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1 Introduction

Semileptonic decays of heavy hadrons are commonly used to measure the parameters of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2], as they involve only one hadronic
current that can be parametrised in terms of scalar functions known as form factors. The
number of form factors needed to describe a particular decay depends upon the spin of the
initial- and final-state hadrons [3–5]. For the decay of a pseudoscalar B meson to a vector
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D∗ meson, four form factors are required. The determination of the CKM matrix element
|Vcb| using B → D(∗)$ν! decays or via the inclusive sum of all hadronic B → Xc$ν! decay
channels has been giving inconsistent results during the last thirty years [6]. The exclusive
determination relies heavily on the parametrisation of the form factors, as it requires an
extrapolation of the differential decay rate to the zero recoil point, where the momentum
transfer to the lepton system is maximum.

Recently, the LHCb collaboration has measured |Vcb| using B0
s → D(∗)−

s µ+νµ decays1
with two form-factor parametrisations, giving consistent results [7]. The determination of
the form factors in B0

s → D∗−
s $+ν! decays obtained using different parametrisations can

help to clarify the |Vcb| inconsistency between the exclusive and inclusive approaches. It
can also be used to improve the Standard Model (SM) predictions of the B0

s → D∗−
s τ+ντ

branching fraction and the ratio R(D∗
s) = B(B0

s → D∗−
s τ+ντ )/B(B0

s → D∗−
s µ+νµ). A

measurement and precise prediction of the latter could increase the understanding of
the current tension between experimental and theoretical values of the equivalent ratio
R(D(∗)) = B(B → D(∗)τ+ντ )/B(B → D(∗)µ+νµ) [6]. Theoretical predictions on B0

s

semileptonic decays are expected to be more precise than those on B0 or B+ decays.
For example, the Lattice QCD calculations of the form factors are computationally easier
due to the larger mass of the spectator s quark compared to that of u or d quarks [8, 9].
Despite these advantages, the study of semileptonic B0

s decays has received less theoretical
attention than the equivalent B0 and B+ decays due to the lack of experimental results.

This paper reports the first measurement of the shape of the differential decay rate of
the B0

s → D∗−
s µ+νµ decay as a function of the hadronic recoil parameter w = vB0

s
· vD∗−

s
,

where vB0
s
and vD∗−

s
are the four-vector velocities of the B0

s and D∗−
s mesons, respec-

tively. The spectrum of w is unfolded accounting for the detector resolution on w

and corrected for the reconstruction and selection efficiency. The D∗−
s meson is recon-

structed in the D∗−
s → D−

s γ mode, where the D−
s meson subsequently decays via the

D−
s → φ(→ K+K−)π− or D−

s → K∗0(→ π−K+)K− mode. The data used correspond to
an integrated luminosity of 1.7 fb−1 collected by the LHCb experiment in 2016 at a centre-
of-mass energy of 13TeV.

The B0
s → D∗−

s µ+νµ decay is described by four form factors. The most commonly used
parametrisations to model these form factors are by Caprini-Lellouch-Neubert (CLN) [10]
and by Boyd-Grinstein-Lebed (BGL) [11–13]. This paper also describes how the relevant
parameters of these parametrisations can be extracted by fitting the measured differential
decay rate.

2 Formalism of the B0
s → D∗−

s µ+νµ decay

The B0
s → D∗−

s µ+νµ decay, with the subsequent D∗−
s → D−

s γ decay, can be described by
three angular variables and the squared momentum transfer to the lepton system, defined
as q2 = (pB0

s
− pD∗−

s
)2, where pB0

s
and pD∗−

s
are the four-momenta of the B0

s and D∗−
s

mesons, respectively. The three angular variables, indicated in figure 1, are two helicity
angles θµ and θDs , and the angle χ. In this figure the direction of the z-axis is defined in the

1The inclusion of charge-conjugate processes is implied throughout this paper.
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Figure 1. Schematic overview of the B0
s → D∗−

s µ+νµ decay, introducing the angles θDs , θµ and χ.

B0
s rest frame as ẑ = )pD∗−

s
/|)pD∗−

s
|. The angle between the muon direction in the virtual W

rest frame and the z direction is called θµ, while the angle between the D−
s meson direction

in the D∗−
s rest frame and the z direction is called θDs . Finally, χ is the angle between the

plane formed by the D∗−
s decay products and that formed by the two leptons in the B0

s

rest frame [14]. The angular basis is designed such that the angular definition for the B0
s

decay is a CP transformation of that of the B0
s decay.

The measurement is performed by integrating the full decay rate over the decay angles.
Thus, the expression of the B0

s → D∗−
s µ+νµ decay rate is given by

dΓ(B0
s → D∗−

s µ+νµ)
dq2 = G2

F |Vcb|2 |ηEW|2 |)p |q2

96π3m2
B0

s

(

1 −
m2

µ

q2

)2

×
[

(|H+|2 + |H−|2 + |H0|2)
(

1 +
m2

µ

2 q2

)

+ 3
2
m2

µ

q2
|Ht|2

]

.

