first two terms on the r.h.s. of (6.14) by using the
Cauchy-Schwarz inequality

Nε∑
n=1

∫ | log ε|−1

0

dt

∫ sn+1

sn

ds [C| log ε||un| |∂sun|+ 2 |∂tun| |∂sun|]

≤ C
Nε∑
n=1

∫
Cn

dsdt (1− εknt)f2
n

[
| log ε| |un|2 + 2

(1−εknt)2 |∂sun|
2

+ |∂tun|2
]
, (6.16)

where we have exploited the pointwise lower bound (A.6), which implies fn(t) ≥ C > 0 for any
t ∈ [0, | log ε|−1] and n = 1, . . . , Nε, to put back the density f2

n in the expression. Now the bound

fn|un| = |ψ| ≤ 1

together with (6.15) yield

Nε∑
n=1

∣∣∣∣ ∫ | log ε|−1

0

dt

∫ sn+1

sn

ds [(∂tχ) Js[un](s, t) + 2χ (i∂tun, ∂sun)]

∣∣∣∣ ≤ C| log ε|∞. (6.17)

On the other hand the definition (5.11) of un implies that∣∣∣∣ ∫ | log ε|−1

0

dt Jt[un+1](sn+1, t)− Jt[un](sn+1, t)

∣∣∣∣ =

∣∣∣∣ ∫ | log ε|−1

0

dt

(
1

f2
n+1

− 1

f2
n

)
Jt[|ψ|](sn+1, t)

∣∣∣∣
≤ Cε| log ε|∞

∫ | log ε|−1

0

dt |ψ||∂s|ψ|| ≤ C| log ε|∞, (6.18)

thanks to (3.15), the already mentioned lower bound on fn in [0, | log ε|−1] and the standard bound
‖∇ψ‖∞ ≤ Cε−1 (see, e.g., [FH3, Eq. (11.50)]).

Hence (6.12) is proven and the rest of the proof is just a repetition of the estimates in [CR,
Proof of Theorem 2.4]. Note that, as already anticipated in the comments after Theorem 2.3
αn = α0(1 +O(ε)), so that the optimal phases αn can all be replaced with α0.

A Useful Estimates on 1D Functionals

Here we recall some preliminary results obtained in [CR]. We start in Subsection A.1 with ele-
mentary properties of the minimizing 1D profiles and carry on in Subsection A.2 by recalling the
crucial positivity property of the cost function we mentioned in Subsection 2.2.
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A.1 Properties of optimal phases and densities

This subsection contains a summary of results on the 1D minimization problem that follow from
relatively standard methods. We start with the well-posedness of the minimization problem at
fixed α. The following is [CR, Proposition 3.1].

Proposition A.1 (Optimal density fk,α).
For any given α ∈ R, k ≥ 0 and ε small enough, there exists a minimizer fk,α to E1D

k,α, unique up
to sign, which we choose to be non-negative. It solves the variational equation

− f ′′k,α + εk
1−εktf

′
k,α + Vk,α(t)fk,α = 1

b

(
1− f2

k,α

)
fk,α (A.1)

with boundary conditions f ′k,α(0) = f ′k,α(c0| log ε|) = 0. Moreover fk,α satisfies the estimate

‖fk,α‖L∞(Iε) ≤ 1 (A.2)

and it is monotonically decreasing for t ≥ max
[
0,−α+ 1√

b
− Cε

]
. In addition E1D

k,α is a smooth

function of α ∈ R and

E1D
k,α = − 1

2b

∫
Iε

dt (1− εkt)f4
k,α(t). (A.3)

Next we consider the minimization problem as a function of the phase α, dealt with in [CR,
Lemma 3.1]. Here Θ−1

0 is defined as in (1.5).

Lemma A.1 (Optimal phase α(k)).
For any 1 < b < Θ−1

0 , k ≥ 0 and ε small enough, there exists at least one α(k) minimizing E1D
k,α:

inf
α∈R

E1D
k,α = E1D

k,α(k) =: E1D
? (k). (A.4)

Setting fk := fk,α(k) we have that fk > 0 everywhere and∫
Iε

dt
t+ α(k)− 1

2εkt
2

1− εkt
f2
k (t) = 0. (A.5)

We also use some decay and gradient estimates for the minimizing density. The following is a
combination of [CR, Proposition 3.3 and Lemma A.1]

Lemma A.2 (Useful bounds on fk,α).
For any 1 < b < Θ−1

0 , k ∈ R and ε sufficiently small, there exist two positive constants c, C > 0
independent of ε such that

c exp
{
− 1

2

(
t+
√

2
)2} ≤ fk(t) ≤ C exp

{
− 1

2 (t+ α)
2
}
, (A.6)

for any t ∈ Iε.
Moreover there exists a finite constant C such that

|f ′k(t)| ≤ C

1, for t ∈
[
0, |α|+ 2√

b

]
,

| log ε|3fk(t), for t ∈
[
|α|+ 2√

b
, c0| log ε|

]
.

(A.7)
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A.2 Positivity of the cost function

A less standard part of our analysis in [CR] is the introduction of a cost function Kk whose
positivity is one of the crucial ingredients of the energy lower bounds in the present paper.

Let us first recall the definition of the potential function associated with fk:

Fk(t) := 2

∫ t

0

dη (1− εkη)f2
k (η)

η + α(k)− 1
2εkη

2

(1− εkη)2
, (A.8)

which has the following properties [CR, Lemma 3.2]:

Lemma A.3 (Properties of the potential function Fk).
For any 1 < b < Θ−1

0 , k ∈ R and ε sufficiently small, we have

Fk(t) ≤ 0, in Iε, Fk(0) = Fk(tε) = 0. (A.9)

The cost function that naturally enters the analysis is then

Kk(t) = (1− dε)f2
k (t) + Fk(t) (A.10)

where dε is any parameter satisfying

0 < dε ≤ C| log ε|−4, as ε→ 0. (A.11)

The positivity property we exploit is proved in [CR, Proposition 3.5]. Let

Īk,ε :=
{
t ∈ Iε : fk (t) ≥ | log ε|3fk(tε)

}
, (A.12)

which is an interval in the t variable, i.e.,

Īk,ε = [0, t̄k,ε], (A.13)

with
t̄k,ε ≥ tε − C log | log ε| = c0| log ε|

(
1−O

(
log | log ε|
| log ε|

))
. (A.14)

We then have

Lemma A.4 (Positivity of the cost function).
For any dε ∈ R+ satisfying (A.11), 1 < b < Θ−1

0 , k > 0 and ε sufficiently small, we have

Kk(t) ≥ 0, for any t ∈ Īk,ε. (A.15)
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[BBH1] F. Béthuel, H. Brézis, F. Hélein, Asymptotics for the Minimization of a Ginzburg-
Landau Functional, Calc. Var. Partial Differential Equations 1, 123–148 (1993).
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