(2.1)

In this equation, GF is the Fermi constant, Vcb is the CKM matrix element describing the
b to c transition, ηEW = 1.0066 is the electroweak correction to Vcb [15], mµ is the muon
mass [16], and H0, H+, H−, Ht are the helicity amplitudes. The magnitude of the D∗−

s

momentum in the B0
s rest frame is given by |)p|. The hadronic recoil, w, is related to the

squared momentum transfer to the lepton pair, q2, by

w =
pB0

s

mB0
s

·
pD∗−

s

mD∗−
s

=
m2

B0
s
+m2

D∗−
s

− q2

2 mB0
s
mD∗−

s

, (2.2)

where mB0
s
and mD∗−

s
are the masses of the B0

s and D∗−
s mesons, respectively. The minimal

value, w = 1, corresponds to the situation in which the D∗−
s meson has zero recoil in the

B0
s rest frame. It is also the value for which q2 is maximal.

The dependence of the helicity amplitudes on w can be expressed in different ways,
most commonly described in either the CLN or BGL parametrisations, as discussed further
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in section 2.1 and section 2.2. This analysis is only sensitive to a single form-factor con-
tribution while the other form factors are fixed to existing measurements from B+ and B0

semileptonic decays [6, 17]. This is supported by ref. [18], where when imposing unitarity
and analyticity the differences in form factors for semileptonic B → D and B0

s → D+
s

decays are found to be within O(1%) over the entire kinematic range. Also, a simultaneous
analysis of the Bq → D(∗)

q form factors for both light (q = u, d) and strange (q = s) specta-
tor quarks within the Heavy-Quark-Expansion framework to order O(αs, 1/mb, 1/m2

c) [19]
does not show any significant SU(3) symmetry breaking. Moreover, Lattice QCD calcula-
tions indicate that there is also good agreement of the form factors at zero recoil [9, 20].

2.1 CLN form-factor parametrisation

For the CLN parametrisation [10], the helicity amplitudes H0, H+, H− and Ht can be
written in terms of the form factors A1(w), V (w), A2(w) and A0(w) as

H±(w) = mB0
s
(1 + r)A1(w) ∓ 2

1 + r
|)p |V (w),

H0(w) =
mB0

s
mD∗−

s
(w − r) (1 + r)2A1(w) − 2 |)p |2A2(w)
mD∗−

s
(1 + r)

√
1 + r2 − 2wr

, (2.3)

Ht(w) =
2 |)p |√

1 + r2 − 2wr
A0(w) ,

where r = mD∗−
s
/mB0

s
. The form factors are rewritten in terms of a single leading form

factor
hA1(w) = A1(w)

1
RD∗−

s

2
w + 1 , (2.4)

and three ratios of form factors

R0(w) =
A0(w)
hA1(w)

RD∗−
s

, R1(w) =
V (w)
hA1(w)

RD∗−
s

, R2(w) =
A2(w)
hA1(w)

RD∗−
s

, (2.5)

where
RD∗−

s
= 2√

r

1 + r
. (2.6)

In the CLN parametrisation, the leading form factor and the three ratios are
parametrised in terms of w as

hA1(w) = hA1(1)[1 − 8ρ2z(w) + (53ρ2 − 15)z2(w) − (231ρ2 − 91)z3(w)] ,
R0(w) = R0(1) − 0.11(w − 1) + 0.01(w − 1)2 ,
R1(w) = R1(1) − 0.12(w − 1) + 0.05(w − 1)2 ,
R2(w) = R2(1) + 0.11(w − 1) − 0.06(w − 1)2 ,

(2.7)

where the coefficients, originally calculated for B decays, are assumed to be the same for
B0

s decays. The function z(w) is defined as

z(w) =
√
w + 1 −

√
2√

w + 1 +
√
2
. (2.8)
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As this analysis is only sensitive to the shape of the form-factor parametrisation the term
hA1(1) is absorbed in the normalisation. The values of R1(1) and R2(1) are taken from the
HFLAV average of the corresponding parameters, obtained from B → D∗$ν! decays [6].
The R0(1) parameter is suppressed by m2

!/q
2 in the helicity amplitude and its contribution

to the total rate is negligible. The value predicted by the exact heavy quark limit of
R0(1) = 1 [21] is used, as no measurement of R0(1) has been performed. The slope, ρ2, of
hA1(w) is the only parameter fitted in this parametrisation.

2.2 BGL form-factor parametrisation
In the BGL parametrisation [11–13], the helicity amplitudes are parametrised as

H0(w) =
F1(w)

mB0
s

√
1 + r2 + 2wr

,

H±(w) = f(w) ∓ mB0
s
mD∗−

s

√
w2 − 1g(w) , (2.9)

Ht(w) = mB0
s

√
r(1 + r)

√
w2 − 1√

1 + r2 − 2wr
F2(w) ,

where the form factors are defined as

f(z) = 1
P1+(z)φf (z)

∞∑

n=0
afnz

n , F1(z) =
1

P1+(z)φF1(z)

∞∑

n=0
aF1
n zn ,

g(z) = 1
P1−(z)φg(z)

∞∑

n=0
agnz

n , F2(z) =
√
r

(1 + r)P0−(z)φF2(z)

∞∑

n=0
aF2
n zn .

(2.10)

The functions φi are the so-called outer functions, P1±,0− are Blaschke factors, and the
coefficients ain, where i = {f, g, F1, F2}, are parameters to be fit from data.

As the form-factor parametrisation is given through analytic functions, they must
satisfy the unitarity condition in the z expansion

∞∑

n=0
(agn)2 ≤ 1 ,

∞∑

n=0
(afn)2 +

∞∑

n=0
(aF1

n )2 ≤ 1 ,
∞∑

n=0
(aF2

n )2 ≤ 1. (2.11)

This analysis is only sensitive to the form factor f(z), and its series is truncated at n = 2,
following refs. [17, 22–25]. The shapes for F1(z) and g(z) are constrained using the results
in ref. [17], where the ain coefficients are fit using recent Belle measurements with B0 →
D∗−$+ν! decays [26, 27]. The value of af0 in ref. [17] is determined from the combination
of lattice calculations in ref. [28]. The parameters aF2

n for F2(z) are fixed from predictions
in ref. [24], where they are called P1. As this analysis represents the first measurement
of form factors in B0

s →D∗−
s transitions, the choice of the input parameters is driven by

having as much experimental input as possible. An overview of the fit inputs is given in
table 8 in appendix C.

3 Detector and simulation

The LHCb detector [29, 30] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
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quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region [31], a large-area silicon-strip de-
tector located upstream of a dipole magnet with a bending power of about 4Tm, and
three stations of silicon-strip detectors and straw drift tubes [32] placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200GeV/c. The minimum distance of a track to a primary vertex (PV), the impact param-
eter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is the component of
the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors [33]. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers [34]. The online event selection is performed by a trigger [35], which consists of
a hardware stage, based on information from the calorimeter and muon systems, followed
by a software stage, which applies a full event reconstruction. The hardware muon trigger
selects events containing a high-pT muon candidate. The software trigger requires three
tracks with a significant displacement from any primary pp interaction vertex.

Simulation is required to model the effects of the detector acceptance and the imposed
selection requirements. In the simulation, pp collisions are generated using Pythia [36,
37] with a specific LHCb configuration [38]. Decays of unstable particles are described
by EvtGen [39], in which final-state radiation is generated using Photos [40]. The
interaction of the generated particles with the detector, and its response, are implemented
using the Geant4 toolkit [41, 42] as described in ref. [43].

The simulation is corrected for mismodeling of the kinematic properties of the gener-
ated B0

s mesons and of the photons from the D∗−
s decays, as well as for data-simulation

differences in the muon trigger efficiency and tracking efficiencies of the final-state parti-
cles. Corrections to the B0

s and γ kinematic distributions are determined by comparing
data and simulated samples of B+→ J/ψK+ and B0

s → D∗−
s π+ decays, respectively. Kine-

matic differences between B0
s and B+ mesons due to their production mechanisms are small

and considered to be negligible [44, 45]. Corrections to the trigger and tracking efficien-
cies are evaluated using data and simulated samples of B+ → J/ψK+ decays [46]. In the
simulated signal sample, the form factors are described following the CLN parametrisation
with numerical values ρ2 = 1.205, R1(1) = 1.404 and R2(1) = 0.854.

4 Data selection

Candidate B0
s → D∗−

s µ+νµ decays are selected by pairing D∗−
s and µ+ candidates, where

the D∗−
s candidate is reconstructed through the D−

s γ decay. The D−
s mesons are recon-

structed requiring two opposite-sign kaons and a pion inconsistent with coming from a PV,
and forming a common vertex that is displaced from every PV. The final-state hadrons and
muon must satisfy strict particle identification (PID) criteria, consistent with the assigned
particle hypothesis.

– 6 –
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To suppress the combinatorial background in the D−
s mass spectrum, only the regions

of the D−
s → K+K−π− Dalitz plot compatible with originating from the φπ− and K∗0K−

decay modes are retained by requiring the K+K− mass to be within 20MeV/c2 of the
known φ mass, or the reconstructed K+π− mass to be within 90MeV/c2 of the average
K∗(892)0 mass [16]. Possible backgrounds arising from the misidentification of one of
the D−

s decay products are removed with explicit vetoes which apply more stringent PID
requirements in a small window of invariant mass of the corresponding particle combina-
tion. The main contributions that are removed come from Λ−

c → K+pπ−, D− → K+π−π−,
D−

s → K−π+π−, and misidentified or partially reconstructed multibody D decays, all orig-
inating from semileptonic b-hadron decays.

Due to the small mass difference between the D∗−
s and D−

s mesons, the photon must
be emitted close to the D−

s flight direction. Photons are selected inside a narrow cone
surrounding the D−

s candidate, defined in pseudorapidity and azimuthal angle. Only the
highest pT photon inside the cone is combined with the D−

s candidate. Potential contami-
nation from neutral pions reconstructed as a single merged cluster in the electromagnetic
calorimeter is suppressed by employing a neural network classifier trained to separate π0
mesons from photons [47].

A fit to the D−
s γ invariant-mass distribution, with the reconstructed D−

s mass con-
strained to the known value [16], is performed as shown in figure 2. The signal is described
by a Gaussian function with a power-law tail on the right hand side of the distribution
and the background by an exponential distribution. The power-law tail accounts for cases
where additional activity in the calorimeter is mistakenly included in the photon cluster.
The sPlot technique [48] is employed to subtract the combinatorial background from ran-
dom photons. Weighted signal is used to create the templates described in section 5. The
correlation between the weights and w is below 4%.

The muon candidate is required to have pT in excess of 1.2GeV/c. Background arising
from b-hadrons decaying into final states containing two charmed hadrons, Hb → D∗−

s Hc,
followed by a semileptonic decay of the charmed hadron Hc → µ+νµX, where X is one or
more hadrons, are suppressed by using a multivariate algorithm based on the isolation of
the muon [49]. Finally, the B0

s meson candidates are formed by combining µ+ and D∗−
s

candidates which are consistent with coming from a common vertex.

5 Signal yield

The signal yield is determined using a template fit to the distribution of the corrected
mass [50],

mcorr =
√
m2

D∗−
s µ+ + |p⊥|2 + |p⊥|, (5.1)

where mD∗−
s µ+ is the measured mass of the D∗−

s µ+ candidate, and p⊥ is the momentum
of the candidate transverse to the B0

s flight direction. When only one massless final-state
particle is missing from the decay, mcorr peaks at the B0

s mass. Only candidates in the
range 3500 < mcorr < 5367MeV/c2 are considered.

Extended binned maximum-likelihood fits to the mcorr distribution are performed in-
dependently in seven bins of the reconstructed hadronic recoil, w, to obtain the raw yields

– 7 –
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Figure 2. Distribution of the reconstructed D−
s γ mass, m(D−

s γ), with the fit overlaid. The fit is
performed constraining the D−

s mass to the world-average value [16]. The signal and background
components are shown separately with dashed red and dotted green lines, respectively.

bin 1 2 3 4 5 6 7
w 1.1087 1.1688 1.2212 1.2717 1.3226 1.3814 1.4667

Table 1. Binning scheme used for this measurement. Only the upper bound for each bin is
presented. The lower bound on the first bin corresponds to w = 1.

Nmeas per bin. The binning scheme, detailed in table 1, is chosen such that each w bin
has roughly the same signal yield, based on simulation. Obtaining the value of w requires
the knowledge of the momentum of the B0

s meson, which in the decays under study can be
solved up to a quadratic ambiguity. By imposing momentum balance against the visible
system with respect to the flight direction, and assuming the mass of the B0

s meson, the
momentum of the B0

s meson can be estimated. To resolve the ambiguity in the solutions, a
multivariate regression algorithm based on the flight direction is used [51] yielding a purity
on the solutions of around 70%. The mcorr distribution is fitted using shapes (templates)
of signal and of background distributions mostly obtained from simulation. These simu-
lated decays are selected as described in section 4, and are corrected for the simulation
mismodeling as described in section 3.

The largest contribution to the background is due to B0
s → D∗−

s τ+ντ decays, with
τ− → µ−νµντ . A small source of background is formed by excited D−

s mesons decaying
into a D∗−

s resonance. The only such excited state is the Ds1(2460)− meson, and hence
templates for B0

s → Ds1(2460)−µ+νµ and B0
s → Ds1(2460)−τ+ντ decays are included in

the fit. The background arising from b hadrons decaying into final states containing two
charmed hadrons, Hb→ D∗−

s Hc, is also addressed. The template for this process is gener-

– 8 –
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ated using simulated events of B0
s , B0, B+ and Λ0

b decays, with an appropriate admixture
of final states, based on their production rates, branching ratios and relative reconstruc-
tion efficiencies taken from simulation. The last background considered in the fit is the
combinatorial background, arising from random combinations of tracks. This template is
obtained from a data sample where the D−

s meson and the muon have the same charge.
The free parameters in the fit are the signal yield, the relative abundances of

B0
s → D∗−

s τ+ντ and B0
s → Ds1(2460)−µ+νµ candidates with respect to that of the sig-

nal, and the fraction of combinatorial background. The total fraction of backgrounds from
Hc → µ+νµX decays is fixed to the expected value using the measured branching frac-
tions and selection efficiencies obtained from simulation. A 40% uncertainty is assigned
to this component to account for the uncertainties on the branching fractions [16]. The
B0

s → Ds1(2460)−τ+ντ contribution is also fixed assuming a value of its ratio with respect to
the muonic mode equal to the SM prediction for B(B+→ D∗0τ+ντ )/B(B+→ D∗0µ+νµ) [21]
under the assumption that this ratio is identical for B0

s meson decays. The contribution of
this decay to the fit is negligible. The Barlow-Beeston “lite” technique [52, 53] is applied
to account for the limited size of the simulation samples. The distributions of mcorr with
the fit overlaid are shown in figure 3.

Using the fractions obtained from the fit, data and simulated distributions of the an-
gular variables cos(θµ), cos(θDs), and χ, as defined in section 2, are shown in figure 4. All
distributions show good agreement between data and simulation, indicating that integrat-
ing over the angles does not introduce biases.

6 Efficiency correction

This analysis requires a precise measurement of all contributions to the efficiency as a
function of the true value of the hadronic recoil wtrue extracted from simulation. However,
the overall normalisation of the efficiency is not determined as only its dependency with
wtrue is relevant.

The total efficiency is the product of the geometrical acceptance of the detector, the
efficiency of reconstructing all tracks, the trigger requirements, and the full set of kine-
matic, PID and background rejection requirements. Most of the contributions to the total
efficiency are obtained using simulation. Only the particle identification and the D−

s selec-
tion efficiencies are derived from data using control samples. The muon and hadron PID
efficiencies are taken from large data samples of J/ψ→ µ+µ− and D∗+ → D0π+ decays,
respectively [54]. These samples are then used to determine the PID efficiencies in bins of
p, pT and number of tracks in the event. The D−

s selection efficiency accounts for selecting
the regions in the Dalitz plot, as well as the vetoes described in section 4. This efficiency
is determined from a sample of fully reconstructed B0

s → D−
s π

+ decays as a function of the
D−

s pT. The efficiencies extracted from data are convolved with the simulation to obtain
their dependency on wtrue.

The efficiencies derived from simulation are extracted by comparing the generator-
level simulation, based on Pythia [36, 37] and EvtGen [39], to the final reconstructed
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Figure 3. Distribution of the corrected mass, mcorr, for the seven bins of w, overlaid with the fit
results. The B0

s → Ds1(2460)−τ+ντ and the B0
s → Ds1(2460)−µ+νµ components are combined in

B0
s → Ds1(2460)−$+ν". Below each plot, differences between the data and fit are shown, normalised

by the uncertainty in the data.
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Figure 4. Distribution of (top right) χ, (bottom left) cos(θDs) and (bottom right) cos(θµ)
integrating over w and the other decay angles from data (black points) compared to the dis-
tribution from simulation with their relative size extracted from the fit to the corrected mass.
The B0

s → Ds1(2460)−τ+ντ and the B0
s → Ds1(2460)−µ+νµ components are combined in

B0
s → Ds1(2460)−$+ν". The uncertainties on the templates, indicated by the hashed areas in the

figures, are a combination from all templates.

and selected simulation sample used for the template fit, omitting the particle identification
and the D−

s selection criteria.

7 Unfolded yields

The measured B0
s → D∗−

s µ+νµ spectrum from section 5 must be unfolded to account for
the resolution on the w variable, which is 0.07. The unfolding procedure uses a migration
matrix determined from simulation, defined as the probability that a candidate generated
in bin j of the wtrue distribution appears in bin i of the w distribution. The unfolded
spectrum is then corrected bin-by-bin using the efficiency described in section 6. The
combination of the migration matrix and the total efficiency, called the response matrix,
is shown in appendix B.

The unfolding procedure adopted is based on the singular value decomposition (SVD)
method [55] using the RooUnfold package implemented in the Root package [56]. The SVD
method includes a regularisation procedure that depends upon a parameter k, ranging
between unity and the number of degrees of freedom, seven in this case. Using simulation,
the optimal value for k is found to be k = 5, which minimises the difference between the
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yield from the unfolding procedure and the expected yield in each bin. The final yields,
labelled Nunf

corr, are normalised to unity and presented in table 2.

7.1 Systematic uncertainties

Systematic uncertainties on Nunf
corr originate from the fitted D∗−

s and B0
s → D∗−

s µ+νµ yields,
and the efficiency corrections. By varying the determination of the unfolded yields, sys-
tematic uncertainties are quantified. Since this analysis is sensitive only to the shape of
the decay distribution and the absolute normalisation is unknown, every such variation is
normalised to unity. After normalising, the values are compared to those from the default
normalised unfolded yields, and from this the uncertainties are extracted.

The size of the simulated samples, which are very CPU intensive to generate, is the
dominating systematic uncertainty on the unfolded yields. The simulated sample size is
accounted for in the fit by applying the Barlow-Beeston “lite” technique [52, 53] when
determining the signal yield. Its relative contribution to the systematic uncertainty is
assessed by not applying this technique and comparing the obtained uncertainties. The
uncertainties due to the size of the control samples used to determine the efficiencies and
corrections are obtained by varying each of the efficiency and correction inputs within their
uncertainty, repeating this 1000 times, and taking the spread as the uncertainty on Nunf

corr.
The uncertainty on the SVD unfolding procedure is determined by repeating the regu-

larisation procedure with a different regularisation parameter, k. The nominal value used
is k = 5, which is changed to k = 4 and k = 6, and the difference with the nominal value
is assigned as the systematic uncertainty.

Two systematic uncertainties are determined to account for assumptions in the simu-
lation. Radiative corrections simulated by the Photos package are known to be incom-
plete [40, 57]. The difference in Nunf

corr from simulated samples with and without Photos
is evaluated and a third of the difference is assigned following ref. [58]. The efficiency
due to the detector acceptance, and thus the shape of the efficiency correction, may be
affected by the form factors in the HQET model used to generate the simulation, which
are based on the 2016 HFLAV averages [59]. This is studied by weighting both the gen-
erator level and fully reconstructed simulated samples to the 2019 HFLAV averages [6]:
ρ2 = 1.122 ± 0.024, R1(1) = 1.270 ± 0.026, and R2(1) = 0.852 ± 0.018, with correlations
corr[ρ2, R1(1)] = −0.824, corr[ρ2, R2(1)] = 0.566, and corr[R1(1), R2(1)] = −0.715. The
values of each pair are varied within one standard deviation of their mean, taking into
account their correlation. The value of R0(1) is varied by a 20% uncertainty accounting
for finite b- and c-quark masses [21]. These variations result in small changes of the total
efficiency and the average difference is taken as the uncertainty.

The effect of the B0
s and γ kinematic corrections is assessed by changing the kinematic

binning schemes in which the corrections are evaluated. The large effect induced by this
change has been checked for statistical fluctuations of the calibration samples. The sample
is split randomly into two, after which new corrections and Nunf

corr yields are calculated. No
relevant differences between the Nunf

corr values of these two samples are found in any w bin.
Hence, the systematic uncertainty is based on the change of binning schemes alone.
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w bin
1 2 3 4 5 6 7

Fraction of Nunf
corr,i 0.183 0.144 0.148 0.128 0.117 0.122 0.158

Uncertainties (%)
Simulation sample size 3.5 3.0 2.8 3.1 3.4 3.0 3.7
Sample sizes for effs and corrections 3.6 3.2 3.0 2.8 2.8 2.7 2.8
SVD unfolding regularisation 0.5 0.5 0.1 0.7 1.2 0.0 0.5
Radiative corrections 0.1 0.2 0.1 0.3 0.4 0.2 0.2
Simulation FF parametrisation 0.3 0.1 0.1 0.1 0.2 0.4 0.2
Kinematic corrections 2.4 1.0 1.1 0.1 0.2 0.1 0.9
Hardware-trigger efficiency 0.3 0.3 0.0 0.2 0.2 0.3 0.1
Software-trigger efficiency 0.0 0.1 0.0 0.0 0.1 0.0 0.0
D−

s selection efficiency 0.5 0.2 0.3 0.3 0.2 0.1 0.3
Photon background subtraction 0.0 2.3 0.8 2.9 2.0 0.9 0.4
Total systematic uncertainty 5.6 5.1 4.4 5.2 5.0 4.2 4.8
Statistical uncertainty 3.4 2.9 2.7 3.1 3.2 2.9 3.4

Table 2. Fraction of the unfolded yields corrected for the global efficiencies, Nunf
corr, for each w bin.

Also shown in this table is the breakdown of the systematic and statistical uncertainties on Nunf
corr.

These are shown as a fraction of the unfolded yield.

The corrections to the hardware and software trigger efficiencies applied to the sim-
ulated samples depend on the kinematics and PID of the candidates. The systematic
uncertainty is evaluated by changing the binning scheme and the PID selection of the
control sample.

The systematic uncertainty due to the kinematic dependence of the D−
s selection ef-

ficiency is assessed by extracting the efficiency as a function of p instead of pT from the
B0

s → D−
s π

+ control sample.
The systematic uncertainty due to the photon background subtraction, performed

through the sPlot method with fits to the D∗−
s invariant mass, is assessed by implement-

ing the fit with a third-order Chebyshev polynomial for the background description, and
repeating the background subtraction process.

Systematic uncertainties induced by the tracking corrections, detector occupancy and
PID efficiencies are found to be negligible as they do not affect the corrected mass distri-
bution nor the shape of the efficiency correction.

7.2 Results

The Nunf
corr yields and corresponding systematic and statistical uncertainties per w bin are

shown in table 2. The correlations between the Nunf
corr yields including statistical and system-

atic uncertainties are given in table 3, and the covariance matrix is presented in table 6 in
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w bin 1 2 3 4 5 6 7
1 1
2 0.44 1
3 0.13 0.60 1
4 0.19 0.32 0.48 1
5 0.30 0.30 0.15 0.60 1
6 0.34 0.38 0.33 0.22 0.54 1
7 0.27 0.34 0.34 0.27 0.07 0.32 1

Table 3. Correlation matrix for the unfolded data set in bins of w, including both statistical and
systematic uncertainties.

appendix B. The detector response combined with the reconstruction efficiency is presented
in appendix B. Together these can be used to constrain form-factor parametrisations.

8 Form factor fits

The yields Nunf
corr with corresponding correlation matrix presented in section 7 can be fit

using various form-factor parametrisations. Fits using the commonly used CLN and BGL
parametrisations, with the assumptions described in section 2, are presented in the follow-
ing.

The values of the form-factor parameters are derived from a χ2 fit with

χ2 =
∑

i,j

(
Nunf

corr,i − Nexp,i
)
C−1
ij

(
Nunf

corr,j − Nexp,j
)
. (8.1)

In this expression, Nunf
corr,i(j) is the normalised, unfolded and efficiency-corrected yield in bin

i(j), Nexp,i(j) is the expected yield in bin i(j) obtained from integrating dΓi(j)/dw from the
CLN or BGL parametrisation over the bin, and Cij is the covariance matrix describing the
statistical uncertainties from the yields and efficiency corrections. This χ2 function is min-
imised for the CLN and BGL parametrisations separately. For the CLN parametrisation,
the fitted value is ρ2 = 1.16± 0.05, where the uncertainty is only statistical in nature.

For the BGL parametrisation, the unitarity constraint is considered in the minimisation
by adding a Gaussian penalty function [60] to the χ2 defined in eq. (8.1). This function is
of the form

θ(U − 1)
(
U − 1
σ

)2

, (8.2)

where θ is the Heaviside function, U is the unitarity constraint ∑2
n=0(afn)2 +

∑2
n=0(aF1

n )2,
and σ is the theoretical uncertainty associated with the bound [61]. The correlation between
the external parameter af0 and the fitted parameters af1 and af2 is not considered due to its
small uncertainty. To assess the impact of this choice, the value of af0 has been increased
(decreased) by +1(−1)σ. The change in the fitted parameters is observed to be negligible
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compared with the overall systematic uncertainty which covers for it for any value of the
correlation between af0 and the rest of the parameters. This can be explained as af0 only en-
ters as a nuisance parameter in the unitarity bounds, which is the only source of correlation
between these parameters. As the two scaled parameters af1/a

f
0 and af2/a

f
0 can be much

larger than one (as shown in figure 5) the average magnitude of the correlation diminishes.
The fitted values are af1 = −0.005± 0.034, and af2 = 1.00+0.00

−0.19, where the uncertainties
are only statistical in nature.

8.1 Systematic uncertainties

The systematic uncertainties on the parameters ρ2, af1 and af2 originate from the same
sources as those described in section 7.1. Additional systematic uncertainties originate
from the external parameters used in the form-factor fits. A summary of all systematic
uncertainties for ρ2, af1 and af2 is shown in table 4.

The impact of changes in signal yields or efficiencies has been assessed by repeating
the fit with different conditions and comparing the obtained values to the nominal ones.
In the χ2 fit, the parameters R1(1) and R2(1) are fixed to the HFLAV averages [6]. The
uncertainties on these values are propagated to the CLN fit outcome by changing R1(1)
and R2(1) within one standard deviation from their average, while accounting for the
correlation between these values. For the BGL fit, the values of the external parameters
of the f(z), g(z) and F1(z) functions are varied simultaneously within their uncertainty.
When the uncertainties are asymmetric the largest is chosen. This process is repeated
1000 times applying the unitarity constraint and the difference between the average of the
variations and the nominal value is assigned as a systematic uncertainty.

8.2 Results

An analysis to extract the leading parameters of the form factor describing the semileptonic
transition B0

s → D∗−
s µ+νµ has been performed. Using the CLN parametrisation the result

obtained is
ρ2 = 1.16± 0.05 (stat)± 0.07 (syst),

where the mass of the muon has not been neglected. To compare with other published
results, the fit is repeated assuming a massless muon, resulting in a small shift of the central
value of the ρ2 parameter of about 1.5%, as shown in table 5. The world-average value of ρ2
for the equivalent B0 →D∗+µ−νµ decay is ρ2 = 1.122±0.015 (stat)±0.019 (syst) [6]. Both
values of ρ2 are consistent within their uncertainties. The measurement is also in agreement
with the value obtained in ref. [7], ρ2 = 1.23± 0.17 (stat) ± 0.05 (syst) ± 0.01 (ext), where
the last uncertainty comes from external inputs. That analysis uses B0

s → D∗−
s µ+νµ

decays from an independent data set, and where the photon from the D∗−
s decay is not

reconstructed. A comparison with the normalised ∆Γ/∆w spectra inferred from the CLN
and BGL parametrisations in ref. [7] gives consistent results with the measured w spectrum
in this paper, as shown in appendix D.
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Source σ(ρ2) σ(af1) σ(af2)
Simulation sample size 0.053 0.036 +0.00

− 0.35

Sample sizes for efficiencies and corrections 0.020 0.016 +0.00
− 0.15

SVD unfolding regularisation 0.008 0.004 –
Radiative corrections 0.004 – –
Simulation FF parametrisation 0.007 0.005 –
Kinematic corrections 0.024 0.012 –
Hardware-trigger efficiency 0.001 0.008 –
Software-trigger efficiency 0.004 0.002 –
D−

s selection efficiency – 0.008 –
Photon background subtraction 0.002 0.015 –
External parameters in fit 0.024 0.002 +0.00

− 0.04

Total systematic uncertainty 0.068 0.046 +0.00
− 0.38

Statistical uncertainty 0.052 0.034 +0.00
− 0.19

Table 4. Summary of the systematic and statistical uncertainties on the parameters ρ2, af1 and af2
from the unfolded CLN and BGL fits. The total systematic uncertainty is obtained by adding the
individual components in quadrature.

Using the BGL parametrisation, the results obtained are

af1 = −0.005± 0.034 (stat)± 0.046 (syst),
af2 = 1.00+0.00

− 0.19 (stat)+0.00
− 0.38 (syst).

In figure 5, the ∆χ2 contours for the scaled parameters af1/a
f
0 versus af2/a

f
0 are shown;

figure 8 in appendix C shows the contours of the unscaled af1 versus af2 parameters. The
unitarity constraint results in a non-gaussian distribution of the uncertainty on the af2/a

f
0

parameter. The fits to the differential decay rate using both parametrisations are shown
in figure 6. The p-values are 8.2% and 1.3% for the CLN and BGL parametrisations,
respectively. The low p-values are found to be caused by the third bin in w, which is higher
than expected for both parametrisations. When artificially decreasing the central value of
this bin by one standard deviation, the p-values increase to 69.7% and 8.3% for the CLN
and BGL parametrisations, respectively. The low p-value for the latter fit is explained by
the fact that the minimum of the χ2 function without the unitarity constraint lies in the
region excluded by this constraint.

The prediction of the decay rate can also be transformed to a prediction of the expected
normalised event yields taking into account the efficiency and resolution, which then is fit to
the experimental spectrum. Both procedures provide similar results with small differences
induced by slightly different bin-by-bin correlations shown in table 5.
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Figure 5. ∆χ2 contours for the scaled parameters af1/a
f
0 versus af2/a

f
0 . The black cross marks

the best-fit central value. The solid (dashed) contour encloses the ∆χ2 = 2.3 (6.17) region. The
observed shape is due to the applied unitarity condition, see eq. (2.11).
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Figure 6. Unfolded normalised differential decay rate with the fit superimposed for the CLN
parametrisation (green), and BGL (red). The band in the fit results includes both the statistical
and systematic uncertainty on the data yields.
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CLN fit
Unfolded fit ρ2 = 1.16± 0.05± 0.07
Unfolded fit with massless leptons ρ2 = 1.17± 0.05± 0.07
Folded fit ρ2 = 1.14± 0.04± 0.07
BGL fit

Unfolded fit
af1 = −0.005± 0.034± 0.046
af2 = 1.00+0.00

− 0.19
+0.00
− 0.38

Folded fit
af1 = 0.039± 0.029± 0.046
af2 = 1.00+0.00

− 0.13
+0.00
− 0.34

Table 5. Results from different fit configurations, where the first uncertainty is statistical and the
second systematic.

9 Conclusions

In conclusion, this paper presents for the first time the unfolded normalised differential
decay rate for B0

s → D∗−
s µ+νµ decays as a function of the recoil parameter w. The

unfolded spectrum as a function of w with the systematic uncertainty per bin is given
in table 2 and the correlations between these bins in table 3. This result allows to
constrain B0

s → D∗−
s µ+νµ form-factor parametrisations. The CLN and BGL form-factor

parametrisations have been used to fit the measured spectrum with additional input from
B0 → D∗−$+ν! decays. Both fits give consistent results when compared to data.
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Figure 7. Total efficiency as a function of wtrue, including the acceptance of the LHCb detector
as well as the reconstruction and selection efficiencies.

A Fitted yields and efficiency

Figure 7 shows the total efficiency applied to the unfolded signal yields, as a function of
wtrue. It is the combination of the reconstruction and selection efficiencies, including the
acceptance of the LHCb detector.

B Covariance and response matrices

This section contains the information needed to reproduce a form-factor fit. To perform the
fit using the unfolded, efficiency-corrected and normalised yields given in table 2, the corre-
sponding covariance matrix with the combined statistical uncertainties is given in table 6.

To transform theoretical predictions into expected signal yields, the response matrix,
given in table 7 is needed. This contains the migration matrix (from the true value of w to
the reconstructed one) combined with the reconstruction efficiency. The migration matrix
is normalised such that the entries within a given bin of w sum up to unity. The absolute
efficiencies have not been measured for this analysis.

– 19 –



J
H
E
P
1
2
(
2
0
2
0
)
1
4
4

w bin [10−5] 1 2 3 4 5 6 7
1 16.10
2 4.73 7.05
3 1.21 3.81 5.63
4 1.87 2.12 2.81 6.10
5 2.74 1.80 0.78 3.37 5.12
6 2.42 1.82 1.38 0.98 2.17 3.19
7 3.24 2.69 2.43 2.02 0.44 1.69 8.95

Table 6. Covariance matrix for the unfolded data set in bins of w, including both statistical and
systematic uncertainties in units of 10−5.

[10−4] wtrue

w 1 2 3 4 5 6 7
1 132.0 29.9 11.0 6.1 2.7 2.4 1.0
2 22.4 111.0 36.3 11.1 5.0 3.8 1.4
3 6.0 28.7 109.0 35.9 12.3 6.6 4.8
4 4.6 9.8 27.0 102.0 34.6 12.3 5.7
5 1.4 4.4 8.9 30.3 98.0 33.7 10.3
6 0.8 0.7 5.0 8.5 34.5 97.0 30.9
7 −0.1 0.7 2.2 5.7 11.0 33.5 98.5

Table 7. Response matrix, containing the migration from wtrue to w bins together with the total
efficiency in units of 10−4.
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BGL parameter Value
af0 0.01221± 0.00016
aF1
1 0.0042± 0.0022

aF1
2 −0.069+0.041

− 0.037

ag0 0.024+0.021
− 0.009

ag1 0.05+0.39
− 0.72

ag2 1.0+0.0
− 2.0

aF2
0 0.0595± 0.0093

aF2
1 −0.318± 0.170

Table 8. Fit inputs used for the BGL fit, taken from ref. [17] and ref. [24].
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Figure 8. ∆χ2 contours for the scaled parameters af1 versus af2 . The black cross marks the best-fit
central value. The solid (dashed) contour encloses the ∆χ2 = 2.3 (6.17) region. The observed shape
is due to the applied unitarity condition, see eq. (2.11).

C Additional information BGL fit

Table 8 gives an overview of the fit inputs for the BGL fit. Figure 8 shows the unscaled af1
versus af2 contours, equivalent to figure 5.
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Figure 9. Comparison between the w spectrum measured in this paper to the normalised ∆Γ/∆w
spectra inferred from the CLN and BGL parametrisations in ref. [7].

D Comparison with Phys. Rev. D 101 (2020) 072004

The w spectrum measured in this analysis can be compared with the results obtained in
ref. [7] where the form-factor parameters of the B0

s → D∗−
s µ+νµ decay are measured using

a version of the CLN and BGL parametrisations. From this, the normalised ∆Γ/∆w spec-
trum can be inferred, which is shown in figure 9. The spectrum measured in this paper is
consistent with the normalised spectra inferred from both CLN and BGL parametrisations
used in ref. [7].
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